1,663 research outputs found

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    BEACON: A Cloud Network Federation Framework

    Get PDF
    This paper presents the BEACON Framework, which will enable the provision and management of cross-site virtual networks for federated cloud infrastructures in order to support the automated deployment of applications and services across different clouds and datacenters. The proposed framework will support different federation architectures, going from tightly coupled (datacenter federation) to loosely coupled (cloud federation and multi-cloud orchestration) architectures, and will enable the creation of Layer 2 and Layer 3 overlay networks to interconnect remote resources located at different cloud sites. A high level description of the main components of the BEACON framework is also introduced

    Opportunities and Challenges of Joint Edge and Fog Orchestration

    Get PDF
    Pushing contents, applications, and network functions closer to end users is necessary to cope with the huge data volume and low latency required in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. This article analyzes the opportunities and challenges to integrate, federate, and jointly orchestrate the edge and fog resources into a unified framework.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    A Model for Energy-Awareness in Federated Cloud Computing Systems with Service-Level Agreements

    Get PDF
    International audienceAs data centers increase in size and computational capac- ity, numerous infrastructure issues become critical. Energy efficient is one of these issues because of the constantly increasing power consump- tion of CPUs, memory, and storage devices. A study shows that the whole energy consumed by data centers will be extremely high and it is like to overtake airlines in terms of carbon emissions. In that scenario, Cloud computing is gaining popularity since it can help companies to reduce costs and carbon footprint, usually distributing execution of ser- vices across distributed data centers. The research aims of this work are to propose and evaluate a Model for Federated Clouds that takes into account power consumption and Quality of Service (QoS) requirements. In our model, the energy reduction shall not result in negative impacts to the agreements between Cloud users and Cloud providers. Therefore, the model should ensure both energy-efficiency and QoS parameters, which sets up possibly conflicting objectives
    • …
    corecore