
games

Article

An Abstraction-Refinement Methodology
for Reasoning about Network Games†

Guy Avni 1,‡, Shibashis Guha 2,‡ and Orna Kupferman 3,*,‡

1 The Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria;
guy.avni@ist.ac.at

2 Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium;
shibashis.guha@ulb.ac.be

3 School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel
* Correspondence: orna@cs.huji.ac.il
† This paper is an extended version of our paper published in Proceedings of the 26th International Joint

Conference on Artificial Intelligence 2017 (IJCAI’17), Melbourne, Australia, 19–25 August 2017.
‡ These authors contributed equally to this work.

Received: 2 May 2018; Accepted: 17 June 2018; Published: 22 June 2018
����������
�������

Abstract: Network games (NGs) are played on directed graphs and are extensively used in network
design and analysis. Search problems for NGs include finding special strategy profiles such as
a Nash equilibrium and a globally-optimal solution. The networks modeled by NGs may be huge.
In formal verification, abstraction has proven to be an extremely effective technique for reasoning
about systems with big and even infinite state spaces. We describe an abstraction-refinement
methodology for reasoning about NGs. Our methodology is based on an abstraction function
that maps the state space of an NG to a much smaller state space. We search for a global optimum
and a Nash equilibrium by reasoning on an under- and an over-approximation defined on top of
this smaller state space. When the approximations are too coarse to find such profiles, we refine
the abstraction function. We extend the abstraction-refinement methodology to labeled networks,
where the objectives of the players are regular languages. Our experimental results demonstrate the
effectiveness of the methodology.

Keywords: network formation games; abstraction-refinement; Nash equilibrium; social optimum

1. Introduction

Network design is a fundamental and well-studied problem. A game-theoretic approach to
the analysis of network design has become especially relevant with the emergence of the Internet,
where different users share resources like software or communication channels [1–3]. Network games
(NGs, for short) [3–5] constitute a well studied model of non-cooperative games. The game is played
among selfish players on a network, which is a directed graph. NGs are used to model resources
as edges in a network and the cost involved in sharing these resources. Each player has a source
and a target vertex, and a strategy is a choice of a path that connects these two vertices. The cost
a player pays is the sum of costs of the edges his path traverses, where a cost of an edge depends on
the load on it, namely the number of players using the edge. We distinguish between two types of costs.
In cost-sharing games [3], each edge has a cost and the players that use it split the cost among them,
thus increased load decreases the cost. For example, when the costs correspond to prices, users that
share a resource also share its price. Then, in congestion games [4], increased load increases the cost:
each edge has a non-decreasing cost function that maps the load on the edge to its cost given this
load. For example, when the network models a road system and costs correspond to the travel time,
an increased load on an edge corresponds to a traffic jam, increasing the cost of the players that use it.

Games 2018, 9, 39; doi:10.3390/g9030039 www.mdpi.com/journal/games

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/games
http://www.mdpi.com
http://www.mdpi.com/2073-4336/9/3/39?type=check_update&version=1
http://dx.doi.org/10.3390/g9030039
http://www.mdpi.com/journal/games

Games 2018, 9, 39 2 of 21

Since the players attempt to minimize their own costs, they selfishly select a path. The focus in
game theory is on the stable outcomes of a given setting. The most prominent stability concept is that of
a Nash equilibrium (NE) [6]: a profile (vector of strategies, one for each player) such that no player can
decrease his cost by unilaterally deviating from his current strategy; i.e., assuming that the strategies
of the other players do not change1. By [4], there exists an NE in every NG. A social optimum (SO) is
a profile that minimizes the sum of the players’ costs; thus the one obtained if the players would have
obeyed some centralized authority.

Finding SO and NE profiles is a complex and well studied problem that has been a driving force in
the development of the algorithmic game theory field. Finding an SO is NP-complete [7,8]. Finding an
NE is PLS-complete [9,10] (the complexity class PLS contains local search problems with polynomial
time searchable neighborhoods [11], thus it is between P and NP) and the complexity of finding
an approximate NE was only recently settled in normal-form games [12,13]. The theoretical tools
that have been developed are finding their way to practical applications such as auction design and
network routing. For example, recently [14], researchers have suggested to quantify the performance
of a traffic network using the Price of Anarchy measure [15], which is the ratio between the costs the
players pay in the SO and in the most expensive NE. This was done by modeling the network as an NG,
and finding the SO and the most expensive NE in it. The high complexity of the problems becomes
more acute when we keep in mind that the NGs we study often model huge networks. Indeed, the size
of nowadays networks increases in an exponential rate, with networks having an increasing amount of
information, and becoming more and more complex [16–18].

The need to cope with very large models is a major research area in formal verification.
There, we check that a system satisfies its specification by translating the system into some formal
model, typically a labeled state-transition graph, and applying model-checking procedures on this
model [19]. One of the most successful methodologies for reasoning about the huge state space of
systems is abstraction [20,21], where we hide some of the information about the system. This enables
us to reason about systems that are much smaller, yet it gives rise to approximated solutions. Indeed,
hiding of information may result in an under-approximating system: one that has fewer behaviors than
the original system, or in an over-approximating system: one that has more behaviors than the original
system. Abstraction methodologies use both types of approximations [22–24].

An important step in methodologies that are based on abstraction is refinement. Assume that
we find an over-approximation of the system that does not satisfy a universal property. That is,
the over-approximation has a forbidden behavior. It may be that this forbidden behavior exists also
in the concrete system, in which case the verification algorithm terminates and reports a bug in the
system. However, it may also be that the forbidden behavior exists only in the over-approximation,
thus the counterexample is spurious. Then, one can use the spurious counterexample to refine
the over-approximation in a way that eliminates it, and repeat model-checking until either a real
counterexample is found, or the over-approximation satisfies the property. This methodology,
of counterexample guided abstraction-refinement (CEGAR) has proven to be very effective [25].

Abstraction has been studied in the context of extensive-form games. A strategy for a player in
an extensive-form game prescribes which action to perform, given the histories of actions played so
far. NGs, on the other hand, are “one-shot” games. The questions studied on NGs focus on stable
outcome whereas in extensive-form games one often tries to find an optimal strategy for a player.
The abstraction studied in [26,27] tries to merge states in the game tree that are indistinguishable
for the players. The idea of merging configurations due to hidden information is the key also in
abstractions used in formal methods, yet the technical details are very different. Then, in action
abstraction [27,28], some of the actions of the players are disabled, reducing the state space of reachable
configurations in the game tree, which is again not similar to the approach taken here. Finally, formal

1 Throughout this paper, we consider pure strategies, as is the case for the vast literature on NGs.

Games 2018, 9, 39 3 of 21

methods often involve reasoning about multi-player games, and abstraction-refinement methodologies
have been studied in this setting [29–32]. Such games model on-going interactions between processes,
say a system and its environment, and are infinite-duration games, thus they are again different from
the NGs we study here. Moreover, trying to abstract games by standard methods used in formal
verification is a known challenge. Indeed, the most conservative form of abstraction is bisimulation,
which results in a system that is behaviourally equivalent, and it is proven in [33] that NEs are not
preserved under bisimulation. Moreover, given the effectiveness of abstractions, researchers have tried
to identify games in which NEs are preserved by bisimulation (as is the case, for example, in iterated
Boolean games [34]) and have extended the definition of bisimulation to multi-agent systems [29].

In this paper, we introduce and study an abstraction-refinement methodology for reasoning about
network games. Given an NGN defined over a network with a set V of vertices, an abstraction function
for N is a function α : V → A, for some set A of abstract vertices. We assume that A is smaller than V,
thus the function α induces a partition of V. We define the under-approximation of N with respect to α,
denoted N ↓[α], and the over-approximation of N with respect to α, denoted N ↑[α]. Both approximations
are NGs that have A as their set of vertices. The under- and over-approximation is in the definition of
the edges and the cost functions. Intuitively, N ↓[α] is less appealing to the players than N : they have
fewer possible profiles, and the profiles that are possible are at least as expensive as the ones that
correspond to them inN . Accordingly, the edges under-approximate these inN : there is an edge from
an abstract vertex a to an abstract vertex a′ if all the concrete vertices that are mapped by α to a have
an edge to a concrete vertex that is mapped by α to a′ (a.k.a. must transitions [21,22]). In addition,
the cost of an abstract edge is essentially the maximal cost of a concrete edge that induces it. Dually,
N ↑[α] is more appealing to the players: they have more and cheaper profiles than in N . Accordingly,
the edges in N ↑[α] over-approximate these in N : there is an edge from a to a′ if some concrete
vertex that is in a has an edge to some concrete vertex that is mapped to a′ (a.k.a. may transitions),
and the cost of an abstract edge is essentially the minimal cost of a concrete edge that induces it.
Traditional abstraction-refinement methodologies in formal verification focus on the transition relation.
An extension that takes costs into account has been studied in [35], where the costs of a weighted
automaton are also abstracted. Here, we take into account the cost functions as well as the load. Indeed,
the merging of edges may lead to a spurious increased load in the abstraction.

We show how N ↓[α] and N ↑[α], which may be significantly smaller than N , can be used in order
to reason about the SO and the NE profiles of N . Our methodology is based on the observation that
each profile in N ↓[α] can be mapped to at least one profile in N with a lower or equal cost, and that
each profile in N can be mapped to a profile in N ↑[α] with a lower or equal cost. Hence, for example,
the cost of the SO in N is bounded from above and below by the costs of the SOs in N ↓[α] and N ↑[α],
respectively. Moreover, refining α tightens these bounds, so the user can control the trade-off between
preciseness and complexity.

A more technically-involved use of the under- and over-approximations is an algorithm we
present for finding an NE in N . The algorithm, which can be viewed as the NG-analogue of CEGAR,
is based on the notion of an abstract NE: we say that a profile P in N ↓[α] is an abstract NE if no player
has a beneficial deviation from P even in N ↑[α]. Intuitively, an abstract NE has to face two challenges.
First, the profile P has to exist in the under-approximation, where fewer strategies exist. In addition,
deviations from P are possible in the over-approximation, where more strategies exist, and their cost is
lower. Consequently, as we shall formally prove, an abstract NE can direct the search for a concrete
NE: once we find an abstract NE P in N ↓[α], it is guaranteed that a concrete NE exists in N when
restricted to profiles that agree with P. Our algorithm finds an abstract NE if one exists and then
directs the search for a concrete NE in a much smaller state space. It is, however, not necessary that an
abstract NE exists in every abstract game. When a candidate profile in N ↓[α] is an NE in N ↓[α] but
is not an abstract NE in N , we use the spurious deviations of the players in N ↑[α] in order to refine α,
which narrows the search space.

