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Abstract—Brain-machine interfaces (BMIs) have demonstrated
how they can be used for reaching tasks with both invasive
and non-invasive signal recording methods. Despite the constant
improvements in this field, there still exist diverse factors to
overcome before achieving a natural control. In particular, the
high variability of the brain signals often leads to the incorrect
decoding of the subject intentions, producing unreliable behaviors
in the controlled device. A possible solution to this problem would
be that of correcting this erroneous decoding using a feedback
signal from the user. In this work, we evaluate the possibility
of decoding neural signals associated to performance monitoring
(EEG-recorded error-related potentials) during a reaching task.
Compared to previous works where these error potentials were
recorded under scenarios with discrete movements performed
by the cursor, under real conditions the cursor is moving
continuously and thus the system is required to asynchronously
detect any possible error. To this end, we simulated two different
erroneous events during the monitoring of a reaching task: errors
at the beginning of the movement, and errors happening in the
middle of the trajectory being executed. Through the analysis
of the recorded EEG of three subjects, we demonstrate the
existence of neural correlates for the two types of elicited error
potentials, and we are able to asynchronously detect them with
high accuracies.

Index Terms—Error Potentials, Brain-Machine Interfaces.

I. INTRODUCTION

In the last years, brain-machine interfaces (BMIs) have

emerged as promising assistive systems for impaired people,

demonstrating how they can be used to control virtual cursors,

or real devices. On one hand, invasive techniques have shown

that monkeys can learn to control the movement of computer

cursors [1] and arm prostheses to solve reaching tasks [2].

Similarly, experiments in humans using invasive recordings

have shown how these systems can be used to control real

robotic arms for reaching and grasping tasks in activities

of daily life [3], [4]. Despite having lower performances,

reaching tasks have also been tackled with semi-invasive

recoding techniques such as electrocorticography [5], and non-

invasively with electroencephalography using motor imagery

of body limbs [6] or slow cortical potentials among others [7],

[8].

These demonstrations rely on progressive improvements in

the decoding performance of brain signals used to perform this

type of reaching tasks. However, every system developed so

far has to deal with a significant failure rate, due to diverse

factors such as high variability of brain signals, the complexity

of the task or user mistakes. These misclassifications can

lead, expectedly, to erratic behaviors of the device under

these reaching tasks in different forms: at the beginning of

a movement [7] by not detecting the intended initial user

intention; or during the execution of the movement provoking a

deviation of the device from the intended path [9], [10] among

others.

We hypothesize that decoding of neural signals associated to

performance monitoring (error-related potentials), can provide

a mean to improve or correct the misbehaviors introduced

during the operation of the device. Error potentials have been

shown to be elicited when the user’s expected and actual

outcome of an action differ [11] and have already been used

to correct the commands executed by a device, to adapt the

classifier or as feedback for different devices (see [12] for a

review). Up to far, these signals have been studied under well-

controlled discrete setups, therefore their usability for reaching

tasks is yet to be assessed. In particular given the fact that,

during these tasks it is necessary to continuously decode error

potentials in an asynchronous manner.

We tested the feasibility of decoding of error-related activity

during a reaching task similar to those used in both invasive

and non-invasive approaches. Here the subject monitors the ac-

tions of a device performing self-paced movements to reach a

designated goal. We studied EEG activity elicited by erroneous

device actions both at the beginning and during the execution

of the trajectories. The analysis of the EEG signals of the

three subjects that carried out the experiment revealed neural

correlates of performance monitoring during the reaching task.

Furthermore, we show that it is possible to classify the EEG

signal asynchronously (i.e., using a sliding window) in order

to detect erroneous device behaviors.
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Fig. 1: Reaching task where a computer cursor (yellow) had to

reach a designated goal (dark green) from one of the 8 possible

targets (light green). The device could start each trial moving

in the correct direction towards the goal or incorrectly towards

one of the remaining targets (a). For those trials where the

device started correctly, most of the time it would continue to

the correct goal (b) but some others it could perform a sudden

change in the trajectory towards an incorrect target (c).

