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1. Introduction

Motivation Nonholonomic constraints in mechanical systems have a long and illustrious

history going back to the work of Hertz at the end of the nineteenth century. For

nonholonomic constraints in field theories, the case is not so clear, and to the best of

our knowledge, no convincing example has been proposed to this day. In this paper,

we intend to rectify this omission by giving a simple example of a continuum theory

with nonholonomic constraints. The basic model is that of a Cosserat rod, a special

kind of continuum theory. This rod moves in a horizontal plane which is supposed to

be sufficiently rough, so that the rod rolls without sliding.

In the Cosserat theory one assumes that the laminae at right angles to the centerline

are rigid discs. The nonholonomic Cosserat rod therefore touches the plane along a

curve (rather than in an open subset of the plane, which would be the case for a fully

three-dimensional continuum) and the nonholonomic constraint translates to the fact

that the instantaneous velocity of these contact points is zero.

Our example can also be modeled as the continuum limit of a nonholonomic mechanical

system. Consider N rigid discs rolling vertically without sliding on a horizontal plane,

and assume that these discs are interconnected by flexible beams of length `/N , as in

figure 1. Now let the number of discs go to infinity, while keeping the total length `

fixed: the result is the nonholonomic Cosserat rod.

This mechanical model is interesting for a number of reasons. First of all, the

nonholonomic field equations are derived by varying the action with respect to admissible

variations, and this obviously requires the specification of a bundle of admissible

variations, or equivalently, a bundle of reaction forces. In mechanics, this is commonly

done by taking recourse to the principle of d’Alembert, which states that the virtual

work of the reaction forces is zero. In field theory, this principle can be interpreted in

a number of non-equivalent ways, and it is the mechanical model which will eventually

determine our choice.

Secondly, our model is a counterexample to the often-held belief that constraints in

classical field theories are necessarily vakonomic. In sections 1.1 and 1.2 these two

aspects are treated more in detail.

Plan of the paper After giving a quick overview of jet bundle theory, we derive the

Euler-Lagrange equations in the presence of nonholonomic constraints. Our treatment

relies on the fact that the space of independent variables is a product of space and time,

and that the fields are sections of a trivial fibre bundle. This is the case, for instance,

for nonrelativistic elasticity. These assumptions allow us to split the jet bundle in a part

involving spatial derivatives, and a part involving derivatives with respect to time. Using

this natural splitting, we propose a bundle of reaction forces, based on the mechanical

model (to be outlined in section 1.2). As we shall see, these reaction forces are very
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Figure 1. Geometry of the constrained rod

similar to the ones used in mechanics.

The remainder of the paper is then devoted to the study of a specific example of a

nonholonomic field theory. First, we give an outline of the theory of Cosserat rods

moving in the plane, and we pay particular attention to aspects of symmetry. In

the second part, we then outline a suitable class of nonholonomic constraints, and we

derive the equations of motion. The paper concludes with a brief foray into the field

of geometric integration, where a simple explicit algorithm for the integration of the

nonholonomic dynamics is proposed.

1.1. Relation with other approaches

In a number of papers [1, 2], Bibbona, Fatibene, and Francaviglia contrasted the

vakonomic and the nonholonomic treatments for classical field theories, and showed

that for relativistic hydrodynamics only the former gives correct results. Another typical

example of a vakonomic constraint is the incompressibility constraint in nonrelativistic

fluid dynamics, treated by Marsden et al. [3]. Many more can be found in Antman’s

book [4] and in the papers by Garćıa et al. [5].

In contrast, our field theory arises as the continuum limit of the vertically rolling

disc, a textbook example of a nonholonomic mechanical system. These nonholonomic

constraints survive in the continuum limit and hence provide a very strong motivation

for the study of nonholonomic techniques in field theories.

In previous papers (see [6, 7, 8, 9]) various theoretical frameworks were established for

the study of nonholonomic field theories. Our model fits into these descriptions, but

involves a number of additional ingredients which cannot be derived from these theoretic

considerations alone. In particular the bundle of reaction forces takes a special form,

motivated by similar definitions from mechanics.

It should also be noted that similar theories as ours were explored before by Vignolo and

Bruno (see [10]). They considered constraints depending only on the time derivatives of

the fields, and their resulting analysis is therefore more direct. However, the underlying

philosophy is the same: the constraints are “(. . . ) purely kinetic restrictions imposed

separately on each point of the continuum”.
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1.2. Modeling the constraint forces

Nonholonomic mechanical systems The mechanical background is not essential for the

description of the continuum theory, but rather serves as a justification for some of our

definitions. In particular, it provides a number of valuable clues regarding the type

of constraint forces needed to maintain such a nonholonomic constraint. Let S be the

configuration space of the vertically rolling disc, so that the configuration space for

the entire model, consisting of N discs, is the product space SN . Denote by ϕα(i) the

constraints of rolling without sliding imposed on the ith wheel; ϕα(i) is a function on

TSN .

With these conventions, a motion of the system is a curve t 7→ c(t) in SN , and a variation

of such a motion c is then a vector field (X1, X2, . . . , XN) on SN along c, i.e. a collection

of maps Xi : R→ TS such that Xi(t) ∈ Tci(t)S for all i = 1, . . . , N , where ci := pri ◦ c.

Let us now consider the one-forms Φα
(i) := J∗(dϕα(i)), where J is the vertical

endomorphism on TSN . In geometric mechanics, linear combinations of these one-forms

represent the possible reaction forces at the ith wheel; the bundle F , defined as

F :=
〈
Φα

(1)

〉
⊕
〈
Φα

(2)

〉
⊕ · · · ⊕

〈
Φα

(N)

〉
then represents the totality of all reaction forces along the rod. In coordinates, the

one-forms Φα
(i) are given by

Φα
(i) =

∂ϕα(i)
∂ẏ(i)

dy(i)

(
=
∑
a

∂ϕα(i)
∂ẏa(i)

dya(i)

)
for all i = 1, . . . , N. (1)

Here, (y(i), ẏ(i)) is a coordinate system on the ith factor of TSN . Note that there is no

summation over the index i in (1), and that the summation over individual coordinates

is implicit, as shown in the term between brackets.

Knowing the precise form of the bundle of reaction forces F is important because the

nonholonomic equations of motion are derived by varying the action with respect to

admissible variations. Moreover, the principle of d’Alembert shows us that a variation

is admissible if it belongs to the annihilator of F , i.e. a variation (X1, . . . , XN) of c is

admissible if 〈
X̄i(t), α(c(t))

〉
= 0, for all (i, t) ∈ {1, . . . , N} × R and α ∈ F, (2)

where X̄i is a lift of Xi to T (TS) such that TτS ◦ X̄i = Xi. Note that there is again no

summation over i. In coordinates, this is equivalent to

vi
∂ϕ(i)

∂ẏ(i)

for all i = 1, . . . , N, (3)

where we have written Xi = vi
∂

∂y(i)
.
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In the next paragraph, we will let the number N go to infinity, while keeping the length `

constant. The result is a field theory, and a reaction force will be a continuous assignment

of a one-form on TS to each point of the centerline of the rod. This definition will be

the starting point for our treatment in the main body of the text; once we know the

bundle of reaction forces, we can then derive the nonholonomic field equations.

The continuum model In the continuum limit, a field is a map φ from [0, `]×R to S. It

is customary in classical field theory to view these fields as sections of a trivial bundle π,

whose base space is [0, `]×R, and with standard fibre S. The role of the velocity space

is then played by the first jet bundle J1π, and the constraints ϕ(i) from the previous

paragraph are replaced by a constraint function ϕα on J1π.

In field theory, a variation of a field φ is now a map X : [0, `] × R → TS with the

property that X(s, t) ∈ Tφ(s,t)S; in other words, a vector field along φ. Taking our cue

from (3), we say that a variation X is admissible if the following holds (in coordinates):

X(s, t)a
∂ϕα

∂ya0
= 0,

where we have written X(s, t) = X(s, t)a ∂
∂ya

.

