

Emil Elonen

MACHINE DIAGNOSTICS IN PROCESS
CONTROL SYSTEMS

Comparison of on-site and cloud implementations

Master of Science Thesis

Faculty of Engineering and Natural Sciences
Examiner: University Instructor Mikko Salmenperä

Examiner: Professor Matti Vilkko
March 2023

i

ABSTRACT

Emil Elonen: Machine Diagnostics in Process Control Systems

Master of Science Thesis

Tampere University

Master’s Degree Program in Automation Technology

March 2023

Machine diagnostics is used in industrial systems to monitor processes and equipment with
the goal of detecting faults and service requirements in the machinery. Modern machine diagnos-
tics use software to gather and analyze data automatically. Multiple ways exist for implementing
such software applications, and with the growing popularity of IIoT, cloud-based solutions have
become widely used. Cloud utilization, however, generally includes subscription costs from third-
party cloud service providers, which weakens the cost-effectiveness of cloud implementations. In
this thesis a cloud-based diagnostics application is compared to an on-site implementation which
uses a process control system as its platform. A concrete example of such an on-site implemen-
tation wasn’t available, which meant that a working prototype needed to be developed. The com-
parison was performed to find the most essential differences between the two implementations,
as well as the main points of consideration when deciding between them.

Process control systems are used to carry out the control logic of an industrial process. The
basic functionality consists of reading data signals from process components and sensors, per-
forming pre-determined calculations and processing to produce control signals and feeding these
back to process actuators. The arithmetic operations needed for control logic are largely similar
than those used in machine diagnostics, which makes the process control system a suitable en-
vironment for implementing such an application.

Principles of the waterfall model were used in the development of the on-site prototype. The
implementation was seen as relatively manageable with limited need for changes, which meant
that more agile development models were deemed unnecessary. Both qualitative and quantitative
aspects were included in the comparison, with the main metrics consisting of complexity, data
utilization, ease of deployment, maintainability, and costs. To obtain comparable evaluations,
data-flow analysis was used on both implementation types.

The comparison results showed that on-site implementations tend to be less complex in terms
of application structure while providing the same internal functionality as a cloud implementation.
The data pipeline is also optimized when performing the diagnostics in the process control sys-
tem, since less data needs to be handled in the later stages of the application’s data flow. The
deployment of cloud implemented diagnostics applications involves set-up and configuration of
the remote computing platform and databases, which aren’t necessary in an on-site implementa-
tion. However, the isolated cloud environment allows for updates and changes to be made more
flexibly than in a process control system. The additional costs of cloud utilization are, depending
on the cost model, made up mostly of fees related to computation rather than data transfer and
storage. Therefore, the relocation of calculations into the process control system is also benefi-
ciary from a financial point of view.

In conclusion, an on-site implementation should principally be preferred, unless the process
control system doesn’t support features that are needed for the analysis. In cases where the
diagnostics results need to be accessed through the cloud, for example in a web portal, a hybrid
implementation is a viable solution. That way the computation can be done efficiently in the pro-
cess control system, and only the necessary result information needs to be transferred to and
stored in the cloud.

Keywords: Machine diagnostics, Process control system, Cloud application, Waterfall model,
Data-flow analysis

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Emil Elonen: Konediagnostiikka prosessinohjausjärjestelmissä

Diplomityö

Tampereen yliopisto

Automaatiotekniikan DI-ohjelma

Maaliskuu 2023

Konediagnostiikkaa hyödynnetään teollisissa järjestelmissä prosessin ja välineistön tarkkai-
lussa, jonka tavoitteena on havaita laitteiston vikoja ja huoltotarpeita. Nykyaikainen konediagnos-
tiikka kerää ja analysoi tietoa ohjelmiston avulla, jonka toteutukseen on olemassa laaja valikoima
eri tapoja ja tekniikoita. IIoT:n yleistymisen myötä pilvipalveluiden hyödyntäminen diagnostiikka-
sovellusten toteutuksessa on yleistynyt. Pilven käyttöön liittyy lähtökohtaisesti kuitenkin palvelu-
maksuja, jotka heikentävät pilvipohjaisten toteutusten kannattavuutta. Tässä työssä pilvipohjaista
diagnostiikkasovellusta verrataan paikallisesti toteutettuun vertailukohtaan, joka hyödyntää pro-
sessinohjausjärjestelmää alustanaan. Konkreettista esimerkkiä vastaavasta toteutuksesta ei ollut
saatavilla, joten toiminnallisen prototyypin kehittäminen oli tarpeellista kehittää. Vertailun tarkoi-
tuksena oli löytää keskeisimmät erot näiden toteutustapojen välillä ja eritellä oleellisimmat huo-
mioitavat näkökohdat niiden välillä valittaessa.

Prosessinohjausjärjestelmiä käytetään teollisuusprosessien ohjauslogiikan tuottamiseen. Nii-
den yksinkertaistettu toiminnallisuus koostuu tietosignaalien sisään lukemisesta prosessilaitteilta
ja antureilta, ennalta määriteltyjen laskentatoimituksien suoritus ja tiedon prosessointi ohjaussig-
naalien tuottamiseksi, sekä ohjauksen lähetys takaisin prosessin toimilaitteille. Ohjauslogiikassa
tarvittavat aritmeettiset operaatiot ovat pitkälti samat, joita hyödynnetään konediagnostiikassa,
joka tekee prosessinohjausjärjestelmästä soveltuvan ympäristön diagnostiikkasovelluksen toteut-
tamiselle.

Prototyypin kehityksessä hyödynnettiin vesiputousmallin periaatteita. Toteutuksen arvioitiin
olevan suhteellisen yksinkertainen ja muutostarpeet oletettiin vähäisiksi, joten ketterämmille ke-
hitysmalleille ei nähty tarvetta. Vertailussa käytettiin sekä kvalitatiivisia että kvantitatiivisia näkö-
kulmia. Mittarit, joita hyödynnettiin, olivat monimutkaisuus, datan käsittely, käyttöönoton help-
pous, ylläpidettävyys sekä kustannukset. Vertailukelpoisten suureiden tuottamiseksi tietovirta-
analyysiä käytettiin kummankin toteutustavan kanssa.

Vertailutulokset osoittivat, että pilvipohjaiset diagnostiikkasovellukset ovat lähtökohtaisesti
monimutkaisempia kuin paikalliset toteutukset. Datan käsittely on myöskin optimoidumpaa pai-
kallistoteutuksissa, sillä datamäärät ovat tällöin pienempiä sovelluksen tietovirran myöhäisem-
missä vaiheissa. Pilvipohjaisten toteutusten käyttöönottoon liittyy etäympäristön pystyttämistä
sekä konfigurointia, mikä ei luonnollisestikaan ole tarpeen paikallisesti toteutetuissa sovelluk-
sissa. Eristetty pilviympäristö on kuitenkin käytännöllisempi päivitysten ja ohjelmistomuutosten
joustavissa asennuksissa. Pilvipalvelun aiheuttamat kustannukset koostuvat laskutusmallista riip-
puen pääosin laskentaan liittyvistä maksuista, joten laskennan siirtäminen prosessinohjausjärjes-
telmään on hyödyllistä myös taloudellisesta näkökulmasta.

Johtopäätöksenä paikallisia toteutuksia pitäisi ensisijaisesti suosia pilvitoteutuksien sijaan,
paitsi jos prosessinohjausjärjestelmä ei tue toiminnallisuuksia, joita sovelluksen analyyseissa tar-
vitaan. Tapauksissa, joissa diagnostiikkatuloksien pitää olla saatavilla pilven kautta, kuten esi-
merkiksi web-portaalissa, hybriditoteutus on perusteltu vaihtoehto. Tällöin laskenta voidaan suo-
rittaa kustannustehokkaasti prosessinohjausjärjestelmässä, ja ainoastaan tarpeelliset tulostiedot
joudutaan siirtämään pilveen.

Avainsanat: Konediagnostiikka, Prosessinohjausjärjestelmä, Pilvipalvelu, Vesiputousmalli,
Tietovirta-analyysi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This thesis was commissioned by Valmet Technologies Oy in Jyväskylä, Finland. I am

grateful to the company for allowing me to conduct my thesis in such a supporting and

innovative work environment. The schedule was tight, and challenges were faced, but

the experience was educational and allowed me to go deeper down the rabbit hole that

is papermaking.

I would like to express my sincere gratitude to Timo Ikävalko from Valmet Performance

Center, who originally came up with the thesis topic and acted as my main instructor for

the project. I also wish to acknowledge fellow Valmeteers Sami Kyyhkynen and Mika

Kari for assisting in technical aspects of the thesis.

From Tampere University I’d like to thank my examiners Mikko Salmenperä and Matti

Vilkko. The guidance and supervision which they provided through the whole writing pro-

cess were greatly appreciated.

Jyväskylä, 20 March 2023

Emil Elonen

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 The principles of machine diagnostics .. 1

1.2 Aspects and subjects of the comparison .. 2

1.3 Research questions and thesis structure .. 3

2. MACHINE DIAGNOSTICS IN DIVERSE INDUSTRIAL SETTINGS 5

2.1 Fundamentals of fault detection ... 5

2.2 The functionality and diagnostic needs of a shoe press 8

2.3 Service models of cloud environments ... 9

2.4 Process control systems .. 11

3. METHODOLOGY .. 17

3.1 Comparison of alternatives... 17

3.2 Waterfall development model ... 19

3.3 Data-flow analysis .. 22

4. APPLICATION FUNCTIONALITY AND PROTOTYPE DEVELOPMENT 25

4.1 Implementation layouts in the physical environment........................... 25

4.2 Initial requirements analysis ... 27

4.3 Development workflow from design to implementation 29

4.4 General structure and architectural choices 30

4.5 Testing procedures .. 39

5. COMPARISON OF CLOUD AND PCS IMPLEMENTATIONS 40

5.1 Structural and functional complexity ... 40

5.2 Requirements for data volume and throughput 43

5.3 Ease of deployment and maintainability ... 45

5.4 Costs of development and operation .. 46

6. EVALUATION OF COMPARISON RESULTS ... 49

7. SUMMARY AND CONCLUSIONS .. 52

REFERENCES... 56

v

LIST OF FIGURES

Figure 1: A cloud-based (left) and on-site (right) approach to machine diagnostics 2
Figure 2: Data-driven diagnostics of paper grammage .. 6
Figure 3: Model-based diagnostics of paper grammage .. 7
Figure 4: A simplified presentation of a roll press (left) and a shoe press (right) 9
Figure 5: Responsibilities in cloud service models [25] ... 10
Figure 6: The hierarchical levels in an industrial network [37, p. 70]............................ 14
Figure 7: The process of developing control room user interfaces [45] 16
Figure 8: Steps of a waterfall development model ... 20
Figure 9: Steps of the requirements phase [51, p. 17] ... 21
Figure 10: DFA using graph theory ... 23
Figure 11: DFDs for a modulo function given different inputs 24
Figure 12: Architectural structures of a PCS-based (green) and a cloud-based

(purple) diagnostics application .. 26
Figure 13: Deployment diagram of the application environment 27
Figure 14: Workflow and sub-stages of design and implementation 30
Figure 15: Basic structure and connections of the application 32
Figure 16: Inserting a new element into a ring table .. 33
Figure 17: Flowchart for calculation module execution .. 34
Figure 18: Simplifying the data interface by using a separate configuration

module ... 35
Figure 19: Overview display layout ... 36
Figure 20: Analysis display layout ... 37
Figure 21: Data collection implemented into a separate module 38
Figure 22: Parameters display layout .. 38
Figure 23: CFGs of the two implementation approaches ... 41
Figure 24: DFD of a cloud-based diagnostics application .. 41
Figure 25: DFD of a PCS-based diagnostics application ... 42
Figure 26: DFD of a hybrid diagnostics application ... 43
Table 1: Input and output signals of the application .. 44
Figure 27: Data throughput requirements in the application .. 44
Table 2: Cloud service cost estimation .. 48
Figure 28: Deployment timelines of diagnostics application implementations 50
Table 3: Summary of the comparison results .. 53

vi

LIST OF SYMBOLS AND ABBREVIATIONS

ADC Analog-to-digital conversion
AI Artificial intelligence
API Application programming interface
CFG Control-flow graph
CRM Customer relationship management
DAC Digital-to-analog conversion
DCS Distributed control systems
DFA Data-flow analysis
DFD Data-flow diagram
ERP Enterprise resource planning
FBD Function block diagram
GUI Graphical user interface
HMI Human-machine interaction
IaaS Infrastructure as a service
IIoT Industrial internet of things
I/O Input/output
PaaS Platform as a service
PCS Process control system
SaaS Software as a service
UML Unified modeling language
UX User experience
QoS Quality of service

1

1. INTRODUCTION

In many industrial processes a major share of operating costs consists of the production

equipment’s maintenance and replacement expenses. Additionally, any process down-

time, planned or unplanned, directly reduces the availability and production time which

naturally has a negative influence on profitability. [1] [2] Therefore, it is of great interest

to a production plant owner to ensure that the process and machinery is operated in a

way that minimizes unwanted maintenance breaks caused by disturbances or equipment

failure. Machine diagnostics is a tool for detecting arising faults, as well as acquiring

information about the machinery’s health condition [3].

