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Introduction 

Uncovering the mechanisms that underlie the brain's functioning would have a profound social 

impact. In fact, among the many diseases affecting health, brain disorders are major causes of 

impaired quality of life; problems related to such diseases involve cognitive, psychological and social 

consequences. According to estimates by the World Health Organization, more than one billion 

people suffer from disorders of the central nervous system (WHO 2012).  

In this context, the neurosciences have begun in recent decades to address the complexity of the brain 

and the nervous system using a multilevel approach involving not only many different branches of 

biology (molecular and cellular biology, genetics, biochemistry, etc.) but also physics, mathematics, 

engineering and related fields.  

Managing the brain's complexity and advancing our understanding of its function involves 

innovations in both the experimental methods used to observe and perturb brain activity and the 

computational tools used to analyze recorded data. 

Among the different electrophysiological techniques, Microelectrodes Array technology (MEA) 

represents a powerful tool that permits long-term recording of local field potentials (LFPs) and 

extracellular action potentials (EAPs) from populations of neurons. Multisite extracellular recording 

by means of MEA has the potential to reveal a wide range of neural phenomena ranging from 

individual cell behavior to network dynamics.  

Moreover, over the last few years, researchers have begun to use neuronal networks in vitro as a tool 

for investigating markers of sleep similar to those that can be observed by in vivo recording (Sengupta 

et al., 2011; Hinard et al., 2012). Sleep is usually considered a whole-brain phenomenon in which 

neuronal regulatory circuits impose sleep on the brain. Nevertheless, recent evidence suggests that 

sleep, or at least correlates of sleep, can be a regional phenomenon of the brain. Considerable effort 

in current sleep science aims at understanding to what extent an in vitro system can recapitulate the 

essential features of a sleeping brain. However, key question such as What is the minimum amount of 

brain tissue required for sleep-features to manifest? remain inadequately answered. 

In this context, the main goal of this thesis is to answer to two specific questions: i) Can we encompass 

some essential features of sleep in a simplified model of the brain through the use of MEAs? ii) Can 

our model recapitulate the essential features of sleep in a pathology characterized by sleep 

disturbances? 
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Moreover, such systems are useful in investigating the effects of long-term exposure to 

pharmacological compounds with a view to developing novel neuropharmacological/ 

neurotoxicological assays for drug screening. MEAs couple neuronal cultures represent a simple, 

low-risk and accessible model that can be used to evaluate, in terms of electrophysiological activity, 

the effectiveness of new therapies in the preclinical phase. Findings from these studies could have 

significant implications for the treatment of human diseases such as congenital malformations, 

epilepsy, stroke and Alzheimer's disease (Hofmann et al., 2006, Görtz et al., 2009, Gullo et al., 2014). 

In this context, we performed neuropharmacological experiments on Down syndrome hippocampal 

cultures and acute slices couple to MEAs with the aim of testing the effect of a promising drug  

The first part is entirely dedicated to the scientific and technical background on which our study relies, 

including basic notions concerning the in vitro electrophysiology of neuronal networks (Chapter 1) 

and a technical description of the experimental setup and the data analysis used for microelectrode 

array recordings (Chapter 2)  

The second part deals with the results regarding sleep-related electrophysiological activity under both 

physiological and pathological conditions in neuronal cultures. In particular, Chapter 3 contains a 

brief introduction to the regulation and the measurement of sleep from human to mice and in vitro 

cultures. Chapter 4 presents the results regarding the modulation of sleep-like activity in a 

physiological condition. In Chapter 5 we show the results regarding the complexity of the evoked 

response from cultures in which sleep-like activity is modulated under physiological conditions. 

Chapter 6 presents the results regarding the modulation of sleep-like activity in a pathology in which 

sleep is affected (i.e., Prader-Willi pathology). 

The third part of this thesis describes neuropharmacological experiments that are related to two 

neurological disorders (epilepsy and Down syndrome) and were performed in neuronal cultures and 

brain slices. Chapter 7 includes a description of our custom methodology for brain slice experiments, 

including the custom fitting of the experimental setup and the data analysis tools. Chapter 8 describes 

experiments using both neuronal cultures and brain slices from Down syndrome mice aiming to 

evaluate the efficacy of specific therapeutic drug. 
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Chapter 1 

In vitro neuronal networks  

The human brain is the most complex structure in the known universe. The mathematician Ian Parker 

once said: "If our brains were simple enough for us to understand them, we'd be so simple that we 

couldn't”. No other brain in the animal kingdom is capable of generating the level of higher 

consciousness associated with our ability to make plans or write poetry. Moreover, the nervous system 

perceives the enormous complexity and variability of the world surrounding us through a 

sophisticated array of sensors, i.e., the incoming sensory information is organized and elaborated in 

appropriate behavioral responses. Despite this complexity, individual nerve cells are relatively simple 

in their morphology; they all share the same basic architecture, although the human brain contains 

more than a thousand different types of neurons. Thus, sophisticated and complex human behavior 

depends largely on the way in which these cells form precise anatomical circuits. Hence, the 

capability of the nervous system to produce different actions in response to complex sensory stimuli 

derives from the way in which neurons are connected to each other in networks and to sensory 

receptors and muscles rather than from single-cell specialization (Kandel et al., 2000) For these 

reasons, the study of neuronal networks either in vitro or in vivo is fundamental to the understanding 

of brain function and brain pathologies.  

1.1 Cell cultures preparation 

The spectacular advances in biology that occurred in the second half of the 19th century resulted 

largely from the availability of a rapidly growing array of new experimental methods. Among the 

most important techniques in many areas of biology, especially neurobiology, methods have been 

developed for maintaining, culturing and growing cells and tissues in vitro (Carrel and T Burrows, 

1910). The history of tissue culture began at the end of the 19th century when Ross Granville Harrison 

showed that cells and neurons could be maintained alive outside of a living animal (Harrison et al., 

1907;Granville Harrison, 1910;Harrison, 1912;1924). According to Harrison (Harrison, 1912): 

“Tissue from the chick were incubated at about 39 °C. The unusual hot weather which lasted during 

almost the experiments with chick tissues were under way rendered unnecessary any precaution to 

keep tissue warm during their preparation and examination”. Harrison demonstrated unequivocally 

that tissue could survive and grown outside the body (Figure 1.1).  

Harrison’s observations of neuronal development in cultures attracted many followers. The goal of 
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much of the work in the early decades was simply to demonstrate that complex aspect of neuronal 

maturation, such as synaptogenesis and myelination, could occur in culture (Peterson and Murray, 

1955). Other works provided the first, detailed views of the dynamic activities of living nerve cells 

(Nakai, 1956;1960;Pomerat et al., 1967). In 1969, clonal lines of neuroblastoma cells were 

maintained in culture and continued to proliferate and to acquire properties characteristic of 

differentiated neurons (Augusti-Tocco and Sato, 1969). 

In the ensuing years, many novel methods have been developed, increasing the possibility of 

preparing in vitro neuronal networks from different brain regions. Therefore, in vitro culturing began 

to gain a more prominent and important position in neurobiology. Today, tissue culture is an essential 

part of modern neurobiology: nearly one third of the papers that currently appear in the scientific 

journal Neuron use nerve cell cultures as an important method.  

 

Figure 1.1 Harrison drawing illustrating cultured nerve fibers. Source (ref) 

Neuronal cultures lack of the extrinsic physiological inputs and have reduced cellular and biochemical 

complexity but they offer the possibility of conducting biochemical studies of homogenous 

populations of neuronal cells. Moreover they provide a valuable complement to in vivo experiments 

by allowing more controlled manipulation of cellular functions and processes. Two types of in vitro 

cultures are mainly used, namely primary cultures and cell lines. The former are called primary 

cultures because they are prepared from cells taken directly from the animal; when plated on an 

appropriate substrate, neurons began to extend processes within several hours, forming dense 

networks. Under favorable conditions, it is possible to maintain such cultures for months, during 

which time the cells acquire most of the properties of mature neurons. They develop distinct axons 

and dendrites, form synapses with one another, and express receptors and ion channels that are 

characteristic of the corresponding cell types in situ. The morphological and physiological properties 
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of the cell population present in culture correspond closely to the characteristics of the cell population 

present in the tissue of origin (Kriegstein and Dichter, 1983;Banker and Waxman, 1988). The 

currently accepted protocol for culturing primary cultures of neurons is well defined and usually 

involves the dissection of brains from young rats, either embryonic or neonatal. Cultures are typically 

prepared from neurons located in specific regions of the brain such as the hippocampus or cortex. The 

main limitation of the use of primary cultures is that primary cultured cells have a finite lifespan and 

limited expansion capacity; consequently, for each preparation an animal must be sacrificed to obtain 

new tissue and prepare new cultures.  

Alternatively, it is possible to use continuous cell lines, most of which are derived from tumor cells 

(e.g., mouse neuroblastoma C-1300) (Augusti-Tocco and Sato 1969). These cells can be subcultured 

repeatedly and express a reasonably stable phenotype. For decades, cell lines have played a critical 

role in scientific advancement because they are generally highly proliferative and easier to culture 

and transfect. However, one of the drawbacks of using cell lines rather than primary cultures is that 

they often do not express key aspects of neuronal differentiation (e.g., development of axons and 

dendrites, formation of synapses, etc.), although they may share many of the individual characteristics 

of differentiated neurons (e.g., neurotransmitters, ion channels, receptors and other neuron-specific 

proteins) (Banker et al., 1998).  

Recently, neurons derived from human induced pluripotent stem cells (hiPSCs) have emerged as a 

promising tool for studying neurological disorders. Although many protocols for differentiating 

hiPSCs into neurons have been developed, many of these protocols show high variability, low 

reproducibility, and low efficiency. In 2017 Frega and coworkers published a rapid and reliable 

protocol for generating human neurons from hiPSCs coupled to MEAs (Frega et al., 2017). In contrast 

to cultures obtained from animal models, the use of hiPSC lines permits direct comparison between 

neurons derived from different (i.e., patient-specific) hiPSC lines with a same genetic background 

and provides robust consistency for pharmacological studies 

In vitro development of primary cell cultures  

Cultured neuronal networks represent an excellent in vitro model that has been used in many areas of 

neuroscience, including synaptogenesis, axon guidance, nerve regeneration and neuronal plasticity 

(Dotti et al., 1988;Bi and Poo, 1998;1999;Taylor et al., 2005;Valor et al., 2007). The structural and 

functional features of cultured neuronal networks depend upon several factors such as the animal 

model involved, the tissue of origin, the cell density and the physical and biochemical environment 

(Biffi et al., 2013). These characteristics of the cultured cells evolve over time due to the 

differentiation and maturation processes of neurons (Morin et al., 2005).  
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Changes in the morphological and electrophysiological features of neuronal networks can be studied 

by means of microscopy, calcium imaging and single-cell or multisite electrophysiological techniques 

(e.g., patch clamp or microelectrode arrays). Recent work has reported the existence of a relationship 

between the age of a culture and its properties, including the connections within the network and 

neuronal spiking activity (Ichikawa et al., 1993;Ben-Ari, 2001;Chiappalone et al., 2006)  

At the early developmental stage, neuronal cultures usually display low synaptic density and low 

neuronal connectivity compared to the mature stage (i.e., Days in Vitro, DIV, greater than 14). Indeed, 

the electrical activity at 7 DIV is characterized by single spikes, whereas at 14 DIV networks exhibit 

an increase in firing rate, a rich and stable burst pattern (i.e., episodes of high- frequency spiking) and 

highly synchronized periods of high-frequency activity that simultaneously encompass different 

network sites.  

 

Figure 1.2 Morphological changes in activity of in vitro cultures during development. On the left are immunofluorescence 

micrographs showing MAP2 immunostaining of a representative culture at three different developmental phases (7 DIV, 

13 DIV and 25 DIV) at 2 different magnifications (i.e., 10x and 20x; scale bars 100 m and 50 um, respectively) from 

Ito et al 2018). On the right, two representative traces of two channels from MEA at four developmental phases (7 DIV, 

14 DIV, 21 DIV and 28 DIV) (from Chiappalone et al. 2006)  

Moreover, the functional properties of developing neuronal networks are strongly affected by cell 

density due to variations in dendrite morphology and synaptic density (Akum et al., 2004) (Previtera 

et al., 2010). Neuronal cultures with different cell densities undergo network maturation in different 

ways by modulating the number of synapses per neuron and thus single-neuron synaptic transmission 

(Akum et al., 2004). Cell density also influences the regulation of the dendrite arborization in 

hippocampal cultures; as the initial plating density was increased, neurons showed decreased numbers 

of primary and secondary dendrites and decreased numbers of terminal points  (Previtera et al., 2010). 
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Electrophysiological recordings obtained using cell-patch and calcium imaging techniques showed 

that plating at different densities (i.e., low, medium, and sparse) affects the connectivity among 

neurons; sparse networks (i.e., plating concentration of approximately 600-900 cells/mm2) exhibited 

stronger synaptic connections between pairs of recorded neurons compared to dense cultures (plating 

concentration higher than 2500 cells/mm2). Sparse networks showed higher synchronized activity 

than dense cultures, with enhanced bursting activity but with reduced frequency. Moreover, sparse 

neurons had simpler dendritic trees and fewer dendritic spines, demonstrating that neuronal density 

also affects the morphology of the dendrites and spines (Cohen et al., 2008;Ivenshitz and Segal, 

2010). Biffi and colleagues (Biffi, Regalia et al. 2013) characterized the electrophysiological activity 

of neuronal cultures seeded at three different cell densities low (900 cells/mm2) medium (1800 

cell/mm2) and high (3600 cell/mm2), recording their spontaneous electrical activity during 

maturation by means of MEAs. They showed that electrophysiological parameters were characterized 

by a functional peak during maturation maturation that was followed by a stable phase after 14 DIV 

for sparse- and medium-density cultures and by a decreased phase for high-density neuronal cultures 

(Figure 1.3).  

 

Figure 1.3 Variation in the number of active channels during cell culture maturation at different cell densities. Cell culture 

density equal to 900 cells/mm2 (gray dots), 1800 cells/mm2 (black squares) and 3600 cells/mm2 (white squares). Values 

are normalized to the total number of channels (From Biffi E. et al 2013) 

Medium-density cultures showed higher numbers of active channels, higher firing rates and higher 

busting activity than cells plated at other densities (Figure 1.4). 
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Figure 1.4 Electrophysiological parameters at different cell density. (from Biffi et al 2013) 

Therefore, in many cases, the cultures used in MEA recordings were grown under medium-density 

conditions (over 1000 cells/mm2) with overgrowth of glial cells to help maintain the health of long-

term cultures. Moreover, growth of cells at that concentration can guarantee that the electrodes are 

covered by the neurons, avoiding low numbers of active channels. Recently, various strategies for 

improving MEA performance in terms of signal-to-noise ratio (SNR) have been proposed, including 

chemical functionalization of the electrodes (Mescola et al., 2016) and their topographical 

modification by increasing roughness or creating 3D features that improve the cell-to-electrode 

sealing. Examples of these approaches are the fabrication of electrodes with increased roughness 

(Dowell-Mesfin et al., 2004), of porous electrodes (Brüggemann et al., 2011), or of electrodes with 

3D features (Ostrovsky et al., 2016) to name only a few. Alternatively, the use of new materials, 

especially carbon-based materials, such as graphene, has gained popularity (Yli‐Rantala et al., 

2011;Ostrovsky et al., 2016). 

Graphene, a single layer of carbon atoms arranged in a hexagonal lattice, has attracted attention from 

scientists in various fields since its discovery in 2004 (Novoselov et al., 2004). It is a very promising 

material that is recognized for its high conductance, high mechanical strength, optical transparency 

and biocompatibility (Geim and Novoselov, 2010). Recently, “graphene MEAs” consisting of 

graphene electrodes have been fabricated and successfully used to record the activity of primary rat 

cortical neurons (Du et al., 2015). Moreover, in other studies (Li et al., 2011;Convertino et al., 2018), 

it has been demonstrated that the viability of neuronal cells and average neurite length were 
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significantly enhanced when the cells were cultured on a graphene substrate instead of on the 

conventional tissue culture substrate, indicating that graphene may be a material that is favorable to 

neuronal growth. However, no study has presented a detailed, long-term analysis of neuronal network 

development on MEA functionalized with graphene. In a recent investigation in which I was directly 

involved (El Merhie et al., 2018), we functionalized the surface of commercial 60-electrode MEAs 

by transferring large-grain single-layer graphene (LG-SLG) via wet etching. The activity of neuronal 

networks cultured on this surface was recorded during the maturation of the network and compared 

to the activity of cultures maintained on standard non-functionalized devices as shown in Figure 1.5. 

 

Figure 1.5 A) Schematic diagram illustrating the wet etching transfer of SLG onto a commercial MEA device. CVD-grown 

large crystal SLG on copper (Cu) foil, of 25 µm thickness, was transferred by wet etching technique on Cu as follows. A 

layer of poly (methyl methacrylate) (PMMA) (MicroChem, 950,000 MW, 9-6 wt. % in anisole) was spin-coated (Sawatec 

SM-180-BT spinner) on one side of the SLG/Cu foils at 3000 rpm for 45 s and heated for 5 min at 180oC; then, the SLG 

grown on the opposite side of the Cu foil was removed by 100 W oxygen plasma, followed by drying at room temperature 

for 12 h. The Cu was etched using 0.2 M Ammonium persulphate (APS) solution in a Petri dish and the PMMA/SLG stack 

was floated on the surface of the solution. The stack of PMMA/SLG was carefully rinsed in Milli-Q (Millipore, 18 MΩ) 

to remove the traces of the Cu etchant, and then it was transferred on the 60 channel Micro Electrode Array. The 

transferred SLG-MEA was annealed at 160°C for 3 hours in a vacuum oven for firm adhesion and washed with acetone 

for the removal of PMMA. For immunolabelling experiments, LG-SLG was transferred onto normal glass coverslips, 

following the same wet-etching protocol. B) Optical image of the functionalized MEA; the coated electrode source of the 
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spectrum is shown in the zoomed image on the left, where the laser spot for Raman analysis is visible in the middle of the 

electrode. C) Raman characterization of the transferred SLG showing the characteristic G and 2D bands. (from El Merhie 

et al., 2018) 

 

Our work included investigation of the morphological properties of neuronal networks formed on 

conventional and functionalized MEAs and of the development and functionality of these networks. 

Immunolabeling revealed no significant changes in the morphology of neuronal networks cultured 

on LG-SLG coverslips compared to those cultured on control (glass) coverslips (Figure 1.6). Both 

cultures demonstrated morphology of healthy cells, indicating that the presence of LG-SLG does not 

trigger any adverse reaction in the neuronal networks.  Quantification of the cell density showed 

that the density increased as development progressed, and there was no significant difference between 

the LG-SLG and control cultures, indicating an identical survival rate compared to standard 

conditions (Figure 1.6 B). Regarding neuronal density, immunostaining for the neuron-specific 

marker MAP2 showed that the number of neurons in LG-SLG cultures was generally higher than in 

control cultures (statistical significance was only found at DIV 13), indicating a higher survival rate 

or a higher propensity of cells to adhere to graphene, as we had previously reported (Keshavan et al., 

2018) (Figure 1.6 C). With respect to neuronal growth, we showed that neurons cultured on LG-

SLG-MEAs display twice the likelihood of long-term survival compared to neurons in control 

cultures. This result is very promising for the future development of graphene-based electronics since 

it demonstrates the robustness and biocompatibility of such interfaces.   
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Figure1.6 Morphological changes in hippocampal networks cultured on a graphene-transferred substrate during 

development. A) Micrographs showing MAP2 immunofluorescence in representative cultures grown on normal coverslips 

(top) and on LG-SLG-coated coverslips (bottom) at three different developmental stages (7 DIV, 13 DIV and 25 DIV, 

respectively, from left to right) at 2 different magnification factors (10x and 20x; scale bars 100 m and 50 m, 

respectively). B) Bar graph of the total cell density in the two groups. No significant difference was found. C) Bar graph 

of the neuronal density at different DIVs of hippocampal cultures grown on LG-SLG MEAs (red) and on the control 

(black). A significant difference was found only at 13 DIV. Since the hypothesis of normality was rejected in one of the 

experimental groups, we used the nonparametric Mann-Whitney test for statistical comparison. *p<0.05. (from El Merhie 

et al., 2018) 

The electrophysiological activity of the LG-SLG-MEA cultures showed a developmental profile 

consistent with that of neuronal networks cultured over conventional MEAs but, in general, with 

higher absolute values of the computed electrophysiological parameters. Specifically, the graphene-

treated networks exhibited higher firing and bursting rates at the earliest stage of their development 

(i.e., at 7 DIV) (Figure 1.7 A). 

Bursting activity was clearly visible beginning at 13 DIV, and from 19 DIV the LG-SLG-MEA 

displayed short bursts with a very high bursting rate (Figure 1.7 B-C). The IBR reached a minimum 

of 18% and remained stable during the developmental window under investigation (Figure 1.7 D).  
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Figure 1.7 Developmental profiles of hippocampal networks cultured on graphene-transferred MEA (red) and 

conventional MEA (black). A) Mean firing rate (spikes/s) of 5 cultures on graphene-transferred MEA and 5 cultures on 

conventional MEA. This parameter differed significantly in the two groups at 13 and 16 DIV. B) Mean bursting rate 

(bursts/min) differed significantly in the two groups at 13, 19, 22 and 25 DIV. C) No statistically significant difference in 

burst duration (in ms) was found between the two groups. D) Percentage of spikes outside burst (IBR): this parameter 

was significantly different between the two groups from 16 to 25 DIV. All data are presented as the mean +/- SEM. 

Statistical analysis was performed using the two-sample t-test (*p<0.05). (from El Merhie et al., 2018) 

The analysis of the cross-correlation showed higher Cpeak values compared to the control MEA 

beginning at 13 DIV (Figure 1.8 A), indicating stronger correlation of the activity. Longer latencies 

were observed in the control MEA, suggesting a greater delay in activity propagation compared to 

the LG-SLG MEA cultures (Figure 1.8 B). At the later developmental stages (i.e., from 21 DIV), the 

strength of the activity correlation remained higher for the LG-SLG-MEA, possibly due to the higher 

number of bursting events in the graphene MEAs. In contrast, the latency was similar in the control 

and LG-SLG MEA cultures at late developmental stages, indicating that the level of synchronization 

also increased with time in the control MEA, as shown by previous results (Chiappalone et al., 2006). 
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Figure 1.8 Cross-correlation analysis. A) Box plots of the 100 highest Cpeak values for the control group (black box) and 

the graphene group (red box) at developmental time points 13, 16, 19, 22, and 25 DIV. We excluded the early 

developmental stages 7 and 10 DIV since the level of activity at those time points was low. B) Box plots of the 

corresponding peak latency values (Lpeak) of the preselected 100 strongest Cpeak values. We considered only peak latency 

values smaller than 50 ms. For each box plot in A and B,, the small square indicates the mean, the central line illustrates 

the median, and the box limits indicate the 25th and 75th percentiles. (From El Merhie et al., 2018). 

