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Abstract 
Stamping process is widely used to fabricate sheet-metal components. Due to the intrinsic nature 
of sheet-metal parts, it is usually difficult to control the quality of the final shape, surface defects or 
geometric errors. Additionally, to meet tight GD&T specifications, a proactive prediction technique 
is required to estimate global/local geometric defects caused by manufacturing steps. Current best 
practice relies on manual trial-and-error approaches which are far to be optimal and are costly and 
time consuming. This paper proposes a model-driven methodology to forecast geometric errors for 
given set of process parameters (forward process), and consequently optimise (feedback process) 
the process parameters to achieve given quality standards. The methodology is based on: (i) 
experimental investigation with varying process parameters and subsequently, deviation field 
extraction by mapping high density Cloud-of-Points with nominal CAD model; (ii) deviation field 
decomposition; (iii) surrogate model development by mapping decomposed deviation field to 
process parameters. An industrial case study is used to validate the methodology. 
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1 INTRODUCTION 
Sheet metal forming process, such as stamping, is 
prone to various defects unless the process 
parameters, forming tools and material variations 
are optimised and kept under control. Defects can 
be classified into local (i.e. cracks, wrinkles, 
cosmetic defects) and global (i.e. dimensional and 
geometric errors) defects. This paper focuses on 
geometric errors since they are imputed to impact 
assemblability and subsequently poor quality of final 
products [1] [2].  Geometric errors are the result of 
material or manufacturing process variations such 
as spring-back errors, fabrication parameter 
variations [3].  
The industrial practice for setting up the process 
parameters is mainly based on the manual trial-and-
error adjustments [4] [5], which involve repetitive 
experimental tests and multiple parameter tuning. 
As a consequence, it leads to higher ramp-up time 
and production cost.  
Recently, Finite Element Method (FEM) techniques 
have been utilised to predict sheet metal defects 
and to reach optimal and robust design solutions. 
Many simulation tools are also available to simulate 
the sheet metal stamping process, such as 
AutoForm, HyperForm, DYNAFORM, PAM-STAMP, 
FASTFORM. However, those tools alone does not 
provide the complete solution to achieve automatic 
process control and adjustment  as demanded by 
modern manufacturing process (as demonstrated by 
recent trends in Industry and Academia: Smart 
Factory, Industry 4.0, Connected Factory, The 
Factory of the Future [6] [7]). This implies the need 

to systematically integrate monitoring strategies 
(both in-line and off-line sensor data) and model-
driven process control strategy to achieve near-to-
zero defect during manufacturing processes. 
Figure 1 shows the general framework for closed-
loop process control by combining data (such as 
dimensional and/or geometric product information 
collected using surface-based scanners) and model-
driven process control approach. 

 
Figure 1 - General framework for closed-loop 

process control of sheet metal parts. 