This thesis focuses on two implementation types of a modern machine diagnostics soft-

ware application. A comparison is performed to estimate what benefits and drawbacks

those approaches have, and how a decision between the two should be made. In this

chapter the basic principles of machine diagnostics are introduced, as well as the re-

search questions and thesis structure.

1.1 The principles of machine diagnostics

Machine diagnostics utilize data gathered from the process to be analyzed and com-

pared to reference figures from expected normal system operation and performance.

The selection of methods for analysis is vast and constantly developing. Increases in

computational power and storage capabilities have created possibilities for usage of

data-intensive methods such as machine learning and digital modelling to predict possi-

ble faults and maintenance needs based on history data [4]. Due to the resource de-

manding nature of these analysis methods, it is often logical to use a distributed compu-

ting environment, commonly referred to as the cloud, for the diagnostics application. This

way the computation and processing of data can be moved away from the process site

where the data is collected.

This is reflected in the concept of industrial internet or industrial internet of things (IIoT).

IIoT refers to machines and devices as members of a larger network where data is

shared among other members with widely available and standardized technologies sim-

ilarly to the public internet [5]. Companies utilize these technologies to harvest and ana-

lyze large amounts of data to create services like remote monitoring, data analytics and

system optimization [6] [7] [8]. The high flexibility and scalability of these network-based

2

infrastructures make usage of IIoT applications possible for a wide variety of differently

sized organizations. The affiliated technologies, including lots of open-source hardware

and software, are also available to anyone, which creates an easily approachable solu-

tion for distributed data analysis. [5]

However, usage of cloud-based services involves deployment and operating costs,

which may make it more practical in some cases to perform the diagnostics on-site using

the hard- and software of the process control system (PCS). This way one could take

advantage of a platform that is already present and operated on-site. In addition, the

PCS is known to comply with the process’s requirements regarding for example real-

time, security and reliability. As can be seen in figure 1, the data flow can also be simpli-

fied with this approach, since the measurement data from the process doesn’t have to

be transferred to a separate location for calculation and analysis.

Figure 1: A cloud-based (left) and on-site (right) approach to machine diagnostics

An additional benefit of on-site diagnostics is the lower latency for producing and dis-

playing result data. This can lead to an improved ability to use the analysis results for

machine control in cases where a fast response time is needed. On the other hand, a

PCS may natively not offer abilities for more complex analysis methods, for which a

cloud-based environment is more suitable.

1.2 Aspects and subjects of the comparison

In the scope of thesis, a paper machine is used as an example framework for a compar-

ison to determine which way of implementation is more practical or beneficiary in any

given case. To achieve this, a working prototype of a PCS-based machine diagnostics

application is developed. The prototype is confined to only target a shoe press located

3

in the press section of the paper machine. The deployment and operation of the PCS

implementation is compared to an existing cloud-based diagnostics application. The

comparison is performed using several different metrics including complexity, data

throughput and volume, ease of deployment, maintainability, as well as costs. In addition

to acting as a reference system, the prototype can be seen as a proof of concept for the

implementation of a diagnostics application into a PCS.

The target functionality for the prototype consists of reading all the necessary signals

from the process control logic, and subsequently performing the calculations and com-

parisons needed for analyses. The prototype’s responsibilities would further include stor-

ing signal history values, which are required for calculating statistical indicators. To vis-

ualize the diagnostics, capability for presenting analysis results and history trends in the

operator’s graphical user interface (GUI) should also be included. Besides the foremen-

tioned functional requirements, the prototype should be relatively easily configurable to

make usage across multiple systems practical. The analyses implemented into the pro-

totype are selected by using the existing equivalent cloud-based diagnostics application

as reference.

1.3 Research questions and thesis structure

The main research questions this thesis aims to answer are listed below:

• What differences do an on-site PCS-based and a cloud-based diagnostics appli-

cation have in terms of development, deployment, maintenance, and operation?

• Which case-specific factors need to be considered when choosing one imple-

mentation over the other?

To get a comprehensive answer to the first question, the findings of the comparison de-

scribed in the previous subchapter are evaluated. Based on the conclusions regarding

the first question, a general guideline will be established to answer the second question.

A comprehensible and widely applicable result to this is beneficial to any company or

service provider looking to optimize their machine diagnostics offering and delivery pro-

cess.

Structurally this thesis is divided into seven main chapters: introduction, subject back-

ground, methodology, development of the prototype, comparison and evaluation, results,

as well as summary and conclusions. The second chapter introduces the reader to the

context of this thesis, as well as the basic theory of industrial machine diagnostics, the

prototype’s target system, and cloud applications based on available literature. It should

4

give the reader an understanding about the current state machine diagnostics applica-

tions, and what the needs are for this thesis and its results. The methods which are used

in the comparison and prototype development are introduced in the third chapter. The

fourth chapter consists of a description of the application prototype’s structure, as well

as the development and testing processes. This section also elaborates on the chal-

lenges and decisions which were faced during the development stage of the prototype.

The fifth chapter focuses on the comparison between the two implementation types. In-

dividual aspects and metrics used in the comparison are divided into separate subchap-

ters. The obtained results are presented and interpreted in the sixth chapter along with

conclusion made based on these results. The seventh chapter contains the summary of

the research performed in this thesis including its results, in addition to speculation for

possible further research needs on the subject.

5

2. MACHINE DIAGNOSTICS IN DIVERSE INDUS-

TRIAL SETTINGS

This chapter sets the foundation for the thesis’ research by introducing the concepts of

industrial diagnostics, PCSs, and cloud applications. As was stated in chapter 1.2, the

prototype targets a shoe press, which is a subsystem of a paper machine. The structure

and functionality of a shoe press are also described in this chapter.

2.1 Fundamentals of fault detection

Predominantly associated with the medical field, diagnostics as a term refers to the pro-

cess of identifying a cause or causes for a fault, failure, or other similar phenomenon. In

the scope of industrial processes, diagnostics is used extensively as a tool for managing

machinery maintenance and repairs. [9]

There are multiple types of diagnostics which are used in industrial processes, such as

condition diagnostics for the process itself or associated machinery, as well as control-

or quality diagnostics. At its simplest these can be performed by manually gathering data

from the system, and making observations and conclusions based on the figures. This

naturally requires a deep understanding of the process and machine operation from the

person conducting the analysis. A more advanced alternative to this is using a dedicated

diagnostics system which automatically gathers the needed data using sensors or other

kinds of measurements. These types of systems also perform the calculations and anal-

yses to determine the condition or quality of the system, and possibly even suggests

possible causes for faults to the operator. [10]

Many diagnostics systems have been developed with different approaches to how the

raw data is analyzed, and the diagnostics results formed. Data- or signal-driven methods

usually use time-ordered measurement information to get quantitative indicators about

the state of the process or machine. Usage of statistics or integral transforms is often

necessary to emphasize specific characteristics of the data, such as variations or long-

term trends. [11] For example, a data-driven quality analysis for a paper machine can be

implemented by monitoring the variations in the grammage of the final product like visu-

alized in figure 2 [10].

6

Figure 2: Data-driven diagnostics of paper grammage

The example in figure 2 uses the 50 latest data measurements at any given point to

calculate the rolling variance. In this case, an unbiased sample variance 𝑉 is used which

is given by the equation

𝑉 =
∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1

𝑁 − 1
, (1)

where 𝑥𝑖…𝑁 are the measurement values, �̅� is the mean of measurement values and 𝑁

is the total number of measurement values.

Model-based solutions to machine diagnostics use system models to predict or simulate

a reference output of a process or subsystem under normal operating conditions. Models

are usually software-based, and they aim to imitate the input-output relation of the real-

life systems that they represent. Conclusions about the state or condition of the real-life

equivalent can be made by comparing measured values to the model output as is done

in figure 3.

Time

ra
m
m
a
g
e

g
 m

Time

a
ri
a
n
c
e

 g
 m

Diagnostics high limit

Diagnostics notification

7

Figure 3: Model-based diagnostics of paper grammage

The accuracy of model-based diagnostics naturally depends heavily on how well the

model matches the true process. In some cases, system models can be too difficult, too

costly, or just outright impossible to develop, which prohibits the usage of these types of

approaches entirely. [11]

The predictive capabilities of system models also create possibilities to detect faults or

inefficiencies before they can be noticed from measurement data, commonly referred to

as prognostics [9] [12] [13]. This has an obvious advantage against conventional diag-

nostics given that process downtime and hardware failures can potentially be avoided

entirely with preventive maintenance. Cases where system behavior during and leading

up to failure is repetitive or cyclic are especially suitable for prognostics since the symp-

toms for upcoming problems can be identified from measurements using historical data.

Pattern recognition or machine learning techniques are often used to interpret the causal

connections between one or multiple system measurements and outputs. [11] [12] De-

fining the situations where prognostics can be applied effectively is important because

an inaccurate system model may be susceptive to false positives regarding unfavorable

system performance, which in turn can lead to unnecessary maintenance expenses.

Time

ra
m
m
a
g
e

g
 m

Time

ra
m
m
a
g
e

g
 m

Time

b
s
o
lu
te
 d
if
fe
re
n
c
e

g
 m

Diagnostics high limit

Diagnostics notification

8

2.2 The functionality and diagnostic needs of a shoe press

A shoe press in a paper machine is an alternative to a traditional roll press, developed

mainly to increase the surface area over which pressure can be applied and thus in-

creasing the total applicable force [14]. When entering the press section, the paper water

content is typically about 80 % i.e., the papers mass consists of 80 % water and 20 % of

dry solid content, mainly cellulose fibers. Although varying between machines, the press

section usually brings the water content down to around 50 %. Maximizing the amount

of water removed in the press section is desirable for several reasons, with the most

significant being energy efficiency. After the press section the paper web is transferred

to the drying section which uses heat to bring the paper to its final water content of around

5 %. Removing water in the drying section is principally less energy efficient compared

to the press section, which has led to paper machine manufacturers focusing on improv-

ing the press section water removal process to cope with increasingly strict emission

standards. [15] [16]

In a standard roll press the pressure is applied to the paper web at the gap between two

rolls called a nip. Since the rolls are rigid cylinder-shaped objects, the machine direction

length of the nip is very limited. This leads to the pressure being applied over a relatively

small area which in turn limits the maximum force that can be applied without damaging

the paper web. In a shoe press the nip is lengthened by using a concaved shoe which is

loaded against a rigid press roll called the backing roll. A flexible sleeve, commonly re-

ferred to as belt, is placed around the otherwise stationary shoe. The belt moves with

the paper web passing through the nip to prevent contact directly between the shoe and

the paper. The basic working principles of roll and shoe presses are illustrated in figure

4. [17] [18] [19]

9

Figure 4: A simplified presentation of a roll press (left) and a shoe press (right)

Since the belt is constantly moving in relation to the shoe, the contact surface needs to

have continuous lubrication during operation. Failures in lubrication oil delivery or tem-

perature regulation are likely to cause excessive wear and damage to the belt. The crit-

ical nature of the lubrication reliability was a partial reason why the shoe press was seen

as a good example system for a diagnostics-oriented application prototype.

2.3 Service models of cloud environments

With growing interests in utilizing machine learning and artificial intelligence (AI) as well

as recent megatrends like IIoT, the market size of cloud-based computing has grown

proportionally, topping out at several hundred billion US dollars [20] [21] [22]. The ability

to purchase computational resources from dedicated cloud service providers allows busi-

nesses to reduce the amount of upfront capital investments needed for things like IT

infrastructure and setup expenses. The costs of operating said infrastructure can also be

optimized, since, depending on the cost model, cloud service users are able to only pay

for the resources they actually use. [23] This can be especially beneficial in cases where

the computational- or storage needs of the user change frequently.