Hence, earlier and more highly synchronized neuronal network development was observed on LG-

SLG-MEA compared to control cultures. The earlier detection of network activity is consistent with 

our previous observation of earlier synaptogenesis on SLG compared to the control (Keshavan et al., 

2018) ; little or no synaptogenesis was detected in the control until 9 DIV, whereas on SLG a slight 

increase in the postsynaptic current frequency was observed beginning on DIV 7. In the current 

investigation, we also showed that the number of neurons was generally higher in LG-SLG than in 

control cultures; this affected the cell density and thus the functional properties of developing 

networks (Ichikawa et al., 1993;Chiappalone et al., 2008). Together with the earlier synaptogenesis 

that was previously demonstrated (Keshavan et al., 2018) , this observation suggests better coupling 

of the neurons to the LG-SLG substrate, with the final effect of accelerating the developmental 

processes respect to the control MEA. The detection of increased levels of electrophysiological 

activity and improved cell/electrode coupling is consistent with earlier reports in the literature of a 

strengthening of cell-to-cell coupling on graphene-based interfaces (Heo et al., 2011;Akhavan and 

Ghaderi, 2013). In conclusion, the higher survival rate, the increased number of adherent cells and 

the increased firing activity of the cells indicate not only that LG-SLG devices are compatible with 

the physiological functionality of neuronal networks but that they also have improved detection 

capabilities, possibly due to better neuron/substrate coupling. 
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1.2 Acute brain slices 

An alternative approach to the use of dissociated cells is represented by brain slices in which the 3D 

structure of the intact brain is partially maintained in vitro. The term “brain slice” has come to refer 

to thin (100-700 m) sections of brain regions that are prepared from adult mammals, maintained for 

many hours in vitro (acute slices) or in culture for days/weeks (organotypic slice cultures) and used 

in electrophysiological or biochemical studies. The main advantage of these techniques is the 

possibility of preserving the network architecture and some of the anatomical and physiological 

properties of the brain in a very controlled environment. The intact brain can be dissected in various 

ways depending on the position of the regions of interest (i.e., hippocampal slices can be prepared 

alone or together with entorhinal cortex, cerebellum, cortex, striatum, etc.). At the beginning of the 

1990s, many scientists used retina slices from small animals as a model for their experiments. Most 

initial brain slice studies were metabolic studies; a few notable exceptions used brain explants from 

frogs, which were shown to have spontaneous activity (Libet and Gerard, 1939) , and one study 

investigated the properties of brain slices obtained from the cerebral cortex of cats (Burns, 1950). 

Brain slices were not used in electrophysiological studies until Li and McIlwain recorded resting 

membrane potentials in isolated neocortical tissue very similar in magnitude to those observed in the 

brain in situ. Their later studies, including the first report of pair-pulsed facilitation, focused on 

synaptic transmission (Yamamoto and McIlwain, 1966). In the ensuing years, many novel methods 

were developed, making it possible to concomitantly measure the output of neurotransmitters and the 

metabolic or electrical status of the tissue when slices were exposed to a variety of substrates and 

inhibitors (McIlwain and Snyder, 1970;Heller and McIlwain, 1973).  

In the early 1980s, the use of brain slices became mainstream; at this point, many scientists began to 

express concerns regarding the physiological state of acute slices (Dingledine, 1984;Steriade, 2001). 

Much effort has been made to improve the conditions used in acute-slice recordings. These 

improvements include modification of the slicing technique, the addition of micronutrients or 

antibiotics to sustain tissue quality for longer recordings and the modification of perfusion chambers 

to improve tissue quality (Garthwaite et al., 1979;Haas et al., 1979;Lynch and Schubert, 1980;Nicoll 

and Alger, 1981;Koerner and Cotman, 1983). Depending on the experimental needs, several variants 

of these techniques have been developed and are being used. One distinction between the variants 

concerns the thickness of the slices. The “thin slice” technique was developed to allow visualization 

of individual cells in slices less than 250 m thick, while the thick slice technique is used when 

connectivity and maintenance of normal dendritic structure are crucial for the study. For 

electrophysiological studies, slices 300 to 400 m thick are usually used to balance the need for a 



 20 

robust network and complete oxygenation of the tissue.  

One alternative to the acute slice preparation is the culturing of organotypic brain slices. This method 

is based on earlier work on explant cultures derived from various anatomical regions (Crain, 1976).  

The method became increasing popular following the development of the roller-tube technique by 

Gahwiler in 1981 (Gähwiler, 1981), and later with the development of interface cultures by Stoppini 

in 1991(Stoppini et al., 1991;Noraberg et al., 1999;De Simoni and Lily, 2006).  

Although acute brain slices can be maintained for only a short time, slices can be routinely prepared 

from mature adult tissue; in contrast, organotypic brain slices can be maintained for longer periods of 

time in culture, but they are typically prepared from postnatal (P0-P7) rats and mice (Figure 1.9).  

Today, brain slices are used in many types of studies, including studies of synaptic plasticity and 

development, network oscillations, intrinsic and synaptic properties of defined neuronal populations, 

and many others (Kettenmann and Grantyn, 1992). Due to its very well-defined layered organization, 

the hippocampus is one of the best-studied regions of the mouse brain.  

Hippocampal/cortical slices have also been coupled to planar MEAs (Egert et al., 1998;Jahnsen et al., 

1999;Egert et al., 2002;Beggs and Plenz, 2003;Wirth and Lüscher, 2004;Baudry et al., 2006;Colgin, 

2006;Soussou et al., 2006;Ferrea et al., 2012), thus allowing long-term extracellular measurements 

of defined neuronal circuits. In the following, we briefly describe the morphological architecture of 

hippocampal slices. 

 

 

Figure 1.9 Comparison of an acute hippocampal slice and an organotypic slice. A) Hippocampal-entorhinal slices over 

MEA. B) Image of a hippocampal slice cultured on an MEA for 10) days in vitro (DIV (from Chong et al., 2018). The 

black, red, and blue electrodes record the signals in the DG, CA3, and CA1 regions, respectively.  

Hippocampus layers and principal neurons 

The hippocampus is one of the best-studied regions of the mammalian central nervous system. One 

reason for this is that it possesses structures that are distinctive and identifiable at the histological 

level. The hippocampus is perfectly laminated, i.e., both neuronal cell bodies and the zone of 
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connectivity are arranged in orderly layers. A second reason is that since the 1950s it has been known 

that the hippocampus plays a fundamental role in some forms of learning and memory. The 

hippocampus has been implicated in many neurological and psychiatric diseases such as epilepsy, 

Alzheimer’s disease and schizophrenia. Because of the important role of the hippocampus in learning, 

memory and synaptic plasticity, it is not surprising that Down syndrome patients also present 

hippocampal deficits. As part of this thesis work, we performed experiments using hippocampal slices 

obtained from Down syndrome mice (see Chapter 8).  

The hippocampus is composed of the cornus ammonis (CA) region and the dentate gyrus (DG). The 

first presents three different subregions, CA1, CA2, and CA3 (Lorente de No, 1934), while the second 

consists of the fascia dentata and the hilus (Figure 1.10 A).  

In the following, we briefly describe the different layers and neurons that make up the hippocampal 

circuitry. The surface of all hippocampal fields is formed by the alveus, a thin sheet of outgoing and 

incoming fibers. There are four principal cell layers in the cornus ammonius (CA), as depicted in 

Figure 1.10 B:   

1. Stratum oriens: consists of the layers occupied by basal dendrites of the pyramidal cells and 

receives input from other pyramidal neurons, especially those in CA2-CA1. 

2. Pyramidal cell layer: one of the most visible strata, it is also visible to the naked eye. It 

contains the cell bodies of the pyramidal cells, which are the principal excitatory neurons in 

the hippocampus. These neurons have elaborate dendrites that extend perpendicular to the cell 

layer in both directions and are therefore called multipolar neurons. The CA3 region also 

contains synapses from the mossy fibers and the cell bodies of many interneurons. 

3. Stratum radiatum: contains the apical dendrites of the pyramidal cells and the Shaffer 

collateral fibers. 

4. Stratum lacunosum moleculare: the most superficial layer; it contains performant path fibers 

and the apical dendrites of the pyramidal cells.  

The dentate gyrus contains three layers, namely, the granular cell layer, the molecular layer and 

the diffusely cellular polymorphic layer. The granule cell dendrites extend perpendicular to the 

granule cell layer into the overlying molecular layer, where they receive synaptic connections 

from several sources. Since their dendrites emerge only from the top or apical portion of the cell 

body, granule cells are considered monopolar neurons.  
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Figure 1.10 Drawings of the hippocampus by Camillo Golgi showing the cytoarchitectonic divisions (from Opera Omnia, 

1903). The hippocampus is divided into the cornus ammonis (CA3, CA2 and CA1 regions) and the dentate gyrus. B) 

Schematic drawing of a hippocampal slice with an enlargement of the molecular layer: stratum oriens (o), pyramidal cell 

layer (p), stratum radiatum (r) and stratum lacunosum moleculare (l-m). 

Hippocampus–EC slices circuitry 

Three common slicing angles are employed in experiments investigating hippocampal circuitry, 

namely, transverse slices, coronal slices and hippocampal-entorhinal cortex slices (HEC). These three 

types of slice preparation have been widely used to investigate hippocampal circuitry because they 

preserve the major afferent hippocampal pathways, including the perforant path (PP), the mossy fibers 

(MFs) and the Schaffer collaterals (SCs). The choice of slicing plane determines which afferent and/or 

efferent connections are best preserved. HEC slices offer the most suitable slice preparation for 

studies of hippocampal-EC interaction because they preserve all three of the major pathways within 

the hippocampus (PP, MFs and SCs) (Xiong et al., 2017). 

The brain structures included in hippocampal/EC slices are part of a group of structures called the 

hippocampal formation. In particular, it includes the dentate gyrus (DG), the hippocampus, the 

subiculum (SUB), and the entorhinal cortex (EC), as shown in Figure 1.11.  

The intrinsic flow of information in the hippocampal formation follows unidirectional and 

glutamatergic (excitatory) pathways that create a closed circuit called the trisynaptic circuitry 

(Anderson et al. 1971). The hippocampal formation receives highly processed multimodal 

information mainly from the EC. Neurons located in layer II of the EC project to the DG and the 

hippocampus though the perforant path. The perforant path travels caudally from the EC via the 

angular bundle to SUB and terminates both in the DG and in the stratum lacunosum moleculare of 

the CA3 field of the hippocampus. The CA3 pyramidal cells, in turn, project to other levels of CA3 

as well as to CA1 through Shaffer collateral projections.  

The recurrent connections of the CA3 region are formed by so-called autoassociative fibers and may 

facilitate the completion of incomplete input patterns (called pattern completion) (Guzowski et al., 

2004). On the other hand, CA1 pyramidal cells give rise to connections both to the SUB and to the 

deeper levels of the EC (layer IV-VI). Moreover, neurons located in layer III of the EC project directly 
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to CA1 and SUB and finally back to the neurons located in layers IV-VI of EC. Thus, the information 

flow in the EC travels along the hippocampus and ultimately returns to the area from which it 

originates. The transformation that takes place in the hippocampal circuitry is essential for storing 

and preserving the information in long-term memory. In the following, we briefly describe the 

different layers and neurons.  

 

Figure 1.11 Hippocampal-EC circuitry. A) Drawing of neuronal pathways that connect the EC-CA3-CA1 regions. B) 

Scheme of the unidirectional and glutamatergic (excitatory) pathways showing the perforant path, mossy fibers and 

Shaffer collateral projections. 
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Chapter 2  

Microelectrode arrays & data analysis tools 

Recent technological advances allow researchers to sample neuronal networks both in vivo and in 

vitro from several locations in parallel using multielectrode arrays. Actually, many researchers have 

been seeking a multichannel approach to bridge the gap in understanding single-cell properties and 

population coding in cellular networks. Due to advances in electronic technology, commercial 

systems based on the microelectrode array (MEA) methodology are readily available.  

In particular, the use of MEAs for electrophysiological experiments typically produces a huge 

quantity of data due to the high number of recording channels, high sampling frequency, and long-

term recordings. This creates a need for smart software that can autonomously manage the high-

dimensional recordings and apply the necessary analysis repeatedly to different sets of data.  

2.1 State-of-the-art of the microelectrode array electrophysiological technique: an 

historical perspective 

The first electrophysiological recording from cultured cells in which a planar microelectrode array 

was used was reported in 1972 when Thomas et al. (Thomas Jr et al., 1972) published the first paper 

describing the development of the technology. In their introduction, they said: 

 “Perhaps the most interesting questions to be asked of such cultures are those dealing with the 

development and plasticity of electrical interactions among the cultured elements (tissues or single 

cells). Exploration of these questions would be greatly facilitated by a convenient non-destructive 

method for maintaining electrical contact with an individual culture, at a large number of points, 

over periods of days or weeks.” 

More than 40 years ago, these investigators charted a course for the years to come, identifying which 

directions to pursue and delineating different possible methods. The array used in this study (Figure 

2.1) consists of two rows containing 15 electrodes each, spaced 100 μm apart. The array was on glass, 

with gold electrodes (15-m dimension) and leads over an adhesion layer, insulated with 

photoresistant material. To reduce the impedance, they coated the electrodes with platinum black 

(Gesteland et al., 1959;Robinson, 1968). 

These investigators first performed experiments using chick dorsal root ganglion neurons but without 

any success. 
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Turning to dissociated chick myocytes, they recorded robust signals of between 20 and 1000 

microvolts after the myocytes had formed a confluent contracting layer over the electrodes (Figure 

2.2). They concluded that single cells or small groups of cells do not produce a localized change in 

potential near the electrode that is large enough to be detectable. 

Five years later, in 1977, Guenter Gross and his collaborators proposed the idea of a multielectrode 

array, without knowledge of the previous work (Gross, 1977). The array consisted of 36 gold 

electrodes 10 μm in diameter that were insulated with a thermosetting polymer and spaced 100 or 200 

μm apart. The authors recorded single action potentials from an isolated snail ganglion with amplitude 

up to 3 mV depending upon cell size. Few year later, in 1980, Pine reported the first successful 

recordings from single dissociated neurons using a multielectrode array consisting of two parallel 

lines of 16 gold electrodes that had been platinized and insulated with silicon dioxide (Figure 2.3) 

(Pine, 1980). The electrodes were 10 μm square and spaced 250 μm apart. In this work, rat superior 

cervical ganglion neurons were cultured for one to three weeks on a fibrous collagen substrate 3 to 5 

μm thick. The cells were approximately 20 μm in diameter and were usually 25 μm from the 

electrodes. Pine recorded electrophysiological signals with an average amplitude of 50 V from 19 

cells (9 cultures). 

 

Figure 2.1 Examples of recordings obtained from cultured embryonic chick heart cells (Thomas et al. 1972) 

Moreover, Pine used the electrodes to stimulate the cultures with voltage pulses of 0.5 volts with a 

duration of 1 millisecond. The question then posed by the author was: how can we know whether the 

results are compatible with what is to be expected from known neuron’s properties?  

The neuronal action potential is typically generated by current flow into the axon hillock, which 

would represent a point sink (Angelides et al., 1988;Stuart and Sakmann, 1994) (Claverol-Tinture 

and Pine, 2002). The voltage generated for a point current sink or outside a spherical sink is equal to 

Iρ/4πr (where I is the current, ρ is the resistivity of the medium, and r is the distance from the center 
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of the current sink). Therefore, a current of 16 nA at the peak of the action potential recorded from 

neurons at distance of 25 μm would produce a signal of 50 μV, similar to the observed signals. These 

three works represent a milestone in this field and mark the beginning of in vitro network 

electrophysiology using MEAs. 

 

Figure 2.2 A. Planar view of the microelectrode array. On the right, a direct enlargement of the array pattern master 

plate is shown. B. Schematic diagram of the MEA structure. (Adapted from Thomas et al., 1972) 

 

In the 1980s, many studies in which MEAs were employed for different purposes were reported. For 

example, in 1982 Gross (Gross et al., 1982) used such an array to record from dissociated spinal cord 

cultures. He attempted to exploit new tools to investigate the network activity in these cultures. He 

found a relationship between the level of activity and the temperature at which the cultures were 

maintained during recording; a good level of activity was obtained at 30 °C, but activity decreased 

rapidly at room temperature.  

 

Figure 2.3 Five superimposed intracellular oscilloscope traces are shown at the top. Action potential signals are seen for 

the largest two traces. Extracellular recordings obtained simultaneously with the intracellular recordings are shown 

below. The two recordings that are below baseline are from the action potentials and are too similar to resolve (from Pine, 

1980.) 

Generally, synchronized bursty activity was recorded from these cultures as shown in Figure 2.4 
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Figure 2.4 Simultaneous recordings obtained using three widely spaced electrodes in a monolayer cortical culture 

approximately four weeks in vitro (from Gross et al., 1982). 

 

Another example is the work of Wheeler and Novak in 1986 in which they performed source density 

analysis of field potential recordings from hippocampal slices coupled to MEA (Wheeler and Novak, 

1986;Novak and Wheeler, 1988). They used a custom MEA with an 8x4 layout of electrodes. The 

electrodes were 20 μm in diameter, and the distance between electrodes was 200 μm. This allowed 

them to stimulate the Shaffer collaterals while recording from the CA1 region. Figure 2.5 shows the 

response during spontaneous phases; the array is well able to detect the regions of the dendrites and 

cell bodies of these neurons. 

 

 

 

Figure 2.5 Responses of a hippocampal slice to stimulation of the Shaffer collaterals. The center of the figure shows the 

slice, the stimulating electrode, and the 32 recording electrodes. At left are the normal responses; at right, the result when 

picrotoxin was added to the bath to reduce inhibitory transmission (from Novak and Wheeler, 1988). 

At the end of the 1980s, Regehr et al. studied invertebrate neurons using a 61-electrode array 

fabricated on a thin glass coverslip to facilitate observation of cells at high magnification with a short 
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working distance lens and an inverted microscope (Figure 2.6 A) (Regehr et al., 1989). The goal of 

these experiments was to determine whether it was possible to record from a variety of invertebrate 

neurons in snails, Aplysia, and leeches. Not surprisingly, the activity of these large neurons produced 

large potentials. Depending on the proximity of the electrodes to the neurons, the neurons showed 

different types of electrophysiological signals (as shown in Figure 2.6 B).  

 

Figure 2.6 A) The 61-electrode array built in the Pine lab. At left, the electrode structure, and at right a completed MEA. 

B) Signals recorded from two different electrodes: the shape of signals is related to the proximity of the electrodes to the 

neurons (From Meister et al., 1994 and Regehr et al., 1989.) 

In 1989, Meister et al. recorded spontaneous and light-evoked bursts of activity from an explanted 

salamander retina positioned over the array (Meister et al., 1989;Meister et al., 1994).  

At the beginning of the 1990s, the combination of an MEA (for stimulation) and voltage-sensitive 

dyes (for recording) was exploited to allow the detection and measurement of subthreshold synaptic 

potentials, which are otherwise impossible to measure by recording extracellular electrical signals 

(Chien and Pine, 1991). Four years later, Welsh et al. recorded for more than 72 hours in an attempt 

to monitor the circadian rhythm of dissociated suprachiasmatic neurons (Welsh et al., 1995). These 

investigators successfully demonstrated that cultured networks did not show synchronized activity 

and that each neuron maintained independently oscillatory activity with a period of 24 hours. Thus, 

each neuron maintained its own circadian rhythm generator. 

 

A B 
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Figure2.7 Spontaneous activity of suprachiasmatic neurons in culture. The diurnal variation of firing rate is large and 

unsynchronized. (From Welsh et al., 1995.) 

At the same time, progress was also made in developing technologies for recording brain slices over 

MEAs. In 1997, Thiébaud’s group constructed the first 3D perforated MEA (pMEA) (Thiebaud et al., 

1997). They used a perforated silicon substrate connected to a reservoir of cell culture medium to 

maintain the viability of the slices. The electrodes, which were either platinum bumps or silicon 

pyramids 45 μm high, were arranged in a three-dimensional configuration to improve contact with 

the cells of the slice. The authors were able to record the activity of slices in culture for up to 15 DIVs; 

they also monitored acute slices for eight hours. A diagram of their system is shown in Figure 2.8. 

 

Figure 2.8 Schematic view of a slice measurement setup in which a perforated silicon substrate is used (from Thiébaud 

et al., 1997.) 

During the late 1990s, the research questions most often addressed using MEAs involved network 

development and plasticity. These are the main goals pursued in the 1990s by groups in Japan at the 
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Matsuhita and NTT laboratories led by Taketani and Kawana. These investigators fabricated 64-

electrode MEAs for use in slice experiments (Oka et al., 1999) and with cultures of dissociated 

cortical neurons (Maeda (Maeda et al., 1995). ). A rocking device that could be used to keep cultured 

organotypic slices alive for many weeks was developed so that the development of the cultures could 

be observed over time (Kamioka, 1997). For cortical cultures, the experiments probed the plasticity 

of connections as a result of tetanic stimulation (Jimbo et al., 1999).  

In the following year, the study of synchronous bursting activity attracted the attention of the scientific 

community. In 2000, Jimbo et al. began to study the dynamics of high-density cortical cultures in 

detail; the group demonstrated that network burst activity could be produced by a single stimulus 

even when the stimulus was delivered to a single neuron (Figure 2.9) (Jimbo et al., 2000). The work 

performed by Jimbo and collaborators inspired the development of new protocols for inducing 

network plasticity. In the following year, Steven Potter’s group attempted to understand and control 

these dish-wide bursts as a means of studying network plasticity (Wagenaar et al., 2001;Madhavan et 

al., 2003). Similarly, Shahaf and Maron focused their attention on the possibility of inducing learning 

in dense cortical cultures (Shahaf and Marom, 2001). 

 

Figure 2.9 Network bursting in a dense cortical culture. (From Jimbo et al., 2000.) 