This condition can be rewritten in intrinsic form by using the following observation: as

we shall show below, there exists a natural isomorphism between the first jet bundle and

the product bundle R × [J1(M,S) ×S TS]. Now, let J be the vertical endomorphism

on TS. This map has a trivial extension to the whole of R× [J1(M,S)×S TS], and by

using the natural isomorphism with J1π, we obtain a map J∗ from T ∗(J1π) to itself.

The bundle F of constraint forces is then generated by the forms Φα := J∗(dϕα). The

similarity with the mechanical case is obvious.

2. Lagrangian field theories

In this paper, we will mostly be concerned with the description of elastic bodies. The

geometric description of these theories is well known and we refer to [11, 12] for more

information.

Let M be a smooth n-dimensional compact manifold, and let S be a general smooth

m-dimensional manifold, with n ≤ m. The points of M are “material points”, labelling

the points of the body, whereas S is the physical space in which the body moves. In

most cases, S will be the Euclidian space R3, whereas M can be one-, two-, or three-

dimensional, corresponding to models of rods, shells, and three-dimensional continua.

Furthermore, M is assumed to be oriented, with volume form ηM .

On M we consider a coordinate system (xi) , i = 1, . . . , n, such that ηM can locally be

written as ηM = dx1∧· · ·∧dxn, and on S we take a coordinate system (ya), a = 1, . . . ,m.
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2.1. The bundle picture

In this section, we give a brief overview of the theory of jet bundles. For an introduction

to classical field theory using jet bundles, we refer to [13, 14, 15] and the references

therein.

Consider the fibre bundle π : Y → X, where X := R × M , Y := X × S, and the

projection π is the projection onto the first factor. The manifold X is equipped with a

coordinate system denoted by (xµ), where µ = 0, . . . , n, and such that x0 := t. Similarly,

S has a coordinate system (xµ, ya) which is adapted to the projection in the sense that

the projection π is locally given by pr2 : (xµ, ya) 7→ (xµ). Note that M is equipped with

a volume form η = dt ∧ ηM , which we write in coordinates as dn+1x := dx0 ∧ · · · ∧ dxn.

We will employ the following short-hand notation:

dnxµ :=
∂

∂xµ
η = (−1)µdx0 ∧ · · · ∧ dxµ−1 ∧ dxµ+1 ∧ · · · ∧ dxn.

The first jet bundle J1π is the appropriate stage for Lagrangian first-order field theories.

Its elements are equivalence classes of sections of π, where two sections are said to be

equivalent at a point x ∈ X if they have the same value at x and if their first-order

Taylor expansions at x agree. The equivalence class of a section φ at x is denoted by

j1
xφ. Hence, J1π is naturally equipped with a projection π1,0 : J1π → Y , defined by

π1,0(j
1
xφ) = φ(x), and a projection π1 : J1π → X, defined by π1(j

1
xφ) = x. The induced

coordinate system on J1π is written as (xµ, ya; yaµ).

Furthermore, we define the manifold J1(M,S) of jets of mappings from M to S as

the first jet manifold of the trivial bundle pr1 : M × S → M . The usual jet bundle

projections π1 and π1,0 induce projections πM , onto M , and πS, onto S, respectively.

Because of the special structure of the bundle π, viz. the fact that X is the product

R×M and that π is trivial, J1π can be written in a special form. Recall that the fibre

coordinates of J1π represent the derivatives of the fields with respect to space and time:

the decomposition of lemma 2.1 then provides an invariant way of making the distinction

between time derivatives and spatial derivatives. Such an invariant decomposition is not

possible for general jet bundles.

The bundle R × [J1(M,S) ×S TS], a fibered product, consists of triples (t, κ, v) such

that πS(κ) = τ(v), where τ : TS → S is the tangent bundle projection. It is

equipped with a projection π̂ onto Y defined as π̂(t, κ, v) = (t, πM(κ); τ(v)). Moreover,

π̂ : R× [J1(M,S)×S TS]→ Y is an affine bundle.

Lemma 2.1. The first jet bundle J1π is isomorphic, as an affine bundle over Y =

R×M × S, to R× [J1(M,S)×S TS].

Proof: A more general statement can be found in section 6B of [16].

Take any point (t,m, s) in R×M×S and consider a 1-jet γ such that π1,0(γ) = (t,m, s).

An alternative interpretation of γ is that of a linear map γ : T(t,m)(R ×M) → TsS.



A class of nonholonomic kinematic constraints in elasticity 7

Consider now the map Ψ(t,m,s), mapping γ to the element of R× [J1(M,S)×S TS] given

by

Ψ(t,m,s)(γ) =

(
t, γ(0t, ·), γ

(
∂

∂t

∣∣∣
t
, 0m

))
,

where 0m and 0t are the zero vectors in TmM and in TtR, respectively. It is easy to

check that the map Ψ is an isomorphism of affine bundles. 2

In coordinates (ya, ẏa) on TS and (xi, ya; ya;i) on J1(M,S), the isomorphism of lemma 2.1

is given by (xµ, ya; yaµ) 7→ (t;xi, ya, ya;i = yai ; y
a, ẏa = ya0).

For future reference, we remark here that the tangent bundle TS is equipped with a 1-1

tensor field, denoted by J : T (TS)→ T (TS), and given in coordinates by

J =
∂

∂ẏa
⊗ dya.

An intrinsic definition can be found in [17]. The adjoint of J will be denoted by J∗ and

is a map from T ∗(TS) to itself defined by 〈J∗(α), v〉 = 〈α, J(v)〉, for all v ∈ T (TS).

In section 3, we will encounter higher-order field theories, in particular of order 2. In

order to be able to deal with this type of field theory, we introduce the manifold Jkπ of

kth order jets. The elements of Jkπ are again equivalence classes of sections of π, where

two sections are equivalent at x ∈ X if they have the same value at x and if their Taylor

expansions at x agree up to the kth order. The kth order jet bundle is equipped with

a number of projections πk,l : Jkπ → J lπ (where l ≤ k), constructed by “truncating”

to order l the Taylor expansion defining an element of Jkπ. A detailed account of jet

bundles is provided in [18].

As a matter of fact, we will only need the third-order jet manifold J3π. A natural

coordinate system on J3π is given by (xµ, ya; yaµ; yaµν ; y
a
µνκ), for a = 1, . . . ,m and

µ, ν, κ = 0, . . . , n, with the convention that

yaµν = yaνµ and yaµνκ = yaσ(µνκ)

for any permutation σ of the three indices (expressing the commutativity of partial

derivatives).

2.2. Covariant field theories of first and second order

2.2.1. First-order field theories The geometry of first-order field theories has been

studied by many authors (see [3, 14, 15, 18, 19] and the references therein for a non-

exhaustive survey) and is by now well established. In this section, we recall some basic

constructions.

Consider a first-order Lagrangian L : J1π → R. There exists an (n + 1)-form ΘL on

J1π, called the Cartan form. Different intrinsic constructions of ΘL can be found in
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[13, 14, 18], but here its coordinate expression will suffice:

ΘL = Ldn+1x+
∂L

∂yaµ
(dya − yaνdxν) ∧ dnxµ. (4)

Let us also define the (n+ 2)-form ΩL := −dΘL on J1π.

Let S be the action functional defined as

S(φ) =

∫
U

L(j1φ)η, (5)

for each section φ of π with compact support U . We now look for critical points of this

functional under arbitrary variations, which are defined as follows.

Definition 2.2. An infinitesimal variation of a field φ defined on U is a vertical vector

field V defined in a neighbourhood of φ(U) in Y , with the added restriction that V (y) = 0

for all y ∈ φ(∂U).

An infinitesimal variation gives rise to a local one-parameter group of diffeomorphisms

Φε : Y → Y defined in a neighbourhood of φ(U). The fact that V vanishes on φ(∂U)

implies that Φε(y) = y for all y ∈ φ(∂U). The composition of Φε with a section φ of π

is hence a new section of π, denoted by φε.