II. METHODS

A. Experimental Protocol

Three healthy subjects (ages of 25, 23 and 23 years) partici-

pated in the study recorded in the University of Zaragoza after

giving written consent. Volunteers were seated approximately

one meter away from a computer screen where they visualized

a 2D reaching task.

The task consisted in a virtual device (ball) that moved

to eight possible targets uniformly spaced around a 20 cm

diameter circle, see Figure 1. We defined a trial as follows.

First, one of the eight targets was highlighted representing the

designated goal. Then, the ball moved from its current position

following one of the next possible trajectories::

• Start error (SE): the ball moved in a straight line until

it reached a different target from the designated goal,

(Fig. 1a).

• Start correct (SC) and no deviation (ND): The ball

began its movement in direction towards the designated

goal until it reached its location (Fig. 1b).

• Start correct (SC) and deviation error (DE): The

device started as in the previous case, but at a random

point between the 40% and 60% of the trajectory, the

device suddenly deviated towards one of the wrong

targets (Fig. 1c).

There was an equal probability (50%) for the device to

perform a correct or an erroneous start (SC vs SE). For those

movements were the device started correctly, there was a 30%
of deviating from the current trajectory (DE). The duration of

each movement lasted on average 4.32 ± 0.71 seconds with

a resting period between trials of 3 seconds. The protocol

was recorded in one session of about 2 hours including the

set-up. The session was organized in 12 blocks of 40 trials,

with a break of few minutes between blocks. A total of 240

start correct, 240 start error and 75 error deviation trials

per participant were recorded. Trials were balanced pseudo-

randomly within each block.

Participants were asked to evaluate the performance of the

device movements by assessing whether the trajectories were

correct or erroneous. In the presence of an error, participants

were asked to press a button as soon as they were aware

of it. This leads to two additional conditions, denoted error
deviation with button (DEB), and start error with button
(SEB). To analyze any possible contamination on the EEG

due to pressing the button, 3 minutes of EEG signal were

recorded before the experiment, where the subjects pressed

the button at their own will in absence of any other stimuli.

Finally, participants were also instructed to fixate their gaze

and to restrict eye movements or blinks to the resting periods

between trials.

B. Data Recording and Preprocessing

Electroencephalographic (EEG) activity was recorded using

a g.Tec g.USBamp system consisting of 60 electrodes placed

according to the extended 10/20 international system, with

the ground on FPz and the reference on the left earlobe;

additionally, electrooculographic (EOG) activity was recorded

using 3 monopolar electrodes (placed above the nasion, and

below the outer canthi of the right and left eyes). EEG and

EOG signals were digitized with a sampling frequency of 256

Hz and powerline notch filtered at 50 Hz.

EEG data was spatially filtered using common-average-

reference (CAR) and bandpass-pass filtered between 1 and

10 Hz using a zero-phase Butterworth filter of 4th order.

Additionally, EOG contamination was removed from the EEG

signal using a regression algorithm [13]. The resulting signal

was visually inspected to detect and remove noisy channels.

A z-score technique was used to automatically discard those

trials with EEG values 3 times larger than the average.

C. EEG Signal Analysis

Firstly, signal was analyzed by means of their grand av-

erages. To this end, data was epoched using a time window

from −200 to 1000 ms time-locked to the onset of the event.

For SE and SC events, the onset corresponded to the instant

when the device began the movement. For DE events, the

onset was fixed at the deviation time. Onsets for ND events

were chosen randomly throughout the trajectory to be used

as a control condition. Additionally, we also analyze the EEG

activity linked to the user response (DEB and SEB conditions).

For this purpose, epochs with erroneous movements were also

defined by aligning them to the button onset. This allowed to

characterize the erroneous events according to their reaction

time (i.e. elapsed time from the presentation of the visual

stimuli and the subject pressing the button).