However, since the 1990s (Gross et al., 1995) neuronal networks grown on planar MEAs have been 

considered a promising tool for drug screening and neurotoxicity studies (Gramowski et al., 

2000;Keefer et al., 2001;Gramowski et al., 2004). This approach has proven to be useful in 

quantifying changes in network activity in response to various neuroactive compounds (Gross, 

1977;Streit, 1993;Gramowski et al., 2000;Morefield et al., 2000;Martinoia et al., 2005) Keefer 

(Keefer et al., 2001;Xia et al., 2003;Parviz and Gross, 2007;Novellino et al., 2011;Colombi et al., 

2013;Vassallo et al., 2017). 

In summary, during the past thirty years a great variety of explorations have addressed the possibilities 

provided by MEAs. At present, these technologies represent a powerful tool that can be used to 
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evaluate the long-term effects of drug compounds on neurons. Findings from these studies could have 

significant implications for the treatment of human diseases such as congenital malformations, 

epilepsy, stroke and Alzheimer's disease (Hofmann et al., 2006;Görtz et al., 2009;Gullo et al., 2014). 

MEA devices offer several advantages over traditional electrophysiological techniques, including 

making it possible to conduct extracellular recording and to stimulate a neural network in many 

different locations at once, which in turn allows correlation of electrophysiological activity over a 

large area. In conclusion, MEAs coupled to neuronal networks (i.e., brain slices or primary cell 

cultures) represent a reliable model that can be used to study the effects of new therapeutic 

compounds, especially in pathologies for which there are as yet no cures.  

 

2.2 Microelectrode array technology: standard devices 

MEAs consist of cell-sized electrodes (10-30 m diameter) attached to a glass substrate. The 

electrodes, which are typically made of gold, indium-tin oxide (ITO), titanium nitride (TiN), or black 

platinum, must be biocompatible and long-lasting and should preferably have low impedance (less 

than 500 kΩ at 1 kHz) to reduce thermal noise. 

The nonsensitive surface of the MEA and the electrode leads are coated with biocompatible insulators 

(e.g., polyamide or silicon nitride/oxide) that prevent short circuits with the electrolyte bath. These 

insulators, which are also coated with adhesion-promoting molecules such as polylysine and/or 

laminin, allow and promote the coupling of the neuron to the device surface. The low impedance of 

the electrodes and the choice of an appropriate voltage range to avoid the generation of neurotoxic 

redox complexes make it possible to use them to deliver external stimuli. The fabrication of MEAs is 

based on film technology (Elshabini-Riad and Barlow, 1998) and is conducted in a clean room using 

standard photolithographic techniques. The rapid success met by MEAs in the neuroscience research 

field moved some electronic companies to develop commercial systems for performing 

electrophysiological measurements using MEAs. At present, at least two complete acquisition 

systems based on MEAs are on the market, namely, the MED System produced by Panasonic 

(www.med64.com, Osaka, Japan) and the MEA System produced by Multi Channel Systems 

(www.multichannelsystems.com, Reutlingen, Germany). Other companies, such as 3Brain 

(https://www.3brain.com/, Wädenswil, Switzerland), Plexon (www.plexoninc.com, Dallas, USA) and 

Axion Biosystem (https://www.axionbiosystems.com/products, Atlanta, USA) have developed 

microelectrode devices for several different applications (cultures, slices, cardiomyocytes, retinal 

cells, pharmacological screening, etc.). Figure 2.10 shows four of the products offered by Multi 

https://www.axionbiosystems.com/products,%20Atlanta
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Channel Systems, Panasonic and Ayanda. 

 

Figure 2.10 MEAs produced by different companies. (A) MEA 30/200 made by Multi Channel Systems for use with 

dissociated neuronal cultures. (B) High-density MEA from 3Brain. C) Multiwell chip for pharmacological applications. 

(D) MED60 made by Panasonic. 

 

All the experimental results involving standard commercial devices presented in this thesis were 

obtained from recordings performed using MEAs manufactured by NMI (Natural and Medical 

Science Institute, Reutlingen, Germany) and developed by Multi Channel Systems. The following 

sections describe various design approaches and discuss current development around the MEA chip 

by NMI. 

2.2.1 MCS microelectrode array design 

The requirement for specific layouts of MEAs for use in answering specific biological questions has 

prompted the NMI to develop new custom-designed layouts. Here, we will briefly describe the 

standard MEA layouts used in this PhD project.  

Standard layout MEAs  

Multi-Channel Systems (MCS) provides different types of MEAs with varying electrode size and 

interelectrode spacing.  

The MEAs used in this thesis consist of 60 round electrodes made of TiN. The tracks and contact 

pads are made of titanium or ITO, and the insulation material is silicon nitride (Si3N4). The electrodes 

are positioned in an 8x8 layout grid (the four corner electrodes are not present) or in a rectangular 

layout  (Figure 2.11). ITO contact pads and tracks are transparent to allow a perfect view of the 
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specimen under the microscope. In this study, we used arrays of 30-m electrodes spaced 200 m 

apart. 

MEAs are equipped with an internal reference electrode that is used to minimize the possibility of 

pollution caused by the introduction of an external reference electrode. A glass ring is placed at the 

center of the device, surrounding the recording area, to contain the culture medium. In this way, when 

placed in an incubator, the culture can survive for several weeks.  

 

Figure 2.11 Standard 8x8 microelectrode layout from Multi Channel Systems. The array consists of 59 electrodes with 

one internal reference. On the right are three typical extracellular signals recorded from three different electrodes. 

6 Well MEA 

In the work described in this thesis, we also used 6-well MEAs that allow simultaneous recording 

from six independent chambers that are separated by a Makrolon ring. Inside each well, 9 electrodes 

are placed with one reference electrode. The electrodes, which are made of titanium nitride (TiN), are 

30 m in diameter and are separated by a distance of 200 m.   

The main advantage of using this type of MEA is that it allows the investigator to perform 6 

experiments at the same time using the same external condition. Therefore, 6-well MEAs are perfectly 

suited for neuropharmacological experiments involving the testing of different drugs in the same 

cultures. 

 

Figure 2.12. A 6-well MEA device with six independent culture chambers divided by a Makrolon separator. Inside each 

well, nine electrodes and one large internal reference electrode allow recording of electrophysiological activity from 

cultures of dissociated neurons. 
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2.2.2 The MCS MEA60 System 

All the experiments performed during this PhD project are performed with the MCS MEA60 System 

developed by Multi Channel System (Reutlingen, Germany, www.multichannelsystems.com). 

The MCS MEA60 set-up is made up of the following components, usually contained within a Faraday 

cage in order to reduce electromagnetic interferences: 

1. MEA 1060-Up-Standard Amplifier; 

2. PCI-based acquisition board; 

3. Acquisition software; 

4. Temperature controller; 

In an improved version of the MEA60 System, up to four amplifiers, each hosting an MEA device, 

can be connected to the data acquisition card and 120 out of a potential 240 MEA electrodes can be 

monitored simultaneously. This allows the parallel recording of more than one sample, particularly 

useful if one wants to compare the effects of the same experimental protocol on different cultures at 

the same time. This scalable MEA60 System has been designed by MCS to answer the ever-growing 

demand in basic research and pharmaceutical applications for automation of experimental and data 

analysis procedures. In our lab at the Italian Institute of Technology (IIT), we used an MEA120 

System to record up to two cultures of dissociated neurons (or brain slices) at the same time and 

double the number of monitored samples. More details on the complete MEA60 System are available 

in (Whitson et al., 2006) and references therein. Further technical specifications and data sheets can 

be found on www.multichannelsystems.com. 

In that follow we briefly describe each components as depicted in Figure 2.13. 
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Figure 2.13 Schematic representation of the experimental setup. Signal from MEA was amplifier and acquired with a PCB 

card and then monitored on a personal computer. 

1. Amplifier 

An amplifier stage for multi-electrode recording has to meet two main requirements: i) eliminating 

the cables connecting the electrodes and ii) coping with the interference 

(cross-talk phenomenon) among channels. The MEA1060 60-channel 

amplifier has a compact design (165 X 165 X 19 mm) and, due to the 

surface-mounted technology (SMD) of pre- and filter-amplifier, the 

complete circuit and amplifier hardware was built into a single housing: 

this ensures optimal signal-to-noise ratio of the recording, because no further cables are necessary 

other than a single SCSI-type cable connecting the amplifier to the data acquisition card. This results 

in an overall low noise level of the complete amplifier chain (1200, 12-bit resolution, 10 Hz to 3 kHz) 

of +-3 uV, which is well within the -+5 to 10 uV noise level of the MEA TiN electrode. Given the low 

noise of the recording system single units in the lower range of 20 to 30 μV can be readily detected. 

Hence, the MEA sensor is placed directly inside the amplifier and settled so as to fit the standard 

microscopes. 
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2. PCI-based acquisition board 

Standard PC technology is used as the backbone of high-speed multi-channel data acquisition. The 

data acquisition card is based on PCI-bus technology and allows 

the simultaneous sampling of up to 128 channels at a sampling 

rate of 50 kHz per channel. Three analog channels and a digital 

I/O port are accessible, allowing the simultaneous acquisition of 

analog data such as current traces from a patch clamp amplifier 

or temperature together with the MEA electrode data. The digital I/O port features trigger IN/trigger 

OUT functionality. This is an important feature when, for instance, a stimulator is set up to elicit a 

stimulation pulse to one or more MEA electrodes.  

3. Acquisition software 

The MC Rack software allows to record simultaneously the electrophysiological activity from the 60 

electrodes of the MEA and monitor the raw data in a real-time mode. Different parameters can be 

extracted from the data streams and the results can be plotted, saved, and exported to other programs 

for further analysis. 

4. Stimulus generator 

The MCS stimulus generator (STG2004) is a general purpose stimulator which generates pulses to 

be delivered to stimulating electrodes (up to 4 for this model and up to 8 for upgraded models). 

Complex stimulus waveforms (both current and voltage) of arbitrary duration are designed by using 

the provided MCS stimulus software and then stored in the stimulus generator connected to the MEA. 

Stimuli are “tailored" by the user by specifying the desired pulse waveform defining parameters into 

a worksheet. The pulse waveform is then displayed and the stimulus protocol is downloaded to the 

stimulus generator via a serial communication port. The stimulus generator operates in both voltage 

and current mode, and it is equipped with separate voltage and current outputs for each channel. 

5. Temperature controller 

The MCS temperature controller (TC02) uses a Proportional Integrative Derivative (PID) based 

technology. The MEA temperature can vary in the range from room temperature to +50 C. The set-

point temperature is reached within a range of 30 s to 5 minutes, depending on the recording system 

configuration. 
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6.  PH01 Canula 

The heating canula PH01 from Multichannel System was used for maintaining the temperature during 

the perfusion system. The programmable fluid temperature is 

controlled by a temperature controller TC01/02 (see before). A 

titanium wire inserted into the cannula results in a turbulent flow 

that ensures that the temperature of the liquid is constant across the flow stream. The heating cannula 

should be covered by beveled polytetrafluoroethylene (PTFE) tubing to reach the recording chamber 

inlet port and to minimize noise due to the metallic material of the cannula. The flow rates range from 

500 μl to 4.5 ml per minute. 

2.2.3 Custom fittings for the MCS MEA60 System 

Mini Incubator for recording from cultures 

Within the incubator the temperature (37 °C), the relative humidity (90-95%) and the CO2 

concentration (5%) are controlled so as to maintain the culture medium pH of 7.4 and the osmolarity 

of 230 mOsm. In fact, large variations in these parameters strongly affect the network activity and, if 

permanent, can cause the culture death. Hence, the optimal recording conditions would be provided 

by the incubation environment, but it is not possible to store the MCS MEA1060 amplifier in a highly 

humidified atmosphere, as that of the incubator. This is the reason why we designed and realized a 

custom recording chamber, which, coupled to the use of a PDMS lid, allows the recording of cultures 

in safe conditions. The custom chamber (shown in Figure 2.14) consists of a metallic box, sized 

13x13x4 cm (WxLxH), heated on the topside through planar high-power ceramic resistors (BI 

Technologies, www.bitechnologies.com, Fullerton, CA, USA) and providing an inlet for a constant 

gas flow. In fact, the chamber is connected through PTFE/FEP tubing (Legris, www.legris.com, 

Rennes, France) to a gas cylinder containing a mix of 5% CO2 - 20% O2 - 75% N2, practically the 

composition of air with 5% CO2: a constant slow flow of this gas mix into the metallic box covering 

the MEA during the experiment has been demonstrated to prevent the medium's pH to drift towards 

more basic values (up to 9 -10 pH units) (Brewer et al., 1993;Brewer, 1997).  

Moreover, using this recording chamber, the MEA device containing the culture is not only heated 

bottom up by the amplifier's warming plate driven by the MCS temperature controller, but also top 

down through the ceramic resistors heating the metallic box. In fact, when supplied with a suitable 

voltage, they constantly heat the conducting metallic surface of the chamber so as to provide a 

surrounding environment for the MEA whose temperature (37 C) is homogeneous. This, together 

with the PDMS lid and with the fact that the gas is made bubble in water before being fed into the 
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incubator, strongly reduces the evaporation and maintain the medium's osmolarity constant during 

the experiment. The recording chamber features a hole on the topside, to let the observation of the 

culture either using a microscope or to the naked eye, and a lateral hole, to let optional perfusion 

tubing in or out of the box. These holes are hermetically sealed during normal operation, to limit 

leakage and keep the 5% CO2 concentration and temperature as constant as possible inside the 

chamber. 

 

Figure 2.14 Custom recording chamber for MEA recordings. (A) Image of the recording chamber, highlighting the main 

features, and (B) image of the same chamber during normal operation over an MEA1060 amplifier. 

 

2.3 Signal processing tools for MEAs 

2.3.1 Types of signals detected using standard microelectrode arrays 

Microelectrode arrays have been developed and used to characterize and analyze the activity of 

cultured neuronal networks (Thomas Jr et al., 1972;Pine, 1980;Gross et al., 1982;Chiappalone et al., 

2007;Novellino et al., 2011): in this type of work, neurons are cultured for weeks in vitro on a planar 

array that is capable of sensing electrical signals.  

The typical extracellularly acquired signals from a local network of neurons are local field potentials 

(LFPs) and multi-unit activity (MUA). The LFPs, which constitute the low-frequency components 

(<300 Hz) of the raw signal, are believed to be generated by neuronal membrane currents in the local 

neighborhood of the recording electrode. MUA, which constitutes the high-frequency portion (>300 

Hz) of the raw signal, represents the spiking of local neurons situated near the recording electrode 

(Burns et al., 2010;Buzsaki et al., 2012). The principle of conventional extracellular recording is 

based on extracellular field theory (Humphrey and Schmidt, 1990). The microelectrode detects 

electric potential changes in a conductive extracellular field generated by current flow of active 

neurons. The dimensions of a single electrode are usually 10-30 m, comparable to the size of a single 

cell; current originates in a specific part of the neuron (usually the axon hillock or soma) and spreads 

over the dendrites. Using multiple recording techniques along the dendritic axis, it is possible to 



 44 

localize the approximate site of generation of the electrical response using a technique called source 

density analysis (Haberly and Shepherd, 1973). ). The sink can be localized near the axon hillock (or 

soma), and the source may be distributed along the dendrites. The polarity of the recorded signal 

depends strongly on the location of the electrode with respect to the spatial distribution of sources 

and sinks. The extracellular potential (Ve) at a particular point P can be calculated as follows: 

 

𝑉𝑒(𝑃) =
1

4𝜋𝜎
∗

∑𝐽𝑖

𝑟𝑖
∗ Δ𝑆𝑖 

where σ is the conductivity of the extracellular medium, Ji is the current density over the ith segment 

(positive for source, negative for sink), ri is the distance from the ith segment to point P and ΔSi is the 

surface area of the ith segment. 

Spike shape is influenced by both the size and the geometry of the cell, i.e., larger membrane currents 

imply stronger field potential (Ve proportional to Je). Therefore, in cultured neuronal networks, the 

majority of the recorded signals are somatic spikes since the axon is very small in diameter (i.e., 1 

m) and therefore has high impedance (Nam and Wheeler, 2011).  The position of the electrodes 

relative to the sink and the source also determines the waveform of the recorded signal  (Nam and 

Wheeler, 2011;Obien et al., 2015): ); axon spikes are mostly negative biphasic spikes, while dendritic 

spikes are positive biphasic spikes. Biphasic events include an initial rapid depolarization from the 

soma followed by a rebound when the soma acts as a source for other, later depolarizing elements. In 

neuronal cultures, the majority of the spikes (approximately 80%) present negative waveforms, while 

the remainder (approximately 20%) are positive (Nam and Wheeler, 2011). Unfortunately, it is not 

easy to determine from which part of the neuron the recording originates; a predominance of negative 

spike waveforms may indicate that many electrodes are coupled to the excitable soma. Moreover, it 

is possible to observe changes in the amplitude, width and waveform of the recorded signals due to 

morphological maturation of the neuronal network during culture development.   
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Figure 2.15 A) Neuron-electrode coupling in a culture over MEA at DIV 11 (from Nam and Wheeler, 2011). B) Generalized 

neuron-electrode interface. The potential at the electrode sites can be calculated using volume conductor theory. The 

MEA surface is assumed to be an insulator such that the method of images can be applied using Coulomb's law to solve 

the potential at any point on the MEA surface. The neuron-electrode distance influences the signal amplitude measured 

at the electrodes. High spatial resolution allows recording at several locations within a single neuron, with large negative 

spikes located at the perisomatic area and positive spikes at the dendritic area, i.e., return current (from J. Obien et al. 

2015). 

 

The use of brain slices over MEA permits recording of the extracellular field potential in a 3D 

environment. Electrophysiological parameters can be visualized relative to the spatial positions of the 

electrodes in different structures. Berger and coworkers showed that when a custom-made 60-

electrode layout is used it is possible to match the correct orientation of a cell’s dendritic axis while 

reducing the number of recordable structures (Soussou et al., 2006) as shown in Figure 2.16.  

 

 

Figure 2.16 Hippocampal brain slices over 60 channels MEAs. A) Drawing of a hippocampal slices placed over a 

standard 60- channel MEA. B) Custom MEA layout with two high-density 3 ×10 rectangular arrays that allow recording 

from CA1 and CA3 pyramidal cells (from Soussou et al., 2005)  

 

They performed a current source density analysis of CA1 pyramidal neurons using a custom 20x3 

pMEA: hippocampal slice oriented in such a way that the apical CA1 pyramidal dendrites were 

parallel to the long axis of the array (Figure 2.17). Monopolar biphasic stimulation was then delivered 

through one of the electrodes in the right column of the array, corresponding to the stratum radiatum 

(marked by a red dot in the figure). They recorded positive evoked field potentials (FPs) in the stratum 

A B 
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oriens (above the cell body layer, the stratum pyramidal) and negative potentials in the strata radiatum 

and moleculare. The color-coded potential is shown in Fig 2.18 B; positive FPs are depicted in 

yellow/red, while the blue areas delineate negative excitatory postsynaptic potentials (EPSPs). As 

shown in the figure, two-dimensional CSD analysis was applied to the recorded voltages (Gholmieh 

G. et al., 2005). In the FP graph on the left side, the CSD also shows the longitudinal spread of the 

positive and negative EPSPs. Depending on the electrode density, MEA coupled to brain slices can 

provide either low-resolution information based on the activity recorded in different slice regions or 

CSD analysis for accurate mapping of currents and sources in smaller cellular subregions. 

 

Figure 2.17 FP versus CSD in CA1: B) CA1 laminar profile of the slice shown in (A) in response to stimulation at the 

electrode marked in red. The color map shows the recorded FPs and the computed CSD values on a color scale and 

interpolated between electrodes. The trace drawing of a cell illustrates the relative position of the electrodes with respect 

to the CA1 pyramidal cells. The horizontal gray bars mark the cell layer. The vertical black lines mark the population 

spike. The stimulation was applied 10 msec after the beginning of the recording. x-axis, 35 msec; y-axis or color range 

−400 to +400 μV or CSD units. The strata are labeled in the electrodes: oriens (o), pyramidale (p), radiatum (r), and 

moleculare (m). (from  Soussou et al., 2005) 

2.3.2 SPYCODE: a custom software for the analysis of neuronal cultures 

The use of MEAs for electrophysiological experiments is likely to produce a huge quantity of data 

(high number of recording channels, high sampling frequency, long recordings), thus urging upon the 

need for a smart software which could autonomously search for the experiments to be analysed, 

recognize them and apply the needed analysis, several times, to different sets of data.  

In the last years, a Matlab-based software has been developed, named Spycode, collecting several 

basic and advanced tools for the analysis of multichannel recordings: this tool is the output of the 

joint efforts of several members of our research group (Figure. 2.18). Starting from a basic version 

of the software already implemented in Matlab,(Vato et al., 2004) the concept of “multiple analysis" 

has been introduced, namely allowing the autonomous repetition of the same 'multiple' computational 
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operations to 'multiple' data without the intervention of the researcher (except for the setting of the 

parameters needed to retrieve the experiments) (Bologna et al., 2010). 

 

Figure 2.18. Running Spycode. The main Graphical User Interface (GUI) is depicted during a working session of the 

software. Additional GUIs for data input are shown to the user before launching each computation. The output of an 

analysis session is provided through a series of figures (.fig or .jpg format) or results files (.mat or ASCII format). 

Figure. 2.19 schematically shows the organization of the software, which includes a block for data 

conversion, one for data filtering (optional) and the cascade of analysis that can be done once spike 

detection has been performed: spike analysis, burst detection and analysis, post-stimulus time 

histogram, inter-spike interval (ISI), inter-event interval (IEI) distributions and cross-correlation.  

 

Figure 2.19 Schematic overview of the data analysis procedure implemented within Spycode. The functional blocks show 

the main computational and algorithmic options offered by the software. The data flow starts with the data conversion 

procedure, after which raw data are available in Matlab internal format (i.e. *.mat), then a filter can be applied to de-

noise the data (optional). 
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In the following paragraphs, we will give a brief description of the standard algorithms used for 

characterizing the spontaneous and evoked activity of neuronal networks in vitro. 

Data pre-processing: spike detection.  

Extracellularly recorded signals are embedded in biological and thermal noise and spikes can be 

detected by means of threshold-based spike detection algorithms. In this study, we used for MCS 

MEAs a spike detection method named Precise Timing Spike Detection (PTSD) which is an evolution 

of the one previously used, being more precise in detecting the exact timing of spikes (Maccione et 

al., 2009). Briefly, the method used three parameters: (1) a differential threshold (DT) set 

independently for each channel and computed as 8-fold the standard deviation (SD) of the noise of 

the signal; (2) a peak lifetime period (PLP) set to 2 ms; (3) a refractory period set to 1 ms. 