The critical points of S therefore satisfy

0 =
d

dε
S(j1(Φε ◦ φ))

∣∣∣
ε=0

=

∫
U

(
∂L

∂ya
− d

dxµ
∂L

∂yaµ

)
V adn+1x. (6)

As the variations V are arbitrary, we obtain the usual Euler-Lagrange equations for a

section φ of π:[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = 0.

These partial differential equations can be rewritten in intrinsic form by means of the

Cartan form (see [13, 14, 19]):

Theorem 2.3. A section φ of π is a critical point of the action S, or, equivalently,

satisfies the Euler-Lagrange equations, if and only if

(j1φ)∗(iWΩL) = 0 (7)

for all vector fields W on J1π.

Symmetries and Noether’s theorem Let G be a Lie group acting on X by

diffeomorphisms, and on Y by bundle automorphisms. For g ∈ G, consider the bundle

automorphism Φg : Y → Y with base map fg : X → X. The prolongation to J1π of
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the action of G is then defined in terms of bundle automorphisms j1Φg : J1π → J1π,

defined by

j1Φg(j
1
xφ) = j1

fg(x)(Φg ◦ φ ◦ f−1
g ).

Consider an element ξ of g and denote the infinitesimal generator of the prolonged

action corresponding to ξ by ξJ1π. Note that ξJ1π is just j1ξY , the prolongation of

the infinitesimal generator on Y corresponding to ξ. We recall that if ξY is given in

coordinates by

ξY = ξµ
∂

∂xµ
+ ξa

∂

∂ya
,

then its prolongation j1ξY is defined as

j1ξY = ξµ
∂

∂xµ
+ ξa

∂

∂ya
+

(
dξa

dxµ
− yaν

dξν

dxµ

)
∂

∂yaµ
.

We say that a Lagrangian L is invariant under the prolonged action of G if L ◦ j1Φg =

(det[Dfg])
−1L for all g ∈ G and γ ∈ J1π, where det[Dfg] is the Jacobian of fg. This

condition can be expressed concisely as (j1Φg)
∗(Lη) = Lη. It can be shown that

invariance of the Lagrangian implies invariance of the Cartan (n + 1)-form, expressed

as j1Φ∗gΘL = ΘL for all g ∈ G, or, infinitesimally,

LξJ1π
ΘL = 0. (8)

Let L be a G-invariant Lagrangian. Associated to this symmetry is a map defined as

JLξ := ξJ1π ΘL. We now define the momentum map JL : J1π → Ωn(J1π) ⊗ g∗ by〈
JL, ξ

〉
= JLξ . The importance of the momentum map lies in the following theorem,

which we have taken here from [14, thm. 4.7]:

Proposition 2.4 (Noether). Let L be an invariant Lagrangian. For all ξ ∈ g, the

following conservation law holds:

d[(j1φ)∗JLξ ] = 0,

for all sections φ of π that are solutions of the Euler-Lagrange equations (7).

A comprehensive account of symmetries in classical field theory can be found in [20].

2.2.2. Second-order field theories Many of the Lagrangians arising in elasticity are of

higher order. In particular, we will encounter a second-order model in section 3. In some

papers (see [18, 21] and the references therein) a geometric framework for second-order

field theories has been developed and we now recall a number of relevant results.
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A second-order Lagrangian is a function L on J2π. The corresponding second-order

Cartan (n+ 1)-form is a form on J3π, whose coordinate expression reads

ΘL =

[
∂L

∂yaν
− d

dxµ

(
∂L

∂yaνµ

)]
dya ∧ dnxν +

∂L

∂yaνµ
dyaν ∧ dnxµ

+

[
L− ∂L

∂yaν
yaν +

d

dxµ

(
∂L

∂yaνµ

)
yaν −

∂L

∂yaνµ
yaνµ

]
dn+1x. (9)

Many results from the previous section on first-order field theories carry over

immediately to the higher-order case. The action S is defined as

S(φ) =

∫
U

L(j2φ)η,

where φ is again a section of π with compact support U . A section φ is a critical point

of this functional if and only if it satisfies the second-order Euler-Lagrange equations:[
∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)
+

d2

dxµdxν

(
∂L

∂yaµν

)]
(j4φ) = 0. (10)

There also exists an intrinsic formulation of the Euler-Lagrange equations. We quote

from [21]:

Proposition 2.5. Let L be a second-order Lagrangian. A section φ of π is a solution

of the second-order Euler-Lagrange equations if and only if (j3φ)∗(W ΩL) = 0 for all

vector fields W on J3π. Here, ΩL := −dΘL is the second-order Poincaré-Cartan form.

Remark 2.6. It should be noted that there always exists a Cartan form for higher-

order field theories, but that uniqueness is not guaranteed (contrary to the first-order

case). However, by imposing additional conditions, Saunders [18] was able to prove

uniqueness for second-order field theories. This unique form, given in (9), was derived

by Kouranbaeva and Shkoller [21] by means of a variational argument. �

The action of a Lie group G acting on Y by bundle automorphisms gives rise to a

prolonged action on J2π. If a Lagrangian is G-invariant with respect to this action, then

the momentum map JL ∈ Ωn(J3π)⊗ g∗, defined as
〈
JL, ξ

〉
= JLξ , where JLξ = ξJ3πΘL,

gives rise to a conservation law: d[(j3φ)∗JLξ ] = 0 for all sections φ of π that are solutions

of the Euler-Lagrange equations (10).

2.3. Nonholonomic field theories

2.3.1. The field equations We now derive the Euler-Lagrange equations in the presence

of nonholonomic constraints. The nonholonomic problem involves the specification of

two distinct elements: the constraint manifold C, and the bundle of reaction forces F .

Following Marle [22], we impose no a priori relation between C and F .

The constraint manifold C is a submanifold of J1π of codimension k and represents

the external constraints imposed on the system. For the sake of definiteness, we will
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assume that C projects onto the whole of Y (i.e. π1,0(C) = Y ), and that the restriction

(π1,0)|C : C → Y is a fibre bundle. This need not be an affine subbundle of J1π. For

the benefit of clarity, C is assumed to be given here by the vanishing of k functionally

independent functions ϕα on J1π:

C := {γ ∈ J1π : ϕα(γ) = 0 for α = 1, . . . , k}.

The treatment can be easily extended to the case where the ϕαs are only locally defined.

Secondly, we assume the existence of a k-dimensional codistribution F on J1π, along

C, of reaction forces. The elements of F are maps α : C → T ∗S such that α(γ) ∈ T ∗s S,

where s = (pr2 ◦ π1,0)(γ). If we denote by πTS : J1π → TS the composition

πTS := pr3 ◦ Ψ, where Ψ is the isomorphism defined in lemma 2.1, then the elements

of F can equivalently be viewed as one-forms along the projection πTS. By pull-back,

these one-forms then induce proper one-forms defined along C. In local coordinates, an

element α of F can be represented as α = Aa(x
µ, ya, yaµ)dya, where the Aa are local

functions on C.

We define the annihilator F ◦ of F as the following subbundle of TJ1π along C: for all

γ ∈ C,

F ◦γ := {vγ ∈ TγJ1π : 〈αγ, vγ〉 = 0 for all αγ ∈ Fγ}.

An arbitrary element vγ of F ◦γ has the following form:

vγ = vµ
∂

∂xµ
+ va

∂

∂ya
+ vaµ

∂

∂yaµ
, where vaAαa (γ) = 0.

Here, we have chosen a basis of sections Aαadya of F . No further restrictions are imposed

on the coefficients vµ and vaµ, but note that this is not the end of the story; see the

appendix.

The local work done by a “force” α along a variation V (see definition 2.2) is then given

by the pairing 〈α(γ), j1V (γ)〉, where γ ∈ Im j1φ, and the global work done at time t by

the integral
∫
M

(j1φt)
∗ 〈α, j1V 〉 ηM , where φt is the instantaneous configuration defined

by φt(u) := φ(t, u).

Definition 2.7. A variation V of a field φ defined over an open subset U with compact

closure is admissible if (j1φ)∗(j1V α) = 0 for all α ∈ F .

