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Abstract. Pricing mechanisms employed by different service providers signifi-
cantly influence the role of cloud computing within the IT indusW#iith the
increasing cost of electricity, Cloud providers consider power consumps

one of the major cost factors to be maintained within their infrastrisct@an-
sequently, modelling a new pricing mechanism that allow Clowdgerts to de-
termine the potential cost of resource usage and power consuimgsiattracted

the attention of many researchers. Furthermore, predicting the fotst of
Cloud services can help the service providers to offer the suitable services to the
customers that meet their requirements. This paper introduces an Energy-Aware
Cost Prediction Framework to estimate the total cost of Virtuadhvies (VMs)

by considering the resource usage and power consumption. The VMs’ workload

is firstly predicted based on an Autoregressive Integrated Moving Average
(ARIMA) model. The power consumption is then predicted using regression
models. The comparison between the predicted and actual results alnaine

real Cloud testbed shows that this framework is capable of predictingthe w
load, power consumption and total cost for different VMs wiahdyprediction
accuracy, e.g. with 0.06 absolute percentage error for the pretiitaédost of

the VM.

Keywords: Cloud Computing, Cost Prediction, Workload Prediction, ARIMA
Model, Power Consumption, Energy Efficiency

1 Introduction

Cloud computing is an important and growing business modehd#sagttracted the
attention of many researchers. Pricing mechanisms that are emplogéfignt ser-
vice providers significantly influence the role of cloud computingiwithe IT indus-
try. Billing mechanisms have become even more sophisticated, as custmmers
charged per month, hour or minute. Nevertheless, there are still limitedtamets
are charged based on a pre-defined tariff for the resource usageimdticte CPU,
Memory, Storage and Network. This pre-defined tariff does natidenthe variable
cost of electricity [1]. Consequently, modelling a new pricing mechafas services



offered that can be adjusted to the actual energy costs has becomeestingtee-
search topic.

There are limited works on cost models that measure the actual ressagecof a
cloud service while taking consideration of variation in costs, power consumabd
performance together. Most cloud computing service providers chaigeuktomers
on a timely basis for the virtualised systems usage (with no pefme guarantee)
instead of the actual resource usage [3]. In other words, cloudespraviders charge
customers for the services offered on a timely basis, regardless of thkrastwurce
usage and consideration of power consumption, which is considered theebiggest
operational cost factors by cloud infrastructure providers.

Another limitation of the cost mechanigmnot only dependent on the actual re-
source usage and power consumption, but@isiher factors that may affect the VMs
total cost such as performance variation. Most of the existing studiefdrsed on
minimising the power consumption and maximising the total resausage, instead of
improving VM performance. Further, Cloud providers (e.g. Amag@2) H], have
established their Service Level Agreements (SLAs) based on service availability with-
out such an assurance of the performance. For instance, cheisgrivice operation,
when the number of VMs increases on the same Physical Maéhif)éofrerbooking),
the resource competition may occur (e.g. once the workload exceedsctable
level of CPU utilisation) leading to VMs performance degradation. Thug] skenwvice
providers do not consider the VMs performance variation, while the VMarp&nce
is a very important factor to satisfy cloud customers’ requirements. Therefore, it is es-
sential to consider VM performance variations in the composition of VM costs.

The first step towards this is an Energy-Aware Cost Prediction Frarkéwadirmay
influence the decision making of other problems. This paper fooustt®e problem of
estimating the resource usage, power consumption, and the total thst\tf1s at
service operation. Therefore, a framework is proposed to predictdvidoad using
an Autoregressive Integrated Moving Average (ARIMA) model. The relatiofship
tween the VMs and PMs workload (CPU utilisation) is investigated usigiggssion
models in order to estimate the VMs power consumption and predict the tdtaf cos
the VMs. This paper’s main contributions are summarized as follow:

e A proposed Energy-Aware Cost Modeller for Cloud system architectureséssas
the actual consumption of Cloud infrastructure resources.

e Energy-Aware Cost Prediction Framework that predicts the total cost¢temlge-
neous VMs by considering their resource usage and power consumption.

¢ Evaluation of the proposed framework in an existing Cloud testbedler to verify
the capability of the prediction models.

The remainder of this paper is organised as follows: a discuddiom ielated work
is summarised in Section 2. Section 3 presents the system architectuweddily a
discussion of the Energy-Aware Cost Prediction Framework. Sectionsénpsethe
experimental set up followed by results and discussion in SectionablyFBection 6
concludes this paper and discusses the future work.