Model-driven closed-loop process control is 
understood as capability to keep the process in 
control by inferring corrective actions through 
sensing the process (i.e., data collection) and 
enhancing those data (data conditioning) by 
prediction models. Classical process control 
strategies are only based on sensing techniques. 
Although data collection is a necessary step for 
process control, it is not sufficient for closed-loop 
control, because of the complex nature of the 
stamping process along with the inherent variation 
of product (i.e., material thickness) and process (i.e., 
speed, blank holding force) parameters. 
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This paper provides contribution towards closed-
loop process control by identifying the relationship 
between the geometric errors and product/process 
parameters. Thereafter, the established relationship 
can be utilised to isolate the faults and take 
corrective actions. This will allows to forecast 
geometrical variations for given set of process 
parameters (forward process), and consequently 
optimise (feedback process) the process 
parameters to achieve given quality standards. 
Current literature is mainly limited to process 
characterisation with no clear approach to achieve 
forward and feedback analysis. For example, in 
order to analyse the dimensional quality of sheet 
metal parts, Zhou and Cao [8] measured 28 discrete 
points with varying inner tonnage, outer tonnage 
and punch speed. The work has then been 
extended by Majeske and Hammett [4], where they 
showed the process variation related to 16 discrete 
output features (point features) for sheet metal 
stamping. Further, Zhang, et al. [9] investigated the 
effect of press tonnage, nitrogen pressure and shut 
height on waviness of the stamped part.  
Further, attempts have been made to predict and 
control springback errors by adapting neural 
network training based on finite element simulation 
or experimental data sets. Cao, et al. [10] developed 
a springback control system using artificial neural 
networks to control springback in channel forming 
process. The proposed numerical simulation results 
are validated experimentally by Viswanathan, et al. 
[11]. Liu, et al. [12] predicted springback angle of U-
shaped parts under varying process parameters. 
Few closed-loop variation control strategies have 
been reported in literature  [13].  However, the 
available neural networks approaches fail for 
complex part geometry and correlation with overall 
surface quality is missing. Some work has been also 
oriented to control stamping process by integrating 
ANN and FEM as documented in [14]. 
Recently, multivariate statistical techniques have 
also been adopted to interpret data and extract 
significant patterns. In [15] the current state-of-art in 
multiple fault diagnosis based on data-driven 
methods (such as Principal component analysis 
(PCA), correlation clustering, least squares, 
designed component analysis (DCA) and factor 
analysis) for sheet metal assembly is presented. 
While PCA is adapted to reduce the large 
dimensionality of the original data set 
(measurements), the decomposed orthogonal 
principal components may not have a physical 
interpretation related to faults. On the contrary, DCA 
requires a previous knowledge of the process in 
order to construct the fault pattern but it offers a 
close prediction for fault diagnosis and it is lesser 
sensitive to measurement noise than PCA. 
Unfortunately, there is a lack of proper methodology 
which can correlate the product and process 
parameters with the entire surface based geometric 

errors and it remains unexplored. The following 
challenges have been identified: (i) unavailability of 
a parametric approach correlating the measured 
geometric errors with product and process 
parameters; (ii) characterisation of the effect of 
individual process parameters on geometric errors; 
and, (iii) analytical representation (surrogate model) 
of the relationship between geometric errors and 
process parameters.    
This paper addresses those challenges by 
decomposing the captured data into orthogonal 
error modes and uses the modes as a parametric 
approach to represent the geometric errors.  
The reminder of the paper is organised as follows: 
Section 2 proposes the methodology, Section 3 
demonstrates the methodology with an industrial 
case study, and Section 4 draws final remarks. 
 

2 METHODOLOGY OVERVIEW  
The proposed research methodology is summarised 
into three major steps as follows: 

• STEP 1 involves the experimental 
characterisation of the stamping process by 
varying process parameters. Thereafter, the 
geometric errors of stamped parts are captured 
and deviation field is obtained. 

• STEP 2 decomposes the deviation field into 
orthogonal geometric error modes. 

• STEP 3 develops analytical surrogate model by 
linking process parameters to decomposed 
deviation field. The proposed surrogate model 
can be used to narrow down root causes of 
failure, usually unforeseen if only based on 
heuristic approaches.  

2.1 STEP 1: experimental characterisation 
Design of Experiments (DoE) is adopted to 
characterise the geometric errors under varying 
process parameter conditions. To capture geometric 
errors, 3D optical scanner is used which captures 
millions of data points (Cloud of Points-CoP) 
representing the entire surface information. To 
obtain the deviation field, the CoP is mapped onto 
the nominal CAD model. The nominal CAD model is 
represented through polygonal mesh geometry. 
Deviation field is calculated for each node of the 
mesh model, by using the morphing mesh 
technique, as originally proposed in [16]. 
The calculated deviation field is non-parametric by 
nature which cannot be directly linked to process 
parameters. Therefore, to develop a parametric 
model of the deviation field, extraction of geometric 
features from the deviation field is necessary. 
Assuming m number of mesh node, and p number 
of DoE experiments, the deviation field (D) can be 
expressed as in Equation (1), where, Dz,j denotes 
zth node deviation of  pth experimental sample.    
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2.2 STEP 2: deviation field decomposition  
Past research shows that few attempts have been 
made to develop parametric model for geometric 
errors. They can be categorised as Explicit 
Parametric Models (EPM) and Implicit Parametric 
Models (IPM). 

