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To my family, and
for my father’s unfulfilled wish

to save my brother from epilepsy.
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Preface

In Platonian allegory of the cave, the show of shadows on the cave wall represents the very reality to
the prisoners. Only after being unshackled and set free from the cave, a prisoner could experience the
“true” reality in the outside world. This story, supposedly narrated by Socrates, tells us about the impact
of new knowledge and the lack of it on human mind. The key concept of imperfect projection of truth
in the cave allegory is where the classic philosophy connects today’s hard sciences. Science is one way
out of many for solving problems, especially the ones that matter to us and our existence. The problems
that science excels at solving are those in which the predominant factors are subject to the basic laws
of physics and therefore, can be projected into models using the language of logic and mathematics.
Science is also a tradition of demarcating and managing reproducible solutions to such problems,
weighing facts, heartlessly refuting the old beloved conjectures proven to be inaccurate or inadequate
to reflect the truth. In other words, science consists of a feedforward loop of conjectures,
comprehensions, testing, and a feedback loop for proving, improving, or refuting conjectures. Thus, it
resembles a scenario, if I may, where there is always a bigger cave outside to be proven as the prisoners’

reality — curiosity, honesty, and courage are the keys to the shackles.

By the author,

Savonlinna,
Summer, 2020

By Taija Sairanew, 0314.2021
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Abstract

Neurophysiological dynamics of the brain, overt behaviours, and private experiences of the mind are co-
emergent and co-evolving phenomena. An adult human brain contains ~10"' neurons that are hierarchically
organized into intricate networks of functional units comprised of interconnected neurons. It has been
hypothesized that neurons within a functional unit communicate with each other or neurons from other units via
synchronized activity. At any moment, cascades of synchronized activity from millions of neurons propagate
through networks of all sizes, and the levels of synchrony wax and wane. How to understand cognitive functions
or diseases from such rich dynamics poses a great challenge. The brain criticality hypothesis proposes that the
brain, like many complex systems, optimize its performance by operating near a critical point of phase transition
between disorder and order, which suggests complex brain dynamics be effectively studied by combining
computational and empirical approaches. Hence, the brain criticality framework requires both classic
reductionist and reconstructionist approaches. Reconstructionism in the current context is meant to address the
“Wholeness” of macro-level emergence due to fundamental mechanisms such as synchrony between neurons in
the brain. This thesis includes five studies and aims to advance theory, empirical evidence, and methodology in
the research of neuronal criticality and large-scale synchrony in the human brain.

Study I: The classic criticality theory is based on the hypothesis that the brain operates near a continuous, second
order phase transition between order and disorder in resource-conserving systems. This idea, however, cannot
explain why the brain, a non-conserving system, often shows bistability, a hallmark of first order, discontinuous
phase transition. We used computational modeling and found that bistability may occur exclusively within the
critical regime so that the first-order phase transition emerged progressively with increasing local resource
demands. We observed that in human resting-state brain activity, moderate a-band (11 Hz) bistability during
rest predicts cognitive performance, but excessive resting-state bistability in fast (> 80 Hz) oscillations
characterizes epileptogenic zones in patients’ brain. These findings expand the framework of brain criticality
and show that near-critical neuronal dynamics involve both first- and second-order phase transitions in a
frequency-, neuroanatomy-, and state-dependent manner.

Study II: Long-range synchrony between cortical oscillations below ~100 Hz is pervasive in brain networks,
whereas oscillations and broad-band activities above ~100 Hz have been considered to be strictly local
phenomena. We showed with human intracerebral recordings that high-frequency oscillations (HFOs, 100—400
Hz) may be synchronized between brain regions separated by several centimeters. We discovered subject-
specific frequency peaks of HFO synchrony and found the group-level HFO synchrony to exhibit laminar-
specific connectivity and robust community structures. Importantly, the HFO synchrony was both transiently
enhanced and suppressed in separate sub-bands during tasks. These findings showed that HFO synchrony
constitutes a functionally significant form of neuronal spike-timing relationships in brain activity and thus a new
mesoscopic indication of neuronal communication per se.

Studies III: Signal linear mixing in magneto- (MEG) and electro-encephalography (EEG) artificially introduces
linear correlations between sources and confounds the separability of cortical current estimates. This linear
mixing effect in turn introduces false positives into synchrony estimates between MEG/EEG sources. Several
connectivity metrics have been proposed to supress the linear mixing effects. We show that, although these
metrics can remove false positives caused by instantaneous mixing effects, all of them discover false positive
ghost interactions (SIs). We also presented major difficulties and technical concerns in mapping brain functional
connectivity when using the most popular pairwise correlational metrics.
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Study IV and V: We developed a novel approach as a solution to the SIs problem. Our approach is to bundle
observed raw edges, i.e., true interactions or Sls, into hyperedges by raw edges’ adjacency in signal mixing. We
showed that this bundling approach yields hyperedges with optimal separability between true interactions while
suffers little loss in the true positive rate. This bundling approach thus significantly decreases the noise in
connectivity graphs by minimizing the false-positive to true-positive ratio. Furthermore, we demonstrated the
advantage of hyperedge bundling in visualizing connectivity graphs derived from MEG experimental data.
Hence, the hyperedges represent well the true cortical interactions that are detectable and dissociable in
MEG/EEG sources.

Taken together, these studies have advanced theory, empirical evidence, and methodology in the research of
neuronal criticality and large-scale synchrony in the human brain. Study I provided modeling and empirical
evidence for linking bistable criticality and the classic criticality hypothesis into a unified framework. Study II
was the first to reveal HFO phase synchrony in large-scale neocortical networks, which was a fundamental
discovery of long-range neuronal interactions on fast time-scale per se. Study III raised awareness of the ghost
interaction (SI) problem for a critical view on reliable interpretation of MEG/EEG connectivity, and for the
development of novel approaches to address the SI problem. Study IV offered a practical solution to the SI
problem and opened a new avenue for mapping reliable MEG/EEG connectivity. Study V described the technical
details of the hyperedge bundling approach, shared the source code and specified the simulation parameters used
in Study IV.



Tiivistelma

Ihmisaivojen neurofysiologinen dynamiikka, ihmisen kéyttdytyminen, sekd yksityiset mielen kokemukset
syntyvit ja kehittyvit rinnakkaisina ilmidind. Ihmisen aivot koostuvat ~10'" hierarkisesti jérjestiytyneesti
hermosolusta, jotka toisiinsa kytkeytyneind muodostavat monimutkaisen verkoston toiminnallisia yksikoité.
Hermosolujen aktiivisuuden synkronoitumisen on esitetty mahdollistavan neuronien vilisen kommunikoinnin
toiminnallisten yksikdiden sisdlld sekd niiden vililld. Hetkend mind hyvénsi, synkronoidun aktiivisuuden
kaskadit etenevét aivojen erikokoisissa verkostoissa jatkuvasti heikentyen ja voimistuen. Kognitiivisten
funktioiden ja erilaisten aivosairauksien ymmartdminen tulkitsemalla aivojen rikasta dynamiikkaa on suuri
haaste. Kriittiset aivot -hypoteesi ehdottaa aivojen, kuten monien muidenkin kompleksisten systeemien,
optimoivan suorituskykyddn operoimalla 1dhelld kriittistd pistettd jarjestyksen ja epdjdrjestyksen vilissé,
puoltaen sité, ettd aivojen kompleksisia dynamiikoita voitaisiin tutkia yhdistimélld laskennallisia ja empiirisid
ldhestymistapoja. Aivojen kriittisyyden viitekehys edellyttdé perinteistd reduktionismia ja rekonstruktionismia.
Erityisesti, rekonstruktionismi tdhtdd kuvaamaan aivojen makrotason ‘“yhtenevdisyyden” syntymistd
perustavanlaatuisten mekaniikoiden, kuten aivojen toiminnallisten yksikdiden vélisen synkronian avulla.

Tama vaitoskirja sisdltdd viisi tutkimusta, jotka edistivit teoriaa, empiirisid todisteita ja metodologiaa aivojen
kriittisyyden ja laajamittaisen synkronian tutkimuksessa. Tutkimus I tarjosi mallinnuksia ja empiirisid todisteita
bistabiilin kriittisyyden ja klassisen kriittisyyden hypoteesien yhdistamiseksi yhdeksi viitekehykseksi. Tutkimus
IT oli ensimméinen laatuaan paljastaen korkeataajuisten oskillaatioiden (high-frequency oscillation, HFO)
vaihesynkronian laajamittaisissa neokortikaalisissa verkostoissa, mikd oli perustavanlaatuinen 16yt6 pitkén
matkan neuronaalisista vuorovaikutuksista nopeilla aikaskaaloilla. Tutkimus III lisési tietoisuutta aave-
vuorovaikutuksien (spurious interactions, SI) ongelmasta MEG/EEG kytkeytyvyyden luotettavassa tulkinnassa
sekd uudenlaisten menetelmien kehityksessd SI-ongelman ratkaisemiseksi. Tutkimus IV tarjosi kdytdnnollisen
“hyperedge bundling” -ratkaisun Sl-ongelmaan ja avasi uudenlaisen tien luotettavaan MEG/EEG
kytkeytyvyyden kartoittamiseen. Tutkimus V kuvasi teknisié yksityiskohtia hyperedge bundling -menetelmastd,
jakoi menetelmén ldhdekoodin ja tismensi tutkimuksessa IV kéytettyjd simulaatioparametreja. Yhdessd ndmé
tutkimukset ovat edistineet teoriaa, empiirisid todisteita ja metodologiaa neuronaalisen kriittisyyden sekd
laajamittaisen synkronian hyddyntdmisessd ihmisaivojen tutkimuksessa.



1 Introduction

An organism's astonishing gift of concentrating a 'stream of order' on itself and thus

escaping the decay into atomic chaos — (Schrodinger, 1944).

1.1  Complexity problems in life sciences and neurosciences

Life asserts itself as information, a phenomenological order against the decay into disorder prescribed by the
second law of thermodynamics (Schrodinger, 1944). The Darwinian dynamic hypothesis proposes that the
evolution of order in living organisms and certain physical systems obey the same set of fundamental principles
(Bernstein et al., 1983). These principles dictate how macroscopic orders appear in interacting non-living
materials, which results in dynamics far from thermodynamic equilibrium and eventually gives birth to life.

From a life sciences perspective, although living organisms from this earth vary widely in their genetic makeup,
physical features, and lifespans, invariably they share the same underlying logics subservient to adaptation and
heredity (Pennisi, 2003), which are for the very purpose to survive environmental changes and to thrive
(Schrodinger, 1944; Sterling, 2012). These fundamental logics include how to gather, process, store, and utilize
information, which are shaped by Darwinian selection (Ellis, 2005) and constructed with simple modular blocks
such as negative and positive feedback/feedforward (Nurse, 2008; Wiener, 1948). Positive feedback, a key
construct for this thesis, can generate an irreversible switching behaviour from one state to another whereas
negative feedback is a generative mechanism for homeostasis and conservation. Combinations of these simple
modules produce versatile functions including reversible toggle switches, timers, and oscillators, which
eventually give rise to higher order adaptative behaviours such as error prediction and allostasis (Sterling, 2012).

From a physical sciences perspective, living organisms manifest themselves as complex systems' that are
hardwired for learning and adaptation (Gell-Mann, 1995; Landauer, 1996). Their physical existences, as Rudolf
Virchow put it “all cells come from cells’, are realized through an abstract process called integrative level®.
Integrative level frequently asserts itself as quasi-periodic® objects with individual cells conventionally being
considered, albeit arguably, as the most basic building components. Among all complex biological systems, the
most fascinating specimen is the human brain — the seat of the sentient mind and the main subject of this thesis.

! A system: components in standing relationship (von Bertalanffy, 1968).

2 Novel phenomena arise from pre-existing phenomena of a lower level. The construct level is a mean of constructing reality,
which arranges components into a hierarchy based on the complexity of their inter-relationship. Thus, each component is
simultaneously three entities: it is made up of components from the immediate lower level; it is a whole system in its own
right; it is a component of the system on the immediate level above.

3 Quasi-periodic objects show self-similarity in its building patterns and are thought to be the projections of periodic objects
from higher-order (abstract) dimensions (Mandelbrot, 1985).
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1.1.1  Levels and scales of enquiry into the brain

Several interrelated disciplines comprise an epistemological hierarchy* (Anderson, 1972) for studying brain
dynamics® specific to physical levels (Figure 1 A—F). A non-exhaustive list of the disciplines includes, following
an ascending order, biochemistry, genetics and protein expression, cell biology, neurophysiology, systems
neuroscience, and cognitive neuroscience. Throughout these levels of observations, each level links to the one
immediate above it, and the organizational laws® are qualitatively distinct across levels (Ellis, 2005, 2008).
Likewise, studying brain dynamics unavoidably concerns several scales across the temporal axis (Figure 1G).
The human brain is the collective outcome of the evolutionary past of homo-sapiens, and multiple factors work
together to shape the physical and functional dynamics across the lifespan in individuals.

Although, theoretically, there is no need for upper or lower boundaries in constructing an epistemological
hierarchy, the number of levels is determined by the variation of physical properties and how they emerge
(Figure 1H). Studying the laws of a particular level requires methods that can accurately address the physical
expression of information on that level. Understanding the laws of a specific level is necessary for understanding
the phenomena of the levels above. However, laws of lower levels are not necessarily predictive of higher-level
phenomena because a multitude of realizations on the lower level can lead to the same macro-level outcome
such as convergent evolution seen in different organisms. Neither can the higher-level phenomena be described
using the vocabularies specific to lower level because the physical attributes are qualitatively different between
levels, e.g., intracellular biochemical signaling vs. inter-neuronal electric signaling between brain regions. The
levels situated higher in the hierarchy have autonomous causal powers that are functionally independent of
processes in the levels below (Novikoff, 1945). Yet, bottom-up actions and top-down causations coexist, with
higher-level contexts determining the outcome of lower-level functionality and altering the long-term nature of
lower-level constituents’. These attributes of brain dynamics thus present us an unconventional set of problems.

William Blake once wrote, ‘to see a world in a grain of sand’. As a neurophysiologist myself, it would be nice
to learn the operating principles of the human brain through a short period of a neurophysiological recording
that is seemingly disordered — just as learning about the governing laws of a sand pile from grains of sand (Bak,
1996).

1.1.2  Three kinds of problems

There are three kinds of problems in the hard sciences (Weaver, 1948). The first kind constitutes the problems
of simplicity that concern few strongly coupled variables. Classic examples include the 19" century physical
problems or the firing mechanisms of single neurons (Hodgkin and Huxley, 1952). The second type of problems
are of a disorganized complexity nature and involve an astronomically large number of variables with sparse
interactions. Examples include the study of macro-level state of matter (Mufloz, 2018) or reconstruction and

4 A vertical topology where smaller and more specific parts are nested within larger and more generic parts.

5 The study of continually changing structure and behaviour of systems, which are defined as the flow consisting of the
totality of systems trajectories.

® These rules that shape the interactions between elements and to the unit system as a whole (Novikoff, 1945); these rules
are relevant level-specific physical properties and not to be confused with general principles governing complex systems.
7 The downward causation claim has long provoked heated debates (Eronen, 2013; Noble, 2012), but I will not further the
discussion here because it is not relevant to this thesis per se.
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Figure 1 Problems of complexity and emergence relevant to the brain and the mind. (A) Yeast protein interaction
graph; plotted by SHW using data from (Bu et al., 2003), (B) Functional segments of a model neuron, study notes
based on (Rattay et al., 2018). (C) A directed weighted graph representing C. Elegans neural network; plotted by SHW
using data from (Watts and Strogatz, 1998). (D) Hierarchical structure of the primate visual cortex, adapted with
permission from (Silvanto, 2015); Creative Commons license: CC-BY-NC-ND. (E) Human structural connectome,
adapted with permission from (Gollo et al., 2018); license# 5012490201451. (F) A hypergraph showing increased o-
band phase synchrony during working memory retention, adapted with permission from (Wang et al., 2018); Creative
Commons license: CC BY-NC-ND 4.0. (G) Temporal scales of investigation of the brain dynamics and behaviours.
(H) Caricature of integrative levels and emergence. The unit in the bottom tier is exemplified with a Wilson-Cowan
model (Wilson and Cowan, 1972), wherein the solid red arrow represents a local positive feedback. Purple and magenta
arrows in upper levels indicate coexisting bottom-up actions and top-down causations. (I) Examples of weak
emergence where components are homogeneously modeled; (i) temporal evolution of large-scale dynamics in brain
network model, adapted with permission from (Breakspear, 2017); license# 5012491086109; (ii) spinodal
decompositions of synchrony in a Kuramoto model with varying degrees of order, adapted with permission from
(Breakspear et al., 2010); (iii) Building motif. (J) Examples of strong emergence where the components are
functionally inhomogeneous. (i) Cognitive functions; (ii) Symmetry break mechanism, adapted with permission from
(Pillai and Jirsa, 2017); license# 5012500262773; (iii) Building motif.

simulation of micro-circuitry of neurons (Markram et al., 2015). 20" century statistical mechanics® provide
potent tools to address these problems, wherein the precision of prediction increases as the system grows larger

(Schrodinger, 1944), e.g., the 1/+/n law of error. The third type are organized complexity problems that concern
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a sizable number of strongly and non-linearly coupled variables that are interrelated into “an organic whole” so
that the collective behaviours are above and beyond individual behaviours. This Gestalt outcome is emergence,
a central construct of systems theory.

1.1.3  Weak and strong emergence

For millennia, sages and scholars have extensively discussed the concept of emergence’. Recent definitions in
sciences generally consider emergence as the arising of novel properties on macro-level in systems composed
of many autopoietic components (Darley, 1996; Goldstein, 1999). Autopoiesis in this context refers to self-
sustaining, self-organized non-linear interactions between components in which information processing and
overall control are decentralized (Friston, 2013; Siljak, 2011). Emergence depends neither on the number of
components nor on component intricacies, but rather on interaction protocols between components (Friston,
2013; Jonas and Kording, 2017; Lazebnik, 2002; Tamas Vicsek, 2002) and macro-micro dynamics (Marchiori
and Possamai, 2015). Multiple emergent properties can concur in time and space and reuse most of the system
components — this is an obvious evolutionary fitness because it builds more using less. However, solving the
inverse problem of emergence in biological systems is hard because multiple underlying generative mechanisms
could lead to the same global phenomena (Jonas and Kording, 2017; Lazebnik, 2002; Schrodinger, 1944).
Although components can be complex systems and encapsulate high intricacies and rich functionality, macro-
level emergent behaviours require only simple inputs/outputs such as yes-or-no answers from components. This
insensitivity to component details gives rise to the robustness and universality of complex dynamics in living
systems, for a comprehensive review on this subject matter see (Mufioz, 2018).

Emergent phenomena demonstrate varying degrees of strengths (Corning, 2002) (Figure 11-J). In weak
emergence, novel synchronic or diachronic macro-level phenomena are derived from the organized behaviours
of the components, such as order or disorder in collective activity, and the system’s external conditions (Bedau,
1997). The sandpile model (Bak, 1996) is a classic analogue of weak emergence, of which the building
components are functionally homogeneous. In models of weak emergence, the characteristics of collective
activity such as emergent synchrony and scale-free dynamics can be effectively studied with simulations and
statistical mechanics (Bedau, 1997; Darley, 1996; Turkheimer et al., 2019). Examples of weak emergence
models in neurophysiology include the spiking activity of interconnected primary neurons (Beggs and Timme,
2012; Priesemann, 2014; J. Wilting and Priesemann, 2019) and larger scale ensemble models (Breakspear, 2017,
Deco et al., 2011). Importantly, large-scale neuronal models of weak emergence, albeit simple in construction,
have shown network synchrony highly consistent with empirical observations in normal brains (Breakspear et
al., 2010; Schirner et al., n.d.; Strogatz, 2004) and brains with diseases (Jirsa et al., 2017; Proix et al., 2017).

In strong emergence, radically novel phenomena appear at the macro-level via various synergistic'® processes,
but these novel phenomena cannot be observed locally in components or below the component level (Novikoff,

8 A mathematical framework that studies how macroscopic properties, e.g., heat or pressure, arise from statistics of the
mechanics of large number of microscopic components, e.g., molecules.

° For example, “...the totality is not, as it were, a mere heap, but the whole is something besides the parts ...", see Part 16,
(Aristotle, 1991).

10 A nonlinear inter-relationship between components of a system whereby they generate a combined outcome that are
above and beyond the summation of functions of individual components. During synergistic processes, the interacting
components could work together or against each other, i.e., positive or negative synergy, respectively. The interactions
between components promote the integration and evolution of specialized functionality among components.
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1945; Turkheimer et al., 2019). A car serves a good analogue of strong emergence. Unlike the classic sandpile
comprised of homogeneous sand grains, a car has different specialized parts and the parts further comprise of
distinct specialized parts, and so on. A car would function normally only when its vital parts and their constituent
parts function normally. However, the macro-level behaviours, e.g., whether the car is skidding on an icy road,
on standby, or on reverse, cannot be understood by analyzing, for example, the stroke phases of the engine piston
or the dynamics a specific gear in the transmission system alone. Strong emergence is associated with steep
hierarchy and modular organizations of components (Simon, 1962), functional encapsulation and specialization
among components (Hoel et al., 2013; Sperry, 1980), macro-level downward causations (O’Connor, 1994), and
symmetry breaking in spatio-temporal dynamics (Brading et al., 2017; Pillai and Jirsa, 2017). Representative
theories of strong emergence in the brain include the “free energy” principle (Friston, 2010, 2009) and the
integrated information theory of consciousness (Oizumi et al., 2014; Tononi et al., 2016). They are very hard
problems.

In the brain, the macro-level properties in strong emergence are organic “wholeness” that are due to tight inter-
relations and inter-dependency between functionally specialized components such as the functional systems and
their subdivisions of the brain. This “wholeness” is an irreducible global phenomenon (Anderson, 1972;
Krakauer et al., 2017; Laughlin, 2005) that cannot be understood by studying the properties of the components
alone. Thus, the holistic “constructionist” hypothesis (Anderson, 1972) contests upfront some reductionist ideas
that complex systems are nothing but the heap of its components (Godfrey-Smith, 2013; Polkinghorne, 2002).
Furthermore, being capable of reducing to fundamental components does not equate to the ability to reconstruct
(Anderson, 1972) due to metaphysical implausibility (Turkheimer et al., 2019). Therefore, when studying strong
emergence such as the duality of the brain and the states of the mind, observing the ensemble dynamics and the
dynamical relationship between ensembles are equally important (Anderson, 1972; Bar-Yam, 2002; von
Bertalanffy, 1968), and even more so for addressing the physical nature of the relationship as recently proposed
by (Pillai and Jirsa, 2017).

1.2 Neuronal connectivity and its costs across scales

The mammalian brain comprises of the cerebrum and the brain stem. The cerebrum comprises of telencephalon
and diencephalon (Kandel et al., 2012; Patestas and Gartner, 2006). The telencephalon is the largest component
of the brain, and it could be further divided into neocortex and subcortical structures. The neocortex is especially
well developed in humans for supporting sensory, motor, and higher cognitive functions. The adult human brain
contains 0.9+0.08x10"" neurons (Azevedo et al., 2009), of which ~19% are found in the neocortex.

Although the neocortex represents a small portion of the total neuronal population of the human brain, its wiring
and running expenditures are disproportionately high. An adult human cerebrum weights about 1.4 kg, and the
neocortex grey and white matter together make up ~82% of the total brain mass (Azevedo et al., 2009). One
neuron on average forms ~7000 synapses with other neurons (Pakkenberg et al., 2003), which in total yields
1.5-1.8x10° km of myelinated white-matter fibers (Drachman, 2005). Hence, neurons are well connected across
scales from microscopic networks to large-scale interareal networks in the neocortex. High connectivity allows
neurons to fire in synchrony on different levels, which in turn gives rise to new functionality throughout
hierarchical anatomical scales. Moreover, the metabolic cost for maintaining brain functions is also high. The
brain requires 20% of the whole body’s energy budget in adults (Herculano-Houzel, 2011) and up to 66% in
children (Kuzawa et al., 2014).
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1.2.1 A graphic approach for studying brain connectivity

The graphic approach, also known as complex network analysis, offers a set of powerful tools to quantitively
and qualitatively describe topological features of complex dynamical systems (Boccaletti et al., 2006; Newman,
2003; Sporns, 2018; Strogatz, 2001). The past two decades have seen a drastic increase in applying graphic
approaches to study brain dynamics ranging from intracellular signaling across several scales to macroscopic
anatomical and functional connectomes'' (Sporns, 2018) (Figure 1A-F). The graphic approach is the
methodological platform for Study III (Ghost) and IV and V (Hyperedge) and instrumental for discussing the
following materials concerning brain connectivity cross scales (Sporns et al., 2005).

