829 research outputs found

    Prediction of geometric errors of stamped sheet metal parts using deviation field decomposition

    Get PDF
    Stamping process is widely used to fabricate sheet-metal components. Due to the intrinsic nature of sheet-metal parts, it is usually difficult to control the quality of the final shape, surface defects or geometric errors. Additionally, to meet tight GD&T specifications, a proactive prediction technique is required to estimate global/local geometric defects caused by manufacturing steps. Current best practice relies on manual trial-and-error approaches which are far to be optimal and are costly and time consuming. This paper proposes a model-driven methodology to forecast geometric errors for given set of process parameters (forward process), and consequently optimise (feedback process) the process parameters to achieve given quality standards. The methodology is based on: (i) experimental investigation with varying process parameters and subsequently, deviation field extraction by mapping high density Cloud-of-Points with nominal CAD model; (ii) deviation field decomposition; (iii) surrogate model development by mapping decomposed deviation field to process parameters. An industrial case study is used to validate the methodology

    Factors Forecasting the Effect of Rapid Prototyping Technologies on Engineering Design Education.

    Get PDF
    This dissertation presents information gathered and analyzed through an electronic internet-based Delphi Survey process. The purpose of this study is to identify a consensus of factors that might forecast the future effects of Rapid Prototyping (RP) technology on engineering design education when used for the purpose of overcoming the limitations of 2D representation of 3D space. The identification of consensus was developed from the collection of opinions from a panel of experts in RP technology. Early adopters of emerging technologies can reduce risk through careful research, but decisions must often be made before significant quantitative data are available. Expert subjective judgment may be a valuable source of information for making decisions. RP is just one of the tools used in engineering design education for visualization. This research should help to guide faculty members in making decisions regarding the use of RP technology in the curriculum. The one consensus reached by the panel is that 3D CAD will replace 2D CAD as the default modeling tool in most product-design related curricula within 5 years. The general conclusion of the study is that the appropriate use of the technology in the curriculum is largely situational

    Mass Production Processes

    Get PDF
    It is always hard to set manufacturing systems to produce large quantities of standardized parts. Controlling these mass production lines needs deep knowledge, hard experience, and the required related tools as well. The use of modern methods and techniques to produce a large quantity of products within productive manufacturing processes provides improvements in manufacturing costs and product quality. In order to serve these purposes, this book aims to reflect on the advanced manufacturing systems of different alloys in production with related components and automation technologies. Additionally, it focuses on mass production processes designed according to Industry 4.0 considering different kinds of quality and improvement works in mass production systems for high productive and sustainable manufacturing. This book may be interesting to researchers, industrial employees, or any other partners who work for better quality manufacturing at any stage of the mass production processes

    The future of additive manufacturing: materialise´s lbo - Company & market analysis

    Get PDF
    This investment paper reviews the potential Leveraged Buy out of Materialise, a service provider and software producer operating in the Additive Manufacturing industry. An analysis of the company and market was conducted, facilitating the assessment of key market trends that enabled the creation of investment strategies set to improve the company in various areas and aspects. The result of this work presented Materialise as an attractive investment, with strong returns across a multitude of possible scenarios in the up coming future. Key word

    The future of additive manufacturing: materialise´s lbo - value creation

    Get PDF
    This investment paper reviews the potential Leveraged Buy out of Materialise, a service provider and software producer operating in the Additive Manufacturing industry. An analysis of the company and market was conducted, facilitating the assessment of key market trends that enabled the creation of investment strategies set to improve the company in various areas and aspects. The result of this work presented Materialise as an attractive investment, with strong returns across a multitude of possible scenarios in the up coming future

