We describe our work using linear discrimination of multi-channel electroencephalography
for single-trial detection of neural signatures of visual recognition events. We demonstrate
the approach as a methodology for relating neural variability to response variability, describing
studies for response accuracy and response latency during visual target detection.
We then show how the approach can be utilized to construct a novel type of brain-computer
interface, which we term cortically-coupled computer vision. In this application, a large
database of images is triaged using the detected neural signatures. We show how ‘corticaltriaging’
improves image search over a strictly behavioral response