The algorithm scans the raw data to discriminate the relative minimum or maximum points. Once a 

relative minimum point is found, the nearest maximum point is searched within the following PLP 

window (or vice versa). If the difference between the two points is larger than DT, a spike is identified 

and its timestamp saved. Then, to characterize the activity level of the analyzed networks, we 

computed the mean firing rate (MFR), which is defined as the mean number of spikes per second, 

computed over the total recording time. We considered active electrodes as those presenting a firing 

rate higher than 0.01 spikes per second. The low threshold guarantees to exclude only those electrodes 

that are not covered by cells or with very few spikes, keeping all the others. 

Burst Detection 

Neuronal networks plated on MEA show both random and spiking activity, in large majority, bursting 

behavior (Brewer, 1997;Leondopulos et al., 2012). Bursts consist of packages of spikes distributed 

over a range of a few milliseconds, which generally last from hundreds of milliseconds up to seconds, 

and are separated by long quiescent periods. Spontaneous bursting activity was detected using a 

custom burst detection method developed in our laboratory (Chiappalone et al., 2005;Turnbull et al., 

2005). According to those algorithms, in order to detect bursts, two thresholds were fixed: the first 

one was the maximum ISI allowed for spikes within a burst (maxISI, usually set at 100 ms); the 

second one was defined as the minimum number of consecutive spikes belonging to a burst 

(minSpikes, usually set at 5).  

Once spike and burst detection procedures were performed, usually we extracted several parameters 

describing the electrophysiological patterns, such as mean bursting rate (MBR) [bursts/min], burst 

duration (BD) [ms], Mean Frequency Intra burst (MFIB,spike/sec), Burstiness Index, and the Inverse 

Burst Ratio (IBR) (which represents the percentage of random spikes, i.e., spikes outside the bursts). 
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Figure 2.20 Electrophysiological parameters used for describing the electrophysiological patterns such as the level of 

firing rate (i.e. MFR [spikes/sec]), the level of bursting rate (i.e. MBR (burst/min)), the percentage of spikes outside the 

burst (i.e. IBR), the Burstiness Index (index between 0 and 1 that indicate the level of burstiness of the networks), the 

duration for each burst (BD, msec), the mean frequency of the spikes inside each burst (MFIB, spikes/sec). 

Cross-correlation 

To characterize the synchronization among multi-unit recordings, the correlation analysis was applied 

to spike trains (Chiappalone et al., 2007). The cross-correlation function was built by considering the 

spike trains of two recording sites (le Feber et al., 2014), and it is a measure of the frequency at which 

a spike was recorded in one recording site relative to the spike firing in another recording site, as a 

function of time. This function was evaluated considering each pair of spike trains recorded from 

active channels (i.e. with MFR>0.01 spike/s). The correlation function represents the average value 

of the product of two random processes, which are spike trains, but, mathematically, it reduces to a 

simple probability. In particular, the Cross Correlation function represents the probability of 

observing a spike in one channel i at time (t+τ, τ=3 ms) given that there is a spike in a second channel 

i+1 at time t.  

The cross-correlation (CC) function CXY (τ) was obtained by a normalization procedure, according 

to the following formula: 

𝐶𝑋𝑌(𝜏) =
1

√𝑁𝑋𝑁𝑌

∑ 𝑋(𝑡𝑠)𝑌(𝑡𝑠 − 𝑡𝑖)

𝜏+
Δ𝜏
2

𝑡𝑖=(𝜏−
Δ𝜏
2

)

 

 

where ts indicates the timing of an event in the X train, NX and NY represent the total number of 

events in the X and in the Y train respectively, ∆t is the bin size. The mathematic equation yields the 

symmetry between CXY (τ) and CYX (τ) (i.e. CXY (τ) = CYX (-τ)) ((Eytan and Marom, 2006). In 

order to quantify the strength of correlation between each couple of electrodes, we evaluated the 
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Correlation peak (C peak). We select only the first 100 C peak values to identify only the most significant 

correlations. Finally, we analyzed the latency from the peak (L peak) and we considered the 

corresponding peak latency values of the pre-selected 100 strongest C peak values (Bisio et al., 2014). 

We are confident that this method underestimates the number of significant connections, but it did 

not include in the analysis non-statistically significant connections (Garofalo et al., 2009;Maccione 

et al., 2012). 

 

Figure 2.21 Cross Correlation function scheme. 

Spike time tiling coefficients - STTCs 

To characterize the degree of synchronization within each neuronal network, another method, the 

spike time tiling coefficient (STTC, Cutts et al. 2014), was used. Since in our experiments we altered 

the level of firing rate we want to test the level of synchronization with a parameter that is not 

confounded by the level of firing rate. Briefly, when considering two spike trains A and B, the STTC 

method looks for spikes in A that fall within ±Δt of a spike that occurs in B. In this method, we 

account for the amount of correlation expected by chance by making the minimal assumption that we 

expect the proportion of spikes from A falling within ±Δt of a spike from B by chance to be the same 

as the proportion of the total recording that falls within ±Δt of a spike from B. Any additional spikes 

in A that have this property are indicative of positive correlation. We therefore use the quantity PA − 

TB (Figure 2.20 shows definitions), which is positive if the spikes in train A are correlated with the 

spikes from train B and negative if there is less correlation than is expected by chance. The authors 

required the coefficient to be equal to +1 for autocorrelation, to be −1 when PA = 0, TB = 1 and to 

have a range of [-1, 1]. The normalization factor (1 − PATB) ensures that the insensitivity to firing rate 

is maintained. 
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Figure 2.20 STTC diagram depicting the steps in computing the parameter (from Cutts et al.) 
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Chapter 3 

Introduction  

Sleep is a universal phenomenon that is classically defined as a reversible state of reduced 

responsiveness to external stimuli and relative inactivity accompanied by a loss of consciousness 

(Rasch and Born, 2013). The research conducted so far strongly supports the finding that sleep is 

essential for the brain. 

Over the last few years, it has been proposed that electrophysiological markers for sleep cycles can 

also be derived from in vitro neuronal networks similar to those present in vivo (Sengupta et al., 

2011;Hinard et al., 2012).  

As mentioned earlier (see Chapter 1, paragraph 1.1), cortical cultures coupled to MEAs represent a 

simplified and easily accessible in vitro model that can be used to study the principles of 

neurodynamics and neural coding (Marom and Shahaf, 2002;Chiappalone et al., 2008) ; they also 

represent a valid method for reducing animal experimentation. 

Since neuronal assemblies plated on MEAs present synchronized, low frequency firing patterns 

similar to in vivo slow wave oscillations (Hinard et al., 2012), we used these preparations to study 

sleep properties. However, neuronal cultures lack the characteristic high-frequency waves of 

wakefulness, but it is possible to modulate their spontaneous firing patterns through the 

administration of specific neurotransmitters to suppress the sleep features (Corner, 2008;Corner, 

2010;Saberi-Moghadam et al., 2018){Corner, 2013 #331).  

In this introductory chapter, we will briefly describe the following: (i) the major patterns that 

characterize sleep architecture, which are discriminated by electroencephalogram (EEG) combined 

with electromyogram (EEG) in vivo (see paragraph 3.1); (ii) the main processes that are involved in 

regulation of the sleep-wake cycle (see paragraph 3.2); (iii) the state of the art regarding the study of 

sleep features in vitro (see paragraph 3.3); (iv) possible modulation strategies that could be used to 

modify sleep properties (see paragraph 3.4). 

3.1 Measuring sleep-wake waves in humans and in animal models 

Sleep is characterized by the alternation of two different physiological and behavioral states, each of 

which possesses distinct electrophysiological features that alternate cyclically. These two states are 

referred to as non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep (Figure 
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3.1). 

The stages of sleep in humans are as follows:  

 NREM sleep: also called slow-wave sleep (SWS) is divided into 4 stages, corresponding to 

increasing depth of sleep. In human nocturnal sleep, non-REM sleep is predominant during 

the early part of the sleep period and decreases in intensity and duration across the sleep period 

(Rasch and Born, 2013). NREM sleep constitutes about approximately 80% of the total time 

spent in sleep and is characterized by the regular occurrence of local and global slow cortical 

oscillations (Vyazovskiy and Harris, 2013). The characteristic oscillatory waveforms of non-

REM sleep include sleep spindles (sigma frequency, 12–15 Hz), the K-complex waveform, 

(0–1 Hz) and high-amplitude slow-wave activity (SWA at approximately 0.5–4.5 Hz) 

(Steriade, 2001).  

SWA is usually used as a marker of non-REM sleep intensity and to determine sleep pressure 

(Tononi (Cirelli et al., 2006;Vyazovskiy and Harris, 2013). For instance, the longer a subject 

has been awake, the higher is the spectral power in the slow wave range of the EEG in 

subsequent sleep; the power in this range decreases during the course of sleep (Achermann 

and Borbély, 2003). Moreover, it has been proposed that SWA is mainly involved in the 

restorative processes of sleep (Cirelli et al., 2006;Vyazovskiy and Harris, 2013).  

1. REM sleep: also known as paradoxical sleep, constitutes approximately 20% of the total time 

spent in sleep. In human nocturnal sleep, REM sleep becomes more intense and extensive 

towards the end of the sleep period (Rasch and Born, 2013). REM sleep is defined by the 

presence of desynchronized (low-voltage, high-frequency) brain wake-like, tonically 

activated EEG. There are electrophysiological similarities between awaking states and REM 

sleep (also defined as “paradoxical sleep”); these states include additional features (e.g., 

muscle atonia and metabolic/thermoregulatory alterations) that allow their distinction. During 

REM sleep, the EEG pattern (Figure 3.1) is characterized by theta activity (5-8 Hz) and slow 

alpha activity, which arise mostly from the hippocampus. 

 Wakefulness: During the awake state, neurons in the cerebral cortex fire irregularly, and EEG 

recording displays low-amplitude, high-frequency fluctuations with consequent activation of 

muscle tone (Brown et al., 2012).  



 59 

 

Figure 3.1 EEG signal capture different sleep stages during NREM and REM sleep in human. 

Despite our knowledge of the different stages of the sleep-wake cycle, the function or functions of 

sleep are still unresolved. However, significant progress has been made in understanding the brain 

mechanisms that control sleep and wakefulness thanks to the use of animal models. Historically, the 

use of animals in the study of sleep disorders has been extremely useful in discovering the underlying 

mechanisms of sleep disorders such as narcolepsy (Chemelli et al., 1999;Lin et al., 1999). Animals 

represent an emerging model that can be used in studies of the physiology of sleep, in identification 

and validation of the causes and mechanisms of sleep disorders, and in the development and 

preliminary testing of new therapeutic approaches.  

While sleep architecture is conserved across species, humans and rodents display several differences 

in sleep architecture due to the differences in the complexity of their central nervous systems. First, 

the organization of the sleep-wake cycle is opposite in phase in rodents and humans. Specifically, 

rodents are nocturnal animals; they are awake during the dark phase and asleep during the light phase. 

Moreover, humans have monophasic sleep, meaning that sleep is usually taken in one session during 

a 24-h period (i.e., during the night). Conversely, rodent sleep is polyphasic and relatively fragmented 

(Paterson et al., 2011;Toth and Bhargava, 2013). Lastly, NREM sleep in humans is conventionally 

divided into 3 stages, whereas in rodents this distinction is not used (Rasch and Born, 2013). 

However, there are common shared traits among species, such as specific properties associated with 

the frequency spectrum of distinct sleep states (Lo et al., 2004;Phillips et al., 2010) (Brown et al., 

2012). In particular, EEG activity during sleep is characterized by two different patterns, namely, 

slow oscillations in the delta frequency range (1-4 Hz) during deep sleep (NREM) and rapid, low- 

voltage waves such as beta (11-30 Hz) and gamma (30-120 Hz) during wakefulness and REM sleep.  
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Figure 3.2 Comparison of EEGs in humans and rodents. In rodents, NREM sleep is usually not parsed into separate 

stages.(adapted from Brown et al., 2012) 

3.2 Regulation of the sleep-wake cycle: circadian rhythm & sleep-wake 

homeostasis 

Sleep is regulated by two separate but interacting processes, namely, an intrinsic sleep-independent 

circadian process (Process C) and a sleep-dependent process (Process S) (Borbely, 1982).  

The circadian process is a self-sustaining cycle of approximately 24 hours that is mainly related to 

cell-autonomous mechanisms. Its clock governs the daily cycle of many biological activities such as 

the control of body temperature and hormone secretion (Stokkan et al., 2001;Reppert and Weaver, 

2002). One of the first observations of the existence of circadian rhythmicity was reported by Jacques 

De Mairan in 1729 (de Mairan, 1729); he observed that the opening and closing of the leaves of plants 

followed a circadian periodicity of 24 hours even under dark conditions at a controlled temperature. 

Therefore, he deduced that an internal time-measuring mechanism that regulates that phenomenon 

must exist, i.e., an endogenous biological clock. The modern-day study of circadian rhythms began 

in the 1950s with the work of Colin Pittendrigh, who found that the timing of eclosion (emergence of 

adult flies from the larval case) in Drosophila was maintained under conditions of constant darkness 

(Pittendrigh, 1954). Another pioneer in the study of circadian rhythms, Jürgen Aschoff, demonstrated 
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circadian rhythms in human activity by placing subjects in a bunker in constant darkness (Aschoff, 

1965). The biological rhythm maintained under conditions of constant temperature and light is called 

free-running (Edmunds Jr, 1983). The existence and conservation of free-running circadian 

rhythmicity is due to the presence of a highly specialized endogenous mechanism that is able to 

regenerate for 24 hours and is called the circadian biological clock. It resides in the suprachiasmatic 

nucleus (SCN) of the hypothalamus, a master pacemaker that regulates circadian rhythms in the brain 

and body (Franken et al., 2001). The biological clock is designed for the central coordination of the 

rhythmic cadence of some biological functions at the organism level, as they allow both individual 

cells and the organism to synchronize in relation to the day / night period and environmental 

variations.  

A circadian biological system is generally made up of the following three fundamental components: 

1. A signal from the environment (input) such as light/dark alternation 

2. The biological clock (pacemaker) located inside each cell 

3. that cause changes in cell behavior related to the periodicity of the oscillator (output) such as 

hormone secretion, daily temperature variation and food assumption. 

 

Figure 33 Scheme of regulation of the circadian rhythm.  

In mammals, the input and the pacemaker are located in different structures; the light stimulus (input) 

is transmitted to the circadian clock, which is located in the suprachiasmatic nucleus (SCN), through 

the retino-hypothalamic tract.  

The SCN was identified as the circadian pacemaker in mammals; it is responsible for the coordination 

and synchronization of oscillators located in other areas of the brain and peripheral organs. Lesions 

of the SCN in hamsters cause changes in the regulation of the sleep-wake cycle; in particular, surgical 

removal of more than 75% of the SCN results in loss of the circadian rhythmicity of locomotion, food 

intake, body temperature and the secretion of some hormones such as melatonin without any recovery 

in time (Ralph and Menaker, 1988).  
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The circadian system is made up of a multiplicity of self-driven oscillators, called Zeitebergs, which 

are interconnected and can in turn be synchronized by environmental factors. To understand how the 

biological circadian clocks are able to regenerate and maintain their periodicity of 24 h, it is necessary 

to identify the molecular mechanism that allows the system to oscillate; the cells require a complex 

network of proteins and interacting genes to regulate the internal clock responsible for the control of 

metabolism, cell division, hormone production and the sleep-wake cycle. 

Within each cell is a molecular circadian clock mechanism that acts as a timekeeper that coordinates 

cellular function and animal physiology with the external environment. The regulatory system 

consists of a transcription-transduction network with a feedback loop that has a duration of 24 hours. 

The core of this self-sustained molecular oscillation consists of positive and negative elements.  

 Positive elements: 

1. CLOCK (Circadian locomotor output cycle kaput) 

2. BMAL1 (Brain and muscle Arnt-like protein 1) 

 Negative elements: 

1. CRY (Cryptochrome) 

2. PER (Period) 

The positive elements bind to a unique protein heterodimer, CLOCK:BMAL1, which is characterized 

by the presence of a specific region for the binding of the DNA at the level of the E box sequence.  

 

Figure 3.4 Regulatory system of a transcription-transduction network with a feedback loop with a duration of 24 hours.. 

In the nucleus, the CLOCK:BMAL1 heterodimer initiates the transcription of target genes containing 

E-box sequences, including PERIOD and CRYPTOCHROME and the relative proteins Per1, Per2, 

Per3 and Cry1, Cry2. Protein synthesis leads to an accumulation of CRY in the cytoplasm and to the 

formation of another protein heterodimer, CRY:PER. The negative feedback is provided by PER:CRY 

heterodimers, which translocate back to the nucleus where they repress their own transcription by 

acting on CLOCK:BMAL1 heterodimers. After this inhibition, CRY:PER is deactivated by 
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specialized eukaryotic proteins of the Fbox family (Fbxl3) through ubiquitination. This permits the 

initiation of a new ~24-hour cycle and contributes significantly to the precision of the mammalian 

clock.  

The importance of these core clock genes in circadian rhythm generation has been demonstrated by 

constructing mice that carry targeted disruptions in one or a combination of these genes (Lowrey and 

Takahashi, 2011).  

In addition to circadian control, sleep is also regulated by a homeostatic process (Cirelli et al., 

2006;Tononi and Cirelli, 2006;2014). The main postulate of sleep homeostasis is ‘‘the longer we are 

active (and, perhaps, the more we are active), the deeper our subsequent sleep’’ (Daan et al., 1984). 

In other words, sleep need (or ‘‘sleep pressure’’) increases in proportion to the preceding duration of 

wakefulness and then dissipates during the ensuing sleep in proportion to sleep duration and intensity. 

In mammals and birds, sleep SWA is high in early sleep and decreases progressively during sleep, 

reaching low levels several hours later (Tobler and Borbely, 1986). It can be modeled by a 

mathematical function that increases during wakefulness and decreases during sleep, thereby 

describing the pressure for sleep across a circadian cycle (Borbely, 1982;Daan et al., 1984;Franken 

et al., 2001;Mölle et al., 2004;Marshall et al., 2006) (Figure 3.5).  

 

Figure 3.5 Homeostatic and circadian regulation of the sleep-wake cycle (Borbely, 1982) 

A highly reliable index of the homeostatic process is provided by the amplitude and prevalence of 

delta (1-4-Hz) oscillations in the electroencephalogram (EEG) of nonrapid eye movement (NREM) 

sleep. Delta power is high at sleep onset and decreases during wakefulness. Acute sleep reduction or 

deprivation normally causes a homeostatic response during the next sleep opportunity; this response 

is characterized by an increase in NREM sleep, which is also referred to as slow-wave sleep (SWS), 

during which the EEG reveals slow-wave activity (SWA; 0.75-4.5 Hz). EEG delta power during 

NREM sleep has been shown to play a critical role in learning-induced plasticity (Mölle et al., 

2004;Huber et al., 2006;Marshall et al., 2006;Tononi and Cirelli, 2014)ref.  
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Waking and sleep are associated with systematic changes in the expression and/or release of a variety 

of molecules that are directly or indirectly involved in synaptic plasticity as well as in many other 

essential cellular functions. Sleep need, as indexed by the EEG delta power, is under genetic control 

(Franken et al., 2001), explaining the inter-individual variation in vulnerability to sleep loss in human 

subjects (Van Dongen et al., 2004;Tucker et al., 2007).  Among the classes of genes affected by sleep 

deprivation it was demonstrated that in the brain, Homer1a expression best reflects the response to 

sleep loss(Maret et al., 2007;Diering et al., 2017). 

Many studies have demonstrated a strong interplay between circadian and homeostatic components 

of sleep (Franken et al., 2001). Knocking out one or more of the main clock genes not only changes 

or disables the circadian clock but also modifies sleep homeostatic markers in animal models. 

Interestingly, among the core clock genes, PER2 has been shown to play a dual role in that it affects 

both the cellular clock machinery and the homeostatic control of sleep. Many mouse studies have 

demonstrated that Per genes control slow wave activity following sleep loss (Kopp et al., 

2002;Shiromani et al., 2004). Moreover, new molecular targets and epigenetic regulatory mechanisms 

are emerging as novel players in the control of sleep and its homeostasis (Tinarelli et al., 2014). In 

the following chapter, we investigate in more detail recent findings obtained during the study of sleep-

like features in vitro. 

3.3 Sleep features in primary cultures  

The investigation of a neural network’s dynamic properties during sleep states is difficult when 

studying in vivo experimental systems due to the complexity of the mammalian brain. The complexity 

of defining the minimal network size required for a sleep-like state has limited our understanding of 

sleep regulation and sleep function (Krueger et al., 2008). Moreover, sleep has always been thought 

of as a global feature; for that reason, humans or whole animal studies have been preferred.  

Recent clinical evidence suggests that sleep can be a property of something less than the whole brain. 

In 2005, Mahowald and Schenck (Mahowald and Schenck, 2005) described patients with 

parasomnias (e.g. sleep walking) who simultaneously displayed features of wakefulness (evidenced 

by their ability to negotiate around objects) and sleep (indicated by their lack of awareness of their 

actions). A few days after the occurrence of survivable stroke or other acute damage to the brain, sleep 

re-emerges; despite millions of such cases, no instance of complete insomnia has been observed. This 

finding suggests that sleep is a robust fundamental self-organizing property of any surviving group 

of neurons (Krueger et al., 2008). 

The EEG oscillations that occur during sleep and arousal are generated in the thalamus and cerebral 
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cortex, two regions that are linked by reciprocal connections. The thalamus is the major gateway for 

the flow of information to the cerebral cortex and the first station at which external signals can be 

blocked by synaptic inhibition during sleep. This mechanism contributes to the shift that the brain 

undergoes as it changes from a state of arousal in which it is open to signals from the outside to the 

closed state of sleep (Steriade et al., 1993). During the NREM phase, thalamic and cortical neurons 

display burst-pause action potential firing patterns that last 500 ms and are separated by 500 ms of 

silence. When an animal is going to sleep, these burst patterns synchronize with each other and lead 

to a slow-frequency component of the EEG signal (Vyazovskiy et al., 2011).  

A recent study in cats demonstrated that cortical islands prepared surgically in such a way that they 

retain their blood flow but not their thalamic input showed local field potentials over periods of 10-

20 minutes through episodes with high-amplitude EEG delta waves (Kristiansen and Courtois, 1949). 