    Continuous improvement of a machining process by designing a new jig

    Get PDF
    This thesis report gives an insight on how an often overlooked, jig and fixture used as a manufacturing aid to produce a product and essential for delivering products reliably and repeatedly with high quality. This continuous improvement project of an exciting machining process of winding cones used overhead garage doors. The improvement was a necessity with a forecast for 2019 estimating the need for 43% faster production cycle (takt time) compared to the previous year. Hence, the main objective was to reduce the machining time required per part by designing a modular jig system, ideally with 12 parts per cycle. To make the work in an organized structure the project was dived into four phases namely: research, design, machining and implementation. The research phase included in the study of the old jig in use, analysing the process and sketching the basic requirements. The design phase was based on the methodology of Design for Six Sigma methodology for the fixture. Different kind of jig components was designed and assembled using SOLIDWORKS CAD model. The critical review of design iteration was analysed using SWO analysis (short version of the standard SWOT analysis) for design. The machining of most components of the jig was done in-house with tacit knowledge of the machinist instead of using CAM software’s making it first of its kind project in developing knowledge management in the company for future jig requirements. The critical outcomes of the project were harvested from the implementation phase. The newly machined modular jig system proved to have increased the number of parts machined per day by 32% with expected savings of more than €6000 per annum. The added benefit of a modular jig system was that one base (skeleton of the jig) could be used in machining different products. Also, future projects now have the intellectual and physical resources of making jigs and fixtures in-house. This drastically reduces the lead times for new parts, which is crucial for a small-medium enterprise stay competitive.Este relatório dá uma visão sobre como um acessório usado pode auxiliar na produção de forma a produzir um produto e os elementos essenciais para a sua entrega de forma confiável e repetida com alta qualidade. Este é um projeto de melhoria contínua de um processo de maquinagem de cones de enrolamento, usados em portas de garagem suspensas. A melhoria surjiu de uma necessidade com a previsão para 2019, estimando a necessidade de um ciclo de produção 43% mais rápido (takt time) em comparação com o ano anterior. Assim, o objetivo principal passava por reduzir o tempo de maquinagem necessário por peça, projetando um sistema de gabarit modular, idealmente com 12 partes por ciclo. Para realizar o trabalho numa estrutura organizada, o projeto foi dividido em quatro fases: pesquisa, projeto, maquinagem e implementação. As fases de pesquisa foram incluídas no estudo do antigo gabarit em uso, analisando o processo e esboçando os requisitos básicos. A fase de projeto foi baseada na metodologia de Design for Six Sigma para um dispositivo. Foram projetados e montados diferentes tipos de componentes de gabarit usando o modelo SOLIDWORKS CAD. A revisão crítica da iteração do projeto foi analisada usando a análise SWO (versão reduzida da análise SWOT convencional) para projeto. A maquinagem da maioria dos componentes do gabarit foi feita internamente com conhecimento tácito do responsável técnico, recorrendo ao software CAM, tornando-o o primeiro de seu tipo no desenvolvimento da gestão do conhecimento na empresa para futuros requisitos de gabarit. Os principais resultados e conclusões dos projetos foram descritos na fase de implementação. O sistema de gabarit modular recém-maquinado provou ter aumentado o número de peças maquinadas por hora em 32%, com economias comprovadas de mais de € 6.000 por ano. O benefício adicional de um sistema de gabarit modular consiste de criar uma base (esqueleto do gabarit) usada na maquinagem de diferentes produtos, e projetos futuros, permitindo à empresa deter os recursos intelectuais e físicos de criar gabarits e acessórios internos. Assim, foi reduzido drasticamente o tempo de espera para novas peças, o que é crucial para uma pequena média empresa permanecer competitiva

    The future of additive manufacturing: materialise´s lbo - strategy & planning

    Get PDF
    The Future of Additive Manufacturing: Materialise's LBO This investment paper reviews the potential LBO of Materialise, a service provider and software producer with in the AM industry. An analysis of the company and market was conducted, facilitating the assessment of key market trends that enabled the creation of investment strategies. The ultimate result comprised of the execution of a leverage buy out with strong returns in every scenario, demonstrating Materialise as investment worthy. This section focuses deeper on the fund’s investment strategies for both organic growth, by increasing its global presence, focusing on the future, optimizing performance, and in organic growth, by buying Stratasys

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed
    corecore