Definition 2.8. A local section φ of π, defined on an open subset U ⊂ X with compact

closure, is a solution of the nonholonomic problem determined by L, C, and F if

j1φ(U) ⊂ C and (6) holds for all admissible variations V of φ.

It follows from (6) that a local section φ is a solution of the nonholonomic problem if it

satisfies the nonholonomic Euler-Lagrange equations :[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λαA

α
a (j1φ) and ϕα(j1φ) = 0. (11)
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Here, λα are unknown Lagrange multipliers, to be determined from the constraints.

This is proved below.

Theorem 2.9. Let φ be a section of π. If Im j1φ ⊂ C, then the following assertions are

equivalent:

(a) φ is a stationary point of the action (5) under admissible variations;

(b) φ satisfies the Euler-Lagrange equations (11);

(c) for all π-vertical vector fields V such that j1
γV ∈ F ◦γ for all γ ∈ C,

(j1φ)∗(j1V ΩL) = 0. (12)

Proof: Let us first prove the equivalence of (a) and (c). For arbitrary, not necessarily

admissible variations, the following result holds (this is equation 3C.5 in [14]):

d

dε
S(φε)

∣∣∣
ε=0

= −
∫
X

(j1φ)∗(j1V ΩL).

For admissible variations, we have therefore∫
X

(j1φ)∗(j1V ΩL) = 0.

Now, we may multiply V by an arbitrary function on X and this result will still hold

true. The fundamental lemma of the calculus of variations therefore shows that

(j1φ)∗(j1V ΩL) = 0, (13)

for all admissible variations V . By using a partition of unity as in [14], it can then be

shown that (12) holds for all π-vertical vector fields V such that 〈j1V, α〉 = 0 for all

α ∈ F .

The equivalence of (b) and (c) is just a matter of writing out the definitions. In

coordinates, the left-hand side of (12) reads

(j1φ)∗(j1V ΩL) = V a(j1φ)

(
∂L

∂ya
(j1φ)− d

dxµ
∂L

∂yaµ
(j1φ)

)
dn+1x,

and this holds for all variations j1V ∈ F ◦. Therefore, if φ satisfies (12), then there exist

k functions λα such that

∂L

∂ya
(j1φ)− d

dxµ
∂L

∂yaµ
(j1φ) = λαA

α
a (j1φ).

The converse is similar. 2

Remark 2.10. In (12), only prolongations of vertical vector fields were considered,

whereas in similar expressions in theorem 2.3 and proposition 2.5, arbitrary vector fields

occurred. This is due to the fact, also mentioned in the appendix, that only vertical

variations are considered.
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For the derivation of the nonholonomic Euler-Lagrange equations, it is enough to

consider only vertical variations. However, if one wants to prove the nonholonomic

Noether theorem for symmetries that act nontrivially on the base space, one needs an

expression like (12) but with j1V replaced by a vector field W which is not necessarily

the prolongation of a vertical vector field. As we point out in the appendix, this can be

done, but then one needs to modify the definition of F . �

2.3.2. The Chetaev principle In section 2.3.1, we defined reaction forces as certain

maps from C to T ∗S, but their exact nature was left unspecified. We now conclude our

derivation of the nonholonomic field equations by proposing a concrete definition for

these reaction forces. As will become clear in a moment, this definition is formally

identical to the one used in mechanics; roughly speaking, the reaction forces are

constructed by composing dϕα with the vertical endomorphism J on TS, which is what

one might call the Chetaev principle.

Indeed, the vertical endomorphism J on TS trivially extends to a (1, 1)-tensor Ĵ on

R× [J1(M,S)×S TS], defined as

Ĵ(α, β, γ) := (0, 0, J(γ)), (14)

where α ∈ T ∗t R, β ∈ T ∗uJ
1(M,S), and γ ∈ T ∗v (TS) (and where (t, u, v) ∈ R ×

[J1(M,S)×S TS]). We denote the adjoint of this map as Ĵ∗.

Let ϕα be the k constraint functions. By means of the isomorphism Ψ of lemma 2.1,

these functions induce k functions on R × [J1(M,S) ×S TS], which we also denote by

ϕα.

Definition 2.11. The bundle of reaction forces F is the co-distribution on J1π locally

generated by the following forms: F = Span(Φα), where

Φα := Ψ∗[Ĵ∗(dϕα)].

In local coordinates on J1π, the generating forms Φα are given by

Φα =
∂ϕα

∂ya0
dya. (15)

This corresponds to the coordinate expressions based on the mechanical analogue:

compare, for instance, with (1). Again, we emphasize that there is an obvious distinction

between spatial derivatives and derivatives with respect to time.

Using these reaction forces, the nonholonomic Euler-Lagrange equations become[
∂L

∂ya
− d

dxµ
∂L

∂yaµ

]
(j2φ) = λα

∂ϕα

∂ya0
(j1φ) and ϕα(j1φ) = 0,

where the λα are again a set of unknown Lagrange multipliers, to be determined from

the constraints.
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Figure 2. Geometry of the constrained rod

3. A Cosserat-type model

The theory of Cosserat rods constitutes an approximation to the full three-dimensional

theory of elastic deformations of rod-like bodies. Originally conceived at the beginning

of the twentieth century by the Cosserat brothers, it laid dormant for more than fifty

years until it was revived by the pioneers of rational mechanics (see [11, §98] for an

overview of its history). It is now an important part of modern nonlinear elasticity and

its developments are treated in great detail for instance in [4], which we follow here.

A Cosserat rod can be visualised as specified by a curve s 7→ r(s) in R3, called the

centerline, to which is attached a frame {d1(s),d2(s),d3(s)}, called the director frame

(models with different numbers of directors are also possible). The rough idea is that

the centerline characterizes the configuration of the rod when its thickness is neglected,

whereas the directors model the configuration of the laminae transverse to the centerline.

In the Cosserat theory, the laminae are assumed to deform homogeneously, and therefore

the specification of a director frame in R3, fixed to a lamina, completely specifies the

configuration of that lamina.

In the special case where the laminae are rigid discs at right angles to the centerline,

one can choose the director frame {d1,d2,d3} to be orthogonal with, in addition, d2

and d3 of unit length (attached to the laminae) and d1 aligned with r′(s), the tangent

vector to the centerline. If, in addition, the centerline is assumed to be inextensible, so

that we may choose the parameter s to be arclength, d1 is also of unit length and the

director frame is orthonormal. In this case, the specification of, say, d2 is enough to

determine a director frame: putting d1 ≡ r′, we then know that d3 = d1 × d2. Here

and in the following, a prime (′) denotes derivation with respect to s.

Here, we will consider the case of a Cosserat rod with an inextensible centerline and

rigid laminae. In addition, we will assume that the centerline is planar in the (x, y)-

plane, which will allow us to eliminate the director frame almost completely. The result

is a Lagrangian field theory of second order, to which the results of section 2.2 can be

applied.
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3.1. The planar Cosserat rod

Consider an inextensible Cosserat rod of length ` equipped with three directors. If we

denote the centerline at time t as s 7→ r(t, s), inextensibility allows us to assume that

the parameter s is the arclength. Secondly, we can take the director frame {d1,d2,d3}
to be orthonormal, such that d1 is the unit tangent vector r′. We will not take the effect

of gravity into account.

In addition, we now assume that the centerline is a planar curve moving in the horizontal

(x, y)-plane, i.e. r(t, s) can be written as (x(t, s), y(t, s), 0). We introduce the slope

ϕ(t, s) of the centerline as (cosϕ, sinϕ) = (x′(t, s), y′(t, s)). Furthermore, we define the

angle θ(t, s), referred to as the torsion of the rod, as the angle subtended between ez
and d3. The director frame is completely determined once we know the slope ϕ(s, t)

and the torsion θ(s, t).

The specific constraints imposed on our rod model therefore allow us to eliminate the

director frame in favour of the slope ϕ and the torsion θ. Furthermore, as we shall see,

the slope ϕ is related to the curvature of the centerline. Note that, in formulating the

dynamics, we still have to impose the inextensibility condition (x′)2 + (y′)2 = 1.

