1,360 research outputs found

    Tinkering with the Unbearable Lightness of Being: Meditation, Mind-Body Medicine and Placebo in the Quantum Biology Age

    Get PDF
    There are empirical indications that mind-body therapies have a nonlocal quantum component, in addition to the psychoneuroimmunological pathways that have been the focus of the predominant experimental paradigm.  The discussion below addresses the evidence and proposed theoretical mechanisms supporting this conclusion, and makes the case that there should be a convergence of research agendas between mind-body interventions (including placebo),  photomedicine and quantum biology.  Specifically, the role of endogenously generated biophotons in the regulation of genetic expression and the apparent ability of mental intent to direct biophoton emissions to specifically targeted tissues needs to be further evaluated from the perspective of photobiomodulation mechanisms, with a special focus on the spectroscopy and dosimetry of these emissions. Finally, the possible role of long-term meditation in enhancing quantum biological effects has to be further investigated at the level of cellular and macromolecular remodeling, both in the brain and the body

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Magnetoencephalography

    Get PDF
    This is a practical book on MEG that covers a wide range of topics. The book begins with a series of reviews on the use of MEG for clinical applications, the study of cognitive functions in various diseases, and one chapter focusing specifically on studies of memory with MEG. There are sections with chapters that describe source localization issues, the use of beamformers and dipole source methods, as well as phase-based analyses, and a step-by-step guide to using dipoles for epilepsy spike analyses. The book ends with a section describing new innovations in MEG systems, namely an on-line real-time MEG data acquisition system, novel applications for MEG research, and a proposal for a helium re-circulation system. With such breadth of topics, there will be a chapter that is of interest to every MEG researcher or clinician

