531 research outputs found

    Modelling Rod-like Flexible Biological Tissues for Medical Training

    Get PDF
    This paper outlines a framework for the modelling of slender rod-like biological tissue structures in both global and local scales. Volumetric discretization of a rod-like structure is expensive in computation and therefore is not ideal for applications where real-time performance is essential. In our approach, the Cosserat rod model is introduced to capture the global shape changes, which models the structure as a one-dimensional entity, while the local deformation is handled separately. In this way a good balance in accuracy and efficiency is achieved. These advantages make our method appropriate for the modelling of soft tissues for medical training applications

    Finite volume approach for the instationary Cosserat rod model describing the spinning of viscous jets

    Full text link
    The spinning of slender viscous jets can be described asymptotically by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas the well-established string models possess only solutions for certain choices of parameters and set-ups, the more sophisticated rod model that can be considered as Ï”\epsilon-regularized string is generally applicable. But containing the slenderness ratio Ï”\epsilon explicitely in the equations complicates the numerical treatment. In this paper we present the first instationary simulations of a rod in a rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which the hitherto investigations longed. So we close an existing gap in literature. The numerics is based on a finite volume approach with mixed central, up- and down-winded differences, the time integration is performed by stiff accurate Radau methods

    Modelling methodology of MEMS structures based on Cosserat theory

    Full text link
    Modelling MEMS involves a variety of software tools that deal with the analysis of complex geometrical structures and the assessment of various interactions among different energy domains and components. Moreover, the MEMS market is growing very fast, but surprisingly, there is a paucity of modelling and simulation methodology for precise performance verification of MEMS products in the nonlinear regime. For that reason, an efficient and rapid modelling approach is proposed that meets the linear and nonlinear dynamic behaviour of MEMS systems.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    A class of nonholonomic kinematic constraints in elasticity

    Get PDF
    We propose a first example of a simple classical field theory with nonholonomic constraints. Our model is a straightforward modification of a Cosserat rod. Based on a mechanical analogy, we argue that the constraint forces should be modeled in a special way, and we show how such a procedure can be naturally implemented in the framework of geometric field theory. Finally, we derive the equations of motion and we propose a geometric integration scheme for the dynamics of a simplified model.Comment: 28 pages, 7 figures, uses IOPP LaTeX style (included) (v3: section 2 entirely rewritten

    Energy minimizers of the coupling of a Cosserat rod to an elastic continuum

    Get PDF
    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to an elastic continuum. The coupling conditions accommodate for the diïŹ€erence in dimension between the two models. Also, the Cosserat rod model incorporates director variables, which are not present in the elastic continuum model. Two alternative coupling conditions are proposed, which correspond to two diïŹ€erent conïŹguration trace spaces. For both we show existence of solutions of the coupled problems. We also derive the corresponding conditions for the dual variables and interpret them in mechanical terms

    Lie Symmetry Analysis for Cosserat Rods

    Get PDF
    We consider a subsystem of the Special Cosserat Theory of Rods and construct an explicit form of its solution that depends on three arbitrary functions in (s,t) and three arbitrary functions in t. Assuming analyticity of the arbitrary functions in a domain under consideration, we prove that the obtained solution is analytic and general. The Special Cosserat Theory of Rods describes the dynamic equilibrium of 1-dimensional continua, i.e. slender structures like fibers, by means of a system of partial differential equations.Comment: 12 Pages, 1 Figur

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure
    • 

    corecore