Remark 3.1. Note that θ has nothing to do with the usual geometric concept of torsion

of a curve in R3, and neither is θ related to the concept of shear in (for example) the

theory of the Timoshenko beam. �

3.2. The dynamics

As the director frame is orthonormal, there exists a vector u, defined by d′i = u × di,

called the strain or Darboux vector. With the conventions from the previous section, u

takes the following form:

u = θ′d1 + ϕ′ez.

(u can be thought of as an “angular momentum” vector, but with time-derivatives

replaced by derivatives with respect to arclength.)

The dynamics of our rod model can be derived from a variational principle. The kinetic

energy is given by

T =
1

2

∫ `

0

(
ρ(s)(ẋ2 + ẏ2) + αθ̇2

)
ds,

where α is an appropriately chosen constant. Here, the mass density is denoted by ρ,

and will be assumed constant from now on.

For a hyperelastic rod, the potential energy is of the form

V =

∫ `

0

W (u1, u2, u3)ds,
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where W (u1, u2, u3) is called the stored energy density, and the ui are the components

of u relative to the director frame: ui = u · di. In the simplest case, of linear elasticity,

W is a quadratic function of the strains:

W (u1, u2, u3) =
1

2

(
K1u

2
1 +K2u

2
2 +K3u

2
3

)
. (16)

We will not dwell on the physical interpretation of the constants Ki any further (in

this case, they are related to the moments of inertia of the laminae). If the rod is

transversely isotropic, i.e. if the laminae are invariant under rotations around d1, we

may take K2 = K3. The potential energy then becomes

V =
1

2

∫ `

0

(
β(θ′)2 +Kκ2

)
ds, (17)

where κ is the curvature of the centerline, i.e. κ2 = (ϕ′)2 = (x′′)2 + (y′′)2, and where

we have put β := K1 and K := K2. Models with a similar potential energy abound

throughout the literature and are generally referred to as the Euler elastica. For more

information, see [23] and the references therein.

3.3. The second-order model

Having eliminated the derivative of the slope ϕ from the stored energy density, we end up

with a model in which the fields are the coordinates of the centerline (x(t, s), y(t, s)) and

the torsion angle θ(t, s). This model fits into the framework developed in section 2.2.2;

the base space X is R2, with coordinates (t, s) and the total space Y is X × R2 × S1,

with fibre coordinates (x, y, θ).

The total Lagrangian now consists of the density of kinetic energy minus that of potential

energy, as well as an additional term enforcing the constraint of inextensibility, and can

be written as

L =
ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 − 1

2

(
β(θ′)2 +Kκ2

)
− 1

2
p
(
(x′)2 + (y′)2 − 1

)
, (18)

where p is a Lagrange multiplier associated to the constraint of inextensibility. The field

equations associated to this Lagrangian take the following form:
ρẍ+Kx′′′′ = ∂

∂s
(px′)

ρÿ +Ky′′′′ = ∂
∂s

(py′)

αθ̈ − βθ′′ = 0,

(19)

to be supplemented with the inextensibility constraint

(x′)2 + (y′)2 = 1, (20)

which allows to determine the multiplier p. Note in passing that the dynamics of the

centerline and the torsion angle θ are completely uncoupled. This will change once we

add nonholonomic constraints.
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3.4. Field equations and symmetries

We recall the expression (9) for the second-order Cartan form. If a Lie group G is acting

on Y by bundle automorphisms, and on J3π by prolonged bundle automorphisms, there

is a Lagrangian momentum map JLξ = ξJ3π ΩL, as described in section 2.2. We now

turn to a brief overview of the symmetries associated to the rod model introduced in

the previous section. For an overview of symmetries in the general theory of Cosserat

rods, see [24].

Translations in time The Lie group R acts on X by translations in time: Φε : (s, t) 7→
(s, t + ε). The Lagrangian is invariant and the pullback to X (by a solution j3φ of the

field equations) of the momentum map associated to the infinitesimal generator ∂
∂t

is

given by

(j3φ)∗JL1 =
[
(px′ −Kx′′′)ẋ+ (py′ −Ky′′′)ẏ + βθ′θ̇ +K(x′′ẋ′ + y′′ẏ′)

]
dt (21)

+ [
ρ

2
(ẋ2 + ẏ2) +

α

2
θ̇2 +

K

2
((x′′)2 + (y′′)2) +

β

2
(θ′)2 +

p

2
((x′)2 + (y′)2 − 1)︸ ︷︷ ︸

E

]ds,

where we have introduced the energy density E . By taking the exterior derivative of

(21) and integrating the conservation law d[(j3φ)∗JL1 ] = 0 over [0, `] × [t0, t1] ⊂ R2, we

obtain

E(t1)− E(t0) =

∫ t1

t0

[
(px′ −Kx′′′)ẋ+ (py′ −Ky′′′)ẏ + βθ′θ̇ +K(x′′ẋ′ + y′′ẏ′)

]`
0

dt, (22)

where E(t) =
∫ `

0
Eds is the total energy, which is conserved if suitable boundary

conditions are imposed. This is the case, for instance, for periodic boundary conditions

or when both ends of the rod can move freely, i.e. when

px′ −Kx′′′ = py′ −Ky′′′ = 0 and x′′ = y′′ = θ′ = 0 at s = 0, `.

Spatial translations Consider the Abelian group R2 acting on the total space Y by

translation, i.e. for each (a, b) ∈ R2 we consider the map Φ(a,b) : (s, t;x, y, θ) 7→
(s, t;x + a, y + b, θ). The Lagrangian density is invariant under this action and the

associated momentum map is

(j3φ)∗JL(v1,v2) = −ρ(v1ẋ+ v2ẏ)ds− (v1px
′ − v1Kx

′′′ + v2py
′ − v2Ky

′′′)dt

for all (v1, v2) ∈ R2. Again, under suitable boundary conditions, JL(v1,v2) gives rise to a

conserved quantity, namely the total linear momentum of the rod.

Similarly, S1 acts on Y by translations in θ, with infinitesimal generator of the form ∂
∂θ

,

and the corresponding momentum map is

(j3φ)∗JL1 = −βθ′dt− αθ̇ds.
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The ensuing conservation law is given by αθ̈ = βθ′′ and, hence, is just the equation of

motion for θ.

Spatial rotations Finally, we note that the rotation group SO(2) acts on Y by rotations

in the (x, y)-plane. The infinitesimal generator corresponding to 1 ∈ so(2) ∼= R is given

by y ∂
∂x
− x ∂

∂y
; its prolongation to J3π is

ξJ3π = y
∂

∂x
− x ∂

∂y
+ ẏ

∂

∂ẋ
− ẋ ∂

∂ẏ
+ y′

∂

∂x′
− x′ ∂

∂y′
+ · · · ,

where the dots represent terms involving higher-order derivatives. As ΘL is semibasic

with respect to π3,1, these terms make no contribution to the momentum map. The

momentum map is given by

(j3φ)∗JL1 = [−x(−py′ +Ky′′′) + y(−px′ +Kx′′′)−K(x′′y′ + y′′x′)] dt+ ρ(xẏ − yẋ)ds,

leading to the conservation of total angular momentum. Note that the angular

momentum does not involve θ, in contrast to the corresponding expression in more

general treatments of Cosserat media. This is a consequence of the fact that we defined

the action of SO(2) on Y to act trivially on the θ part.

3.5. A nonholonomic model

Consider again a Cosserat rod as in the previous section. The constraint that we are

now about to introduce is a generalization of the familiar concept of rolling without

sliding in mechanics: we assume that the rod is placed on a horizontal plane, which we

take to be perfectly rough, so that each of the laminae rolls without sliding.

However, as the Cosserat rod is also supposed to be incompressible, one must take

care that the additional constraints do not become too restrictive.§ Indeed, a simple

argument shows that the model of an incompressible rod which rolls without sliding,

and which cannot move transversally, can only move like a rigid body.