EEG epochs were averaged for all participants at channel

FCz [14] and compared pair-wise across conditions. Topo-

graphic interpolations of the signals as well as discriminability

tests were also analyzed.

D. Feature extraction and classification

This work analyzes the possibility of classifying, at a

single-trial level, the existence or not of erroneous movements
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Fig. 2: Real example (channels Fcz, Cz, CPz and Pz) extracted from data of one of the subjects, depicting different possible

outcomes of classification when using the sliding window. Blue lines represented the duration of each trial. From left to right:

Trial starting with a SC event and no further deviations. Trial starting with SE event which is properly detected. Trial starting

with SC and an DE which also is properly identified. Lastly, trial starting with SE event not detected by the classifier, and a

misdetection of an error when the device was not performing any event.

performed by the device. Two different tests were performed:

pairwise classification between different types of events; and

a sliding window approach to detect the erroneous event

asynchronously.

We used a combination of temporal and frequency features

extracted from the four most relevant common spatial pat-

terns (CSPs) [15]. Temporal features were extracted as EEG

voltages within a one-second window of the extracted epochs

downsampled to 64 Hz, forming a vector of 256 features. For

the frequency features, the power spectral density (PSD) was

computed in the same time window using the Welch’s method

with a Hamming window and a window overlap of 250 ms.

Frequency features corresponded to the power values from

the theta band ([4, 8] Hz) ± 1 Hz leading to a vector of 28
features. Finally, both sets of features were concatenated and

normalized to the range [0, 1].

Features were used to train a support vector machine

(SVM) classifier with a radial basis function (RBF) kernel

[16]. All parameters (including EOG regression coefficients,

CSPs and normalization values) were computed using only the

training datasets. The minority class of the training set was

oversampled to match the number of trials of the majority

class to avoid SVM sensitivity to imbalanced datasets [17].

E. Classification evaluation

The pairwise comparison in this protocol was performed in

the time-locked epochs (i.e. in a synchronous manner). In this

sense, for every pair of conditions defined in section II-C (SE

vs SC, DE vs ND, SE vs DE, and SEB vs DEB) a 4-fold

chronological cross-validation was computed, being each fold

represented by 3 blocks of 40 trials each.

Test of the asynchronous detection (i.e. sliding window)

focused on decoding error (SE and DE) events from the

background EEG (considered to be composed by SC and ND

events). To this end, the data were split into a training set of 9

blocks and a test set of 3 blocks. After training the two-class

classifier, the test set was used to continuously evaluate the

trained classifier with a sliding window of one second length,

and steps of 62.50 ms. Performance is reported in terms of

the number of correctly classified trials. We considered a trial

was properly classified when error events were detected in a

lapse of time of 1200 ms from the occurrence of the error,

and no errors were detected during the rest of the movement.

Any other possibility was considered as a misclassification

(see Figure 2).

III. RESULTS

A. EEG signal analysis

Figure 3 shows the pairwise comparisons of the ERP grand

averages. Regarding to the two possible situations at the

starting of a movement (i.e., SE and SC), Fig. 3a shows

that both elicit a potential characterized by a small positivity

around 350 ms after the onset of the event, followed by a

narrow deflection centered at 420 ms for the case of the SC

event and a wider negativity extended from 400 to 600 ms

for the SE events. These peak activities showed statistically

significant differences (Bonferroni corrected unpaired t-test,

p < 0.05). These differences are also reflected in the r2

value that reaches a maximum value at 550 ms. Figure 3b

displays the grand averages ERP after DE events. They are

characterized by a pronounced tri-phasic modulation, with a

positive peak at 180 ms, followed by a negativity and another

positive peak at 230ms and 300ms, respectively. A broader

negative deflection then appears from 350ms to 600 ms. As

expected, both the statistical test and the r2 metric highlight

the ERP differences at these peaks.