A graph is a mathematical object for modeling a specific feature set of a complex system, wherein a functional
component is denoted as a node and a pairwise relationship between two nodes an edge'? (Rubinov and Sporns,
2010). An edge may embody structural, functional, or effective connectivity (Friston, 1994). Structural
connectivity refers to estimated anatomical connections obtained using invasive or non-invasive approaches
such as directed neural tract tracing in animals and undirected tractography in human diffusion tensor imaging,
respectively (Wandell, 2016). Functional connectivity (FC), the main interest of Study (I-V), refers to an
estimated statistical interdependence between spatially distinct neurophysiological signals. FC may be directed
or undirected depending on correlational or information-based metric being employed. FC are meaningful
between temporal or spatial scales. An example of FC between temporal scales is within (1:1) frequency (S.
Palva and Palva, 2012) and cross-frequency (n:m) phase coupling(F. Siebenhiihner et al., 2016; Siebenhiihner
et al.,, 2020); an example of FC between spatial scales is spike and local field potential (LFP) coherence
(Benchenane et al., 2010). Effective connectivity refers to the influences that one neuronal ensemble exerts over
another ensemble over a time period, and they are usually dependent on specific models for describing causal
relationships (Friston, 1994).

Both brain structural and functional connectivity show features of complex systems including small-world
topology'? (Bassett and Bullmore, 2006; S. Palva et al., 2010), modular '* organizations (Sporns and Betzel,
2016), highly connected nodes (or hubs) at microscopic and macroscopic networks (Bullmore and Sporns, 2009;
Hagmann et al., 2008; Sporns et al., 2005). Notably, many of these graph topological features persist across
species and scales within species, which suggests an economical principle the brain obeys when balancing the
trade-off between minimizing wiring cost and maximizing expensive yet advantageous topological properties
such as global efficiency (Bullmore and Sporns, 2012). Importantly, a high fidelity connectivity graph,
regardless of the interaction metric used, reflects the irreducible “wholeness” (1.1.3) crucial to understanding
the emergent properties of the functional organizations (Turkheimer et al., 2019) and chains of macro-level
behaviours (Pillai and Jirsa, 2017).

1.2.2  Interactions at single-neuron level

Neurons vary in morphology, functional specialty, and the neurotransmitters that they depend on for signaling
(Kandel et al., 2012). A “canonical” neuron consists of a cell body (soma), dendrites, and an axon, but some

' A comprehensive topological description of the network of elements and connections forming the human brain (Sporns
et al., 2005).

12 There are multiple interchangeable terms for these elements; throughout this thesis, I will use node, edge, and graph.

13 A network regime of average short path length and high clustering coefficient (Watts and Strogatz, 1998).

14 Modules, or communities, in cortical networks are clusters of brain regions that are densely connected with each other
(Sporns and Betzel, 2016).
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neurons may not have dendrites and/or axon. Dendrites are tree-like cytoplasmic protrusions usually extend a
few hundred micrometers from the soma, through which the neuron receives incoming connections from other
neurons. An axon is a long and slender cytoplasmic protrusion from the soma that is usually myelinated and
conducts action potentials away from the soma. An action potential is an electrical pulse initialed in the soma,
from where it propagates along the axon until reaches axonal terminals. The intra-cellular ionic generating and
propagating mechanisms of action potentials, were well scribed in the Nobel Prize winning work by (Hodgkin
and Huxley, 1952) or its simplified version the Morris-Lecar model (Morris and Lecar, 1981) as a set of time-
dependent nonlinear differential equations. The generating mechanism of action potential is a problem of
simplicity (1.1.2).

Passing of information from an upstream neuron to a downstream neuron takes place at synapses or gap
junctions'. A synapse is where the axonal terminals of the upstream (presynaptic) neuron “meet” the dendrite
or cell body of the downstream (postsynaptic) neuron, and a multitude of neurotransmitters could be present in
the synaptic cleft depending on the pathway and the type of neurons involved. A synapse is said to be “excitatory”
or “inhibitory” based on how presynaptic inputs affect the postsynaptic conductance and ensuing change in
probability of firing postsynaptic action potentials. In excitatory synapses, the releasing of neurotransmitter in
presynaptic neuron pushes the postsynaptic potential (EPSP) toward the threshold of firing an action potential.
Conversely, releasing of neurotransmitter in the inhibitory synapse causes the postsynaptic potential (IPSP) to
shift farther away from the firing threshold. Most neocortical neurons receive a multitude of inputs from both
excitatory and inhibitory synapses, e.g., glutamatergic and GABAergic, respectively. Whether a postsynaptic
neuron would fire an action potential is thought to depend on the spatial and temporal summation of these
presynaptic inputs at a given time.

The temporally aligned firing among neuronal populations are thought to associated with the strengthening of
synaptic connections and the forming of neuronal connectivity. The cell assembly theory (Hebb, 1950) proposes
that networks of connected neurons are formed by strengthening synaptic connections based on pre- and post-
synaptic activity. The group selection theory (Edelman, 1993) further proposes that ensembles of cortical and
subcortical systems are dynamically organized into variable networks whose gross structure and function are
determined by evolution but further modified by behaviours during development. The underlying neuroplasticity
of these changes is not only dependent on pre- and post-synaptic firing but also is modulated by selecting the
group of neurons via re-entrant pathways modulated via neurotransmitters. These theories emphasize the
behavioural relevance of network dynamics instead of the firing of specific individual neurons. For the rest of
this subsection, I will focus on the structure and dynamics of neuronal networks.

1.2.3  Micro- and mesoscopic connectivity

Anatomical connectivity is the basis of network dynamics. Neocortical neurons are organized into columns and
within a column into six layers'® (Molnar, 2013). A cortical column is a constellation of cells that share the same
tuning for specific receptive field'” and thus can be viewed as a local functional module (Horton and Adams,

15 Gap junctions embody strong coupling and are primarily seen in short-range communications, and therefore are not
relevant to this thesis.

16 This thesis does not concern the allocortices, e.g., the olfactory cortex and hippocampus, that have different laminar
composition.

17 The specific portion of a sensory space that can evoke cortical neuronal responses when stimulated (Alonso and Chen,
2009).
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2005). In the human neocortex, the ratio between inhibitory and excitatory neurons is roughly 1:4 (Noback et
al., 2005). The inhibitory neurons are crucial for generating oscillations in a column (Izhikevich, 2007; Wilson
and Cowan, 1972), which allows parsing and concatenate neuronal activity for information coding (Buzsaki,
2012). Depending on species and cortical location, columns are 150-600 um in diameter, and they are spatially
organized like a 2D lattice and thereby forming a continuous sheet of neocortex. A column receives inputs and
fires outputs via “interface” neurons located in specific layers, and these connections are prone to alteration due
to various factors such as learning, adaptation, or diseases (Hawkins et al., 2017). Columns with similar receptive
fields are neighbours on the neocortex sheet and are inter-connected with horizontal connections. Columns vary
in terms of neuron types, diameter, volume, local connectivity patterns, and functions, which sometimes results
in a lack of consensus regarding their structural and functional delineation (Horton and Adams, 2005; Rakic,
2008).

The cytoarchitecture within columns is relatively uniform across the neocortex. There are six layers within a
column, and a column has average thickness of ~2.5 mm and range of 1-4.5 mm (Fischl and Dale, 2000). The
layers are delineated in principle by cell types and inter-neuronal connections (Kandel et al., 2012). The
generalized local connection patterns between layers include: ) layer IV neurons receive the majority of the
synaptic inputs from thalamus and they simultaneously form local connections to other cortical layers; ii) layer
IT and III pyramidal neurons project to other areas and are the major output neurons; iii) layers V and VI neurons
mainly project to the thalamus and brainstem (Noback et al., 2005).

Numerous models have been developed to study the interactions between neurons in cortical columns and layers
(Breakspear, 2017; Hill, 2014; Izhikevich, 2007). These models aim to study the weakly emergent (1.1.3)
electrophysiological phenomena in ensembles ranging from detailed biophysical models (with heterogeneous
neurons) to abstract mean-field models (that mimic the interactions between homogeneous neurons). Despite
the differences in implementational details, these models invariably focus on the emergent collective behaviours
of a group of neurons in micro- and mesoscopic circuitries, and they do not concern the intracellular intricacy

of the neurons in the columns.

1.2.4  Large-scale structural connectivity

Historically, the cerebral hemispheres were demarcated into the frontal, parietal, temporal, and occipital lobes
based on overlying cranial bones (Kandel et al., 2012). The cortical surface is folded where the ridges and
grooves are called gyri and sulci, respectively. Different neuronal ensembles specialize in processing specific
information such as sensory, motor, auditory, or attention control functions, and ensembles for similar functions
usually cluster together on the cortical sheet and distant from ensembles processing different functions. For
example, the earlier and higher order visual processing areas are clustered mainly in occipital and temporal lobe
(Wandell et al., 2007), whereas primary motor cortex is located in the frontal lobe (Sanchez-Panchuelo et al.,
2010). Macro-level functions such as multisensory integrations and working memory requires the involvement
of several brain regions.

The cerebral white matter contains axons and glial cells for supporting long-range connectivity between cortical
regions. White matter connectivity decreases as brain size increases in primates (Herculano-Houzel et al., 2010).
However, the volume of cortical white and gray matter scales with an exponent of 1.2(Mota et al., 2019; Zhang
and Sejnowski, 2000), and this super-linear scaling'® indicates that across primate species, white matter volume

'8 One quantity varies as the power of another quantity, where the power exponent is greater than 1.
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increases faster than gray matter as the brain gets larger. The paradoxical combination of decreasing white matter
connectivity with increasing white matter volume in larger brains was thought to reflect the universal scaling of
cortical folding and the presence of small-world network topology with a decrease in global conduction delay
(Herculano-Houzel et al., 2010).

The macro-level (whole-brain) networks do not obey the sheet-like organizational rules in micro- and
mesoscopic networks. Most of the cortical neurons form only local connections with neurons in the immediate
vicinity, and thus the information they carry would reach their neighbors but never — and no needs to — reach
other distal parts of the cortex (Breakspear, 2017; Wandell, 2016). Some neurons do project axons and send
local computational results to other parts of the brain. Many of such neurons usually project axons in bundles
called fascicles that research similar destinations in other parts of the brain. Multiple fascicles bundle into larger
pathways, e.g., superior longitudinal fasciculus and the optic radiation, which in turn form the white matter core,
i.e., the information highway of the brain. Tractography algorithms estimate the fascicles from diffusion MRI
data by finding streamlines whose orientations match the local diffusion orientation in fascicles with additional
procedures to ensure the streamlines match the general anatomical features. Thus, an all-to-all structural
connectome with estimated fascicles as edges can be mapped between all brain areas (nodes). The human
structural connectome is known to show modularity (Sporns and Betzel, 2016), highly connected hubs (Bullmore
and Sporns, 2009; Hagmann et al., 2008; Sporns et al., 2005).

1.2.5  Neuronal synchrony and oscillations across scales

Synchrony" is inevitable through which living systems establish orders (Pikovsky et al., 2003; Strogatz, 2004),
and phase synchrony is a key aspect of emergent property of the complex systems (Anderson, 1972). Neural
oscillations are rhythmic patterns of synchronized electrical activity produced by neurons in the brain (Buzsaki,
2006; Engel et al., 2001; Singer, 1999), spinal cord, and autonomic nervous system (Buzsaki, 2006). In the
cortex, narrow-band neuronal oscillations reflect the fluctuations in cortical excitability. The balance between
excitation (E) and inhibition (I) is relative so that within each oscillation cycle, E or I prevails at different phases.
Oscillations, in the form of a continuously sine function of time, present the most energetically efficient solution
for synchronizing neuronal activity and forming assemblies (Bullmore and Sporns, 2012; Buzsaki, 2006;
Strogatz, 2004). Thus, in a “sending” phase, excitatory neurons synchronizes activity to dispatch information to
downstream neurons, whereas in the receiving or perturbation phase, the ensemble can receive most effectively
from upstream inputs (Buzsaki, 2012; Fries, 2015). Numerous physiological mechanisms have been proposed
for cortical oscillations across scales, but there are only four bifurcation mechanisms for cortical oscillations
(Izhikevich, 2007).

In the mammalian brain, neurons demonstrate behaviourally correlated oscillations spanning nearly five orders
of rhythms approximately from 0.02 Hz to 600 Hz (Buzsaki, 2018; Buzsaki and Draguhn, 2004). Oscillatory
rhythms vary across circuitries, regions, and different states of the brain. The collective activity of an ensemble,
regardless of its micro- or mesoscopic connectivity pattern, can be regarded as an oscillator (Pikovsky et al.,
2003; Pillai and Jirsa, 2017). Oscillations often are short bursts with sub-second duration, while some do retain
for longer periods. There are roughly ten discrete brain rhythms denoted historically by Greek letters.
Representative rhythms are listed as follows. The a-band (8—12 Hz) oscillations are observed in the occipital

lobe most pronounced when a person resting with his/her eyes closed. The §-band (0.5-1.5 Hz) represents the

19 Synchrony is the adjustment of thythms due to an interaction (Pikovsky et al., 2003), e.g., e pluribus unum.
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largest amplitude oscillations among all neocortical oscillations that occur during non-REM sleep. The 0-band
(4-10 Hz) oscillations are prominent in the hippocampal-entorhinal system during spatial navigation and
memory processing. The B-band oscillations (13-30 Hz) are observed in the motor system in the absence of
movement. The y-band oscillations (30—600 Hz) are present in nearly all structures and all brain states in which
they dominate in the aroused, attentive brain. Moreover, oscillations of y-band are thought to be local, whereas
slower oscillations can recruit increasingly larger cortical area and connect multiple distinct regions (Buzsaki,
2018, 2006).

Synchronized cortical oscillations are instrumental for binding and segregating ensemble activities for
communication between functional specialized regions (Buzséki et al., 2012; Singer, 1999). The hierarchical
“syntax” used between brain rhythms is mechanistic for neurons to communicate with each other on large-scale
networks (Buzsadki, 2018, 2012, 2006). For example, the fast y-band oscillations combine neurons into
assemblies, which was proposed as a neuronal “letter”. The cross-frequency coupling mechanism hierarchically
combine these neuronal letters into neuronal “words” and words into “sentences”, and so on. Thereby,
combinatorial information generated bottom-up from spatially distributed spike patterns reaches global cortical
network (Lisman and Idiart, 1995). For example, in the visual system, y-band oscillations code various basic
features such as edge orientation, contrast, colour, or locations in spatially segregated neuronal ensembles.
Ensembles coding these lower-level features converge their output to neurons in the higher hierarchy so that
these neurons higher in the hierarchy consequently become functionally specialized to higher-level visual
features.

The interactions between rhythms allow both local computational results to reach global networks and a top-
down control from global brain states to local computations. The centre frequencies of neighbouring bands have
a non-integer relationship, and their entrainment requires energy”® and thus cannot sustain over a long period.
Hence, the interactions and interferences between cortical oscillations result in perpetual fluctuations between
unstable and transiently stable states. On the other hand, different rhythms are bound by a hierarchical
relationship, which can be observed as local cross-frequency coupling (Lisman and Jensen, 2013) or long-range
cross-frequency phase-phase coupling (Palva, 2005; F. Siebenhiihner et al., 2016; Siebenhiihner et al., 2020;
Tass et al., 1998), phase-amplitude coupling (Canolty et al., 2006; Vanhatalo et al., 2004), and phase-frequency
coupling (Hyafil et al., 2015a).

Cortical oscillations, irrespective of their central frequencies or anatomical origins, are generated with neuronal
circuitries built with simple motifs that usually involve the tuning between coupled glutamatergic excitatory
neurons, GABAergic inhibitory neurons, and synaptic plasticity (Hellyer et al., 2016; Womelsdorf et al., 2014).
Fluctuations in excitatory often involve the combined effects of more than two parties (Buzsaki, 2006). For
example, in addition to coupled glutamatergic and GABAergic neurons, other neurotransmitters such as
dopamine (Smialowski and Bijak, 1987) and serotonin (Ciranna, 2006) can also be involved in the tuning of the
local E/I fluctuations and the resulting oscillations. Insensitive to the biological detail, this oscillation generating
motif repeats across several spatial scales and supports the hypothesis that brain activity self-organizes near a
critical bifurcation (1.3) and forms microscopic assemblies (Gollo et al., 2014), mesoscopic circuitry(Cabral et
al., 2011), and whole brain level networks (Cabral et al., 2014). On the top of this hierarchy, large-scale neuronal

20 As predicted by the Arnold tongue that the degree of entrainment of an oscillator coupled to a rhythmic driving force
depends on the amplitude and the frequency of the drive (Jensen et al., 1983).
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synchrony was proposed to be a key mechanism for the emergence of macrolevel brain functions and behaviours
(Bastos et al., 2015; Buzsaki et al., 2012; Singer, 1999).

1.2.6  Behaviours and large-scale synchrony

Recent decades have witnessed important advancement towards a grand theory of brain dynamics and
behaviours (Friston, 2010; Turkheimer et al., 2019). A specific behaviour of an organism refers to a set of
internally coordinated actions (or inactions) in the presence of internal and/or external stimuli (Levitis et al.,
2009). Here, coordinated actions is defined as low-dimensional patterns out of a large repertoire of processes
(Huys et al., 2014), which constitutes the functional ordering of interacting components in space and time and
bounded by constraints (Kelso, 2012). A function in this context is a process comprising of a temporal chain of
causal dependence projected by an organism for achieving a specific goal (Dusenbery, 1992)*'.

A recent reflection (Krakauer et al., 2017) on current neuroscience research enunciates that the reductionist
approach has much focused on correlational neuronal circuits, which would not yield insightful explanations for
addressing the nature of macro-level behaviour and brain dynamics. For example, pharmacologically blocking
one type of membrane ion channels abolishes certain types of ionic currents, which, across several scales, results
in altered macro-level behaviours. Although, such microscopic alteration can be marked as Causal and
Necessary to the macroscopic observables, it is not a Sufficient condition for the macroscale emergence. The
need for understanding the Whole mechanism? of behaviour requires a formal framework to connect macro-
level behaviours holistically to the emergence of whole-brain network dynamics (Pillai and Jirsa, 2017). The
emergence of concurrent large-scale network connectivity and behaviour is irreducible (rationales in 1.1) and
thus the wholeness nature of the large-scale connectivity ought to be addressed (Pillai and Jirsa, 2017).

The emergence of large-scale pattern formation® in the neuronal networks and concurring behaviour are thought
to be caused by broken symmetry® in cortical space-time hierarchies (Anderson, 1972; Pillai and Jirsa, 2017).
The cortical networks possess high-dimensional dynamics with complex connectivity. Behaviour is often
mathematically defined as a set of low-dimensional ordinary differential equations that captures the dynamical
influences from internal and external variables as well as the constraints imposed by a functional goal. Pillai and
Jirsa (2017) thus suggested an update to the definition of behaviour as “a low-dimensional structured flow on
manifold”. Here, the manifold refers to low-dimensional subspace (collapsed from high-dimensional cortical
connectivity) that is specific to and constrained by a task; the structured flow is the task-relevant organization
of convergence, divergence, and the topology of the flow on the manifold whose stability is maintained by
constraints tied to the task. When a task change, both the manifold and the structured flow may change drastically
with concurring change (reset) in large-scale cortical connectivity.

! Due to the scope of this work, I will not argue exceptions of the “specific goal”.

22 Mechanism is a system performing a function by virtue of its components, their operations and organization (Bechtel,
2007)

2 Any form of correlations between the states of the constituent components within a system; the said correlations can be
linear or non-linear in spatial (between components) or temporal (between the past, current, and future in components)
dynamics that last some period of time, e.g., large-scale synchrony in neuronal networks.

24 Symmetry is the existence of different viewpoints from which the system appears the same (Anderson, 1972), and thus
it is a phenomenon of order where high compressibility of information is achieved; complexity involves interaction between
symmetry and asymmetry, which is the coexistence of order and randomness.
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Theoretical work on the link between behavioural and network dynamics typically investigate the effects of a
perturbation on networks dynamics, e.g., a stimulus as input and the emergent large-scale correlated neuronal
activity as output (Abbott et al., 2016; Maass et al., 2002). Understanding and generalizing the principles that
govern ensembles to form large-scale network dynamics associated with desired behaviours (or to avoid
unwanted dynamics and associated disease states) is key to make advancement in basic research and clinical
applications (Deco et al., 2015; Deco and Kringelbach, 2014).

Recent research on brain connectivity has accumulated a large body of modeling and empirical evidence for the
understanding of connection between large-scale connectivity and behaviours. Synchronized neuronal activity
across large-scale brain networks have been related to a wide range of behaviours such as sensation and
perception (Hipp et al., 2011; Hirvonen et al., 2017; Monto et al., 2008; Senkowski et al., 2008), movement
(Kim et al., 2017), attention (D’ Andrea et al., 2019; Doesburg et al., 2016, 2008; Womelsdorf and Fries, 2007),
working memory (J. M. Palva et al., 2010a; S. Palva et al., 2010), and decision making (Deco et al., 2009;
Siegel et al., 2011). Likewise, neuropathology is rarely confined to few fixed anatomical foci but a network of
affected regions that progressively spread through various pathways into other parts of the brain networks
(Fornito et al., 2015; Uhlhaas et al., 2009; Uhlhaas and Singer, 2006). Thus, accurately estimating large-scale
networks in individual patients is crucial to the evaluation, prediction, and intervention of the disease for quality

individualized medicine.
1.3  Functional connectivity in electrophysiological data

Large-scale synchrony in the brain networks is thought to constitute a fundamental mechanism for processing
and exchanging of information between ensembles, which eventually gives rise to the emergence of macro-level
cognitive functions and behaviours (Anderson, 1972; Pillai and Jirsa, 2017; Varela et al., 2001). Empirical
evidence supporting this hypothesis has been predominantly yielded from studying the functional connectivity
(FC) between invasive electrophysiological recordings in animal models. These invasive methods can record
neuronal activity from several orders of spatial scales. On micro-scale, single neuron spiking activity can be
recorded using micro-electrodes from a single (Hubel and Wiesel, 1959) or multiple recording sites (Nicolelis
et al., 1997). The multiunit activity (MUA) is the average spiking of small neuronal populations immediately
adjacent to the recording electrode, and it is obtained by band-pass filtering the broad-band signals from above
400 Hz (Morgan et al., 2010). Local field potential (LFP) are intracerebral, extracellular electric potential
generated by ensembles. The electrocorticography (ECoG) records the electric potential from exposed cortical
surface which requires open skull surgery (Kuruvilla and Flink, 2003).

Invasive methods offer highly localized signals and can discover important mechanisms within specific systems
(Hafting et al., 2005), but they cannot be widely used in human subjects to address a broad spectrum of research
topics. This is because experimenters cannot casually drill holes on subjects’ skull and insert electrodes into
their brains, and current invasive protocols have poor spatial coverage and thus incapable of mapping large-
scale connectivity. In humans, macroscopic neuronal activity can be recorded non-invasively with magneto- and
electroencephalography (MEG/EEG), with which researchers can derive FC graphs with high temporal
resolution and a good coverage of the whole brain (S. Palva and Palva, 2012).

This thesis concerns mapping large-scale cortical FC with SEEG (Study II) and MEG (Study III-V). To date, a
wide variety of metrics are available for estimating cortical FC in terms of amplitude-, phase-, and phase-
amplitude correlations within or across frequencies for pairs of electrophysiological signals (Aru et al., 2015;
Bastos and Schoffelen, 2016; Jensen and Colgin, 2007; Kreuz, 2011; O’Neill et al., 2015). However, estimating
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high fidelity FC using MEG/EEG is challenging due to linear mixing of signals, and I will discuss the problems
in Study III and provide a practical solution in Study IV-V.

1.3.1  Non-invasive macroscopic readout: MEG and EEG

MEG and EEG are different measurements of the same neuronal signal sources (Himél&inen et al., 1993; Hansen
et al., 2010; Hari et al., 2010; Nunez and Srinivasan, 2007). MEG measures the extracranial magnetic fields
generated by underlying neuronal currents (Baillet, 2017; Hari and Salmelin, 2012). EEG measures the potential
differences on the scalp (Cohen, 2017; Puce and Haméldinen, 2017). Neuronal currents include Impressed
currents J;, Primary currents J,, and Volume currents J,. The J; are due to electrochemical gradients caused by
opening of ion channels across the cell membrane in any compartment of the neuron. The J, are dipolar currents
inside dendrites and axons due to Ji. The dendritic J, decay slower than axonal J,, and both of them decay as
distance from the synapse increases. The J, are passive ohmic currents flow due to J,. Because J, are currents in
the extracellular space, the direction of J, is not confined as dendritic J, that travel within apical dendrites of
pyramidal neurons along the cortical column.

