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Recent advances in signal processing andmachine learning techniques have enabled the

application of Brain-Computer Interface (BCI) technologies to fields such as medicine,

industry, and recreation; however, BCIs still suffer from the requirement of frequent

calibration sessions due to the intra- and inter-individual variability of brain-signals,

which makes calibration suppression through transfer learning an area of increasing

interest for the development of practical BCI systems. In this paper, we present an

unsupervised transfer method (spectral transfer using information geometry, STIG), which

ranks and combines unlabeled predictions from an ensemble of information geometry

classifiers built on data from individual training subjects. The STIG method is validated

in both off-line and real-time feedback analysis during a rapid serial visual presentation

task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed

method can significantly outperform existing calibration-free techniques as well as

outperform traditional within-subject calibration techniques when limited data is available.

This method demonstrates that unsupervised transfer learning for single-trial detection

in ERP-based BCIs can be achieved without the requirement of costly training data,

representing a step-forward in the overall goal of achieving a practical user-independent

BCI system.

Keywords: unsupervised learning, ensemble learning, calibration-free BCI, P300, RSVP

1. INTRODUCTION

Brain-Computer Interfaces (BCIs) are augmentative devices that decode user intent directly from
the brain (Wolpaw et al., 2002). Recent advances in signal processing and machine learning
techniques have enabled the application of BCI technologies to fields such as medicine, industry,
and recreation (Blankertz et al., 2010; Lance et al., 2012; van Erp et al., 2012). Despite the potential of
this recent progress, performance decrements due to intra- and inter-individual variability require
most BCI systems to employ time-consuming and costly calibration sessions for each new user and
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session thus decreasing the overall utility of current BCI systems
(Johnson et al., 2011). The use of advanced signal processing
and machine learning techniques to minimize or eliminate this
need for calibration data is an area of on-going interest for the
development of practical BCI systems (Lotte, 2015).

Information geometry is one of many promising techniques
for robust brain signal detection and classification. The
overarching idea being to map the signal into a Riemannian
manifold, such as the cone of symmetric positive definite
matrices, in which non-Euclidean statistical inference can be
performed (Harandi et al., 2012; Jayasumana et al., 2015). With
the development of a computational framework for statistical
inference (Pennec et al., 2006), information geometry has been
successfully applied to radar signal processing (Barbaresco,
2008), diffusion tensor imaging (Fletcher and Joshi, 2004), and
computer vision (Tuzel et al., 2007). Recently, information
geometry has been applied successfully to BCI paradigms such
as motor imagery (Barachant et al., 2012, 2013) and event related
potential (Barachant and Congedo, 2014).

In parallel to this development, advanced machine learning
methods such as active learning and transfer learning have
sought to reduce or eliminate the need for calibration in
BCI systems. Transfer learning, for example, addresses how
models and parameters can be used in domains for which
they were not initially learned, enabling robust models with
little or no new training data. Although there has been much
recent work in BCI transfer (see Lotte, 2015) very few general
purpose methods for zero-calibration BCI currently exist in
the literature. Two successful implementations require task-
specific structure and do not generalize to other paradigms.
Kindermans et al. achieve zero-calibration BCI on a P300 Speller
using a language model to simultaneously inform a traditional
Bayesian inference classifier, but this method does not generalize
to paradigms which do not lend themselves to hidden Markov
process modeling or multiple trial classification (Kindermans
et al., 2014). Additionally, zero-calibration methods for Steady-
State Visually Evoked Potential (SSVEP) BCIs have been
developed that correlate multichannel EEG with sinusoidal
reference signals using Canonical Correlation Analysis (CCA)
(Bin et al., 2009); however, the CCA method is mainly
utilized for SSVEP BCIs due to the well-characterized steady-
state frequency response and thus does not generalize well to
other BCIs.

A recent review categorizes general purpose machine learning
approaches to address calibration in BCI systems as either
zero-calibration (methods that utilize zero prior training data)
or calibration reduction (methods that utilize a limited or
reduced amount of training data) (Lotte, 2015). Zero-calibration
methods utilize existing models built from previously collected
data to classify new data. Thus, zero-calibration methods
are able to immediately classify data from a new subject
without requiring a calibration session to collect labeled
training data. Zero-calibration methods are further classified
as either ensemble or pooled methods based on how they
use existing training data. Ensemble methods group data
into session and subject-specific classifiers which can make

independent classification on a new test subject. These classifiers
are treated as bases for classifying a new subject, and thus
methods differ in how the independent classifications are
combined. Fazli et al. presented a zero-calibration ensemble
method which uses an ℓ2 regression with an ℓ1 penalty
to enforce sparsity in the linear combination of ensemble
classifiers (Fazli et al., 2011). This method is shown to out-
perform an unweighted sum of the classifiers. Pooled methods
combine all existing data in a single training set and learn
a classification model from the aggregated data, and Lotte
et al. compared various zero-calibration pooled methods in
Lotte et al. (2009).

Unlike the zero-calibration methods, there has been more
progress in calibration reduction with the development of
machine learning approaches that utilize minimal training data.
These calibration reduction techniques achieve performance
comparable with conventional calibration techniques. Lotte and
Guan demonstrated P300 Speller classification with minimal
calibration data by simply applying regularization to a common
calibration-based BCI algorithm (Lotte and Guan, 2009). Metzen
et al. present a user-to-user ensemble method in which they
augment the method from Fazli et al. (2011) with calibration data
(Metzen et al., 2011). Dalhoumi et al. (2015) propose an ensemble
method which weights the individual classifiers according to
their performance accuracy on a small set of calibration data
(Dalhoumi et al., 2014, 2015), and this method is shown to
out-perform another recent ensemble transfer method from Tu
and Sun which uses not only a static ensemble of classifiers but
also adapts a dynamic ensemble based on calibration data (Tu
and Sun, 2012). In a pooled transfer approach, Jayaram et al.
used a multi-task learning method to learn Gaussian priors to
estimate optimal ensemble weights for classification (Jayaram
et al., 2016). While all of these approaches offer improvements
in the field of BCI transfer learning, all still require the use
of calibration data, and those that do not are either limited
to a specific BCI paradigm or suffer from large performance
decreases.

