19 research outputs found

    Pre-stimulus influences on auditory perception arising from sensory representations and decision processes

    Get PDF
    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task

    Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision

    Get PDF
    We describe our work using linear discrimination of multi-channel electroencephalography for single-trial detection of neural signatures of visual recognition events. We demonstrate the approach as a methodology for relating neural variability to response variability, describing studies for response accuracy and response latency during visual target detection. We then show how the approach can be utilized to construct a novel type of brain-computer interface, which we term cortically-coupled computer vision. In this application, a large database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’ improves image search over a strictly behavioral response

    Mental state estimation for brain-computer interfaces

    Get PDF
    Mental state estimation is potentially useful for the development of asynchronous brain-computer interfaces. In this study, four mental states have been identified and decoded from the electrocorticograms (ECoGs) of six epileptic patients, engaged in a memory reach task. A novel signal analysis technique has been applied to high-dimensional, statistically sparse ECoGs recorded by a large number of electrodes. The strength of the proposed technique lies in its ability to jointly extract spatial and temporal patterns, responsible for encoding mental state differences. As such, the technique offers a systematic way of analyzing the spatiotemporal aspects of brain information processing and may be applicable to a wide range of spatiotemporal neurophysiological signals

    Brain Correlates of Lane Changing Reaction Time in Simulated Driving

    Get PDF
    Psychophysical studies have reported correlation between neural activity in frontal and parietal areas and subject's reaction time in simple tasks. Here we study whether similar correlates can also be identified in driver's electroencephalography (EEG) activity when they perform steering actions triggered by exogenous stimuli (e.g. obstacles along the road). We report analysis of the EEG signals of fifteen subjects while they drive in a realistic car simulator. We found that the peak latency of the event-related potentials in frontal and parietal areas significantly correlates with the onset of the steering behavior. Similarly, modulations of the power in the theta band (4-8 Hz) prior to the action also correlates with the reaction times. These results provide evidence of reliable neural markers of the driver's response variability

    Stimulus-induced gamma power predicts the amplitude of the subsequent visual evoked response

    No full text
    The efficiency of neuronal information transfer in activated brain networks may affect behavioral performance. Gamma-band synchronization has been proposed to be a mechanism that facilitates neuronal processing of behaviorally relevant stimuli. In line with this, it has been shown that strong gamma-band activity in visual cortical areas leads to faster responses to a visual go cue. We investigated whether there are directly observable consequences of trial-by-trial fluctuations in non-invasively observed gamma-band activity on the neuronal response. Specifically, we hypothesized that the amplitude of the visual evoked response to a go cue can be predicted by gamma power in the visual system, in the window preceding the evoked response. Thirty-three human subjects (22 female) performed a visual speeded response task while their magnetoencephalogram (MEG) was recorded. The participants had to respond to a pattern reversal of a concentric moving grating. We estimated single trial stimulus-induced visual cortical gamma power, and correlated this with the estimated single trial amplitude of the most prominent event-related field (ERF) peak within the first 100 ms after the pattern reversal. In parieto-occipital cortical areas, the amplitude of the ERF correlated positively with gamma power, and correlated negatively with reaction times. No effects were observed for the alpha and beta frequency bands, despite clear stimulus onset induced modulation at those frequencies. These results support a mechanistic model, in which gamma-band synchronization enhances the neuronal gain to relevant visual input, thus leading to more efficient downstream processing and to faster responses

    Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification

    Full text link
    Objective. The main goal of this work is to develop a model for multi-sensor signals such as MEG or EEG signals, that accounts for the inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI type experiments. Approach. The method involves linear mixed effects statistical model, wavelet transform and spatial filtering, and aims at the characterization of localized discriminant features in multi-sensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e. discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data, in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves on earlier results on similar problems, and the three main ingredients all play an important role

    Asynchronous Decoding of Error Potentials During the Monitoring of a Reaching Task