The dendritic J, currents are the dominant currents and physiologically interesting. The J, currents reflect
neuronal activation following the arrival of presynaptic inputs. When a cortical pyramidal neuron receives
presynaptic inputs at its dendritic arbour in the cortical layers II-IV, the voltage difference between the dendrite
and soma results in intracellular J, towards the soma situated in the deeper layers (EPSP). When many pyramidal
cells in a cortical column temporally align their EPSPs, the spatial summation of the intracellular EPSPs in the
column could be regarded as a dipole moment. Thus, when a presynaptic input activates a parcel of the cortex,
the spatial summation of the EPSPs and magnetic fields generated in a multitude of columns would be strong
enough for EEG and MEG sensors, respectively, to pick up from outside of the skull. Additionally, MEG uses
superconducting quantum interference devices or SQUID sensors (Clarke 1994) to record the neuronal magnetic
fields. The neuronal fields are in the order of femto-Tesla (107'%) that is 10® times weaker than that of the earth

magnetic field, and MEG recordings are conducted in a magnetically shielded room.

MEG and EEG sensors are sensitive to different components of the neuronal signals. The folding of cortical
surface means that primary currents J, have various orientations across cortical gyri and sulci (Hdméldinen and
Ilmoniemi, 1994). MEG is thought to capture mainly the neuronal activity in the fissure walls because radial
currents do not yield measurable magnetic field outside of a spherical conductor approximating the shape of the
brain. EEG can detect both radial and tangential components of the currents, but the measurements often are
affected by difference in impedance and movement etc.

1.3.2  Invasive readout of the LFP: SEEG

LFP are invasively recorded from within the cortex or other deep brain structures or nuclei. LFP signals are
mesoscopic recording of electric potential generated by neuron populations in the immediate vicinity of the
recording electrode. The locality of LFP signals could be limited to from few hundred microns when using
micro-electrode (Katzner et al., 2009) or to millimeter-level resolution when using larger electrodes (Destexhe
et al., 1999) and stereo-electroencephalography (SEEG) electrodes (Massimo Cossu et al., 2005).

The relation between LFP signals and neuronal activity are dependent on the macro-level brain state, and the
overall correlations decay steeply with increased distance and time. For example, with millimeter-level
recording in felines (Destexhe et al., 1999), low-amplitude fast rhythm dominates LFP traces during wakeful
resting. This is thought to be associated with sustained irregular neuronal firing activity. An increase in neuronal
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firing concurs with a large negative deflection in LFP trace, i.e., an Up state. During slow wave sleep, the LFP
traces from the same ensemble, albeit with large amplitude, exhibit similar pattern to that during rest. However,
large positive peaks were correlated with momentary silencing in neuronal firing, i.e., a Down state. The
association between neuronal Up and Down firing states and LFP slow waves has been reported in both humans
(Peyrache et al., 2012) and animals (Steriade et al., 2001), and thus likely a universal phenomenon in the
mammalian brain.

SEEG, developed first by (Bancaud and Talairach, 1965), is a pre-surgical assessment of intracortical LFP
signals for the treatment of drug-resistant focal epilepsy (Jerbi et al., 2010; Lachaux et al., 2012). The assessment
aims to identify the epileptogenic zone (EZ) that are the primary organization of brain regions where epileptic
seizures initiate, propagate, and maintain (Munari and Bancaud, 1985). The SEEG surgical procedure is
minimally invasive and has had great safety records in clinical applications (Massimo Cossu et al., 2005). SEEG
probes are linear shafts with multi-lead cylindrical electrode contacts. During implantation, SEEG shafts are
inserted into the brain through small burr holes in the skull. The shafts can be inserted into both hemispheres
and record deep structures where other methods such as ECoG or EEG are unable to reach. With high resolution
MRI image of the patient brain and robotic assistance (Mullin et al., 2016), neurosurgeons can insert multiple
electrode shafts with converging trajectories to targeted brain areas with high precision (Cardinale et al., 2013b).
During the probing period, SEEG signals could be recorded from all electrode contacts during different brain
states or tasks for EZ localization (Study I) and mapping functional connectivity (Study II).

1.3.3  Signal mixing confounds FC estimates in MEG/EEG

Accurately identifying cortical FC is crucial for understanding the co-emergence of large-scale neuronal
synchrony, cognitive functions, behaviours, or diseases. A MEG or EEG system typically has a few dozens to
a few hundred sensors covering the whole head, which makes them the only non-invasively electrophysiological
tools for probing large-scale cortical connectivity. Importantly, MEG/EEG records neurophysiological activities
and offers millisecond range temporal resolution like that of intracranial recording of LFP.

The MEG/EEG cortical FC is conventionally estimated as correlations between band-limited oscillatory signals
in sensor- or sources-space. A wide variety of pairwise metrics (Aru et al., 2015; Bastos and Schoftelen, 2016;
Jensen and Colgin, 2007; Kreuz, 2011; O’Neill et al., 2015) are available for estimating the FC “connectome”,
i.e., the FC between pairs of signals from all sensors or modeled brain regions (Sporns et al., 2005). Estimated
FC connectomes are often represented as graphs wherein sensors or brain areas constitute the nodes and observed
FC the edges (1.2.1).

However, mapping high quality FC using MEG/EEG is challenging. MEG/EEG sensor data are anatomically
uninformative and severely confounded by signal linear mixing (J. M. Palva and Palva, 2012; Felix
Siebenhiihner et al., 2016). Signal mixing or source leakage, in the form of field spread or volume conduction
in MEG or EEG, respectively, has two aspects: i) the signals from one neuronal source can be registered by
several sensors; ii) one sensor can pick up a mixture of signals from several focal sources. Analyses using
modeled sources are preferable because it elucidates the neuroanatomical origins of the activities and reduces
the net effects of signal mixing (Buzsaki et al., 2012; Gross et al., 2013; Himéildinen et al., 1993; S. Palva and
Palva, 2012; Schoffelen and Gross, 2009).

However, due to the ill-posed nature of the inverse solution, no source modeling methods can yield unambiguous

estimates of neuronal sources. Different modeling methods may vary quantitatively in residual signal mixing,

but the effect of the residual is pervasive to all source models (Figure 2A). The residue mixing inevitably
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introduces false positive into estimated FC connectomes and distorts the estimated FC graph topology. Two
distinct types of false positive FC could be observed in estimated FC graphs: artificial interactions (Als) and
ghost interactions (SIs) (S. Palva and Palva, 2012).
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Figure 2 Linear mixing causes false-positive artificial (AI) and ghost interactions (SI). (A) The mixing “neighbourhood”
of two uncoupled signal sources Vi and V,. The dots indicate the location of all modeled sources. (B) PLV reports false
positive Als between Vi, V; and their respective neighbouring sources. (C) iPLV does not report Als. (D) One simulated
true coupling between V1 and V2 with a non-zero phase lag. (E) The estimated synchrony graph using PLV is
contaminated with both Als and ghost interactions (SIs). (F) The iPLV graph is contaminated with non-zero lag Sls.
Figures adapted with permission from (Palva et al., 2018); Creative Commons license(CC BY-NC-ND 4.0).

The problem of Als was documented in the early days of FC research (Nolte et al., 2004). Als are direct products
of instantaneous signal mixing, in which one true signal is smeared to multiple adjacent” modeled sources —
regardless of whether true interactions exists or not between the true source and the neighbours (Figure 2A-B).
Several Al-free metrics have been proposed to suppress Als by removing zero phase lag connectivity between
two signals’ amplitude envelopes (Brookes et al., 2012; Hipp et al., 2012; O’Neill et al., 2015), phase time
series (Palva, 2005; Stam et al., 2007; Vinck et al., 2011), or coherency (Nolte et al., 2004). For example, Als
in estimated phase correlations can be effectively removed using the imaginary part of the complex phase
locking value (Figure 2C). In addition, these Al-free metrics remove Als at the cost of also removing true edges
having near zero phase lag.

%5 Adjacent in terms of mixing because the mixing between sources is a geometrical property of the source model, and it is
not necessarily linearly dependent on Euclidean distances between brain regions.
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The ghost Sls are caused by the leakage of the signals from two truly connected nodes to their respective
neighbouring nodes, which in turn results in multiple falsely identified edges like ghosts surrounding the true
edge (Colclough et al., 2015; Farahibozorg et al., 2018; S. Palva and Palva, 2012). The ghost SIs, caused by
multivariate mixing effects, could have non-zero phase lag, and therefore, they cannot be removed by any
aforementioned Al-free metrics (Figure 2D-F). To date, one multivariate solution® has been proposed for
correcting ghost SIs in amplitude correlations with sparse sources. In studies preferring dense sources, mixing
could cause a multitude of SIs which renders FC edge localization and graph properties inaccurate (Drakesmith
et al., 2015).

1.4  The critical brain hypothesis

1.4.1  Background: criticality and phase transitions
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Figure 3 First and second order phase transitions. (A) Schematic drawing  in ordered solid phase, i.e., ice. When
of phase diagram of H,O with pressure and temperature as control
parameters. The black marker indicates second phase transition point.
Overlapping magenta and cyan lines indicate where first order transition
can take place, and the red marker indicates the example discussed in the
text. Pc and Tc are critical pressure and temperature, respectively. SCF:
supercritical fluid. (B) Phase transitions with pressure as the control
parameter for temperature T=100°C (below Tc), exactly at Tc, and above
Tc. The black and red line corresponding to second and first order phase
transition from (A), respectively. The area inside red dashed line represents
the liquid-gas-dome where water and steam coexist. (C) Liquid-gas
transition of water is associated with the involvement of Gibbs free energy
and discontinuity in entropy in the first order phase transition (red line) but
not so in the second order phase transition (black line); the red dashed line

increasing the temperature from
slightly below 0°C to slightly above
0°C, a transition from solid to liquid
phase takes place, in which H,O
molecules become less ordered. In
other words, a phase transition is a
due to

macroscopic emergence
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interaction patterns. A complex system

marks the discontinuity in the curve. (D) Schematic drawing of the
operating regimes of neuronal systems in the classic criticality and the
underlying second order phase transition in the order parameter. (E)

can demonstrate multiple phases under
different conditions, and there could be
multiple phase transitions as well as

Hypothesized neuronal critical bistability and the underlying first order

phase transition in the order parameter. coexistence of multiple phases.

26 This approach simultaneously orthogonalizes a few dozens of full-ranged source time series using the Léwdin procedure
(Colclough et al., 2015, 2016)

27 A system is said to be in equilibrium when it is isolated from external influences so that no flux of mass or energy pass
through it. The models often used as analogy to neuronal criticality including the Ising model and the self-organized critical

sand pile model.
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The classic criticality is thought to reflect the dynamics undergoing a second order, smooth phase transition
between order and disorder (Chialvo, 2010). For example, a second order phase transition takes place near the
transition from fluid to supercritical matter phase when applying critical temperature (Tc) and/or critical pressure
(Pc) % to a mass of HO (grey area, Figure 3A). Exactly at this critical point, the transition between liquid and
supercritical matter requires no latent heat, which means, the changes in order parameter (e.g., density = 1+
specific volume) and entropy are smooth when either control parameter varies (Figure 3B—C, the T¢ or Pc is the
critical point that marks the second order phase transition). Henceforth, a mass of supercritical HO shows
divergence of correlation length, critical fluctuations of multiple quantities occur at all length scales, which can
be quantified with several critical exponents. For example, the critical opalescence in supercritical H,O is due
to the fluctuations of density in all wavelengths thus scattering visible lights.

A complex dynamical system can also undergo first order, discontinuous phase transition. For example, the first
order phase transition takes place in a bistable state where the liquid and gaseous phase of H,O coexist, i.e.,
boiling water at 100 °C under 1atm pressure (red triangle, Figure 3A). The first order phase transition is said to
be discontinuous, because during the liquid-gas transition there is a jump in the specific volume, order, entropy,
and the first derivative of Gibbs free energy”. Bistable state is associated with hysteresis loop due to the
involvement of latent heat, which means the current state of a system is dependent of the its immediately past
state, and changing states requires the input or dissipation of energy.

1.4.2  The classic neuronal criticality framework

In neuroscience, criticality is an appealing framework for studying the co-emergence of behaviours and
hierarchy of complex neuronal dynamics (Beggs and Timme, 2012; Chialvo, 2010; Cocchi et al., 2017; Muiloz,
2018; Plenz and Thiagarajan, 2007; J Wilting and Priesemann, 2019). The working hypothesis of brain criticality
claims that the brain, across its levels of organization, operates in the vicinity of a second order phase transition
between order and disorder (Figure 3D). Such critical dynamics are thought to optimize balance between the
robustness to disturbance and the sensitivity/flexibility to everchanging stimuli or environmental conditions, and
thereby conferring optimal computational capacity and rich dynamical repertoires (Mufioz, 2018).

Modeling studies have shown that when operating near the critical point, neuronal ensembles or large neuronal
networks demonstrate metastability (Deco et al., 2017; Haldeman and Beggs, 2005), maximize the dynamic
range (Gautam et al., 2015; Kinouchi and Copelli, 2006), information representation and processing (Boedecker
et al., 2012; Shriki and Yellin, 2016; Tanaka et al., 2009), and computational capacity (Bertschinger and
Natschldger, 2004; Cocchi et al., 2017; Latham and Nirenberg, 2004). These findings suggest that operating
near criticality be an overarching principle that guides the brain dynamics (Bak, 1996; Beggs, 2008; Chialvo,
2010; Kauffman, 1993; Mora and Bialek, 2011).

1.4.3  Scale-invariance: the hallmark of neuronal criticality

There are several subcategories of criticality (Mufoz, 2018), and all of which share one emergent property:
scale-invariance. The scale-invariance, as a construct, refers to the absence of characteristic scales in observed
quantity and the temporal and/or spatial scales wherein the observations were made. Hence, scale-invariance

28 For H,0, the Tc is 373.9 °C and the Pc is 217.8 atm
2 Gibbs free energy G = H - TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy; H= U +pV,
where U is the internal energy, p is the pressure, and V is the volume.
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reflects the classic fractal®® geometry, i.e., statistical self-similarity and underlying building pattern of expanding
symmetry (Mandelbrot, 1985). In practice, scale-invariance can be operationalized as various power-law scaling
behaviours wherein one quantity varies as a power of another™.

Scaling behaviours have been reported in a wide variety of dynamics varying from overt behaviours to
neurophysiological signals. For example, in humans, the fluctuations in tasks performance have been reported
to show scale-invariant long-range temporal correlations (LRTCs) (Gilden and Wilson, 1995; Monto et al., 2008;
Simola et al., 2017), of which, the scaling exponent can be estimated using detrended fluctuation analysis (DFA)
(Hardstone et al., 2012; Linkenkaer-Hansen et al., 2001). The LRTCs in behavioural fluctuations mean that,
within individuals, descriptive statistics such as mean or standard deviation of short-term performance could
readily predict the descriptive statistics of long-term performances.

The critical brain hypothesis proposes that, when operating near criticality, the brain produce a variety of scaling
behaviours simultaneously across spatial, temporal, and spatio-temporal domains (Bassingthwaighte et al., 2012;
Beggs and Timme, 2012; Linkenkaer-Hansen et al., 2001; Mufioz, 2018; Stanley, 1971). For a neuronal
ensemble, the LRTCs in spontaneous fluctuations of narrow-band oscillation amplitudes can be estimated using
DFA, which has revealed power-law scaling in amplitude fluctuations from few seconds up to at least a few
hundred seconds (Linkenkaer-Hansen et al., 2001; Palva et al., 2013). For a neuronal network, spatio-temporal
cascades of neuronal activities, such as a local peak in narrow-band amplitude or spiking activity, are referred
to as “neuronal avalanches”. Similar to the classic sand pile model, scaling behaviours in neuronal avalanche
size and lifetime probability distribution have been reported in both small systems such as neurons in
organotypic cultures (Beggs and Plenz, 2003) and large systems such as the resting-state human brain (Palva et
al., 2013).

Moreover, the neuronal scaling behaviours have been reported to correlate with genetics (Linkenkaer-Hansen et
al., 2007), age and gender (Nikulin and Brismar, 2005), arousal level (Nikulin and Brismar, 2004), response to
stimuli (Arviv et al., 2019), and behavioural performances (Palva and Palva, 2014). Conversely, anomalies in
neuronal scaling has been associated with depression (Linkenkaer-Hansen et al., 2005), epilepsy (Monto et al.,
2007), dementia (Montez et al., 2009), and various other conditions (Zimmern, 2020). Importantly, the DFA
scaling exponent of ensemble oscillation amplitudes (i.e., LRTCs) and the scaling exponent of neuronal
avalanches were found to be correlated during rest or tasks (Palva et al., 2013; Porta and Copelli, 2019), and
both neuronal scaling exponents were found to be correlated with the DFA exponent of behavioural performance
(Palva et al., 2013). Therefore, between local and large spatial scales, between short and long temporal scales,
scale-invariant neuronal dynamics could be inter-related and, importantly, behaviourally relevant. This offers
evidence of co-emerging critical-like fluctuations in human behaviours and intrinsic brain dynamics.

In practice, claiming power-law scaling requires not only enough data (Stumpf and Porter, 2012) but also
rigorous statistical testing (Clauset et al., 2009; Virkar and Clauset, 2014). Moreover, criticality is sufficient but

30 Fractals is a universality class of “a rough or fragmented geometric shape that can be split into parts, each of which is (at
least approximately) a reduced-size copy of the whole” (Mandelbrot, 1983).

31 An example is the scaling between cortical grey and white matter in the mammalian brains defined as y = x?, where, when
white matter volume (x) doubles, the power-law exponent (¢ = 0.8) dictates that the grey matter volume (y) increases by
~70%.
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not necessary for producing power-law scaling behaviours because some non-critical models may produce
power-law scaling when tuned (Touboul and Destexhe, 2017).

1.4.4  The classic neuronal criticality framework needs an update

The renormalization group approaches assume universality of scale-invariance and predict scaling behaviours
asymptotically at large spatial and temporal scale when a system operates near or exactly at the critical point of
second order phase transition. One consensus in probability is that the scaling behaviours should be considered
in stationary processes when the observed system is in a steady state (Beran, 1994; Samorodnitsky, 2006).
However, biological systems, unlike idealized classic criticality models, often demonstrate signs of non-
stationarity (Eke et al., 2002, 2000). In the brain, the nonstationary phenomena include bistability (Figure 3E)
or multi-stability (Buendia et al., 2019; Deco and Jirsa, 2012; di Santo et al., 2018), stochastic oscillations
(Cocchi et al., 2017), Griffiths phase (Juhasz et al., 2012; Moretti and Mufioz, 2013; Odor et al., 2015), chimera
state (Majhi et al., 2018; Wang and Liu, 2020), and multi-fractality (Ihlen and Vereijken, 2010; Kantelhardt,
2008; La Rocca et al., 2018). To date, little do we know about the mechanistic link between these rare regimes
and the classic neuronal criticality, and their behavioural implications. These rare regimes could be caused by
the specific type of criticality that the brain dynamics are associated with (Mufioz, 2018).

Recent theoretical work suggests that the brain, a non-conserving biological system, operates in a quasi-critical
rather than in the “true” critical regime (Bonachela et al., 2010; Bonachela and Muifioz, 2009; Buendia et al.,
2020). True criticality is seen in energy-conserving systems such as the classic sand pile model, in which, with
a slow drive of the falling sand grains, the sand pile self-evolved into one-critical-point dynamics (Bak et al.,
1987; Buendia et al., 2020). Here, energy-conserving means that the total energy or resource, e.g., sands, remains
constant and far greater than the drive when the system is very large. The critical point in true criticality is
associated with a second order, smooth phase transition between a quiescent absorbing and active dissipating
phase (Chialvo, 2010; Di Santo et al., 2016), and thus ensuing statistically stationary state and scaling behaviours
(Bonachela and Mufioz, 2009).

On the other hand, quasi-criticality is observed in non-conserving, non-equilibrium systems equipped with a
“soft loading” mechanism to counterbalance resource dissipation. Modeling work has shown that guasi-critical
systems hover near the critical point and also produce scale-invariant dynamics (Bonachela et al., 2010; Buendia
et al., 2020; Levina et al., 2007). In order to operate exactly at the critical point, quasi-critical systems require
external fine-tuning between resource loading and dissipation.

The brain apparently is not an energy-conserving system, and it is also equipped with resource loading
mechanisms across spatial scales to meet the constant resource demands from billions of neurons (Roh and Kim,
2016). Both theoretical and empirical research have suggested that the loading mechanism in local ensembles
could be achieved through combined effects of synaptic depression and recovery (Markram and Tsodyks, 1996;
Tsodyks and Markram, 1997). Furthermore, the loading in the brain is thought to fluctuate on a much slower
time-scale than ensemble activity, which could have profound impacts on the dynamics of the fast ensemble
activity on a long temporal scale (Roberts et al., 2017a). The classic brain criticality cannot address the dynamics
specific to quasi-critical systems.

1.4.5  Why is bistability relevant to neuronal criticality?

Biological organisms can steadily operate in bistable mode, which is thought to reflect an abstract and universal
building motif favourable to adaptation and survival (Bednarz et al., 2014; Dubnau and Losick, 2006). In humans,
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bistability has been observed in various behaviours (Haken et al., 1985; Kelso, 2012) and perceptions (Cao et
al., 2018; Miller et al., 2000). In neurophysiology, bistability is a pervasive class of phenomena. Although type
II excitability by and large is bistability (Hodgkin, 1948), the concept of neuronal bistability was first explicitly
referring to intraneuronal dynamics, in which a neuron, after firing, dwells in one of two preferred subthreshold
states: a hyperpolarized down-state, or a more depolarized up-state (Wilson, 2008; Wilson and Cowan, 1972).
Bistability phenomenon was later reported in LFP dynamics across cortical areas in felines (Steriade et al., 1993)
and was proposed as an intrinsic property of the brain (Holecman and Tsodyks, 2005).

Henceforth, bistability phenomena have been generally referred to the coexistence of an up and a down state
(Chialvo, 2010; Cocchi et al., 2017; Di Santo et al., 2016) and have been documented cross several scales
including in spiking activity (Gu et al., 2015; Jercog et al., 2017; Koulakov et al., 2002; Miller and Wang, 2006),
in neuronal oscillations during sleep or anesthesia in animals (Mejias et al., 2010; Millman et al., 2010), in
switching modes in models and LFP recordings (Heitmann et al., 2017), and in EEG amplitude fluctuations in
human resting-state brain activities (Freyer et al., 2011, 2009; Hidalgo et al., 2012). In addition to ensemble
bistability, simulated large-scale cortical networks could also show bistable avalanches with coexisting regular
(i.e., power-law like) and “Dragon Kings” avalanche events (de Arcangelis, 2012; Kinouchi et al., 2019). Here,
the Dragon Kings refer to extremely large avalanches that have a preferred size range and occur much more
often than what is expected by a power-law distribution (Sornette and Ouillon, 2012).

In canonical ensemble models, the bifurcation mechanism for coexisting unimodal and bistable firing rate
dynamics was proposed five decades ago (Wilson and Cowan, 1972), which has been recently revised with
supporting evidence from generative models (Cowan et al., 2016). Specifically, bistability was proposed to be
a result of the ensemble undergoing a saddle node bifurcation between two stable attractors, whereas unimodal
dynamics be a result of the system operating close to the Bogdanov-Takens bifurcation point (Cowan et al.,
2016, 2014; di Santo et al., 2018; Izhikevich, 2007). The Bogdanov-Takens point is a marginally stable critical
point and suggestive of a wider parameter space for the second order transition to take place, which implies an
ensemble does not require fine tuning to be critical-like. While the bifurcation mechanisms described with partial
differential equations is important, they offer little insights into the neurophysiological underpinning of

unimodal and bistable dynamics, and their links to critical scale-invariance and behavioural relevance.

1.4.6  The possible physiological underpinning of bistability in brain networks

Theoretical work has suggested a possible association between bistability and critical dynamics (Millman et al.,
2010). Other theoretical and empirical studies have suggested that neuronal bistability be associated with first
order phase transitions (Cocchi et al., 2017; Cowan et al., 2016). A recent modeling study offers a new
perspective to the possible physiological underpinning that might drive both unimodal and bistable neuronal
dynamics®* (di Santo et al., 2018). The authors showed that, by manipulating the synaptic resource loading and
available synaptic resource, both classic and bistable avalanche dynamics can be observed in a neural field model
of Wilson-Cowan ensembles®. The authors tuned their network model in a 2-dimensional parameter space. The
first parameter reflects the fluctuations in available synaptic resources that controls model to operate along the
sub-critical =¥ critical =» super-critical axis of classic criticality. The second parameter reflects the fluctuations
of resource depletion vs. recovery ratio and controls the switching between classic unimodal or bistable critical

32 This work was motivated by the celebrated Landau-Ginzburg theory in physics that includes spatial dependence to
fluctuations and is used as a phenomenological meta-model to study phase transitions in matters (Binney JJ et al., 1993).
33 Introducing resource loading into a large-scale brain model suggests the assumption that the brain is quasi-critical.
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avalanche dynamics. Specifically, when the model is controlled by a large depletion rate, by gradually increasing
resource, the model demonstrates classic smooth transition from sub-critical down-state, to critical state, and to
super-critical up-state in succession. When the model is controlled by a small depletion rate, by gradually
increasing resource, the model demonstrates sub-critical, bistable neuronal avalanches, and super-critical up-
state in succession. These observations have offered a promising avenue to further study coexisting unimodal
and bistable criticality with plausible physiological basis.