The right column of Figure 3 compares the two error

conditions according to using the visual or button onset (i.e.,

SE/SEB and DE/DEB). First, when the epochs are aligned

to the visual onset of the events (Fig 3c) clear differences

are observed between the two type of errors, with ERPs

after DE events having significantly larger amplitudes than
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Fig. 3: Electrophysiology analysis for the different conditions. Time-locked grand averages on channel FCz. Black dotted

markers at the bottom of each plot represent the time samples which amplitudes had a statistical difference between conditions

(Bonferroni corrected unpaired t-test, p < 0.05). The bottom part of each plot shows the r2 discriminability test between

conditions, where darker colors indicate larger differences. Scalp topographic maps at the most relevant peaks (higher r2) for

both conditions are displayed on top.

the SE condition. However, the response-locked ERPs, i.e.

when he/she pressed the button (Fig 3d), for both conditions

show a negative modulation peaking at 100 ms after the button

press. This effect is due to a higher variance on the latency in

which the subjects perceive the SE events compared to DE.

Since the onset related to the start of a movement is unknown,

the subject may not be attentive. However, once the cursor is

moving, the subject knows that she has to pay attention for

possible deviations.

Subjects took more time on average to perceive the errors

at the beginning of the movement. Furthermore, their reaction

times were more variable during the SE condition, reaching the

extreme case of taking more than 1.5 seconds before pressing

the button compared with the average of 300 ms for the DE

events.

To further compare the two types of errors, Figure 4 shows

single-trial activity for FCz electrode in both error conditions

ordered according to the reaction time, and the randomly

button press. SE events for the three subjects elicit a stimulus-

locked positive modulation around 350 ms, seemingly inde-

pendent of the moment where the subject pressed the button.

This peak could also be observed in the grand average (Fig 3a),

probably related to the stimulus perception. A later negative

and positive ERP components of the potentials appear to be

correlated to the moment in which the subject pressed the

button, most likely linked to the cognitive monitoring and

decision making of the task. These results coincided to those

obtained by Gerson et al. [18] in RSVP protocols where they

found a shift in the ERP activity that correlates with the

response time. In our case, the reaction time for each subject

was 603.75±308.35 ms , 877.7±388.1 ms and 567.39±220.25

ms for subjects 1, 2 and 3 respectively.

In a similar way, the potentials elicited by the DE events

presented three stimulus-locked peaks (positive at 180 ms,

negative at 230ms and positive at 300ms) before the button

press, also seen in Fig 3b. The magnitude of these peaks was

about three times larger than for the SE events and the subjects

were aware of them more quickly, being the time responses

of 344.66±116.2 ms, 425.94±113.4 ms and 404.43±93.6 ms.

As before, ERP modulations after the button press, ranging
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Fig. 4: Single-trial activity (FCz electrode) for SE events (a),

DE events (b), and random press of the button (c), ordered

from fastest to lowest reaction time for each subject. The

vertical line (t=0) represents the time of the event onset,

whereas the curved black line depicts the time of the users

response (button press). EG signal is color coded from blue

to red corresponding to the range [-10 10]μV , respectively.

from 400 to 600 ms, correlate to the time response, despite

slight variations for each subject. Lastly, Fig 3c displays the

activity generated after the button was pressed in absence

of any stimuli. Here, even though the data seems to follow

some kind of pattern it does not match with the modulations

generated during error evaluation plus its magnitude is much

inferior.

B. Classification

Table I depicts the pair-wise classification accuracy in single

trial. On average, it was possible to correctly detect whether

the device started a movement in the wrong direction the

67.6% of the times. In the same way, the results clearly

show that is possible to detect DE events with a very high

accuracy of 92.74%. Comparison between the two type of

error events, shows that it is possible to discriminate between

the two of them (SE vs DE). However, it was interesting to

notice that aligning the potentials to the visual stimuli leaded

to an average increase of 10% in the detection accuracy over

aligning them to the button press (SEB vs DEB). All these

results are in line with state of the art studies that deal with

error potential classification [14].