Games 2018, 9, 39 4 of 21

The reachability objectives in NGs enable the players to specify possible sources and targets. Often,
it is desirable to refer also to other properties of the selected paths. For example, in a communication
setting, edges may belong to different providers, and a user may like to specify requirements like
“all edges are operated by the same provider” or “no edge operated by AT&T is followed by an edge
operated by Verizon”. Edges may also have different quality or security levels (e.g., “noisy channel”,
“high-bandwidth channel”, or “encrypted channel”), and again, users may like to specify their
preferences with respect to these properties. In planning or in production systems, nodes of the network
correspond to configurations, and edges correspond to the application of actions. The objectives of
the players are sequences of actions that fulfill a certain plan, which is often more involved than just
reachability [36]; for example “once the arm is up, do not put it down until the block is placed”.

In automata games (AGs, for short) [37], the edges of the network are labeled by letters from some
finite alphabet Σ, and the players have objectives that refer to these labels and are more involved
than the reachability objectives of NGs. Specifically, the objective of each player is a language over Σ,
specifying a property of the path he should traverse. Note that unlike NGs, a strategy in an AG need not
be a simple path. For example, if Σ includes the letters noise and check-sum, the objective of a player may
be to reach some target via a path in which every visit to a noisy edge is followed eventually by a visit to
an edge where a check-sum action is performed. Then, a player might be forced to use an edge several
times in a strategy. We extended the abstraction-refinement methodology to AGs. We distinguish
between two cost-sharing rules that can be applied in AGs. We show that in uniform AGs, where the
cost of an edge is shared uniformly among all the players that use it, our abstraction-refinement
framework remains valid. On the other hand, in proportional AGs, where the cost of an edge is shared
among the players in proportion to the number of times they have used it, the framework cannot be
applied as is. This has to do with the fact that proportional AGs are less stable than NGs, and in fact
they need not have an NE [37]. We are still able to use abstract AGs in order to restrict the search for
an NE in proportional AGs.

We implemented our methodology and tested its performance on randomly-generated
cost-sharing games. We examined the benefit of the abstraction, namely the ratio of the sizes of
the concrete game and the abstract NE found in the approximation. We also examined the practicality
of our approach, namely the number of CEGAR iterations until an abstract NE is found. We studied
these questions for different parameters of the game. Our experimental results demonstrate the
efficiency of the methodology. In particular, the results show that the overhead required for abstraction
becomes more negligible for larger systems.

The paper is organized as follows. In Section 2, we define NGs, an abstraction-refinement
framework for them, and the notion of abstract NEs. In Section 3, we study how the costs of profiles
in a concrete NG relate to costs of profiles in its abstraction, and we focus on SO and NE profiles.
In Section 4 we describe our methodology for finding an NE in the concrete NG by reasoning about its
abstractions, and in Section 5, we describe experimental results that demonstrate the effectiveness of
the methodology. Then, in Section 5.1, we extend the setting to AGs, and in Section 6 we discuss the
results and point to directions for future research.

2. Preliminaries

2.1. Network Games

A network is a tuple 〈V, E〉, where V is a set of vertices and E ⊆ V ×V is a set of directed edges.
For an integer k ∈ IN, let [k] = {1, . . . , k}. A network game (NG) is N = 〈k, V, E, {le}e∈E, 〈si, ti〉i∈[k]〉,
where k is the number of players; 〈V, E〉 is a network; for e ∈ E, the cost function le : [k] → IR≥0

maps the load on edge e, namely the number of players that use edge e, to the cost each of them pays
for using e with this load; and for i ∈ [k], the pair 〈si, ti〉 ∈ V ×V describes the objective of Player i:
traversing N from the source vertex si to the target vertex ti.

Games 2018, 9, 39 5 of 21

We distinguish between two types of cost functions. In uniform cost-sharing games (CS-NGs,
for short) the players that use an edge share its cost equally. Formally, each edge e is associated with
a weight we ∈ IR≥0, and for all x ∈ [k], we have le(x) = we

x . Thus, increasing the load in uniform
cost-sharing games decreases the cost of the players. In contrast, in congestion games (CON-NGs,
for short), the cost functions are non-decreasing, thus increasing the load also increases the cost for
each player.

A strategy of a player i ∈ [k] is a simple path π from si to ti. Thus, π = 〈v1, v2〉, 〈v2, v3〉, . . .,
〈vn−1, vn〉, with v1 = si, vn = ti, and (vj, vj+1) ∈ E for all 1 ≤ j < n. A profile is a tuple of strategies,
one for each player. Consider a profile P = 〈π1, π2, . . . , πk〉 in the game. We sometimes refer to a path
as the set of edges that it traverses, thus π ⊆ E. For an edge e ∈ E, we use loadP(e) to denote the
number of players that traverse the edge e in P. Each player that uses e then pays le(loadP(e)), and the
cost of Player i in P, denoted costi(P), is ∑e∈πi

le(loadP(e)). The cost of the profile P, denoted cost(P),
is the total cost incurred by all the players, i.e., cost(P) = ∑k

i=1 costi(P). For a profile P and a strategy
π of player i ∈ [k], let P[i← π] denote the profile obtained from P by replacing the strategy for Player
i by π. Given a profile P = 〈π1, . . . , πk〉, a best response (BR, for short) of Player i in P is a strategy π′i
such that for all strategies π of Player i, we have that costi(P[i← π′i]) ≤ costi(P[i← π]).

A profile P is a Nash equilibrium (NE) of a game N if no player has an incentive to deviate for N .
Formally, a profile P is an NE if for every Player i and every strategy π, we have costi(P[i ← π]) ≥
costi(P). A social optimum (SO) of a game N is a profile that attains the minimal cost over all profiles.
We denote by SO(N) the cost of an SO profile; i.e., SO(N) = minP cost(P). An SO can be thought of
as an optimal solution imposed by a centralized authority, and need not be an NE.

2.2. Abstraction

Consider an NG N = 〈k, V, E, {le}e∈E, 〈si, ti〉i∈[k]〉. We refer to V as the set of concrete vertices.
Let T = {t1, . . . , tk}. An abstraction function for N is a function α : V → A, for a set A of abstract
vertices. We assume that T ⊆ A and that α is such that for all ti ∈ T, we have α(ti) = ti and α(v) 6= ti
for all v 6= ti. We also assume that A is smaller than V, thus the function α induces a partition of V
(with a singleton {ti} for each ti ∈ T). Accordingly, we sometimes refer to abstract vertices as sets of
concrete vertices. In particular, when α is clear from the context, we use v ∈ a, for v ∈ V and a ∈ A,
to indicate that α(v) = a.

Consider the NG N and an abstraction function α. We define the under- and over-approximation
of N formally. Given N , α, and b ∈ {↓, ↑}, we define N b[α] = 〈k, V, Eb, {lb

e }e∈Eb , 〈α(si), α(ti)〉i∈[k]〉,
where the under- and over-approximating transition relations E↓, E↑ ⊆ A× A, and the under- and
over-approximating cost functions l↓e and l↑e are defined as follows.

Transition relations: Consider two abstract vertices a, a′ ∈ A. Then, E↓(a, a′) holds, that is, there
is an abstract edge from the abstract vertex a to the abstract vertex a′ in the under-approximation
N ↓[α], if for every concrete vertex v ∈ a, there is a concrete vertex v′ ∈ a′ such that E(v, v′). Also,
E↑(a, a′) holds, that is, there is an abstract edge from the abstract vertex a to the abstract vertex a′

in the over-approximation N ↑[α], if there exist concrete vertices v ∈ a and v′ ∈ a′ such that E(v, v′).
Note that E↓ ⊆ E↑. For simplicity, we omit self-loops from E↓ and E↑, as they are not going to be
used anyway in strategies. We follow the common terminology in formal verification and refer to the
under- and over-approximating edges as must and may edges, respectively. We extend α to edges in
the expected way. Thus, α(h), for an edge h = 〈v, v′〉 ∈ E, is 〈α(v), α(v′)〉. Note that α(h) is always in
E↑ and may not be in E↓.

Cost Functions: The definition of the under- and over-approximating cost functions depends on
the type of N . We first describe the definition and then explain it.

• If N is a CON-NG, then

– for every e ∈ E↓ and x ∈ [k], we have l↓e (x) = max{lh(x) : e = α(h)}, and
– for every e ∈ E↑ and x ∈ [k], we have l↑e (x) = min{lh(1) : e = α(h)}.

Games 2018, 9, 39 6 of 21

• If N is a CS-NG, then

– for every e ∈ E↓ and x ∈ [k], we have l↓e (x) = max{lh(1) : e = α(h)}, and
– for every e ∈ E↑ and x ∈ [k], we have l↑e (x) = min{lh(x) : e = α(h)}.

The idea behind the definition is as follows. Recall that in the under-approximation N ↓[α],
we want the strategies to be more expensive. This is why we take, in l↓e , the maximal cost of edges
that induce e. In CON-NGs, the cost increases with load and hence the cost function l↓e depends on x
since we want more expensive profiles. In CS-NGs, we ignore x and assume that the load is 1. To see
why, recall that an abstract edge e ∈ E↓ is obtained by merging several concrete edges. Consequently,
the load on e is the sum of the loads on these concrete edges. This load is fake: it is only due to the
merging of concrete edges and not due to an actual increased load. In CON-NGs, where the cost
functions increase with an increased load, fake load goes well with generating more expensive profiles.
In CS-NGs, however, increased load decreases the cost, and we have to cancel the fake load. This is
done by dividing the load by itself, which bounds the fake load. Recall that in a CS-NG N , each edge
h ∈ E has a weight wh such that lh(x) = wh

x . Thus, as lh(1) = wh, the definition is equivalent to one
with l↓e (x) = max{wh : e = α(h)}.

Dually, the over-approximating cost function aims at providing cheaper strategies. Accordingly,
l↑e depends on the minimum cost function of edges that induce e. Here, we have to cancel fake load in
CON-NGs, as fake load increases the cost and may cause the cost of an abstract edge to go beyond the
cost of the concrete edges that induce it.