This paper aims to eliminate the need for calibration and
develop a user-independent BCI by proposing a new method,
Spectral Transfer with Information Geometry (STIG), which
leverages an ensemble of information geometric classifiers
coupled with spectral-meta learning (SML), an unsupervised
ensemble method for inferring the appropriate weights for
a linear combination of classifiers (Barachant et al., 2012;
Parisi et al., 2014). The STIG method uses an ensemble of
subjects trained with Minimum Distance to Riemannian Mean
classifiers (MDRM) to make predictions on the test data of a
new subject which are linearly combined with spectral meta-
learning. We compare competing methods and show that the
STIG method out-performs existing zero-calibration methods
such as unweighted sum or ℓ1-regularized regression as well
as several recent calibration reduction methods with limited
calibration data. The STIG method is then validated in an on-
line rapid serial visual presentation (RSVP) experiment with
single-trial ERP detection where real-time feedback is given to
the user.
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2. UNSUPERVISED ENSEMBLE TRANSFER
LEARNING

STIG is a real-time, unsupervised ensemble transfer method
which dynamically combines independent models based on
information geometry to classify streaming data for BCI
applications. For our application, we have paired the spectral
ensemble method introduced in Parisi et al. (2014) with an
information geometric classifier, MDRM, based on its superior
performance on ERP-based BCIs (Barachant and Congedo,
2014), but this framework could work with any feature extraction
and classification method. Off-line, models are trained using
existing data from different subjects and sessions. These models
make real-time predictions on the trials of a new subject, and the
decisions of each model are dynamically combined according to
the inferred accuracy of each model.

2.1. Classifier
MDRM learns a map, f : X → Y , which assigns a target or non-
target label, y ∈ {−1, 1}, to each EEG epoch, X ∈ R

C×N (C
channels andN time samples). The classification works in feature
space and thus, MDRM comprises a feature extraction step, a
map H : X → 6, and a classification step, a map G : 6 → Y ,
such that the overall classification algorithm is the composition
of feature extraction and classification, f = G ◦ H.

2.1.1. Information Geometric Features of Single Trial

P300 ERP
Let S = {(Xi, yi)}

n
i = 1 be a labeled training set of n trials for a

single subject. Define an extended trial,

X̃i =

[

P

Xi

]

=
[

x̃
(1)
i |x̃

(2)
i | · · · |x̃

(N)
i

]

, (1)

in which P = E
[

X|y = 1
]

is a prototypical target response. The
covariance across time of the extended trial yields the Extended
Sample Covariance Matrix (ESCM):

6i =
1

N − 1

N
∑

k = 1

(x̃
(k)
i − µ̂x̃)(x̃

(k)
i − µ̂x̃)

T, (2)

where T is the usual matrix transpose and µ̂x̃ = E[x̃] is the
sample extended trial column mean. This signal processing map
is defined by the prototypical target response, H = H(P).

2.1.2. Minimum Distance to Riemannian Mean
The Minimum Distance to Riemannian Mean classification
algorithm (MDRM) assigns each trial to the nearest class mean.
With the ESCM, embedded in a differentiable manifold, the cone
of symmetric positive definite matrices, S+ ⊂ R

2C×2C, we can
induce a notion of distance by selecting a metric in the associated
tangent space (Moakher and Batchelor, 2006; Pennec et al., 2006).
As in Barachant and Congedo (2014), we will use the Affine
Invariant Riemannian Metric (AIRM) to define distance between
any two ESCM:

δ(6i,6j) = ‖log(6
−1/2
i 6j6

−1/2
i )‖F, (3)

where F indicates the Frobenius norm. Since a covariance matrix
is a translation-invariant transformation, the AIRM, which
is invariant to linear transformations, provides an invariant
measure of distance over all affine transformations of EEG
epochs. This facilitates the robustness of the learning algorithm to
rotations, scaling, and translations. With this distance function,
the geometric mean of each class, ωℓ, on S+ is

6
(ℓ) = argmin

6∈S+

∑

i∈Iℓ

δ2(6,6i), (4)

where Iℓ = {i ∈ 1, . . . , n|yi = ωℓ}. Therefore, each ESCM,
6, can be classified according to a mapping defined by its class
means G = G(6(−1),6(+1)):

g(6) = argmin
ℓ∈{−1,1}

δ(6,6(ℓ)). (5)

2.2. Unsupervised Ensemble Learning
As introduced in Parisi et al. (2014), SML provides an
unsupervised method to combine the classification decisions of
independent models to classify a previously collected and un-
labeled data set. It attempts to weight each classifier’s decision
according to the inferred accuracy of the direct classification.
Here, it is applied dynamically to streaming data for BCI
applications where the independent models are trained with
existing data.

2.2.1. Spectral Transfer
Let {fi}

m
i = 1 be an ensemble of m conditionally independent

classifiers trained on m different training subjects and {Xj}
n
j = 1

be independent and identically distributed test trials for
classification. Then, F(Xj) = (f1(Xj), f2(Xj), . . . , fm(Xj))

T . Also,

define the balanced accuracy of classifier i, πi =
1
2 (ψi+ηi), which

accounts for class imbalance by giving equal weight to sensitivity,
ψ , and specificity, η. The sample covariance matrix,Q ∈ R

m×m,

Q =
1

n− 1

n
∑

j = 1

(F(Xj)− E[F(X)])(F(Xj)− E[F(X)])T, (6)

approximates a rank-one matrix, Q ≈ λvvT , for which vi ∝

(2πi − 1) (Parisi et al., 2014). This implies that the entries of the
principal eigenvector of Q will be proportional to the balanced
accuracy of the associated classifier.