Data from Steriade and colleagues indicated that there is an EEG slow-wave component in the delta 

frequency range (0.5–1.5 Hz) that originates locally in the cortex (Steriade et al. 2003). These data 

suggested that sleep, or at least correlates of sleep such as EEG delta wave power, is a regional 

phenomenon of the brain 

Moreover, Pigarev et al. performed experiments with monkeys in transition between sleep and 

wakefulness and showed that some neurons in the visual cortex display sleep firing patterns even 

when the animal is still performing a visual discrimination task. Although the animal is awake, the 

cellular process characteristic of NREM sleep is present, suggesting that there are local islands of 

sleep(Pigarev et al., 1997). 

Repeated single-whisker stimulation and analysis of evoked response potential patterns in the cortical 

columns of rats demonstrate that it is possible to distinguish between awake-like and sleep-like states 

(Rector et al., 2005). The sleep-like state is characterized by evoked response potentials of greater 

magnitude than the evoked potentials that are observed during wakefulness (Timofeev et al., 2001). 

Although most columns display an evoked response pattern that is consistent with the state of the 

animal (lower during wakefulness and high during sleep episodes), some columns are in the opposite 

state, suggesting that sleep is a property of local neuronal networks.  

In vitro cultures are simple in comparison to whole brains, yet neuronal cultures exhibit electrical 

properties that are similar to those used to characterize sleep in vivo (Sengupta et al., 2011;Hinard et 

al., 2012). These properties spontaneously develop and emerge as networks mature and are influenced 

by stimulation that similarly affects the state of the whole animal (Jewett et al., 2015). Indeed, 

neuronal assemblies plated on MEA show spontaneously synchronized, low frequency firing patterns 

(Figure 3.6) (Van Pelt et al., 2004;Chiappalone et al., 2007;Corner, 2008), resembling the slow wave 
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oscillations that characterize NREM sleep in vivo (Steriade et al., 1993;Rector et al., 2005). These 

network-wide bursts (i.e. synchronized bursting activity presented simultaneously on several 

channels) are less frequent and more stereotyped than those observed in the intact brain, an 

observation that might be expected given the smaller size and lower connection density of these 

networks as well as the lack of reentrant pathways (Timofeev et al., 2000;Timofeev et al., 

2001;Chauvette et al., 2010;Constantinople and Bruno, 2011;Harris and Thiele, 2011).  

While the forms of synchrony observed in vitro differ in many respects from those associated with 

low arousal levels in the intact brain, their underlying biophysical mechanisms share important 

similarities. Current studies in vivo (Constantinople and Bruno, 2011;Harris and Thiele, 2011) and in 

vitro (Robinson et al., 1993;Maeda et al., 1995a;Eytan and Marom, 2006;Cohen et al., 2008;Cohen 

and Segal, 2011;Orlandi et al., 2013) as well as modeling studies (Timofeev et al., 2000;Bazhenov et 

al., 2002;Hill and Tononi, 2005;Holcman and Tsodyks, 2006), suggest that these forms of synchrony 

are not imposed by external circuitry, pacemaker cells or global inhibition, but probably depend on 

the interplay of spontaneous synaptic activity, refractoriness and network-wide synaptic depression 

(Harris and Thiele, 2011). 

Unfortunately, the lack of an awake state counterpart has limited the investigation of the main 

physiological aspects of sleep. To overcome this problem, a combination of chemical and electrical 

stimulation was recently proposed (Hinard et al., 2012;Krueger et al., 2013).  

 

Figure 3.6 Rat cortical cultures over MEAs at DIV 30 displays low-frequency firing patterns similar to those observed in 

sleeping animals. 

Indeed, with appropriate stimulation, such cultures can transition into a more “wake-like state” or 

“deeper sleep-like state” depending upon the specific stimuli applied. Low-frequency electrical 

stimulation (0.05-0.2 Hz) of such cultures recruits more active channels to participate in the network-

burst state, enhancing the spontaneous activity and suggesting a deeper sleep-like state.  

In contrast, higher-frequency stimulation (4-10 Hz) induces more random firing with fewer bursts 
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compared to the basal condition (Wagenaar et al., 2005;Chiappalone et al., 2007;Krueger et al., 2013). 

In 2012 Tafti and colleagues (Hinard et al., 2012) showed that the default sleep pattern could be 

transformed into a tonic firing pattern similar to that observed in wakefulness by stimulating cortical 

cultures with a cocktail of excitatory neurotransmitters (hereinafter called “CCK” and including 

monoaminergic, glutamatergic, cholinergic, and orexinergic neurotransmitters or agonists). 

Moreover, they showed that the stimulated cultures exhibited a transcriptome similar to that of cortical 

cells harvested from sleep-deprived mice. The expression of immediately early genes (IEGs) was 

similarly affected in vitro and in vivo and indicated a sleep-deprived state. Homer 1a, Arc, Dbp, Per, 

and Fos were all overexpressed after administration of the cocktail in vitro and after sleep deprivation 

in vivo.  

Oxygen consumption was monitored in vivo in a calorimetric chamber over a 24-hour period. 

Oxygen consumption in vivo was 40% higher during wakefulness compared to the sleep period. 

Cortical cultures stimulated with the cocktail showed a 30-40% increase in the oxygen consumption 

rate (OCR), indicating a sustained metabolic increase. Moreover, the investigators found that the 

same metabolic pathways undergo similar changes in vitro and in living animals 

 

 

Figure 3.7 Scheme of cortical cultures under a default sleep-like state and upon treatment with a cocktail of excitatory 

neurotransmitters (from Hinard 2012).  
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Recently, Kruger’s group characterized sleep-like states in cultured neurons and glia during 

development by stimulating the cultures electrically with the addition of tumor necrosis factor alpha 

(TNF) (Jewett et al., 2015). They showed that TNF enhanced the synchronicity among networks and 

the amplitude of the slow oscillatory activity (SWA), suggesting the induction of a deeper sleep-like 

state similar to the state observed in vivo during NREM sleep (Krueger et al., 2008;Jewett et al., 

2015). Electrical stimulation reversed the deeper TNF sleep-like state and induced a sleep-like state 

with a more irregular firing pattern and lower SWA power. Recording of the stimulated cultures after 

24 hours showed a rebound of the sleep-like state, suggesting network homeostasis in vitro. Recovery 

of the sleep state depended on the stimulus pattern applied 24 hours earlier, suggesting that network 

dynamics, connectivity and excitability in vitro are dependent upon past patterns of activity. These 

findings are consistent with the interpretation that the cultured cells can achieve functional plasticity 

(Maeda et al., 1995a;Jimbo et al., 1999;Tateno and Jimbo, 1999;Shahaf and Marom, 2001;Chao et 

al., 2007). 
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Figure 3.8 Comparison of the time course of gene expression in vivo (A) and in vitro (B). The time course of gene 

expression in sleep-deprived (SD) mice (n = 4 for each time point) was followed in vivo for 2, 4, and 6 h. Undisturbed 

home-cage controls were also assessed at the same time points (Control). Homer1a is overexpressed in proportion to the 

time the animals were kept awake and decreases slowly during the recovery period, while Arc expression shows rapid 

recovery after 6 h of sleep deprivation. Dbp expression is decreased by sleep deprivation, and the recovery is slow. To 

show the similarity in the time course of gene expression, primary cortical cultures (n = 3 measured in triplicates) were 

stimulated by the application of the indicated concentrations of our waking cocktail; cultured cells stimulated for 3 h with 

1× cocktail were allowed 2, 4, or 6 h of recovery (right) (from Hinard 2012). 

Following these results, M. Tafti’s group investigated the behavior of the network 24 hours after 

cocktail stimulation, when the slow waves reappeared (Saberi-Moghadam et al., 2018). The goal of 

this work was to determine whether it is possible to observe homeostatic changes similar to those 

observed in living animals during sleep. They found that the interburst interval is decreased during 



 70 

recovery, whereas the burst duration is increased (Figure 3.9 b-c). These findings suggest that higher 

homeostatic pressure in vitro results in an increased incidence of bursts (UP state) and a decreased 

interburst interval (DOWN state). The power spectral density at low frequencies was increased, as 

was the slope of the UP and DOWN states. The authors showed a dose-dependent effect during the 

recovery; stronger stimulation resulted in larger differences, similar to the manner in which longer 

wakefulness duration leads to larger sleep changes in vivo. 

 

 

Figure 3.9 Spectral and burst properties of in vitro cortical networks at baseline and during recovery after 

neuromodulatory or sham stimulation. (a) Spectral power density of bursting activity of cultures during baseline (blue 

lines) and recovery (black lines) for 1 CCK (n = 12), 0.5 CCK (n = 8), and sham stimulation (n = 9). The inset indicates 

the relative changes in power densities during recovery (b) Burst duration (BD) is significantly longer and (c) the 

interburst interval (IBI) is shorter during recovery for 1 CCK and 0.5 CCK, while there is no change in sham-stimulated 

cultures. (d) Initial and (e) final slopes are significantly increased after 1 CCK and 0.5 CCK stimulation, while no change 
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is observed after sham stimulation. Each dot represents a single culture. Bb: baseline; r: recovery; ns: nonsignificant. 

*p < 0.05, **p < 0.01; paired t-test on relative values (to the sham condition). (Saberi-Moghadam et al., 2018). 

The foregoing results show that the default slow oscillation could be regulated by homeostatic 

processes; however, whether the homeostatic mechanisms are cell-autonomous or properties of 

networks remains controversial (Slomowitz et al., 2015;Hengen et al., 2016).  

The in vitro studies strongly favor the network hypothesis; high-density MEAs based on CMOS 

technology (with 4096 microelectrodes) revealed a high level of random firing activity, while the 

overall behavior of the network was driven by synchronized bursts(Lonardoni et al., 2015).Excitatory 

cortical neurons are known to form privileged synaptic connections to form clusters (Perin et al., 

2011). Using a simulation network, Tafti and coworkers showed that as a cell culture matures, 

connections are formed between neurons and stronger connections are maintained by synaptic 

plasticity. Prolonged chemical stimulation for 24 h forces neurons to discharge at higher rates and 

may affect the structural connectivity between neurons (Saberi-Moghadam et al., 2018). This leads 

to the formation of new clusters or to the collapse of existing clusters and results in modification of 

the oscillatory activity with respect to the basal condition before stimulation.  

Taken together, the current results are consistent with theories that propose that sleep is an emergent 

property of small neuronal-glial networks (KRUEGER and OBÄL JR, 1993;Benington and Heller, 

1995)& Heller, 1995; Mahowald (Mahowald and Schenck, 2005;Cirelli et al., 2006;Krueger et al., 

2008;Krueger et al., 2013).  

Due to its simplicity and its ability to control the intensity of the emergent state properties, the in vitro 

system offers a novel experimental platform for study of the genetic, molecular, and electrical 

causality mechanisms of sleep states (Kruger 2013).  

The “CCK” cocktails used by Tafti M. in the works described above (Hinard et al., 2012;Saberi-

Moghadam et al., 2018) contained more than ten excitatory neurotransmitters; thus, it is difficult to 

know whether a specific neurotransmitter is responsible for the “awake” state. Recently, this group 

assessed the individual contribution of each neurotransmitter in their original waking cocktail by 

stimulating cortical cultures with each neurotransmitter and analyzing the expression of the three 

major candidate genes Homer 1a, Dbp, and Arc (Mikhail et al., 2017). As demonstrated in microarray 

experiments in mice and rats, during wakefulness the expression of Arc, Bdnf, Egr, and Homer 1a 

increases, whereas Cirbp and Dbp expression decreases (Cirelli et al., 2004;Terao et al., 

2006;Mackiewicz et al., 2007;Maret et al., 2007). Conversely, during REM sleep and after sleep 

deprivation the expression of all of the above genes is upregulated (Cirelli et al., 2006;Mikhail et al., 

2017). It was found that AMPA, norepinephrine (NE), histamine, dopamine (DA), and serotonin [5-

hydroxytryptamine (5-HT)] alone had inducing effects similar to that of the cocktail on Homer 1a 
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expression (Figure 3.10B). A similar pattern of expression of Arc was also observed (Figure 3.10A). 

Unlike the above IEGs, Dbp showed decreased expression in comparison to the control experiments 

only for the cocktail and for norepinephrine (Ne) (Figure 3.10C). The investigators postulated that 

NE alone could reproduce the effect of the complete cocktail on the expression of the selected 

candidate genes, confirming the essential role of NE in wakefulness and associated neuronal plasticity 

(Shepard et al., 2015). Noradrenergic neurons are activated during waking, decrease their firing rate 

during slow wave sleep, and become silent during rapid eye movement (REM) sleep (Hobson et al., 

1975;Aston-Jones and Bloom, 1981). Therefore, the use of CCK cocktails in cultures is limited to 

inducing a state similar to wakefulness and not similar to the REM state. 

 

 

Figure 3.10 Candidate gene expression in cultured neurons after stimulation with individual constituents of the waking 

cocktail. (A to C) Three dishes from three independent cultures were stimulated for 3 hours with the neuromodulators 
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NMDA, AMPA, kainic acid (KA), ibotenic acid (Ibot), serotonin (5-HT), histamine (Hist), DA or NE (each 1 mM), 

carbachol (CCh, 10 mM), or orexin A (OrexA, 0.01 mM). The data represent the mean normalized mRNA expression + 

SD relative to sham-stimulated cultures (Control)from six to nine independent experiments. *P <0.05, **P < 0.01, ***P 

< 0.001 versus control ( t tests with Holm correction). ((Mikhail et al., 2017) 

REM sleep activity depends mainly on cholinergic mechanisms; for that reason, we used the 

cholinergic agonist carbachol (CCh, 20 M), which is known to induce an increase in neuronal 

excitability and desynchronization of the activity similar to that observed in the REM sleep phase 

(Tateno et al., 2005a;Tateno et al., 2005b;Kaufman et al., 2012;Corner, 2013).  

Comparing our approach with that used by Tafti’s group, we administered twice the concentration of 

CCh (20 M) to cultures to achieve the correct efficacy.  

In the following paragraph we will describe in details the state of the art of using CCh on neuronal 

cultures.  

3.4 Modulation of sleep in cultures: targeting the cholinergic system 

Cortical neurons in vivo receive continuous synaptic input as a result of the spontaneous activity of 

cortical networks (Destexhe et al., 2003). This activity in vivo causes large conductance changes in 

the membrane and large-amplitude membrane potential fluctuation (Steriade, 2001) that modulate not 

only the response variability of spike trains but also the signal detection sensitivity of neural responses 

(Hô and Destexhe, 2000). The membrane excitability and firing properties of cortical neurons can be 

significantly modulated by neuromodulators such as acetylcholine (McCormick et al., 1993;Tateno 

et al., 2005a;Tateno et al., 2005b;Corner, 2013) and dopamine (Eytan et al., 2004).  

Cholinergic neurons in the basal forebrain provide diffuse innervation to all cortical regions, and their 

activation modulates neuronal activity in the cortex (Richardson, 1991). This activity has been 

implicated in a number of important physiological functions, including arousal (Steriade and 

Timofeev, 2003), sensory processing (Juliano, 1998), memory (Hasselmo and Bower, 1992;Kirkwood 

et al., 1999) ), as well as in the development of the cortex (Hohmann and Berger-Sweeney, 1998). 

Moreover, the cholinergic system promotes high-frequency oscillatory activity typical of wakefulness 

and REM sleep (Brown et al., 2012).  

Indeed, noradrenergic and cholinergic neurons in the brainstem and the basal forebrain that project to 

cortical regions strongly regulate synchronization in the intact brain (Jones, 2005;Platt and Riedel, 

2011;Berridge et al., 2012;Lee and Dan, 2012). Specifically, the activation of this neuromodulatory 

system suppresses network synchrony and promotes asynchronous firing patterns that are typical of 

arousal and REM sleep. In contrast, during periods of NREM sleep the activity of these systems is 

reduced, together with the prominent appearance of network synchrony as defined above.  
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As stated above, this form of synchronicity and its modulation by acetylcholine (ACh) and 

noradrenaline is not limited to the intact cortex; similar activity patterns occur in organotypic cortical 

preparations (Sanchez-Vives and McCormick, 2000;Beggs and Plenz, 2003;Baker et al., 

2006;Johnson and Buonomano, 2007;Wester and Contreras, 2013) and even in networks of 

dissociated cortical neurons (Maeda et al., 1995b;Canepari et al., 1997;Kamioka, 1997;Van Pelt et 

al., 2004;Wagenaar et al., 2006;Hinard et al., 2012;Kaufman et al., 2012). 

In agreement with in vivo results (Szerb, 1967;Steriade et al., 1991;Steriade et al., 1993), cholinergic 

agonists suppressed network synchronicity in cell culture and slice preparations, shifting the activity 

to tonic firing (Tateno and Jimbo, 1999;Tateno et al., 2005b;Kaufman et al., 2012;Corner, 2013). The 

synchronization patterns were partially restored after 24 hours (Figure 3.11) (Kaufman et al., 2014).  

Moreover, prolonged exposure to CCh is associated with the gradual growth of excitatory synapses 

and, intriguingly, with the gradual reemergence of synchrony, as shown in Figure 3.11 (Kaufman et 

al., 2012). 

 

 

Figure 3.11  

 Left panel) Analysis of synchronous activity during prolonged (>24 hours) ACh application. a) Sync Ratio over 

time in one experiment performed in an open-loop regime (from M. Kaufman, 2014) 

 (Right panel) A) Long-term imaging of postsynaptic sites. Single neuron expressing PSD-95:EGFP. Fluorescent 

puncta represent postsynaptic sites formed on dendritic spines and shafts. B) An enlarged portion of the image 

in A (region enclosed in rectangle) showing the typical field of view (site) imaged in these time-lapse recordings. 

C-D) A 10-day time-lapse series (30-min intervals, 48 images/day) of the dendrite enclosed in a rectangle in B 

(from M. Kaufman, 2012) 

Thus, while networks of cultured cortical neurons do not fully replicate the complex behavior of the 

intact brain, the similarities in the “default” slow wave pattern and the comparable effects of 
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neuromodulation on synchronicity suggest that this preparation is a useful model system for studying 

the basic features of sleep. 
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Chapter 4 

Abolishment of the synchronous activity and 

alteration of the sleep-like electrophysiological 

properties in physiological condition 

In this chapter, we firstly show that neuronal assemblies plated on Micro Electrode Arrays starting 

from two weeks in vitro present synchronized, low frequency firing patterns similar to in vivo slow 

wave oscillations, which are a key parameter of sleep-like state. Then, we stimulated the cortical 

cultures with an agonist of acetylcholine receptor, Carbachol, which caused a desynchronization of 

the spontaneous firing of the cultures. We recorded and monitored the cultures for a period of over 

31 hours. We analyzed the electrophysiological signals by exploiting novel methodological 

approaches, taking into account the different temporal scales of the recorded signals, and considering 

both spikes and local field potentials. Supporting the electrophysiological analysis results, gene 

expressions of targeted genes showed the activation of specific markers involved in sleep-wake 

rhythms. Our results demonstrate that the Carbachol treatment induces desynchronization of neuronal 

activity, altering sleep-like properties in an in vitro model. These results was published in Frontiers 

in Neuroscience in 2016 (Colombi et al., 2016). 

4.1 Materials and Methods 

4.1.1 Cell culture 

Dissociated neuronal cultures were obtained from cortices of embryonic rats at gestational day 18 

(pregnant Sprague-Dawley female rats delivered by Charles River Laboratories, Lecco, Italy). All 

experimental procedures and animal care were conducted in conformity with institutional guidelines, 

in accordance with the European legislation (European Communities Directive of 24 November 1986, 

86/609/EEC) and with the NIH Guide for the Care and Use of Laboratory Animals. The procedures 

for preparing neuronal cultures are described in detail in previous studies (Frega et al., 2012;Colombi 

et al., 2013). Briefly, the cerebral cortices of 4-5 embryos were dissected out from the brain and 

dissociated by enzymatic digestion in 5 ml of trypsin 0.125% and HBSS, diluted DNAsi 0.25 mg/ml 

(Sigma-Aldrich, Saint Louis, Missouri, USA) at 37°C for 30 min. Trypsin digestion was blocked 

using 5 ml of Neurobasal Medium (Thermo Fisher Scientific, Waltham, MA, USA) containing 2% of 
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B27 supplement, 1% penicillin/streptomycin, 1% L-glutamine (Thermo Fisher Scientific, Waltham, 

MA, USA), plus 10% of heat inactivated FBS (Thermo Fisher Scientific, Waltham, MA, USA). Cells 

were centrifuged 5 min at 1200 rpm and then resuspended by pipetting in 2-3 ml of complete 

Neurobasal medium plus FBS. Cells debris was removed centrifuging at 700 rpm for 7 min. Neurons 

were then resuspended in complete culture medium without FBS and counted with trypan blue dye 

(Sigma-Aldrich). Cells were plated onto 60-channel MEAs previously coated with poly-D-lysine and 

laminin to promote cell adhesion (final density around 1200 cells/mm2) and maintained with 1 ml of 

nutrient medium (i.e. serum-free Neurobasal medium supplemented with B27 and Glutamax-I). Cells 

were finally placed in a humidified incubator having an atmosphere of 5% CO2-95% air at 37 °C. 

Half of the medium was replaced weekly. 

4.1.2 Micro-Electrode Array recordings 

Planar microelectrodes are arranged in an 8×8 layout, excluding corners and one reference electrode, 

for a total of 59 TiN/SiN planar round recording electrodes (30 µm diameter; 200 µm center-to-center 

inter electrode distance) (Multichannel Systems, MCS, Reutlingen, Germany) (Figure 1A). One 

recording electrode was replaced by a bigger ground electrode. The activity of all cultures was 

recorded by means of the MEA60 System (MCS). The signal from each channel was sampled at 

10kHz and amplified using a Multichannel System amplifier with a bandwidth of 1 Hz-3kHz. Each 

recorded channel was acquired through the data acquisition card and on-line monitored through 

MC_Rack software (MCS). To reduce thermal stress of the cells during the experiment, MEAs were 

kept at 37 °C by means of a controlled thermostat (MCS) and covered by PDMS caps to avoid 

evaporation and prevent changes in osmolarity. 
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Figure 4.1 MEA electrodes layout and data analysis. (A) A 60-channel-MEA (Multichannel Systems MCS, Reutlingen, 

Germany) with the standard electrode layout (8 × 8) plated with cortical cultures. On the right, typical traces recorded 

from three microelectrodes upon high pass filtering at 300 Hz, to selectively consider MUA only. (B) Scheme of the data 

analysis workflow. We performed spike and burst detection on the high pass filtered signal using MC_Rack software 

(MCS). Before computing power spectral density, we down-sampled the signal to 1 KHz, previously filtered using a low 

pass filter (500 Hz). (C) Scheme of the correlation analysis: we considered only the strongest 100 STTC (Spike Time tiling 

coefficient) during the basal recording (i.e., 7 h), in order to select only the most significant correlations. Then we 

calculated the percentage of decrease in the STTC values. Therefore, we plot connectivity maps of the 100 STTCs. 