1.4.7  Why studying bistability in ensemble dynamics?

High degree of bistability has been associated with detrimental effects and shifts to catastrophic events seen in
a wide range of topics such as in aerodynamical systems (Qi and Zhongke, 2015), ecosystems (Boerlijst et al.,
2013; Villa Martin et al., 2015), societies (Diaz, 2017), or coupled signals (Agu and Teramachi, 1978). One
would naturally speculate a possible link between resource demand in normal or diseased brain and bistability
reflected in electrophysiological signals of spontaneous brain activity. Existing network bistability model (di
Santo et al., 2018) addresses bistable neuronal avalanche dynamics but offers no insights to specific loci. On the
other hand, normal cognitive functions or neurological diseases are known to differentiate dynamics in distinct
brain regions (Jirsa et al., 2014). Therefore, physio-markers for accurately identifying ensemble bistability could
be scientifically and clinically useful. On the phenomenological level, it is also important to investigate how
bistability in ensemble amplitude fluctuations is related to ensemble critical phenomena such as LRTCs. We
hypothesized that the principle giving rise to bistable avalanches should also control bistable criticality in
ensemble dynamics. That is, by tuning a slow variable reflecting the resource demand of an ensemble, bistability
in its fast-fluctuating activity should progressively emerge from unimodal critical dynamics.
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2 Aims

The aim of this thesis is to advance current theory and knowledge about critical bistability and large-scale

synchrony in neuronal dynamics (PART ONE, Figure 4) and to make crucial contributions to method
developments for studying functional connectivity using MEG/EEG (PART TWO, Figure 4).

PART ONE (empirical)

o Study I (Bistability) We aimed to addresses the mechanisms that generates critical bistability in

neuronal ensemble dynamics and to investigate the functional relevance of neuronal bistability. The

expected results will link critical bistability and the classic criticality hypothesis into a unified theoretical

framework, which is currently missing.

o Study II (HFO Synch) We aimed to locate and define topologically the connectivity of long-range,

high frequency oscillation (>100 Hz, HFO) synchrony using human intracerebral recordings. We also

aimed to investigate the behavioural relevance of HFO synchrony.

PART TWO (methodological)

o Study III (Ghost) We aimed to formally describe and raise awareness to a severe yet not well

documented ghost interactions (SIs) problem in MEG/EEG connectivity.

o Study IV-V (Hyperedge) We aimed to obtain simulation-informed knowledge of signal mixing

between reconstructed MEG/EEG sources, with which we will bundle true interactions and false-

positive Sls into “hyperedges”, thereby to significantly suppress the SIs and improve interpretability of

MEG/EEG connectivity.
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3 Methods

The purpose of computing is insight, not numbers — Richard Hamming

3.1 Canonical and generative model (Study I)

In neurosciences, the Hopf bifurcation is recognized for its universality and simplicity, and it well predicts
dynamics in a wide classes of data ranging from genetics (Freyer et al., 2012; Lebar et al., 2014; Oyarzun and
Chaves, 2015), neuronal oscillations (Freyer et al., 2009; Heitmann et al., 2017), to sensation and perceptions
(Pérez-Cervera et al., 2019; Rankin et al., 2014). The canonical model of Hopf bifurcation could be written as
(Freyer et al., 2012):

7= =15+ 3 + Br + n[(1 — p)&a(t) + préy ()] M

here 7 is the time derivative of a variable r (e.g., a real number reflects neuronal activity); A is the shape
parameter and /£ the bifurcation parameter; 7 scales the overall influence of noise; where &, (t) and &, (t) are
additive and state-dependent noise, respectively, and &, (t) and &,,(t) are uncorrelated and independent
Gaussian time series with zero mean and unit variance; the key parameter p weights the influence of state-
dependent noise. Different combinations of A and £ result in either super-critical or sub-critical bifurcation
(details in (Freyer et al., 2012) ), which are associated with continuous second order or discontinuous first order
phase transition, respectively (Cocchi et al., 2017; Di Santo et al., 2016; Kim et al., 1997).

To generate local synchrony dynamics, we build a stochastic Kuramoto model that consists of 200 fully coupled
oscillators, each of which represents the collective activity of a number of neurons on a finer spatial scale
(Breakspear et al., 2010). We introduce a stated-dependent noise p as a local positive feedback to the Kuramoto
mode, which, as predicted by the canonical Hopf bifurcation should be able to generate both the classic unimodal
and bistable dynamics (Breakspear, 2017; Freyer et al., 2012; Izhikevich, 2007). In the Kuramoto model, the
dynamics of each oscillator # is a scalar phase time series 6, (6 € 0:2w), and a population of such oscillators can
be represented by a set of coupled differential equations in a simple form as:

Op =wy + Ky + 27, 2)

where, for any given oscillator n, @, is the time derivative of its phase time series 6., w, the natural frequency
of n, K, the coupling between n and rest oscillators of the network, and Z, the noise term. The degree of
synchrony of the population, or order parameter or mean field, embodies the outcome of tripartite competition
for controlling the collective behaviours of all oscillators: w, and Z, are desynchronizing factors whereas K, is
the synchronizing factor. Here, @, follows a normal distribution with mean of zero (Hz), meaning without loss
of generality, the system can be observed on a rotating phase plan with arbitrary angular velocity. The coupling
term K, is defined as the n-th oscillator adjusts its phase according to interactions with all the rest oscillators in
the system through pair-wise phase interaction function:

N .
Kn=2 2 sin(6n = 6n) 3)
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where « is a scalar number representing coupling strength, N is number of oscillators (200 in our simulation).
For simplicity, here we use a fully coupled network to avoid other families of emerging dynamics due to nodal
or network structural disorders, e.g., Griffiths phase (Moretti and Mufioz, 2013; Muifioz et al., 2010). In addition,
we found that with a Gaussian nodal-weight distribution, the model behaved nearly identically to the fully
coupled networks. Furthermore, we modify the noise term in line with the Hopf bifurcation (eq.1) as:

Zy =1 = PG (D + p(Ruax — R) £ ()] “4)

where pis the weight of the state-depend noise; Ry is the maximal mean field the population can reach (e.g.,
slightly below 1 due to the presence of noise) and R is the mean field (a scalar) that quantifies the degree of
synchrony of the population at given time point #:

w0 -5 e ®

when viewing R from the complex phase plan, it essentially is the centroid vector of the population phase
distribution; if the whole population is in full synchrony, R —1; when there is no synchrony, R = 0 (see insets,
Fig. 5F). For a local ensemble, the classic critical dynamics is associated with a supercritical Hopf bifurcation
(Freyer et al., 2012; Izhikevich, 2007). Gradually increasing the coupling between units, the ensemble would
reach the critical point, where the quiescent fix point (subcritical) loses stability where a smooth transition to a
critical (active) phase takes place. The synchrony of an ensemble in such classic critical state follows a Gaussian
distribution (Freyer et al., 2012, 2009; Roberts et al., 2015). When undergoing a subcritical Hopf bifurcation,
the ensemble demonstrates bistable criticality. In this scenario, a seemingly quiescent ensemble could suddenly
and unpredictably become supercritical (hyperactive) — before quiescent phase losing its stability. Thus,
synchrony follows a bimodal distribution, or in some cases heavily tail, implying underlying hysteresis. When
coupling is strong, the ensemble would only dwells on hyperactive phase — resembling epileptic seizures.

3.2 MEG resting-state recording (Study I)

We recorded 10 minutes of resting-state brain activity using magnetoencephalographic (MEG) from 18 subjects
(11 males, 31.7+10.5, mean+std, yeas of age) at the BioMag Laboratory, HUS Medical Imaging Center, Helsinki
Finland. Subjects were seated in a dimly lit room and instructed to focus on a cross on the screen in front of
them. Recordings were carried out at Meilahti hospital in Helsinki (detailed in Study I Supp. Material). All
subjects were free of neurological conditions. We also assessed working memory, attention and executive
functions in these subjects with a battery of neuropsychological tests. These included: Zoo Map Time, Toulouse-
Pieron test (TP), Digit Symbol Coding test, Zoo Map Plan, Digit Span forward and backward (BackDigits and
ForwDigits, respectively), Letter-Number Sequencing (LNS), Trail Making Test parts A and B (TMT-A, TMT-
B). Some subjects had missing/invalid behavioural scores, and we reported the neuro-behavioural correlations
with dataset that had at least 16 valid subjects’ scores. All subjects gave written consent and the study was
performed according to the Declaration of Helsinki.

3.3 SEEG Resting-state recording (Study I, II)

We recorded 10 minutes of SEEG resting-state local-field potential (LFP) signals from 92 drug-resistant focal
epilepsy patients. Among them, 25 subjects were later excluded from analyses due to previous brain surgery
such as temporal lobotomy or an MRI-identified cortical malformation (Study II Suppl. Table 1). We used a
192-channel SEEG amplifier system (NIHON-KOHDEN NEUROFAX-1100) with a sampling rate of 1 kHz.
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The platinum—iridium, multi-lead electrodes used in recording have 8 to 15 contacts, and each of which was 2
mm long and 0.8 mm thick with an inter-contact border-to-border distance of 1.5 mm (DIXI medical, Besancon,
France). The implantation locations and amounts of electrodes varied in subjects according to individual surgical
requirements. On average, each subject had 17 + 3 (mean + SD) shafts (range 9-23) with a total of 153 + 20
electrode contacts (range 122—184, left hemisphere: 66 + 54, right hemisphere: 47 + 55 contacts, grey-matter
contacts: 113 + 16.2). The final cohort of 67 patients yielded a total of 7068 non-epileptic grey matter contacts
(113 £16.2 per subject, mean + SD, range 70-152) that gave a dense sampling across all neocortical regions and
of seven canonical functional brain systems defined by fMRI intrinsic connectivity mapping (Schaefer et al.,
2017; Yeo et al., 2011). Before electrode implantation, the subjects gave written informed consent for
participation in research studies and for publication of results pertaining to their data. This study was approved
by the ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, Milan, and was performed according
to the Declaration of Helsinki.

3.4 Simulation for study III

To model signal spread in the 2D grid sources, the measured source signals are simulated as an instantaneous
linear mixture of underlying source time series, which is implemented in two steps. First, we model the
underlying ‘true’ source time series as follows: one-dimensional random Gaussian time series n; are linearly
mixed using mixing parameters ¢4 and cg. The mixed time series are filtered using Morlet wavelets, and time
series to be used as instantaneous amplitudes and phases are generated as:

A,(0) = |F(m (©) + cany (0) | = Jre (Fiu® + am®)) +im (Fu© +cm®)) ©)

Ay(t) = |F(n2 ) +camy (t))| (7
im(F(n3(t)+Cen4(f)))

0,(t) = phase (F(n3(t) + c9n4(t))) = atan m ®)

0, (t) = phase (F(n4(t) + cons (t))) 9)

where n; is a vector containing (N=50,000) samples of Gaussian white noise from i realization; F denotes

complex Morlet wavelet transform with basis function ¥ (x) = e~x*/ 2cos(5x); ¢4 and cg are scalar mixing

parameters; re() and im() are the real and imaginary part of complex number, respectively; 4 and 6 are the
amplitudes and phases, respectively. This approach allows us to model phase and amplitude interactions
separately (Bruns et al., 2000).

Next, the amplitudes and phases (Egs. 6-9) are used to assemble complex-valued time series as follows:
x(t) = A (D)e%® + mAy(t)ei(gy(t)’f‘l’Xy) (10)
y(t) = Ay(t)ei(ey(f)+¢'xy) +mA, (t)elfx® (11

where m is the spatial mixing parameter, modelling the instantaneous signal spread; ¢., is the phase shift [-x, ©],
controlling the mean phase difference across sources x and y.
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To demonstrate the spatial effects of signal spread, we simulate source signals in a 13x13 square grid layout,
with inter-source distance d,. The signal spread was modelled as a truncated 2-dimensional Gaussian function
with parameters ¢ = 0 and o= d up to a range of three standard deviations o so that,

(d-p)?

e 202, ifd<3o (12)

m(d) = 7=

m(d) =0 else

In addition to the simulations on the 2D source grid model, we investigate the effect of spurious synchrony in
more realistic source-space derived from real MEG experiment. We simulate two correlated cortical parcels
whereas all other cortical parcels are uncorrelated time series with equal amplitude distributions. Thus, the parcel
pair with simulated correlation are different from other parcels in terms of their correlation. We next perform a
virtual MEG/EEG experiment by forward-modeling simulated source activity, followed by minimum-norm
source reconstruction. We next estimated all-to-all cortical interactions and plotted on a flattened brain surface
(Figure 14C).

3.5 Simulation for study IV

Simulation of the parcel time-series X of 1,000 random ground-truth graphs on a 400-parcel cortical source-
space (J. M. Palva et al., 2010a) of the Destrieux atlas (Destrieux et al., 2010; Fischl et al., 2002). Virtual MEG
measurements and source reconstruction were performed by forward- and inverse-modeling X into the
reconstructed time series X (detailed in Study V). The forward- and inverse-operators used here were derived
from the visual working memory experiment described below. Finally, all-to-all FC of X was estimated with
iPLV.

Each ground-truth graph contained 200 randomly connected nodes so that each node was connected only to a
single other node. The narrow band time series X(z, f)) ER™™" (m=1,000 independent samples, n=400 parcels) of
each ground-truth graph was simulated as follows. First, 400 parcels were first randomly divided into two groups
V1 and ¥V as source and target nodes. Next, the nodes from V; and V> were next randomly paired to create 200
edges E, thus for each edge er = {(vi?,v:?)EE| viV€V); v:?’€V>}, 1 < k <200. The time series of 200 source
nodes in V; were obtained by convoluting uncorrelated white noise time series with Morlet wavelets w(t, f), /o
=10 Hz, Morlet m = 5, f; = 100 Hz. For each edge ex(v,"”,v,?), the time series of the target node v, was simulated
to have a correlation coefficient of 0.9 with the time series of source node v,? delayed by 3 samples. Xz, f3)
were finally decimated into 1,000 independent samples before forward and inverse-modeling. To identify
significant iPLV edges in the ground-truth graphs, we also estimated null hypothesis graphs Grawro by simulating
uncorrelated time series Xmp€R™™ (m=1,000, n=400 parcels) and estimating their iPLV as done for the ground-
truth graphs. A range of five thresholds was obtained from Gr.wro that corresponded to significance levels
ranging from relaxed to strict, i.e., Tipry =—log(p-value) € {1.3, 2, 3, 4, 5}.

3.6 MEG data preprocessing

3.6.1 MEG Source-reconstruction

We used Maxfilter with temporal signal space separation (tSSS) (Elekta Neuromag Ltd., Finland) to suppress
extra-cranial noise in sensors and to interpolate bad channels (Taulu and Simola, 2006). We then used
independent component analysis (Matlab Fieldtrip toolbox, http://fieldtrip.fcdonders.nl) to identify and extract

31



components that were correlated with ocular (identified using the EOG signal), heart-beat (identified using the
magnetometer signal as a reference) or muscle artefacts (Oostenveld et al., 2011). We reconstructed MEG
sources using the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation of MRI
data, surface reconstruction, flattening, cortical parcellation, and neuroanatomical labeling with the Schaefer-
2017 atlas (Schaefer et al., 2017) that favours functional networks topology over structural (gyral) topology
(Destrieux et al., 2010). Each of the Schaefer-parcel belongs to a functional system (Yeo et al., 2011) which
informed later systems-level analysis. We used the MNE software package to create head conductivity models
and cortically constrained source models with 5000-7500 sources per subject and for the MEG-MRI co-
localization and for the preparation of the forward and inverse operators (Hamalainen and Sarvas, 1989;
Héamiéldinen and Ilmoniemi, 1994). For Study I, we obtained a cortical parcellation of 400 Schaefer-parcels
using reconstruction-accuracy optimized source-vertex-to-parcel collapsing method (Korhonen et al., 2014).
For simulations used in Study III and IV, we obtained a cortical parcellation of 400 Destrieux-parcels using
reconstruction-accuracy optimized source-vertex-to-parcel collapsing method (Korhonen et al., 2014).

3.6.2  Forward and inverse modeling

Consider a data matrix X = {xq), X, ..., X} € R™" representing narrow-band time series of ¢ samples from 7
neuronal populations. MEG recording of these neuronal signals linearly projects X to sensor-space (Haméldinen
and Ilmoniemi, 1994):

Y=TX+c¢ (13)

where Y€ R*™ represents the forward-modeled time series from s sensors (n > s). Here, I” € R*™ is the forward
operator (or the lead field) and £€ R¥ is the model prediction error derived from measurement noise. Next, ¥

can be projected back into the source-space using L? minimum-norm estimation (MNE) based inverse modeling:
X =Wy =RI'T(TRI'" + A?y)~ 'Y (14)

where WER™ is the inverse operator (sources X sensors), the regularization parameter 4°~0.1, R is the source
covariance matrix, and y is the noise covariance matrix computed from empty room recording. After inverse
modeling, the source time series are collapsed into parcel time series for a cortical parcellation with 50-400
parcels using a reconstruction-accuracy optimized collapsing (Korhonen et al., 2014) and a maximum resolution

of 400 parcels covering the whole cortex.

3.6.3  Quantifying mixing properties of the MEG sources

In MEG or EEG source connectivity studies, a resolution matrix P = WI' (PER"™™) is often used to describe
the relationship between true signals and modeled signals from n sources in the absence of noise (Farahibozorg
etal., 2018; Hauk et al., 2011; Hauk and Stenroos, 2014; Liu et al., 2002). In P, each diagonal element quantifies
the sensitivity for estimating signals from that source. Each row of P is the “cross-talk” function (CTF) that
describes the amount of mixing between one source and all other sources. Each column of P is a “point-spread”
function (PSFs) that describes how the modeled signal from any one source is spread across all other sources.

We used a fidelity (reconstruction accuracy) optimized cortical parcellation (Korhonen et al., 2014), for which
we approximated the resolution matrix P numerically with a mixing matrix 4. of dimension n x n parcels.
Each element of A is a mixing function (f:x) that characterizes the signal mixing between two parcels. For
uncorrelated true source signals, the magnitude of zero-lag correlations between reconstructed signals measures
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the forward- and inverse-transform caused mixing between the sources. Thus, f,.;: can be quantified by the zero-
lag correlation between parcel time series estimated using simulated MEG/EEG measurements of uncorrelated
source noise.

We first generate uncorrelated signals X, € R™, ¢ samples for n parcels, and forward transform them to obtain
sensor signals Y). We next inverse transform Y, to obtain reconstructed signals X, In this process, the
reconstructed signals £ (v;), Xo(v;) of any two nearby sources v; and v;become correlated to a certain degree
due to mixing. Thus, the mixing from the simulated “frue” signal xo(v;) to the reconstructed signal Xy(v;) can be
quantified as:

Six(vi, vi) = |re(cPLV (xo(v), %o (v))))] (15)

where re() denotes the real part of a complex number and cPLV is the complex-valued phase locking value (S.
Palva and Palva, 2012):

crLv () = L J0-000)] 137 [ 00

where T denotes the number of samples, 6, and 5 are the instantaneous phases of signal 4 and B; S4 and S, are
complex-valued narrow-band signals from A and B, and z" is the complex conjugate of z. Because mixing is
instantaneous, re(cPLV(4,B)) captures all correlations caused by mixing. For parcel pairs that do not become
correlated by signal mixing, fy.. is near zero. For parcel pairs influenced by signal mixing, f..x >> 0 and reaches
1 for complete mixing. It is important to note that although we here measured mixing by phase correlation,
practically identical quantification would be achieved by, for example, the correlation coefficient as well as by
deriving the mixing values analytically from CTFs and PSFs. 4, is thus interaction-metric independent.

3.7 SEEG data preprocessing

We excluded electrode contacts (1.3+1.2, range 0—10, contacts) that demonstrate non-physiological activity
from analyses. We employed a novel referencing scheme for SEEG data where electrodes in grey-matter were
referenced by the contacts located in the closest white-matter (cWM) (Arnulfo et al., 2015). This referencing
scheme is proven optimal for preserving phase relationship between SEEG contact data. The final size of
channels analyzed is on average 110+25 for each subject and 7491 in total. To validate some results such as
those that in Study II, we also performed analyses with bipolar referenced SEEG data.

Prior to narrow-band analyses, SEEG contact time series were low-pass filtered with FIR filter with cut-off at
440Hz and stop-band at 500Hz (60Hz transition band, -6dB suppression at 475dB, maximal ripples in pass-band
2%). 50 Hz line-noise and its harmonics were excluded with a band-stop FIR filter with 53dB suppression and
1Hz band-stop widths. The LP filtered data were then separated into narrow frequency bands with 50 Morlet
wavelets of (width m = 7.5) and frequency ranging from 2Hz to 450Hz.

Epileptic events such as interictal spikes are characterized by high-amplitude fast temporal dynamics as well as
by widespread spatial diffusion. Due to possible filtering artefacts around epileptic spikes and the resultant
increase in synchrony, we discarded periods of 500ms containing Interictal Epileptic Events (IIE). We defined
such periods as the temporal windows where at least 10% of cortical contacts demonstrated abnormal concurrent
sharp peaks in more than half of the 18 frequency bands. Such episodes were excluded from within- and cross-
frequency synchrony analysis. To identify such periods, we divided the signal in multiple 500 ms non-
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overlapping windows and detected IIE events in amplitude envelopes as the time point exceeding 5 times the
standard deviation greater than the channel mean amplitude.

3.7.1  Defining epileptic zones in SEEG

The epileptogenic and seizure propagation zone are identified by clinical experts by visual analysis of the SEEG
traces (Cardinale et al., 2013a; M Cossu et al., 2005). Epileptogenic areas are the hypothetical brain areas that
are necessary and sufficient for the origin and early organization of the epileptic activities (Luders et al., 1993),
from where contacts recording often show low voltage fast discharge or spike and wave events at seizure onset.
Seizure propagation area are recruited during the seizure evolution, but they do not generate seizures (Bartolomei
etal., 2013; Proix et al., 2017), from where contact recording show delayed, rhythmic modifications after seizure
initiation in the epileptogenic areas. In this study, we combine epileptogenic and propagation areas as the
epileptogenic zone (EZ) to distinguish from the rest of brain areas that are referred to as putative healthy zones
(nEZ).

3.8 Narrow-band filtering

In Study I, the broadband time series from MEG parcels or cWM-referenced SEEG contacts were filtered into
narrow-band time series using a bank of 20 Morlet filters with m = 5 and log-linearly spaced center frequencies
ranging from 2 to 225 Hz. For group-level analysis of anatomical specificity and behavioural correlations,
subject neuronal estimates (e.g., LRTCs, bistability index) were morphed from 400 Schaefer-parcels into 100
Schaefer-parcels.

For Study II, Prior to the main analysis, SEEG time series were low-pass filtered with FIR filter with cut-off at
440 Hz and stop-band at S00Hz (60Hz transition band, -6dB suppression at 475dB, maximal ripples in passband
2%). 50 Hz line-noise and its harmonics were excluded with a band-stop FIR filter with 53dB suppression and
1Hz band-stop widths. The LP filtered data were then separated into narrow frequency bands with 50 Morlet
wavelets of (width m = 7.5) and frequency ranging from 2 to 450Hz with equal logo spacing. Epileptic events
such as interictal spikes are characterized by high-amplitude fast temporal dynamics and widespread spatial
diffusion.

3.9 Criticality and synchrony metrics

3.9.1  Theory: the memory of a physiological signal

The “memory” of a physiological signals, for instance in narrow-band ensemble amplitude fluctuations, refers
to, in the time domain, the present or recent past could predict future in both short-term and long-term. At least
two classes of physiological signals demonstrate long-range temporal correlations (LRTCs) reflecting the said
memory process, and they are non-stationary fractional Brownian motions (fBm) and stationary fractional
Gaussian noises (fGn) (Eke et al., 2002, 2000). Here, a stationary state refers to when descriptive statistics such
as the mean, variance, and autocorrelations of a discretely sampled physiological time series™ remains constant
during the period of observation (Eke et al., 2000). For example, a Gaussian white (Gw) noise is a stationery
process, whereas the Brownian motion (Bm) obtained by integrating the same Gw process is non-stationary.

34 A time series X(t) is an array of discrete data points obtained by sampling a continuous signal at a fixed interval At, i.e.,
sampling frequency 1/At.
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The fBm is a special case of Bm that have correlated increments across temporal scales. A positive correlation
in a fBm process indicates persistency in LRTC, which expects, across temporal scales, an increasing trend in
the past to be followed by an increasing trend in the future. On the other hand, a negative correlation in a fBm
process indicates anti-persistency, which predicts, across temporal scales, an increasing trend in the past is likely
to be followed by a decrease in the future. This fractal-like self-similarity across temporal scales in 1D data is
referred to as self-affinity due to the different units of the x and y axis.