Under a Maximum Likelihood Estimation (MLE), the most
likely label, ŷ, for a trial, X, is then

ŷ = sign

(

m
∑

i = 1

fi(X)

(

log

(

ψiηi

(1− ψi)(1− ηi)

)

+ log

(

ψi(1− ψi)

ηi(1− ηi)

)))

, (7)

This provides a natural Expectation-Maximization (EM)
extension (Dawid and Skene, 1979). The expectation step consists
of calculating the respective sensitivity, ψ = P(f (X) = 1|y = 1),
and specificity, η = P(f (X) = −1|y = −1) of each classifier with
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the MLE estimates of Equation (7). The maximization step then
re-calculates the MLE estimates according to Equation (7). For
a first order solution, and/or an initialization of EM, a Taylor
Series approximation about (ψ, η) = (1/2, 1/2) yields

ŷ ≈ sign

(

m
∑

i = 1

fi(X) · vi

)

. (8)

2.2.2. Real-Time Implementation
For streaming data, the weights of the ensemble classifiers can
be dynamically updated with the addition of each trial. Naively,
Q can be updated according to Equation (6) with each new
trial, or for efficient on-line implementation, just v can be
updated according to the rank-one update to Q of a new trial
(Gu and Eisenstat, 1994). See Algorithm 1 for the real-time
implementation of STIG.

3. EXPERIMENTS

For all experiments, the voluntary, fully informed, written
consent of the persons used in this research was obtained as
required by federal and Army regulations (U.S. Department of
DefenseOffice of the Secretary of Defense, 1999; U.S. Department
of the Army, 1990). The investigators adhered to Army policies
for the protection of human subject (U.S. Department of the
Army, 1990). All human subjects testing was approved by the
Institutional Review Board of the United States Army Research
Laboratory.

3.1. Rapid Serial Visual Presentation
RSVP experiments leverage the oddball paradigm to elicit a
well-characterized P300 visually evoked neural response. In BCI
uses, images are shown to a user at a high rate of speed (2–10
Hz), and the user is instructed to anticipate a pre-defined target
class which appears infrequently in the images (Gerson et al.,
2005; Sajda et al., 2010). When the target class image appears,
the resultant P300 response provides a discernible signal for
recognition by machine learning methods, allowing a BCI system
to discriminate between target and non-target.

3.2. Experiment 1: Off-Line
The data sets used in Experiment 1 were recorded and analyzed
previously; a brief description of the original experiment and
collection is given here.

3.2.1. Paradigm
Data from Experiment 1 is comprised of two previously collected
datasets. The first dataset utilized EEG data from the Cognitive
Technology Threat Warning System (CT2WS) DARPA project
in which subjects participated in a RSVP task comprised of short
movie clips of five images at 10 Hz rate with no inter-stimulus
interval (ISI) such that the effective rate between successivemovie
clips was 2 Hz. Targets consisted of either a person or a vehicle
in natural settings. See Figure 1A for a visualization. The target
class to background ratio was 1:9. Participants were instructed to
manually press a button with their dominant hand when a target

Algorithm 1: Spectral Transfer with Information Geometry
(STIG)

Data: {Sj}
m
j = 1, {Xi}

n
i = 1

Result: {ŷi}
n
i = 1

// Off-line: Calculate fj for each

subject, Sj, in the ensemble

for j = 1, . . . ,m do

fj = G(6
(−1)
j ,6

(+1)
j ) ◦ H(Pj)

end

// On-line: Classify each trial, xk, in

real-time using spectral transfer

case k ∈ 1, . . . ,m− 1 do
ŷk = mode({fj(Xk)}

m
j = 1)

end

case k ∈ m, . . . , n do

(i) v = {vℓ| argmaxℓ λℓ} s.t. Q({Xi}
k
i = 1, {fj}

m
j = 1)vℓ = λℓvℓ

(ii) ŷ
(0)
k

= sign





m
∑

j = 1

fj(Xk) · vj





(iii) q = 0
repeat

// E-step:

for j = 1, . . . ,m do

ψ
(q + 1)
j = P(fj(X) = 1|ŷ(q) = 1)

η
(q + 1)
j = P(fj(X) = −1|ŷ(q) = −1)

end

// M-step:

for i = 1, . . . , k do

ŷ
(q + 1)
i =

sign





m
∑

j = 1

fj(Xi)



log





ψ
(q + 1)
j η

(q + 1)
j

(1− ψ
(q + 1)
j )(1− η

(q + 1)
j )





+ log

(

ψ
(q + 1)
j (1−ψ

(q + 1)
j )

η
(q + 1)
j (1−η

(q + 1)
j )

)))

end

q = q + 1
until convergence;

end

movie clip was shown. Participants conducted 25 2-min blocks
with a short break between each block (Ries and Larkin, 2013).

For the second data set, Insurgent-Civilian-Task (ICT),
subjects participated in a RSVP task with still images
of a simulated desert metropolitan environment. Target
images contained a person carrying a weapon. Non-target
distractor images contained a person without a weapon,
and background images contained neither. There were two
experimental conditions: Target Only (TO) and Target-Non-
target (TN). In the TO condition, only target images and
background images were shown. In the TN condition, non-
target distractor images were shown in addition to target and
background images. Images were shown at 2Hz with no ISI.
See Figure 1B for a visualization. In the TO condition, the

Frontiers in Neuroscience | www.frontiersin.org 4 September 2016 | Volume 10 | Article 430

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Waytowich et al. Spectral Transfer Learning for BCI

FIGURE 1 | Visualization of the two RSVP experiments. Although CT2WS used 500ms video clips, both experiments effectively implemented 2 Hz RSVP.

Example classes for each experiment are shown. Figures reproduced from Ries and Larkin (2013) and Marathe et al. (2015) with permission. (A) Cognitive Technology

Threat Warning System (CT2WS). (B) Insurgent-Civilian-Task (ICT).

ratio of target to background class images was 1:20, and for the
TN condition, the ratio of target to distractor to background
images was 1:1:14. Participants were instructed to manually
press a button with their dominant hand when a target image
was shown. Participants conducted six 2-min blocks of the
TO condition and six 2-min blocks of the TN condition with
a self-paced rest between each block (Marathe et al., 2015).
Although there were three stimuli types (target, non-target, and
distractor), data from only the target and non-target types were
used in the present analysis.