When α is clear from the context, we denoteN b[α] byN b. When we refer to the cost of a profile P
in N b, we use the notation costb(P), to emphasize that the profile P is in N b.

The need for having under- and over approximating cost functions has been illustrated in
Example 1.

Example 1. Consider the CON-NGN appearing in the left of Figure 1. The under- and over-approximating NGs
N ↓ andN ↑ appear on the right. The abstraction function α maps both v1 and v2 to a1. Thus E↓ and E↑ coincide in
this example. InN , there are two players: Player 1 with the objective (s1, u1) and Player 2 with the objective (s2, u2).
Note that inN , Player 1 has only one strategy while Player 2 has two strategies. Let P be the profile inN in which
Player 2 has the strategy that uses the edge (s2, v2). It is easy to see that P is an NE inN .

s1

s2

v1

v2

u1

u2

2x + 2

2x
+

2

5

s1

s2

a1 u1

u2

2x + 2

5

Figure 1. The CON-NG N (left) and its approximations (right).

Consider the outgoing edge from a1, in both N ↓ and N ↑. If Player 2 chooses this edge, then it has a load
of 2. This is a fake load due to merging of two concrete edges. Consequently, if we take the cost function to be l
with no adjustment to the load, we get that the profile α(P), which corresponds to P in N ↓ and N ↑ and in
which both players go via a1 is not an NE in N ↓ and N ↑. Indeed, by deviating to the strategy that that uses the
edge with cost 5, Player 2 reduces his cost to 5. Moreover, the obtained profile is an NE in N ↓ and N ↑, which is
bad, as it does not correspond to an NE in N .

Games 2018, 9, 39 7 of 21

The function l↑ in N ↑ cancels the fake load on the abstract edge, and accounts for the fact that single
players use the concrete edges that induce it. Using l↑, the profile α(P) becomes an NE in N ↑, as the cost of
using the strategy with the edge (s2, a1) is 4.

Below we show a more elaborate example of under- and over-approximations of an NG which
will also serve as the running example in this paper.

Example 2. Consider the concrete NG N described in the left side of Figure 2. The game is played among
three players with a common source vertex s. The target for Player 1 is t. The target for Players 2 and 3 is t′.
Consider an abstraction function α that maps the concrete vertices v2 and v3 to the abstract vertex a2, maps v5

and v6 to a5, and does not merge other concrete vertices.

s

v1

v2

v3

v4

v5

v6

t

t
′

4x

2x

x

x

5x

s

a1

{v1}

a2

{v2, v3}

a4

{v4}

a5

{v5, v6}

t

t′

2x
2

4x
4

5x
1

Figure 2. A CON-NG N (left) and its approximations N ↓ and N ↑, which share the same state space
(right). Edges in E↓ are solid. Edges in E↑ \ E↓ are dashed. Edges with no specified cost have cost 0.

The under- and over-approximating NGs N ↓[α] and N ↑[α] are described in the right side of the figure.
Consider for example the edges from a2 to a5. Each of the concrete vertices v2 and v3 have an edge to a concrete
vertex v5 or v6. This is why (a2, a5) ∈ E↓. As for the cost, note that there are three concrete edges that induce
〈a2, a5〉. These are 〈v2, v5〉, 〈v3, v5〉 and 〈v3, v6〉, with cost functions x, x and 5x, respectively. Accordingly,
l↓〈a2,a5〉(x) = 5x, which is the maximal cost for one of these three edges, and l↑〈a2,a5〉(x) = 1, which is the minimal
cost, applied for x = 1.

Consider the profile P in N ↓[α] in which Player 1 chooses the path s, a1, a4, t and Players 2 and 3 choose
the path s, a2, a5, t′. InN ↓[α], the cost of Player 1 is cost↓1(P) = 4× 1 = 4 and the cost of each of Players 2 and
3 is cost↓2(P) = cost↓3(P) = 5× 2 = 10. The profile P is also a profile in N ↑[α], where cost↑1(P) = 4× 1 = 4
and cost↑2(P) = cost↑3(P) = 1.

Let us emphasize the confusing fact that when we talk about an under-approximation, we take
the maximum cost. This may seem counterintuitive. In order not to get confused, recall that the thing
we are approximating is the range and attractiveness of possible profiles. In an under-approximation,
we want both fewer and more expensive profiles. Dually, in an over-approximation, we take the
minimum cost, as we want more and cheaper profiles. A similar intuition applies for the adjustment of
the load.

2.3. Abstract NE

Recall that in an NE profile in a concrete NG N is a profile from which no player has an incentive
to deviate. In this section we define and discuss stable profiles in the abstraction of N .

Definition 1. [Abstract NE] A profile P = 〈π1, . . . , πk〉 inN ↓ is an abstract NE if no player has a beneficial
deviation from P even in N ↑. Formally, for all i ∈ [k] and strategies π′i 6= πi of Player i in N ↑, we have
cost↓i (P) ≤ cost↑i (P[i← π′i]).

Intuitively, an abstract NE has to face two challenges. First, the profile P has to exist in the
under-approximation, where fewer strategies exist. Second, existence of deviations from P is checked

Games 2018, 9, 39 8 of 21

in the over-approximation, where more strategies may exist, and their cost is lower. Consequently,
as we formally prove in Theorem 3, an abstract NE directs the search for a concrete NE: once we
find an abstract NE P in N ↓, we know that a concrete NE exists in N when restricted to profiles
that agree with P. Formally, given an NG N and a profile P in N ↓, the restriction of N to P is the
NGN|P = 〈k, V|P, E|P, {le}e∈E|P , 〈si, ti〉i∈[k]〉, where V|P = {v ∈ V : α(v) appears in a strategy in P} and
E|P = {〈v, v′〉 ∈ E : 〈α(v), α(v′)〉 appears in a strategy in P}.

Example 3. Recall the NG and its abstraction that are described in Example 2. Recall the profile P in which
Player 1 chooses the path s, a1, a4, t and Players 2 and 3 choose the path s, a2, a5, t′. Note that P is not an abstract
NE. First, Player 1 can deviate to the strategy s, a1, a5, a4, t thereby avoiding the costly edge 〈a1, a4〉. Note that
this strategy is spurious and has no corresponding concrete strategy. Also, Players 2 and 3 can benefit from
unilaterally deviating from P to the strategy s, a1, a5, t′. Indeed, the cost of Player 2 (and similarly 3) in N ↓ is
10 as the load on the must edge 〈a2, a5〉 is 2, while by deviating to the may edge 〈a1, a5〉, the cost decreases to 2
as the load is 1. We now show that the abstract game in the right side of Figure 2 does not have an abstract NE.

Please note that Player 1 has the following strategies in N ↑: A : s, a1, a4, t, B : s, a1, a5, a4, t and
C : s, a2, a5, a4, t. Please note that the strategies s, a2, a1, a4, t and s, a2, a1, a5, a4, t of Player 1 are dominated by
s, a1, a4, t. A is the only strategy of Player 1 in N ↓.

Players 2 and 3 have the following strategies in N ↑: E : s, a1, a5, t′ and F : s, a2, a5, t′,
Please note that the strategies s, a2, a1, a5, t′ of Player 2 is dominated by both strategies E and F. Both E

and F are valid strategies of Players 2 and 3 in N ↓.
Thus we consider the following profiles in N ↓ and check if any of them is an abstract NE:

• 〈A, E, E〉: Each player has a cost of 4 each. Player 1 can deviate to C and pay 1. Hence this profile is not an
abstract NE.

• 〈A, E, F〉: Player 1 pays 4, while Players 2 and 3 have a cost of 2 and 5 respectively. Again Player 1 can
deviate to C and pay 1. Hence this profile is not an abstract NE.

• 〈A, F, F〉: Player 1 pays 4, while each of Players 2 and 3 has a cost of 10. Again Player 1 can deviate to C
and pay 1. Hence this profile is not an abstract NE.

Please note that the profile 〈A, F, E〉, is similar to the profile 〈A, E, F〉 and hence omitted.

Of special interest, especially in the context of software-defined networks [38], are NGs in which
V = 2X for some set X of variables. Then, abstraction functions are based on predicates on the variables
in X. Formally, let Ψ = {ψ1, . . . , ψm} be predicates on X. Thus, each predicate ψ ∈ Ψ defines a subset
[[ψ]] ⊆ 2X of assignments to X that satisfy it. For example, if X = {x1, . . . , xn}, then ψ = x1 ∨ ¬x2 is
such that [[ψ]] contains all the assignments to X in which x1 = true or x2 = false. The common practice
in predicate abstraction is to start with a small set Ψ of predicates, take A = 2Ψ, and define α : 2X → 2Ψ

so that for every S ∈ 2X , we have α(S) = {ψ : S ∈ [[ψ]]}. Thus, an assignment S is mapped to the set
of predicates that it satisfies.

The generation of N ↓ and N ↑ depends on the way N is given. When N is given in a succinct
presentation, it is often possible to construct N ↓ and N ↑ on top of this succinct presentation. As an
example, consider again the case V = 2X , and assume that edge relation E is given by formula θE over
the set X ∪ X′ of variables, where X′ = {x′ : x ∈ X}. Thus, for every pair of vertices v, v′ ∈ V × V,
we have that E(v, v′) if θE(Sv,v′), where Sv,v′ is the truth assignment to X ∪ X′ induced by v and v′.
Then, different costs to transitions are defined by different formulas. A simple special case of predicate
abstraction is one in which we hide some of the variables. Thus, A = 2Y, for some Y ⊆ X, and for
all vertices v ∈ 2X, we have α(v) = v ∩ Y. Thus, the abstraction hides the variables in X \ Y. Then,
the definition of E↓ and E↑ is done by a suitable quantification on the hidden variables in θE: Let
X \Y = {z1, . . . , zl}. Then, θ↓E = ∀z1, ..., zl∃z′1, ..., z′lθE and θ↑E = ∃z1, ..., zl , z′1, ..., z′lθE.