The fGn process is a series of successive increments in an fBm (Eke et al., 2002). This means that each fBm has
its corresponding fGn, and both bear the same LRTCs which can be characterized using a variety of metrics
including the classic Hurst exponent, fractal dimension, power-spectrum, and the scaling exponent obtained
using dispersion analysis or linear detrend fluctuation analysis (DFA). Conventionally, the Hurst exponent (H)
(Hurst, 1951) assesses the self-affine feature of LRTCs in a fGn or {Bm signals. Mathematically, the H represents
the asymptotic behaviour of the normalized range as a function of the time span as follows:

R H

E [S(n)] «Cn (17)

where E[] is expected value, R(n) and S(n) the range and standard deviation of demeaned time series with
observation length of n samples of out total N samples (n=N, N/2, N/4...), < denotes direct proportionality, C
is a constant, H is the Hurst exponent. The fractal dimension based on box-counting approach is written as (Eke

et al., 2000):
N « &P (18)

which predicts that the quantity of observation (N) scales as a function of the measurement size (&) by power of
D. The H quantifies how likely that an event in a process is followed by a similar event, whereas D reflects the
expanding symmetry of mono-fractal structure®. For 1D physiological signals, | <D <2and H=2-D. A H
smaller than 0.5 indicates anti-persistency, whereas a H greater than 0.5 indicates persistency. Visually, a H
exponent close to one (i.e., high degree of anti-persistency), the time series is very “rough” (Mandelbrot, 1983)
or “hairy” (Eke et al., 2002). Stationary fGn and its corresponding fBm noise has H = 0.5, because fGn is a
series of independent numbers and fBm has uncorrelated increments. A H exponent of one characterize pink
noises.

3.9.2  Characterizing long-range temporal correlations

In study I, we used the exponent obtained with DF A for assessing the LRTCs of narrow-band neuronal amplitude
fluctuations or the Kuramoto model mean field time series. The DFA exponent is a proxy of Hurst exponent and
reflects the self-affinity in how fast the overall root mean square of local fluctuations after linear detrending
grows with increasing sampling period width. Following the definition by (Hardstone et al., 2012), the process,
Y, is self-affine if for all windows of length #:

Y(LO=L"Y(t) (19)

35 An example is the cyclic Weierstrass processes, in which power is concentrated at discrete frequencies following a power-
law PSD. A reference is the non-periodic processes like Gaussian white noise, the power is equally distributed across all
possible frequencies.
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where: Y(Lf) and Y(¢) are values of a process at time windows of length L¢ and ¢ (L > 0), respectively; H is the

Hurst exponent obtained with DFA; = denotes the standard deviations on both sides of the equation are identical.

In empirical data, the power law often holds only in the upper tail, e.g., between a lower boundary cutoff #,,
and an upper boundary ... of # (Clauset et al., 2009; Virkar and Clauset, 2014). The selection of 7., has a strong
impact on the estimated exponent. For example, choosing a too small #,, may positively bias the DFA exponent
due to high non-stationarity in narrow-band amplitudes. On the other hand, selecting a too large ., means
discarding good data, which results in increased statistical uncertainty and not having enough range to claim
legitimate power law scaling (Stumpf and Porter, 2012). Therefore, we prefer to be slightly conservative that is
throwing away some good data and still having at least 2 orders on the x axis for fitting power law. Thus, we
choose 20-cycle as s across frequencies (e.g., tuin, 101, = 2 S, tmin, 401, = 0.5 s) to avoid the non-stationary regime,
and 120 seconds (20% of total recording) as #uax-

3.9.3  Characterizing bistability using the BiS index

The bistability index (BiS) of a power time series (R?) is the result of model comparison between a bimodal or
unimodal fit of its probability distribution function (pdf); a large BiS means that the observed pdf is better fitted
with bimodal, and when BiS > 0 the pdf is better described as unimodal. Here, we followed the approach used
in (Freyer et al., 2012; Roberts et al., 2015) to compute BiS. First, to find the pdf of power time series R?, we
partition observation of R? into 200 equal-distance bins and then count the number of observations in each bin.
Here, R? refers to the square of Kuramoto model mean field or narrow-band frequency amplitude time series of
MEG and SEEG data. Next, we used the maximum likelihood estimate (MLE) to fit a single-exponential
function (the square of a Gaussian process follows an exponential pdf):

Pe(x) = e (20)

and a bi-exponential function:
Pi(x) = oy e™" — (1= 9)y,e 72" (e2y)

where y; and v, are two exponents and Jis the weighting factor.

Next, we compute the Bayesian information criterion (BIC) for the said single- and bi-exponential fit using
BIC = In(n)k - 2in(L) (22)

where 7 is the number of samples; L is the likelihood function; k is the number of parameters: 1 for single-
exponential BICg,, and 3 for bi-exponential model BICy;z — thus BIC imposes a penalty to model complexity
(Wit et al., 2012) because the bi-exponential distribution has two more parameters (second exponents and the
weight J) than a simple exponential distribution. Last, the BiS is computed as the difference between the two
BIC estimates as

BiS = BICg, - BICyr (23)

Because the better model will yield a small BIC value, BiS should be a large value if the bi-exponential model
fit the observed power time series better.
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3.9.4  Assessing synchrony between narrow-band signals

Synchrony between two narrow-band neuronal signals band can be quantified in various manners such as
measuring the consistency in phase differences, correlation of amplitude envelopes, or on a combination of both
(Bastos and Schoffelen, 2016). Here, we quantified phase interactions with the phase-locking value (PLV),
weighted phase lag index (wPLI), and amplitude interactions with correlation coefficient (CC) of amplitude
envelopes. In addition, we used the imaginary part of the complex-valued PLV (iPLV) and the CC of
orthogonalized amplitude envelopes (0CC) to account for the effects of instantaneous linear mixing.

The complex valued phase-locking value (cPLV) is defined as the magnitude of mean complex phase difference
between amplitude-normalized source time courses (S. Palva and Palva, 2012),

cPLY = 3, (%:0-00) (24)

where N is the number of samples; 0.(¢) and 0,(¢) are the phases of x(#) and y(#), respectively. The phase locking
value (PLV) is defined as:

PLV = |cPLV| (25)
and the imaginary part of phase locking value (iPLV):
iPLV = |im(cPLV)| (26)

Theoretically, PLV compares to iPLV are as coherence compares to the imaginary part of coherency®.
Nevertheless, it is important to keep in mind that the reliability of phase estimation inherently depends on SNR
and may generally be more accurate in the presence of higher signal amplitudes (J. M. Palva et al., 2010a). Using
the imaginary part, and thus discarding all real-valued contributions to the estimated interactions, effectively
discards all zero-lag interactions, most of which are caused by instantaneous mixing and thus are considered
detrimental to correlation estimates.

Amplitude correlations were quantified using the Pearson correlation coefficient (CC) between amplitude
envelopes of x(¢) and y(¢), A«(¢) and 4,(?),

N7 B (Ax(O)-pa,)(Ay (©)-pay)

O'Axo'Ay

cC = = corr(Ay 4y) 27
where N is the number of samples in signals x(¢) and y(#); /4 and o, refer to the average and standard deviation
of A, over time, respectively.

Linear mixing between two signals x(¢) and y(¢) also affects the correlation between their amplitude envelopes.
There are two slightly different approaches for attenuating mixing effects in amplitude correlations (Brookes et
al., 2012; Hipp et al., 2012), of which both involve the orthogonalization of two amplitudes prior to estimating
CC. The orthogonalization removes all linear contribution from signal x(?) to signal y(z), or vice versa, provided
that the signals are Gaussian—residual zero-lag mixing may remain for non-Gaussian signals (Brookes et al.,
2014). In the time domain, orthogonalization of signal y with respect to signal x is achieved by (Brookes et al.,
2012):

yr(®) = y@®) —x(O[x*y] (28)
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where x* is the pseudoinverse of the vector x. Alternatively, orthogonalization can be performed in frequency
domain (Hipp et al., 2012):

vi(w) = im (Y () 2 (:));l) (29)

where * denotes complex conjugation.

The orthogonalized CC (oCC) is then computed as CC after orthogonalizing two amplitude envelopes,
oCC = (corr(Ay, Ays) + corr(4y,A,1))/2 (30)

Because this seed-based orthogonalization can be performed in two directions, either to obtain yJ‘(t)
orthogonalized in relation to x(#), or to obtain xl(t) orthogonalized in relation to y(f), the final oCC is defined as
the average of the two correlation coefficients. Such orthogonalization works, however, only under the
assumption of data being normally distributed, which might not be accurate for the typically heavy-tailed
oscillation amplitude distributions.

In addition to iPLV, we also use the weighted phase lag index (wPLI) where the sign of the phase difference
between two signals is weighted by the magnitude of the imaginary component of the cross-spectrum (Vinck et
al., 2011):

|E{im(Pxy)}| _ |E{lim(Pyy)|sign(im(Pxy))}|

WPLL = () — E(im(Pey)1}

€3]

where E{} is the expected value, im() is the imaginary part of a complex value, Py, is the cross-spectrum, Py, =

x(t)y*(t), x and y are complex signals, and * is complex conjugate.

3.9.5  Cross-frequency phase amplitude coupling

The phase of a slow oscillation modulates the amplitude of a faster rhythm. In turn, the phase of the faster rhythm
modulates the amplitude of an even faster one, and so on. Two signals of distinct rhythms are cross-frequency
phase-amplitude coupled (PAC) if the phase of a slow neuronal oscillation modulates the amplitude fluctuations
of the faster neuronal oscillations (Hiilsemann et al., 2019). PAC can be estimated using phase synchronization,
Euler’s formula, or examining whether the power of fast rhythms is non-uniformly distributed over low-
frequency phase (Canolty and Knight, 2010; Hyafil et al., 2015b; Jensen and Colgin, 2007; Jirsa and Miiller,
2013; Tort et al., 2010).

The rationale is that if the power fluctuations of fast rhythms are modulated by the phase of the slow oscillations,
the fluctuations of these two time-series should be synchronized. In this study, we estimated PAC with the phase
locking value (PLV) as:

PLVpyc = %Zﬁzl 1 (Bamp (M) =Opnase(m)) (32)

where Oy, (1) is the phase time series of the power envelope of fast rhythm; 6,45 (n) is the narrow band
phase time series of the slow rhythm. When there is a consistent relationship between these two time-series, the
vector length of the mean phase differences (in the polar coordinate across all » samples) should be greater than
zero, and a maximum value of 1 indicates perfect coupling. The significance of PAC PLV value was determined
in the same manner in individual subjects as we conducted for 1:1 phase synchrony described earlier.
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4 Results

.. in all disorder (there is) a secret order ... — p32, (Jung, 1981).

4.1 Study I: Critical bistability in the brain

Neuronal dynamics exhibit scaling behaviours throughout the spatial and temporal scales in the brain. The
scaling behaviours have been thought to reflect brain criticality, which suggests that the brain, like many other
complex systems, operate near a second order phase transition. However, when neuronal activity is constrained
by resource depletion or limiting mechanisms, the dynamics may become bistable, which is the signature of an
underlying discontinuous first order phase transition. Nonetheless, observations of bistability in awake human
brain activity have remained scarce, and its functional significance and link to brain criticality unclear.

In this study, we assessed the emergence of bistability in oscillation amplitude dynamics using a generative
model. Specifically, we hypothesized that bistability is caused by a high level of state-dependent noise that
represents a positive local feedback. We next assessed bistability and long-range temporal correlation (LRTCs)
in resting-state human brain activity recorded with magnetoencephalography (MEG) and intra-cranial stereo-
encephalography (SEEG). To assess the functional significance of neuronal critical bistability, we inspected
correlation between neuronal bistability, LRTCs, and behavioural assessments in healthy subjects. We also
evaluated the predictive power of bistability and LRTCs in classifying epileptic pathophysiology.

4.1.1  State-dependent noise induces bistability in ensemble models

We introduced a state-dependent noise (p) into a Kuramoto model (Figure SA-B) to test if critical bistability
can be induced in its ensemble activity as predicted by the Hopf bifurcation (Breakspear, 2017; Freyer et al.,
2012; Izhikevich, 2007). Physiologically, the parameter p embodies a local positive feedback equating the slow
resource loading mechanism that gives rise to bistability (di Santo et al., 2018; Di Santo et al., 2016). The second
control parameter, the coupling strength (x) of the Kuramoto model, determines how likely are the oscillators in
the ensemble to oscillate in unison so that an increase in xresults in higher degree of synchrony which is captured
by a larger order (R) (Methods). Thus, this testing configuration resembles the 2-dimenstional parameter tuning
in H,O (Fig 3A).

Classic criticality: At small values of p, gradually increasing x caused a monotonic increase in R, and
meanwhile R exhibited sub-critical, critical and super-critical dynamics in succession, in which the critical
regime is characterized by a long-range temporal correlations (LRTCs) deviating from random walk (i.e., DFA
exponent > 0.5, Methods) (Figure 5B, black dashed line in 5C, probability distribution in bottom of 5D ,
exemplary time series in Figure 5E, corresponding distribution and scaling function of SE shown in 5G and H,
respectively).

Bistability: As p increases, R progressively demonstrated bistability (Figure 5B, exemplary time series in 5F)
within the critical regime (the area demarcated by solid red and black line in 5C, respectively). Here, bistability
was operationalized as the bistability estimate (BiS), which is the model comparison outcome between a
Gaussian fit and a bi-exponent fit to the probability function of the power (R?) of the real valued R time series

(Methods). As p gradually increases, there was a progressive transition from classic unimodal to bistable critical
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dynamics (Figure 5C) as prescribed by the Hopf bifurcation (Figure 5A). Importantly, when in high bestiality
phase, the model ensemble became more sensitive to x to traverse from sub-critical down-state into super-
critical up-state (red vector in bottom-left panel Figure 5B, dashed box in top panel, Figure 5D). Thus, to
summarize, the model could demonstrate both classic and bistable critical dynamics, which was controlled by

the value of parameter p, i.e., the strength of local positive feedback.
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Figure 5 Bistability is caused by strong state-dependency. (A) The subcritical and supercritical Hopf bifurcations
are associated with bistable and normal dynamics, respectively. (B) The Kuramoto order parameter (R) is controlled
by state-dependency p and coupling x. Colour maps are time-averaged R, the long-range temporal correlations
(LRTCs) estimated using detrended fluctuation analysis of R, and bistability in R time series estimated with the
bistability index. Each pixel is the average of 50 independent model realizations. (C) Overlapping dynamical
regimes based on the maps from (B). (D) The probability density of R (z axis) in normal and bistable critical regime
— indicated by black and red dashed lines in (C), respectively. (E—F) Example Kuramoto R time series in the
regimes in (D) indicated by corresponding markers; the insets in (F) show the moments of oscillators (n=200) in
low-, mid- and high-order state (the real-valued order R is indicated by the red vectors). (G) Probability density
(pdf) and (H) power law scaling of the detrended fluctuation functions of R time series from (E—F) colour-coded.

4.1.2  Neuronal bistability and LRTCs were spatially and spectrally prevalent

To explore the relationship between bistability and LRTCs in spontaneous brain activity, we acquired 10 minutes
of resting-state recording from 18 healthy adults using MEG and from 64 focal epilepsy patients using
intracranial SEEG recording. For MEG, we analyzed data in reconstructed cortical sources. SEEG sampling
locations were inhomogeneous across patients, but with this large cohort, we obtained a full coverage of the
neocortex (Supplementary Fig. 2 of Study I). For data in Figure 6, we only analyzed SEEG contacts located in
neocortical grey matter outside of the epileptogenic zone (EZ). The EZ contacts were identified by medical
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doctors during presurgical evaluation. After preprocessing, bistability and LRTCs were estimated for narrow-
band filtered oscillation amplitude in the same manner as that for the model R time series.

Visual inspection of MEG and SEEG time series readily revealed numerous examples of bistability across brain
regions and frequencies (Figure 6 A-B, Supplementary Fig. 3 of Study I). Pooled population distribution showed
differences in BiS and DFA spectral profiles between SEEG and MEG (Figure 6C—E, sample number see Figure
6C). In line with prior arts (Freyer et al., 2009), the MEG BiS estimates showed a peak at 11 Hz, whereas, in
SEEG, 2-30 Hz showed most prominent BiS estimates (Figure 6E). The small mean BiS in surrogate data is
due to the algorithm reported the surrogate data as unimodal (Methods).

4.1.3  Clustering narrow-band bistability and LRTCs by topological similarity

To further inspect neuroanatomical features of bistability and LRTCs, we morphed narrow-band BiS and DFA
estimates from 400 MEG parcels and SEEG contacts into a standard atlas of 100 parcels (Supplementary Fig 4).
The morphed SEEG data include only the contacts recorded from non-epileptogenic zones (nEZ) across the
neocortical areas. The mean parcel metrics (Supplementary Fig SB of Study I) were identical to that of raw
parcel and contact data (Figure 6D—E, Supplementary Fig 2 & 4 of Study I). The topological features of LRTCs
and bistability were similar between neighbouring frequencies but different between slow and fast rhythms
(Spearman’s correlation coefficients, Figure 6 F-G). Based on these similarities (details in Supplementary Fig.
5C of Study I), we collapsed narrow-band maps into 6—a (5.4—11Hz) and y-band (45-225 Hz) maps for further
analyses (red boxes in Figure 6 F-G).
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Figure 6 Bistability and LRTCs are robust, large-scale phenomena in the brain. (A) Five minutes of broad band
and narrow band power (R?) time series showing bistability in SEEG contact and (B) MEG modeled source; mFG:
middle frontal gyrus; Vis: visual area. (C—E) Probability distribution of narrow-band amplitude (R), LRTCs
estimated using DFA, and bistability estimated using BiS. Data pooled from all individual MEG parcels or SEEG
contacts. Black lines indicate mean, red solid and dashed lines indicate mean and 99%-tile of surrogate
observation, respectively. (F) Correlations between Schaefer-100-parcel narrow-band DFA and BiS estimates in
SEEG and (G) MEG; red boxes indicate frequency clusters. (H) Frequency-collapsed 0—a and y-band metrics;
white-out columns in SEEG data were excluded parcels due to insufficient spatial sampling. (I) Cortical maps of
group average o-band BiS estimates for MEG and (J) SEEG.
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4.1.4  Topological features of bistability and LRTCs

In MEG, visual system, somato-motor, and dorsal attention systems showed prominent 6—c. band bistability and
LRTCs (Figure 6 H-1, statistical details see Supplementary Fig 9 of Study I). In SEEG, fronto-parietal, ventral
attention, and the default networks showed pronounced 6—a band BiS, whereas the visual system showed the
lowest BiS estimates (Figure 6 H & J, more details in Supplementary Figure 9 of Study I). Moreover, MEG data
demonstrated high neuroanatomical similarity between bistability and LRTCs (Fig 3F & G of Study I) and in
individual across functional systems (Supplementary Fig 7-8 of Study I).

4.1.5  Behaviourally relevant Bistability and LRTCs in MEG

We next inspected whether bistability and LRTCs would be behaviourally relevant. The MEG subjects took a
battery of neuropsychological assessment for working memory, attention, and executive functions (Methods).
We first looked for gross neuro-behavioural correlations. Within each subject, we collapse parcel BiS and DFA
estimates into four gross neuronal scores, i.e., 0—o LRTC, y LRTC, 6—a BiS, and y BiS (Supplementary Fig
10B of Study I). We next computed Spearman’s correlation between subject neuronal and behavioural scores.
The 6—a band BiS and DFA estimates showed negative correlation (p < 0.05, FDR corrected) with “zoo map
time”, which means that large BiS and DF A estimates predicted faster problem solving (Figure 7A, test statistics
see Supplementary Fig 10C—D of Study I). We next investigated the spatial distribution of these correlations
across cortical parcels as a post hoc analysis. A large fraction of the parcels showed neuro-behavioural
correlations to the zoom map time (p < 0.05, FDR corrected; test statistics see Supplementary Fig 10E-F of
Study I). Fronto-parietal, limbic, somato-sensory and visual areas show most prominent behavioural correlations

(Figure 7 B-C, Supplementary Fig 10 of Study I).
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Figure 7 Behavioural correlation of bistability (BiS) and LRTCs (DFA) in MEG. (A) Correlations between
subject Zoo Map Time Test ranks and within subject averaged-parcel 6—o band LRTCs and BiS estimates. (B)
Cortical maps of significant correlations between subject Zoom Map Time tests and individual parcel DFA and
(C). (D) The effect size of the differences between EZ and nEZ contacts in BiS (red) and DFA (black) estimates;
dashed line: 99%-tile from 1,000 label-shuffled surrogates. (E) Feature importance measured using the SHAP
values. (F) The area under curve (AUC) of receiver operating characteristics derived from pooled (blue) and
within individuals (black) when classifying EZ subject-by-subject using DFA or BiS alone; L&B: combining
DFA and BiS; L&B(Y): L&B plus contact loci in Yeo systems. Dashed lines: 99%-tile of AUC observed from
1,000 surrogates created independently for each of the four feature sets. (G—I) Post-hoc inspection of results
derived using L&B(Y) feature set, see black marker in (F). (G) Spearman’s correlation (p < 0.000001, n=55)
between individual AUC and within-patient mean Cohen’s d between EZ and nEZ in band-collapsed DFA and
BiS. (H) True positive rate as a function of within subject precision (TP + predicted positives); red marker:
population mean. (I) Receiver operating characteristics of within subject classifications.
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4.1.6  Aberrant bistability characterized pathophysiology

When under the control of strong local feedback (i.e., large p, Figure 5), our model became more sensitive to
coupling x to reach super-critical up-state. This suggests that high degree of bistability likely be a sign of
catastrophic shifts to seizure-like hyper-synchronization. Therefore, we asked whether bistability and LRTCs
estimated from seizure-free, inter-ictal-activity-free resting-state recording could distinguish healthy
physiological signals from pathophysiology of EZ that might imply catastrophic shifts.

We first evaluated neurophysiological features that were to be used for identifying SEEG contacts located in EZ
regions. Inspecting band-limited BiS and DFA estimates revealed different B and y band BiS estimates (Cohen’s
d > 0.5) and a less prominent difference in § band DFA between EZ and nEZ contacts Figure 7D). In addition
to neuronal features, we also included the contact location in Yeo functional systems as an additional feature.
To validate, we used the Shapley Additive exPlanations (SHAP) values (Breiman, 2001) to estimate the global
and local feature importance for the random-forest classifier, and the results confirmed that y and § band BiS,
contact-locus, and & band DFA were indeed the most important features for classifying EZ (Figure 7E). Thus,
we ran 500 independent classification tests using the random-forest classifier, in which each test randomly chose
20% of the contacts as training set and the rest 80% as test set. The results revealed an area under the receiver
operating characteristic AUC = 0.8 £+ 0.002 (mean + std) (an example see Supplementary Fig. 11C of Study I).

Last, we conducted EZ classifications for each patient. In each individual test, the contacts of the chosen patient
were used as test set and the rest contacts training set. We used four incremental feature sets and evaluated the
corresponding outcomes. The within individual receiver operating characteristic (ROC) analysis of the EZ
classification yielded converging results as ROC analysis for population pooled classification (Figure 7F).
Classification with combined BiS, DFA, and contact-locus yielded the best performance — with an AUC of 0.7
(black marker, Figure 7F). Using BiS alone yielded larger AUC than using DFA alone. Including contact-locus
(L&B(Y) increased the AUC by 0.06 than combing DFA and BiS (L&B). Subject AUC values correlated with
within-subject differences in DFA and BiS estimates between EZ and nEZ (r=-0.53, p < 0.000001) (Figure 7G),
and was not affected by subjects’ total contact number, EZ contact number, or the ratio between EZ and nEZ
contacts (1= -0.06, -0.07 and -0.09, respectively). Last, despite the variability in individual ROC curves, the
classifier on average yielded a precision of 0.73 and mean false-positive rate of 0.03 (Figure 7H-I).

4.2  Study II: Large-scale synchrony between cortical high-frequency oscillation (HFO)

Inter-areal synchrony between cortical oscillations at frequencies below ~100 Hz is a ubiquitous phenomenon
and is thought to coordinate communications between ensembles in cortical networks. Broad band activities and
oscillations faster than ~100 Hz have been considered as local-circuit-level phenomena and impossible to
synchronize over long distance. We discover that, however, in the resting human brain, high-frequency
oscillations (HFOs, 100—-400 Hz) recorded with intracerebral Stero-EEG (SEEG) are synchronized between
widely distributed cortical areas. After batteries of rigorous control analyses, we validated that the observed
HFO synchrony was not due to technical or physiological artefacts. We also investigated the neurophysiological
attributes and behavioural relevance of the large-scale HFO synchrony.