    Get PDF
    Brain-machine interfaces (BMIs) have demonstrated how they can be used for reaching tasks with both invasive and non-invasive signal recording methods. Despite the constant improvements in this field, there still exist diverse factors to overcome before achieving a natural control. In particular, the high variability of the brain signals often leads to the incorrect decoding of the subject intentions, producing unreliable behaviours in the controlled device. A possible solution to this problem would be that of correcting this erroneous decoding using a feedback signal from the user. In this work, we evaluate the possibility of decoding neural signals associated to performance monitoring (EEG-recorded error-related potentials) during a reaching task. Compared to previous works where these error potentials were recorded under scenarios with discrete movements performed by the cursor, under real conditions the cursor is moving continuously and thus the system is required to asynchronously detect any possible error. To this end, we simulated two different erroneous events during the monitoring of a reaching task: errors at the beginning of the movement, and errors happening in the middle of the trajectory being executed. Through the analysis of the recorded EEG of three subjects, we demonstrate the existence of neural correlates for the two types of elicited error potentials, and we are able to asynchronously detect them with high accuracies

    Sparse Approximation via Penalty Decomposition Methods

    Full text link
    In this paper we consider sparse approximation problems, that is, general l0l_0 minimization problems with the l0l_0-"norm" of a vector being a part of constraints or objective function. In particular, we first study the first-order optimality conditions for these problems. We then propose penalty decomposition (PD) methods for solving them in which a sequence of penalty subproblems are solved by a block coordinate descent (BCD) method. Under some suitable assumptions, we establish that any accumulation point of the sequence generated by the PD methods satisfies the first-order optimality conditions of the problems. Furthermore, for the problems in which the l0l_0 part is the only nonconvex part, we show that such an accumulation point is a local minimizer of the problems. In addition, we show that any accumulation point of the sequence generated by the BCD method is a saddle point of the penalty subproblem. Moreover, for the problems in which the l0l_0 part is the only nonconvex part, we establish that such an accumulation point is a local minimizer of the penalty subproblem. Finally, we test the performance of our PD methods by applying them to sparse logistic regression, sparse inverse covariance selection, and compressed sensing problems. The computational results demonstrate that our methods generally outperform the existing methods in terms of solution quality and/or speed.Comment: 31 pages, 3 figures and 9 tables. arXiv admin note: substantial text overlap with arXiv:1008.537

    Cortical Topography of Error-Related High-Frequency Potentials During Erroneous Control in a Continuous Control Brain–Computer Interface

    Get PDF
    Brain–computer interfaces (BCIs) benefit greatly from performance feedback, but current systems lack automatic, task-independent feedback. Cortical responses elicited from user error have the potential to serve as state-based feedback to BCI decoders. To gain a better understanding of local error potentials, we investigate responsive cortical power underlying error-related potentials (ErrPs) from the human cortex during a one-dimensional center-out BCI task, tracking the topography of high-gamma (70–100 Hz) band power (HBP) specific to BCI error. We measured electrocorticography (ECoG) in three human subjects during dynamic, continuous control over BCI cursor velocity. Subjects used motor imagery and rest to move the cursor toward and subsequently dwell within a target region. We then identified and labeled epochs where the BCI decoder incorrectly moved the cursor in the direction opposite of the subject’s expectations (i.e., BCI error). We found increased HBP in various cortical areas 100–500 ms following BCI error with respect to epochs of correct, intended control. Significant responses were noted in primary somatosensory, motor, premotor, and parietal areas and generally regardless of whether the subject was using motor imagery or rest to move the cursor toward the target. Parts of somatosensory, temporal, and parietal areas exclusively had increased HBP when subjects were using motor imagery. In contrast, only part of the parietal cortex near the angular gyrus exclusively had an increase in HBP during rest. This investigation is, to our knowledge, the first to explore cortical fields changes in the context of continuous control in ECoG BCI. We present topographical changes in HBP characteristic specific to the generation of error. By focusing on continuous control, instead of on discrete control for simple selection, we investigate a more naturalistic setting and provide high ecological validity for characterizing error potentials. Such potentials could be considered as design elements for co-adaptive BCIs in the future as task-independent feedback to the decoder, allowing for more robust and individualized BCIs
    corecore