Example 4. Consider a huge network of routers, describing external and internal communication among
some entities. Each entity may be, for example, an intranet of a company or a large autonomous system

Games 2018, 9, 39 9 of 21

of routers. Each router is encoded by variables in X = {x1, . . . , xn}. The variables x1, . . . , xm, for some
m < n, maintain the identity of each entity, and the variables xm+1, . . . , xn maintain the internal identity
of each router within its entity. The transitions in the network are described symbolically by some formula
θE = θout(x1, . . . , xm, x′1, . . . , x′m) ∨ [θstay ∧ θinter(x1, . . . , xn, x′1, . . . , x′n)], where θstay = ∧m

i=1(xi = x′i).
In other words, θout describes the transitions among the different entities, and θinter describes the internal
ones, where θstay guarantees that they are indeed internal. The network depicted in Figure 2 can be described
as such a network. The entities are v1, . . . , v6 and we use three variables to identify them as 000, . . . , 101,
respectively. The transition function θout includes, for example, the disjunct

(
¬x1 ∧ ¬x2 ∧ ¬x3

)
∧
(
(¬x′1 ↔

x′2) ∧ (x′2 ↔ x′3)
)

inducing the transitions from v1 = 000 to v4 = 011 and v5 = 100. Please note that there
can be many hidden internal nodes, i.e., we have n > 3. We now abstract the network further by using the
predicates {¬x1 ∧ ¬x2 ∧ ¬x3,¬x1 ∧ (¬x2 ↔ x3),¬x1 ∧ x2 ∧ x3, x1}, which induce respectively the abstract
states a1, a2, a4, and a5 in the abstract network in Figure 2. For example, only v2 = 001 and v3 = 010 satisfy
the second predicate.

2.4. Refinement

Consider two abstraction functions α1 : V → A1 and α2 : V → A2. We say that α2 refines α1,
denoted α2 � α1, if for all concrete vertices v and v′, if α2(v) = α2(v′), then α1(v) = α1(v′). That is,
the partition of V that is induced by α2 refines the partition induced by α1. Please note that whenever
α2 refines α1, we can view N ↓[α1] as an under-approximation of N ↓[α2], and view N ↑[α1] as an
over-approximation of N ↑[α2]. More formally, there is an abstraction function α : A2 → A1 such that
N ↓[α1] = (N ↓[α2])

↓[α], and similarly for an over-approximation.
Recall the special interest in NGs in which V = 2X , for some set X of variables, and A is defined

by a set Ψ of predicates over X. Then, refinement amounts to enlarging the set Ψ of predicates.
In particular, when A = 2Y, for some Y ⊆ X, and α(v) = v ∩Y, then, for Y1 ⊆ Y2 ⊆ X, an abstraction
α2 : V → 2Y2 refines an abstraction α1 : V → 2Y1 . For example, we can refine the abstraction that is
described in Example 4 by replacing the predicate x1 by two predicates x1 ∧ x3 and x1 ∧ ¬x3, which
splits the state a5 in Figure 2 and induces the network in Figure 3.

s

a1

{v1}

a2

{v2, v3}

a4

{v4}

a1
5

{v5}

a2
5

{v6}

t

t′

2x

2

4x

4

x
1

5

Figure 3. A refinement of the network in Figure 2.

3. On Abstract SOs and NEs

In this section we study the theoretical properties of abstraction in NGs and show how reasoning
about the (much smaller) under- and over-approximations of an NG N can be used for bounding the
cost of an SO and for directing the search for an NE in N . We first relate strategies and profiles in N
with strategies and profiles in its approximations.

Consider a network N and a strategy π of Player i in N . The strategy α(π) that corresponds
to π in N ↑ is obtained from π by replacing each concrete edge h by the abstract edge α(h), and
removing cycles in the obtained path in N ↑. Please note that by the definition of E↑, the edge α(h)
exists in N ↑. Formally, we define α(π) as follows. Let π = 〈v1, v2〉, 〈v2, v3〉, . . ., 〈vn−1, vn〉. We first
define α′(π) = 〈α(v1), α(v2)〉, 〈α(v2), α(v3)〉, . . . , 〈α(vn−1), α(vn)〉. Then, α(π) is obtained from α′(π)

by removing cycles; that is, by repeatedly removing subsequences 〈α(vj), α(vj+1)〉, . . . , 〈α(vj+m),

Games 2018, 9, 39 10 of 21

α(vj+m+1)〉 with α(vj) = α(vj+m+1). A profile P = 〈π1, . . . , πk〉 in N corresponds to the profile
α(P) = 〈α(π1), . . . , α(πk)〉 in N ↑.

Consider now a strategy π = 〈a1, a2〉, 〈a2, a3〉, . . ., 〈an−1, an〉 of Player i in N ↓. By the definition
of E↓, for every concrete vertex v with α(v) = a1, and in particular for si – the source vertex of Player i,
there is a path inN from v to some vertex v′ with α(v′) = an−1. Also, by the definition ofN ↓, we have
that an = ti – the target vertex of Player i2, and for all the concrete vertices v′ with α(v′) = an−1, we have
E(v′, ti). Hence, the strategy π in N ↓ induces at least one path π′ = 〈v1, v2〉, 〈v2, v3〉, . . . , 〈vn−1, vn〉
in N such that v1 = si and vn = ti. Let α−1(π) be the nonempty set of these paths. Finally, a profile
P = 〈π1, . . . , πk〉 in N ↓ corresponds to the set α−1(P) of profiles P′ = 〈π′1, . . . , π′k〉 in N in which for
all i ∈ [k], we have π′i ∈ α−1(πi).

We now relate the costs of corresponding profiles in N , N ↓, and N ↑.

Lemma 1. Consider an NG N and an abstraction function α.

1. For every profile P in N , the profile α(P) in N ↑ is such that cost↑(α(P)) ≤ cost(P).
2. For every profile P in N ↓ and profile P′ ∈ α−1(P) in N , we have that cost(P′) ≤ cost↓(P).

Proof. We start with the first claim. Let P = 〈π1, . . . , πk〉 in N . Consider a strategy πi. By the
definition of the over-approximating cost function l↑, we have that for all edges h ∈ πi and for every
load x ∈ [k], we have that l↑h(x) ≤ lα(h)(x). Indeed, ifN is a CON-NG, then l↑

α(h)(x) is the minimum of

a set one of whose elements is lh(1), which is smaller than lh(x), and if N is a CS-NG, then l↑
α(h)(x)

is the minimum of a set one of whose elements is lh(x). Hence, for every i ∈ [k], we have that
cost↑i (α(P)) ≤ costi(P), implying that cost↑(α(P)) ≤ cost(P), and we are done.

We proceed to the second claim. Let P = 〈π1, . . . , πk〉, with πi = 〈a1, a2〉, 〈a2, a3〉,. . . , 〈an−1, an〉.
Consider a strategy π′i ∈ α−1(πi). Let π′i = 〈v1, v2〉, 〈v2, v3〉, . . ., 〈vn−1, vn〉. By the definition of the
under-approximating cost function l↓, we have that for all 1 ≤ j < ni and for every load x ∈ [k], we
have that l〈vj ,vj+1〉(x) ≤ l↓〈aj ,aj+1〉(x). Indeed, if N is a CON-NG, then l↓〈aj ,aj+1〉(x) is the maximum of a

set one of whose elements is l〈vj ,vj+1〉(x), and if N is a CS-NG, then l↓〈aj ,aj+1〉(x) is the maximum of a

set one of whose elements is l〈vj ,vj+1〉(1), which is greater than l〈vj ,vj+1〉(x). Hence, for every i ∈ [k],

we have that costi(P′) ≤ cost↓i (P), implying that cost(P′) ≤ cost↓(P), and we are done.

Theorem 1. For every NG N and abstraction function α, we have SO(N ↑[α]) ≤ SO(N) ≤ SO(N ↓[α]).

Proof. We first show that SO(N ↑[α]) ≤ SO(N). Consider a profile P = 〈π1, . . . , πk〉 in N .
By Lemma 1, we have that cost↑(α(P)) ≤ cost(P). In addition, by definition, SO(N ↑[α]) ≤ cost↑(α(P)).
Since this is valid for every profile P in N , and in particular for SO profiles, it follows that
SO(N ↑[α]) ≤ SO(N).

It is left to show that SO(N) ≤ SO(N ↓[α]). Consider a profile P in N ↓. By Lemma 1, for every
profile P′ ∈ α−1(P), we have that cost(P′) ≤ cost↓(P). Also, α−1(P) is not empty. Since the profiles P′ ∈
α−1(P) are in N , we also have SO(N) ≤ cost(P′). Hence, SO(N) ≤ cost↓(P), and we are done.

Recall that given two abstraction functions α1 and α2, if α2 refines α1, then we can view N ↓[α1] as
an under-approximation ofN ↓[α2], and viewN ↑[α1] as an over-approximation ofN ↑[α2]. Accordingly,
Theorem 1 can be viewed as a special case of Theorem 2 below, with α2 being the most refined
abstraction function (that is, α2 : V → V, with α2(v) = v), and α1 being the refinement function α

studied there.

2 We note that this is the point where we use the fact that α(ti) is a singleton, for every i ∈ [k].

Games 2018, 9, 39 11 of 21

Theorem 2. Consider an NG N and two abstraction functions α1 and α2. If α2 � α1, then SO(N ↑[α1]) ≤
SO(N ↑[α2]) and SO(N ↓[α2]) ≤ SO(N ↓[α1]).

Theorem 1 enables us to approximate the cost of an SO inN using the costs of the SO in the much
smaller N ↓ and N ↑. We now turn to study how N ↓ and N ↑ can be used in order to direct the search
for an NE in N .

Theorem 3. Consider an NG N , an abstraction function α for it, and an abstract NE P in N ↓[α]. There exists
a profile in α−1(P) that is a concrete NE in N .

Proof. Let P = 〈π1, . . . , πk〉. Recall that N|P is the NG obtained from N by restricting it to profiles in
α−1(P). Let PNE = 〈σ1, . . . , σk〉 be a profile in α−1(P) such that for every player i ∈ [k], deviation to
each strategy σ′i 6= σi where σ′i ∈ α−1(P), is not beneficial for Player i. We prove that PNE is also an NE
in N .

Consider a deviation σ′i of Player i from his strategy σi in PNE. Let P′NE = PNE[i ← σ′i].
We distinguish between two cases.

First, if P′NE ∈ α−1(P), then, by the definition of PNE, the deviation to σ′i is not beneficial to
Player i.