4.2.1  Probing large-scale resting-state brain connectivity with SEEG recording

We recorded 10 minutes of resting-state intra-cerebral local-field potential (LFP) signals from 92 patients using
SEEG. Due to previous brain surgery or preexisting cortical malformations (Table 1 of Study II), 25 patients are
excluded from analyses. After excluding contacts located in epileptic zone (EZ), this 67-subject cohort contains
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a total of 7,068 contacts located in neocortical grey matter (mean + std: 113 & 16.2, range: 70-152), which, on
the population level, offered a dense coverage across brain regions and functional systems (Schaefer et al., 2017;
Yeoetal., 2011) (Fig 1 and Supplementary Figure 1 of Study II). We estimated phase synchrony between contact
pairs located in neocortical grey-matter outside of the EZ (nEZ) and those that did not shared same reference
channel, which yielded a total of 368,043 contact pairs (mean + std: 5,500 + 1,600, range: 2,094-9,947).
Amalgamating the individual connectivity of this cohort offered 80% and 90% coverage of the left- and right-
hemispheric connectome in the Schaefer 100-parcel atlas and a full coverage of the seven functional systems
with abundant sampling. This dataset thus can offer a comprehensive description of large-scale cortical
connectivity.

4.2.2  Cortical HF Os exhibited large-scale phase synchrony

Visual inspection of contact traces revealed short bursts of significant HFO coupling over several centimeters
in the cortex, in which transient narrow-band HFO synchrony was observed in specific phases of low frequency
amplitude fluctuations visible in the broad-band signals (Figure 8 A-B). For the main analyses, we re-reference
(cWM) every grey-matter contact to its nearest contact in the white matter (Arnulfo et al., 2015), which offers
better performance in controlling for signal mixing effects and obtaining polarity-correct LFP recordings, e.g.,
as comparing to bipolar referencing (Study II Supplementary). We computed phase-locking value (PLV) across
frequencies (2—450Hz) and between all contacts and then averaged within subjects in quartiles of inter-contact
distances (each quartile contains 92,011 contact pairs). We found that, across all spatial ranges, PLV increased
from 2 to 7 Hz then decayed from 10 to 100 Hz. However, in the HFO frequencies (100-450 Hz), inter-areal
synchrony exhibited two peaks at 150-210 Hz and 300—400 Hz (Figure 8C, test statistics see Supplementary
Fig 1g of Study II). Importantly, as a corroborating evidence, we also observed HFO synchrony in a publicly
available resting-state electrocorticography (ECoG) dataset (Supplementary Figure 2 j-m of Study II).

4.2.3  Control analyses for validating the HFO synchrony

Given the novelty of observing large-scale cortical HFO synchrony, we conducted a series of rigorous control
analyses to exclude the possibilities that this finding is false positive due to technical or physiological artefacts.
First, although highly localized SEEG signals are known to be largely unaffected by volume conduction, we
estimated synchrony again with the imaginary part of the complex-valued PLV (iPLV) to verify that the PLV
estimates of observed HFO synchrony was not falsely inflated due to residual volume conduction (the theory
detailed in Study III). The spectral pattern of iPLV estimates was the same as PLV (Figure 8D). As one more
extra control for volume conduction, we estimate PLV and iPLV between bipolar-referenced contacts, which
again showed strong evidence of HFO synchrony (Figure 8E, Supplementary Figure 1g of Study II). Moreover,
the HFO synchrony was also reliably observed from randomly split cohorts of matching anatomical sampling,
which indicated that the HFO synchrony is preserved with only a half of the current cohort size (Supplementary
Figure 2 a & b of Study II). Although observations with iPLV and bipolar data confirm that the PLV estimates
of synchrony over “very short” distance (0—32 mm) was real, the PLV estimates in this range could have been
inflated by residual volume conduction (Study III). Therefore, we exclude the “very short” contact pair from
further analysis.
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Figure 8 Large-scale synchrony between cortical high frequency oscillations (HFO). (A) Examples of long-range
HFO synchrony with non-zero and (B) near-zero phase lag. (C) Population-level synchrony measured with PLV, (D)
iPLV using closest white matter (c(WM) and (E) bipolar referenced data across distance. (F) PLV between contacts in
saline solution (red), (C) was used as reference (grey). In (C—F), dashed lines: 99.9%-tile of surrogate confidence
intervals (CI) (Nrne = 100); Shades: 2.5-97.5%-tile bootstrap CI (Noootstraps = 100). (G) PLV between contacts from
deep (teal) and superficial (red) cortical layers; Deep: -0.3 < GMPI < 0; Superficial: 0.5 < GMPI < 1. GMPI: gray
mater proximity index. The markers indicate differences (two-tailed permutation test, Nperw = 100, p < 0.05, FDR
corrected). Dashed lines: 99.9%-tile of surrogate CI (Nrang> = 100). Shades: 2.5-97.5%-tile of bootstrap CI (Nyootstraps =
100). (H) Top: histogram of the HFO amplitude coincidences for all pairs (C1, C2) of contacts; bottom: moment-to-
moment dependency of HFO synchrony on HFO amplitude between contacts. Each element is the mean of
instantaneous PLV between all significant contact pairs as a function of their moment-to-moment normalized
amplitudes. (I) Phase-amplitude coupling (PAC) of nEZ networks (left) and EZ networks (right); nPAC =
PACobserved/PACsurrogate. (J) PLV between EZ (red) and between nEZ (blue) contact across distances (20 bins) for &-
and HFO band. Shade: 5% and 95 %-tile of bootstrap CI (Noootstraps=10*), markers: significant differences (p < 0.05,
one-tailed randomization test), solid makers: differences after FDR correction. Figures adapted by permission from
(Arnulfo et al., 2020); Creative Commons CC BY license.
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We conduct more tests to assure that environmental or amplifier noise correlations could not have confounded
the HFO synchrony. First, we acquired 10 minutes of recording with two SEEG electrode shafts (18 contacts
each) fully immersed in saline solution. We analyzed the saline solution recording as bipolar-referenced data
and found no evidence of synchrony either below 100 Hz or in the high-gamma frequencies (red line, Figure
8F). To control for other possible confounders beyond volume conduction and amplifier noise, we inspected
whether HFO synchrony could be attributable to i) epileptiform neuronal activity, such as inter-ictal spikes
(Study II Supplementary Figure 3d), i) muscular signals (Study II Supplementary Figure 3b), iii) leakage of line
noise or notch-filter artefacts (Study II Supplementary Figure 4), and iv) effects of filtering near the Nyquist
frequency (Study II Supplementary Figure 5). The results converge to a conclusion that HFO synchrony was
only explainable by true phase coupling between HFO signals from distinct neuronal ensembles.

4.2.4  Distinct laminae profiles of HFO synchrony

Below ~100 Hz, neuronal oscillations from deep and superficial laminae engage differently in long-range phase
synchrony (Arnulfo et al., 2015). We next investigate whether HFO synchrony was functionally dissociable
from the laminar differentiation of slower cortical rhythms. We categorized cWM-referenced SEEG contacts
into “deep” or “superficial” by normalized depth of contact location in the grey matter using the Grey Matter
Proximity Index (GMPI) (Arnulfo et al., 2015). We next averaged PLV and iPLV across spatial distance for
deep and superficial contact pairs. From 3 to 20 Hz, superficial contact pairs exhibited stronger synchrony than
deep contact pairs across all spatial range (Figure 8G), which was in line with previous finding of laminar
localization of current sources underlying theta and alpha oscillations in macaques monkeys (Bastos et al., 2015)
and humans (Arnulfo et al., 2015; Halgren et al., 2018a). However, in the HFO bands, deep contact pairs across
all spatial range showed stronger and more prevalent synchrony (p < 0.05, FDR corrected, statistics detailed in
Study II Supplementary Figure 7). The distinct laminar profile of slower and HFO synchrony was split-cohort
reliable (Study IT Supplementary Figure 2e—f) and evident also in bipolar-referenced data estimated using PLV
and iPLV (Study II Fig. 5b and Supplementary Figure 7 b). Importantly, in bipolar-referenced data, abolished
laminar difference in low frequencies concurs with enhanced laminar HFO synchrony difference and HFO PLV
strength, which suggested that the HFO signals originated from highly local cell assemblies in the peri-electrode
volume whereas the low frequency signals reflect larger assemblies with greater volume conduction. These
results thus indicated that long-range synchronized HFO signals originate from current sources that are distinct,
or at least partially, from those that underlies slower cortical oscillations.

4.2.5  Strong HFO phase synchrony associated with high-amplitude HFO

We next assessed the neurophysiological attributes of long-range HFO phase synchrony. Both high-gamma
activity (HGA) and band-limited HFO amplitudes reflect the coherence of local neuronal MUA or the post-
synaptic potentials (Ray et al., 2008) from at least a few hundreds of neurons in the immediate vicinity of the
recording site up to ~50k neurons within a range of ~100 um. Temporally aligned spiking activity is crucial for
an ensemble to effectively signal its post-synaptic target ensembles, and therefore moments of strengthened
HFO synchrony between two ensembles should be exclusively associated with high HFO amplitude in both
ensembles.

To test this hypothesis, we picked SEEG contact pairs that exhibit significant HFO phase synchrony (p < 107).
For each contact pair, we deposited samples of HFO time series from two contacts (C1 & C2, Figure 8H) into a
2D matrix representing the joint distribution of HFO amplitude quintiles from the contact pair. The resulting
population mean pooled across electrode pairs, subjects, and frequencies showed a slight positive correlation
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between the pair of amplitudes. This meant that the probability of samples from both contacts being in the largest
quintile or smallest quintile is ~8% (i.e., 27.5+25.5 — 1) more prevalent than one in the smallest quintiles and
the other in the largest quintile (top, Figure 8H). This amplitude covariance indicated overall weak HFO
amplitude correlations that deviates 1-5% from the null hypothesis level in HFO frequencies (detailed in Study
II Fig. 6b).

Furthermore, strong HFO phase synchrony only occurred when both recording sites were in high HFO amplitude
state. The mean phase synchrony was the highest when the amplitudes are in the largest quintile at both contacts
whereas much weaker when the amplitude of either of the contacts is low (bottom, Figure 8H), which constituted
a large difference of ~500 % (i.e., 0.15+0.03) comparing to ~8% of the difference in amplitude correlations (top,
Figure 8H). To rule out the possibility that changes in the signal-to-noise ratio (SNR) could have confounded
these results, we used recordings from saline solution to estimate the apparent SNR and compare with earlier
study on how SNR influences PLV estimates. Given the SNR range of HFOs in our data (4—10), the mean PLV
(~0.06) may be inflated by ~10 % due to any amplitude increase (Study II Supplementary and Fig. 3), which is
an order smaller than what we have observed here. To summarize, these findings of HFO synchrony were robust
and showed that high amplitude local HFO, as an indicator of high local HFO coherence (Ray et al., 2008), is a
concurring network phenomenon of long-range HFO phase synchrony.

4.2.6  HFO synchrony differentiate not EZ and nEZ networks

We next addressed whether HFO synchrony could be a feature of putatively healthy brain activity or a byproduct
of epileptic pathophysiology. Epilepsy is known to affect 8-band dynamics (Englot et al., 2010; Lundstrom et
al., 2019). Enhanced fast oscillations often take place in specific phases of slow oscillations that are above 1Hz
but below low y-band (Nonoda et al., 2016; Scheffer-Teixeira et al., 2013) or slower rthythms below 1 Hz (Monto
et al., 2008; Vanhatalo et al., 2004). We aimed to dissociate healthy from pathological cross-frequency phase-
amplitude coupling (PAC). Hence, we computed all-to-all inter-contact PAC in all subjects and across
frequencies for both EZ loci and putatively healthy non-EZ loci (nEZ). Between nEZ contact pairs, 3- and low
y-band (20—40 Hz) oscillation amplitudes strongly coupled with the phase of 6- to a-band oscillations (5-10 Hz)
with a peak at 8 Hz (Left, Figure 81). The HFO amplitudes of 100-200 Hz also coupled with the phase of 5-10
Hz oscillations between nEZ contacts. Between EZ contact pairs, PAC intensity was stronger than that of nEZ
contacts (right, Figure 81). Between EZ contacts, PAC exhibit much broader slow-frequency and high-frequency
coverage. Notably, in addition to the ~8 Hz low-frequency peak seen also in nEZ contacts, a strong effect of d-
band (1-4 Hz) low-frequency phase coupled with 100-300 Hz amplitudes. These putatively pathological 5-band
PAC components were also evident in PAC between EZ and nEZ contact pairs (Study II Fig. 7c).

We further inspected whether HFO synchrony could be a characteristic of healthy brain activity or epileptic
pathophysiology. We compared the HFO synchrony strength between EZ-EZ contact pairs and between nEZ-
nEZ contact pairs. After controlling for inter-contact spatial distance, the EZ-EZ contact pairs exhibit stronger
phase synchrony than nEZ-nEZ contact pairs only in frequencies below 100 Hz most pronounced in the 5-band
across short to medium spatial distance (top, Figure 8J). Importantly, EZ-EZ and nEZ-nEZ networks did not
show different HFO synchrony strength across all distances (p > 0.05, corrected for FDR, details in Study II Fig.
7). Moreover, HFO phase synchrony strengths did not correlate with inter-ictal spikes which would constitutes
a proxy for the severity of epileptic pathology otherwise (Study II Supplementary Figure 3 d). Taken together,
the d-band network phase synchrony might have been compromised by pathophysiology, but the HFO
synchrony was a predominant attribute of tentative healthy brain dynamics.
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4.2.7  Neuroanatomical features of HFO connectome are far from random graphs

We aim to investigate the neuroanatomical characteristics of the population-level HFO connectome. To first
screen for outliers and inspect individual variability, we compute the all-to-all similarity between subject HFO
PLV spectra for which we exclude EZ contacts and the “very short” distance contact pairs (Figure 9A).
Hierarchical clustering with optimal cost function yielded five subject clusters (Study II, Fig. 3b—c). The subjects
belong to the first and second cluster exhibited two peaks at 150-210 Hz and 210-300 Hz (Figure 9 B—C), and
these peaks were also evident in iPLV spectra and bipolar-referenced data (Study II, Fig. 3). The third and fourth
cluster included thirteen subjects who were characterized by a peak in synchrony spectra at 300-400 Hz but lack
the 150-300 Hz peaks. The fifth cluster included three subjects who exhibited a ramp in the synchrony spectra
near the Nyquist limit of 500 Hz and were excluded from further analysis because the 1 kHz sampling rate is
inadequate for estimating synchrony at range (Study II Supplementary Figure 5). The presence of individual
variability in peaks refuted the possibility that the long-range HFO synchrony relates to broadband HGA.

We next morphed narrow-band individual inter-contact PLV from the first and second cluster subjects (n =51,
see Study II Supplementary Methods) into group-level connectomes, i.e., all-to-all connectivity between 100
Schaefer parcels. Because the interhemispheric connectivity was insufficiently sampled, we inspected left and
right hemispheres separately (Study II Fig. 1c). The topological similarity matrices did not show widespread
correlations between all HFO frequencies but demonstrated three frequency clusters as 150-210 Hz, 210-300
Hz, and 300-400 Hz (Figure 9E) refuting that HFO synchrony was due to broad-band MUA-like HGA signals.
Taken together, the PLV connectome similarity, network node strengths similarity (Study II Supplementary
Figure 6 a—c), and the individual PLV spectra (Figure 8 B-D) shared the same frequency clusters, which
supports that HFO synchrony is a network-level emergent phenomenon in distinct frequency bands.

We next inspected the topological features of the HFO connectomes. First, both hemispheres exhibited modular
structures with significant modularity z-scores throughout HFO frequencies and a prominent peak in 150-210Hz
range (see Study II Fig. 4b, Supplementary Figure 6 d). Partitioning left and right hemisphere 150-210Hz
synchrony similarity across clustering resolution reveals 2 to 11 and 2 to 7 modules, respectively (Figure 9F).
At mid-range resolution (y = 1.25) both hemispheres showed five modules (Figure 9G), among which two large
modules were similar across hemispheres and corresponding to a posterior and a fronto-central constellation
(blue/light blue and yellow/orange, respectively, Figure 9H). Thus, the HFO connectome had a coarse bilaterally
symmetric community structure similar to the anterior-posterior gradient observed in structural and functional
networks and grey matter thickness (Paquola et al., 2019). At coarse spatial resolution, the 150—-210Hz between-
system connectivity was inhomogeneous and most pronounced within the limbic and between the limbic and
other systems (details and statistics in Study II Fig. 4c & Supplementary Figure 2g-i and split-cohort reliability
see Supplementary Figure 2 c, d). To summarize, the population-level HFO synchrony connectome showed
robust modular structures that were not influenced by individual variability in synchrony spectra, individual
pathogenesis, or electrode placements.
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Figure 9 Neuroanatomical localizations and communities of HFO connectomes. (A) Between-subject HFO
synchrony (PLV) similarity matrix shows five subject clusters. (B—D) Individual and mean synchrony spectral
profiles of the subject clusters defined in (A). Individual connectomes of cluster (1) and (2) were morphed into
group HFO connectome for community detection. (E) Similarity between group-level HFO connectomes for
left and right hemispheres (top and bottom row, respectively) in the Schaefer 100-parcel atlas. (F) Community
assignments to parcels as a function of the resolution () of the Leiden algorithm. (G) Communities at resolution
y=1.25 as marked in (F). (H) Visualization of communities defined in (G). Parcels with stable community
assignment are rendered opaque; assignments to 22% left and 14% right hemispheric parcels were unstable and
rendered as semi-transparent (one-tail test, p > 0.05, parcel module-allocation stability, Study II
Supplementary). Figures adapted by permission from (Arnulfo et al., 2020); Creative Commons CC BY license.

4.2.8 Transiently increased HFO synchrony during tasks

Last, to investigate whether HFO synchrony would show task-specific modulations, i.e., potential functional
relevance, we inspected time-resolved HFO synchrony when patients perform a visuomotor Go/No-Go task. A
subset (N=11) of the patients participated this experiment, during which they were asked to respond with a
button press to “Go” cues and withheld responses to less frequent “NoGo” cues (a ratio of 1/3). This type of
response inhibition is known to induce large-scale frontoparietal brain activation, and therefore, we first
examined peri-stimulus amplitude dynamics from local HFOs for the localization of task-relevant brain regions
(Buzséki and Silva, 2012; Jones et al., 2000; Khodagholy et al., 2017; Logothetis et al., 2012; Nitzan et al., 2020;
Novitskaya et al., 2016; Vaz et al., 2019). From 150 to 350 ms after cue onset, the mean HFO amplitude
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increased two SDs above the baseline in 4-11% grey matter contacts in nine subjects (range: 103—139, an
example subject see Figure 8a). Two subjects showed no HFO amplitude responses and hence were excluded
from analyses.

We next examined time-resolved HFO synchrony between the top 5% contacts that exhibited greatest task-
induced HFO amplitude dynamics (Task+ in top-right, Figurel0A). In individual subjects, time-resolved HFO
synchronization and desynchronization relative to baseline formed clusters in time-frequency domain (see
Figure 10B for the same subject shown in 10A) which could be identified with cluster permutation (Figure 10C).
Pooling three largest clusters across subjects revealed a population-level prevalence (K) of transient increase in
wideband HFO synchrony near 200 ms post-cue and sustained narrow-band synchrony in the range of 110—150
and 300-400 Hz (left, Figure 8d). Moreover, the HFO synchrony clusters concurred with a population-level
150-250 Hz desynchronization most prominent during 200-600 ms post-cue (right, Figure 10D).

Finally, we performed additional tests to validate that observed time-frequency clusters of HFO synchrony
(Figure 10D) were robust against threshold of APLV, the spatial extent of sampled brain areas, and subject
prevalence (K). First, we tallied the size of the three largest clusters with increasingly strict APLV threshold. As
APLV threshold became stricter, total clusters area decreased, but all subjects showed cluster sizes larger than
the 95%-tile of surrogate observation (Figure 10E). Next, to inspect how widespread the brain areas (in terms
of contact number) where the time-frequency clusters of HFO synchrony were observable, we computed the
difference of areas between observed and surrogate clusters with increasingly larger networks by gradually
adding contacts for the positive and negative clusters. The greatest area difference was seen when below 10%
of all contacts were involved (Figure 10F), converging with the amount of task+ contacts seen in HFO amplitude
dynamics (see Figure 10A). To validate that the transient HFO synchrony (Figure 10D) was localized to task-
relevant brain areas, we evaluated the observed-vs-surrogate area difference for every 5% of contacts along the
Task+ ... Task— axis (see top-right, Figure 10A). Significant cluster area difference was observed for positive
HFO synchrony in the first two 5%-bins (Figure 10G), which confirmed that HFO synchrony was limited to
task-relevant areas and was not artificially inflated by the analysis procedure. Among nine subjects, seven
(K=0.78) and four (K=0.44) subjects exhibited significant positive effect in the first two 5%-bins, respectively.

To summarize, HFO synchrony was transiently strengthened during task-relevant neuronal processing
specifically in the task-positive cortical areas. We suggest that HFO synchrony in the sampled circuits reflect
the neuronal communications underlying large-scale coordination of visuo-motor processing in this Go/NoGo
task.

52



804

Contact #

HFO amplitude (z)

Task- 0.0

2t
o

)
kS
Frequency (Hz)

Frequency (Hz)
N
5]
=

=

=
©
-]

=3

600

BS
&

! | g
-400 -200 0 200 400 60O

Time (ms)

n
=3
3

0 200
Time (ms)

400

Relative contact position

bt
o

0000 0002
A PLY

_____ o

Task+ 1.0 10| Positive 40, Negative

800 -2 2 4 86
HFO amplitude (z)

—
200 400

Time (ms)

o
&
]

-

w
&
S

Frequency (Hz)
3
Frequency (Hz)
~
Lo
S

I
2
8
=)
=1

-200 0 200 400 600
Time (ms) 0'

101
-400 200 0 200

Time (ms)
00 05 1D

400 600

Time (ms)
a 05 10

= Positive
== Surrogate

= Positive
= Negative

K (subjects)

—— Positive

0.25

K (subjects)

— Negative

—— Negative
== Surrogate

2
o
=]

== Surrogate

e
o
=]

K=0.78

o
o

Area difference
e
a
0

Cluster size
e
Area difference

95 %-ile

-
=
]

0.10

™
S
=l

0.05

0.0001 0.0022 0.0043

APLV Threshold

0.0064 5 10 15 20 25 0.8 08 04 02

Relative contact position

0.0
Task-

10 08 08 0.4 02
Task* Relative contact position

0.0

Task-
Percent of contacts 2

Figure 10 Transiently enhanced HFO synch between task-relevant areas. (A) Top-left: increased HFO amplitude
in a subset of contacts in one exemplary subject following stimulus onset. Contacts were sorted by (150-350
ms) amplitude, averaged across 110-430 Hz, z-score normalized by pre-stimulus baseline 500—10 ms. Top-
right: mean (thick) and individual HFO responses in 150-350 ms post-stimulus period. Bottom: individual
subjects’ temporal evolution of HFO responses averaged for the top 5% of SEEG contacts. (B) Change in PLV
from baseline levels among the top 5 % of electrode contacts from the same subject shown in (A). (C) Three
largest positive (red) and negative (blue) time-frequency clusters for the representative subject (threshold for
PLV change: 0.001). (D) Superposition of three largest task positive and negative clusters of all subjects, where
K is the fraction of subjects with a cluster contributing to each time-frequency element. (E) Sum of the time-
frequency elements in the three largest clusters as a function of the clustering threshold for the positive and
negative clusters (thick lines: group mean; thin lines: individual; black dashed lines: 95%-tile of the cluster
sizes observed from surrogate data). (F) Difference of total cluster-size areas (area under curves in (E) from
threshold of 0 to inf) from threshold between the data and surrogate mean for varying fractions of contacts
used in synchrony estimation (averaged across subjects, shaded areas indicate bootstrapped 5 and 95 %-ile
confidence limits of the means). (G) Cluster-size areas (data minus surrogate as in (F)) for synchronization
evaluated in 5 % contact sets along the Task+ ... Task- axis defined by sorted HFO amplitudes (black lines
indicate the 95%-ile (thick line) and mean (thin line) of surrogate data. Figures adapted by permission from
(Arnulfo et al., 2020); Creative Commons CC BY license.

4.3  Study III: signal linear mixing in MEG/EEG results in ghost interactions

To date, MEG and EEG are the only non-invasive electrophysiological tools for studying large-scale cortical

interactions. Unlike highly localized intracranial SEEG recording, estimating source connectivity with

MEG/EEG is hindered by signal linear mixing. Mixing among MEG/EEG sources introduces false positive
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correlations, biases to estimates, poor separability of true sources, and misrepresented topological features of
functional connectivity (FC). Mixing directly results in inflated correlational estimates and artificial interaction
(AI) when using mixing-sensitive metrics such as phase-locking value (PLV) or amplitude correlations (CC).

