820 research outputs found

    Abstractions and sensor design in partial-information, reactive controller synthesis

    Get PDF
    Automated synthesis of reactive control protocols from temporal logic specifications has recently attracted considerable attention in various applications in, for example, robotic motion planning, network management, and hardware design. An implicit and often unrealistic assumption in this past work is the availability of complete and precise sensing information during the execution of the controllers. In this paper, we use an abstraction procedure for systems with partial observation and propose a formalism to investigate effects of limitations in sensing. The abstraction procedure enables the existing synthesis methods with partial observation to be applicable and efficient for systems with infinite (or finite but large number of) states. This formalism enables us to systematically discover sensing modalities necessary in order to render the underlying synthesis problems feasible. We use counterexamples, which witness unrealizability potentially due to the limitations in sensing and the coarseness in the abstract system, and interpolation-based techniques to refine the model and the sensing modalities, i.e., to identify new sensors to be included, in such synthesis problems. We demonstrate the method on examples from robotic motion planning.Comment: 9 pages, 4 figures, Accepted at American Control Conference 201

    Sound and Automated Synthesis of Digital Stabilizing Controllers for Continuous Plants

    Get PDF
    Modern control is implemented with digital microcontrollers, embedded within a dynamical plant that represents physical components. We present a new algorithm based on counter-example guided inductive synthesis that automates the design of digital controllers that are correct by construction. The synthesis result is sound with respect to the complete range of approximations, including time discretization, quantization effects, and finite-precision arithmetic and its rounding errors. We have implemented our new algorithm in a tool called DSSynth, and are able to automatically generate stable controllers for a set of intricate plant models taken from the literature within minutes.Comment: 10 page

    Automatic verification of multi-threaded programs by inference of rely-guarantee specifications

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier 2; National Research Foundation (NRF) Singapor

    Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

    Get PDF
    Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction techniques developed by considering a detailed case study based on a multi-valued network model of the regulation of tryptophan biosynthesis in Escherichia coli.Comment: Presented at MeCBIC 201

    On the Trade-off Between Efficiency and Precision of Neural Abstraction

    Full text link
    Neural abstractions have been recently introduced as formal approximations of complex, nonlinear dynamical models. They comprise a neural ODE and a certified upper bound on the error between the abstract neural network and the concrete dynamical model. So far neural abstractions have exclusively been obtained as neural networks consisting entirely of ReLUReLU activation functions, resulting in neural ODE models that have piecewise affine dynamics, and which can be equivalently interpreted as linear hybrid automata. In this work, we observe that the utility of an abstraction depends on its use: some scenarios might require coarse abstractions that are easier to analyse, whereas others might require more complex, refined abstractions. We therefore consider neural abstractions of alternative shapes, namely either piecewise constant or nonlinear non-polynomial (specifically, obtained via sigmoidal activations). We employ formal inductive synthesis procedures to generate neural abstractions that result in dynamical models with these semantics. Empirically, we demonstrate the trade-off that these different neural abstraction templates have vis-a-vis their precision and synthesis time, as well as the time required for their safety verification (done via reachability computation). We improve existing synthesis techniques to enable abstraction of higher-dimensional models, and additionally discuss the abstraction of complex neural ODEs to improve the efficiency of reachability analysis for these models.Comment: To appear at QEST 202

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    An abstraction-refinement methodology for reasoning about network games

    Get PDF
    Network games (NGs) are played on directed graphs and are extensively used in network design and analysis. Search problems for NGs include finding special strategy profiles such as a Nash equilibrium and a globally-optimal solution. The networks modeled by NGs may be huge. In formal verification, abstraction has proven to be an extremely effective technique for reasoning about systems with big and even infinite state spaces. We describe an abstraction-refinement methodology for reasoning about NGs. Our methodology is based on an abstraction function that maps the state space of an NG to a much smaller state space. We search for a global optimum and a Nash equilibrium by reasoning on an under- and an over-approximation defined on top of this smaller state space. When the approximations are too coarse to find such profiles, we refine the abstraction function. We extend the abstraction-refinement methodology to labeled networks, where the objectives of the players are regular languages. Our experimental results demonstrate the effectiveness of the methodology
    • …
    corecore