4.1.3 Experimental protocol 

The general protocol included 7 hours of recording in culture solution (Neurobasal +2% B27 + 1% 

Glutamax-I 200 µM + 1% Penicilin-Streptomycin sol.), defined as basal condition (Figure 4.2 A). 

Carbachol (CCh) stock solution (100mM) was prepared and diluted in DMSO-water, in order to 

obtain a final concentration of 20µM (Tateno et al., 2005;Corner, 2008;Kaufman et al., 2012). The 

drug was added to the bath solution by directly pipetting in the medium (volume of 1mL). Some of 

the cultures were exposed to CCh for 24 hours, while for control experiment we recorded neuronal 

networks in culture solution for the same time temporal window. Since we noticed that mechanical 
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perturbation due to the pipette injection in the medium could cause a temporary instability of the 

firing rate, we discarded the first 10 minutes at the beginning of the 24-hour recording phase. The 

total number of experiments performed by following the above described protocol were: 4 for control 

(42 ± 5 Days in vitro, DIV) and 7 for CCh (34 ± 2 DIV). The two groups were not statistically different 

in terms of age of the tested cultures (p>0.05, Mann-Whitney’s test). 

4.1.5 Data analysis 

As mentioned in the Chapter 2 (section X) the typical extracellularly acquired signals from a local 

network of neurons are Local Field Potentials (LFPs) and Multi-Unit Activity (MUA). For these 

reasons we analyzed the electrophysiological signals by exploiting novel methodological approaches, 

which can take into account both temporal scales of the recorded signals (i.e. LFPs and MUA). The 

different steps of the analysis are briefly reported in the following (Figure 4.1 B). 

MUA analysis 

Firstly, extracellular signals were filtered online (MC_Rack software, MCS) by using a second-order 

Butterworth high-pass filter with cut-off frequency of 300 Hz, in order to select only the MUA 

component of the signal (Figure 4.1 B). The online spike detection was performed (MC_Rack 

software, MCS) with hard threshold chosen as five times the standard deviation of the noise (-5σn). 

To check for changes in the noise level during long recordings, we performed a post-hoc test for 

significant differences in the wide-band raw data standard deviation on a selected subset of control 

experiments. We found no significant changes in the standard deviation of the noise during the entire 

duration of the experiments. Afterwards spike trains were analyzed off-line using a custom software 

developed in Matlab (The Mathworks, Natick, MA, USA), named SpyCode (Bologna et al., 2010), 

which collects several tools for processing multi-channel neuronal recordings. We performed a 

custom burst detection as previously described (Chiappalone et al., 2005). Once spikes and bursts 

were detected, we were able to compute several parameters such as Mean Firing Rate, MFR (mean 

number of spikes over an interval of time [spike/s]), Inverse Burst Ratio, IBR (percentage of spikes 

outside bursts) and Burstiness Index, BI, index of the burstiness level of the network, as initially 

presented in (Wagenaar et al., 2005). The parameters extracted through burst and spike detection were 

normalized for each experiment with regard to the corresponding value of the reference (basal) 

activity for direct comparability. The same procedure has been described in previous papers from our 

group (Colombi et al., 2013). 

Correlation analysis 

First, we calculated the Spike Time Tiling Coefficient (STTC) (Cutts and Eglen, 2014) between each 
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pair of spike trains recorded from active channels (i.e. having MFR>0.01 spike/s) every one hour 

(Figure 4.1 C). We only considered the largest 100 STTCs selected during the basal recording (i.e. 7 

hours), to identify only the most significant correlations. We then calculated the percentage of STTCs 

significantly decreasing during the control and the CCh application (i.e. decrease higher than 20%, 

mean + 3SD of the variations observed during basal recording). Finally, for the sake of clarity, we 

plotted the top 100 STTCs in the connectivity maps at different time points, both for the control and 

for the CCh experiments. 

LFP analysis 

Wide-band signals were first down-sampled to 1 kHz, after low pass filtering below 500 Hz to prevent 

aliasing (using a Hamming-window FIR filter of order 30) (Leondopulos et al., 2012). Then we 

computed the power spectral density of the decimated signal (μV²/Hz), using Welch method 

(Windows=5s, overlap=50%; DFT (Discrete Fourier Transform) points=8192; df (frequency 

resolution)=0.12 Hz; dt (temporal resolution)=8.19 s) (Figure 4.1 B). We only considered the lower 

frequency bands of the signal, which are of particular interest for studying the sleep-wake cycle, in 

particular delta (1-4 Hz), theta (4-11 Hz), beta (11-30 Hz) and gamma (30-55 Hz) bands. To 

characterize LFP, we calculated the power in each of those frequency bands. 

We also plotted the different waves previously described (i.e. delta, theta, beta and gamma), by 

filtering the LFP signal using FIR filters with different lengths (Leondopulos et al., 2012): 20000 for 

delta (1-4 Hz), 10000 for theta (4-11 Hz) and beta (11-30 Hz) and 5000 for gamma (30-55 Hz). All 

filtering operations were time compensated to account the delay introduced by the filter. 

 

4.1.6 Gene expression 

Multi-well plates were coated using Poly-D-lysine 0.1 mg/ml (Sigma-Aldrich) and incubated 

overnight in a sterile incubator at 37°C and 5% CO2. Neurons were then plated at a concentration of 

500,000 cells/well. Primary neurons were treated after DIV 30 (i.e. same age used for the MEA 

experiments) with 20μM of Carbachol (Sigma-Aldrich) for 24h. A wash out was then performed and 

the cells were put to recovery with conditioned medium for other 24h prior to harvesting. Neurons 

were washed three times with ice-cold phosphate-buffered saline solution and lysed with 300 μl of 

Trizol (Life Technologies), followed by a phenol/chloroform extraction. Cell lysates were collected 

and 600 ng of RNA was retro-transcribed using ImpromII reverse transcription kit (Promega), 

according to manufacturer`s specifications. Real Time-PCR was performed and analysed as 

previously described (Tinarelli et al., 2014) in duplicate for each sample. All samples were normalized 
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against b-actin. Primers used in the different Real Time-PCR experiments are reported in Table 1. 

Gene name  Primer Sense Primer Reverse 

b-actin TATGGAATCCTGTGGCATC GTGTTGGCATAGAGGTCTT 

Arc TCTACACTCTCAGACCAT ACACTTGATTTCTTGACTAC 

Dlk-1 AAATAGATATTCGGGCTTGC ATTCGTACTGGCCTTTCT 

Fos CATTACAGAGAGAAGAAACAAGT TTCACGCACAGATAAGGT 

Homer1b/c TAACCTGAAGACTCTCCTA ACGAAGACAGACAGTATC 

Per2 CATACCTTCACTGCTTCTT AGTCTCCTCAAGTCCAAT 

 

4.1.7 Statistics 

Data are expressed as mean ± standard error of the mean (SE). Statistical tests were performed to 

assess the significant difference among the experimental conditions. The normal distribution of data 

was assessed using Kolmogorov-Smirnov normality test. According to the distribution of data we 

performed either parametric (e.g. t-test) or non-parametric test (e.g. Mann-Whitney) test and p 

values<0.05 were considered significant. Statistical analysis was carried out by using OriginPro 

(OriginLab Corporation, Northampton, MA, USA). 
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4.2 Results 

In the present study we examined the long-term effect of CCh on the spontaneous network activity 

of mature cortical cultures grown over MEAs (Figure 4.2 A). In particular, we compared the behavior 

of cortical networks with (N=4 cultures) or without treatment (N=7 cultures). In control experiments, 

the networks revealed a spontaneous, synchronized and low-frequency (0.16-3 Hz) multi –unit burst 

activity, composed of network-wide brief (50-100 ms) bursts separated by periods of nearly complete 

quiescence or sparse, asynchronous action potentials (Maeda et al., 1995;Van Pelt et al., 

2004;Wagenaar et al., 2005;Eytan and Marom, 2006;Chiappalone et al., 2007), as depicted in Figure 

4.2 B, left panel. Following CCh application, these activity patterns were strongly altered, in 

particular at the beginning of the administration. This resulted in a loss of regularity, and in 

fragmentation of burst structures, with many more isolated spikes, as shown in the raster plot of one 

representative experiment (Figure 4.2 B, right panel) and in the measure of network synchronization 

described below (Figure 4.2 D-E). In fact, with respect to the control, CCh increased significantly 

the percentage of out-burst spikes (Inverse Burst Ratio) during the entire recording (Figure 4.2 D). 

This behavior is also confirmed by the BI (Burstiness Index) which significantly decreased with 

respect to the control experiments (Figure 4.2 E) In contrast, the overall activity levels expressed by 

firing rate were significantly affected only in the first hour (Figure 4.2 C). These effects are in 

agreement with previous reports (Tateno et al., 2005;Corner, 2008;Kaufman et al., 2012). The 

percentage of active channels remained high in both experimental conditions: 88.16 % for the control 

experiment and 80.20% during CCh treatment. We calculated the percentage changes as follows: 

%𝑉𝑎𝑙𝑢𝑒𝑠 = 100 ∗
𝑋𝐸𝑛𝑑 − 𝑋𝑠𝑡𝑎𝑟𝑡

𝑋𝑠𝑡𝑎𝑟𝑡
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Figure 4.2 MUA analysis. (A) Left panel: Schematic representation of experimental protocol using chronic treatment of 

Carbachol (CCh). Cortical cultures are recorded for 7 h in basal condition, followed by 24 h of recording, upon addition 

of 20 μM CCh. Right Panel: Time point of 1 h considered for the evaluation of the networks parameters for each of the 

two different experimental condition. (B) Raster plots showing 150 s of spontaneous (left) and after CCh application 

(right) for a representative experiment (each small dot represents a spike, each row an electrode). In the basal condition, 

the cortical culture shows a synchronized activity completely disrupted after the CCh treatment. (C) MFR of cultures (left) 

recorded without (blue line: N = 4; cultures age 42 ± 5 DIV) and with stimulation (red line: N = 7; cultures age 34 ± 2 

DIV). (C1) Box plot of MFR (right) during control experiments (blue box) and during CCh treatment (red box at three 
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different 1-h time intervals: start, middle, and end for each experimental condition. In the analyzed group of experiments, 

the MFR of cultures upon drug administration changed significantly only in the first 1 h, increasing by 9.55% respect to 

the control experiments in the same interval of time (D) IBR of cultures (left) recorded without (blue line) and with 

stimulation (red line). (D1) Box plot of IBR (right) during control experiments (blue box) and during CCh treatment (red 

box). In the analyzed group of experiments, the IBR of cultures upon drug administration significantly increased compared 

to the control experiments during the entire recording. In particular, during the first 1 h, IBR increased by 200% compare 

to the control in the same period of time. (E) BI of cultures (left) recorded without (blue line) and with stimulation (red 

line). (E1) Box plot of BI (right) during control experiments (blue box) and during CCh treatment (red box). In the 

analyzed group of experiments, the BI of cultures significantly decreased upon drug administration compared to the 

control experiments during the entire recording. BI in the first 1 h decreased by 76% respect to the control in the same 

interval of time. Bold lines and shaded regions (C–E) correspond to mean ± SEM. Gray line corresponds to the basal 

recording for the two experimental conditions. Gray-shaded area indicates 10 min of recording stop, after CCh addition, 

to prevent experimental bias due to drug release in the medium. For each box plot (C1–E1), the small square indicates 

the mean, the central line illustrates the median and the box limits indicate the 25th and 75th percentiles. Whiskers 

represent the 5th and the 95th percentiles. Statistical Analysis was carried out using Mann–Whitney comparison test, **p 

< 0.01. 

Following the previous results, we analysed the changes of correlation upon CCh administration (see 

Materials and Methods). The effects of CCh on network activity correlation were visible when 

comparing the functional connectivity maps at different time points (Figure 4.3 B). CCh caused an 

initial loss of correlation, resulting in 80% decreased of mean STTC values with respect to the basal 

condition, followed by a partial recovery after a few hours (Figure 4.3 B). During the control 

experiment, only 2% of the STTC values significantly decreased at the end of the recording but the 

number of links did not change with respect to the basal condition. (Figure 4.3 C). In the first few 

hours following CCh application, the 98% of STTC value significantly decrease with respect to the 

basal value. Moreover the 5% of the STTC was deleted after the treatment and not recovered after 24 

hours. 
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Figure 4.3.Correlation Analysis. (A) One-hour time intervals at three different times considered for the graph of the 

functional connectivity for each two different experimental conditions. (B) Plot of color-coded functional connectivity of 

largest 100 values selected during the 7 h of basal recording (i.e., 7 h) for two representative experiments. Top panel: 

Control experiment did not show variation with respect to the spontaneous condition. In contrast, CCh application caused 

a complete loss of correlation in the first 1 h with respect to the basal condition, and it did not recover after a few hours 

(right panels). Bottom panel: Bar plot of largest 100 STTC for non-treated cultures (N = 4) in the basal (gray bar) and 

in the control (blue bar) condition. Each bar corresponds to one of three different time points of an hour: start, middle, 

and end for each experimental condition. In the middle, plot of largest 100 STTC for treated cultures (N = 7) in the basal 

(gray bar) and during the CCh administration (red bar). On the right, box plot of largest 100 STTC for the treated 
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experiment evaluated in four different time-point. During the 24 h of CCh application, the SSTC values decreased 

significantly respect to the 7 h of the basal recording (gray box). White arrow indicates the starting point for CCh 

treatment. (C) On the left, bar plot of the percentage of STTCs values that significantly decreased (above 20%) respect to 

the basal in the control condition (blue bar, N = 4) during three different time points (start, middle and end). In the middle, 

bar plot of the percentage of STTCs values that significantly decreased (above 20%) respect to the basal phase during 

the CCh administration (red bar, N = 7). On the right, bar plot of the percentage of deleted connections (i.e., STTC) 

during the CCh application. For box plot (B,C), the small square indicates the mean, the central line illustrates the 

median and box limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. 

Statistical Analysis was carried out using Mann–Whitney comparison test, **p < 0.01. 

All main waves (i.e. delta, theta and partly beta), which characterize classical sleep-wake-cycle, are 

strongly suppressed upon CCh treatment (Figure 4.4 A, right panel). Thus we evaluated how the 

power spectral density (PSD) changed at different time points during both control and CCh protocol 

(Figure 4.4 B). The control experiments indicate that most power is concentrated in the delta 

frequency band, reflecting very slow oscillations in the LFP that match the appearance of synchronous 

bursting activity in the MUA (Figure 4.4 C, blue line). PSD trend remained stable throughout the 

recording in the control experiments, whereas CCh application to the culture caused a marked 

decrease of the low-frequency power in the LFP (especially in the delta and theta range) (Figure 4.4 

C, red line). The total power in the first hour (i.e. Start) (Figure 4.4 C) decreased by 93% in delta, 

87% in theta, 50% in beta, and 40% in slow gamma bands with respect to the control experiment. 

After 12 hours from the treatment (i.e. Middle) (Figure 4.4 C), the integrated power in the delta and 

theta bands shows a partial recovery especially with respect to the first hour: the total reduction drops 

to 37% for delta and 55% for theta bands. The average PSDs (when considering all phases) globally 

show marked reduction of power in all frequency bands caused by CCh (62% for delta; 71% for theta; 

50% for beta; 43% for gamma). 
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Figure 4.4 LFP analysis. (A) Signal filtered to specific frequency bands involved in the sleep for one channel of a 

representative experiment. The CCh treatment induced a suppression of the low waves delta (Δ, 1–4 Hz), theta (Θ, 4–11 

Hz), beta (Β, 11–30 Hz), and gamma (Γ, 30–55 Hz) respect to the control condition. (B) Different time points (1 h long) 

considered for each two types of experimental condition. (C) PSD during the control phase (N = 2, blue line) and the 

CCh application (N = 4, red line) in the first 1 h of recording (Top Panel). Bold lines and shaded regions correspond to 

mean ± SEM. Column bar of integrated PSD per frequency bands in the same time point (Bottom Panel). CCh treatment 

caused a suppression of the low components of the signal (1–55 Hz). (C1) PSD after 12 h of recording (Top Panel). 

Column bar of integrated PSD per frequency bands in the same time point (Bottom Panel). (C2) PSD in the last hour of 

recording (Top Panel). Column bar of integrated PSD per frequency bands in the same time point (Bottom Panel). (D) 

Column bar of integrated PSD evaluated through the key time points described in (B). The decrease involves in particular 

the delta and theta frequency bands. (D) Bar plot of the power for all phases in the different frequency ranges for the 

control experiment (N = 2; Delta Power = 8.87 ± 1.36 μV2; Theta power = 4.15 ± 0.71 μV2; Beta power = 2.03 ± 0.29 

μV2; Gamma power = 1.53 ± 0.19 μV2) and for the experiment with the administration of CCh (N = 4; Delta Power = 

3.28 ± 0.82 μV2; Theta power = 1.21 ± 0.23 μV2; Beta power = 1.00 ± 0.07 μV2; Gamma power = 0.87 ± 0.07 μV2). 
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Statistical analysis was carried out using Mann-Whitney test, *p < 0.01. 

We complemented the electrophysiological study with a gene expression assessment. In particular, 

we investigated whether the network physiological effects of CCh treatment were corroborated by a 

gene expression modulation that recapitulated the clock-like and the homeostatic-like aspects of 

sleep. We performed gene expression analysis of DIV 30 primary rat neurons treated with 20 µM of 

CCh for 24h and harvested 24h later. Interestingly, two classical immediately early genes (IEG), Arc 

and Fos (Figure 4.5 D), were upregulated by CCh, Arc being significantly overexpressed (p=0.02 

control n= 13, CCh treated n=14) (Figure 4.5 A), while Homer1b/c was not altered (Figure 4.5 E). 

Moreover, we observed a 50% significant (p=0.02 control n=12, CCh treated n=15) increase of Per2 

gene expression in cultures treated with CCh compared to control cultures (Figure 4.5 C). In addition 

to the classical markers of the circadian and the synaptic homeostasis control of sleep, we tested new 

genes that play a role in the epigenetic regulatory processes of sleep. In particular, we found that 

Dlk1, a genomic imprinted gene, was significantly (p=0.03 control n=15 CCh treated n=13) 

downregulated (i.e. by approximately 30%) by Carbachol treatment compared to controls.  

 

 

Figure 4.5 Gene expression analysis following CCh treatment. (A–C) Box plot of Arc, Per2, Dlk1, Fos, Homer1 mRNA 

levels in primary neuronal rat cultures, treated at DIV 30 with 20 μM of CCh or with normal medium as control. For 

each box plot (A–E), the small square indicates the mean, the central line illustrates the median and box limits indicate 

the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. Raw data are plotted as blue and red 

dots, respectively for control and CCH treatments. The dots represent data from three different experiments. *p < 0.05 

after Student. 
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4.3 Discussion 

In this study we presented electrophysiological and genetic evidence that primary cortical cultures, 

usually displaying synchronized low-frequency firing patterns under spontaneous conditions, are able 

to encompass some essential features of sleep in a controllable way. LFP analysis complemented 

MUA analysis and allowed us to look for classical sleep electrophysiological signatures (i.e. slow 

waves) in our simplified in vitro experimental model. In fact, we found that under spontaneous 

condition most LFP power was actually confined to the delta frequency range, as it can be usually 

observed in the EEG signal during NREM phase in sleeping rodents (Steriade et al., 1993). In 

addition, in vivo these waves were found to be negatively correlated with the response to arousing 

stimuli (Neckelmann and Ursin, 1993). These observations suggest that cortical cultures are usually 

characterized by a sleep-like state, confirming recent data from several different laboratories 

(Sengupta et al., 2011;Hinard et al., 2012). Since cortical cultures spontaneously lack sleep-wake 

rhythm that occurs in in vivo systems, we tested whether we could mimic wake-like states by chemical 

manipulation, in order to use this as a simplified and easily controllable experimental model to 

investigate sleep more completely. The application of CCh resulted to be an efficient experimental 

strategy to suppress classical sleep-like properties of activity, resulting in an asynchronous firing 

pattern with many isolated spikes. In fact, while the percentage of isolated spikes increased 

significantly upon CCh stimulation, the burstiness level markedly decreased. Similarly, the 

correlation of activity dropped in the first one hour after CCh treatment, while the firing rate 

increased. The value of STTC remained significantly low during the entire recording. The percentages 

of decreased STTC values remain higher during the 24 hours of the CCh application. Moreover, the 

administration of CCh induced a suppression of delta and theta waves, a range encompassing the 

entire spectrum of sleep in vivo. These changes testify for a significant alteration of sleep-like states 

in the network but, surprisingly, beta and low-gamma waves, which are typically present during 

wakefulness and REM sleep, do not show power variations compared to the low frequency 

components of the signal. This study demonstrates that wake-like and sleep-like electrophysiological 

signatures can be dissociated in vitro and, possibly studied independently within this experimental 

model. Furthermore, we demonstrated that CCh alters specific sleep-like signatures.  

As a complement of the above conclusions, gene expression profile in our study confirmed an effect 

on the circadian and the synaptic homeostatic components. Our results demonstrated that CCh exerts 

a significant role in activating molecular markers of sleep-wake rhythms, for example Per2 

expression. Yet, we showed that classical sleep-dependent IEGs (Cirelli et al., 2006) are also essential 

in neuronal responses of our in vitro experimental model. However, Homer1b/c, a gene considered 

as a molecular marker of the synaptic excitability response to stimulation (Ango et al., 2000;Nakano-
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Kobayashi et al., 2014;Cao et al., 2015), was not affected by the treatment. Moreover, it raises also a 

new possibility: can we use in vitro experimental model to dissect molecular markers of synaptic 

homeostasis and circadian control of sleep? Indeed, PER2 is a marker of the circadian control of sleep 

(Kopp et al., 2002;Shiromani et al., 2004) while Homer1b/c is an important marker of neuronal 

excitatory synapses activity. In addition we have shown that Dlk1 is a molecular marker of sleep-like 

electrophysiological aspects in vitro, confirming recent evidence in vivo (Tinarelli et al., 2014).  

Altogether our results demonstrate that our experimental model in cultures is not able to reproduce 

an awake-like state, however it is a promising model to manipulate and study sleep properties in a 

very controlled way. 