Several phase- and amplitude-correlation metrics, such as the imaginary part of the complex PLV (iPLV) or
orthogonalized amplitude correlation (0CC) have been proposed to correct Als and thus have become
increasingly popular in FC studies. Although these Al-free metrics are indeed immune to the zero-lag Als, they
do report a multitude of false positive ghost interactions (SI) due to the signal mixing in the vicinity of a true
pairwise interaction (1.3, Figure 2). Here, we defined the Als and SIs and demonstrated how signal mixing, the
strength of phase or amplitude coupling, and phase different may affect pairwise synchrony estimates in different
manners. We used the most popular PLV and iPLV as phase metrics, and CC and oCC as amplitude metrics.
However, signal linear mixing effects persist irrespective of the specific metrics or source model. The ghost SIs
problem affects region-of-interest analyses and significantly limits the separability of true cortical interactions,
which in turn confounds the overall interpretability the FC connectomes. The ghost SIs must be carefully
considered in FC analyses with MEG/EEG.

4.3.1 Mixing biases the estimates of phase synchrony

Mixing biases individual PLV estimates of phase synchrony between two signals (1.3.3, Figure 2). To illustrate
this, we first we simulated two signals with a phase coupling (Co) of 0.4 and a lag of 0.3 & in the absence of
signal mixing (m=0) (Methods) (Figure 11A). The observed phase difference distribution across samples peaked
at the simulated phase lag of -0.3 = (green, Figure 11C). Next, we introduced mixing (m = 0.4) into the two
signals while kept the same coupling and lag (Figure 11B). Observed phase difference distribution became
narrower (i.e., larger PLV) and the peak of the distribution shifts towards zero (magenta, Figure 11C). Thus,
mixing inflates the PLV value, biases the phase lag of the estimated synchrony, and diminishes the iPLV estimate
due to the biased lag towards zero-degree (Figure 11D).

4.3.2  Mixing biases the estimates of amplitude coupling

Signals mixing biases amplitude metrics in the same manner as it does to PLV and iPLV. First, we simulated
two amplitude-coupled signals (C4=0.4) in the absence of mixing (m=0) (Fig 11E). The CC is the correlation
coefficient between the samples of two amplitude envelopes and characterizes the instantaneous coupling over
time — thus an equivalent of PLV in amplitude domain (left, Figure 11G). The oCC first orthogonalizes the two
signals by linearly removing the instantaneous component of one signal from the other, and then computes the
CC between the orthogonalized signals (right, Figure 11G). Introducing mixing (m=0.4) (Figure 11F)
significantly increased the similarity between the samples from two amplitude envelopes, which artificially
inflated the estimates of both CC and oCC (Figure 11H). Note that mixing artificially inflates oCC but dampens
iPLV. In the absence of true amplitude coupling, the mixing of signals from one source into its neighbouring
sources results in numerous artificial CC but not oCC interactions between the source and neighbouring sources
(Study III, Fig 2), which was virtually identical to what was observed with PLV and iPLV (Figure 2 B-C).
Likewise, when a long-range a true amplitude correlation is present, mixing, in addition to generating artificial
CC interactions, results in ghost SIs in both CC and oCC graphs in the vicinity of the true interaction as what
was observed in PLV and iPLV (Figure 2 D-F). Therefore, mixing biases CC and oCC measure of amplitude
coupling nearly in the same manner as it does to PLV and iPLV, respectively.
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Figure 11 Mixing bias to phase and amplitude coupling estimates. (A—B) Coupled (co= 0.4) real-valued signals
x(#) and y(f) and their phase times series O«(f) and O,(¢) in (A) the absence and (B) presence of linear mixing.
(C) Distribution of Phase difference between O.(f) and ©,(f) with and without mixing (magenta and green,
respectively). The true phase difference (¢x,) = —0.3m. (D) The same phase distribution of (C) in complex plan.
Left: m=0; right: m = 0.4. Mixing biases phase difference distribution towards ¢., = 0, and therefore inflates
PLV while decreases iPLV. (E-F) Coupled (¢4 = 0.4) real-valued signals x(f) and y(f) and corresponding
amplitude envelopes 4(¢) and 4,(¢) in (E) the absence (m = 0) and (F) presence (m = 0.4) of mixing. (G—H)
Temporally aligned A4.(f) and 4,(¢) values (each dot represents a sample) in the (G) presence and absence (H)
of mixing for estimating CC and oCC using 4.(¢) and A4.(¢) orthogonalized Ay(f) values. Figures adapted with
permission from (Palva et al., 2018); Creative Commons license(CC BY-NC-ND 4.0).

4.3.3  Mixing, phase coupling strength, and lag affect PLV and iPLV differently

To assess the behaviours of PLV and iPLV in measuring phase synchrony, we systematically manipulated three
parameters: phase coupling strengths (Co=0 ... 1), phase lag (¢, = —= ... ), and linear mixing (m =0 ... 0.6)
between two simulated signals x(7) and y(¢). For each realization of the x(7) and y(¢) time series, we estimated
the phase coupling with both PLV and iPLV. When there is a constant phase lag of 0.31 between x(¢) and y(?),
both PLV and iPLV estimates monotonically increased as phase coupling increased (Figure 12 A & B). Linear
mixing inflated PLV estimates, and this bias was strongest when phase coupling was small (coloured lines,
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Figure 12A). Moreover, this positive bias to PLV saturated at higher values of true coupling because by
definition PLV is bounded to a maximum value of one. On the other hand, mixing dampened iPLV estimates
because mixing shifts the phase difference distribution towards zero degree (Figure 11 C & D) and iPLV is the
projection of the complex number on the imaginary axis. Contrary to PLV, the dampening effect of mixing to
iPLV was the strongest when phase coupling was high (coloured lines, Figure 12B).
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Figure 12 Lag, coupling, and mixing affect phase and amplitude synch estimates. Two signals with distinct coupling
strength for amplitude (c4) and phase (co), and phase difference (74y,) were simulated and linearly mixed with a range
of mixing strengths (m). The mean phase or amplitude coupling were then estimated. (A) PLV and (B) iPLV estimates
as a function of phase coupling (ce) and mixing (m) given phase difference (n4,,) of -0.37 as indicated by markers in
(C-D), respectively. (C) PLV and (D) iPLV as a function of ny,, given co = 0.4 as indicated by markers in (A) and
(B), respectively. Mixing has strong influences on both PLV and iPLV estimates. Near zero ngx, positively biases
PLV, whereas the mixing biased to iPLV is strongest near ng,, = +0.51 and iPLV approaches zero when ng,, = 0 or
ngyx,==mn. (E) CC and (F) oCC with regression-based orthogonalization (Brookes et al., 2012) estimates as a function
of ¢4, and m when ce = 0 and ngy, = 0 as indicated by markers in (G—H), respectively. (G) CC and (H) oCC estimates
as a function of ng,, when c4 = 0.4 and co = 0.4 (solid lines) co = 0 (dashed lines). When a phase coupling is present
in addition to the amplitude coupling, both CC and oCC are biased by n4y,, but in different manners. Figures adapted
with permission from (Palva et al., 2018); Creative Commons license(CC BY-NC-ND 4.0).

When there is a constant phase coupling (Ce=0.4), PLV estimates can be either positive or negatively biased by
mixing depending on the phase lag of the true interaction (coloured lines, Figure 12C). As phase-lag approaching
zero-degree, positive bias to PLV was at maximum because the phase lag of true coupling works ‘synergistically’
with zero-degree phase lag contributed by linear mixing. On the other hand, when phase lag approaching +m or
-1, the true interaction became anti-phase with zero-degree phase lag of mixing. Therefore, the PLV estimates
of the true interaction was partially cancelled by mixing, and the magnitude of this negative bias depended on
the strength of mixing. On the other hand, iPLV estimates depended on the phase lags in a non-linear manner,
and it failed to detect the true interaction with zero-degree, +mn, and -r phase lag (Figure 12D) because iPLV is
the projection of the vector of the complex-valued PLV on to the imaginary axis (Figure 11D).
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4.3.4  Mixing, amplitude coupling, and phase dynamics affect CC and oCC estimates

The anecdotal example (Figure 11) and grid-source model (Fig 2 of Study III) showed that mixing affects CC
and oCC in the same manner as mixing does to PLV and iPLV respectively on local-level as biased estimates
and on graph-level. We systematically manipulated three parameters as amplitude coupling (¢4 =0 ... 1; Egs.
1-2), mixing (m = 0 ... 0.6), phase lag (¢., = —n ... m) when simultaneously introducing phase coupling (Co =
0.4) and amplitude coupling (C,= 0.4) between two simulated signals x(7) and y(#). For each realization of the
x(f) and y(¢) time series, we estimated the amplitude coupling with CC and oCC. In the absence of concurrent
phase coupling and lag (Ce=0, ¢, =0), both CC and oCC estimates increased monotonically as coupling
increased (Figure 12E-F), and the overall effects of mixing to CC and oCC estimates were similar to that of
PLV and iPLV, respectively (Figure 12 A-B).

However, when simultaneously introducing phase coupling (Ce = 0.4) and amplitude coupling (C4=0.4) into the
signals, CC and oCC estimates showed more complex non-linear dependency on linear mixing and phase lag
(solid lines, Figure 12 G & H) comparing to in the absence of phase coupling (dashed lines, Figure 12 G & H).
Mixing inflated the CC estimates (Figure 12 G) by aligning the peaks and troughs in two signals. Similar to the
observation of PLV (Figure 12 C), phase lag inflated CC estimates when approaching in-phase and dampened
CC estimates as approaching anti-phase with instantaneous effects of mixing — which was due to the alignment
or misalignment of the peaks and troughs of the two signals in these two extreme cases of phase lag, respectively.

When only amplitude coupling is present (C,=0.4, Ce=0, ¢., =-n...+m), oCC progressively underestimated the
amplitude coupling as mixing increases (dashed lines, Figure 12 H). In the presence of concurrent amplitude
(C4=0.4) and phase coupling (Co = 0.4), the oCC estimates (Solid lines, Figure 12 H) showed a complex
nonlinear dependency on phase lag and mixing resembling that of iPLV (Figure 12D). The oCC estimates were
most dampened when phase lag approaching zero and most inflated as phase lag near +0.57 or -0.57. Prior to
computing correlation, the orthogonalization either regresses out the real-valued contribution of signal x(¢) to
¥(t) (Brookes et al., 2014) or uses the imaginary component of the cross-terms between x(¢) and y(¢) (Hipp et al.,
2012). In either way, the real or imaginary part of a complex-valued signal mixes phase with amplitude
information. Phase coupling resulted in a deviation from a uniform distribution of phase lag, which affected
orthogonalization in a non-trivial way. For example, for two originally highly similar time series (i.e., zero-
degree phase lag), after orthogonalization, their correlation will become negligible because the highly similar
component is removed from one signal. On the other hand, when the phase lag approaching +0.5w, the
orthogonalization would have virtually no effects even if there are correlations induced by signal mixing.

To summarize, CC and oCC estimates of amplitude correlation can be significantly impacted by concurrent
phase and amplitude coupling in two signals. Irrespective of the orthogonalization procedure used, the oCC
estimates are always affected by the presence of phase coupling with a non-linear dependency on phase-lag and
mixing strength. This means that, in the most extreme cases, the oCC could falsely report amplitude coupling in
the absence of true amplitude coupling (Supplementary Fig 1 & 2 of Study III).

4.4 Study IV-V: hyperedge bundling as a practical solution to ghost interactions

As detailed in study I1I, irrespective of the choice of phase or amplitude metrics, mixing causes ghosts SIs in
measured FC connectomes that are difficult to remove. We advanced a generic approach for correcting false-
positive (FP) ghost (SIs) interactions in FC connectomes of source-reconstructed MEG/EEG data. This novel
approach aims to bundle observed FC raw edges, regardless of their true-positive (TP) or FP nature, into
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hyperedges by their inter-edge signal mixing adjacency. With realistic simulations, we showed that bundling of
raw edges yielded hyperedges with much improved separability of TP and suffers little loss in true positive rate
(TPR). Moreover, hyperedge significantly decreased graph noise by maximizing the TP to FP ratio. We also
demonstrated the advantage of edge bundling in visualization of large-scale cortical networks derived from real
MEG experiments. In summary, hypergraphs yielded by this bundling approach well represented the true long-
range cortical interactions that were detectable and dissociable using MEG/EEG source data.

4.4.1  Theory of hyperedge bundling demonstrated with a toy model

Signal linear mixing smears one true interaction into a multitude of ghost SIs in the vicinity of the true interaction
(Figure 13 A, see also Figure 2). Thus, finding the edge adjacency (Figure 13B) between the true interaction and
its ghost neighbours could offer a solution to bundle raw edges into one hyperedge (Figure 13C-D).

o D

A
Q-9 Vs iPLV

0.07 min
\O 0.12
— 0.17

Zerq lag Zerp lag

Ag(ET, E2) = max{ fu(Vy,Va) V2 V),
Fria V3, Ve) i V2, V) }
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Figure 13 Theory: raw edges can be bundled into hyperedges. (A) Mixing is instantaneous so false positive artificial
interactions (Als) are zero-lag (thick grey), but ghost Sls inherit the lag of the true interaction (dashed). (B) The
edge adjacency (4Ag) between two raw edges E; and E> is the maximum product of constituent nodes’ mixing
function (fmix). (C) Non-zero lag ghost interactions (Sls) arise from the mixing neighbourhood of true interactions
and thus share large edge adjacency with the true interactions. (D) Characterizing the mixing between the true-
positive and its ghosts allows bundling of raw iPLV edges from (C) into one true-positive hyperedge. (E) Three
pairs of true edges of varying spatial distance were simulated and the all-to-all connectivity was estimated with
iPLV. (F) To bundle raw edges, first we estimate the edge-edge adjacency between all pairs of raw edges, then
partition the resulting adjacency matrix into clusters. Thereby, each row represents one raw edge and each cluster
represents a hyperedge (HEi-s). The grey box indicates false-positive hyperedges (FPs); the magenta and green
boxes indicate the inter-hyperedge similarity between the “far” and “nearby” pair. (G) Visualization of the
hyperedges defined in (F). Figures adapted with permission from (Wang et al., 2018); Creative Commons
license(CC BY-NC-ND 4.0).
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To show that bundling is applicable to separate multiple true interactions, we simulated a scenario with six true
edges of three degrees of adjacency as “kin”, “nearby”, and “far”. The estimated raw graph using iPLV contains
all six TP raw edges and dozens of surrounding FP ghost Sls (Figure 13E). Estimating and then partitioning the
edge adjacency matrix revealed that the two TP “kin” raw edges together with their ghost SIs were inseparable
and thus bundled into the largest hyperedge HE; (Figure 13F); the “far” pair and their ghost were bundled into
two clearly separable hyperedges HE, and HE's; the “nearby” pair and their ghost SIs were also clustered into
two distinct hyperedges HE3 and HE, with greater inter-hyperedge similarity as measured by mean-linkage
(green box) than the “far” pair (magenta box). Additionally, a few scattered random FP edges were also observed
and clustered into several hyperedges (gray box), each of which was much smaller in size than any of the

hyperedges containing TP raw edge(s).

Thus, if a hyperedge containing at least one true raw edge is considered as a TP observation, bundling greatly
decreased graph noise in terms of the FP/TP ratio. For example, FP/TP in raw graph was 239/6 and 4/5 in the
hypergraph, which was a remarkable reduction in the fraction of FPs by a factor of 50. Visualizing these bundles
showed that the hypergraph had less visual cluttering and better facilitated the identification of true interactions
compared to the raw graph (Figure 13G).

4.4.2  Quantifying the mixing function is a prerequisite to hyperedge bundling

We next quantified the mixing function between MEG sources. The signal mixing between the measurement of
two sources is instantaneous and therefore always leads to inflated zero-lag correlations (Figure 11). The mixing
between reconstructed cortical sources used in this study was quantified by a matrix A of dimension n x n
(parcels), in which, each element was a mixing function (f.:) that characterizes the amount of mixing between
two parcels, e.g., fuix(Vi, V3) (Figure 13B). For truly uncorrelated signals between V; and V3, the zero-lag
correlation between reconstructed signals measures the mixing captured in forward- and inverse-transform. Here,
fmix was quantified as the PLV between reconstructed parcel time series of uncorrelated noise using simulation
(illustrated in Figure 3, 5, & 6 of Study V).

Observed mixing and ghost SIs in the MEG parcels resembled that of toy model (Figure 14A—B), where all three
Al-free phase metrics reported highly similar ghost SIs connection patterns (Figure 14C). The mixing effect
between sources persisted across spatial resolution of the source space or cortical parcellation scheme (Figure
14D). Parcels having high mixing with neighbours located mostly in sulci and predominantly in deep sources
such as the cingulate, insula, inferior parts of occipital, temporal, and fontal region (Figure 14E). In contrast, the
parcels having high modeling accuracy (fidelity) situated mostly on the dorsal and lateral aspects of the brain,
predominantly on gyri (Figure 14F). Parcel mixing and fidelity were negatively correlated (Figure 14G,
Spearman's rank correlation coefficient p=—0.82), which indicates that high fidelity parcels tend to have low
residual spread. Additionally, for Monte Carlo simulation of 200 uniformly distributed edge with coupling of
0.9, the iPLV estimates of TP edges were highly correlated with edge fidelity (Spearman's correlation p=0.91,
Figure 14H). Therefore, the geometric features of the source reconstruction accuracy might also bias the FC
estimates in addition to mixing.
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Figure 14 Quantifying mixing in cortical sources. (A) The toy model predicts the mixing between MEG/EEG
sources and the observation of ghost Sls in the vicinity of true interaction(s). (B) An example of mixing from
two MEG sources to neighbouring sources, where mixing (PLV)) is the PLV between uncorrelated null
hypothesis time series from parcels. (C) SIs were seen in graphs estimated using amplitude and phase metrics.
Amplitude or phase coupling were simulated between left and right occipital while the rest parcels were
uncorrelated. All-to-all synchrony were estimated with oCC, iPLV and wPLI. The strongest 60 edges were
shown. oCC graph (Brookes, 2012) was computed using time series that was simulated with ¢, = 0.9, co = 0.
iPLV and wPLI graphs were computed using time series that were simulated with c¢,= 0, co= 0.9, ng.,,=-0.5.
(D) An example of persistent effects of mixing from two sources to their neighbours across several spatial
resolutions or cortical parcellation of MEG/EEG source models; iPG: inferior parietal gyrus; mFG: medieal
frontal gyrus. (E) Mean PLV, between one parcel to the rest of the parcels characterizes the mixing of that
parcel. (F) Parcel fidelity quantifies the accuracy of source reconstruction. (G) Correlation between group-level
mean PLV and parcel fidelity. (H) Estimated iPLV of simulated edges (green dots) are correlated with edge
fidelity even when all ground-truth interactions are simulated with identical strength. These iPLV edges were
pooled from 100 simulations containing 2x10* true- and 8x10° false-interactions; dashed lines indicate the
threshold criteria ranging from -logio(p) = 1.3 (thin) to 5 (thick). (A—D) adapted with permission from (Palva
et al., 2018); Creative Commons license(CC BY-NC-ND 4.0). (E-H) adapted with permission from (Wang et
al., 2018); Creative Commons license(CC BY-NC-ND 4.0).
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4.4.3  How to bundle raw edges into hyperedges

As illustrated with the toy model (Figure 13), we aimed to bundle raw edges from a raw graph (4rc) (Figure
15A) into hyperedges for improved graph quality and better visualization (Figure 14B). First, the raw edges of
Arc ER" ™" of n parcels (Figure 15C) were parsed into a list of node pairs (Figure 15D). Next, the mixing fuix
between all involved nodes of these raw edges were fetched from the 4, matrix (Figure 15E) for computing
edge adjacency (Figure 15F) for all edges, which resulted in an edge-edge adjacency matrix Az €R ™ for m
number of raw edges (Figure 15G).

The rows of matrix Ag are the mixing profiles of individual raw edges (Figure 15H). For example, A£(i) and A£())
are the mixing profiles of edges E; and E; respectively, and Ax(i) and Ag(j) indicate mixing adjacency of E; and
E; to all other raw edges in the graph. If E; and Ej are close in mixing, there will be a high correlation between
their mixing profile 4x(7) and 4£(j); and there will be no correlation otherwise (Figure 15I). Thus, assessing the
mixing profiles similarity between all pairs of edges resulted in a mixing similarity matrix Sz €R" " for m raw
edges (Figure 15J). Hyperedge bundling is based on the notion that a measured matrix Sg can be partitioned
into clusters of raw edges. Thus, raw edges from a cluster are similar to each other in mixing and therefore to
collectively reflect a shared true underlying interaction (Figure 15K).
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Figure 15 Bundling of raw edges into hyperedges in MEG/EEG data. (A) In an example of estimated iPLV
graph, the ghost Sls (gray) overwhelm true positives (red, n=200). The edges are overlaid on a flattened cortical
map colour-coded by Yeo systems. (B) After applying bundling to (A), the resulting hypergraph contains
mostly true positive hyperedges. (C—K) The hyperedge bundling procedure. (C) E;. a true interaction and E>,
one of £;’s SIs, from raw graph Afc are schematically shown in matrix form. Agc is a sparse matrix containing
only significant edges. (D) Parsing Arc into a list edges, i.e., node pairs. (F) For true positive £; and its ghost
E>, we look up the mixing (f.x) between all of their constituent nodes from the mixing matrix Amix. (F)
Computing the edge adjacency Ag between E; and E», i.e., the maximum product of constituent nodes’ fyix.
(G) Computing Edge Adjacency for all edges pairs from (D). (H) Examples of edge-pairs that are similar
(blue) and not similar (red) in mixing profiles. (I) The Edge Mixing Similarity (Sg) between an edge-pairs is
the correlation between that edge-pair’s mixing profiles. (J) The resulting Sg matrix. (K) Partitioning Sg will
yield hypergraphs with varying degree of resolution. Figures adapted with permission from (Wang et al.,
2018); Creative Commons license(CC BY-NC-ND 4.0).
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4.4.4  Hyperedge bundling drastically improves graph quality

We conducted realistic simulations to assess the performance of hyperedges in detecting TP cortical interactions

(technical details in Figure 3 of Study V and Figure 3 of Study IV). The simulation included a large number of

ground-truth graphs containing TP interaction of a varying degree of average coupling strength and a variety of

distribution in coupling strength.

First, a bootstrap procedure was used together with two clustering methods for identifying the resolution range
that yields stable partitioning solutions for hyperedges (detailed in Methods of Study IV, and Figure 2 of Study
V). When the resolution parameter CL was below 0.4, both UPGMA and Louvain clustering methods yielded
significantly more stable partitions in terms of variation of information (Meila, 2007) of measured iPLV graphs
than their randomly rewired counterparts (Figure 16A). For graphs containing 640 raw edges, this CL upper
bound corresponded to ~250 hyperedges. Within the stable clustering range (0.05 < CL < 0.45), as resolution

increased, the resulting hypergraphs showed a systematic shift towards increasing number of smaller hyperedges.

The Louvain algorithm consistently yielded more hyperedges of small sizes than UPGMA (Figure 16B).
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Figure 16 Hyperedge bundling greatly improves the graph quality. (A) Hypergraphs created with both UPGMA and
Louvain algorithms were stable below cut-off limit (CL) of 0.4 that is the 40% of the dendrogram; inset: hyperedge
number as a function of CL; top-right: the variation of information VI = H(P;) + H(P,) — 2I; H: entropy; I: mutual
information; P1 and P2 are clustering solutions (Meila, 2007). (B) The cumulative distribution (cdf) of hyperedge
size at different levels of CL; the cdf was obtained with hyperedges pooled from 500 simulated graphs and within
each graph 100 iterations. (C—D) Increasingly strict hyperedge size threshold, where size referring to raw edge
number within a hyperedge (pgsi-e varying from 0 to 8) resulted in a monotonic decrease in separability and noise
(FP/TP). (E—F) The retained true positive raw edges decreased as hyperedge size threshold increased. As a reference,
in (C-F) the performance of raw edges was shown as red dashed lines. Figures adapted with permission from (Wang
et al., 2018); Creative Commons license(CC BY-NC-ND 4.0).
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There is a trade-off between separability of TP raw edges, true positive rate (TPR), and graph noise. Bundling
aims to detect and separate as many TP interactions as possible while rejecting as many FP as possible, which
involves finding an optimal balance among these competing interests by taking into account two aspects of
hyperedges: separability and noise level. Here separability was defined as the ratio between singleton TP
hyperedges (containing only one TP raw edge) and all TP hyperedges, and noise as the FP/TP ratio of the
hyperedges. An ideal hyperedge partitioning would thus has separability of 1 and noise FP/TP near 0, and a TPR
equal to the TPR of raw edges.

As we increased clustering resolution, both separability and noise increased for both clustering methods (Figure
16C—4D). This was due to the fact that at low resolutions, multiple TP raw edges were partitioned into one
hyperedge and there were few FP hyperedges. At high resolutions, separability was improved but at the cost of
having greater numbers of FPs. Meanwhile, excluding small hyperedges would likely decrease noise because in
the toy model FP hyperedges contains fewer raw edges than TP hyperedges (Figure 13). Across all hypergraph
resolution, excluding small hyperedges lead to a decrease in noise (markers along the curves, Figure 16C-D).
Nevertheless, this benefit in graph quality came at the cost of reduced separability (Figure 16C & D) and a
reduced TPR (Fig 16E-F) which was due to the removal of small-sized TP hyperedges together with FP
hyperedges.