Otherwise, recall that PNE ∈ α−1(P). Therefore, by the proof of Lemma 1, for all players i ∈ [k],
we have that costi(PNE) ≤ cost↓i (P). In addition, since P is an abstract NE, we have that cost↓i (P) ≤
cost↑i (P[i ← α(σ′i)]). In addition, P[i ← α(σ′i)] = α(PNE[i ← σ′i]). Hence, by Lemma 1, we have that
cost↑i (P[i ← α(σ′i)]) ≤ costi(PNE[i ← σ′i]). It follows that costi(PNE) ≤ costi(PNE[i ← σ′i]), making the
deviation non-beneficial. Hence, PNE is an NE in N , and we are done.

Please note that profiles in α−1(P) can be searched for in N|P. Thus, as we elaborate in Section 4,
an NE in N can be found by a sequence of best response moves restricted to N|P.

4. An Abstraction-Refinement Procedure for Finding an NE

In this section we describe an abstraction-refinement procedure for finding an NE in an NG .
The input to the procedure is a concrete NG N and an abstraction function α for it. Experience in
formal verification suggests that abstraction functions that are supplied by users familiar with the
network, are the most successful ones. Alternatively, one can start with a coarse abstraction and refine
it as we do in Section 5.

The output of the procedure is a concrete NE in N . Since the state space of N ↓ and N ↑ is
much smaller than that of N , we would like to perform as many as possible computations on the
approximating networks. Our procedure (see Figure 4 for an overview) consists of two parts. The first,
in which an abstract NE Pα is found, is done entirely in N ↓ and N ↑, and it is the procedure we
have implemented. The second, in which a concrete NE is found, is done in N , restricted to N|Pα

.
Thus, as is the case of the CEGAR methodology in formal verification, there is no way to avoid
N entirely, yet we can significantly restrict the part of it in which the search proceeds. Moreover,
it is possible to refine α and tighten N|Pα

further. In Section 5, we show that the restriction indeed
significantly reduces the size of the network.

There are many ways to refine an abstraction; one can work naively, choose an arbitrary abstract
vertex and split it in some way, possibly by adding predicates that appear in the description of the
network or the strategies. Even such a naive refinement is guaranteed to eventually lead to a solution.
The challenge is to choose the refinements cleverly so that a concrete answer is obtained when the
approximating networks are still much smaller than the concrete one. In CEGAR, the refinement is
guided by a spurious counterexample. We follow this idea by always refining according to some
path in the network that points to a spurious behavior of the approximations. We now describe the
methodology in detail.

Games 2018, 9, 39 12 of 21

Find an NE 1

∃i, π′i 6= πi s.t.

cost↑i (P
′
α) < cost↓i (Pα)

2π′i is spurious 3a

AbsNE-loop

Find P = 4

and find an abstract NE

6b

ConcNE-loop

〈τ1, ..., τk〉 ∈ α−1(Pα)

No: Pα = 〈π1, ..., πk〉

Yes

No:P is an NE

YesRefine α to α′ using τ ′i

Pα = 〈π1, ..., πk〉 in N ↓[α]

P ′α = Pα[i← π′i]

is an abstract NE

3b

cost↓i (P
′
α) > cost↑i (P

′
α)

3c

cost↓i (Pα) > cost↑i (Pα)

∃i, τ ′i ∈ α−1(πi)
s.t. costi(P) > costi(P

′)

5

P ′ = P [i← τ ′i]with input N|Pα
and α′

Input: N and α

Output P : P is a
concrete-NE

Refine α using one or
more of the following.

using the AbsNE-loop

N =N|Pα

and α=α′

Continue the search for an
NE from P by using
one of the following.

6a
by setting P = P ′

in N

Perform a BRD step

Figure 4. Finding an NE in N .

4.1. Part 1: AbsNE-Loop, Finding an Abstract NE

In the first part, our goal is to find, given N and α, an abstract NE. Recall that such a profile is an
NE in N ↓ that is resistant to deviations of the players even in N ↑. Since N ↓ is an NG, it has an NE.
In Step 1 in Figure 4, we find such an NE Pα. This is done by the user’s favorite algorithm for finding an
NE in NGs. The important point for us is that this is done in the (much smaller) under-approximation
of N . Then, in Step 2, we check whether Pα is an abstract NE. Thus, we check whether players have
beneficial deviations in N ↑. Again, this is done in the (much smaller) over-approximation of N .
If no player has a beneficial deviation in N ↑, then Pα is an abstract NE, we conclude this part of the
procedure, and move to Step 4. Otherwise, there is a player i ∈ [k] who can benefit from deviating to
a strategy π′i .

We use π′i in order to guide the refinement. There are several reasons why Pα is an NE in N ↓ yet
not an abstract NE in N . Step 3 consists of three possible refinement steps among which the user can
choose, corresponding to the above different reasons. Let us start with Step 3a. Since π′i is a path inN ↑,
there might not be a concrete path in N that corresponds to it, thus π′i is a spurious path. Consider two
adjacent abstract vertices a1 and a2 that π′i traverses. If the edge between a1 and a2 is in E↑ \ E↓, we can
split a1 into a′1 and a′′1 such that a′1 contains exactly the vertices that have a neighbor in a2 (similarly
we can split a2). Please note that after refinement, there is a must edge from a′1 to a2 and there is not
even a may edge between a′′1 to a2. Since π′i is spurious, such a candidate vertex is guaranteed to exist
(We note that disconnectivity in N ↓ can be treated in a similar way.).

Games 2018, 9, 39 13 of 21

We continue to Steps 3b and 3c. They have to do with under- and over-approximations of the cost
functions that cause π′i to be a beneficial deviation in N ↑. By the definition of l↓ and l↑, we know that
if cost↓i (Pα[i← π′i]) > cost↑i (Pα[i← π′i]), then the path π′i traverses an abstract edge e ∈ E↓ with load x
for which l↓e (x) > l↑e (x). Assume that e = 〈a1, a2〉. In Step 3b, we split a1 or a2 in order to tighten this
gap. Finally, it may be that the cost of the strategy of Player i in Pα is too big. In Step 3c, we use the
strategy πi that Player i chooses in Pα in order to guide a similar refinement in order to tighten the gap
in the costs between cost↓i (Pα) and cost↑i (Pα).

A refinement step can be a single refinement or a combination of the refinements that are
described above. After completing such a step, we return to Step 1 and find a new NE in the new
under-approximating N ↓, and repeat the process.

4.2. Part 2: ConcNE-Loop, Finding a Concrete NE

The second part of the procedure gets an abstraction function α as well as an abstract NE
Pα = 〈π1, . . . , πk〉. The goal is to find a concrete NE P in N such that P ∈ α−1(Pα). By Theorem 3,
such an NE exists. Recall the best-response dynamics (BRD) algorithm for finding an NE in NGs
in which we start with an arbitrary profile, and iteratively allow the players to perform beneficial
deviations. We follow this algorithm and start in Step 4 with an arbitrary profile P = 〈τ1, . . . , τk〉 in
α−1(Pα). If P is an NE, we are done. Otherwise, there is a concrete beneficial deviation τ′i for some
Player i. Please note that by Theorem 3, we can restrict the deviations of Player i to paths in α−1(πi).
If the size ofN|Pα

is small, the user can choose Step 6a and try and find an NE in α−1(Pα) by performing
a BRD step. However, when N|Pα

is big, it makes sense to refine the abstraction by choosing Step 6b.
In Step 6b, we let the deviation τ′i guide the refinement. We look for a vertex v from which τi and

τ′i differ, thus from v, one path continues with a vertex v′ while the other with v′′, where v′ 6= v′′, yet
α(v′) = α(v′′). We refine the abstraction function by splitting α(v′) so that v′ and v′′ are no longer in
the same abstract vertex. We would like to have as many must edges as possible between the new
vertices. One way to do it is to make v′′ a singleton abstract state, but it is also possible to split α(v′) as
well as α(v) to achieve this. Once we conclude a refinement, we return to the first part of the procedure,
and look for an abstract NE with the new abstraction.

Example 5. Recall the NG and its abstraction that are described in Examples 2 and 3. Consider the profile Pα

in which Player 1 chooses the path s, a1, a4, t and Player 2 and 3 choose the path s, a1, a5, t′. Please note that
while Pα is an NE in N ↓, it is not an abstract NE, as Player 2 can deviate to s, a2, a5, t′. We refine α according
to this deviation, which leads to splitting a5 into a1

5 and a2
5 (see Figure 3). Consider now the profile P1 in N ↓ in

which Player 1 chooses the strategy s, a1, a4, t and Players 2 and 3 choose the strategy s, a2, a1
5, t′. We claim that

P1 is an abstract NE. Indeed, Player 1 has no possible deviation, and Players 2 and 3 each pay 2 for (a2, a1
5) and

deviating to a path that uses (a1, a1
5) or (a2, a2

5) does not reduce their costs.
For the second part of the refinement procedure, we select the concrete profile P in which Player 1 chooses

the path s, v1, v4, t, and Players 2 and 3 choose the path s, v2, v5, t′. This is not an NE in N as Player 2 can
deviate to τ′2 = s, v3, v5, t′. Rather than refining the abstraction, we choose to check if P[2 ← τ′2] is an NE,
and indeed it is, so we are done.

Remark 1. An interesting problem in NGs is to find an NE with “good” social cost [39]. Formally, given an
NG N and a value ν, decide whether there is an NE with cost at most ν. Our procedure can be directed to
finding a good NE. Indeed, Lemma 1 shows that the cost of an abstract NE Pα is an upper bound on the cost
of every concrete NE in α−1(Pα). Thus, rather than finding an arbitrary abstract NE, we can look for one of a
minimal cost, thereby directing the search for a concrete NE to one of a minimal cost too. While this is a harder
task than finding an arbitrary abstract NE, it is performed on the much smaller approximation.

Games 2018, 9, 39 14 of 21

5. Experimental Results

We implemented our methodology and tested the performance of its AbsNE loop on
randomly-generated cost-sharing games. We examined the benefit of the abstraction, namely we
compared the size of the original game with the game that is truncated to the abstract NE we find.
We also examined the practicality of our approach, namely the number of CEGAR iterations until an
abstract NE is found. We studied these questions for different parameters of the game; size of the
graph, range of weights, and number of players. Our implementations are in Python, we use the
library Networkx [40] for graph generation and graph algorithms, and we ran our experiments on
a personal computer, Intel Core i5 quad core 1.75 GHz processor, with 8 GB memory. Our results are
encouraging: we are able to find an abstract NE relatively easily and it significantly reduces the size of
the network making it easier to find a concrete NE.