There are two immediate solutions: either one relaxes the incompressibility constraint,

or one allows the rod to move laterally as well. Either solution introduces a lot of

mathematical tedium which greatly obscures the physical background of the system.

For this paper, we will therefore consider a simplified model containing aspects of both

models.

In particular, we will assume that the motion of the nonholonomic rod is such that the

incompressibility constraint is satisfied approximately throughout the motion; this is

equivalent to the following assumption:√
(x′)2 + (y′)2 ∼= 1. (23)

§ This was pointed out to me by W. Tulczyjew and D. Zenkov.
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By neglecting the incompressibility constraint in the Lagrangian, a simplified model

is then obtained. Of course, this new model is a mathematical simplification of the

true physics. However, numerical simulations show that
√

(x′)2 + (y′)2 is bounded

throughout the motion, and it’s therefore reasonable that the dynamics of this model is

close to the true dynamics. One could think of the mathematical model as describing a

Cosserat rod whose constitutive equation is specified on mathematical grounds, rather

than derived from first principles.

The constraints of rolling without sliding are given by (see [25, 26]):

ẋ+Rθ̇ sinϕ = 0 and ẏ −Rθ̇ cosϕ = 0, (24)

where R is the radius of the laminae. By eliminating the slope ϕ we then obtain

ẋ+Rθ̇y′ = 0 and ẏ −Rθ̇x′ = 0. (25)

Incidentally, the passage from (24) to (25) again illustrates why derivatives with respect

to time play a fundamentally different role as opposed to the other derivatives.

The Lagrangian density of the nonholonomic rod is still given by (18); we recall that it

is of second order, as the stored energy function (16) is of grade two. The constraint

on the other hand is of first order. By demanding that the action be stationary under

variations compatible with the given constraint (a similar approach to section 2.3), we

obtain the following field equations:

Definition 3.2. A section φ of π is a solution of the nonholonomic problem if and only

if Im j1φ ⊂ C, and, along C,

(j3φ)∗(j3V ΩL) = 0 (26)

for all π-vertical vector fields V on Y such that (j1φ)∗(j1V α) = 0 for all α ∈ F .

The left-hand side of (26) is just the Euler-Lagrange equation (10) for a second-order

Lagrangian. As the constraint is first order, it can be treated exactly as in section 2.3.

In coordinates, the nonholonomic field equations hence are given by[
∂L

∂ya
− d

dxµ

(
∂L

∂yaµ

)
+

d2

dxµdxν

(
∂L

∂yaµν

)]
(j4φ) = λα

∂ϕα

∂ya0
(j1φ).

By substituting the Lagrangian (18), without the inextensibility constraint, and the

constraints (25) into the Euler-Lagrange equations, we obtain the following set of

nonholonomic field equations:
ρẍ+Kx′′′′ = λ

ρÿ +Ky′′′′ = µ

αθ̈ − βθ′′ = R(λy′ + µx′)

(27)

where λ and µ are Lagrange multipliers associated with the nonholonomic constraints.

These equations are to be supplemented by the constraint equations (25).



A class of nonholonomic kinematic constraints in elasticity 20

In the familiar case of the rolling disc, it is well known that energy is conserved. There

is a similar conservation law for the nonholonomic rod.

Proposition 3.3. The total energy (22) is conserved for each solution of the

nonholonomic field equations (27) and constraints (25). A fortiori, the solutions of

the nonholonomic field equations satisfy the local conservation law d[(j3φ)∗JL1 ] = 0,

where JL1 is the momentum map associated to time translation introduced in (21).

Proof: This follows immediately from proposition 6.1 in the appendix, and the fact

that ∂
∂t

(or rather its prolongation to J1π) annihilates F̄ along the constraint manifold.

Indeed, the bundle of (n+ 1)-forms F̄ is generated by Φ1 and Φ2, defined as follows:

Φ1 = (dx− ẋdt) ∧ ds+Ry′(dθ − θ̇dt) ∧ ds;

Φ2 = (dy − ẏdt) ∧ ds−Rx′(dθ − θ̇dt) ∧ ds.

Therefore, we have that(
∂

∂t

)
J1π

Φ1 = −(ẋ+Rθ̇y′)ds,

which vanishes when restricted to C. A similar argument shows that the contraction of
∂
∂t

with Φ2 vanishes. Hence, proposition 6.1 can be applied; the associated momentum

map is just (21). 2

4. Discrete nonholonomic field theories

In this section we present an extension to the case of field theories of the discrete

d’Alembert principle described in [27]. We also study an elementary numerical

integration scheme aimed at integrating the field equations (27).

As in the previous sections, we will consider the trivial bundle π with base space

X = R×M (where M = [0, `]), and total space Y the product X×S, where S = R2×S1.

Our discretization scheme is the most straightforward possible: The base space X will

be discretized by means of the uniform mesh Z×Z, and the total space Y by replacing

it with X × R2 × R.

4.1. Discrete Lagrangian field theories

We begin by giving an overview of discrete Lagrangian field theories, inspired by [21, 28].

In order to discretize the second-order jet bundle, we need to approximate the derivatives

of the field (of first and second order). This we do by means of central differences with

spatial step k and time step h:

η̇ ≈ ηn+1,i − ηn,i
h

, η′ ≈ ηn,i+1 − ηn,i−1

2k
, and η′′ ≈ ηn,i+1 − 2ηn,i + ηn,i−1

k2
, (28)
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where η stands for either x or y. Other derivatives will not be needed. For θ, we use

θ̇ ≈ θn+1,i − θn,i
h

and θ′ ≈ θn,i+1 − θn,i
k

. (29)

Let M be the uniform mesh in X = R2 whose elements are points with integer

coordinates; i.e. M = Z × Z. The elements of M are denoted as (n, i), where the

first component refers to time, and the second to the spatial coordinate. We define a

9-cell centered at (n, i) ∈M, denoted by [x](n,i), to be a nine-tuple of the form

[x](n,i) := ((n− 1, i− 1), (n− 1, i), (n− 1, i); (n, i− 1), (30)

(n, i), (n, i+ 1); (n+ 1, i− 1), (n+ 1, i), (n+ 1, i+ 1))

It is clear from the finite difference approximations that a generic second-order jet j2
xφ

can be approximated by specifying the values of φ at the nine points of a cell.

However, in the case of the nonholonomic rod, the Lagrangian depends only on the

derivative coordinates whose finite difference approximations were given in (28) and

(29). Therefore, we can simplify our exposition by defining a 6-cell at (n, i) to be the

six-tuple

[x](n,i) := ((n, i− 1), (n, i), (n, i+ 1); (n+ 1, i− 1), (n+ 1, i), (n+ 1, i+ 1)). (31)

We will refer to 6-cells simply as cells. Let us denote the set of all cells by X6 := {[x](n,i) :

(n, i) ∈ M}. We now define the discrete 2nd order jet bundle to be J2
dπ := X6 × S6

(see [21, 28, 29]). A discrete section of π (also referred to as a discrete field) is a map

φ :M→ S. Its second jet extension is the map j2φ : X6 → J2
dπ defined as

j2φ([x](n,i)) := ([x](n,i);φ(x1), . . . φ(x6)),

where x1, . . . , x6 are the vertices that make up [x](n,i) (ordered as in (31)). Given a

vector field W on Y , we define its second jet extension to be the vector field j2W on J2
d

given by

j2W ([x]; f1, . . . , f6) = (W (x1, f1),W (x2, f2), . . . ,W (x6, f6)).

Let us now assume that a discrete Lagrangian Ld : J2
dπ → R is given. The action sum

Sd is then defined as

Sd(φ) =
∑
[x]

Ld(j
2φ([x])). (32)

Given a vertical vector field V on Y and a discrete field φ, we obtain a one-parameter

family φε by composing φ with the flow Φ of V :

φε([x]) = ([x]; Φε(φ([x])1), . . . ,Φε(φ([x])6)) . (33)

The variational principle now consists of seeking discrete fields φ that extremize the

discrete action sum. The fact that φ is an extremum of S under variations of the form
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(33) is expressed by∑
(n,i)∈M

〈
X(φ(n,i)), D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1))) (34)

+D4L(j2φ([x](n−1,i+1))) +D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1)))
〉

= 0.