Generally, cloud services can be categorized into three models: Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). Compared

to on-site computing where everything related to the soft- and hardware is managed by

the user, each service model takes responsibility over some parts of the technical imple-

mentation and abstracts these away from the user as shown in figure 5. [24, p. 13]

10

Figure 5: Responsibilities in cloud service models [25]

The characteristics of each service model are described in more detail in the following

subchapters. In this context the person using the cloud service is referred to as the user,

and the party or organization responsible for providing the service is referred to as the

service provider.

2.3.1 IaaS

IaaS fundamentally takes responsibility, as the name suggests, over the infrastructure

needed to perform the computation and storing of data. This basically includes related

hardware and low-level software, such as drivers and virtualization systems. The user

manages all high-level software starting from the operating system. The underlying in-

frastructure is accessed and used via some type of application programming interface

(API) over the internet. Usually, the costs of an IaaS are based on the realized usage of

the service which means the user-managed applications can be changed and scaled

agilely without inducing unnecessary expenses. [24, pp. 13-15] [25]

Virtual machines are one of the most common use cases of IaaS. Examples of popular

IaaS products are Microsoft’s Azure VMs and Amazon’s Elastic Compute Cloud.

2.3.2 PaaS

If the user wants to only mange the applications that are run on the top of the stack

without having to handle the underlying operating systems or storage configurations,

11

PaaS offers the abstractions of those components in addition to the responsibilities of

IaaS. This way the user can focus fully on the development and distribution of the appli-

cations as long as the technologies are supported by the service provider’s platform.

Although this simplifies the application development, some flexibility is naturally lost due

to the limitations set by the operating environment. For example, performance optimiza-

tion can prove difficult because the user has no control over things like memory allocation

and thread usage. [24, pp. 15-17]

PaaS is especially useful for agile software development in cases where the setting up

of own physical hardware and runtime environments would be too laborious or expen-

sive. There are also benefits in situations where development cycles are short since pro-

jects can be set up quickly and discarded as necessary.

2.3.3 SaaS

In the context of cloud system models, SaaS is the most complete option available. With

SaaS the service provider basically manages the whole stack ranging from the bare-

metal hardware to the top-level applications. Only administrative configurations or user

management is left as the user’s responsibility. [24, pp. 17-18]

SaaS is popularly utilized by businesses for non-core functions, such as e-mail services,

customer relationship management (CRM), enterprise resource planning (ERP) or ac-

counting. This way the business can avoid hiring- and payroll costs, as well as other

expenses required to set up and manage whole software applications. Instead, a sub-

scription fee is paid as compensation for using the service. [24, p. 18] Out of all the cloud

service models, SaaS is the one which requires least technical capabilities from the user

to get set up, but simultaneously provides the least flexibility in terms of control, bug fixes

and security [25].

2.4 Process control systems

The transition from largely manually operated industrial processes to automated and

computer-controlled PCSs has been one of the most impactful factors in improving the

efficiency of production and manufacturing. The reduced need for human interaction has

allowed factories and production plants to operate with less labor expenses while simul-

taneously improving process accuracy, product quality and production volume. [26, pp.

1-4]

A PCS can generally mean anything from a single analog controller to massive networks

of computers, sensors, and actuators. In the scope of this thesis, the term PCS is used

12

to refer to a state-of-the-art distributed control system (DCS) capable of controlling, for

example, a modern paper mill which can carry tens of thousands of continuous data

signals [2]. These kinds of systems consist of multiple computers and networking com-

ponents, and usually support the most common industrial communication technologies

like Ethernet/IP, OPC, PROFIBUS, PROFINET, and other fieldbuses [27] [28].

Although PCSs and automation systems are available from several different manufac-

turers, and each system has differences compared to others, many key characteristics

and features are usually shared amongst these kinds of products. The most relevant are

presented in the following subchapters.

2.4.1 Hardware

With continuously increasing amounts of data, calculations and comparisons needed for

modern process control, the requirements for the physical hardware of control systems

are also growing ever more demanding. Although the basic components of industrial

computers are largely similar to those found in consumer grade PCs, the casings and

interface ports have usually been specially designed to provide rigidness and protect the

fragile electronic from harsh industrial environments.

The physical size of computers used for process control can also largely vary. While

large rack controllers are capable of offering high performance to process large quanti-

ties of data, individual process components can have smaller computers embedded right

into the machinery. [29] [30] This allows the data to be processed at the location it is

gathered, commonly referred to as edge computing [31].

2.4.2 Data signals and arithmetic operations

In the context of process control systems, signals can be defined as time-ordered ele-

ments of data which represent information, such as measurement values or process

states. Signals are used both in- and outside of the actual control logic. Information run-

ning for example from sensors to the process controllers or from the controllers to actu-

ators are referred to in this thesis as external signals. Signals that are used in the control

logic itself are called internal signals. Between the controllers and actual process there

needs to be an input/output-interface (I/O) to connect the external signals to the control

logic [32] [33]. External signals can be digital or analog, but since internal signals can

only be digital, the I/O usually needs to provide analog-to-digital conversion (ADC) so

that analog information can be used in the control logic. For analog signals going from

the controller to the process, such as actuator control signals for example, digital-to-

analog conversion (DAC) is also required.

13

Signals can carry information of many different data types. Floating-point numerical data

is often used to represent analog measurement values, while binary- or integer type data

is suitable for expressing machine- or process states. To execute the desired control

logic, the system needs to be able to perform certain arithmetic operations, the most

important of which include addition, subtraction, multiplication, division, as well as ob-

taining absolute values, roots, and powers. Some logical operations are also necessary,

such as numerical comparison.

A typical way of configuring signal handling and control logic in PCSs is through the

utilization of function block diagrams (FBD). FBD is a graphical programming language

most commonly used in designing the behaviors of logic controllers. Special compo-

nents, called function blocks, are used to represent arithmetic or logical operations in the

diagram. A function block can have one or multiple inputs and outputs. Possible inputs

are used as parameters for the block’s functionality, and outputs carry the result signal

which the block generates. The outputs are completely deterministic in nature, meaning

that specific inputs and states of a function block always result in the same outputs.

Diagrams usually consist of multiple function blocks, between which data is shared using

figurative wires for connection. By using these blocks and wired connections, the engi-

neer or designer can visually perceive the data flow and control logic as long as the

observer is sufficiently familiar with the function blocks and their behavior. [34] [35] [36]

2.4.3 Networking

In distributed process control systems, networking is needed to connect different parts

of the system together and enable data exchange between them [37, pp. 29-31]. These

parts mainly consist of the sensors and actuators present in the process, as well as

computers and other similar process controllers. Options for network implementation are

vast, and often a network for process control consists of multiple different technologies

and protocols. In these types of environments, the network can be divided into ISA-95

compliant hierarchical levels which are shown in figure 6.

14

Figure 6: The hierarchical levels in an industrial network [37, p. 70]

The PCS is mainly restricted to levels 1-3. Level 1, or field level, features primarily analog

signals operating in the 4-20 mA current range, although some field devices can have

embedded I/O-interfaces which allows them to be connected directly to the process con-

trol via digital signals. Fieldbuses are generally used to connect devices at this level of

the network, although Ethernet- and TCP/IP-based networking solutions are available

for field level communication. [37, p. 77] [38] [39, p. 6] Level 2 is used to connect the field

devices to the control logic, and therefore it acts as an interface between the different

networking technologies used in the field and control levels. Depending on the control

system, fieldbuses as well as Ethernet connectivity can be used to transmit data on the

control level. Levels 4 and 5 utilize almost exclusively Ethernet and TCP/IP networks,

which often are also connected to the public internet. [29] [37, p. 79] For security reasons

it is necessary to implement a firewall between the control- and higher levels to prevent

unauthorized access to the process control.

As opposed to a common home- or office network, in process control applications the

data transmission latency is more critical than for example data throughput. In many

cases the controlled processes involve physical actuators which produce extensive

15

forces, strong electrical currents, or high temperatures. Naturally this leads to the fact

that critical control errors caused by excessive signal delays can potentially cause phys-

ical damage to the production, machinery, or even personnel. It is this aspect that sets

the exceptionally strict real time requirements of process control systems. [40, pp. 1-3]

[41]

The structure of industrial networks is generally designed to provide high levels of relia-

bility and fault tolerance. Ring topologies are usually preferred since they by nature offer

two possible routes between network devices. The added redundancy means that com-

munication can be continued even if one connection is broken. Individual connections

can also be duplicated by introducing a backup connection to be used in case the main

connection fails. [27]

2.4.4 Operator interfaces

The main point of human-machine interaction (HMI) in a PCS is the control- or operator

room. A modern control room features multiple monitors in which process information is

displayed to the operator. Another important responsibility of the control system’s GUI is

to allow the operator to influence the process by changing parameters or manually con-

trolling certain actuators. [39, p. 11] [42, pp. 106-107]

Traditionally the control room is located in close proximity to the process, but the increase

of TCP/IP-networking in industrial systems has made it possible to place the control room

in an entirely separate geographical location from the process site. This also makes the

GUI accessible from outside of the control room. Field panels or handheld mobile devices

can prove practical in cases where the operating interface needs to be accessed while

moving around the production site for example. [43]

An important aspect in the design of operating interfaces is the user experience (UX).

Taking the end users point of view into consideration is essential while determining how

the information is presented in the user interface. During the development phase it is

necessary to include persons with operating experience into the process to get valid

feedback for improvement during testing cycles. The whole workflow of producing control

room user interfaces is visualized in figure 7. [44, pp. 51-53] [45]

16

Figure 7: The process of developing control room user interfaces [45]

Failing to meet the criteria for adequate usability and UX has direct consequences on

the performance, error-proneness, and overall motivation of the operator. An objectively

bad user interface can lead to suboptimal process performance or even physical damage

if the operator is unable to take notice of things like undesirable process values, system

warnings or alarms. [45] [46]

17

3. METHODOLOGY

The methods which are used in this thesis for obtaining information and evaluating ob-

servations are presented in this chapter. Research methods in general can be defined

as ways to produce knowledge. Different types of research naturally require different

methods for best results, and it is up to the researcher’s expertise to choose and apply

the correct approaches. The type of data used in the research as well as the research

questions are usually the main factors that determine which methods are most suitable

in any specific case. [47, pp. 1-2] [48, pp. 43-44]

Three main methods are mentioned in this chapter. The comparison method is used to

contrast the two implementation types against each other and highlight differences be-

tween them. The waterfall model was the chosen development method for the PCS pro-

totype. Data-flow analysis, which is presented last, is utilized as a supportive method for

the comparison.

3.1 Comparison of alternatives

A direct comparison between the two implementation types is the general method for

producing answers to the research questions presented in chapter 1.3. In general, two

fundamentally different aspects to comparisons can be specified: qualitative and quanti-

tative comparisons [49].

Both qualitative and quantitative viewpoints are featured in the comparison of this thesis.

When making conclusions based on comparison results, it is important to correctly iden-

tify which kind of viewpoint was used. Failing to do so could lead to the conclusions being

made incorrectly, since interpretations of qualitative results need to be done differently

from quantitative. What exactly needs to be considered in each situation is outlined in

more detail in the following subchapters.

3.1.1 Qualitative comparison

Qualitative research methods focus more on the theoretical aspects of the objects under

evaluation, rather than actual empirical observations gained from practical testing [49].

Forming an explicit definition for qualitative research is difficult, but a set of features and

key characteristics, which sets qualitative research apart from quantitative, can be out-

lined [50, pp. 19-20].

18

Firstly, data analysis and result classification are performed with ambiguity and flexibility.

As opposed to trying to find an exact causal relationship between cause and effect, qual-

itative research leaves room for explanations and speculation, which is reflected in the

way data is dealt with. It is not typical to try fitting initial information or research outcomes

into predefined categories, but rather to generate categories and data sets based on the

gotten results. Principally these formed sets aren’t mutually exclusive, as certain data

can be seen falling into multiple categories simultaneously. [50, p. 12]

Secondly, data is handled mostly in an unstructured manner, meaning that numerical or

mathematical methods like counting, ranking, and ordering are usually not applied. The

way, in which events unfold in qualitative research, is purposefully left to its natural order,

so that it can be observed instead of attempted to be predicted. [50, p. 12]

Third is the presence of subjectivity in qualitative research. It needs to be recognized

and accepted, that personal traits and opinions of the research conductor or participants

affect the results when evaluating qualitative properties. That does, however, not directly

lead to the invalidity of the research result in the aspect of scientific objectivity that is

required. Valid conclusions can be made from qualitative research, but the unavoidable

subjectivity must be considered when interpreting observations. [50, p. 13]

Lastly, analysis is performed mostly verbally instead of using statistical methods. The

relationships between causes and effects are intended to be explained and interpreted

with descriptions and optional supportive illustrations. The goal is usually to clarify what

factors influence certain consequences in the studied test cases. [50, p. 14]

Qualitative comparison aspects that are used in this thesis include complexity, ease of

deployment and maintainability. These are examples of characteristics that cannot be

explicitly measured and numerically compared, and they can be perceived differently

between different persons. Additional methods are used to produce some quantitative

information about these aspects, but nevertheless the underlying qualitative fundamen-

tals need to be considered when doing comparisons.