The Bezier’s surface, non-uniform rational basis 
spline (NURBS) patches, polynomial surface fitting 
are few EPMs where the geometric errors are 
directly controlled by key points [17] [18] [19]. These 
models fail to represent accurate reconstruction of 
geometric errors as few control points are 
insufficient to model complex 3D geometry. 
On the contrary, IPMs attempt to decompose the 
deviation fields into functional parameters. IPM uses 
various function bases (e.g., signal characterisation 
techniques) to characterise and decompose the 
geometric errors into parametric error modes [20] 
[21] [22]. Till date the developed IPM’s methods are 
mainly limited to geometric error characterisation 
[23] [24] and to assembly processes [25] [26]. 
However, there is lack of approaches to link error 
modes with stamping process parameters. 

 
Figure 2 - Pictorial representation of the 

deviation field decomposition. 

This paper implements Geometric Modal Analysis 
(GMA) [22] to decompose geometric errors into 
orthogonal error modes. Decomposed modes can 
be parameterised by means of its values to 
represent geometric variation associated with the 
parts produced through varying process parameters. 
GMA uses 3D Discrete-Cosine-Transform (3D-DCT) 
as main kernel to decompose the deviation field into 
significant error modes. Figure 2 shows the main 
steps to decompose the deviation fields into 
significant error modes. Due to orthogonality of the 
error modes, they can be varied independently to fit 
different set of geometric errors by changing the 
amplitude of the modes. A set of decomposed 
modes for p number of experiments is defined as in 
Equation (2), where n is the number of modes. The 
transformed modes is expressed as a function of the 
given deviation field, as in Equation (3), where F 
denotes the decomposition function.  
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2.3 STEP 3: analytical surrogate model 
The parametric nature of decomposed error modes 
shows clear advantage to link with the stamping 
process parameters, SP (see Equation (4)), where 
NSP is the total number of process parameters. 

To identify the relationship between process 
parameters and error modes, analytical surrogate 
model is developed for each error modes.  

{ } { }(1) (2) (p) (j)
s, j

SP

SP = SP SP SP ;  SP = SP

s = 1,2, ,N ; j = 1,2, , p∀ ∀



 
 (4) 

 
Figure 3 - Pictorial representation of analytical 

surrogate model development. 

The tth mode can be expressed as function (gt) of a 
set of stamping parameters (SP(j)). The analytical 
function (see Equation (5)), gt, is computed in two 
consecutive phases (see Figure 3): (i) model 
training; and, (ii) model development. Model 
TRAINING uses experimental data from the 
experimental characterisation (see STEP 1 of the 
methodology). Model DEVELOPMENT identifies the 
analytical relationship between process parameters 
and error modes, as stated in Equation (5). Adaptive 
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polynomial fitting, spline or Kriging methods can be 
utilized for this purpose [27]. 

( ) ( ), 1,2,j (j)
tM g SP t n= ∀ =   (5) 

(j) ( )( )jD invF M=  (6) 

By combining Equation (1) (3) and (5), a parametric 
relationship can be established between any 
deviation field and stamping parameters as noted in 
Equation (6), where, invF denotes the inverse 
decomposition function.  
 

3 INDUSTRIAL CASE STUDY 
Applicability and effectiveness of the proposed 
methodology has been demonstrated with an 
industrial case study. The selected top-hat geometry 
with nominal polygonal mesh geometry is shown in 
Figure 4(a). The steps of the methodology are 
explained as follows: 

3.1 STEP 1: experimental characterisation 
A set of top hat parts has been stamped varying 
stamping parameters (see Table 1): (i) material 
thickness (SP1); (ii) blank holding force (SP2); (iii) 
stamping speed (SP3).  