As the variation X is completely arbitrary, we obtain the following set of discrete Euler-

Lagrange field equations :

D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1))) + (35)

D4L(j2φ([x](n−1,i+1))) +D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1))) = 0.

for all (n, i). Here, we have denoted the values of the field φ at the points (n, i) as φn,i.

4.2. The discrete d’Alembert principle

Our discrete d’Alembert principle is nothing more than a suitable field-theoretic

extension of the discrete Lagrange-d’Alembert principle described in [27]. Just as in

that paper, in addition to the discrete Lagrangian Ld, two additional ingredients are

needed: a discrete constraint manifold Cd ⊂ J1
dπ and a bundle of constraint forces Fd on

J2
dπ. However, as our constraints (in particular (25)) are not linear in the derivatives,

as opposed to the case in [27], our analysis will be more involved.

The discrete constraint manifold Cd ↪→ J1
dπ will usually be constructed from the

continuous constraint manifold C by subjecting it to the same discretization as used

for the discretization of the Lagrangian (i.e. (28) and (29)). To construct the discrete

counterpart Fd of the bundle of discrete constraint forces, somewhat more work is

needed.

Remark 4.1. For the discretization of the constraint manifold, it would appear that

we need a discrete version of the first-order jet bundle as well. A similar procedure as

for the discretization of the second-order jet bundle (using the same finite differences as

in (28) shows that a discrete 1-jet depends on the values of the field at the same four

points of a cell as a discrete 2-jet: the difference between J1
dπ and J2

dπ lies in the way

in which the values of the field at these points are combined. Therefore, we can regard

the discrete version of C, to be defined below, as a subset of J2
dπ. �

4.2.1. The bundle of discrete constraint forces In this section, we will construct Fd
by following a discrete version of the procedure used in section 2.3. Just as in the

continuous case, it is here that the difference between spatial and time derivatives

will become fundamental. Indeed, we will discretize with respect to space first, and

(initially) not with respect to time. It should be noted that the construction outlined in

this paragraph is not entirely rigorous but depends strongly on coordinate expressions.

Presumably, one would need a sort of discrete Cauchy analysis in order to solidify these
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arguments. For now, we will just accept that this reasoning provides us with the correct

form of the constraint forces.

For the sake of convenience, we suppose that C is given by the vanishing of k independent

functions ϕα on J1π. By applying the spatial discretizations in (28) and (29) to ϕα,

we obtain k functions, denoted as ϕα1/2, on J2
d × TS. We define the semi-discretized

constraint submanifold C1/2 to be the zero level set of the functions ϕα1/2.

Consider now the forms

Φα
1/2 := J∗(dϕα1/2)

(where J is the vertical endomorphism on TS); they are the semi-discrete counterparts

of the forms Φα defined in (15). The forms Φα
1/2 are semi-basic. By discretizing the time

derivatives, however, we obtain a set of basic forms on J2
dπ, which we also denote by

Φα
1/2. An example will make this clearer.

Example 4.2. Consider, for instance, the constraint manifold C ↪→ J2π defined as the

zero level set of the function ϕ = Aab y
a
0y

b
1 + Bb(y

b
1)

2, where Aab and Bb are constants.

By applying (28) and (29), it follows that Cd is given as the zero level set of the function

ϕd([y]) := Aab
yan+1,i − yan,i

h

ybn,i+1 − ybn,i−1

2k
+Bb

(
ybn,i+1 − ybn,i−1

2k

)2

for [y] ∈ J1
dπ, and C1/2 as the zero level set of the function

ϕ1/2([y], v) := Aab v̇
a
ybn,i+1 − ybn,i−1

2k
+Bb

(
ybn,i+1 − ybn,i−1

2k

)2

for [y] ∈ J1
dπ and v ∈ TS. The bundle Fd is then generated by the one-form

Φ1/2 := S∗(dϕ1/2), or explicitly,

Φ = Aab
ybn,i+1 − ybn,i−1

2k
dya.

4.2.2. The discrete nonholonomic field equations Assuming that Ld, Cd and Fd are

given (their construction will be treated in more detail in the next section), the derivation

of the discrete nonholonomic field equations is similar to the continuum derivation: we

are looking for a discrete field φ such that Im j1φ ⊂ Cd and such that φ is an extremum

of (32) for all variations compatible with the constraints, in the sense that the variation

X satisfies, for all (n, i),

X(φ(n,i)) Φα
1/2(j

2φ([x](n,i))) = 0.

From (34) we then obtain the discrete nonholonomic field equations :

D1L(j2φ([x](n,i+1))) +D2L(j2φ([x](n,i))) +D3L(j2φ([x](n,i−1))) +D4L(j2φ([x](n−1,i+1)))

+D5L(j2φ([x](n−1,i))) +D6L(j2φ([x](n−1,i−1))) = λαΦα
1/2(j

2φ([x](n,i))), (36)
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where the Lagrange multipliers λα are to be determined from the requirement that

Im j2φ ⊂ Cd.

4.3. An explicit, second-order algorithm

In this section, we briefly present some numerical insights into the nonholonomic field

equations of section 3.5. Our aim is twofold: for generic boundary conditions, the

nonholonomic field equations (27) cannot be solved analytically and in order to gain

insight into the behaviour of our model, we therefore turn to numerical methods.

Secondly, in line with the fundamental tenets of geometric integration, we wish to show

that the construction of practical integration schemes is strongly guided by geometric

principles.

In discretizing our rod model, we effectively replace the continuous rod by N rigid rolling

discs interconnected by some potential (see [30]). This is again an illustration of the fact

that the constraints are truly nonholonomic. Our integrator is just a concatenation of

the leapfrog algorithm for the spatial part, and a nonholonomic mechanical integrator

for the integration in time.

As a first attempt at integrating (27), we present an explicit, second-order algorithm.

In the Lagrangian, the derivatives are approximated by

ẋ ≈ xn+1,i − xn,i
h

and x′′ ≈ xn,i−1 − 2xn,i + xn+1,i

k2
,

where h is the time step, and k is the space step. Similar approximations are used for

the derivatives of y, and for θ we use

θ̇ ≈ θn+1,i − θn,i
h

and θ′ ≈ θn,i+1 − θn,i
k

. (37)

The discrete Lagrangian density can then be found by substituting these approximations

into the continuum Lagrangian (18). Explicitly, it is given by

Ld =
ρ

2h2

(
(xn+1,i − xn,i)2 + (yn+1,i − yn,i)2

)
+

α

2h2
(θn+1,i − θn,i)2 − β

2k2
(θn,i+1 − θn,i)2

− K

2k4
(xn,i−1 − 2xn,i + xn,i+1)

2 − K

2k4
(yn,i−1 − 2yn,i + yn,i+1)

2. (38)

Note that Ld only depends on four of the six points in each cell (see (31)). The discrete

constraint manifold Cd is found by discretizing the constraint equations (25). In order

to obtain a second-order accurate approximation, we use central differences:

x′ ≈ xn,i+1 − xn,i−1

2k
,

(and similar for y′, ẋ, ẏ, θ̇) and hence we obtain that Cd is given by

xn+1,i − xn−1,i +
R

2k
(θn+1,i − θn−1,i)(yn,i+1 − yn,i−1) = 0, (39)
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and

yn+1,i − yn−1,i −
R

2k
(θn+1,i − θn−1,i)(xn,i+1 − xn,i−1) = 0, (40)

for all (n, i). The semi-discrete constraint manifold C1/2, on the other hand, is given by

ẋn,i +
R

2k
θ̇n,i(yn,i+1 − yn,i−1) = 0,

and

ẏn,i −
R

2k
θ̇n,i(xn,i+1 − xn,i−1) = 0,

and hence Fd is generated by

Φ1 = dx+
R

2k
(yn,i+1 − yn,i−1)dθ and Φ2 = dy − R

2k
(xn,i+1 − xn,i−1)dθ.