In conclusion, this study shows that MEA recordings coupled to cortical cultures represent a favorable 

model to investigate the essential neuronal network features of sleep in vitro. We envisage that sleep-

related electrophysiological phenotypes can be assessed by using in vitro experimental models. In 

particular, the combination of new gene editing technologies such as CRISPR/cas9 system and MEA 

recordings has the potential to accelerate the investigation of loss or gain of function due to gene 

mutations in sleep studies. 
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Chapter 5 

Measurement of the perturbation complexity index 

during alteration of sleep-like properties  

In the previous chapter, we showed that cell cultures plated over MEA display a spontaneous activity 

that is characterized by a firing regime that resembles that of the sleep-like state (Hinard et al., 

2012;Colombi et al., 2016;Saberi-Moghadam et al., 2018). By treating our cultures with Carbachol, 

we are able to induce suppression of the sleep state by desynchronizing the neuronal activity and thus 

alter sleep-like properties in an in vitro model (Colombi et al., 2016).  

Starting from these findings, we began a collaboration with the group led by Dr. M. Massimini at the 

Dipartimento di Scienze Biomediche e Cliniche "L. Sacco" in Milan. The main goal of the group is 

to assess the level of consciousness in human subjects during wakefulness, NREM and REM sleep 

under both physiological and pathological conditions. With this collaboration we aim to understand 

if Carbachol administration to cortical cultures is sufficient to induce changes in the complexity of 

the response, similar to those observed in human subjects during REM sleep or wakefulness.   

Indeed, 2013, Massimini and coauthors introduced an empirical measure of brain complexity called 

the perturbation complexity index (PCI) (Casali et al., 2013).PCI is used in human research to 

quantify the complexity of spatiotemporal responses recorded with EEG to transcranial magnetic 

stimulation (TMS); it permits assessment of the level of consciousness of human subjects. During 

sleep, a TMS pulse either evokes a local EEG response (e.g., to a low-amplitude pulse) or a global 

but stereotypical EEG response across all electrodes (e.g., to a high-amplitude pulse) (Huber et al., 

2012).In TMS/EEG experiments, the most striking difference between wakefulness and sleep is found 

not in the amplitude of the TMS/EEG responses but in the ‘richness’ of the peaks and troughs in the 

responses observed during wakefulness (Tononi et al., 1998;Massimini et al., 2005).   

The PCI aims to summarize the TMS/EEG responses in different brain states using a single number. 

As a first step, it is necessary to quantify the number of significant activations that occur due to the 

stimulation. To do this, bootstrap statistics are applied to the pre-stimulus activity to determine the 

threshold of any significant deviation from baseline activity for each electrode. Second, the response 

of each electrode is compared to its own threshold, and significant activations are established (1 

indicates significant activation, and 0 indicates non significant activation), forming a spatiotemporal 

binary matrix (S(x,t)). To quantify the ‘complexity’ of the response matrix S(x,t), a Lempel-Ziv 
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compression algorithm is then used (further details are given in Casali et al. 2013).  

According to the mathematical definition, PCI is low when the interaction between cortical areas is 

low (loss of integration) or when many interacting areas all react to the perturbation in a stereotypical 

way (loss of differentiation). In contrast, PCI is high if the initial perturbation is transmitted to a large 

integrated area that subsequently responds differently by generating a spatiotemporal pattern of 

activation that cannot be easily compressed. Indeed, PCI was found to be high when consciousness 

is present (i.e., during wakefulness) and low whenever consciousness is lost, for example, during 

sleep, anesthesia, and coma (Tononi, 2004;Seth et al., 2008;Boly, 2011). 

In 2013 Casali et al. (Casali et al., 2013) quantified PCI in a large dataset of TMS/EEG recordings 

(208 sessions involving 52 subjects) obtained from healthy subjects during wakefulness, NREM sleep 

and various sedated states (Figure 5.1). During wakefulness, PCI was indeed the highest because 

TMS triggered a widespread and differentiated activity response. Upon loss of consciousness, the 

complex pattern of causal interactions observed during wakefulness collapsed into a stereotypical 

slow wave, and PCI decreased. 

 

Figure 5.1 PCI measurement during wakefulness and REM sleep captures integration and differentiation of the activity. 

The green star indicates the site of TMS stimulation (from Massimini et al. 2005) 
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These slow waves represent a default pattern of activity that also emerges from cortical networks 

under conditions of functional or anatomical disconnection (Chapter 3, Paragraph 3.3).  

A recent study showed that acute cortical slices can be induced to oscillate between low- and high- 

complexity states of evoked activity by application of a cocktail of neuromodulators that includes 

Norepinephrine and Carbachol (D'andola et al., 2017).  

Here, we were interested in determining whether we could observe systematic changes in the 

complexity of the responses in a simplified model of cortical networks, namely cortical cultures. We 

stimulated the cell cultures using single shocks with an interstimulus interval of 5 seconds (~120 

trials) to find the significant component of the response (i.e., the significant response) with respect to 

the prestimulus activity. To do this, we analyzed the spiking activity and adapted the statistics (see 

the preceding step 1) to define the S(x,t) matrix in cortical cultures under different conditions (basal 

versus CCh administration).  

We demonstrated that PCI could be effectively modulated by pharmacological application of CCh, 

paving the way for the possibility of studying some features of consciousness using cell culture 

networks.   

5.1 Materials and methods 

5.1.2 Cell cultures & Micro-Electrode Array recordings 

Cortical cell cultures prepared from embryonic rats at gestational day 18 were plated on 60-channel 

MEAs (Multi Channel Systems, MCS, Reutlingen, Germany) that had been previously coated with 

borate buffer and poly-L-lysine to promote cell adhesion (final cell density approximately 1200 

cells/mm2). The details of the procedure used to obtain the cultures are described in section 4.1.1 of 

Chapter 4. After a period of rest (~30 minutes) outside the incubator to allow the culture to adapt to 

the new environment and reach a stable level of activity, the spontaneous activity of the culture was 

monitored and recorded for 30 minutes. 

5.1.2 Experimental protocol 

The experimental protocol included 30 minutes of basal recording (i.e., in Neurobasal medium) 

followed by two sessions of electrical stimulation (10 minutes each) at two different sites. We applied 

CCh (20 m) by directly pipetting it into the culture medium and recorded from the cultures for 1 

hour in the absence of electrical stimulation. Since we observed that mechanical perturbation caused 

by the addition of CCh to the medium through a pipette can cause temporary instability of the firing 

rate, we discarded the first 10 minutes of recording following CCh administration. After one hour, we 
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repeated the electrical stimulation protocol in the presence of CCh, using the same locations for 

stimulation and performing the stimulation in the same order that was used in the basal recording. 

For each stimulation session (duration 10 minutes), a total of 120 trials per stimulation site were 

collected. The stimulus was the same across all experiments and all experimental phases (biphasic 

voltage pulse, duration 600 µs, 750 mV half-amplitude every 5 seconds). These parameters have been 

shown to be the most effective parameters for evoking responses in neurons cultured on MEAs 

(Wagenaar 2004). A total of 9 experiments were performed using cultures at 34 ± 3 DIVs. 

5.1.3 Data analysis 

MUA activity 

In the high-pass filtered data (f>300 Hz), we detected spikes (i.e., single over-threshold peaks) and 

bursts (i.e., groups of tightly packed spikes) using custom software developed in our laboratory 

(Bologna et al., 2010) (see Chapter 2). We then computed the following electrophysiological 

parameters, which were also used in our previous work (Colombi et al., Chapter 4): Mean Firing Rate 

(MFR, spikes/sec), Inverse Burst Ratio (IBR, percentage of spike outside the burst) and Burstiness 

Index (BI, index of the burstiness level of the network). 

To investigate the effect of the electrical stimulation on the neuronal activity, we computed the PSTH, 

which reflects the mean impulse response of each site to the stimulation. The PSTH was calculated 

by considering 400-ms time windows in the recordings that followed each stimulus. We first divided 

each time window into 4-ms bins and then counted the number of spikes that occurred in each time 

bin. Finally, we normalized the spike count per time bin by the number of trial times the bin size 

(Chiappalone et al., 2008). With this definition, all channels with PSTH area below ‘1’ were removed 

from the statistical analysis because they were considered to be inactive (i.e., not able to evoke a 

minimal response to stimulation).  

We computed the percentage of variation of the PSTH area as follows: 

𝛥 =
100 ∗ 𝑋𝐸𝑛𝑑 − 𝑋𝑠𝑡𝑎𝑟𝑡

𝑋𝑠𝑡𝑎𝑟𝑡
 

We defined as significant a channel that displayed changes in PSTH higher or lower than a specific 

threshold that was defined based on the ‘stability’ phases. We selected as stability phases the 

stimulation sessions during the evoked activity without CCh. Specifically, we divided every 

stimulation session (S1 or S2) into two equal parts of 5 minutes each. For each divided session of 5 

consecutive minutes, we computed the histogram of the variation in PSTH area (ΔSTIM1, ΔSTIM2) 

as depicted in Figure 5.2. The threshold was defined as the mean+ 2SD of the PSTH area variation 
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(i.e., 20%).  

 

Figure 5.2 Selection of the threshold during the stability phases.  

Perturbation Complexity Index  

We quantified the perturbation complexity index (PCI) in cortical cell cultures by analyzing the 

evoked spiking activity.  

Compared to the human data, cortical cultures yielded a higher signal-to-noise ratio; therefore, we 

used a smaller number of trials (60 to 120) and simpler statistics to assess the significant evoked 

activity. 

The activity of each channel was binned (bin size=5 ms or 20 ms) around the stimulation artifact 

(1000 ms before and 500 ms after the stimulus). As the threshold for significant activation of a 

channel, we selected the mean+-K*std of the prestimulus activity (K = number of standard 

deviations). We found that K=1 (i.e., one standard deviation) sufficed to limit the detection of false 

activations in the baseline (~<10-5).  

We then extracted a binary matrix of significant sources (SS(x,t)) that represents the spatial (channel 

x) and temporal (time t after stimulation) activations caused by the electrical perturbation (Casali et 

al. 2013). The channels in the matrix SS(x,t) are sorted from bottom to top on the basis of their total 

activity during the poststimulus period (i.e., according to the number of activations). To quantify the 

minimal amount of redundant information contained in the binary matrix S(x,t), the matrix was 

compressed using the Lempel-Ziv complexity measure. Finally, PCI is defined as the Lempel-Ziv 

complexity measure normalized between [0,1] to make the PCI comparable across conditions (e.g., 

carbachol treatment).  

LFP Activity 

To select the LFP components, we low-pass-filtered the raw data between 1 and 300 Hz. We then 
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computed the power spectral density of the decimated signal (sampling frequency 1 kHz) (μV²/Hz), 

using the Welch method (Windows=5s, overlap=50%). We considered only the lower frequency 

bands of the signal, in particular the delta (1-4 Hz), theta (4-11 Hz) and beta (11-30 Hz) bands, which 

are of particular interest in studies of the sleep-wake cycle. To characterize the LFP, we calculated 

the power in each of those frequency bands. 

For the stimulation phase, we computed the mean response to the stimulation pulse for the top 20 

channels for each culture that displayed the highest MFR. We then considered the response to the 

stimulation (100 ms before and 900 ms after the stimulus) and repeated the analysis described above, 

computing the power in each frequency band. To eliminate the artifact, we discarded the first 10 ms 

after the stimulus. PSD was computed using the Pwelch function in MATLAB with the following 

parameters: win=200 ms, overlap=50%, Fs=1e3 and Max frequency =100 Hz.  
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5.2 Results 

 We performed experiments using rat cortical cultures plated on MEA according to the protocol 

depicted in Figure 5.3A. Since we observed that the electrophysiological parameters were not stable 

during the first 30 minutes after CCh administration (20 uM), we divided the CCh recording phase 

into CCh 30’ and CCh 50’ (i.e., the first 30 minutes and the last 20 minutes, respectively). We 

normalized each experiment with respect to the mean of the selected parameter (i.e., MFR, IBR and 

BI) during the basal recording.  

No significant differences in the level of activity expressed by MFR were observed during the 

application of the experimental protocol. However, CCh application resulted in an increase in the 

number of isolated spikes (i.e., higher IBR) and a decrease in the burstiness index (BI) with respect 

to the basal phase, indicating a loss of bursting activity followed by a loss of synchronicity.  

We evaluated the network activity correlation using the STTC method (see Chapter 2, paragraph 2.4.2 

REF). As shown in panel E of Figure 5.3, during the basal phase (blue box) the STTC was high since 

the activity was strongly correlated. After administration of CCh, there was a progressive and 

significant decrease in the STTC values, indicating desynchronization of the activity.  

Indeed, the results obtained in cultures treated with CCh are consistent with the results obtained 

previously using embryonic rat cortical cultures coupled to MEA(Colombi et al., 2016) (Chapter 4 

paragraph 4.2). 
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Figure 5.3. Comparison of the network parameters during basal and CCh administration. A) Experimental protocol 

adopted in the experiments. The spontaneous phase (i.e., without electrical stimulation), which was analyzed here, is 

highlighted. Cortical cultures were recorded for 30’ under basal conditions followed by 1 h of recording after the addition 

of 20 μM CCh. B) MFR of cultures under basal conditions and during CCh stimulation (n=10). Box plot of MFR (right) 

during CCh treatment (red box at two different time intervals: the first 30’ (CCh 30’) and the last 20’ (CCh 50’). In the 

group of experiments analyzed here, the MFR of cultures did not change with respect to the basal phase after drug 

administration (dotted line in the figure). C) IBR of cultures during basal and CCh stimulation (n=10). Box plot of IBR 

(right) during CCh treatment (red box at two different time intervals: the first 30’ (CCh 30’) and the last 20’ (CCh 50’). 

In the analyzed group of experiments, the IBR of the cultures significantly increased after drug administration compared 

to the basal phase (dotted line in the figure). (D) BI of cultures under basal conditions and during CCh stimulation 

(n=10). A box plot of BI (right) during CCh treatment (red box) at two different time intervals the first 30’ (CCh 30’) and 

the last 20’ (CCh 50’) is shown. In the analyzed group of experiments, the BI of cultures upon drug administration did 

not change with respect to the basal phase (dotted line in the figure). E) STTC values of cultures under basal conditions 

and during CCh stimulation (n=10). A box plot of the STTC values (right) during the basal phase (blue box) and during 

CCh treatment (red box) at two different time intervals the first 30’ (CCh 30’) and the last 20’ (CCh 50’) is shown. In the 

analyzed group of experiments, the STTCs of the cultures increased significantly after drug administration compared to 

the basal phase. The bold lines and shaded regions (B-E) correspond to the mean ± SEM. The gray shaded area denotes 

a 10-min pause in the recording after CCh addition to prevent experimental bias due to drug release into the medium. 

For each box plot (B-E), the small square indicates the mean, the central line illustrates the median, and the box limits 

indicate the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. Statistical analysis was 
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conducted using the Mann-Whitney comparison test; **p < 0.01. 

 

Next, we analyzed the changes in the effect of electrical stimulation by comparing the PSTH area at 

baseline with that observed after CCh administration (Figure 5.4A). Figure 5.4B depicts the network 

PSTH observed in one representative experiment during the basal (blue line) and CCh phases for both 

stimulation sites (dark red line). More than 50% of the channels showed a significant decrease in 

PSTH area compared to the basal condition (Figure 5.4C). We did not find any differences in the 

PSTH area between the two stimulation sessions, indicating that this reduction did not depend on the 

order of stimulation. The histogram of the percentage of variation of the PSTH area for each active 

electrode showed a negative median value for both stimulation sites (Figure 5.4D).   

These effects are consistent with previous reports based on EEG data obtained in humans with TMS 

stimulation (Massimini, 2005). In fact, TMS-evoked responses during sleep showed higher EEG 

signals than those recorded during wakefulness. 

 

Figure 5.4 PSTH area analysis. A) Experimental protocol adopted for the experiments. Cultures were recorded at 30 

DIVs. The stimulation phase analyzed here is highlighted. Cortical cultures were stimulated for 10 minutes at two different 

sites under basal conditions and after CCh treatment. B) Network PSTH measured in one representative experiment 

during both stimulation sessions under basal conditions (blue lines) and after CCh treatment (dark red lines). C) The 

PSTH area for both stimulation sessions showed a higher percentage of channels that decreased relative to the basal 

level. The variation of each channel was considered significant if it was greater than 20% of the threshold computed by 
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measuring the variation during the stability phases. Red dots indicate channels that significant decrease with respect to 

the basal conditions, green dots indicate channels that significant increase and black channels are the ones that did not 

changed. D) The histogram of the percentage of variation for both stimulation sessions showed a peak centered at -27 

for stimulus 1 and a peak centered at -23 for stimulus 2. 

 

As we previously showed in Chapter 4, all of the main waves (i.e., delta, theta and to some extent 

beta) that characterize the classical sleep-wake cycle are strongly suppressed upon CCh treatment, as 

shown in Figure 5.5 B (left and center panels). We decided to not include the results on gamma bands 

since we did not found any difference upon CCh administration in the previous chapter (see Chapter 

4). Thus, we evaluated how the power spectral density (PSD) changed during the CCh protocol. 

Spontaneous activity was characterized by very slow oscillations in the LFP; indeed, most of the 

power is concentrated in the delta frequency band (Figure 5.5 C, blue line). Application of CCh to 

the cultures resulted in a marked decrease in the low-frequency power in the LFP, especially in the 

delta and theta ranges (Figure 5.5 B, red line). The normalized powers in those frequency bands 

showed a significant decrease with respect to the basal phase, as indicated by the dashed line in 

Figure 5.5 C. In comparing the variation during the first 30 minutes upon CCh administartion (CCh 

30’) and the last 20 minutes (CCh 50’), we found a significant decrease in delta and theta power in 

both phases. Beta power show a decrease of the power but we did not found any statistically 

difference.  
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Figure 5.5Analysis of local field potentials (LFP) during the basal and CCh phases. A) Experimental protocol adopted 

for the experiments. The spontaneous phase (i.e., without electrical stimulation) analyzed here is highlighted. Cortical 

cultures were recorded for 30’ under basal conditions followed by 1 h of recording after the addition of 20 μM CCh. B) 

Signal filtered to specific frequency bands involved in sleep for one channel of a representative experiment: Low Pass 

Filtered signal (LFP signal, 1-300 Hz), delta frequency signal (Δ, 1-4 Hz), theta frequency signal (Θ, 5-9 Hz) and beta 

frequency signal (Β, 10-30 Hz). CCh treatment induced suppression of all low-frequency waves compared to the control 

condition. C) Time course of the power spectral density ratio computed in delta, theta and beta power. (Below) Box plot 

comparison of the PSD of each band showing a marked decrease in the delta and theta bands. We did not find any 

difference in the PSD in the beta bands. The bold lines and shaded regions (C) correspond to the mean ± SEM. In each 

box plot, the small square indicates the mean, the central line illustrates the median, and the box limits indicate the 25th 

and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. Statistical analysis was conducted using the 

Mann-Whitney comparison test; **p < 0.01. 

CCh treatment also caused strong suppression of the power of the LFP evoked response, as shown in 

the evoked LFP signal of the top 20 channels of one representative experiment under the basal 

condition (blue lines) and after CCh administration (Figure 5.6. B). The top 20 channels were 

selected on the basis of their firing rates in the spontaneous phase. CCh caused a decrease in the 

amplitude without any apparent changes in morphology, as shown in the power spectral density 
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evaluation computed for all channels.  

As expected, we found a significant decrease in the power of the delta, theta and beta bands in the 

first stimulation session. In the second stimulation session, we found no difference between the basal 

and CCh-evoked responses. 

 

Figure 5.6 LFP analysis of the evoked response. A) Experimental protocol adopted for the experiments. The electrical 

stimulation phases analyzed here are highlighted. Cortical cultures were stimulated for 10 minutes at two different sites 

under basal conditions and after CCh treatment. B) (Left panel) Mean evoked responses of the top 20 channels in one 

representative experiment during basal conditions and after CCh administration. (Center panel) PSD of the same 

channels depicted in the left panel. (Right panel) Comparison of the mean PSD of the two different experimental phases. 

C) Box plot of power in three different bands: delta (1 4 Hz), theta (5-9 Hz) and beta (10-30 Hz) for each stimulation site. 

We found a significant difference only in the first stimulation phase. The bold lines and shaded regions (B) correspond to 

the mean ± SEM. For each box plot, the small square indicates the mean, the central line illustrates the median, and the 

box limits indicate the 25th and 75th percentiles. Whiskers represent the 5th and the 95th percentiles. Statistical analysis 

was conducted using the Mann-Whitney comparison test; **p < 0.01. 

Indeed, since the most remarkable difference between wakefulness and sleep was in the ‘complexity’ 

of the response rather than in its amplitude, we evaluated the PCI index. We compared the PCI 

observed during the stimulation phase at baseline with that observed after CCh treatment.   

After CCh administration, we observed an increase in the PCI values for both sessions of stimulation. 

Specifically, we found that the PCI for the first stimulation site increased significantly (up to 20%) in 

56% of the experiments and that the PCI for the second stimulation site increased in 44% of the 

experiments (Figure 5.6 C).    
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Next, we determined whether the PCI results depended on the bin size used to bin the activity for 

each channel. As shown in Figure 5.6 D, we found a perfect correlation between the results obtained 

using bin size 20 and bin size 5 for both stimulation sites. Thus, the PCI results did not depend on the 

binning dimension. 

 

Figure 5.7 Perturbation complexity index (PCI) analysis. A) Experimental protocol adopted for the experiments. The 

electrical stimulation phases analyzed here are highlighted. B) PCI displayed a low value during the basal phase, similar 

to that recorded during sleep in humans. After CCh administration, we observed an increase in the PCI, but in the majority 

of the experiments its value was less than 0.4 (lowest value of consciousness). C) Variation in PCI during the two 

stimulation sessions. Red dots indicate channels that showed an increase of the PCI higher than 20 %, red dots indicate 

channels that showed a decrease of the PCI higher than 20 % and black dots represent channels that did not showed 

variation higher than ± 20 %. In the majority of the experiments (56% for the first stimulation session and 44% for the 

second stimulation session), the PCI increased after CCh administration. D) PCI variation using two different bin sizes 

(20 and 5). We found a correlation between the results obtained using the two different bin sizes. Indeed, the results did 
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not depend on the bin size used for binning the activity for each channel. 