3.2.2. Data Collection
Fifteen subjects (9 male, average age 39.5 years) participated in
CT2WS. EEG data was collected with a BioSemi Active Two
system (Amsterdam, Netherlands) at 512 Hz from 64 scalp
electrodes arranged in a 10–10montage and referenced off-line to
the average of the left and right earlobes. All signals were digitally
filtered from 0.1 to 55 Hz using an FIR filter. Data was collected
using E-Prime software (Psychology Software Tools, Pittsburgh,
PA; Ries and Larkin, 2013).

Seventeen different subjects (14 male, average age 34.9 years)
participated in ICT. EEG data was collected with a BioSemi
Active Two system (Amsterdam, Netherlands) at 1024 Hz from
64 scalp electrodes arranged in a 10–10 montage and referenced
off-line to the average of the left and right earlobes. All signals
were digitally filtered with an FIR filter from 0.1 to 50 Hz.
Data was collected using E-Prime software (Psychology Software
Tools, Pittsburgh, PA; Marathe et al., 2015).

3.2.3. Analysis
For single trial classification, all data was high-pass filtered at
1 Hz, down-sampled to 256 Hz, and Independent Component
Analysis was performed in which eye movement and muscle
activity were manually identified and removed. The data was
divided into 1 s epochs time-locked to the stimulus onset, [0, 1s],
and 18 channels (Fz, Cz, C3, C4, CPz, Pz, P3, P4, P7, P8, POz,
PO3, PO4, PO7, PO8, Oz, O1, O2) were selected for classification
according to Krusienski et al. (2008), X ∈ R

18×256. Whereas,
Krusienski et al. (2008) used 19 channels, our electrode montage
did not have FCz and therefore only 18 of the 19 channels
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from Krusienski et al. (2008) were used. For each of the 17
IC subjects, all distractor trials were removed (i.e., trials with
a civilian shown). Pre-processing was performed with EEGLAB
(Delorme and Makeig, 2004).

For Experiment 1, subject data from both paradigms were
combined for a total of 32 subjects. Off-line analysis of the
transfer method was conducted by leave-one-subject-out cross-
validation. First, a subject-specific MDRM classifier was trained
on each of the 32 subjects. For a test subject, all 31 other subject-
specific MDRM classifiers comprised the STIG ensemble.

We compared our method against several other calibration
suppression and calibration reduction methods which include
both ensemble and pooled methods. For all ensemble methods,
we use the MDRM classifier as the base classifier, and transfer
information in decision space, {−1, 1}. For all pooled methods,
we combine information at the feature level using information
geometric features. First, we considered the following alternative
methods which do not require a dedicated calibration session:

• Max Subject-Specific Classifier (MSS)—We first compared our
method against the best direct subject-subject transfer of all
31 possible subjects. Although not possible to implement in
reality, it serves as a hypothetical ceiling if we had omniscient
knowledge of the available training subjects and could simply
pick the best subject-specific classifier for subject-to-subject
transfer.

• Majority Vote (MV)—This method uses a simple uniform
weighted average of classifications from the ensemble of
classifiers. By combining in decision space, an un-weighted
linear combination is equivalent to a majority vote.

• ℓ1-Regularized Cross-Validation (L1)—This method pools
all available training data and learns a weighted linear
combination of classifier decisions according to a ℓ2 regression
with a ℓ1 penalty (Fazli et al., 2011). We implemented this
method using the MDRM classifier.

• Pooled MDRM (PMDRM)—We implemented a pooled
version of the MDRM method in which we combined all
available training data into a single MDRM classifier.

Additionally, we compared our STIG method to several of
the most recent and highest-performing calibration reduction
methods in the BCI literature. Unlike zero-calibration methods,
calibration reduction methods require a dedicated calibration
session. Thus, to compare against our zero-calibration method,
we tested each calibration reduction method with varying
amounts of calibration data. As with the zero-calibration
methods, we used the MDRM as the base classifier for all
calibration reduction methods.

• AccuracyWeighted Ensemble (AWE)—We used the weighted
linear combination approach from Dalhoumi et al. (2014),
Dalhoumi et al. (2015) to linearly combine classifiers to
minimize a Mean-Squared Error (MSE) loss function on a set
of calibration data.

• Multi-Task Learning (MT)—This method treats classification
as a linear regression problem where feature weights are
modeled as a multivariate Gaussian distribution whose
unknown mean and co-variance matrix are jointly estimated

from multiple training subjects (Jayaram et al., 2016). Once
these Gaussian priors are learned, calibration data from the
test subject can be used to estimate optimal weights for
classification. Since this method utilizes linear regression for
classification, it is not possible to implement the MDRM
classifier directly. Instead, in an effort to achieve consistency
with the other methods, we implement the MT method with
the same information geometric features that are used in the
MDRM classifier.

• Within-Subject Calibration (CALIB)—This is the standard
within subject calibration method that is traditionally used
in the BCI literature. Data from the test subject is split
into training and testing. In this case, an MDRM classifier,
which is constructed using training data from a test subject,
is used to classify the remaining test data from the same
subject. This traditional classification scheme of calibrating
the algorithm to the unique subject during a single session
provides the performance ceiling of any calibration reduction
or suppression method.

Due to the inherent class imbalance of the RSVP task, the
performance of all implemented methods are reported in terms
of the balanced accuracy, π = 1

2 (ψ + η), which equally weights
accuracy on both target and non-target trials.

3.2.4. Results

3.2.4.1. Comparison of zero-calibration algorithms
Figure 2 presents the balanced accuracy of each zero-calibration
method averaged across all subjects in Experiment 1. A
one-way ANOVA showed a significant difference between
the five methods tested [F(4, 159) = 9.73, p < 0.001].