2 Related Work

This paper discusses the cost that is associated with the resourcandgsagaer con-
sumption of the VMs. Previous work has looked into the area oflatitayithe cost of
running services on Cloud infrastructure. Altmann and Kashef [E3jepted the ser-
vice placement optimisation based on the cost model in federated clouds to guarantee
the cost minimisation for Cloud customers. This approach dependsbaute-force
algorithm to evaluate the cost of each possible service placement. The cost model de-
fined in their work as the sum of the fixed costs and the Mar@ists. The fixed costs
include the costs for hardware and the variable costs include (e.g. the elembstity
However, the cost model proposed in their work does not consieldiciing thecost
in the future. Also, more factors need to be considered (e.@rpenfice variation) to
guarantee the SLAs. Horri and Dastghaibyfard [8] emphasised the diffiéulgaling
with minimising Cloud infrastructure energy consumption while condut¢kiagQual-
ity of Service (Qo0S), especially since there is a trade-off between energyngiosu
and SLA. Therefore, they have proposed and implemented a cost m@i@ldsim.
Their approach considers the total cost including the cost of energyroption based
on (e.g. number of VMs and data size). Nonetheless, their objectives donsader
predicting the total cost or power consumption.

In terms of prediction based on historical data, estimating the resourgesamsh
power consumption of the VMs would require understanding the charticteothe
underlying physical resources, like idle power consumption and vapakler under
different workload, and the projected virtual resources usage, as sta20dl ifHus, it
is essential to get the predicted VMs’ workload first in order to get their predicted
power. Some work has predicted future workload in a Cloud envennhivased on
Autoregressive Integrated Moving Average (ARIMA) model; nonetheless,dhjec-
tives do not consider predicting the power consumption. For example, Galbeial
[24] introduced a Cloud workload prediction module based on the ARilAel to
proactively and dynamically provision resources. They define theirlgaitkas the
expected number of requests received by the users, which are then nmappadict
the number of VMs needed to execute custohegsests and meet the Q0S. Caron et
al [11] presented a resource usage prediction algorithm based on identifying similar
usage patterns of the short-term workload history. The algorithmhioassa good
result within 4.8% prediction error. Khan et al [16] proposed a methdthoacterising
and predicting workload based on Hidden Markov Modeling to discover thelazor
tions between VMs workload that can be used to predict the changesktifadopd-
terns. Further, Wood et al [12] focused on estimating the resourdeeragats when
deploying an application into a virtualised environment using a regressionfhadet!
to predict future CPU utilisation. While the evaluation has shown thairtthction
error is less than 5%, however these approaches do not consider tbopreflcosts
or power consumption of the VMs.

Other work focuses on predicting power consumption based on historicalhdieta w
others use performance counters, which are queried directly fronattieare or the
operating system. But, relying on performance counters would avét appropriately
in heterogeneous environments with different server’s characteristics, as argued by



Zhang et al [17]. Therefore, they presented a best fit energy predictiah (B&EP M)
that flexibly selects the best model for a given server based on a seriaatidresjthat
consider only CPU utilisation [17]. Dargie [18] proposed a stochastiehto estimate
the power consumption for a multi-core processor based on the CRdtiatili work-
load and found out that the relationship between the workload and powest issti-
mated using a linear function in a dual-core processor and ugirgdaatic function in
a single-core processor. Further, Fan et al [19] have introducadeWak to estimate
the power consumption of servers based on CPU utilisation only anedangtheir
results that the power consumption correlates well with the CPU usage. Asatimeir
work produced accurate results, they argued that it is not necessaeyrtmre complex
signals, like hardware performance counters, to model power usage.

Compared with the work presented in this paper, the ARIMA model istagae-
dict the VMs workload, which is then mapped within the predictioméwork to get
the predicted VMs power consumption. Then, having predicted the Witkload and
power consumption, the total cost of the VMs is predicted accordingly.

3 Resour ce Usage and Power Consumption for VM s

This section presents the proposed Energy-Aware Cost Prediction Frdatevpoe-
dict the resource usage, power consumption and total cost for VMs. Tladl system
architecture of this work will be discussed in the next subsection.