3.1.2 Quantitative comparison

It may be often perceived that the main difference between qualitative and quantitative

research is the type of data that is used. While this may be a defining characteristic in

many cases, the way the data is utilized and analyzed is the primary trait which sets the

two apart. [48, p. 44]

Quantitative methods are especially suitable for cases where the number of objects or

individuals associated with the research is relatively large. These methods, as the name

19

suggests, are number-oriented and rely heavily on statistics to obtain results and con-

clusions form the research material. Due to the unambiguous nature of numbers, quan-

titative research methods tend to produce results that have strong objectivity and general

validity, which aren’t influenced by the personal views and opinions of the researcher.

[47, p. 15] [48, pp. 43-45]

Additionally, quantitative research has the benefit of being generally replicable. This is

largely thanks to the fact that the methods used are not dependent on the researcher,

but based on widely standardized and explicit numerical, mathematical, and statistical

operations. Therefore, they should yield similar results as long as external factors in the

research don’t vary too much

Nevertheless, the objectivity of quantitative research methods should not be seen as a

guaranteed absolute. The way in which data is gathered and processed can be, in some

cases unintentionally, affected by the researcher. This can lead to a bias in the research

results in spite of the fact that quantitative methods were used. Thus, it is important that

the researcher keeps a certain consciousness about the effects which subjective per-

sonal thoughts can have on scientific research, even with quantitative methods. [47, pp.

15-16]

Data volume, data throughput and costs are aspects in this thesis which can be com-

pared quantitatively. Each of them has one or multiple standardized units, and they can

be objectively measured.

3.2 Waterfall development model

The waterfall model is an approach to software development which can be used in both

small and large projects [51, p. 16]. In this thesis the waterfall approach was used in the

development of the PCS implementation prototype. The reasons why this particular ap-

proach was chosen are explained in chapter 4.

The logical structure of the model consists of phases which are carried out sequentially,

meaning that each stage is to be finished before moving on to the next. The precise

name of each stage tends to vary in literature, but the following naming conventions are

used in this thesis: requirements, design, implementation, testing, deployment, and

maintenance. The sequential order of the stages can be seen in figure 8. [51, p. 16] [52]

20

Figure 8: Steps of a waterfall development model

Fundamentally a waterfall model doesn’t allow for flexible movement between previous

or non-adjacent stages, which makes it less suitable for agile software development than

for example the Scrum method [52]. From a structural viewpoint however, the waterfall

method can be perceived as simpler and more straightforward, which could make it the

more beneficial choice in lightweight projects where a quick development process is as-

pired. [51, pp. 27-28]

3.2.1 Requirements

A waterfall development process begins with the definition of requirements. The main

goal of this phase is to gather and analyze the needs of possible stakeholders for the

software, subsequently determining which are necessary to implement into the actual

end product. These, along with the requirements documentation, form the 3 fundamental

steps of the requirements phase, which are shown in figure 9.

21

Figure 9: Steps of the requirements phase [51, p. 17]

Requirements can generally be divided into two categories: functional and non-func-

tional. Functional requirements are often based on use cases of the software, and they

describe what the product should be capable of doing or how it’s supposed to be inter-

acted with. Non-functional requirements relate to aspects like supported environments,

performance capabilities, security, or accessibility. Due to the sequential nature of the

waterfall model, it is essential that the requirements are surveyed comprehensibly, and

accepted by all stakeholders before starting the design phase. Changes in the require-

ments could render any progress made in later phases unusable since the requirements

phase would need to be revisited. [51, pp. 17-18]

3.2.2 Design and implementation

The aim for the design and implementation phases of the waterfall model is to produce

a functional instance of the end product which is ready for testing to be started on. The

waterfall model itself doesn’t dictate in any way how the design is to be performed, but

the results should allow for easy translation into executable code during the implemen-

tation. [51, p. 18]

Unified modeling language (UML) is one of the most used ways to produce design mod-

els for software systems. It is an object-oriented language that offers many graphical

tools for designing software models, such as class diagrams, use case diagrams, activity

diagrams and sequence diagrams for example. In some cases, UML diagrams can even

be automatically converted into code implementations. [51, p. 21]

During the conversion from design into implementation, individual components should

be unit tested as they are produced. Unexpected errors are usually most likely to occur

during the implementation phase, for example due to multiple components not function-

ing together as intended. [51, p. 23]

22

3.2.3 Testing, deployment and maintenance

Before the implemented and integrated software can be released and deployed into use,

correct functionality must be verified by the means of testing. In practice, it can never be

stated with absolute certainty that a piece of software is completely bug-free. This causes

a dilemma for software testers since a perfect outcome is unachievable, but a “good

enough”-level of coverage needs to be defined for testing. Fixing errors becomes more

and more expensive as the development progresses, which is why bugs should rather

be found during testing than for example in the end user’s environment [53]. Too exten-

sive testing should also be avoided since resources are not effectively utilized when bugs

are only found infrequently. Principally, testing should be continued until the rate at which

new errors in the code arise stabilizes to an acceptable level. [51, p. 24]

After the software has been deemed fit for deployment, it is handed over to the end user.

This also marks the beginning of the maintenance phase. Depending on the nature of

the software, maintenance can include for example providing instructions for use, de-

ploying updates or bug fixing. [51, p. 27]

3.3 Data-flow analysis

Data-flow analysis (DFA) is a method that can be effectively used to map out how infor-

mation is handled in a software program. The results obtained from DFA can often be

used to find optimization possibilities in the software’s structure, which is why the tech-

nique is commonly utilized in compilers. The basic idea of the analysis is to define a path

which specific data follows during the execution of the program. DFA also includes the

operations that are performed on the data to produce the program’s output [54] [55, p.

23]

A common way of performing DFA is using graph theory to first construct a control-flow

graph (CFG) of the program. The graph’s format consists of nodes, which represent

basic logical components, and edges, which connect nodes that exchange information.

In this sense the graph resembles a block diagram since the nodes contain input-de-

pendent functionality. The data path is then determined by iteratively evaluating the

nodes starting from the root node, which equals the program’s entry point The edge

structure corresponding to the data flow from input to output reflects the sequence of

data operations performed in the program’s execution [54] [56, p. 2] An example of using

graph theory for DFA of a simple modulo function is presented in figure 10.

23

Figure 10: DFA using graph theory

The modulo function is meant to return the remainder of the division between integers A

and B. Naturally, if A is less than B, the remainder will directly be the value of A. If A is

greater than B, the value of B is subtracted from A in a while-loop until the loop’s condition

is met and the established remainder can be returned. Before initiating the while-loop,

integer B needs to be verified to not equal zero, since division by zero is undefined.

Once the path of the data flow has been determined, it can be refined further into a data-

flow diagram (DFD). A DFD, as presented by Tom DeMarco in 1979, consists of no more

than four different types of basic elements: data flows, processes, files and data sources

or sinks. Data flows act as interfaces in the diagram that connect processes, files and

sources or sinks. Processes are predefined tasks or similar functions that are performed

with the content that is passed by data flows. Data flows in DFDs should not carry any

controls or activations for processes, but only elements of information which’s formats

are known. This fundamental principle sets DFDs apart from flowcharts. A file represents

a temporary data storage in the diagram. Data flows can lead both into and out of files.

Sources and sinks are used to show data coming from or going to locations that are out

of the context of the system. A single element in a DFD can act simultaneously as a

source and a sink with data flows going in both directions. All components of a DFD

should be named in a descriptive manner, and all types have specified symbols for illus-

tration: data flows are drawn as arrows, processes as circles, files as straight lines and

sources as well as sinks with boxes. Convention also states that multiple data flows

shouldn’t share identical names [57, pp. 47-62] Figure 11 shows DFDs for different sce-

narios from the example used in figure 10.

24

Figure 11: DFDs for a modulo function given different inputs

In the top DFD the numerator is less than the denominator, in the middle DFD the nu-

merator is greater than the denominator, and in the bottom DFD the denominator equals

zero. In all cases the function result is written to a separate result file in addition to the

system memory.

DFA is used in this thesis to estimate the complexity levels of diagnostics application

implementations. In such a case of larger-scale software systems which span over sev-

eral programs on multiple platforms, the analysis must be performed on a more general-

ized scope than the examples presented in this chapter. By viewing the CFGs nodes and

DFDs processes as more comprehensive functionalities rather than specific code-level

operations, the same basic principles of DFA can be applied to more extensive systems.

A more detailed description on how DFA was used for modeling the diagnostics applica-

tions in the scope of this thesis is given in chapter 5.1.

25

4. APPLICATION FUNCTIONALITY AND PROTO-

TYPE DEVELOPMENT

To allow for a comprehensive evaluation over the benefits and disadvantages of the dif-

ferent diagnostics applications, a concrete prototype was developed for the PCS-based

approach. Since a complete machine diagnostics system would have been too extensive

for such a use case, the prototype only comprises a single shoe press which was intro-

duced in chapter 2.2. This chapter first explains the overall functionality of the diagnostics

application, and how it is carried out by each implementation type. Subsequently, the

PCS prototype’s development, integration, and testing processes are described, as well

as the general structure and design choices that were made during the progress.

Since the application under development was to be a relatively easily manageable piece

of software, and the number of people actively involved in the process would at most be

two, the usage of agile development methods was deemed unnecessary. Ultimately, the

principles of the waterfall model introduced in chapter 3.2 were chosen as the most suit-

able. The only major exception in the case of the prototype was that the deployment and

maintenance stages were omitted. Due to the limited number of stakeholders involved in

this project, it could be estimated that needs for changes in the application should only

come up in moderation during the development. Therefore, the waterfall model offered

a very efficient way to carry out the project, even though it has some limitations regarding

flexibility and cyclic feature implementation.

4.1 Implementation layouts in the physical environment

Based on the background information given in chapters 2.3 and 2.4, the general struc-

tures and functional principles of the two diagnostics application implementations can be

defined to better understand their fundamental differences. Regardless of the way of

implementation, the following main steps can be singled out in the functional workflow of

the diagnostics application:

1. Data retrieval

2. Data storage

3. Data preprocessing

4. Data analysis

5. Analysis result storage

26

6. Analysis result visualization

Not only do the ways in which these steps are performed in the two implementations

differ, but also the physical locations of their execution. By appointing the different stages

of the process to their respective locations in an overview of the application’s operational

environment, the architectural structures can be visualized as in figure 12.

Figure 12: Architectural structures of a PCS-based (green) and a cloud-based
(purple) diagnostics application

In the figure, the green colored circles represent a PCS-based application while the pur-

ple circles represent a cloud-based one. Circles with a dotted circumference show alter-

native locations where a step could be performed. The levels into which the industrial

network is divided correspond to the ones defined in figure 6. As can be seen, the appli-

cation output could be stored and visualized in cloud services even if the main diagnos-

tics functionality is implemented into the PCS The most obvious benefit of such a “hy-

brid” implementation is that a wider accessibility can be achieved for the analysis result

data while simultaneously reducing the data volume that has to be transferred to and

handled by the cloud. Conversely, even in a fully cloud-implemented application it could

still be fancied that the results would be visualized in the HMI of the industrial network.

While figure 12 illustrates the functional steps in a hierarchical model of the operating

environment, the physical structure can better be demonstrated by placing the steps into

a deployment diagram, such as in figure 13.

27

Figure 13: Deployment diagram of the application environment

The deployment diagram shows all physical devices associated with the diagnostics ap-

plication in the network. In some cases, one device entity in the diagram may represent

multiple physical devices, such as the sensor cluster referring to all individual sensors in

the process. The central switch acts as a gateway between the control and HMI levels

of the network.

The two layouts mostly conform with principles from the third and fourth industrial revo-

lutions or industry 3.0 and industry 4.0, respectively. The PCS-based application follows

the traditional hierarchical data exchange of industry 3.0 where information flows se-

quentially between the hierarchy levels. Industry 4.0 partly removes the layered structure

and relocates components like the process control onto local or remote cloud platforms

to which data can be more flexibly transmitted from field- and I/O-devices. [58, pp. 1-2]

[59]

4.2 Initial requirements analysis

The main questions answered in the requirements phase were as follows:

• What features and capabilities should the prototype application have?