FIGURE 2 | Balanced accuracy results of the zero-calibration methods

for Experiment 1. Green box plots represent implementable algorithms, while

the blue box plot, MSS, represents a method which requires omniscient

knowledge. The middle line and boundaries of the box represent median and

inner quartile range. The dashed line represents the range, and the asterisks

indicate statistical significance of pairwise comparisons between STIG and the

competing methods. Here, the STIG method significantly outperforms the L1

and MV methods.
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Multiple comparisons were performed for each pair using the
Tukey-Kramer method. The proposed STIG method (0.78 ±

0.07) (mean ± standard deviation) achieved comparable
performances with the MSS classifier (0.77 ± 0.07, p = 0.97)
and significantly outperformed the L1 (0.67 ± 0.10, p < 0.001)
and MV (0.69 ± 0.11, p < 0.001) classifiers, illustrating a
benefit to be gained from the spectral-based ensemble learner
over the competing zero-calibration methods. Additionally, The
STIG outperformed our own implemented PMDRM classifier
(0.74± 0.08), although not significantly (p = 0.39).

3.2.4.2. Comparison of calibration reduction algorithms
Figure 3 shows the performance of the STIG method compared
to the results of the calibration reductions methods (AWE, MT,
and CALIB) as a function of available trials. For testing, the
calculation of balanced accuracy for eachmethods was performed
on a fixed number of hold-out trials (600). Each of the calibration
reduction methods trained on an increasing number of trials
(50–1000 trials at 50 trial intervals). Five hundred bootstrap
iterations were performed in which training and testing trials
were drawn randomly for each iteration to provide a more robust
estimate of the performance distribution. STIG was applied to
the sampled testing set in its entirety but did not incorporate
any training trials. As shown in Figure 3, each of the calibration-
based methods shows a general increase in performance for
increasing number of training trials used in the classification.

Statistical analysis was performed between the four methods
shown in Figure 3 in a similar fashion as described in the
previous section. Since additional ANOVAS were performed
for each of the 20 calibration size conditions, the resulting
p-values were corrected using the false-discovery rate (Benjamini
and Yekutieli, 2001). Results show that the STIG method
significantly outperforms the AWE method across all numbers
of calibration trials used (p < 0.05). The STIG method

FIGURE 3 | Balanced Accuracy as a function of number of calibration

trials for the calibration reduction methods (AWE, MT, and CALIB)

tested in Experiment 1. The proposed zero-calibration method, STIG, which

is independent of the number of calibration trials, is plotted for comparison.

Lines represent means averaged across all subjects (N = 32) while shaded

regions represent standard error.

significantly outperforms the MT for the 50–400 calibration trial
conditions (p < 0.05), and achieves comparable performances
for the 450–1000 calibration trial conditions. Similarly, when
compared to the traditional within-subject calibration method,
STIG significantly outperforms CALIB when 400 calibration
trials or less are available (p < 0.05). From 450 to 1000 calibration
trials, STIG achieves statistically similar performance to the
CALIB method (p > 0.05).

3.2.4.3. Effect of ensemble size on transfer accuracy
An obvious question that can be asked about the effectiveness
of STIG is the effect of ensemble size on the accuracy of
the transfer. Figure 4 shows the effect on performance when
various numbers of training subjects are included in the
STIG method. For each of the 32 subjects in Experiment 1,
500 bootstrap runs were conducted for each ensemble size
(5–31) in which a subset of training subjects were randomly
chosen for the ensemble. Figure 4 shows that the performance
of the STIG method asymptotically increases with increasing
ensemble size.

3.2.4.4. STIG estimation of subject-subject transfer accuracy
SML attempts to infer the balanced accuracy of each individual
classifier in the ensemble and weights the classification provided
by each subject accordingly. In order to analyze the effectiveness
of STIG’s ability to infer the accuracy of each ensemble subject
from unsupervised data, the learned ensemble weights from each
test subject were plotted against the true individual balanced
accuracy of each direct subject-to-subject transfer of each subject
in the ensemble. As shown in Figure 5, a clear correlation
can be seen between the balanced accuracy of the direct
subject-subject transfer with the weights assigned according to
Equation (8).

FIGURE 4 | Grand average balanced accuracy as a function of

ensemble size for the STIG method. The balanced accuracy averaged over

1000 bootstrap runs is reported for each ensemble size. The ensemble size

represents the number of training subjects selected for ensemble learning. The

shaded region represents standard error.
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FIGURE 5 | STIG ensemble weight vs. Subject-Subject Transfer

Accuracy. Each point represents an ensemble training subject whose position

on the horizontal axis represents the weight assigned by the STIG method and

whose position on the vertical axis represents the balanced accuracy of direct

subject-subject transfer using ground truth labels.

3.3. Experiment 2: Real-Time Feedback
3.3.1. Paradigm
The ICT paradigm was modified for the real-time feedback
experiment, resulting in the ICT2 paradigm. Subjects
participated in a similar RSVP task in which only target
and background images were presented (see Figure 6). Images
were shown at 2 Hz with no inter-stimulus interval. The ratio of
target to background images was 1:9. Subjects sat approximately
60 cm away from a 21′′ LCD monitor which displayed RSVP
images that spanned the entire screen. Unlike Experiment 1,
subjects in Experiment 2 did not perform any manual button
pressing and were instead instructed to inaudibly count the
number of targets observed during a single block. Participants
conducted 15 blocks of 1 min duration in which 120 images
were presented in each block. Participants were given a self-
paced rest interval between each block to mitigate any fatigue
effects.

Each image was classified as target or non-target in real-time
from a 1-s epoch of EEG data immediately following the image
presentation. A separate 21′′ LCD monitor immediately to the
left of the image display monitor presented the feedback results
in real-time. Although feedback was continuously displayed,
subjects were instructed to only observe the feedback screen
during the rest intervals between blocks as to maintain focus
on the RSVP task. The feedback window, as shown in Figure 7,
displays the 10 targets with the highest score and 10 non-targets
with the highest score, where score is the un-signed value of
Equation (7). This provided a running measure of how accurately
the system classified the images. At the conclusion of each block,
the feedback window also displayed balanced accuracy from a
single block for odd numbered blocks or the combined accuracy

of the last two blocks for even blocks. The feedback window was
reset for each odd block.