We generate a random game, given the parameters n, w, k ∈ IN and p ∈ [0, 1]. We use the
Erdős-Réyni G(n, p) model to generate the network. Then, for each edge in the graph, we choose at
random a cost in a set {0, . . . , w}. For each player i ∈ [k], we choose at random a source vertex si and a
reachable target vertex ti. For the initial abstraction, we choose, for i ∈ [k], a shortest path πi between
si and ti, and we let every vertex that πi traverses be a singleton abstract state. Thus, in the under
approximation, we have at least one path from si to ti. All other concrete vertices are mapped to one
abstract state.

We perform three types of experiments. We focus on the number |V| of vertices in the concrete
network, the number k of players, and the range |W| of weights on the edges. The number of edges
is approximately 1/2 · |V|2. We fix two of the parameters and increase the third. In Figure 5, we see
how increasing one of the parameters affects the number of iterations of the CEGAR loop. In Figure 6,
we compare the sizes of the truncated network, namely, α−1(Pα), and the original one; we show the
ratio between the number of vertices in the two networks and the ratio between the number of edges.

Figure 5. The number of iterations (y-axis) as |V|, k, and |W| increase (x-axis).

Figure 6. The ratio between the size (vertices in blue, edges in red) of the concrete and truncated
networks as |V|, k, and |W| increase.

5.1. Analysis of Results

We find the plots with the increasing number of vertices encouraging. As seen in the leftmost
plot in Figure 6, since we fix the number of players, the part of the network that is being “used”
becomes relatively smaller with increasing |V|, and an abstract NE has a good potential to shrink
the network. Indeed, the ratios decrease. The downside of this, as seen in Figure 5, is that since the
size of the network increases, we need more iterations of the CEGAR loop to find an abstract NE.
Next, observe the number of iterations with increasing k, that is, number of players (the middle plots
in both figures). Recall how we find an initial abstraction above. When k increases, there is a growing
number of concrete vertices that are mapped to singleton abstract states in the initial abstraction.

Games 2018, 9, 39 15 of 21

Thus, the abstraction is closer to the concrete network. On the one hand, as seen in the middle plot
in Figure 5, the closer the abstraction is to the concrete network, fewer iterations are needed until an
abstract NE is found. On the other hand, as seen in the middle plot in Figure 6, the ratios increase.
For increasing |W| (see the right-most plots in the figures), we observe that beyond a particular value
of |W|, it no longer affects the results.

Automata Games

As discussed in Section 1, the objectives users of a network are often more involved than
reachability. In this section we extend the abstraction-refinement methodology to automata games
(AGs, for short) with cost sharing, which model settings with such richer objectives . AGs are similar
to NGs, except that edges of the networks are labeled, and the players have objectives that refer to
these labels and are more involved than the reachability objectives of NGs [37].

An AG is played on a labeled network N = 〈Σ, V, ∆〉, where Σ is a finite alphabet, V is a set of
vertices, and ∆ ⊆ V × Σ× V is a deterministic labeled transition relation, i.e., for v ∈ V and σ ∈ Σ,
there is at most one v′ ∈ V with ∆(v, σ, v′). Consider a path π = e1, . . . , en in N , where, for all
1 ≤ i ≤ n, we have ei = 〈vi, σi, vi+1〉 ∈ ∆. The word that corresponds to π is w(π) = σ1 . . . σn. An AG
is a tuple A = 〈k, Σ, V, ∆, {le}e∈∆, {Li}i∈[k]〉, where, for i ∈ [k], we have that Li ⊆ Σ∗ is a regular
language that specifies the objective of Player i. Thus, a strategy for Player i is a path π in N such that
w(π) ∈ Li. We assume that the languages Li are given by means of nondeterministic finite automata
over Σ. Our results can be easily extended to other specification formalisms. Please note that unlike
NGs, a strategy in an AG need not be simple path. That is, a player might be forced to use an edge
several times in a strategy.

We study here cost sharing AGs, and distinguish between two cost-sharing rules that can be
applied in AGs. In uniform AGs, the cost of an edge is shared uniformly among all the players that use it.
Thus, we ignore the fact that different players may use the edge different number of times. This makes
the game-theoretical behavior of uniform AGs similar to that of NGs. In proportional AGs, introduced
and studied in [37], the cost of an edge is shared among the players in proportion to the number
of times they have used it. For example, if two players use an edge e with cost c, one uses it once
and the second twice, then the first pays c

3 for e and the second pays 2c
3 . We define the proportional

cost-sharing rule formally in Section 5.3.

5.2. Uniform AGs

Abstracting an AG is similar to abstracting an NG, except that we merge only edges that agree on
their label. Formally, consider an AG A = 〈k, Σ, V, ∆, {le}e∈∆, {Li}i∈[k]〉 and an abstraction function
α : V → A. We construct two abstract AGs A↓[α] and A↑[α] as follows. In A↓[α], we use labeled
must edges: for σ ∈ Σ and a, a′ ∈ A, there is a σ-labeled must edge from a to a′ if for every concrete
state c ∈ a, there is c′ ∈ a′ with 〈c, σ, c′〉 ∈ ∆. In A↑[α], we use labeled may edges: for σ ∈ Σ and
a, a′ ∈ A; there is a σ-labeled may edge from a to a′ if there exist concrete states c ∈ a and c′ ∈ a′ with
〈c, σ, c′〉 ∈ ∆. All the other components are as in abstract NGs. For an AG A, and two states s, t ∈ V,
we define the (s, t)-language of A, denoted Ls,t(A) as the set of words obtained by traversing a path
from s to t in A. The use of may and must edges, implies Lemma 2 below (c.f. [41]).

Lemma 2. Consider an AG A and an abstraction function α : V → A. For every two states s and t in A,
we have that Lα(s),α(t)(A↓[α]) ⊆ Ls,t(A) ⊆ Lα(s),α(t)(A↑[α])

It is not hard to see that all the considerations applied to NGs remain valid for uniform AGs.
Indeed, the correspondence between concrete and abstract strategies is preserved, and, by Lemma 2,
so does the application of this correspondence in our methodology. Hence, Theorems 1 and 3 are valid
also for uniform AGs:

Games 2018, 9, 39 16 of 21

Theorem 4. Consider a uniform AG A and an abstraction function α for it.

• SO(A↑[α]) ≤ SO(A) ≤ SO(A↓[α]).
• If P is an abstract NE in A↓[α], then there exists a profile in α−1(P) that is a concrete NE in A.

5.3. Proportional AGs

We first formally define the costs of the players in a concrete proportional AG. Consider an
AG A = 〈k, Σ, V, ∆, {le}e∈∆, {Li}i∈[k]〉. Let P = 〈π1, π2, . . . , πk〉 be a profile where, for each i ∈ [k],

we have πi = e1
i , . . . , e`i

i . Let usedi,P : ∆→ IN map each edge to the number of times Player i uses it in

profile P. Thus, for e ∈ ∆, we have usedi,P(e) = |{j : ej
i = e}|. When usedi,P(e) > 0, we say that e is in

πi, denoted e ∈ πi. Let usedP : ∆→ IN denote the total number of times edge e is used in profile P by
all players. Thus, for e ∈ ∆, we have usedP(e) = ∑i∈[k] usedi,P(e). The cost of Player i in profile P is then
costi(P) = ∑e∈πi

usedi,P(e) · le
(
usedP(e)

)
.

The proportional cost sharing rule cause AGTs to be less stable than NGs:

Theorem 5. Refs. [37,42] In proportional AGs an NE is not guaranteed to exist, and deciding whether an NE
exists in a given game is ΣP

2 -complete.

Since proportional AGs need not have an NE, the computational question we study is deciding
whether a given AG has an NE. While we can abstract proportional AGs as described above,
our methodology is targeted for finding an NE and not deciding whether one exists. Indeed,
the methodology either outputs an abstract NE, which, recall, is a profile of abstract strategies,
or it outputs that no abstract NE exists in the abstraction. We claim that both answers are not helpful
for deciding the existence of an NE. While in NGs (and uniform AGs) a concrete NE is guaranteed
to exist in the game that is restricted to an abstract NE, in proportional AGs, a concrete NE is not
guaranteed to exist at all, let alone in a restriction of the game. Hence, existence of an abstract NE does
not imply the existence of a concrete NE. Moreover, existence of an abstract NE that has no concrete
NE that is mapped to it, does not imply that a concrete NE does not exist, as such an NE might exist
elsewhere. Finally, non-existence of an abstract NE also does not imply the non-existence of a concrete
NE.

Below we describe applications where abstraction can still be useful in the context of proportional
AGs. First, as SO is independent of the cost sharing rule, the considerations for uniform AGs apply:

Theorem 6. For every proportional AG A and an abstraction function α for it, we have that SO(A↑[α]) ≤
SO(A) ≤ SO(A↓[α]).

Next, we use abstractions in order to restrict the search space when searching for an NE. Recall that
the problem of deciding whether an NE exists in proportional AGs is ΣP

2 -complete. This suggests that
the optimal algorithm for finding an NE first guesses a profile and then checks whether it is an NE.
In order to speed-up the algorithm, we restrict the search space by removing dominated strategies using
the abstraction.

Intuitively, a strategy πi for Player i is dominated by a strategy π′i if no matter how the other
players play, it is always better for Player i to use π′i . Thus, a profile in which Player i uses πi cannot be
an NE and removing dominated strategies does not affect the existence of NE. In other words, a game
A has an NE if the game A′ that is obtained by removing the dominated strategies for all players,
has an NE. Formally, for i ∈ [k], we use π−i to denote a collection of strategies for all players apart
from Player i and we denote by 〈πi, π−i〉 the profile in which Player i uses the strategy πi and the
other players choose their strategies in π−i. A strategy πi for Player i is dominated by a strategy π′i if
for every π−i, we have costi(〈πi, π−i〉) > costi(〈π′i , π−i〉).

We search for dominated strategies in an AG A in the abstractions N ↑[α] and N ↓[α]. For an
abstract strategy τi = t1, . . . , tn for Player i, we need an under- and over-approximations on its

Games 2018, 9, 39 17 of 21

cost. For a concrete edge e = 〈c, σ, c′〉, we use α(e) to denote the abstract may edge 〈α(c), σ, α(c′)〉.
We extend α also to strategies: for a concrete strategy π = e1, . . . , en, we denote the corresponding
abstract strategy by α(π) = α(e1), . . . , α(en). For an abstract edge t, we define w↓t = maxe:α(e)=t we

and w↑t = mine:α(e)=t we. We define an over-approximation on the cost of τi as follows cost↓(τi) =

∑1≤j≤n w↓tj
. This is indeed an over-approximation on the cost: Consider a concrete strategy πi for

Player i that is mapped to the abstract may strategy τi. Then, for every π−i, we have costi(〈πi, π−i〉) ≤
cost↓(τi).