    Critical bistability and large-scale synchrony in human brain dynamics

    Get PDF
    Neurophysiological dynamics of the brain, overt behaviours, and private experiences of the mind are co-emergent and co-evolving phenomena. An adult human brain contains ~100 billion neurons that are hierarchically organized into intricate networks of functional units comprised of interconnected neurons. It has been hypothesized that neurons within a functional unit communicate with each other or neurons from other units via synchronized activity. At any moment, cascades of synchronized activity from millions of neurons propagate through networks of all sizes, and the levels of synchronization wax and wane. How to understand cognitive functions or diseases from such rich dynamics poses a great challenge. The brain criticality hypothesis proposes that the brain, like many complex systems, optimize its performance by operating near a critical point of phase transition between disorder and order, which suggests complex brain dynamics be effectively studied by combining computational and empirical approaches. Hence, the brain criticality framework requires both classic reductionist and reconstructionist approaches. Reconstructionism in the current context refers to addressing the “Wholeness” of macro-level emergence due to fundamental mechanisms such as synchrony between neurons in the brain. This thesis includes five studies and aims to advance theory, empirical evidence, and methodology in the research of neuronal criticality and large-scale synchrony in the human brain. Study I: The classic criticality theory is based on the hypothesis that the brain operates near a continuous, second order phase transition between order and disorder in resource-conserving systems. This idea, however, cannot explain why the brain, a non-conserving system, often shows bistability, a hallmark of first order, discontinuous phase transition. We used computational modeling and found that bistability may occur exclusively within the critical regime so that the first-order phase transition emerged progressively with increasing local resource demands. We observed that in human resting-state brain activity, moderate α-band (11 Hz) bistability during rest predicts cognitive performance, but excessive resting-state bistability in fast (> 80 Hz) oscillations characterizes epileptogenic zones in patients’ brain. These findings expand the framework of brain criticality and show that near-critical neuronal dynamics involve both first- and second-order phase transitions in a frequency-, neuroanatomy-, and state-dependent manner. Study II: Long-range synchrony between cortical oscillations below ~100 Hz is pervasive in brain networks, whereas oscillations and broad-band activities above ~100 Hz have been considered to be strictly local phenomena. We showed with human intracerebral recordings that high-frequency oscillations (HFOs, 100−400 Hz) may be synchronized between brain regions separated by several centimeters. We discovered subject-specific frequency peaks of HFO synchrony and found the group-level HFO synchrony to exhibit laminar-specific connectivity and robust community structures. Importantly, the HFO synchrony was both transiently enhanced and suppressed in separate sub-bands during tasks. These findings showed that HFO synchrony constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a new mesoscopic indication of neuronal communication per se. Studies III: Signal linear mixing in magneto- (MEG) and electro-encephalography (EEG) artificially introduces linear correlations between sources and confounds the separability of cortical current estimates. This linear mixing effect in turn introduces false positives into synchrony estimates between MEG/EEG sources. Several connectivity metrics have been proposed to supress the linear mixing effects. We show that, although these metrics can remove false positives caused by instantaneous mixing effects, all of them discover false positive ghost interactions (SIs). We also presented major difficulties and technical concerns in mapping brain functional connectivity when using the most popular pairwise correlational metrics. Study IV and V: We developed a novel approach as a solution to the SIs problem. Our approach is to bundle observed raw edges, i.e., true interactions or SIs, into hyperedges by raw edges’ adjacency in signal mixing. We showed that this bundling approach yields hyperedges with optimal separability between true interactions while suffers little loss in the true positive rate. This bundling approach thus significantly decreases the noise in connectivity graphs by minimizing the false-positive to true-positive ratio. Furthermore, we demonstrated the advantage of hyperedge bundling in visualizing connectivity graphs derived from MEG experimental data. Hence, the hyperedges represent well the true cortical interactions that are detectable and dissociable in MEG/EEG sources. Taken together, these studies have advanced theory, empirical evidence, and methodology in the research of neuronal criticality and large-scale synchrony in the human brain. Study I provided modeling and empirical evidence for linking bistable criticality and the classic criticality hypothesis into a unified framework. Study II was the first to reveal HFO phase synchrony in large-scale neocortical networks, which was a fundamental discovery of long-range neuronal interactions on fast time-scale per se. Study III raised awareness of the ghost interaction (SI) problem for a critical view on reliable interpretation of MEG/EEG connectivity, and for the development of novel approaches to address the SI problem. Study IV offered a practical solution to the SI problem and opened a new avenue for mapping reliable MEG/EEG connectivity. Study V described the technical details of the hyperedge bundling approach, shared the source code and specified the simulation parameters used in Study IV.Ihmisaivojen neurofysiologinen dynamiikka, ihmisen käyttäytyminen, sekä yksityiset mielen kokemukset syntyvät ja kehittyvät rinnakkaisina ilmiöinä. Ihmisen aivot koostuvat ~100 miljardista hierarkisesti järjestäytyneestä hermosolusta, jotka toisiinsa kytkeytyneinä muodostavat monimutkaisen verkoston toiminnallisia yksiköitä. Hermosolujen aktiivisuuden synkronoitumisen on esitetty mahdollistavan neuronien välisen kommunikoinnin toiminnallisten yksiköiden sisällä sekä niiden välillä. Hetkenä minä hyvänsä, synkronoidun aktiivisuuden kaskadit etenevät aivojen erikokoisissa verkostoissa jatkuvasti heikentyen ja voimistuen. Kognitiivisten funktioiden ja erilaisten aivosairauksien ymmärtäminen tulkitsemalla aivojen rikasta dynamiikkaa on suuri haaste. Kriittiset aivot -hypoteesi ehdottaa aivojen, kuten monien muidenkin kompleksisten systeemien, optimoivan suorituskykyään operoimalla lähellä kriittistä pistettä järjestyksen ja epäjärjestyksen välissä, puoltaen sitä, että aivojen kompleksisia dynamiikoita voitaisiin tutkia yhdistämällä laskennallisia ja empiirisiä lähestymistapoja. Aivojen kriittisyyden viitekehys edellyttää perinteistä reduktionismia ja rekonstruktionismia. Erityisesti, rekonstruktionismi tähtää kuvaamaan aivojen makrotason “yhteneväisyyden” syntymistä perustavanlaatuisten mekaniikoiden, kuten aivojen toiminnallisten yksiköiden välisen synkronian avulla. Tämä väitöskirja sisältää viisi tutkimusta, jotka edistävät teoriaa, empiirisiä todisteita ja metodologiaa aivojen kriittisyyden ja laajamittaisen synkronian tutkimuksessa. Tutkimus I tarjosi mallinnuksia ja empiirisiä todisteita bistabiilin kriittisyyden ja klassisen kriittisyyden hypoteesien yhdistämiseksi yhdeksi viitekehykseksi. Tutkimus II oli ensimmäinen laatuaan paljastaen korkeataajuisten oskillaatioiden (high-frequency oscillation, HFO) vaihesynkronian laajamittaisissa neokortikaalisissa verkostoissa, mikä oli perustavanlaatuinen löytö pitkän matkan neuronaalisista vuorovaikutuksista nopeilla aikaskaaloilla. Tutkimus III lisäsi tietoisuutta aave-vuorovaikutuksien (spurious interactions, SI) ongelmasta MEG/EEG kytkeytyvyyden luotettavassa tulkinnassa sekä uudenlaisten menetelmien kehityksessä SI-ongelman ratkaisemiseksi. Tutkimus IV tarjosi käytännöllisen “hyperedge bundling” -ratkaisun SI-ongelmaan ja avasi uudenlaisen tien luotettavaan MEG/EEG kytkeytyvyyden kartoittamiseen. Tutkimus V kuvasi teknisiä yksityiskohtia hyperedge bundling -menetelmästä, jakoi menetelmän lähdekoodin ja täsmensi tutkimuksessa IV käytettyjä simulaatioparametreja. Yhdessä nämä tutkimukset ovat edistäneet teoriaa, empiirisiä todisteita ja metodologiaa neuronaalisen kriittisyyden sekä laajamittaisen synkronian hyödyntämisessä ihmisaivojen tutkimuksessa

    In vitro neuronal cultures on MEA: an engineering approach to study physiological and pathological brain networks

    Get PDF
    Reti neuronali accoppiate a matrici di microelettrodi: un metodo ingegneristico per studiare reti cerebrali in situazioni fisiologiche e patologich
    corecore