• What are the functional and non-functional requirements?

• Which features are critical or essential for application functionality?

28

When forming the selection of individual analyses needed to monitor the state of a shoe

press, existing diagnostics solutions were used as reference. Knowledge workers with

expertise in paper mills and diagnostics applications were also consulted to obtain addi-

tional functional requirements. Non-functional requirements were mainly limited to appli-

cation performance and usability: the prototype should be able to read, analyze and write

all data with a one second execution cycle, and its UI should be intuitive and responsive.

Evaluations of simple binary status signals were naturally present in the analysis selec-

tion, in addition to which many continuous numerical signals were found to be of interest

for diagnostics. Variances and averages calculated from the signal values were seen as

relevant for making conclusions about the conditions of system components, such as

sensors, motors, or pumps. In the case of a shoe press, around 40 different signals from

the process were deemed necessary to perform all analyses. It was also recognized that

the requirements for analyses could somewhat vary between different paper machines

that may be used as target systems for the diagnostics application. For example, in some

cases additional pressure measurements may be present for things like shoe lubrication

pressure, which can add needs for further analyses.

Direct examples of diagnostics displays for operating user interfaces were not available,

so the display requirements were defined based on an operator’s needs regarding visu-

alized information, as well as the offerings of an existing web-based customer portal. The

total number of displays was decided to be kept relatively low so that the development

workload would stay within reasonable limits. The most essential displays were outlined

to be the following:

• Overview display

• Detailed analysis displays

• Parameters display

The overview display should allow the operator to see the states of all analyses in one

single view. It doesn’t present any detailed information, but only the binary statuses of

diagnostics results. Easy access to related displays should also be provided from the

overview through a clickable link or similar shortcut. The need for this functionality was

identified when investigating how an operator would act in the case a potential issue was

diagnosed by the application.

More elaborate data about the analyses are shown in the detailed analysis displays.

There are multiple of these displays, each representing a segment of the shoe press.

The segments into which the shoe press is divided are air pressure unit, hydraulic unit,

29

nip load control and belt tension control. The analysis displays should show numerical

values and history trends of key measurements or similar signals from the process, as

well as the current states of the segment’s analyses.

The parameter display should allow the operator to view values or settings which affect

the diagnostics application. Some of these are operable, meaning that they can also be

changed from this display.

4.3 Development workflow from design to implementation

Design and implementation were the most time-consuming parts of the prototype devel-

opment process. Since there were no previous PCS-based implementations to be used

as reference, building the desired functionality largely had to be started from scratch. It

was identified early on that some parts of the prototype application depended heavily on

others, which meant that the development order of different parts had to be planned

accordingly to make the execution practical.

The solutions for necessary mathematical and statistical operations are one of the most

critical elements in the functionality of the application. As they are essentially the building

blocks for the analyses, they were chosen as the starting point for the development. The

subsequent general workflow of the design and implementation phases is shown in fig-

ure 14.

30

Figure 14: Workflow and sub-stages of design and implementation

As can be seen, there are four main stages until the application is ready to begin the

testing phase. These include sub-stages which usually need to be repeated iteratively

before the progress allows the proceeding to the next main stage. Because the applica-

tion parts need to be developed in such a serial fashion, the design- and implementation

phases of the waterfall model can in this case not be truly separated like illustrated in

figure 8. For example, the implementation of the analysis modules needs to be com-

pleted before the design of the interface can effectively be started.

4.4 General structure and architectural choices

This sub-chapter describes the logical and architectural structure of the prototype appli-

cation. Some of the terminology that is used may be ambiguous or context dependent.

To clarify the implications, term usages are based on the following definitions:

• Module: An entity in the PCS which contains the functionality of a defined part of

the whole process control logic, e.g., the controller behavior of an electric motor.

Structurally it consists of a single file, usually formatted with a graphical program-

ming language.

31

• Calculation module: A module containing calculative functionality which is used

to perform the analyses of the diagnostics application. A single calculation mod-

ule features the analysis implementations of one segment of the shoe press.

• Control module: A module which is involved in the execution of the process

control. These are the sources of data which are used as inputs in the diagnostics

application.

• Tag: A unique string-type variable usually consisting of 1-25 characters. It is used

to access and refer to specific signals or control system components.

• Data point: A specific location in a module which contains information from a

signal. It can be read or connected to other data points to channel the information

into other locations in the PCS.

As stated in chapter 4.2, the shoe press, as a subsystem of the paper machine, can be

further divided into four functional parts: air pressure unit, hydraulic unit, nip load control

and belt tension control. It was seen as logical that each of these parts were assigned to

separate calculation modules. This meant that the whole analysis functionality could be

contained within four modules, which helps to keep the complexity of the application

within reasonable limits.

The required displays, which were defined in chapter 4.2, are able to fetch all necessary

information from the calculation modules, meaning that no connections to the process

control need to be configured. The high-level structure and data flow is visualized in

figure 15.

32

Figure 15: Basic structure and connections of the application

It should be noted that data flow between the process control and the diagnostics appli-

cation is purely one-directional. The functionality of the control models is not supposed

to be influenced in any way from the calculation modules.

4.4.1 Calculation modules

Using the arithmetic capabilities introduced in chapter 2.4.2, the calculation modules

need to be able to compute averages and standard deviations of signal values and com-

pare these against predetermined or otherwise derived thresholds. Many analyses have

a separate condition that must be fulfilled for calculations to be performed. For example,

the process may have a specific state that it needs to be in to make the evaluation of

related analyses beneficial. These conditions often include some signals to have con-

stant values for a certain amount of time, which means the tracking of value changes in

those signals has to be implemented in the calculation modules. Time-dependent condi-

tions can be judged based on the execution cycle of the calculation module. A simple

counter can be used to keep track of the total number of executions by incrementing the

count by one on each cycle. The passed time is then determined by multiplying the exe-

cution count with the execution cycle time. A reset mechanism also has to be constructed

to set the count back to zero when a change in the tracked value is detected.

33

Besides the arithmetic operations, responsibilities of the calculation modules include

storage and management of the historic value buffers which are needed for statistical

calculations. The buffers contain a predefined amount of the latest values from a given

signal. This means, that the values must be kept in some kind of organized manner in

order to know which value is to be deleted when a new one is added. Specific time spans

and storing intervals are configured for the buffers. The number of values to be kept in a

single buffer 𝑁 can be calculated with 𝑁 = 𝑡𝑠𝑝𝑎𝑛/𝑡𝑠𝑡𝑜𝑟𝑒, where 𝑡𝑠𝑝𝑎𝑛 is the timespan and

𝑡𝑠𝑡𝑜𝑟𝑒 is the storing interval. Both times naturally need to be in the same units. If the

storing interval is considerably longer than the native sampling time of the signal, addi-

tional configuration may be needed to determine how the stored value is derived from

corresponding signal samples. Typical options include taking the latest sample, the high-

est sample, the lowest sample, the median sample, or the average of samples.

Out of the data structures which were supported by the PCS used in this thesis, tables

were found to be the most suitable to carry out this type of functionality. The buffer can

be viewed as a queue with a fixed number of elements, which is practical to imitate using

a ring-type table. Ring tables are array-like structures with no apparent start or end. Each

element is figuratively connected to two other elements, ultimately creating a loop for-

mation. To keep track of the logical order of elements, a pointer referring to the first

element is needed. This way the beginning, or base, can be used to access specific

items in the buffer. When starting the indexing from zero, the 𝑛𝑡ℎ element in the array is

referred to as 𝑏𝑎𝑠𝑒 + 𝑛. A new element can be added by replacing the value at 𝑏𝑎𝑠𝑒 + 𝑁

with the new value, effectively removing the oldest element from the buffer. The base is

then set to point at the new element that was just added. The structure and functionality

of a ring table is illustrated in figure 16.

Figure 16: Inserting a new element into a ring table

34

The format of the calculation modules is function block diagram, which means that the

layouts have to be designed to be comprehendible and intuitive to make possible mainte-

nance and development by other individuals as uncomplicated as possible. The different

categories of functionality can be for example divided onto separate pages. Cross-page

references allow for data transfer between these categories, in addition to reducing the

number of wired connections needed in the diagram.

The execution order of the calculation module components must be configured in a way

that doesn’t conflict with the desired behavior. The individual function blocks are exe-

cuted in a predefined serial fashion during the execution cycle of the module. Therefore,

it needs to be verified that the analysis results are not evaluated before the calculation

conditions, for example. This way unnecessary computation and potential false diagnos-

tics alarms can be avoided. A suitable execution order can be seen from the flowchart in

figure 17.

Figure 17: Flowchart for calculation module execution

It should be noted that logical conflicts may occur if a calculation condition is dependent

of a statistical output or analysis result from the same calculation module. In these cases,

the execution order may have to be optimized in a way that doesn’t conform with the

flowchart.

35

4.4.2 Configuration and process connections

Configuring the diagnostics application for a specific system mainly consists of defining

the connections between calculation and process control modules. The specific data sig-

nals, which need to be read from the control modules, are referenced with tags. The tags

are manually given by the person configuring the application, which means that inputting

them individually into the calculation modules would be an unnecessarily tedious solu-

tion. By using a separate configuration module to act as an interface between the control

and calculation modules, as illustrated in figure 18, all tags can be defined in a more

manageable way.

Figure 18: Simplifying the data interface by using a separate configuration
module

By reading the right data points into the configuration module based on the user config-

ured tags, the information can consequently be routed to the calculation modules through

a standardized interface using non-configurable tags. With this approach it must be con-

firmed that the non-configurable tags don’t contain any overlaps with tags found in the

process control.

An additional advantage of using a configuration module is the ability to partly automate

the configuring of tags. Tools for generating fully defined control modules from templates

are already widely used in PCS projects. Adapting the existing practices into the config-

uration module allows the diagnostics application to be seamlessly integrated into the

already established project generation procedure.

36

4.4.3 Displays

The overview display holds information from all calculation modules, which contributes

to the quantity of on-display data being relatively large. A vital aspect of clear and intuitive

representation is to arrange the elements of information in a way that groups related

information together but doesn’t make individual objects difficult to distinguish. Since the

analysis- and calculation condition states are binary signals, they can be visualized by

using graphical icons which have separate colors to indicate between the two states.

When these icons are positioned in a table-like layout, irregularities are easy to spot even

if the field of view of the operator is not completely focused on the display. In contrast,

an approach where states are displayed verbally raises the possibility of abnormal anal-

ysis results going unnoticed since differing strings of text may appear to look similar when

only glanced at. An illustration of the overview display’s layout can be seen in figure 19.

Figure 19: Overview display layout

The more detailed analysis displays aim to show data which is relevant to a process

operator rather than to a system specialist. In addition to the analysis and calculation

condition states which are associated with the display, these include the history data of

measurements related to the analyses. Statistics which are calculated for the analyses,

for example signal averages and variances, are not visualized in these displays since

these usually aren’t of interest to the operator system specialist could potentially use

the calculation results while investigating some arisen fault, but the analysis displays are

not the intended location to obtain them. As can be seen in figure 20, the layouts of these

37

displays were kept relatively simple to allow for an efficient representation of information

and leave a large area to view graphs of measurement history values.

Figure 20: Analysis display layout

The trends which are displayed on the analysis displays naturally require arrangements

for storing the history data. This is done similarly to the statistical data buffers which are

described in chapter 4.4.1. While this functionality could have been added to the calcu-

lation modules, it was found best in terms of application structure comprehensibility to

isolate the history data buffers into a separate data collection module. Signals can be

read into this module from the configuration- and calculation modules using the non-

configurable tags like in chapter 4.4.2. The use of a separate data collection module

does not introduce any new user configuration needs, which means the complexity of

application deployment is not affected by this. Figure 21 illustrates the data types and -

paths that lead to and from the data collection module.

38

Figure 21: Data collection implemented into a separate module

Parameters of the analysis application, such as thresholds and time limits, are summa-

rized in the parameters display. The main purpose of this display is to provide an intuitive

interface for obtaining and potentially modifying said information. Under normal operating

circumstances a process operator shouldn’t have the need to use this display. Typical

use cases include situations where a process engineer or a system specialist needs to

review and alter certain parameters that have been identified as suboptimal or otherwise

unsuitable. In practice, this display could be incorporated into a separate maintenance

package or protected by an additional password to prohibit the process operator from

accidentally changing any parameters. In the layout, parameters are grouped according

to the previously used shoe press segments, as shown in figure 22.