3.1 System Architecture

Cloud computing architecture consists of three standard layerd) etdcsoftware as

a service (SaaS), platform as a service (PaaS), and infrastructure as a service (laaS).
This paper will focus on the laaS layer where the service operation takesgsace
shown in Figure 1.
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Fig. 1. System architecture

In the laaS layer, the admission, allocation and management of VMerdoenmed
through the interaction between the components. The highlighted cemgdenergy-
Aware Cost Modeller is the main focus of our work.



e SLA Manager: this component monitors and measures the SLA’s agreed
terms.

e VM Manager: considers the best decision in order to improve resource usage
and reduce the power consumption cost and consequently the total cost of the
VMs. For instance, if performance degrades, this component will have actua-
tors to attempt to get the performance to the agreed level. This component
interacts with the Energy-Aware Cost Modeller to request predictions related
to the resource usage, power consumption and cost that VMs would have for
a particular host.

e  Monitoring Infrastructure: this will monitor resource usage, power con-
sumption and performance related metrics.

e Energy-Aware Cost Modeller: this component supports:

1) Energy-Aware Pricing Model that considers the actual resources and
power consumption, as introduced in our previous work [5], and

2) Energy-Aware Cost Prediction Framework that estimates the resource
usage, power consumption and total cost for the VMs.

3.2 Energy-Aware Cost Prediction Framework

In our previous work [5], we introduced &mergy-Aware Pricing Model that con-
siders power consumption as a key parameter with respect to perforamhcest.
The proposed model charges the customer based on the actual rasagecand con-
siders the cost of power consumption of the VMs

In this paper, we extend our work and introduce aBeer gy-Awar e Cost Predic-
tion Framework that would predict VMs workload (CPU, RAM, Disk and Network),
power consumption and total cost using the ARIMA model and regressidelsn This
is the main focus of this paper as shown in Figure 2.

The ARIMA model is a time series prediction model that has been used widely in
different domains, including finance, owing to its sophisticationaadiracy; further
details about the ARIMA model can be found in [14]. Unlike otheriptietch methods,
like sample average, ARIMA takes multiple inputs as historical observationsugnd o
puts multiple future observations depicting the seasonal trend. It asseldor sea-
sonal or non-seasonal time-series data. The type of seasonal ARIMAisaded in
this work as the targeted workload patterns are reoccurring and shemaisgnality in
time intervals. In order to use the ARIMA model for predicting the Wibskload in
this work, the historical time series workload data has to be stationary, athé o
and Cox transformation [15] and data differencing methods are¢auseske these data
stationary. The model selection is based on the best fit model of ARIMA based
Akaike Information Criterion (AIC) or Bayesian Information Criteri@@) value.

This framework is aimed towards predicting the total cost of the VMsrdar to
achieve that, the VMs workload is first predicted for the next time interuiad) tise
ARIMA model based on historical workload patterns. Then, the predicted GRS
utilisation is correlated with the PM CPU utilisation in order to predict theepoan-
sumption of PM, from which the VMs power consumption is estimated|lyitiae
total cost for the VMs is predicted based on the predicted workload and pomver
sumption of the VMs.



As depicted in Figure,2he framework includes five main steps in order to predict
the VMs workload and power consumption, then predict the total cost of MMsach
this goal, the following steps are required.
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Fig. 2. Energy-Aware Cost Prediction Framework

Step 1: to predict (CPU, RAM, Disk and Network) utilisations for the next time
interval ARIMA model is used to identify the best fit model. After predicting the VM
workload using the ARIMA model based on historical data, the next steppltale to
predict the PM workload and the PM/VM power consumption using regressibelsn

Before predicting the power consumption for PM/VM, understanding thewe-
source usage affect the power consumption is required. Therefoidvan experi-
mental study to investigate the effect of the resource usage (CPU, RA\grdidNet-
work) on the power consumption. The findings show that the CPU utilisetioelates
well with the power consumptigas this finding is supported in other work [17-19].

Step 2: to predict the PM workload which is (PM CPU utilisation), would require
measumg the relationship between the number of vCPU and the PM CPU utilisation
for a single PM, as shown in FigureThis experiment was carried out on a local Cloud
Testbed (see Section 4). Linear regression model has been applied to predict the PM
CPU utilisation based on the used ratio of the requested number of v€g TtMs
with consideration of its current workload as the PM may be running éMsialready
[6]. The following equatioris used (1):

VMy i
PMXprequein = (0( X (Z;Zfount(VMyRequPUs X 711];?““1)) + ﬁ) +

(PMxCurrUtil - PMxIdleUtil) (1)

PMXpreautit is the predicted PM CPU utilisatiorw;is the slope anfl is the intercept
of the CPU utilisation. ThEMyg,qucpus IS the number of requested vCPU for each
VM andVMyp,.quti 1S the predicted utilisation for each VMs. TPM,,c..,ru:i 1S the
current PM utilisation an@ M, 4, 1S the idle PM utilisation.
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Fig. 3. Number of vCPUs vs PM CPU Utili  Fig. 4. The PM CPU Utilisation vs Power
sation. Consumeption.