Regarding to the asynchronous detection of error events

through the usage of a sliding window, results are depicted

in Table II. An average of 72.33% of the trajectories were

correctly classified. In particular, for those trials in which

the device started the movement towards the desired goal

and it followed its path without any disruption, only in

31.16% of the cases the classifier would detect a false positive

(identify an error when there is none) whereas the 68.84%

TABLE I: Pairwise time-locked classification accuracy

Acc Class1 Acc Class2 Mean
Class1: SE

81.52% 53.76% 67.55%
Class2: SC
Class1: DE

98.44% 87.03% 92.74%
Class2: ND
Class1: DE 98.08% 75.19% 86.64%
Class2: SE
Class1: DEB 95.83% 57.41% 76.62%
Class2: SEB

of the trajectories were properly decoded. Looking at the

trials where the device started correctly but a deviation error

was introduced, the 81.48% of the errors were successfully

decoded, in a 12.96% of the cases the classifier identified a

false positive before the error occurred, and only in a 5.56% of

the trajectories the errors were not recognized. Lastly, for the

movements in which the device started in the wrong direction,

66.66% of the times the classifier was able to detect the error,

in a 27.5% of the cases there were no detections at all and in

the remaining 5.84% there was at least a false positive. Notice

the increased difficulty of the continuous decoding of the EEG

signal, given its oscillatory behavior that often resemble the

pursued temporal patterns.

Studying in detail the error events that were not properly

classified we found that the reaction time of the DE not

identified by the sliding window was 515±187.62ms whereas

the average reaction time for the events correctly detected was

357.42±64.72ms. In the same way, the SE not identified had a

reaction time of 703.83±234 ms in contrast with the average of

620.16±232 ms of the detected events. As seen in section III-A

there exist variations in the latency, specially for SE events that

could affect the classification process. For example, assigning

labels (e.g. label error) to a portion of signal that might not

have the desired features. In particular, taking into account

that features used for classifier training were extracted from

stimulus-locked epochs.

TABLE II: Trajectory characterization according to their asyn-

chronous classification

Type Correct False Positive Not Detected

SC+ND 68,84% 31,16% –
SC+ED 81,48% 12,96% 5,56%

SE 66,66% 5,84% 27,5%

Total 72,33% 27,67%

IV. CONCLUSIONS AND FUTURE WORK

This work studies the possibility of decoding neural signals

associated to performance monitoring during a reaching task.

For this purpose, we designed an experimental protocol where

a device was executing self-paced movements to reach a des-

ignated goal. During the execution of the trajectories two types

of error events were introduced. Errors at the beginning of the

movement, representing the incorrect decoding of the desired

action to execute; and errors in the middle of a trajectory that

correspond to sudden deviations from the expected path.
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EEG analysis of three subjects have shown that both types

of error events elicit discriminable potentials. Although these

potentials share various similarities, the signal evoked by the

errors introduced during the middle of a trajectory showed

higher magnitude and a more consistent response by the

users. Features from the temporal and frequency domain can

be used asynchronously to distinguish error events from the

background EEG signal with accuracies over 70%.
These results support the possibility of incorporating the

decoding of these error potentials as a complementary feature

during the use of BMI-controlled devices for reaching tasks.

Importantly, error-related signals are not only present in EEG,

but several works have shown their existence also in semi-

invasive [19] and invasive recording methods [20]. As future

work, it is still pending to test the proposed results with a

larger pool of subjects, and the feasibility of decoding this

signal with closed-loop experiments. As a natural next step,

the proposed system will be tested in a hybrid approach where

a 2D cursor is controlled via a BMI and its behavior will be

corrected via the feedback obtained from the decoding of these

error potentials.
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