Figure 22: Parameters display layout

An additional display which was considered during the planning of the application was

an analysis state history display. The concept’s intent was to show the past changes in

39

analysis states either with a plotted graph or a list of verbal timestamps. History infor-

mation of this kind could prove useful to the operator if some analysis states were to be

heavily alternating. Implementation of this display was nonetheless ultimately deemed

unnecessary for the scope of a prototype.

4.5 Testing procedures

Testing of the application prototype consisted of two phases: preliminary functionality

testing and system integration testing. The functionality testing was performed to ensure

that the application’s internal functions worked as intended. This phase also included

unit testing where different inputs were given to the application, after which the outputs

were compared to expected values. An isolated virtual sandbox environment was con-

figured for this testing phase to minimize any outside disturbances to the prototype’s

performance. The preliminary tests exposed multiple bugs in calculations and data con-

nections, which could relatively easily be fixed at this stage.

After preliminary test results were satisfactory, the prototype was moved to the develop-

ment environment of an actual paper machine delivery project. The environment hosted

all control modules of the machine ready configured, with additional simulation modules

allowing for the system to be virtually run with simulated signals. Further bugs were found

in this stage of testing related to the configuration module, which could not be tested

during the preliminary tests. In an integrated application the bug fixes were more tedious

due to the fact that changes needed to be made to the project environment, as well as

to the template models from which project-specific instances would be generated.

40

5. COMPARISON OF CLOUD AND PCS IMPLE-

MENTATIONS

The comparison between a cloud-based diagnostics application and the PCS-based pro-

totype, which was the product of the development process described in chapter 4, is the

primary method used in this thesis for forming answers to the research questions. This

chapter describes how the comparison was carried out and what conventions were in-

cluded for the different aspects and metrics that were used. The obtained results are

presented separately in chapter 6.

The comparison description is divided into subchapters according to comparison as-

pects. Each subchapter first introduces the reader to the definition of the aspect on a

general level, after which is described how the established principles are applied in this

specific case.

5.1 Structural and functional complexity

Complexity can be interpreted as the perceived difficulty of understanding or compre-

hending a matter. Therefore, the complexity of a system is not an absolute that can be

directly evaluated and compared in a purely quantitative manner. It is rather a product of

many qualitative and quantitative features which can be embraced varyingly depending

on the observer. In the technical field, software complexity is typically associated with

factors like lines of code, operations per function, or maximum indentations in the code.

[60] [61] In the case of larger software systems, the assessment needs to be done on a

higher level by for example inspecting the relations of different programs and technolo-

gies that contribute to the overall functionality of the system.

Comparable estimates for the complexities of the cloud- and PCS-based implementa-

tions are produced by applying the DFA practices introduced in chapter 3.3. Initially, the

CFGs for both application types need to be constructed to identify possible data paths.

In this case the nodes represent steps in the software logic where data is read, stored,

modified, or rerouted in some way. The steps could for example be specific programs,

databases, or pieces of physical hardware. The edges show how the data flows between

the nodes. Figure 23 presents the CFGs which were established.

41

Figure 23: CFGs of the two implementation approaches

Rudimentary observations about the complexities can be made from the CFGs alone:

the graph for a cloud-based application consists of 10 nodes and 10 edges, while the

PCS-based application’s graph includes 6 nodes and edges The cloud implementa-

tion’s graph also contains a bi-directional connection between the remote database and

computing platform. This suggests that the remote database node may be visited multi-

ple times in some data paths. A more comprehensive visualization of potential data paths

can be seen in figures 24 and 25 by the means of DFDs which are based on the CFGs.

Figure 24: DFD of a cloud-based diagnostics application

42

The DFD of the cloud-based implementation includes a total of 8 processes and 2 files

to which data is stored from 3 separate locations along the data path. An encryption step

with corresponding decryption has to be performed related to the transfer of data from

the on-site location to the remote cloud using a secure connection protocol like IPsec.

Figure 25: DFD of a PCS-based diagnostics application

The PCS implementation’s DFD contains 6 processes with only one location where data

is stored to a file. A noteworthy distinction between the two compared applications is that

while they produce the same outputs with identical inputs, the interfaces which are used

to present the visualized results are different: a control room display for the PCS imple-

mentation and a browser-based web interface for the cloud implementation. The concept

of a hybrid implementation was mentioned in chapter 4.1, where the main functionality

was still carried out in the PCS, but results would additionally be accessible through the

web interface. From a data flow perspective this would require routing of the analysis

results to the edge server from where the data would be transmitted to the cloud. This is

illustrated in figure 26.

43

Figure 26: DFD of a hybrid diagnostics application

The hybrid implementation’s DFD contains 8 processes and 2 files like the cloud-based

application’s diagram, but data is stored into files from only 2 separate locations. The

visuals for the control room and web interface are also generated in a parallel manner,

meaning there are two possible paths which the analysis result data can follow to reach

the sink, which in this case represents an operator or process specialist.

5.2 Requirements for data volume and throughput

Data is naturally one of the most important factors in the operation of a diagnostics ap-

plication. To produce comparable indicators about how data is handled in an application

implementation, two characteristics regarding data are examined: throughput and vol-

ume at various points in the application.

Data throughput refers to the amount of data that is transferred or processed during a

specific time [62]. In practice, every component of a system associated with data has a

maximum throughput, also known as bandwidth. In a network where data is only trans-

ferred between locations, the maximum throughput of the system is limited by the lowest

bandwidth of all its components. However, if a system contains data processing where

data size is reduced, components handling the processed data could have lower band-

widths without causing bottlenecks and limiting the system’s maximum throughput

As stated in chapter 4.2, around 40 signals are needed as input for the shoe press’s

diagnostics application. In the prototype’s case, 42 signals in total were read from the

process control, out of which 10 were binary type signals, while the rest carried numerical

information representing analog data. The application performs 32 different analyses,

which all produce a binary result signal. 31 analyses also produce separate binary sig-

nals for calculation condition states, as mentioned in chapter 4.4.1. A summary of the in-

and output signals can be seen in table 1.

44

Table 1: Input and output signals of the application

 Inputs Outputs

Analog data signals 32 0

Binary data signals 10 63

Total 42 63

A discrete value from a binary data signal can correspond to one of only two states: zero

or one. Therefore, it can be represented using only one single bit. Analog data signals in

a PCS consist of floating-point numbers, which are typically sized between 16 and 64

bits, or 2-8 bytes, depending on the range of values needed. If the size of analog data

signal values in bits is denoted by 𝑘, the number of bits needed to carry the signals would

be 32𝑘 + 10 for the inputs, and 63 for the outputs. In practice the signal values may also

contain timestamps requiring 4 to 10 additional bytes, but which are ignored in this con-

text. The prototype application used 32-bit floating-point numbers, also called single-

precision floating-point numbers, which means the input signal values occupied 1034

bits, or around 130 bytes, of memory while the output values occupied 63 bits, or about

8 bytes. By combining this information with the DFDs from chapter 5.1, the data volumes

and throughput requirements at varying points in the application can be visualized as in

figure 27.

Figure 27: Data throughput requirements in the application

The figure clearly illustrates that in a cloud-based implementation larger volumes of data

are being transported further in the data flow. The time unit mentioned in the figure refers

45

to the rate at which the application reads new values from the I/O and produces new

analysis result based on them.

5.3 Ease of deployment and maintainability

In the waterfall model for software development, which was introduced in chapter 3.2,

deployment and maintenance were the two last steps of the process. The deployment

stage mainly consists of integrating and adapting the software to the target running en-

vironment. Maintenance refers to the continuously iterative process of ensuring that func-

tionality is maintained over the software’s life cycle, and potentially encountered errors

are fixed.

In the case of paper machines, target systems for machine diagnostics applications vary

between deliveries. This means that details, such as specific analyses and signal

sources, need to be configured for each delivery project individually. Ease of deployment

therefore greatly depends on the practicality of the application’s configuration procedure.

Paper machines often undergo changes during their life cycles. Needs for changes can

be caused for example by advancements in technology, shifts in paper demands or tight-

ening quality and emission requirements. These changes naturally need to be acknowl-

edged in the maintenance phase of the diagnostics application. Maintainability of the

application is largely determined by how easily changes and bug fixes can be imple-

mented into the software after it’s deployed

The analysis functionality in the PCS-based implementation is designed as FBDs identi-

cally to the process control logic. Therefore, the analyses and calculations can techni-

cally be edited by the same persons who are responsible for maintaining the process

control software. Since the functionality is divided into modules as described in chapter

4.4, individual sections can be altered without affecting other parts of the application. It

should however be noted that loading alternations into the PCS during system operation

may not be advisable. Updates of the diagnostics application could therefore need to be

separately scheduled for any operational downtime. As was briefly mentioned in chapter

4.4.2, the project-specific deployment of a PCS-based application can be embedded into

the general control logic deployment since their formats are equal. The only manual con-

figuration for the deployment consists of defining the tags for signals which will be used

in the analyses. No additional data connections need to be configured for the application,

because the same endpoints, physical interfaces and transfer protocols are used as in

the process control information flow.

46

Cloud-based implementations have several needs for initial configuration related to ap-

plication deployment. The selection of signals which are to be used for analysis is per-

formed on the local edge server, which means that details like data sampling and storing

intervals, as well as signal tags need to be defined in the server environment. The tools

and technologies used for this can vary between deliveries, as does subsequently the

expertise requirements for completing the tasks. Communication between the edge

server and remote cloud, as well as the cloud environment itself are additional matters

which demand special proficiencies to set up. Once the remote platform is configured

and a connection which satisfies any security and quality of service (QoS) requirements

is established, the database, analysis and web portal functionalities need to be con-

structed. Implementations for these can likely be recycled to some degree between de-

liveries, but the case-specific analysis details are bound to raise needs for customization.

Maintenance of the application can largely be isolated to the cloud, which is a major

advantage of the cloud implementation. The communication between the PCS and cloud

is principally one-directional, meaning that changes in the cloud environment should

have no effects on the PCS or the process itself. This allows for changes to be made

with more flexibility since the process can be kept running normally during updates. Parts

of the application running in the PCS can be updated only when the system is in a state

that allows it, mainly during process downtime. With a cloud-based implementation only

basic data-collection is done in the PCS, which principally doesn’t require periodical up-

dates anyway.

5.4 Costs of development and operation

While the size and importance of software in businesses have continuously expanded,

cost estimation regarding software development has grown to be an equally large factor.

Producing accurate estimations can however prove to be a difficult task due to the sheer

number of variables that affect the total expenses. [63] Two major categories of software

expenses are development costs and maintenance costs. Maintenance costs can further

be divided into corrective, adaptive, perfective, and preventive costs [64].

The prototype application described in this thesis required about 100 man-hours to de-

velop into a functional state including testing. Since the design of the application is based

on reusable templates, deployment cost can be kept minimal. Even if the tags would

need to be configured manually, the process could be performed by a single worker in

no more than an hour. The normal operation of a PCS-based application doesn’t intro-

duce any running fees, which is one of the main benefits of using the existing process

47

control platform as the operation environment for the diagnostics application. Mainte-

nance costs can be estimated to be proportional to those of other process control func-

tionality in the PCS.

The cloud-based implementation naturally has a lot more flexibility in terms of tools that

can be used to perform the computation for the analyses. The amount of work required

to construct the analysis calculations is not likely to substantially differ whether FBDs are

used, like in the PCS implementation, or textual programming languages such as Python

or R which are typically used with cloud-based computing. The usage of the cloud itself

includes expenses for data storage, computational resources, and network usage. The

total compensation depends on factors like data volume, processing intensity and ser-

vices that are used. Companies can also negotiate personalized rates which differ from

list pricings. Amazon Web Services (AWS) for example offers a SaaS database solution

which charges $0.11 to store a gigabyte of data for one month. Read and write opera-

tions are additionally charged for $0.21 per million I/O operations of no more than 4 kil-

obytes of data each. The quoted prices apply to the Northern Europe region. Services

for cloud computing are also provided on the AWS platform. Example pricings for PaaS

virtual workstations range between $0.004 and $110.00 per hour of usage depending on

the instance’s computational capacity. A computing platform seemingly suitable for the

diagnostics application involves an hourly rate of $0.23, and offers 4 processing threads,

32 GB of memory, 237 GB of storage and 10 Gbps networking. [65] Data usage and

resource demands of the application depend on factors like the rate at which data is

collected and refreshed. This makes accurately estimating the cloud service fees difficult

without knowing case specific details about the diagnostics configuration. By using the

data sizes from chapter 5.2, a data storage buffer of 2 years and a data refresh rate of 1

second, an estimation can be created about how total costs are comprised. The estima-

tion is presented in table 2.