We now define an under-approximation on the cost of a must strategy τi. Let π−i be a collection
of k− 1 concrete strategies and τ−i be the may strategies to which they are mapped. Consider the
may profile P = 〈τi, τ−i〉. For j ∈ [k] and a may edge t, the definition of usesj,P(t) and usesP(t)
are similar to the concrete case. Please note that since τi is a must path, it is also a may path. We
define cost↑i (P) = ∑t∈τi

w↑t · usesj,P(t)/usesP(t). We define cost↑(τi) = minτ−i cost↑i (〈τi, τ−i〉), where
the minimum is well-defined since the set of strategies for each player is finite. This is indeed an
under-approximation: Consider a concrete strategy πi for Player i that is mapped to the must strategy
τi, that is, πi ∈ α−1(τi). Then, for every π−i, we have costi(〈πi, π−i〉) ≥ cost↑i (〈τi, τ−i〉) ≥ cost↑(τi).

Definition 2. Consider an AG A and an abstraction α for it. We say that a must strategy τi for
Player i is abstract-dominated by a must strategy τ′i if cost↓(τ′i) < cost↑(τi). Let Di = {w(τi) :
τi is an abstract-dominated strategy}.

Theorem 7. Consider a proportional AG A = 〈k, Σ, V, ∆, {le}e∈∆, {Li}i∈[k]〉 and an abstraction function α.
For i ∈ [k], let Di ⊆ Li be a collection of abstract-dominated strategies for Player i. Then, the game N ′ that is
obtained by setting the strategies of each Player i to be Li \ Di has an NE iff N has an NE.

Proof. Consider a must strategy τi for Player i such that w(τi) ∈ Di and let τ′i be an abstract-dominating
strategy. Since both strategies are must paths, there are concrete strategies πi and π′i that are mapped
to τi and τ′i , respectively. We claim that πi is dominated by π′i , thus a profile in which Player i chooses
πi is not an NE. Let π−i be a choice of strategies for the other players. As in the above, we have
costi(〈πi, π−i〉) ≥ cost↑(τi) and costi(〈π′i , π−i〉) ≤ cost↓(τ′i). The claim follows from combining with
cost↓(τ′i) < cost↑(τi).

6. Discussion and Directions for Future Research

The need to reason about networks of increasing size and complexity calls for the development of
new techniques for coping with NGs with large state spaces. Abstraction has proven itself as a very
effective method for coping with large state spaces in the context of formal verification. We described
an abstraction-refinement methodology for reasoning about NGs. The methodology enables the
user to search for two kinds of profiles: Nash equilibria and social optimum. This is done by
reasoning about under- and over-approximations of the NG, which are defined over a much smaller
state space. When the approximations are too coarse to find such profiles, the user may refine the
abstraction. We extended the methodology to labeled networks, where the objectives of the players are
regular languages, making it possible to specify properties of the paths along which the reachability
objectives are satisfied. We implemented our methodology and our experimental results demonstrate
its effectiveness.

This work belongs to a line of works that transfer concepts and ideas between the areas of formal
verification, AI, and algorithmic game theory [33]: logics for specifying multi-agent systems [43–45],
studies of equilibria in games related to synthesis and repair problems [46–49], and of non-zero-sum
games in formal verification [50,51]. Closest to this work are works that apply ideas from formal
verification to NGs. This includes an extension of NGs to objectives that are richer than reachability [37],
NGs in which the players select their paths dynamically [52], reasoning about real-time in NGs [53,54],
and efficient reasoning about NGs that are structured in a hierarchical manner [55]. The latter work is

Games 2018, 9, 39 18 of 21

of special relevance, as it is motivated by the need to cope with large NGs. We believe that further
ideas from formal verification should be examined in the context of this challenge. In particular,
already in the direction of abstraction and refinement, researchers have studied techniques for finding
effective abstraction functions [25] as well as effective refinements for them [24,56]. In the context
of NGs, the abstraction function influences not only the structure of the network but also the costs
and loads. Consequently, different considerations should be taken when evaluating the effectiveness
of an abstraction function. We hope that research on such an evaluation would lead, in addition to
techniques for finding effective abstraction functions, also to tighter definitions of the costs in the
approximations. Also, especially in the context of AGs, where the networks are labeled, we believe
that predicate-based abstractions would serve as a convenient paradigm to study the effectiveness of
abstraction functions and their refinements.

Abstraction-refinement is a general concept that is proven to be highly successful in formal
verification, where it is used in a search for a counterexample to the correctness of the system [25].
A promising direction would be to apply the basic framework or its quantitative extensions to search
problems in AI that need to cope with large inputs, as is already done in planning [57] and in a search
for optimal policies in Markov decision processes [58,59]. Extending the abstraction-refinement
framework to cope with selfish players, as we do here, is a delicate procedure that depends on the
specific game model at hand. Multiagent systems have been studied extensively in AI in a game
theoretic framework [60]. Examples of settings that could benefit from an abstraction-refinement
framework include prediction of the quality of a given infrastructure (e.g., traffic or internet network)
or an auction mechanism [61], finding equilibrium in automated negotiation settings [62], and resource
allocation [4], which is a generalization of network games.

Author Contributions: Conceptualization, G.A., S.G. and O.K.; Formal analysis, G.A., S.G. and O.K.; Methodology,
G.A., S.G. and O.K.; Software, G.A., S.G. and O.K.; Validation, G.A., S.G. and O.K.; Writing—original draft, G.A.,
S.G. and O.K.; Writing—review & editing, G.A., S.G. and O.K.

Funding: The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013, ERC grant no 278410) and the Austrian
Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M2369-N33
(Meitner fellowship).

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

NG network game
NE Nash equilibrium
SO social optimum
CEGAR counterexample guided abstraction-refinement
CS-NG cost-sharing network game
CON-NG congestion network game
AG automata games

References

1. Fabrikant, A.; Luthra, A.; Maneva, E.; Papadimitriou, C.; Shenker, S. On a Network Creation Game.
In Proceedings of the ACM Symposium on Principles of Distributed Computing, Boston, MA, USA,
13–16 July 2003.

2. Albers, S.; Elits, S.; Even-Dar, E.; Mansour, Y.; Roditty, L. On Nash Equilibria for a Network Creation Game.
In Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms, Miami, FL, USA, 22–26 January 2006.

3. Anshelevich, E.; Dasgupta, A.; Kleinberg, J.; Tardos, E.; Wexler, T.; Roughgarden, T. The Price of Stability for
Network Design with Fair Cost Allocation. SIAM J. Comput. 2008, 38, 1602–1623. [CrossRef]

http://dx.doi.org/10.1137/070680096

Games 2018, 9, 39 19 of 21

4. Rosenthal, R.W. A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 1973, 2, 65–67.
[CrossRef]

5. Roughgarden, T.; Tardos, E. How bad is selfish routing? J. ACM 2002, 49, 236–259. [CrossRef]
6. Nash, J. Equilibrium points in n-person games. Proc. Natl. Acad. Sci. USA 1950, 36, 48–49. [CrossRef]

[PubMed]
7. Tardos, E.; Wexler, T. Network Formation Games and the Potential Function Method. In Algorithmic Game

Theory; Cambridge University Press: Cambridge, UK, 2007; Chapter 19.
8. Meyers, C.A. Network Flow Problems and Congestion Games: Complexity and Approximation Results.

Ph.D. Thesis, MIT, Cambridge, MA, USA, 2006.
9. Fabrikant, A.; Papadimitriou, C.; Talwar, K. The complexity of pure Nash equilibria. In Proceedings of the

36th ACM Symp. on Theory of Computing, Chicago, IL, USA, 13–15 June 2004; pp. 604–612.
10. Syrgkanis, V. The Complexity of Equilibria in Cost Sharing Games. In Lecture Notes in Computer

Science, Proceedings of the International Workshop on Internet and Network Economics, Stanford, CA, USA,
13–17 December 2010; Springer: Berlin, Germany, 2010; Volume 6484, pp. 366–377 .

11. Johnson, D.S.; Papadimtriou, C.H.; Yannakakis, M. How Easy is Local Search? J. Comput. Syst. Sci. 1988,
37, 79–100. [CrossRef]

12. Babichenko, Y. Query Complexity of Approximate Nash Equilibria. J. ACM 2016, 63, 36. [CrossRef]
13. Rubinstein, A. Settling the Complexity of Computing Approximate Two-Player Nash Equilibria.

In Proceedings of the 57th IEEE Symposium on Foundations of Computer Science, Paris, France,
7–9 October 2016; pp. 258–265.

14. Zhang, J.; Pourazarm, S.; Cassandras, C.G.; Paschalidis, I.C. The Price of Anarchy in Transportation
Networks: Data-Driven Evaluation and Reduction Strategies. Proc. IEEE 2018, 106, 538–553. [CrossRef]

15. Koutsoupias, E.; Papadimitriou, C. Worst-case equilibria. Comput. Sci. Rev. 2009, 3, 65–69. [CrossRef]
16. Newman, M. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [CrossRef]
17. Barabási, A.L. Linked–How Everything Is Connected to Everything Else and What It Means for Business, Science,

and Everyday Life; Plume: New York, NY, USA, 2003.
18. Paluch, R.; Lu, X.; Suchecki, K.; Szymański, B.K.; Holyst, J.A. Fast and accurate detection of spread source in

large complex networks. Sci. Rep. 2018, 8, 1–10. [CrossRef] [PubMed]
19. Clarke, E.; Grumberg, O.; Peled, D. Model Checking; MIT Press: Cambridge, MA, USA, 1999.
20. Cousot, P.; Cousot, R. Abstract interpretation: A unified lattice model for the static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM Symposium on Principles of
Programming Languages, Madrid, Spain, 17–23 January 1977; pp. 238–252.