Step 3: the PM power consumption is predicted based on the relationship between
the predicted PM workload (PM CPU utilisation) with PM power consumptichen
same PM. Using a regression analysis, the relation is best describedalgiagrpal
model with order three for this particular PM, as shown in Figuféds, the predicted
PM power consumptioBMxp,.qpw Measured by Watt, can be identified using the
following formula (2).

PMXpreapwr = ((X(Plv[xPredUtil)3 + Y(PMxPredUtil)Z + 8(PMxprequeir) + B) (2)

Wherea, y andd are all slopesj is the intercept anBMXpreautit is predicted PM
CPU utilization.

Step 4: based on the requested number of vCPU and the predicted vCPU utilisation,
the VM power consumption is predicted using the proposed formig,ias shown
in equation (3).

VMXRequvCcPUs
VMxPredpwr = PMxldlePwr X VMcount + (PMxPreder -
Zy=1 VMYReqvCPUs

VMX(P‘redUtil*RequPUs) ) (3)
M 3
Zngoun VMY (predutil«RequCPUs)

PMxIdlePwr) X (

WhereVMxp,cqpwr IS the predicted power consumption for one VM measured by
Watt. VMxgequcpus iS the requested number of vCPU aidx,,cqy:;; tsthe predicted |
VM CPU utilisation Y7X°“™ VMypgequcpus 1S the total of vCPU for all VMs in the
same PM. Th@Mx; ;.pwr iS idle power consumption aM xp,.qpur 1S the predicted
power consumption for a single PM.

Step 5: finally, this step predicts the total cost for the VM based on the predicted
VM resource usage from step 1 and the predicted VM power consumgtiorstep 4.

The energy providers usually charge by the Kilowatt per hour (kWH®refore, con-
vert the power consumption to energy is required using the follosgogtion (4):

VMx 4ygpredpwr Timeg
VMxPredEnergy = 1000 3600 (4)

To predict the total cost for the VM using the proposed model, as shaguation
(5):

VMXprequein
VMXp,carotaicost = ((VMxRequPUs X 100

+ (VMxPTedRAMUSage X (Cost per GB % Times))

) X (Cost per vCPU X Times)>

+ (VMxpredDiskUSage %X (Cost per GB % Times))

+ (VMxpredNewsage X (Cost per GB x Times))
+ (VMxPredEnergy X Cost per kWh) (5)

WhereVMxp,cqrotaicost iS the predicted total cost of the VMMxp,caramusage IS
the predicted resource usage of RAM times the cost for that resource féocagier
time and so on for each resource such as CPU, Disk and NeWMK..4zn.r gy iS the
predicted energy consumption of the VM times the electricity price as acediy
the energy providers.



4 Experimental Set Up

This section describes the environment and the details of the experimedhisted in
order to evaluate the work presented in this paper.

In terms of the experimental design, the aim is to evaluate the new Ehesye-
Cost Prediction Framework presented in terms of predicting the workloadr pon-
sumption and total cost for heterogeneous VMs based on historical peraé#load.
The prediction process starts by firstly predicting the VM workload gushe
(auto.arima) function in R package [25] and then completing the cyitie 6mework
and considering the correlation between the physical and virtual resouraeslittd p
power consumption of the VMs on a single PM. After that, the total cpsedicted
for the VMs based on their predicted workload and power consumption.

A number of experiments have been designed and implemented onl Eltmod
Testbed with the support of the Virtual Infrastructure Manager (VIM), Openisli¢Bul
version 4.10, and KVM hypervisor for the Virtual Machine Manager f)MThis
Cloud Testbed includes a cluster of commodity Dell servers, and one of ¢nesis s
with eight core E31230 V2 Intel Xeon CPU was used. The server ind6& RAM
and 1000GB hard drives. Also, the server has a WattsUp meter [9] attaatiszttly
measure the power consumption. Heterogeneous VMs are created and titeiimgon
is performed through Zabbix [10], which is also used for resmuusage monitoring
purposes. Rackspace [26] is used as a reference for the VMs catidigsir Three types
of VMs, small, medium and large are provided with different capacities VMs are
allocated with 1, 2 and 4 vCPUs, 1, 2 and 4 GB RAM, 10 GB Disk &8 Network,
respectively. In terms of the cost of the virtual resources, ElasticHog}safl
VMware [28] prices are followed: where 1 vCPU = £0.008/hr, 1 GB Memory
£0.016/hr, 1 GB Storage = £0.0001/hr, 1 GB Network = £0.000&fat the cost of
Energy = £0.14/kWh [21