48

Table 2: Cloud service cost estimation

Amount of data stored in the cloud 8.2 GB

Store operations (< 4 kB) per month 2 592 000

Read operations (< 4 kB) per month 20 760

Active computation per day 24 hours

Expense cause Monthly cost Percentage of total costs

Data storage $0.90 0.62 %

I/O operations $0.55 0.38 %

Computation $144.00 99.00 %

Total monthly costs $145.45

The read operations in the estimation consist of data retrievals made by the web portal

for displaying information to the end user. The figure for read operations was obtained

by assuming that on average all diagnostics result data is read from the past 24 hours

twice a day. The table clearly illustrates that data storage and network usage contribute

to the total costs only by a marginal amount with computation costs being larger by a

factor of almost 100.

49

6. EVALUATION OF COMPARISON RESULTS

From a purely complexity-oriented perspective, the superior design choice for a machine

diagnostics application would be to implement the analysis and calculation functionalities

in the PCS instead of a cloud-based environment. This way the number of nodes in the

application’s data flow can be reduced, which consequently lowers the need for transfer-

ring data between locations. Since information is not shared with the public internet, data

encryption is also not a necessity. The added complexity of a cloud-based implementa-

tion does however come with the added possibility to present the application output in a

web-based interface which is significantly more accessible than a traditional control

room. A hybrid implementation can, according to the comparison from chapter 5.1, be

used to make result data available through both means without increasing the objective

overall complexity compared to a cloud-based solution. By producing the analysis results

in the PCS, operations done in the cloud can be reduced to only the visualization of

results.

Data usage is also considerably more optimized in the PCS-based solution. Even if the

results would need to be visualized in a web interface, by containing the analysis into the

PCS the volume of data that has to be transferred downstream in the application is re-

duced by a significant factor. This results in less load on the physical networking compo-

nents on-site, as well as less cloud usage in the case of a hybrid implementation. Low-

ering the load means that the network can be constructed from components that poten-

tially are cheaper and consume less energy. In turn, a PCS-based implementation is able

to operate at a higher data refresh rate than a cloud-based implementation given the

same hardware. Additionally, in a PCS implementation the result data is immediately

available to be used as feedback for the process control if desired. This way automatic

responses to certain diagnostics outcomes could be defined. In a cloud implementation

the result data would have to be transferred back to the process control network, which

due to security concerns is no trivial task.

Deployment phases for the two implementation types differ to some extent from each

other. A cloud-based implementation requires objectively more initial configuration than

a PCS-based, and the expertise requirements are more extensive as well. More straight-

forward deployment means that the diagnostics application can be taken into regular use

earlier in the project timeline, as is illustrated in figure 28.

50

Figure 28: Deployment timelines of diagnostics application implementations

The template-based design of the PCS implementation allows for the software to be

generated as soon as the control software and associated tags are produced. This can

be done during the detailed engineering phase of a delivery before the on-site environ-

ment is even operational. As soon as the project has reached the start-up phase, the

application can simply be moved into the actual PCS and validation testing can be

started. Process data can be simulated with software, which adds the possibility to test

the application’s functionality even before the regular process operation phase has been

reached. With a cloud-based implementation, tasks than can be done before start-up are

limited to preparations on the cloud environment and tag definitions. Only after the on-

site environment is operational can the data collection be configured, cloud connection

established, diagnostics functionality defined, and testing begun. However, once the de-

ployment has been successfully completed, application maintenance can in many ways

be seen as more practical for a cloud-based solution. Due to the read-only nature of the

remote environment the part of the application located in the cloud can be modified or

even suspended entirely without any effects on the on-site environment. This type of

flexibility is not shared by a PCS-based implementation. Since the control system is a

synchronous platform with relatively strict reliability, availability and real-time require-

ments, any modifications performed to it during operation can be considered bad prac-

tice. In some cases, updating PCS contents may even be blocked entirely during active

control. Specific details about how analyzes are performed are also likely to be infor-

mation which is wanted to be kept hidden from the application end user. A remote com-

puting platform naturally eliminates this issue since the user doesn’t have access to it,

but in a PCS the precise calculations would need to be encrypted or abstracted in some

way.

Both implementations invoke expenses through man-hours required to develop, deploy,

and maintain the application. Due to the faster and more straightforward deployment of

the PCS implementation the initial deployment costs are likely to be higher for a cloud

implementation, although the magnitude of the difference is highly case-specific. The

51

most defining difference regarding costs between the two implementations comes from

running fees. While a PCS implementation doesn’t cause any direct operating costs

since no third-party services are utilized, cloud service fees make up a large portion of a

cloud implementation’s expenses over its lifetime. With a hybrid implementation the

cloud costs can be reduced due to the optimized usage of data and relocation of com-

puting to the on-site environment. Less data being moved to the cloud means that fewer

write operations need to be made, and subsequently less information needs to be stored

on the remote database. However, as was shown in table 2, cloud expenses consist

predominantly of virtual computation related fees. Therefore, the elimination of needs for

cloud-based computation is the main motivation for using a PCS implementation. The

absolute values given in table 2 are only estimations which are based on example pa-

rameters, and real-life figures could vary greatly from the presented estimates. The re-

sults do nonetheless indicate that data-related cloud services are of relatively small sig-

nificance in the total cost structure of a cloud-based implementation.

52

7. SUMMARY AND CONCLUSIONS

The aim for this thesis was to determine the advantages and disadvantages that PCS-

based and cloud-based implementations of a machine diagnostics application have. A

paper machine’s shoe press was used as a framework for the practical comparison be-

tween the two implementation types. An example of a PCS-based solution did not exist

as such, which was why a working prototype application was developed to be used as a

comparison reference, as well as to prove that it is possible to implement diagnostics

functionality into a PCS. An application implemented into the cloud was available to be

researched for this thesis.

The comparison included metrics that were both qualitative and quantitative in nature.

The main aspects that were chosen for the comparison were how complex each imple-

mentation is, how data is handled in terms of volume and throughput, what needs to be

considered in the deployment and maintenance phases of the implementations, and

what costs are involved. The PCS-based prototype was developed using the waterfall

model, which allowed for an efficient workflow consisting of sequential phases: require-

ments analysis, design definition, implementation, testing, deployment, and mainte-

nance. Practices from DFA were utilized in evaluating application complexities and data

optimization possibilities. That way, comparable features could be determined for both

implementations.

In the development of the prototype, the first major milestone was to define a way to

perform calculations needed for the analyses in the PCS. Once solutions for these were

found, the main application structure could be constructed. The prototypes design was

chosen to be template based, which would allow for easy generation of project specific

instances. To improve maintainability, the structure was divided into modules according

to individual segments of the shoe press. A separate interface module was also imple-

mented to make configuration more practical. The connections to data points in the pro-

cess control logic are all defined in the interface module, which then routes the data to

the corresponding calculation modules. The analysis outputs are subsequently trans-

ferred to diagnostics displays which present the results in the process operating inter-

face. The prototype was first tested in a sandbox environment to ensure adequate func-

tionality of individual modules and the application as a whole. Thereafter the prototype

was integrated into a functional PCS-environment where its operation could be demon-

strated and validated.

53

The comparison between the prototype and a cloud-based implementation showed, that

a lower level of application complexity can be achieved by performing the analysis in the

PCS. The analyzed data has a considerably smaller size compared to the raw input data,

which means that the analysis should be placed as early as possible in the application’s

data flow to minimize throughput in later stages and optimize the diagnostics pipeline

from a data-focused perspective. The PCS implementation also sets less requirements

in terms of man-hours, expertise and environment readiness during deployment com-

pared to a cloud implementation. Consequently, the application deployment can be com-

pleted at a sooner stage in the delivery process if a PCS-based solution is chosen over

a cloud-based one. An isolated cloud-environment is, however, better suitable for

maintenance and agile updates, and allows the application contents to be hidden from

the end user. Development and maintenance costs are naturally present in both cases

but running fees to third-party service providers can be avoided by implementing the

analysis on-site. Even if the result data is needed in the cloud environment, by relocating

just the analysis computation the major share of cloud service costs can be eliminated.

The general pros and cons of the two implementation types are summarized in table 3.

Table 3: Summary of the comparison results

PCS implementation Cloud implementation

Pros Cons Pros Cons

• Deployment can be

seamlessly integrated

into the control logic’s

generation

• The analysis is per-

formed early in the exe-

cution pipeline, which

lowers data throughput

at later stages

• Development and up-

dates can be made by

the same persons who

design the control logic

• Result data is instantly

available to be used for

automatic responses in

process control

• The PCS doesn’t al-

low for updates to be

applied flexibly at any

point during operation

• Advanced analysis

methods may not be

natively supported by

the platform

• Application contents

need to be separately

protected from un-

wanted access

• Supports a virtually

unlimited selection of

tools for analysis, in-

cluding AI and ma-

chine learning tech-

niques

• The application can

be updated and modi-

fied flexibly regardless

of the process’s state

• Result data is widely

accessible through the

web interface

• Application contents

can only be accessed

by authorized persons

• Operation includes

additional service fees

• Separate remote envi-

ronments need to be

set up and configured

• Large amounts of data

need to be transferred

out of the on-site envi-

ronment

• Result data cannot

easily be fed back to

the process control

54

Reflecting on the research questions presented in chapter 1.3, following concise answers

can be formed based on conclusions made from the comparison:

• Development of a PCS implementation is similar to the development of new func-

tionality for the process control. The same tools and practices are used, whereas

a cloud implementation is developed using tools from a virtually unlimited selec-

tion. This introduces skill requirements which a PCS-focused design engineer

may not meet, resulting in the need for additional hires or outsourcing the devel-

opment. Deployment of a PCS implementation can be seamlessly integrated into

the process control logic’s generation procedure, while a cloud implementation

needs manual configurations and set-up due to the supplementary environments

and connections that are needed on top of the on-site system. Maintenance work-

flows are bound to share characteristics with development for both implementa-

tions but deploying updates to an existing application is more flexible in a cloud-

environment. The operation of the two implementations fundamentally shouldn’t

differ from each other since the internal functionality of the application is meant

to be consistent regardless of the implementation. The only difference to the op-

erator is where and how data is presented. In a purely PCS-based implementa-

tion the results are accessed through the operating interface, while a cloud im-

plementation features a web-based portal.

• Broadly, a cloud-based implementation should only be considered if the diagnos-

tics application contains analyses that simply aren’t suitable to be implemented

into an on-site PCS. Examples of such are data-heavy models which require a

high level of parallelism, such as neural networks. With more traditional analyses,

which rely on simple mathematical models, comparisons and statistical indica-

tors, a PCS implementation offers greater benefits than a cloud implementation

in simplicity and cost-effectiveness. Even in cases where the results are needed

in a cloud-based web service, it is more advantageous to carry out the computa-

tion in the PCS to better optimize data flow and eliminate redundant service fees.

The operator doesn’t perceive the application any different whether computation

is performed in the cloud or the PCS; ergo, the customer value is not affected by

the implementation choice. However, for the application supplier reduced oper-

ating costs mean either an improved sales margin or the ability to provide the

application at a lower price.

To further validate the conclusions reached in this thesis, the prototype could be ex-

panded to cover a larger part of a paper machine, such as the entire press section. A

55

long-term test in a concrete production environment, possibly alongside a cloud imple-

mentation, would also be beneficial in acquiring more accurate figures about achievable

cost savings. While the prototype in its state at the time of writing is completely suitable

to be used as a functional diagnostics application, several features could be added to

improve its value to the end user. The most essential of these was seen as being a

history event list presenting timestamped information about past analysis state changes.

If the prototype was expanded to include multiple sections of a paper machine, a total

condition index could be calculated for each section based on all individual analyses.

The indices could subsequently be used to form a machine-wide overview display, al-

lowing the operator to get a general understanding of the paper machines condition in

one single view. Security and risk assessments of diagnostics application implementa-

tions are also further subjects which are likely to be of interest to both the application’s

supplier and its end user.

It was stated that PCSs don’t natively support more advanced analysis methods, which

invokes additional possibilities for future research regarding the functional limits of PCSs.