We conclude that the discrete nonholonomic field equations (36) are in this case

xn+1,i − 2xn,i + xn−1,i = h2λi −
h2K

k4
∆4xn,i (41)

and

yn+1,i − 2yn,i + yn−1,i = h2µi −
h2K

k4
∆4yn,i (42)

as well as

α(θn+1,i − 2θn,i + θn−1,i) = Rh2

(
λi
yn,i+1 − yn,i−1

2k
− µi

xn,i+1 − xn,i−1

2k

)
+
βh2

k2
∆2θn,i,

where ∆2 and ∆4 are the 2nd and 4th order finite difference operators in the spatial

direction, respectively:

∆2fn,i := fn,i+1 − 2fn,i + fn,i−1

and

∆4fn,i := fn,i+2 − 4fn,i+1 + 6fn,i − 4fn,i−1 + fn,i−2.

In order to determine λi and µi, these equations need to be supplemented by the discrete

constraints (39) and (40).

For the purpose of numerical simulation, the following values were used: α = 1, β = 0.8,

ρ = 1, K = 0.7, ` = 4, and R = 1. For the spatial discretization, 32 points were used

(corresponding to k ≈ 0.1290) and the time step was set to h = 1/8k2, a fraction of the

maximal allowable time step for the Euler-Bernoulli beam equation (see [31]). The ends

of the rod were left free and the following initial conditions were used:

r0(s) = (s, 0), θ0(s) = −π
2

cos
πs

`
and ṙ0(s) = (0, 0), θ̇0(s) = 0.
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Figure 3. Motion of the rod from t = 0 to t ≈ 4.5.

An mpeg movie (created with Povray, an open source raytracer) depicting the motion

of the nonholonomic Cosserat rod is available from the author’s web page‖. In figure 3,

an impression of the motion of the rod is given. The arrows represent the director field

d3 and serve as an indication of the torsion. The rod starts from an initially straight,

but twisted state and gradually untwists, meanwhile effecting a rotation.

In figure 4, the energy of the nonholonomic rod is plotted. Even though our algorithm

is by its very nature not symplectic (or multi-symplectic – see [32]), there is still the

similar behaviour of “almost” energy conservation.

‖ http://users.ugent.be/∼jvkersch/nonholonomic/
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Figure 4. Energy behaviour of the integration algorithm on moderate time scales (the
interval [0, 150]).

5. Conclusions

It is clear that the study of nonholonomic field theories forms a vast subject. This

paper gives only a brief survey of a number of straightforward results, but there are

many more things to be explored. An acute problem is the lack of an extensive number

of interesting examples; while this of course impedes progress on the theoretical front,

there are nevertheless a number of points worth investigating, which we now discuss.

In proposition 3.3 we used the fact that the bundle of reaction forces is annihilated by

the generator of time translations in order to prove conservation of energy. Even when

this is not the case, experience from mechanics (see [33, 34, 35]) as well as from different

types of nonholonomic field theories (see [36]) seems to suggest that it might be possible

to prove a nonholonomic momentum equation instead.

From a numerical point of view, the explicit algorithm of section 4.3 is not very

accurate. It is second-order in space and time and suffers from a restrictive stability

condition. The development of more sophisticated integration schemes that exactly

preserve the nonholonomic constraints would definitely be very interesting. Perhaps

the most interesting of all, at least in line with the current investigations, would be a

simulation of a nonholonomic model with a more physical constitutive equation than

the one used in section 3.5.

6. Appendix: the nonholonomic Noether theorem

In the derivation of the Euler-Lagrange equations, both in the free as in the constrained

case, we have restricted our attention to vertical variations. While it is well known

that arbitrary variations do not yield any new information beyond the Euler-Lagrange
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equations (see [3]), the situation is not at all clear for nonholonomic field theories.

This is especially important for the derivation of the nonholonomic Noether theorem.

Therefore, we propose the following modified bundle of reaction forces: if F = 〈Aαadya〉,
then

F̄ :=
〈
Aαa (dya − yaµdxµ) ∧ dnx0

〉
⊂ Ω(n+1)(J1π). (43)

This situation is reminiscent of the comparison between Bridges’ (n+1) multisymplectic

1-forms and the Cartan (n+ 1)-form ΘL in the work of Marsden and Shkoller [37], and

is similar to the variational derivation of the Cartan form: if only vertical variations are

taken into account, then the Cartan form is missing the dn+1x term (see [3]).

The precise form of the bundle F̄ can be derived by using arguments from Cauchy

analysis (see [16]). The idea is to reformulate the field equations as a mechanical

system on an infinite dimensional configuration space. The reaction forces can then be

introduced in a straightforward way on this infinite-dimensional space, and by returning

to the jet bundle one then obtains (43). The details of that derivation would lead us too

far; more information on this technique will appear in a forthcoming publication (see

also [38]). For now, we will simply accept the bundle F̄ as given.

In [36] a similar type of bundle was used in the derivation of the nonholonomic

momentum lemma. From that paper, we cite the following nonholonomic Noether

theorem:

Proposition 6.1. Let L be a G-invariant Lagrangian density. Assume that ξ ∈ g is

such that ξJ1π α = 0 along C for all α ∈ F̄ . Then the following conservation law holds:

d[(j1φ)∗JLξ ] = 0,

for all sections φ of π that are solutions of the nonholonomic field equations.

Note that a vertical vector v belongs to F ◦ if and only if 〈v, α〉 = 0 for all α ∈ F̄ .

Only for non-vertical vectors there is a difference between F and F̄ . Therefore, if ξJ1π

in proposition 6.1 is vertical, then the nonholonomic Noether theorem follows from the

Euler-Lagrange equations (2.9). In the other case, the techniques from [36] have to be

used.
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[8] Krupková O 2005 Partial differential equations with differential constraints J. Diff. Eq. 220 354–95
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[20] de León M, Mart́ın de Diego D and Santamaŕıa-Merino A 2004 Symmetries in classical field theory

Int. J. Geom. Meth. Mod. Phys. 1 651–710
[21] Kouranbaeva S and Shkoller S 2000 A variational approach to second-order multisymplectic field

theory J. Geom. Phys. 35 333–66
[22] Marle C M 1998 Various approaches to conservative and nonconservative nonholonomic systems

Rep. Math. Phys. 42 211–229
[23] Langer J and Singer D A 1996 Lagrangian aspects of the Kirchhoff elastic rod SIAM Review 38

605–18
[24] Dichmann D J, Li Y and Maddocks J H 1996 Hamiltonian formulations and symmetries in rod

mechanics IMA Vol. Math. Appl. vol 82 (New York: Springer New York) p 71



A class of nonholonomic kinematic constraints in elasticity 30

[25] Bloch A 2003 Nonholonomic mechanics and control (Berlin: Springer-Verlag)
[26] Cortés J 2002 Geometric, control and numerical aspects of nonholonomic systems (Lecture Notes

in Mathematics vol 1793) (Berlin: Springer-Verlag)
[27] Cortés J and Mart́ınez S 2001 Non-holonomic integrators Nonlinearity 14 1365–92
[28] Marsden J E, Patrick G W and Shkoller S 1998 Multisymplectic geometry, variational integrators,

and nonlinear PDEs Comm. Math. Phys. 199 351–95
[29] Vankerschaver J and Cantrijn F 2005 Lagrangian field theories on Lie groupoids Preprint math-

ph/0511080
[30] Barth E, Leimkuhler B and Reich S 1999 A time-reversible variable-stepsize integrator for

constrained dynamics SIAM J. Sci. Comput. 21 1027–44
[31] Ames W F 1997 Numerical methods for partial differential equations (New York: Academic Press)
[32] Bridges T J and Reich S 2001 Multi-symplectic integrators: numerical schemes for Hamiltonian

PDEs that conserve symplecticity Phys. Lett. A 284 184–93
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