In terms of the workload patterns, Cloud applications can experience differda
load patterns based on the custornessge behaviours, and these workload patterns
consume power differently based on the resources they utilise. Theevaral work-
load patterns, such as staferiodic, continuously changing, unpredicted, and once-
in-adife-time, as stated in [23]. This paper considers the periodic workload pastern
this work is driven towards solving the issue of the performaadation.

Thus, a number of direct experiments have been conducted tetsyaith generate
periodic workload by using Stress-ng [2] tool in order to stressesatiurces (CPU,
RAM, Disk and Network) on different types of VMs. The generated watklaf each
VM type has four time intervals of 30 minutes each. The first thiteeviads will be
used as the historical data set for prediction, and the last interval will be uded as
testing data set to evaluate the predicted results.

5 Results and Discussion

This section presents the evaluation of the Energy-Aware Cost Predictioavi#yem
The figures below show the predicted results for three types of ¥idall, medium
and large, running on a single PM based on historical periodic workload p&&ern
cause of space limitation, only large VMs results are shown. As mentaniét, the



generated VMs workload along with their power consumption and costefdast in-
terval are used as the testing data set.

i Actual - Predicted - = —High9s 45 Actual Predicted - = - High s
Low 95 High 80 Low 80 Low 95 High 80 Low B0
%0 4 i ey
1 | \
0 s [ — —
e o= | /
s 70 r\ f—\ & 3 | \ {
E & / \ f \ g “ [ /
i f
g \ / A & 25 J L |
s | - ! S 5 = -_‘ e \
5 K-#J \ e n 3 ) ’ \ / \
= a0 | | [ \ s e - ~ -
E] { \ f \ 21 \ / \
EREY | | ! \ = / \ /
\ | \ / \ F
9w —] \ { \ £ \ / \
/ \ ] \ P | =
0 —f \ | \ =2
o ml Nond b Y 0
q0 1 3 5 7 9 1113 15 17 19 21 23 25 27 29 L1357 A BY B AWEUD
Time Index (1 per Minute) Time Index (1 per Minute)
Actual Predicted = = ~High85 i Actual Predicted = = =Highos
20 Low 95 High 80 Low 80 Low 95 High 80 Low 80
3s R = ~ <=
S N ‘ PRt N ' =
1N TS ——
15 re \ ’ ) # : = ‘*T\/‘ ,’/*— } &’ 5 S ‘v
- - = o g - i Y ~, I/ Y F N
2 ' R 5 S 254 s i  — | g‘
= L .~ Y e = ® i [ . f ) ¥
g 4 TR \ [ N v & ! A B\ ¥
Rl vrf . W g ? g A\ | 5 Wb ?
g = 2\ 2 15 H h§ R 0 3
£ J \ Y | = [; h B [; P ¢ ?
€ s \ \ / ¥ 1 4 E oA . - Iy §
H W/ 5 X \ b _§ 1
3 ‘ v \ P b4 \' i :
r £ o0s = \/ 3 ¥
& z 1 \_E \Y; .
305 7 9.un 13 15y 19 om as w o os 1 3 5 788 1 o1 185w 19 on Bis w2
5 . 4
Time Index (1 per Minute) Time Index (1 per Minute)
= — — —Highss
- redicted Higha 3
High 80 Low 80
a0 —
s 25
B
50 g ?
8. I
5 S 1s
§ 20 -] 2,529 2531
8 3
5 1S Lol
g 10
i 0.5
5
0 ]
13 5 7 5 11 13 1517 1921 23 25 27 29 Actual Predicted
Time Index (1 per Minute) Large VM

Fig. 5. The prediction Results for a Large VM.