To summarize, hypergraphs across all resolutions were consistently less noisy than raw edge graphs. In the least
noisy hypergraph (e.g., Louvain, CL = 0.05 and Opgsi-e > 8), 87% of the 125 TP raw edges were retained while
noise decreased from (640-125)/125 = 4.1 in raw graphs to 3.8x10 (leftmost filled box on the cyan curve, Fig
15F). This marked a 10°-fold decrease in noise compared to its original raw graph. Nevertheless, this
improvement was achieved at the cost of poor separability, meaning many hyperedges in CL = 0.05 graphs
contained several true edges. For analyzing with experimentally mapped raw FC, one option for balancing the
trade-off would be using CL > 0.15 and Oxgsi-. > 2, with which in simulations there was an expected reduction
of FP/TP to 0.1 (comparing 4.1 in raw edges) with negligible reduction in TPR and adequate separability (0.5).

4.4.5  Applying hyperedge bundling to real MEG data

Last, to assess the feasibility of hyperedge, we tested bundling with FC derived from real MEG measurement
during a visual working memory task. We applied bundling to raw FC graphs that reflected significant
strengthening of inter-areal phase synchrony during memory retention compared to pre-stimulus baseline. The
iPLV estimates in a- and y-band were greater during memory retention than in pre-stimulus baseline. We plotted
the 1000 strongest iPLV edges on a flattened cortical surface (Figure 17A-B). After applying hyperedge
bundling (using UPGMA with CL=0.15, Oxg,i.>6) to these raw graphs, the resulting hypergraphs, like that of
simulated graphs (Figure 15B), offered better visualization of large-scale FC than raw graphs, emphasizing the
long-range synchrony (Figure 17C-D). The bundling approach has also been applied to study large-scale 1:1
phase synchrony (Hirvonen et al., 2017)and cross-frequency synchrony (F. Siebenhiihner et al., 2016).
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Figure 17 Hypergraphs improve visualization of real and simulated data. (A) Estimated group-level iPLV edges in a-
band and (B) y-band 1:1 phase synchrony during the retention period of a visual working memory MEG experiment
show significant visual crowding. (C—D) Hypergraphs of (A-B), respectively. Hyperedges are created with CL=0.15,
OnEsize> 6. On these 2D maps, different parcel colours indicate functional sub-systems defined by (Yeo et al. 2011) and
in hypergraphs, edge colours are obtained by mixing of the colours of connected parcels. CN: cuneus; CS: central sulcus;
iPGsup: supramarginal gyrus; mFG: middle frontal gyrus; mOG: middle occipital gyrus; mOS: middle occipital sulcus
and lunatus sulcus; laSp: posterior ramus; prCG: precental gyrus; pCIlm: middle posterior cingulate; prCN: precuneus;
sPG:superior parietal lobule; sOG: superior occipital gyrus. Figures adapted with permission from (Wang et al., 2018);
Creative Commons license(CC BY-NC-ND 4.0).
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5 Discussion

We may regard the present state of the universe as the effect of its past and the cause of its

future — Pierre Simon Laplace

5.1 Study I: Critical bistability in the brain

We presented converging evidence from a generative model and two experimental datasets to advance the
proposal that critical bistability, as a hallmark of first order phase transition, be an important extension to the
classic second order neuronal criticality. Our model showed that bistability was associated unambiguously with
a local positive feedback loop and occurs exclusively within the critical regime. With increasing state
dependency, first order phase transition emerged progressively from the classic criticality of second order phase
transition. In the resting-state human brain, bistable critical dynamics was a robust large-scale phenomenon
observed in the amplitude dynamics of neuronal oscillations from & (2Hz) to high y (40-225 Hz) frequencies.
Corroborating with the modeling results, the neuronal bistability positively correlated with LRTCs in 6—a
(5.4-11 Hz) and y band (45-225Hz) frequencies. As evidence for functional significance, moderate bistability
was positively correlated with executive functions in healthy subjects, which makes bistability a favourable
neuronal feature. However, excessive bistability was associated with epileptic pathophysiology and predictive
of the epileptogenic zone. Critical bistability thus characterized spontaneous human brain dynamics in awake
resting-state with both physiological and pathophysiological roles. We suggest that these findings expand the
framework of brain criticality and imply that near-critical neuronal dynamics involves both first and second

order phase transitions in a frequency-, neuroanatomy-, and brain-state-dependent manner.

5.1.1 Dominating positive feedback generates bistability

Positive feedback is one of the few elementary modules that engage in the construction of complex living
systems from bottom up (1.1). On the other hand, negative feedback is a key module for homeostasis and
conservation. As positive feedback overpowers effective negative feedback, irreversible switching behaviours
from one state to another ensues (Nurse, 2008). A growing body of empirical and modeling literature has shown
the link between positive feedback or self-facilitation and various forms of bistability across levels of
organization including gene regulations (Dubnau and Losick, 2006; Kuwahara and Soyer, 2012), intra-cellular
signaling (Bednarz et al., 2014; Mitrophanov and Groisman, 2008), models of local ensembles (Cowan et al.,
2016), and large-scale models of cortical bistability (di Santo et al., 2018). Thus, a dominating positive feedback
causing bistability is likely universal (Di Santo et al., 2016).

Our model showed that Gaussian (unimodal) and bistable critical regimes were separated by the strength of a
positive local feedback loop implemented here by the non-linearity of state-dependent noise p. The canonical
Hopf bifurcation (Freyer et al., 2012; Izhikevich, 2007) predicts that under the influence of a weak p, the
dynamics of local ensemble undergoes a super-critical bifurcation, where the ensemble activity (R) only become
critical as the control parameter (x) increases and reaches the exact critical point. This is a second order phase
transition conceptually identical to the critical transition from liquid to supercritical matter in H,O (Figure 3).
When under the influence of a strong p, the dynamics of R undergoes a sub-critical bifurcation, where R can

reach supercritical hyper-synchronized state (i.e., limit cycle) before the fixed-point attractor losing its stability,
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which conceptually equates the first order phase transition of H>O in bistable state (inside the liquid-gas dome,
Figure 3). Furthermore, the variable p fluctuates at a much slower rate than the fast population activity R, and
thus equates a slow physiological variable (Jirsa et al., 2014) reflecting cortical excitability and corresponding
resource demand (Cowan et al., 2016; di Santo et al., 2018) that causes bistability in faster neuronal oscillations
(Costa et al., 2015).

5.1.2  LRTCs and bistability are coexisting large-scale phenomena and behaviourally relevant

In the model, bistability was positively correlated with LRTCs and the values of the slow variable p. In MEG
and SEEG recording of resting-state human brain activity, bistability and LRTCs were coexisting phenomena
observed in a large portion of cortex in fluctuations of neuronal oscillation from & to y-band frequencies. In both
MEG and SEEG, the group-level cortical maps of LRTCs and bistability were correlated in a- and y-band.
Interestingly, only SEEG show differences in bistability and LRTCs between functional systems of the brain,
with stronger effects in y-band frequencies.

As the evidence for functional relevance, MEG 6—a band bistability and LRTCs were positively correlated with
the assessment of subject executive functions, which suggested high bistability and LRTCs be beneficial.
However, in SEEG, - and y-band bistability but not LRTCs were the most important features for classifying
epileptogenic zones, which supported the proposal that high bistability in fast brain oscillations is indicative of
pathologically elevated excitability and higher demand for resources.

5.1.3  High level bistability signals catastrophic shifts

Although linking model observation of high SEEG bistability to the nonlinearities of p and positive feedback
with the current empirical observation seems speculative, we suggest subsystem-specific high bistability such
as in limbic system be indicative of a shift towards catastrophic events — a phenomenon similar to many other
complex systems undergoing a strong subcritical Hopf bifurcation (see (Villa Martin et al., 2015) and references).
The bistable phases of sub- and super-critical dynamics associate with hysteresis, which means a tendency to
dwell in either a hyper-synchronized up-state or a subcritical disordered down-state. In other words, the
ensemble avoids the ‘moderate’ level of synchrony as expected by the classic criticality models. Physiologically,
the hyper-synchronized state corresponds to a resource-demanding phase of large amplitude oscillations,
whereas the down-state (a fixed-point attractor) reflects resource recharging or recovery after depletion.

In a wide range of systems, high degree of bistability is invariably associated with maladaptive behaviours or
catastrophic shifts (Bak, 1996; Thom, 1972; Zeeman, 1976). Such examples include catastrophes in noise
systems (Agu and Teramachi, 1978), unpredictable and violent vibrations in aerodynamical systems (Qi and
Zhongke, 2015), irreversible environmental changes in ecosystems (Boerlijst et al., 2013; Villa Martin et al.,
2015), wars and conflicts in societies (Diaz, 2017), and seizures in the brain (Breakspear et al., 2006; Jirsa et al.,
2014; Roberts et al., 2017b; Robinson et al., 2002). In these examples, slowly varying driving forces or changing
in individual component behaviours leads to abrupt changes in system-level behaviour, and hence it embodies
a theory of great generality between gradualism or catastrophism in all aspects of nature (Bak, 1996; Thom,
1972; Zeeman, 1976).

5.2 Study II: Large-scale HFO synchrony

High-gamma activity (HGA) and high-frequency oscillations (HFOs) are two forms of fast neuronal activity
that have been thought to emerge from local circuits with no long-range coupling but HGA amplitude
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correlations (Vidal et al., 2012) and co-occurrence of oscillatory ripple bursts (Buzsaki and Silva, 2012;
Khodagholy et al., 2017; Logothetis et al., 2012; Novitskaya et al., 2016; Vaz et al., 2019). Here, we reported in
wakeful resting human brain activity, neocortical HFOs (100-400 Hz) showing long-range phase synchrony
that indicated millisecond-order transmission of temporally aligned neuronal spiking on large-scale brain
networks. We showed with a battery of rigid tests and control analyses that HFO synchrony was a reliable large-
scale phenomenon and unlikely due to pathophysiology and other physiological or technical artefacts. These
findings were further supported by the separability of different HFO components in the micro-scale laminar
profiles. On systems-level, HFO synchrony exhibited laminar specific connectivity and non-random
connectivity patterns with the most pronounced connectivity within limbic and between limbic and other
functional systems. Hence, unlike HGA amplitude correlations or HFO burst co-occurrence, the HFO phase
synchrony constituted direct evidence for the transmission of HFO signals per se. These findings hence open a
new avenue in understanding how the putative rhythmic spike synchrony in locally coherent assemblies can
evoke HFO potentials in distal target ensembles.

5.2.1 HFOs were different from broad-band HGA

Several lines of evidence in our results have suggested that HFO synchrony — rather than broadband HGA
correlation — engage in phase coupling of rhythmic population activity. First, the grand-average synchrony
spectra showed a peak in the range of 150-210 Hz (Figure 8C—E). Clustering analysis of individual synchrony
spectra confirmed that a majority of the subjects show three peaks in their phase synchrony spectra at 150-210
Hz, 210-300 Hz, and 300-400 Hz (Figure 9). Assessing the similarity between HFO narrow-band connectomes
(in Schaefer 100-parcel) revealed that subdivision of HFO bands showed separable macro-scale cortical
topological features (Figure 9E—H). Taken together, the demarcation of subdivisions of HFO frequencies in
these data indicated that the HFO synchrony did not arise from inter-areal coupling of broadband MUA.

5.2.2  Laminar differentiation between slow-rhythm and HFO synchrony

Sampled locations in deep cortical layers demonstrated stronger HFO synchrony than in superficial layers, which
constituted an opposite laminar profile in the range of 2—20 Hz (Figure 8G). This laminar differentiation between
slow-rhythm and HFO synchrony indicated that HFOs originate from current sources distinct from those of low-
frequency oscillations (Arnulfo et al., 2015; Halgren et al., 2018b). This finding was in line with previous studies
in animals that have shown ripple oscillation demonstrating maximum amplitude in layer V ensembles (Buzsaki
and Silva, 2012) whereas 0- and a-band oscillations current sources are strongest in superficial cortical layers
(Bastos et al., 2015; Lee et al., 2013). Therefore, the HFO synchrony was unlikely a by-product of neuronal
interactions between slower cortical oscillations, but rather a hitherto poorly understood component in the
organization of large-scale brain dynamics.

5.2.3  HFO show task modulation in task-relevant regions

In addition to characterizing resting-state brain activity, HFO synchrony was also functionally significant during
tasks. We used a visuomotor task to induce event-related HFO synchronization and desynchronization in
separate sub-band in the HFO frequencies, which is commonly seen for task-related synchrony in slower
frequencies (Lobier et al., 2018). This functional significance of HFO synchrony is in line with a recent study
in non-human primates that showed local synchrony between inter-neuronal spikes and 180—220 Hz LFP high-
gamma oscillations to be predictive of visuomotor reaction times (Khamechian et al., 2019). Moreover, the HFO
phase synchrony was dependent on contact-pair concurrent large HFO amplitude, with the latter reflecting the
internal coherence of the local assemblies (Ray et al., 2008). Therefore, both local and long-range HFO
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synchrony may be functionally significant in neuronal communication. We propose that the bursts of
synchronized HFO oscillations observed here reflect the broadcasting and transmission of brief packets of
information in large-scale neocortical networks.

5.2.4  The HFO synchrony does not reflect pathophysiology

It is non-trivial to distinguish physiological HFOs from pathological HFOs (pHFOs) because they do share
overlapping spectrum (for review see (Frauscher et al., 2017; Jefferys et al., 2012; K6hling and Staley, 2011)).
A large body of studies has reported physiological HFOs in animals (Buzsaki and Silva, 2012; Engel and da
Silva, 2012; Jones et al., 2000; Logothetis et al., 2012; Novitskaya et al., 2016). On the other hand, pHFOs
remain a matter of contention. Documented pHFOs include 80 —250Hz ripples to 250—500 Hz fast ripples
(Bragin et al., 2002; Jacobs et al., 2009), and 500—1,000Hz very fast ripples to 1,000-2,000Hz ultrafast ripples
(Brazdil et al., 2017). These pHFOs have been suggested as biomarkers for epileptogenic brain tissues and
epileptogenicity (Bragin et al., 2002; Brazdil et al., 2017), seizure-onset zone (Jacobs et al., 2009), and predictor
of surgical outcome (Jacobs et al., 2010). However, recent studies also have shown that HFOs are not necessarily
better markers of epileptogenic tissues than epileptic spikes as earlier research has suggested (Jacobs et al., 2018;
Roehri et al., 2018), which questions the usage of HFO as a biomarker for pathology in an indiscriminating

manner.

We address the concern on the physiological or pathophysiological origin of long-range HFO synchrony. First,
for the primary analysis of HFO synchrony (i.e., all results but when contrasting nEZ with EZ) we only included
contact data recorded from putatively healthy regions (nEZ). Moreover, we excluded inter-ictal spiking events
in the primary analyses of HFO synchrony. It is important to dissociate physiological spikes (action potentials)
from epileptic spikes that are massive population events with large numbers of action potentials riding 50—100
ms depolarization waves preceded by HFOs (Alvarado-Rojas et al., 2013). If our HFO observations reflected
pHFOs, the exclusion of spikes should have greatly diminished the observation of long-range HFO synchrony.
Meanwhile, between EZs should have shown more prevalent HFO synchrony if these HFO synchrony were
indeed pathological. The nEZs and EZs areas showed no differences in HFO synchrony, although the synchrony
spectra in frequencies below HFO differentiated EZ and nEZ. Moreover, the epileptic spike rate was not
correlated with HFO synchrony, which further supported the non-pathological origin of HFO synchrony. Last,
nEZ and EZ displayed clearly distinct cross-frequency phase-amplitude coupling (PAC) patterns in slow but not
fast HFO rhythms (Figure 8I). In nEZ, the phases of 0-band oscillations dominated HFOs amplitudes. In EZ,
the phases of 6- and 5-band oscillations coupled with HFOs amplitudes, which was in line with prior finding of
coupling between pHFOs and interictal spikes as well as d waves (Lee et al., 2019; Nonoda et al., 2016). Thus,
the HFOs and their long-range synchrony most likely is a property of healthy brain dynamics that is still
preserved in epileptogenic areas.

5.3  Study III: the ghost interaction problem

5.3.1 Global and local impacts of signal linear mixing to synchrony estimates

Our simulation showed that, on whole-graph level, signal linear mixing resulted in instantaneous coupling which
caused PLV and CC to report a multitude of artificial interactions (Als) in the absence of true interactions.
Although the Al-free metrics such as oCC, iPLV, or weighted phase lag index (WPLI) do not report Als in the
absence of true interaction, they discover a large number of ghost interactions (SIs) among uncorrelated sources
in the vicinity of the truly interacting sources. Moreover, mixing affected the phase and amplitude coupling
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estimates in different manners. In the presence of mixing, PLV and CC overestimated the true coupling, whereas
iPLV and oCC underestimated the coupling strength. The observation of biased iPLV and oCC thus questions
the widely accepted concept that linear mixing does not affect the estimates of the Al-free metrics. Furthermore,
both mixing and phase lag of the true coupling impacted PLV and iPLV estimates. Therefore, when comparing
two contrasted conditions, a change in PLV or iPLV estimates is ambiguous because a change in phase-lag or
coupling strength, or the combination of both could all results in a difference in PLV and iPLV estimates — in a
signal-mixing dependent manner. Although signal mixing does not affect wPLI estimates, wPLI estimates are
dependent on the phase lag and therefore still ambiguous.

As a major methodological discovery, phase coupling among the signals can impact the estimation of amplitude
coupling using CC and oCC, which can be further amplified by increasing amounts of linear mixing between
the signal sources. Importantly, phase coupling combined with varying degree of phase lag can impact CC and
oCC estimates even in the absence of true amplitude coupling. These observations raise serious concerns
regarding distinguishing pure phase-coupling from pure amplitude-coupling phenomena, which generally limits
the interpretability of such measures in isolation. We assess the performance of phase and amplitude synchrony
metrics by tuning all principal parameters. Although we did not inspect the effect of additive noise, our main
findings are expected to be identical in the presence of noise. Most importantly, the concerns raised here based
on simulations are valid for real experimental conditions including spontaneous activity and evoked-response

with or without a contrast experiment condition.

5.3.2  Challenges in identifying synchrony in MEG/EEG data

Our simulations illustrated two primary problems regarding false interpretations of confounded connectivity.
First, using Al-free metrics is no guarantee against FP because they are still prone to detecting ghost SIs. All
forms of cross-frequency couplings, albeit insensitive to Al, also suffer from the ghost SIs. The ghost SIs are
“second order” FP caused by crosstalk between the sources, which persists across all spatial resolutions of the
source model. Importantly, the crosstalk as a function of Euclidian distance between MEG/EEG sources is
generally not as smooth as the Gaussian crosstalk function in our grid-source simulation. Therefore, ghost
interactions could arise at locations rather far away from the true cortical sources. Although the exact crosstalk
function is a property of specific inverse solutions, it universally leads to mixing among sources. Therefore, the
problem of ghost Sls is qualitatively identical among all source modeling methods. Second, phase correlations
combined with linear mixing have complex impacts on CC and oCC estimates of amplitude correlation, which
indicates a major limitation on separability of phase and amplitude coupling in experiment data. For instance,
in the presence of linear mixing, a strong phase coupling with a near 0.57 phase lag will lead to a large oCC
estimate even in the absence of true amplitude coupling between ensembles. Conversely, through the effect of
signal-to-noise ratio on the accuracy of phase estimates, phase correlations can also be affected by amplitude
dynamics and correlations (J. M. Palva et al., 2010b). We consider the above limitations to be of major
importance to the field of EEG and MEG research.

In order to counteract the ghost SI problem, a crucial step is to first obtain the full connectivity graph by
estimating synchrony between all MEG/EEG sources, i.e., connectome, instead of analyzing between only few
regions-of-interest (ROI). The potential problems of synchrony analysis between ROIs include misinterpreting
neuroanatomical original of truly coupled sources, mistakenly identifying a ghost interaction as a true interaction,
or falsely identifying the detected interaction as the only present connectivity but failing to discover potential
important coupling in the vicinity. When a strong phase correlation is present, linear mixing can lead to
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erroneous amplitude correlation estimations. Therefore, systematically assessing phase and amplitude coupling
might be helpful for interpreting the findings even when the main interest is to investigate the amplitude coupling.

In a connectivity graph measured using iPLV or oCC, the ghost SIs are discovered mostly in the vicinity of the
true connections. Due to the ambiguity of the iPLV or oCC estimates, the strongest estimate or statistically most
significant interactions does not necessarily correspond to the true underlying coupling (Figure 14H), which
questions the legitimacy of thresholding by the strongest coupling. There are promising new analysis approaches
for attenuating the ghost SI problem such as multivariate correction (Brookes et al., 2012; Colclough et al., 2015;
Soto et al., 2016) or hyperedge bundling (Study IV).

5.4 Study IV: hyperedge solution to the ghost SI problem

5.4.1  Hyperedge effectively suppress ghost Sls

Hyperedge bundling is superior to the conventional thresholding by edge strength approach. Our simulations
showed that due to signal mixing, the true interactions wre overwhelmed by ghost SIs (Figure 13, 16). If left
untreated, the ghost SIs would render both the edge localization and FC graph property erroneous (Drakesmith
et al., 2015, 2013). Imposing strict select criteria, e.g., by edge strength, is commonly used for increasing the
fraction of TP among all observations and useful for focusing on only the most robust effects. Due to the
geometric feature of source models, a large portion of interaction with true strong coupling could be estimated
to have weak coupling. Moreover, TP weak cortical connections may also play an important role in cognitive
functions (Santarnecchi et al., 2014). Thus, under strict threshold, these weak true interactions would have
become false negative. Furthermore, biases and instability of graph topological features will be introduced when
using arbitrary selection criteria on raw edges (Drakesmith et al., 2015; van Wijk et al., 2010). In our simulation,
when applying a strict threshold to raw graphs, the noise (FP/TP) dropped from 4 to 0.1, but the TPR reduced
to 0.15. In contrast, hyperedge could preserving a TPR of up to 0.88 while obtain the same noise level 0.1 (see
brown line, Figure 16F).

5.4.2  Hyperedge bundling is a generic solution to ghost Sls

Hyperedge bundling is flexible with synchrony metrics and MEG/EEG source models used in FC analysis. We
evaluated the mixing function using PLV and used the iPLV for estimating FC connectomes, both the approach
and the results are generalizable to other interaction metrics (Figure 14). Essentially identical mixing functions
may be obtained by other metrics that quantify a linear relationship, such as the correlation coefficient, or
analytically, as suggested by Farahibozorg et al. (2018), and hence there is no need to adapt the mixing function
estimation to the choice of the interaction metric applied in the specific analyses. On the other hand, the choice
of the MEG/EEG reconstruction methods influences source connectivity analysis through their differences in
sensitivity to point-like, distributed, or time-varying source topographies (Hincapié et al., 2017). Although, this
thesis employed only linear L2 minimum-norm based inverse operators (Hamalainen and Sarvas, 1989;
Héamiéldinen and [lmoniemi, 1994; Lin et al., 2006), the hyperedge bundling can apply to FC derived from other
source reconstruction methods as long as the source mixing functions are quantified. Likewise, any parcellation-
generation approach, such as the reconstruction-accuracy-optimized (Korhonen et al., 2014) or adaptive
(Farahibozorg et al., 2018) parcellations with a reasonable number of sources or parcels (Figure 14) will work
well with hyperedge bundling.
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5.4.3  Balancing the trade-off between TPR, noise, and separability

In the current setup, hyperedge bundling is controlled by two parameters as the cut-off limit (CL) and the
hyperedge size threshold (6psi-e). CL determines hypergraph resolution and balance between noise (FP/TP) and
separability of TP hyperedges. Low hypergraph resolution lead to low noise but poor separability. Oxesi-. can be
used to prune the smallest hyperedges to further reduce noise, albeit at a cost of pruning some TP hyperedges.
We compared the performance of two clustering methods. While there are some technical differences (Figure 5
of Study IV), overall, when tuning CL = 0.15-0.25 and Opg,i-e = 1-2, hypergraphs created by both methods have
greatly reduced graph noise (a drop from 4 to 0.1-0.2 in FP/TP) with satisfactory separability and negligible
reduction in TPR. When applying hyperedge bundling to experimentally measured FC data where the truth of
interactions is unknown, choosing parameters can be based on both our simulation results and objectives of the
research. For example, if the main objective requires high separability such as establishing connectivity between
specific visual areas, one should choose high resolution hypergraphs, but this will be accompanied by sub-
optimal noise reduction. On the contrary, if the objective is to establish overall connectivity between occipital
and parietal regions, a low-resolution hypergraph (with low noise) is sufficient.
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