3.3.2. Data Collection
Ten new subjects (9 male, average age 32.7 years) participated in
ICT2. EEG data was collected with a BioSemi Active Two system
(Amsterdam, Netherlands) at 256 Hz from 64 scalp electrodes
arranged in a 10–10 montage and referenced off-line to the
average of the left and right mastoids. All signals were digitally
filtered from 0.1 to 50 Hz. BCI2000 was used for data collection
and on-line classification (Schalk et al., 2004).

3.3.3. Analysis
The data was divided into 1 s epochs time-locked to the stimulus
onset, [0, 1s]. The same 18 channels used in Experiment 1 were
also used for classification in Experiment 2. For classification
of the online subjects in Experiment 2, MDRM classifiers were
generated from all 32 subjects from Experiment 1. Although the
MDRM classifiers were trained using data cleaned of artifacts,
ICA was not performed on the streaming data from subjects
of Experiment 2. For the first 31 trials of the first RSVP block,
while rank(Q̂) < 32, MV was used for real-time classification.
Only steps (i) and (ii) of Algorithm 1 were implemented in
real-time to classify images and provide feedback. Those results
are reported in Table 1. The results reported in Figures 8–12
were generated in post-hoc analysis by implementing steps
(i)-(iii) of Algorithm 1 causally on the streamed data. These
post-hoc results were compared against the competing methods
described in Experiment 1, where for zero-calibaration methods,
we compared STIG to MSS, L1, MV, and PMDRM, and for
calibration reduction methods, we compared STIG to AWE and
MT and CALIB.

3.3.4. Results

3.3.4.1. Real-time feedback results
Results of the real-time feedback session in Experiment 2 are
reported for each subject in Table 1, with an average balanced
accuracy of 0.62 ± 0.06. These reflect results from analysis
performed during the on-line experiment that was used to
generate the real-time RSVP feedback. Two subjects, S2 and
S6, perform more than one standard deviation above the mean
and two subjects, S1 and S9, perform more than one standard
deviation below the mean. Notice that the majority of subjects
achieve amaximum online block performance of at least 70% and
several subjects are able to achieve online block performances of
over 80%.

3.3.4.2. Comparison of zero-calibration algorithms
Figure 8 shows the balanced accuracy results of each zero-
calibration method averaged across all subjects in Experiment
2. As with Experiment 1, a one-way ANOVA showed a
significant difference between the five methods tested [F(4, 49) =
4.92; p < 0.01]. Using the Tukey-Kramer method for correction
of multiple comparisons, the STIGmethod (0.64±0.07) achieved
statistically similar results to the omniscient MSS classifier
(0.65 ± 0.06, p = 0.9) and significantly out-performed the MV
classifier (0.54 ± 0.06, p = 0.012). The STIG method achieves
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FIGURE 6 | Visualization of the modified ICT2 paradigm used in the real-time feedback session in Experiment 2. This modified paradigm replicated the TO

condition from ICT where only targets and background images were shown at 2Hz. Figure reproduced from Marathe et al. (2015) with permission.

FIGURE 7 | Screen capture of real-time feedback visualization used in Experiment 2. As each RSVP image is presented to the subject, the STIG method

classifies the trial in real-time, and the results are presented in the above feedback window where target and non-target images, sorted by score, are presented in red

and green windows respectively along with balanced accuracy of current block (odd blocks) or combined two previous blocks (even blocks). At the end of each block,

the participant was shown the block results pictured here. After image classification, target images appeared on the feedback screen with a red box circumscribing

the target in order to facilitate performance assessment of the user.

slightly higher performance results compared to the L1 (0.61 ±

0.07) and PMDRM (0.55 ± 0.07) classifiers although these were
not found to be significant (p = 0.83 and p = 0.12, respectively).

3.3.4.3. Comparison of calibration reduction algorithms
Figure 9 shows the results of STIG compared to the calibration
reduction methods (AWE and MT) and within-subject
performance ceiling (CALIB). Unlike the bootstrap analysis
performed in Experiment 1, results for the calibrationmethods in
Experiment 2 were calculated causally. The data was partitioned
in sequence into calibration and testing. This was done so

that the post-hoc analysis would simulate online analysis from
the real-time feedback experiment. The calibration reduction
methods were tested using varying numbers of calibration trials
from 50 to 1000 trials.

Similar to Experiment 1, statistical analysis was performed
where one-way ANOVAS were computed for each of the 20
calibration size conditions, the resulting p-values were corrected
using the false-discovery rate (Benjamini and Yekutieli, 2001). As
shown in Figure 9, the STIG method significantly outperforms
the AWE method for when 50–600 calibration trials are used
for AWE training (p < 0.05), and comparable performance
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FIGURE 8 | Post-hoc balanced accuracy results of the zero-calibration

methods for Experiment 2. Green box plots represent implementable

algorithms, while the blue box plots, MSS, represent a method which requires

omniscient knowledge. The middle line and boundaries of the box represent

median and inner quartile range, the dashed line represents the range and the

asterisks indicate statistical significance of pairwise comparisons between

STIG and the competing methods. Here, the STIG method significantly

outperforms the MV method. The + represents statistical outliers.

FIGURE 9 | Balanced Accuracy as a function of number of calibration

trials for the calibration reduction methods (AWE and MT) and the

traditional within-subject calibration method (CALIB) tested on the

real-time feedback paradigm in Experiment 2. The proposed

zero-calibration method STIG, which is independent of the number of

calibration trials, is plotted for comparison. Lines represent means averaged

over all subjects (N = 32) while shaded regions represent standard error.

is attained when 650 or more calibration trials are used. The
STIG method achieves similar performance compared to the
MT method (p > 0.05) across all numbers of calibration trials
used. Unlike the performance shown in Experiment 1 (Figure 3),
the MT method does not appear to show a gradual increase
in performance with increasing number of calibration trials, as

FIGURE 10 | (A) Evolution of the STIG ensemble weights for a single subject

computed causally throughout Experiment 2. For clarity, only the top 10

ensemble subjects are shown. (B) Running estimate of the balanced accuracy

for subject 4 over the length of the session. Notice that the ensemble weights

vary considerably while the overall STIG performance shows an increasing

trend throughout the experiment, indicating an advantage for adaptive

methods.

would be expected. Compared to the standard within-subject
calibration method (CALIB), STIG achieves significantly higher
balanced accuracies when 50–350 calibration trials are available
for the CALIB method (p < 0.05). For the 400–1000 calibration
size conditions, STIG achieves statistically similar performance
to the CALIB method (p > 0.05).