For example, implementing machine learning models into a PCS could be attempted by

first training the model in a cloud-based environment by using large amounts of process

history data. Reconstructing the trained model in the PCS would allow for more deduc-

tions to be made about how and to what extent these advanced methods can be used in

a PCS environment.

56

REFERENCES

[1] K. Komonen, "A cost model of industrial maintenance for profitability analysis and
benchmarking," International journal of production economics, vol. 79, no. 1, pp. 15-
31, 2002.

[2] H. Hytti, A. Nissinen, M. Lauri, H. Koivisto, H. Ihalainen and R. Ritala, "Automatic
Selection of Relevant Data for Paper Machine Diagnostics," J-FOR : journal of
science & technology for forest products and processes, vol. 5, no. 2, pp. 32-42,
2015.

[3] Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li and A. K. Nandi, "Applications of machine
learning to machine fault diagnosis: A review and roadmap," Mechanical systems
and signal processing, vol. 138, p. 106587, 2020.

[4] W. Nelson and C. Culp, "Machine Learning Methods for Automated Fault Detection
and Diagnostics in Building Systems," Energies, vol. 15, no. 15, pp. 5534-, 2022.

[5] J. Bruner and M. Slocum, Industrial internet, Place of publication not identified:
O'Reilly, 2013.

[6] Valmet, "Valmet Industrial Internet – VII | Meaningful dialouge with data," Valmet,
2022. [Online]. Available: https://www.valmet.com/automation/industrial-internet/.
[Accessed 28 November 2022].

[7] KONE, "IoT makes its mark - KONE Corporation," KONE, 21 August 2018. [Online].
Available: https://www.kone.com/en/news-and-insights/stories/IoT-makes-its-
mark.aspx. [Accessed 28 November 2022].

[8] ABB, "ABB Industrial IoT applications," ABB, 2022. [Online]. Available:
https://new.abb.com/control-systems/features/industrial-IoT-services-people-use-
cases. [Accessed 28 November 2022].

[9] J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao and D. Siegel, "Prognostics and health
management design for rotary machinery systems—Reviews, methodology and
applications," Mechanical systems and signal processing, vol. 42, no. 1-2, pp. 314-
334, 2014.

[10] H. Paulapuro and R. Ritala, "On-line Fault-Detection and Diagnostics on Paper
Machines," IFAC Proceedings Volumes, vol. 24, no. 6, pp. 597-602, 1991.

[11] A. C. Bittencourt, K. Saarinen, S. Sander-Tavallaey, S. Gunnarsson and M. Norrlöf,
"A data-driven approach to diagnostics of repetitive processes in the distribution
domain – Applications to gearbox diagnostics in industrial robots and rotating
machines," Mechatronics (Oxford), vol. 24, no. 8, pp. 1032-1041, 2014.

[12] J. Saari and J. Odelius, "Detecting operation regimes using unsupervised clustering
with infected group labelling to improve machine diagnostics and prognostics,"
Operations Research Perspectives, vol. 5, pp. 232-244, 2018.

[13] M. Schwabacher and G. K., "A Survey of Artificial Intelligence for Prognostics,"
AAAI Fall Symposium, 2007.

[14] I. Pikulik, "Effects of shoe pressing on fine paper properties," Tappi journal, vol. 82,
no. 11, pp. 88-92, 1999.

57

[15] D. Drummond, M. Rodrigues, I. Grossmann and R. Guirardello, "Optimization of
water removal in the press section of a paper machine," Brazilian journal of
chemical engineering, vol. 27, no. 2, pp. 275-288, 2010.

[16] R. Reese, "Save energy by optimizing paper machine clothing," Tappi journal, vol.
89, no. 4, pp. 21-29, 2006.

[17] Valmet, "Mini Shoe Press Rebuild," 3 December 2009. [Online]. Available:
https://www.valmet.com/globalassets/media/downloads/white-papers/board-and-
paper-making/wppb_minishoepress.pdf. [Accessed 19 December 2022].

[18] Andritz, "Shoe press," Andrits, [Online]. Available:
https://www.andritz.com/products-en/group/pulp-and-paper/paper-production/tissue-
machines/primepress-xt-shoe-press. [Accessed 19 December 2022].

[19] Voith, "Press concepts," Voith, 25 March 2015. [Online]. Available:
https://voith.com/corp-en/papermaking/press-concepts.html. [Accessed 19
December 2022].

[20] F. Richter, "Amazon, Microsoft & Google Dominate Cloud Market," Statista, 15
November 2022. [Online]. Available:
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-
infrastructure-service-providers/. [Accessed 21 December 2022].

[21] Grand View Research, "Cloud Computing Market Size Report, 2022-2030," Grand
View Research, [Online]. Available: https://www.grandviewresearch.com/industry-
analysis/cloud-computing-industry. [Accessed 21 December 2022].

[22] Markets and Markets, "Cloud Computing Market Size, Share, Trends and Industry
Analysis," Markets and Markets, [Online]. Available:
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-
234.html. [Accessed 21 December 2022].

[23] J. Altmann and M. M. Kashef, "Cost model based service placement in federated
hybrid clouds," Future generation computer systems, vol. 41, pp. 79-90, 2014.

[24] M. J. Kavis, Architecting the cloud: design decisions for cloud computing service
models (SaaS, PaaS, and IaaS), Somerset: WILEY, 2014.

[25] Red Hat, "IaaS vs. PaaS vs. SaaS," Red Hat, 16 August 2022. [Online]. Available:
https://www.redhat.com/en/topics/cloud-computing/iaas-vs-paas-vs-saas. [Accessed
21 December 2022].

[26] D. R. Patrick and S. W. Fardo, Industrial Process Control Systems, BPR Publishers,
2009.

[27] Valmet, "Connectivity," Valmet, [Online]. Available:
https://www.valmet.com/automation/distributed-control-system/connectivity/.
[Accessed 22 December 2022].

[28] Siemens, "Industrial Communication," Siemens, [Online]. Available:
https://new.siemens.com/global/en/products/automation/industrial-
communication.html. [Accessed 22 December 2022].

[29] Valmet, "High-performance controllers for distributed control systems," Valmet,
[Online]. Available: https://www.valmet.com/automation/distributed-control-
system/controllers-io/controllers/. [Accessed 23 December 2022].

[30] Siemens, "SIMATIC PCS 7 Distributed Control System," 2022. [Online]. Available:
https://assets.new.siemens.com/siemens/assets/api/uuid:d25a61bf-7307-48cf-b61e-
e84cbd4affec/dipa-b10272-00prozessleitsystemsimaticpcs7enus-144.pdf.
[Accessed 23 December 2022].

58

[31] W. Shi, G. Pallis and Z. Xu, "Edge Computing [Scanning the Issue]," Proceedings of
the IEEE, vol. 107, no. 8, pp. 1474-1481, 2019.

[32] Valmet, "Industrial-grade I/O for Valmet DCS Controllers," Valmet, [Online].
Available: https://www.valmet.com/automation/distributed-control-
system/controllers-io/io/. [Accessed 27 December 2022].

[33] Siemens, "SIMATIC ET 200 - The distributed I/O system for future-proof plants,"
Siemens, [Online]. Available:
https://new.siemens.com/global/en/products/automation/systems/industrial/io-
systems.html. [Accessed 27 December 2022].

[34] T. Ausberger, K. Kubicek, P. Medvecova, T. Myslivec and M. Stetina, "Model
Checking application on Function Block Diagram model," in 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 2020.

[35] T. Ausberger, K. Kubicek, P. Medvecova, T. Myslivec and M. Stetina, "Analytic
method for automatic test case generation for Function Block Diagram," in 25th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), 2020.

[36] D.-A. Lee, J. Yoo and J.-S. Lee, "Guidelines for the Use of Function Block Diagram
in Reactor Protection Systems," in 21st Asia-Pacific Software Engineering
Conference, 2014.

[37] S. K. Sen, Fieldbus and Networking in Process Automation, CRC Press, 2021.

[38] EtherCAT, "EtherCAT - the Ethernet Fieldbus," EtherCAT Technology Group,
[Online]. Available: https://www.ethercat.org/en/technology.html. [Accessed 28
December 2022].

[39] U. R. Chaudhuri and U. R. Chaudhuri, Fundamentals of automatic process control,
Boca Raton, FL: CRC Press, an imprint of Taylor and Francis, 2012.

[40] W. A. Halang and K. M. Sacha, Real-time systems implementation of industrial
computerised process automation, Singapore: River Edge, NJ : World Scientific,
1992.

[41] M. Felser, "Ethernet TCP/IP in automation: a short introduction to real-time
requirements," in ETFA 2001. 8th International Conference on Emerging
Technologies and Factory Automation. Proceedings (Cat. No.01TH8597), 2001,
Vol.2, p.501-504 vol.2, 2001.

[42] A. M. Seal, Practical process control, London; New York: Arnold; Wiley, 1998.

[43] Valmet, "Control Room Solutions - Valmet DNA User Interface," Valmet, [Online].
Available: https://www.valmet.com/automation/distributed-control-system/user-
interface/. [Accessed 29 December 2022].

[44] D. A. Strobhar, Human factors in process plant operation, New York: Momentum
Press, LLC, 2012.

[45] S. H. Han, H. Yang and D.-G. Im, "Designing a human–computer interface for a
process control room: A case study of a steel manufacturing company,"
International journal of industrial ergonomics, vol. 37, no. 5, pp. 383-393, 2007.

[46] M. Hassenzahl, "User experience (UX): towards an experiential perspective on
product quality," in ACM International Conference Proceeding Series, 2008.

[47] E. Scharrer and S. Ramasubramanian, Quantitative research methods in
communication : the power of numbers for social justice, New York: Routledge,
2021.

59

[48] L. M. O'Dwyer, J. A. Bernauer and Ebscohost, Quantitative research for the
qualitative researcher, Los Angeles: Sage, 2014.

[49] M. G. Prina, B. Nastasi, D. Groppi, S. Misconel, D. A. Garcia and W. Sparber,
"Comparison methods of energy system frameworks, models and scenario results,"
Renewable & sustainable energy reviews, vol. 167, 2022.

[50] M. Hammersley, What is qualitative research?, London: Bloomsbury Academic,
2013.

[51] T. Stober and U. Hansmann, Agile Software Development Best Practices for Large
Software Development Projects, Berlin, Heidelberg: Springer, 2010.

[52] A. M. Dima and M. A. Maassen, "From Waterfall to Agile software: Development
models in the IT sector, 2006 to 2018. Impacts on company management," Journal
of international studies, vol. 11, no. 2, pp. 315-325, 2018.

[53] S. McConnell, Code complete, Redmond, Washington: Microsoft Press, 2004.

[54] M. Mohnen, "A Graph—Free Approach to Data—Flow Analysis," in Compiler
Construction, 2002, Berlin, Heidelberg, 2002.

[55] S. Seifermann, Architectural Data Flow Analysis for Detecting Violations of
Confidentiality Requirements, KIT Scientific Publishing, 2022.

[56] R. Kumar and P. PK., Graph Theory, Laxmi Publications, 2018.

[57] T. DeMarco, Structured Analysis and System Specification, Prentice Hall, 1979.

[58] A. Gąsior and J. Duda, Industry 4.0 : a glocal perspective, New York: Abingdon,
2022.

[59] D. Greenfield, "Automation Networks: From Pyramid to Pillar," Automation World, 2
November 2017. [Online]. Available:
https://www.automationworld.com/products/networks/blog/13317982/automation-
networks-from-pyramid-to-pillar. [Accessed 1 January 2023].

[60] A. K. Jakhar and K. Rajnish, "Measure of Complexity for Object-Oriented Programs:
A Cognitive Approach," in Proceedings of 3rd International Conference on
Advanced Computing, Networking and Informatics, 2015.

[61] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," IEEE Std
610.12-1990, pp. 1-84, 1990.

[62] Techopedia, "What is Throughput? - Definition from Techopedia," Techopedia,
[Online]. Available: https://www.techopedia.com/definition/5573/throughput.
[Accessed 26 January 2023].

[63] C. Jones, Estimating software costs : bringing realism to estimating, New York:
McGraw-Hill Companies, 2007.

[64] Bamboo Agile, "Software Maintenance Cost: What Is It and Why Is It So
Important?," Bamboo Agile, 11 October 2021. [Online]. Available:
https://bambooagile.eu/insights/software-maintenance-costs/#maintenance-costs-
breakdown. [Accessed 6 February 2023].

[65] Amazon, "AWS Product and Service Pricing," Amazon, [Online]. Available:
https://aws.amazon.com/pricing/. [Accessed 13 February 2023].

