3,687 research outputs found

    Optimizing plug-in electric vehicle charging in interaction with a small office building

    Get PDF
    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capaci-ty of 864 kWh. With the benefit-sharing mechanism proposed here and idea-lized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. --Battery storage,building management systems,dispersed storage and generation,electric vehicles,load management,microgrid,optimization methods,power system economics,road vehicle electric propulsion

    Optimal household energy management and participation in ancillary services with PV production

    Get PDF
    The work presented in this paper deals with a project aiming to increase the value of photovoltaic (PV) solar production for residential application. To contribute to the development of the new functionalities for such system and the efficient control system to optimize its operation, this paper defines the possibility for the proposed system to participate to the ancillary services, particularly in active power service provider. This service of PV-based system for housing application, as it does not exist today, has led to a market design proposition in the distribution system. The mathematical model for calculating the optimal operation of system (sources, load, and the exchange power with the grid) results in a linear mix integer optimization problem where the objective is to maximize the profit obtained by participating to electricity market. The approach is illustrated in an example study case. The PV producer could benefit from its intervention on balancing market or ancillary services market despite of the impact on the profit of several kinds of uncertainty, as the intermittence of PV source.energy management ; ancillary services ; PV production ; household application

    Optimal battery storage operation for PV systems with tariff incentives

    Get PDF
    Many efforts are recently being dedicated to developing models that seek to provide insights into the techno-economic benefits of battery storage coupled to photovoltaic (PV) generation system. However, not all models consider the operation of the PV – battery storage system with a feed-in tariff (FiT) incentive, different electricity rates and battery storage unit cost. An electricity customer whose electricity demand is supplied by a grid connected PV generation system benefiting from a FiT incentive is simulated in this paper. The system is simulated with the PV modelled as an existing system and the PV modelled as a new system. For a better understanding of the existing PV system with battery storage operation, an optimisation problem was formulated which resulted in a mixed integer linear programming (MILP) problem. The optimisation model was developed to solve the MILP problem and to analyse the benefits considering different electricity tariffs and battery storage in maximising FiT revenue streams for the existing PV generating system. Real data from a typical residential solar PV owner is used to study the benefit of the battery storage system using half-hourly dataset for a complete year. A sensitivity analysis of the MILP optimisation model was simulated to evaluate the impact of battery storage capacity (kWh) on the objective function. In the second case study, the electricity demand data, solar irradiance, tariff and battery unit cost were used to analyse the effect of battery storage unit cost on the adoption of electricity storage in maximising FiT revenue. In this case, the PV is simulated as a new system using Distributed Energy Resources Customer Adoption Model (DER-CAM) software tool while modifying the optimisation formulation to include the PV onsite generation and export tariff incentive. The results provide insights on the benefit of battery storage for existing and new PV system benefiting from FiT incentives and under time-varying electricity tariffs

    Economic optimization of component sizing for residential battery storage systems

    Get PDF
    Battery energy storage systems (BESS) coupled with rooftop-mounted residential photovoltaic (PV) generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today's high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA) system and two lithium-ion systems, one with lithium-iron-phosphate (LFP) and another with lithium-nickel-manganese-cobalt (NMC) cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.Web of Science107art. no. 83

    Evaluating consumer investments in distributed energy technologies

    Get PDF
    The adoption of solar photovoltaic and electrical energy storage by end users depends on their economic attractiveness, which is typically assessed with metrics of future cash flow such as Net Present Value (NPV). Yet analyses using NPV typically do not account for the evolution towards low-carbon electricity systems in the short and long term. We show this to be of critical importance for accurately calculating the profitability of these technologies. By linking an energy system model with a power system model, we observe substantial differences between NPV estimates calculated with and without representing potential evolutions of the electricity system. Our results suggest that not accounting for short- and long-run changes in the electricity system could underestimate the NPV of an investment in photovoltaic and storage by around 20%, especially in scenarios with high levels of renewables, moderate flexibility, and high electrification in the energy system. Using system-dependent cash flow metrics can have a major impact on end-users' energy technology profitability

    Grid-tied distributed generation with energy storage to advance renewables in the residential sector: tariff analysis with energy sharing innovations; Part I.

    Get PDF
    Abstract This paper analyzes a case study on electrical power control and energy management of a 60 apartments' residential building with solar generation and energy storage in Santiago, Chile. This constitutes both, a challenge and an opportunity, which have not yet been fully addressed by the Chilean regulatory framework, under the perspective of renewable energy sources' integration with the local electric utility, ENEL. Under this scenario, a set of strategies for the coordination and control of the electricity supply versus demand is tested and adapted for the specific needs of the customers and the infrastructure of the network. The microgrid operates in full coordination with the grid to maximize green energy supply vs demand and systems capacity, whereby the different energy consumers and their consumption profiles play a crucial role as "active loads", as they are able to respond and adapt to the needs of the grid-tie microgrid while enjoying economic benefits. Simulations results are presented under different tariff options, systems capacity and energy storage alternatives, so as to compare the proposed strategies with the actual case. Results show the advantage of the proposed electric tariffs and energy management strategies for the integration of distributed generation systems in the context of the smart grid transformation by ENEL in Chile

    Analysis, sizing and control of a micro-grid with photovoltaic generation and batteries, for residential applications in the city of Cúcuta, Norte de Santander (Colombia)

    Get PDF
    Currently, the Colombian electricity sector presents great opportunities for the implementation of electric power generation systems from unconventional energy sources such as photovoltaic solar energy, these opportunities arise from the need to strengthen the national energy matrix to be able to supply the increasing demand for electrical energy of the country, at the same time as the generation system, mainly dominated by generation of hydroelectric energy, is strengthened in front of environmental crises such as those experienced in the past. With this as a reference, the present work carries out a study for the implementation of micro-grid with photovoltaic generation systems and batteries for residential use, within the context of the actual Colombian electricity market, focused on the city of Cúcuta, Norte de Santander. Developing for this purpose a model of the microgrid in Simulink from MathWorks, and evaluating its performance for two particular case studies

    Evaluating consumer investments in distributed energy technologies

    Get PDF
    The adoption of solar photovoltaic and electrical energy storage by end users depends on their economic attractiveness, which is typically assessed with metrics of future cash flow such as Net Present Value (NPV). Yet analyses using NPV typically do not account for the evolution towards low-carbon electricity systems in the short and long term. We show this to be of critical importance for accurately calculating the profitability of these technologies. By linking an energy system model with a power system model, we observe substantial differences between NPV estimates calculated with and without representing potential evolutions of the electricity system. Our results suggest that not accounting for short- and long-run changes in the electricity system could underestimate the NPV of an investment in photovoltaic and storage by around 20%, especially in scenarios with high levels of renewables, moderate flexibility, and high electrification in the energy system. Using system-dependent cash flow metrics can have a major impact on end-users' energy technology profitability
    corecore