4. STIG CHARACTERIZATION

4.1. Evolution of SML Weights Over
Experiment
To further characterize the transfer properties of the ensemble
learner in the STIG method, the ensemble weights from STIG
were plotted over time. The estimated weights are tracked as
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FIGURE 11 | (A,B) Histogram of top weighted transfer subject in Experiment 1 (left) and 2 (right). For each test subject and each trial #, the top weighted transfer

subject was recorded and the frequency of each ensemble subject selected as the top subject is shown above. (C,D) Evolution of STIG weights for subject 24

(Experiment 1, left) and subject 2 (Experiment 2, right) over the course of the experiment. For clarity, only six transfer subjects are shown. The top three weighted

transfer subjects (subs 5, 6, and 25) are shown in blue and three low weighted transfer subjects (subs 12, 14, and 21) are shown in red.

STIG classifies each trial in Experiment 2 causally. Note that in
the real-time feedback experiment, as each new trial becomes
available, the ensemble classification from that trial gets added to
the window of previous classified trials that is used by the STIG
algorithm. Thus, STIG updates its ensemble weights for each trial.
Figure 10A shows the weights of 10 ensemble subjects for subject
4 as they evolve over the course of the real-time experiment. It is
apparent that the relative weight of each subject in the ensemble is
not static but rather evolves throughout the experiment, varying
by as much as 0.6. Figure 10B illustrates a running estimate of
the balanced accuracy for subject 4 where the STIG performance
shows an increasing trend over the length of the session.

Histogram plots and weight evolution curves of the top
weighted transfer subjects were made and are shown in
Figure 11. Figures 11A,B show the distribution of top weighted
subjects for experiments 1 and 2 respectively. For each test subject

and for each test trial, the ensemble subject with the top weight
assigned by the STIG method was recorded and a histogram was
made showing the frequency to which each transfer subject was
weighted the highest for a given trial. These histogram plots show
which subjects are utilized the most in the ensemble transfer. The
top weighted subjects from Experiment 1 were subjects 5, 6, 25,
and 32, whereas the top weighted subjects from Experiment 2
were subjects 5, 6, 19, and 32. Notice that subjects 5, 6, and 32
are among the top weighted subjects across both experiments.
Figures 11C,D show the STIG weights for the top three
subjects as well as three lower performing subjects over-time for
Experiments 1 and 2, respectively. The top three high-weighted
subjects (subjects 5, 6, and 25) are shown in blue and the three
low-weighted subjects (12, 14, and 15) are shown in red. Note,
only six subjects are shown instead of all 32 for visual clarity.
It can be seen in both Figures 11C,D that the STIG weights
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FIGURE 12 | Grand-Average target and non-target responses from Experiments 1 and 2. The top three panels show the average responses from Experiment

1 and the bottom three from Experiment 2. Responses from channel Fz, Cz, and Pz are shown (left, middle, and right columns, respectively). Shaded regions

represent standard deviation. X-axes show time in ms, and y-axes represent signal amplitude in uV.

vary over-time. Additionally, Figure 11D shows a lower-ranked
ensemble subject (subject 21) eventually overtaking the higher-
ranked ensemble subject (subject 5) at around 600 trials.

5. DISCUSSION

The field of transfer learning for BCI is rapidly increasing with
a push to develop algorithms that require less and less training
data. Although the field has shown more progress in developing
algorithms that can reduce calibration, there still remains very
little progress on general purpose, zero-calibration algorithms
that are capable of classifying brain-signal data from a new
subject without any prior training data. This study combines the
recent efforts in information geometry and joint classification to
present the Spectral Transfer with Information Geometry (STIG)
method, an unsupervised ensemble learner that requires zero
calibration data to out-perform other state-of-the-art calibration
suppression and calibration reduction methods.

The effectiveness of STIG was tested and validated with both
off-line and on-line experimentation. For off-line analysis in
Experiment 1, STIG significantly outperforms the two competing
zero-calibration based ensemble methods (L1 and MV). This
demonstrates a benefit gained from a spectral based ensemble
learner when applied to BCI transfer. In theory, the SML
will provide an ensemble accuracy that is within an additive
constant of the best performing subject in the ensemble, and
this bound improves with increasing ensemble size. As shown
in Figures 2, 8, STIG achieves and exceeds the performance
of the best performing classifier in the ensemble. Together,
this demonstrates that with neither a calibration session nor

any labeled training data, the STIG method should equal the
best performing subject in the ensemble and can potentially
do better. As compared to the calibration reduction methods
for Experiment 1, the STIG method significantly outperforms
the AWE method for all numbers of available calibration data
and outperforms the MT method and traditional within-subject
calibration methods when only a limited amount of training
data is available (<400 trials), which approximates to a 5–10 min
calibration session. With large amounts of training data available
however, the MT and within-subject calibration methods achieve
comparable performance to the STIG method. Nevertheless,
these methods still require training data and thus necessitate a
deliberate calibration session in order to use them. The analyzed
data from the real-time paradigm in Experiment 2 show similar
conclusions, overall demonstrating that the STIGmethod has the
ability to out-perform other zero-calibration methods and can
achieve comparable–and often better–performance to methods
which require training data.