21. Larsen, K. Modal Specifications. In Lecture Notes in Computer Science, Proceedings of the International Conference
on Computer Aided Verification, Grenoble, France, 12–14 June 1989; Springer: Berlin, Germany, 1989; Volume 407;
pp. 232–246.

22. Dams, D.; Gerth, R.; Grumberg, O. Abstract interpretation of reactive systems. ACM Trans. Programm.
Lang. Syst. 1997, 19, 253–291. [CrossRef]

23. Bruns, G.; Godefroid, P. Model Checking Partial State Spaces with 3-Valued Temporal Logics. In Proceedings
of the International Conference on Computer Aided Verification, Trento, Italy, 6–10 July 1999; pp. 274–287.

24. Shoham, S.; Grumberg, O. Monotonic Abstraction-Refinement for CTL. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Barcelona, Spain,
29 March–2 April 2004; Volume 2988, pp. 546–560.

25. Clarke, E.M.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM 2003, 50, 752–794. [CrossRef]

26. Gilpin, A.; Sandholm, T. Lossless Abstraction of Imperfect Information Games. J. ACM 2007, 54, 25.
[CrossRef]

27. Brown, N.; Sandholm, T. Simultaneous Abstraction and Equilibrium Finding in Games. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina,
25–31 July 2015; pp. 489–496.

28. Gilpin, A.; Sandholm, T.; Sørensen, T.B. A Heads-up No-limit Texas Hold’Em Poker Player: Discretized
Betting Models and Automatically Generated Equilibrium-finding Programs. In Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal,
12–16 May 2008; pp. 911–918.

http://dx.doi.org/10.1007/BF01737559
http://dx.doi.org/10.1145/506147.506153
http://dx.doi.org/10.1073/pnas.36.1.48
http://www.ncbi.nlm.nih.gov/pubmed/16588946
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1145/2908734
http://dx.doi.org/10.1109/JPROC.2018.2790405
http://dx.doi.org/10.1016/j.cosrev.2009.04.003
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1038/s41598-018-20546-3
http://www.ncbi.nlm.nih.gov/pubmed/29410504
http://dx.doi.org/10.1145/244795.244800
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1145/1284320.1284324

Games 2018, 9, 39 20 of 21

29. Alur, R.; Henzinger, T.; Kupferman, O.; Vardi, M. Alternating refinement relations. In Proceedings of
the International Conference on Concurrency Theory, Nice, France, 8–11 September 1998; Volume 1466,
pp. 163–178.

30. Henzinger, T.; Majumdar, R.; Mang, F.; Raskin, J.F. Abstract Interpretation of Game Properties. In Proceedings
of the International Static Analysis Symposium, Santa Barbara, CA, USA, 29 June–1 July 2000; Volume 1824,
pp. 245–252.

31. De Alfaro, L.; Godefroid, P.; Jagadeesan, R. Three-Valued Abstractions of Games: Uncertainty, but with
Precision. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, Turku,
Finland, 17 July 2004; pp. 170–179.

32. Ball, T.; Kupferman, O. An Abstraction-Refinement Framework for Multi-Agent Systems. In Proceedings of
the 21st IEEE Symposium on Logic in Computer Science, Seattle, WA, USA, 12–15 August 2006.

33. Gutierrez, J.; Harrenstein, P.; Perelli, G.; Wooldridge, M. Nash Equilibrium and Bisimulation Invariance.
In Proceedings of the 28th International Conference on Concurrency Theory, Berlin, Germany, 5–8 September
2017; Volume 85, pp. 1–16.

34. Gutierrez, J.; Harrenstein, P.; Wooldridge, M. Iterated Boolean games. Inf. Comput. 2015, 242, 53–79.
[CrossRef]

35. Avni, G.; Kupferman, O. Making Weighted Containment Feasible: A Heuristic Based on Simulation
and Abstraction. In Proceedings of the 23rd International Conference on Concurrency Theory,
Newcastle upon Tyne, UK, 4–7 September 2012; Volume 7454, pp. 84–99.

36. Daniele, N.; Guinchiglia, F.; Vardi, M. Improved automata generation for linear temporal logic.
In Proceedings of the 11th International Conference on Computer Aided Verification, Trento, Italy, 6–10 July
1999; Volume 1633, pp. 249–260.

37. Avni, G.; Kupferman, O.; Tamir, T. Network-formation games with regular objectives. Inf. Comput. 2016,
251, 165–178. [CrossRef]

38. Vissicchio, S.; Vanbever, L.; Bonaventure, O. Opportunities and research challenges of hybrid software
defined networks. Comput. Commun. Rev. 2014, 44, 70–75. [CrossRef]

39. Conitzer, V.; Sandholm, T. New complexity results about Nash equilibria. Games Econ. Behav. 2008, 63,
621–641. [CrossRef]

40. Hagberg, A.A.; Schult, D.A.; Swart, P. Exploring network structure, dynamics, and function using NetworkX.
In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, 19–24 August 2008;
pp. 11–15.

41. Godefroid, P.; Huth, M.; Jagadeesan, R. Abstraction-based Model Checking using Modal Transition
Systems. In Proceedings of the 12th International Conference on Concurrency Theory, Aalborg, Denmark,
20–25 August 2001; Volume 2154, pp. 426–440.

42. Avni, G.; Kupferman, O.; Tamir, T. Congestion and Cost-Sharing Games with Multisets of Resources.
In Proceedings of the International Conference on Foundations of Software Technology and Theoretical
Computer Science, New Delhi, India, 15–17 December 2015.

43. Alur, R.; Henzinger, T.; Kupferman, O. Alternating-time temporal logic. J. ACM 2002, 49, 672–713. [CrossRef]
44. Chatterjee, K.; Henzinger, T.A.; Piterman, N. Strategy logic. Inf. Comput. 2010, 208, 677–693. [CrossRef]
45. Mogavero, F.; Murano, A.; Perelli, G.; Vardi, M.Y. Reasoning About Strategies: On the Model-Checking

Problem. ACM Trans. Comput. Log. 2014, 15, 34. [CrossRef]
46. Chatterjee, K.; Henzinger, T.A.; Jurdzinski, M. Games with secure equilibria. Theor. Comput. Sci. 2006,

365, 67–82. [CrossRef]
47. Chatterjee, K. Nash Equilibrium for Upward-Closed Objectives. In Proceedings of the 15th Annual

Conference on the European Association for Computer Science Logic, Szeged, Hungary, 25–29 September 2006;
Volume 4207, pp. 271–286.

48. Fisman, D.; Kupferman, O.; Lustig, Y. Rational Synthesis. In Proceedings of the 16th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Paphos, Cyprus, 20–28 March 2010;
Volume 6015, pp. 190–204.

49. Almagor, S.; Avni, G.; Kupferman, O. Repairing Multi-Player Games. In Proceedings of the 26th International
26th Conference on Concurrency, Madrid, Spain, 1–4 September 2015; Volume 42, pp. 325–339.

http://dx.doi.org/10.1016/j.ic.2015.03.011
http://dx.doi.org/10.1016/j.ic.2016.08.004
http://dx.doi.org/10.1145/2602204.2602216
http://dx.doi.org/10.1016/j.geb.2008.02.015
http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1016/j.ic.2009.07.004
http://dx.doi.org/10.1145/2631917
http://dx.doi.org/10.1016/j.tcs.2006.07.032

Games 2018, 9, 39 21 of 21

50. Chatterjee, K.; Majumdar, R.; Jurdzinski, M. On Nash Equilibria in Stochastic Games. In Proceedings of
the 13th Annual Conference on the European Association for Computer Science Logic, Karpacz, Poland,
20–24 September 2004; Volume 3210, pp. 26–40.

51. Brihaye, T.; Bruyère, V.; De Pril, J.; Gimbert, H. On Subgame Perfection in Quantitative Reachability Games.
arXiv 2012, arXiv:1205.6346.

52. Avni, G.; Henzinger, T.; Kupferman, O. Dynamic Resource Allocation Games. In Proceedings of the
International Symposium on Algorithmic Game Theory, Liverpool, UK, 19–21 September 2016; Volume 9928,
pp. 153–166.

53. Avni, G.; Guha, S.; Kupferman, O. Timed Network Games. In Proceedings of the 42nd International Symposium
on Mathematical Foundations of Computer Science, Aalborg, Denmark, 21–25 August 2017; Volume 83, pp. 1–16.

54. Avni, G.; Guha, S.; Kupferman, O. Timed Network Games with Clocks. In Proceedings of the
43rd International Symposium on Mathematical Foundations of Computer Science, Liverpool, UK,
27–31 August 2018; Volume 117.

55. Kupferman, O.; Tamir, T. Hierarchical Network Formation Games. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, Uppsala, Sweden,
24–28 April 2017; Volume 10205, pp. 229–246.

56. Glusman, M.; Kamhi, G.; Mador-Haim, S.; Fraer, R.; Vardi, M. Multiple-Counterexample Guided Iterative
Abstraction Refinement: An Industrial Evaluation. In Proceedings of the 9th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Warsaw, Poland, 7–11 April 2003;
Volume 2619, pp. 176–191.

57. Pistore, M.; Traverso, P. Planning as Model Checking for Extended Goals in Non-deterministic Domains.
In Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA, USA,
4–10 August 2001.

58. Filar, J.; Vrieze, K. Competitive Markov Decision Processes; Springer: Berlin, Germany, 1996.
59. Sutton, R.S.; Barto, A.G. Reinforcement learning—An introduction. In Adaptive Computation and Machine

Learning; MIT Press: Cambridge, MA, USA, 1998.
60. Michalak, T.; Rahwan, T.; Wooldridge, M. Strategic Social Network Analysis. In Proceedings of the 31st

Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; pp. 4841–4845.
61. Sandholm, T. Algorithm for optimal winner determination in combinatorial auctions. Artif. Intell. 2002,

135, 1–54. [CrossRef]
62. Fatima, S.; Kraus, S.; Wooldridge, M. Principles of Automated Negotiation; Cambridge University Press:

Cambridge, UK, 2014.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0004-3702(01)00159-X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Network Games
	Abstraction
	Abstract NE
	Refinement

	On Abstract SOs and NEs
	An Abstraction-Refinement Procedure for Finding an NE
	Part 1: AbsNE-Loop, Finding an Abstract NE
	Part 2: ConcNE-Loop, Finding a Concrete NE

	Experimental Results
	Analysis of Results
	Uniform AGs
	Proportional AGs

	Discussion and Directions for Future Research
	References