 
(a)                                    (b) 

Figure 4 - (a) Top-hat nominal mesh; (b) Deviation 
field (mm) computation for run SP(1). 

 
Experimental Runs (p) 

SP(1) SP(2) SP(3) SP(4) SP(5) SP(6) SP(7) SP(8) 

Thickness 
[mm],(SP1) 

0.6 0.6 0.6 0.6 1.2 1.2 1.2 1.2 

Holding 
Force 

[kN],(SP2) 
150 150 375 375 150 150 375 375 

Speed 
[mm/s], 
(SP3) 

10 50 10 50 10 50 10 50 

Table 1 - Experimental runs with varying process 
parameters. 

Each experimental run has been repeated for 5 
times (the average deviation field has been then 
utilised for further calculations). CoP has been 
captured using GOM optical scanner (see Figure 5). 
The deviation field for each experimental treatment 
has been computed at mesh nodes. For example, 
Figure 4(b) shows the computed deviation field for 
experimental run SP(1). 

 
Figure 5 - Experimental setup used to measure 

CoP of stamped parts. 

3.2 STEP 2: deviation field decomposition 
The obtained deviation field for each experimental 
run is decomposed using the GMA. Figure 6 shows 
a sample set of transformed modes, used as 
parameters to map with process parameters. 

 
Figure 6 - Deviation field decomposition for each 

experimental run into error modes. 

3.3 STEP 3: analytical surrogate model 
For each error mode analytical surrogate model has 
been developed. For this purpose polynomial 
regression with automatic degree calculation and 
robust fitting based on automatic cross validation 
has been implemented. Figure 7 illustrates the 
parametric surrogate models (contour plots) for 
modes in relation with varying blank holding force 
(SP2) and stamping speed (SP3). 
In order to prove the accuracy of the proposed 
methodology the original deviation field has been 
compared against reconstructed surface by using 
equation (6). Figure 8 shows the results of original 
deviations, reconstructed deviations and error plot 
(between original and reconstructed deviations). 
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Figure 7 - Surrogate model linking error modes 

and process parameters (at SP1=0.6 mm). 

 
Figure 8 - Original deviation field vs. reconstructed 

field (deviations in mm). 

The proposed methodology is a step forward for 
predicting geometric errors based on the given set 
of process parameters (not used during the training 
step). For example, new parameter set (e.g., 
thickness, SP1= 0.6 mm; blank holding force, SP2= 
250 kN; and, stamping speed, SP3= 30 mm/s) has 
been selected in between SP(1) and SP(4) to predict 
the overall geometric deviations [in mm] and is 
shown in Figure 9.  

 
Figure 9 - Prediction of geometric errors for new 

parameters in between SP(1) and SP(4). 

4 CONCLUSION AND FINAL REMARKS 
The proposed methodology allows to predict 
geometric errors by correlating stamping process 
parameters and monitoring data (such as cloud of 
points). Geometric errors are defined as deviation 
field using CoP data which are non-parametric in 
nature. Therefore, deviation field decomposition has 
been used to convert CoP data into functional 
parametric error modes. Subsequently, surrogate 
model technique has been implemented to link 
geometric errors and process parameters.     
The proposed methodology significantly explores 
and contributes to the following areas: 

• the developed model-driven technique 
represents a step towards automatic closed-loop 
process control for stamping process; 

• costly and time-consuming trial-and-error 
approaches can be reduced by automatic 
selection and tuning of process parameters; 

• the model-driven approach can forecast 
geometrical variations for given set of process 
parameters (forward process), and consequently 
can optimise (feedback process) the process 
parameters to achieve given quality standards.  

Future investigations will be focused on 
experimental validation of the proposed 
methodology and root cause identification of 
global/local geometric errors occurring during 
production. 
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