More than simply training a single classifier with historical
data, STIG provides a unique and adaptable transfer to each test
subject. Figure 10 shows for a representative test subject that
the relative weighting of each member of the ensemble is not
static with time, and, in fact, varies quite significantly throughout
the experiment. According to Figure 5, where STIG ensemble
weights are shown to be correlated with direct subject-to-subject
transfer accuracy, there exist a non-stationarity in the ability of
any one ensemble member to classify the test subject. Thus, the
adaptive nature of STIG provides a significant advantage over
traditional zero-calibration methods which do not adapt after the
beginning of the experiment. Figures 11C,D also show that this
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TABLE 1 | Total session balanced accuracy by subject from real-time

feedback experiment.

On-line Feedback Results (Balanced Accuracy)

Subject Mean STD Min Max

S1 0.54 0.07 0.46 0.68

S2 0.74 0.06 0.60 0.83

S3 0.59 0.05 0.48 0.68

S4 0.64 0.06 0.54 0.78

S5 0.61 0.07 0.47 0.73

S6 0.71 0.07 0.60 0.83

S7 0.62 0.08 0.52 0.81

S8 0.57 0.05 0.51 0.69

S9 0.54 0.06 0.42 0.62

S10 0.67 0.07 0.55 0.76

Overall 0.62 0.06 0.51 0.74

Shown is the mean accuracy as well as the STD, minimum, and maximum run

performance over the 15 online feedback blocks.

non-stationarity exists even with subjects that are consistently
top-weighed. Despite this non-stationarity, there exist subjects
that tend to be consistently top-weighed throughout all test
subjects and throughout all trials as seen in Figures 11A,B,
where several subjects (notably 5, 6, and 32) have frequency
counts that are several orders of magnitude higher than most
other subjects. These subjects show high generalizability as their
models transfer well to new subjects, achieving high subject-to-
subject prediction accuracy, which the STIG method is able to
infer.

For on-line implementation, consideration must be given to
the computational complexity of the presented algorithm. In the
presented experiments, convergence of Algorithm 1 completed
well within the half second window before the next EEG epoch
was available to classify. Much of the computational work is
performed off-line in finding the class means of each of the
ensemble subjects. During on-line implementation, Algorithm 1
incurs the following computational costs (m classifiers in the
ensemble, T samples in an EEG epoch, C channels used for
classification, n trials collected): 4m(T − 1)C2 + O(mTC) from
feature extraction (2) for each classifier in the ensemble, 643 mC3+

O(mC)2 from the MDRM classification (5), 2(2n − 1)m2 +

O(m) from the covariance estimation in (6), 1
3m

3 + O(m2)
from the eigendecomposition ofQ, andO(nm) for each iteration
of (iii) in Algorithm 1. The costly steps of the algorithm take
place in the extraction and classification of the information
geometric feature. The spectral transfer contributes relatively
little to the computational complexity. Regardless, it can be
further diminished by simply updating the eigendecomposition
based on the rank one update of an additional trial without the
re-estimation ofQ (Gu and Eisenstat, 1994). More difficult would
be to reduce the cost of the MDRM classification which grows
combinatorially with the size of the ensemble, but in practice, this
has not proven to be prohibitive for on-line implementation with
real-time feedback.

There exists a small difference between the results of the two
experiments in which there is a nominal decrease in balanced
accuracy from Experiment 2 as compared to Experiment 1.
Analysis from Experiment 1 was performed in a similar way
most methods use when comparing BCI transfer; using a
leave-one-subject-out cross validation transfer where one test
subject is extracted from a dataset and the remaining subjects
are used as training for BCI transfer. However, leave-one-out
cross validation is not indicative of a use-case for practical BCI
transfer where data from the same experiment is used for transfer.
Experiment 2 attempts tomore realistically capture real world use
with cross-experiment transfer by using data from Experiment 1
as historical training data to classify subject data in Experiment
2. However, Experiment 2 contains several confounding factors
which might explain its decreased performance. Experiment
2, which uses data from Experiment 1 for transfer, contains
several paradigmatic differences that can negatively impact the
performance of this cross-experiment transfer. First, Experiment
1 displays target, non-target, and distractor images to each
subject, whereas Experiment 2 only utilizes target and non-
target images. Additionally, subjects in Experiment 1 performed
manual button pressing during target images, while subjects in
Experiment 2 did not. Finally, Experiment 1 was collected using
e-prime software and Experiment 2 was collected using BCI2000,
which may have different latencies between the two systems.
All of these factors likely contribute to observed differences
seen in target response amplitude and latency between the two
experiments (Figure 12), which shows the grand-average target
and non-target responses for Experiments 1 (top) and 2 (bottom)
for channels Fz, Cz, and Pz. These morphological differences in
target waveforms can negatively impact the performance of the
cross experiment transfer and potentially explain the decrease in
accuracy from Experiment 1 to Experiment 2.

The STIG method has an initial start-up cost associated with
it as it requires at least m predictions from each of its m
ensemble classifiers in order to estimate the covariance matrix
and generate accurate ensemble weights. As a result, during the
beginning of online classification of a new subject, STIG resorts
to simple majority voting until m trials have been collected.
Additional work will seek to alleviate this issue and allow the
STIG method to be applied immediately from the start, for
example, one approach could be to use the L1-regularization
technique from Fazli et al. (2011) as a warm-start for the STIG
weight estimation. Additionally, the STIG method utilizes all
previous test data labels for ensemble weight estimation, however,
this may not be optimal during long test sessions as information
from ensemble predictions from the beginning of a session may
not be useful during the end of a session, due to fatigue effects
and other sources of non-stationarity (i.e., an ensemble subject
that transfers well during one portion of a test session may
not transfer well during another portion). One possible solution
to this issue would be to utilize an iterative covariance matrix
update method together with a decay-rate to put emphasis on
more recent classification predictions. These current limitations
of the proposed method will be addressed in future work which
will potentially improve the transfer capabilities of the STIG
method.
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6. CONCLUSION

This paper presents a novel method, termed Spectral Transfer
with Information Geometry (STIG), to achieve unsupervised BCI
transfer learning that outperforms the state-of-the-art calibration
reduction and suppression methods when little or no calibration
data is present. Additionally, this paper also validates the STIG
method for use in real-time feedback BCI systems, representing
a step-forward in the overall goal of attaining a general purpose,
user-independent BCI system.
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