Figure5 (a, b, ¢ and d) depict the results of the predicted versus the actual VMs
workload, including CPU, RAM, Disk, and Network usage for the VBisspite the
periodicutilisation peaks, the predicted VMs’ CPU and RAM workload results closely
match the actual results, which reflects the capability of the ARIMA mod=lfture
the historical seasonal trend and give a very accurate prediction accordhmeylyreF
dicted VMs’ Disk and Network workload is also matching the actual workload, but
with less accuracy as compared to the CPU and RAM prediction results. THie can
justified because of the high variations in the generated historical jpevwodkload
pattern of the disk and network not closely matching in each inteviiakeas the gen-
erated historical periodic workload pattern for the RAM and CPU usage aetyclos
matched in each interval. Beside the predicted mean values, the figures algheshow
high and low 95% and 80% confidence intervals.

The proposed framework can predict the power consumption for bemwohVMs
with only a small variation as compared to the actual one as shown in Fig)r& Bg
predicted power consumption attribution for each VM is affected by the variatibe



predicted CPU utilisation of all the VMs, hence the predicted power consungbtion
the medium VM matches its predicted CPU utilisation as it has the highest variation
than the other predicted VMs’ CPU utilisation.

In terms of prediction accuracy, a number of metrics have been used @tethél
results. These metrics includébsolute Percentage Error (APE) which measures the
absolute value of the ratio of the error to the actual observed value; Mean(EE)
which measures the average error of the predicted values; Root Meanme®&dirror
(RMSE) which depicts the square root of the variance measured by theabszdute
error; Mean Absolute Error (MAE) is the average of the absolute vathe difference
between predicted value and the actual value; Mean Percentage Error (MRE) is
computed average of percentage errors by which the predicted valuefsovarthe
actual values; and Mean Absolute Percent Error (MAPE) is the averdgealisolute
value of the difference between the predicted value and the actual value exptamed
percentage of the actual value 22

Table 1. Prediction Accuracy for a Large VM.

Parameters ME RMSE MAE MPE MAPE

CPU Utilisation 0.03765 0.299769 | 0.137823 0.309809 6.615192
RAM Usage 0.000004 | 0.008671| 0.002587 -0.00675 0.107601
Disk-Write Usage 0.1838898 | 1.116114 | 0.733408 0.924781 12.64005
Network-IN Usage 0.0657477 | 0.225631| 0.132185 -6.13982 17.56377
Power Consumption 1.648176 | 2.617798 | 1.648176 4.358135 4.358135

This framework is also capable of predicting the total cost for a nuofibévis as
shown in Figuré (f), with 0.06 of APE for predicted total cost of the large VM, 17.23
of APE for the medium VM and 14.7 of APE for the small VM asvatin Figure (3.

6

Actual Predicted 0.06%
5 5
4 F
@ 17.23% 2531
@
S3
B 192
]
2 14.70%
0944 2529
1
h | 1.637
0.823
(]
Small Medium Large
Types of VMs

Fig. 6. The predicted versus the actual VMs total cost.

The accuracy of the predicted VMs workload (CPU, RAM, Disk, Netwaore)their
power consumption based on periodic workload is evaluated usingpit@sacy met-
rics, as summarised in Talleln addition, Figure (6) shows the results of the predicted
versus the actual total cost for all VMs with the absolute percent errbrefpredicted
total cost. Despite the high variation of the workload utilisation in the periodic pattern



the accuracy metrics indicate that the predicted VMs workload and power cdizsump
achieve good prediction accuracy along with the predicted total cost.

6 Conclusion and Future Work

This paper has presented and evaluated a new Energy-Aware Cost Predictien Fram
work that predicts the total cost of VMs by considering the resource usagewad
consumption oheterogeneous VMs based on their usage and size, which reflect the
physical resource usage by each VM. A number of direct experimergsconducted

on a local Cloud Testbed to evaluate the capability of the prediction models. Overall,
the results show that the proposed Energy-Aware Cost Prediction Frakreamqure-

dict the resource usage, power consumption and the total cost for thevitivésgood
prediction accuracy based on periodic Cloud workload patterns.

Unlike other existing works, this approach considers the hetezitgeh VMs with
respect to predicting the resource usage, power consumption and the total cost.

In future work, we intend to extend our approach and integrate ipp@iformance
prediction models to determine the costs of different scenarios. Besidesr foktes-
tigation will focus on VM performance prediction models, dynamic placemarivisf
and demonstration of the trade-off between cost, power consumptigreenrmance.

Also, the scalability aspects with different prediction algorithms will besidened to
further show the capability of the proposed work. Finally, aspjser has focused on
predicting the VMs total cost based on periodic workload pattern, we aim to ¢xiend
by considering other workload patterns, such as static, continuouslyirpamgpre-
dicted, and once-in-a-life time workload patterns.
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