Next, we determined whether the sleep-like values recorded during baseline were region-dependent 

and whether desynchronization per se could explain the higher PCI. We used a dataset available from 

the SICODE website (www.sicode.eu; {Nieus, 2015 #367) that consists of the spiking activity of 

hippocampal cell cultures recorded using a high-density 4096-electrode MEA device. The cultures 

were electrically stimulated under baseline conditions and after the administration of norepinephrine, 

resulting in desynchronization of the network activity similar to that observed after the administration 

of CCh. However, unlike the cortical cell cultures, hippocampal cultures showed the highest PCI 

values under baseline conditions, and the addition of norepinephrine did not induce any significant 

changes in the PCI (Figure 5.7).  

The differences in the PCI values observed during stimulation under baseline conditions (i.e., without 

norepinephrine) could be due to the use of a greater number of recording electrodes compared to the 

standard 60-channel MEAs. In fact, in HDMEAs, the probability of observing channels that are 

equally activated by the stimuli is higher. Therefore, since the PCI is computed on the ranked response 

based on the level of activation, the entropy will increase if is not possible to unequivocally order the 

responses. The next step will be to evaluate the PCI using a different method of ordering that takes 

these problems into account.  

 

 

Figure 5.8 PCI analysis under baseline conditions and during norepinephrine stimulation of hippocampal cultures on 

high-density MEAs. Each dot represents one stimulation session. After norepinephrine addition, we did not observe any 

significant variation compared to the basal phase. 

 

  

http://www.sicode.eu/
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5.3 Conclusion 

In this study, we electrically stimulated our cultures at two different sites before and after the 

administration of CCh, which we previously showed is able to modulate sleep-like activity in cultures. 

Our goal is to understand whether the evoked response observed in cortical cultures shares similarities 

with human data recorded using EEG and TMS stimulation. During sleep in both humans and rodents, 

network activity is synchronized across brain areas, while during wakefulness it is desynchronized. 

Therefore, when stimulated with TMS, the human brain responds with larger EEG signals during 

sleep than during wakefulness. 

Consistent with this behavior, CCh caused desynchronization of the activity and suppression of the 

low-frequency component that appears during sleep (see Chapter 4). The responsiveness of cortical 

cultures to the stimulation (assessed using the post stimulus-time histogram, PSTH) decreased after 

CCh administration, consistent with previous observations made using human data. 

Interestingly, CCh application resulted in an increase in the complexity of the response with respect 

to the baseline similar to the increase that is recorded during REM sleep and wakefulness {Casali, 

2013 #262}. However, the comparison cannot be extended further since in humans the EEG responses 

to TMS were visibly different in different brain states. 

Next, we compared our results with those obtained from hippocampal cells cultured on high-density 

MEAs. We found that the addition of norepinephrine caused a desynchronization of the activity 

comparable to that observed in our experiments with CCh administration (Nieus 2015). The 

interesting point is that desynchronization per se did not induce a decrease in the PSTH area (data not 

shown) and an increase in the PCI. These aspects will be evaluated more fully in the coming months.  

In the future, it will be of interest to evaluate evoked response synchronization/desynchronization 

(ERSD) of the different frequency bands. This may allow us to determine whether CCh exerts 

different effects on the frequency bands used in the LFP analysis. Moreover, since cell cultures are 

not truly random networks (Lonardoni et al. 2017, Nieus et al. 2018), such cultures represent a 

reduced and interesting system that can be used to manipulate neuronal growth to obtain a higher 

PCI.  
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Chapter 6:  

Sleep-related pathologies: Prader Willi syndrome 

 

In the previous chapters, we stimulated our in vitro neuronal networks using the cholinergic agonist 

carbachol (CCh, 20 µM) to suppress sleep features. We observed for the first time that CCh treatment 

affected both the high- and the low-frequency components of the signal, causing suppression of the 

classical sleep-like properties of the activity. Having observed this, we were interested in 

understanding how the electrophysiological signal changes in pathologies in which sleep is 

compromised. There are several diseases in which sleep alterations occur; however, the research 

group of Dr. V. Tucci and coworkers at the IIT has already characterized sleep alterations in a 

heterozygous mouse model with paternal deletion of the Snord116 gene (PWScr m+/p-) (Lassi et al., 

2016b), which represents a good model for studying Prader-Willi syndrome (PWS). For this reason, 

we focused on this specific pathology. 

PWS is a rare imprinted neurodevelopmental disorder that is associated with a paternally expressed 

genomic imprinting defect within human chromosome region 15q11-13 (Peters, 2014). The syndrome 

is associated with growth retardation, metabolic abnormalities, hyperphagic behavior, cognitive 

deficits, and sleep abnormalities. Imprinted genes are often associated with human diseases, 

particularly disorders affecting cell growth, development, and behaviour (Morison and Reeve, 

1998;Falls et al., 1999;Nicholls, 2000). Most of the autosomal genes are expressed from both 

maternal and paternal alleles. However, imprinted genes are an example of non-Mendelian genetics, 

in which only one member of the gene pair (from the mother or the father) is expressed and expression 

is determined by that parent. Thus, genomic imprinting is the differential expression of genetic 

material depending on the parent of origin (Butler, 2002).  

The genetic defects can be quite heterogeneous across patients and include uniparental disomy 

deletions, and genomic imprinting deficits. One of the candidate genes associated with the syndrome 

is the gene that encodes small nucleolar ribonucleic acid (RNA)-116 (SNORD116, also called HBII-

85) , a noncoding molecule that participates in the modification of other small nuclear RNAs and is 

predominantly expressed in the brain (Skryabin et al., 2007). Clinical single cases of PWS patients 

revealed microdeletions in the q11.q13 domain of chromosome 15 that included SNORD116 (Sahoo 

et al., 2008;de Smith et al., 2009;Duker et al., 2010;Bieth et al., 2015). The authors reported that 
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deletion of the SNORD116 gene cluster contributes greatly to generation of the PWS phenotype, 

whereas deletions of MKRN3, MAGEL2, NECDIN, SNORD115 or C15ORF2 and SNURF-SNRPN 

do not give rise to PWS. Moreover, in the hypothalamus, SNORD116 gene seems to be 

developmentally regulated and to play a role in the maturation of feeding circuits and in the control 

of the sleep-wake cycle (Vgontzas et al., 1996a).  

Indeed, PWS patients are often affected by sleep-wake disturbances associated with hypersomnia, 

fragmented sleep and apnea (Harris and Allen, 1996;Manni et al., 2001;Priano et al., 

2006;Camfferman et al., 2008). The disturbances reflect alterations in the architecture of sleep 

(Vgontzas et al., 1996a;Vgontzas et al., 1996b;Priano et al., 2006;Camfferman et al., 2008), 

abnormalities in rapid eye movement (REM) sleep cycles (Hertz et al., 1993) and in sleep onset REM 

periods (SOREMPs) and an increased number of REM episodes(Vgontzas et al., 1996a;Vgontzas et 

al., 1996b;Manni et al., 2001;Priano et al., 2006).  

Some sleep alterations, particularly related to REM sleep, have also been described by the group of 

V. Tucci at IIT in heterozygous mutant mice carrying a paternal deletion of Snord116 (PWScr m+/p-) 

at the orthologous locus on mouse chromosome 7C (Figure 6.1 A) (Lassi et al., 2016a;Lassi et al., 

2016b). PWScrm+/p− heterozygous mutant mice revealed a complete absence of Snord116 expression 

in different brain areas whereas it was generally expressed in PWScrm+/p+ wild-type animals (Figure 

6.1B) (Lassi et al., 2016a).  

PWScr m+/p- mice partially exhibits some of the endophenotypes observed in PWS subjects: i.e. 

alterations in the sleep-wake cycle, REM sleep dysregulation and temperature instability (Lassi et al., 

2016b), dysregulation of several circadian genes (Powell and LaSalle, 2015)neo-natal developmental 

delays (Ding et al., 2008)and cognitive deficits (Adhikari et al., 2018). 
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Figure 12 Scheme of the allelic combination of the imprinted gene Snord116 in the WT (PWScr m+/p+) and in PWScr 

m+/p- . The allelic combination for both conditions is represented as green filled circles (expressed) or empty circles (not 

expressed). In PWScr m+/p+ mice Snord116 is expressed only in the paternal allele, while in PWScrm+/p− is not 

expressed at all. (B) Relative Snord116 expression analysis by RT-PCR in PWScrm+/p+ and PWScrm+/p− in mouse 

brain tissues (n = 3). Liver was used as a negative control. FC, frontal cortex; Hippo, hippocampus; Str, striatum; Hyp, 

hypothalamus; SNC, suprachiasmatic nucleus of the hypothalamus; Liv, liver. (Adapted from Lassi et al. 2016) 

 

Regarding the sleep disturbances, PWScr m+/p- mice showed an increase in rapid eye movement 

(REM) sleep compared with control mice (Lassi et al., 2016b). Moreover, a difference in the theta 

power of the EEG during REM sleep was also observed (Figure 6.2). 

Overall, the data suggest that the paternally expressed Snord116 gene may play a crucial role in the 

regulation of the microstructure of sleep and that it may be particularly related to REM sleep. In 

support of these results, a recent study showed that it has an essential role in the regulation of the 

circadian process (Powell and LaSalle, 2015). 
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PWS MICE 

 

Figure 6.2 A) Power densities of the whole spectrum of frequencies and detailed histograms for delta and theta 

electroencephalographic frequencies (μV2) in NREM and REM sleep in patients and in healthy and obese controls. B) 

Power densities of the whole spectrum of frequencies and detailed histograms for delta and theta EEG frequencies 

(μV2) in NREM and REM sleep in mutant and control mice during the light phase. Data are presented as the mean ± 

standard error of the mean; **P < 0.01 (adapted from Lassi et al.,2016). 

As described in Chapter 3, sleep is regulated by two linked biological processes, namely, a circadian 

process that is independent of sleep-wake history and homeostatic sleep “pressure,” which is driven 

by prior sleep-wake history (Borbely, 1982) (see Chapter 3 paragraph 3.2).  

 In this context, the changes in sleep microstructure in Snord116 mice might be driven either by 

alterations in the circadian clock or by alterations in the homeostatic processes. However, to date, 

whether or not the paternally expressed Snord116 gene has a role in the control of the homeostatic 

process remains unknown. 

A 

B 
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Based on these considerations, the central hypothesis of this project is to understand whether the 

Snord116 gene contributes to the control of the sleep homeostatic process. My role in that study 

focused primarily on determining whether or not the same sleep abnormalities could be observed in 

a simplified and accessible in vitro model.  

We thus performed experiments using cortical cultures of PWScr m+/p- mice to which we applied 

Carbachol (CCh, 20 µM) to suppress the sleep waves. Interestingly, we found similar alterations in 

theta waves in wild-type and PWScr m+/p- mice upon CCh administration. Moreover, by measuring 

the electrophysiological parameters, we showed that PWS mice are less reactive than wild-type 

animals to the sleep suppression state induced by CCh. To understand the possible differences in these 

homeostatic and circadian processes, we complemented the MEA recording by performing gene 

expression analysis in cortical cultures in vitro upon CCh administration.  

Then, we compared genes expression results from cortical cultures with the ones obtained from in 

vivo samples after 6 hours of Sleep-Deprivation (SD). Measurement of the expression levels of 

specific genes confirmed our hypothesis and showed that the genes involved in sleep deprivation 

were not altered in PWS after CCh administration. We show that these results are consistent with the 

results obtained using frontal cortex (FC) and parietal cortex (PC) of WT and PWS mice after sleep 

deprivation.  

 

6.1 Material and methods 

6.1.1 Cell cultures 

Cortical cell cultures prepared from embryonic mice at gestational day 18 were plated on 60-channel 

MEAs (Multi Channel Systems, MCS, Reutlingen, Germany) that had been coated with borate buffer 

and poly-L-lysine to promote cell adhesion (final density approximately 1200 cells/mm2). We 

recorded the activity of neuronal networks between 19 ± 1 DIVs (mean ± SD) for the WT mice 

(PWScrm+/p+) and 18 ± 1 DIVs for the PWS cultures (PWScrm+/p-). We decided to anticipate the 

recording date as compared to the projects described in the previous chapters (see Chapter 4-5) 

because in our experience cortical cultures from mice showed a different developmental profile as 

compared to rat cortical cultures. In particular, we observed that the survival rate of cultures, 

especially the PWScrm+/p- cultures, tends to decrease after 21-22 DIVs.  

6.1.2 Experimental protocol 

We recorded the electrophysiological activity of 12 cultures from mice with paternally inherited 
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Snord116 deletions (PWScrm+/p-) and 6 wild-type littermate control mice (PWScrm+/p+). For 

simplicity, these are referred to in the text and figure as PWS and WT, respectively. 

The experimental protocol adopted for these experiments included 2 hours of recording in culture 

solution, which was defined as the basal condition. We then chemically stimulated the cultures with 

CCh (20 µM) for 2 hours (Figure 3A). We normalized the results obtained in each experiment to the 

mean of each electrophysiological parameter during basal recording. 

6.1.3 Data analysis 

Starting from the raw data (i.e., the wide-band signal), we used a dual process to analyze both MUA 

(multi-unit activity, f>300 Hz) and LFP (local field potential, f<300 Hz) (Figure 1B). To capture only 

MUA activity, we high-pass-filtered the raw signal. When spikes (i.e., single over-threshold peaks) 

and bursts (i.e., groups of tightly packed spikes) activity were detected in the MUA recordings, we 

computed the following parameters for each channel: Mean Firing Rate (MFR, spikes/sec), Mean 

Bursting Rate (bursts/min), Inverse Burst Ratio (IBR, percentage of spikes outside the burst), 

Burstiness Index (BI, an index of the burstiness level of the network), Burst Duration (BD, msec), 

Mean Frequency Intra Burst (MFB, spikes/sec), Interburst Interval (IBI, msec) and Spike Tiling 

Timing Coefficient (STTC) (Figure 6.3B, light blue boxes in the diagram).  

We then analyzed the Network Bursts (NB) activity considering any variation in the number (NBR, 

NB/min), duration (NB Duration, msec) and distance between NBs (Inter NB interval, sec). A 

‘network burst’ (NB) consists of densely packed spikes occurring simultaneously at many channels, 

spread over the entire array. These packages generally last from hundreds of milliseconds up to 

seconds (burst duration) with long quiescent inter-burst periods (Inter Burst Interval - IBI). A custom 

burst detection method (Pasquale et al., 2010) was used to detect bursts on single recording channels. 

The input parameters were directly estimated from the inter-spike interval distribution of each 

channel. Briefly, the method exploited the logarithmic Inter Spike Interval Histogram (logISIH) to 

extract the parameters needed for the analysis of each recording channel. Generally, the range of ISI 

thresholds for our cultures is approximately 200–400 msec. 

Finally, we computed the Cross- Correlation between each pair of burst trains recorded from active 

channels (i.e., with MFR>0.02 spikes/s). For each channel, we considered only the first spike for each 

burst, and we computed the cross-correlation function that represents the probability of observing a 

spike in one channel i at time (t+τ, τ=3 ms) given that there is a spike in a second channel i+1 at time 

t. To quantify the strength of the correlation between each couple of electrodes, we evaluated the 

correlation peak (Cpeak). We selected only the first 100 Cpeak values to identify only the most 

significant correlations. Finally, we analyzed the latency from the peak (Lpeak) and considered the 
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corresponding peak latency values of the preselected 100 strongest Cpeak values (El Merhie et al., 

2018). 

To select the LFP components, we low-pass-filtered the raw data between 1 and 300 Hz (Figure 1B, 

light gray boxes in the diagram). We then computed the power spectral density of the decimated signal 

(sampling frequency 1 kHz) (μV²/Hz) using the Welch method (windows=5s, overlap=50%). We only 

considered the lower-frequency bands of the signal; these bands, in particular the delta (1-4 Hz), theta 

(4-11 Hz), and beta (11-30 Hz) bands, are of particular interest in the study of the sleep-wake cycle. 

To characterize the LFP, we calculated the power in each of those frequency bands. 

 

Figure 6.3. Cortical cultures on MEA and data analysis. (A) Cortical cultures were plated on 60-channel MEAs (Multi 

Channel Systems MCS, Reutlingen, Germany) with the standard electrode layout (8x8). On the right are shown typical 

traces recorded from three microelectrodes upon high-pass filtering at 300 Hz. (B) Scheme of the data analysis workflow. 

We applied a high-pass filter to the signal (f>300 Hz) to analyze only MUA activity (light blue boxes in the diagram). We 

performed spike and burst detection for each channel on the MUA recordings, and we computed and analyzed the 

following electrophysiological parameters: MFR (Mean Firing Rate), MBR (Mean Bursting Rate), IBR (Inverse Burst 

Ratio), BI (Burstiness Index), BD (burst duration) and MFB (Mean Frequency Intra Burst). After we performed network 

burst detection, we analyzed the following parameters: Network Burst Rate (NBR), Network Burst Duration (NB 

Duration) and Inter Network Burst Interval (IBI). Cross-correlation was computed on burst events, and we measured the 

strength of the correlation (Cpeak) and the latency. We also analyzed the LFP (light gray boxes in the diagram). Here, the 

signal was low-pass-filtered (f<300 Hz), and we computed the power spectral density taking into account only the low-

frequency bands of the signal that are associated with sleep: delta (1-4 Hz), theta (4-11 Hz) and beta (11-30 Hz). 

6.1.4 In vitro Genes expression 

Multi-well plates were coated with poly-D-lysine (0.1 mg/ml, Sigma-Aldrich) and incubated 

overnight in a sterile incubator at 37 °C and 5% CO2. Neurons were then plated at a concentration of 
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500,000 cells/well. Primary neurons were treated at DIV 20 (i.e., the same age interval used in the 

MEA experiments) with 20 μM of carbachol (Sigma-Aldrich) for 1 h. The neurons were washed three 

times with ice-cold phosphate-buffered saline solution and lysed with 300 μl of Trizol (Life 

Technologies) followed by phenol/chloroform extraction. Cell lysates were collected, and 600 ng of 

RNA was reverse-transcribed using an Improm-II reverse transcription kit (Promega) according to 

the manufacturer`s instructions. Real-time PCR was performed in duplicate for each sample, and the 

results were analyzed as previously described (Tinarelli et al., 2014). All samples were normalized 

against the GAPDH gene.  

6.1.4 In vivo sleep deprivation protocol  

Total sleep deprivation (SD) was performed using gentle handling techniques that consisted of 

introducing novel objects into the cage and knocking or shaking the cage when behavioral signs of 

sleep were observed. Animals were subjected to SD during the first 6 h of the light period. We chose 

this time because mice are nocturnal animals (they are active at night and sleep during the day) and 

the sleep pressure is maximal at the beginning of the light period. 

6.1.5 In vivo gene expression 

Five mice with paternally inherited Snord116 deletions (PWScrm+/p-) and 5 wild-type littermate 

control mice (PWScrm+/p+) were investigated using qRT-PCR. Two different conditions were 

analyzed. First, (i) mice treated with 6 h of sleep deprivation (SD); the brains of these animals were 

extracted 1 h after the end of the treatment (n5= PWScrm+/p-_SD and n5= PWScrm+/p+_SD). Second, 

(ii) mice that were not treated with SD but were sacrificed at the same time of day (ZT7) (n5= 

PWScrm+/p-_nSD and n5= PWScrm+/p+_nSD). 

At the end of the experiments, the mice were sacrificed; the cerebral cortex was divided into frontal 

and parietal cortex, extracted and stored at -80 °C. 

Total RNA was extracted from approximately 0.5 g of snap-frozen PFC and HYP using Qiazol 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. RNA samples were 

quantified using an ND1000 Nanodrop spectrophotometer (Thermo Fisher Scientific Inc., Waltham, 

MA, USA). Reverse transcription of 0.5 μg of RNA was performed using ImProm-II(TM) Reverse 

Transcriptase (Promega, Milan, Italy) according to the manufacturer’s instructions. RT-qPCR was 

performed on an Applied Biosystems 7900HT Fast Real-Time PCR System (Applied Biosystems, 

Foster City, CA, USA) using the QuantiFast SYBR Green PCR Kit (Qiagen, Hilden, Germany) under 

the following conditions: 5 min at 95 °C followed by 40 cycles of denaturation at 95 °C for 10 sec, 

annealing at 60 °C for 30 sec and extension at 70 °C for 1 min. Each sample was run to obtain average 
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Ct values according to the manufacturer’s specifications. A list of the primers used is provided below. 

All samples were normalized against GAPDH as a housekeeping gene. Expression levels relative to 

the housekeeping gene were determined by the calculation of ΔCt.  
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6.2 Results 

We performed experiments using PWS cultures plated on MEA according to the protocol depicted in 

Figure 6.4 A. We recorded two hours of basal recording (i.e., in Neurobasal medium) followed by 2 

hours of CCh stimulation of both groups (WT and PWS cultures). We recorded the activity of 

neuronal networks between 19 ± 1 DIVs (mean ± SD) for the WT mice (PWScrm+/p+) and 18 ± 1 

DIVs for the PWS cultures (PWScrm+/p-). 

In the comparison of basal activities, we found no significant differences; thus, the starting level of 

activity was comparable (Figure 6.4B; light blue box and light red box for WT and PWS, 

respectively). Although we found no statistically significant differences, the activity of PWS cultures 

seemed to be more desynchronized than that of the WT, as shown by the lower BI (burstiness index) 

and STTC (spike tiling timing coefficient) values and the higher IBR (inverse burst ratio) value. 

Moreover, PWS cultures exhibited a different distribution of burst activity during the basal phase, 

indicated by lower MFB (mean frequency intraburst) and higher BD (burst duration) values compared 

to the WT cultures.  
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Figure 6.4 MUA analysis of WT and PWS cortical cultures during the basal phase. A) Experimental protocol adopted 

for the experiments. The 2 hours of basal recording considered in the analysis are highlighted. B) 5 seconds of raster plot 

of two representative experiments during the basal phase for WT and PWS culture at DIV 17.C) Box plots showing the 

MFR, MBR, IBR, BD, IBR, MFB, BI, and STTCs of WT cultures (light blue boxes: N=6; DIV= 19±1, mean ± SD) and 

PWS cultures (light red boxes: N=12, DIV= 18±1, mean ± SD) during basal recording. The gray shaded area denotes a 

10-min break in the recording following CCh addition; this was done to prevent experimental bias due to the release of 

drug in the medium. In each box plot, the small square indicates the mean, the central line illustrates the median, and the 

box limits indicate the 25th and 75th percentiles. Statistical analysis was performed using the two-sample t-test 

[*p<0.05]. 

To make it possible to compare the behavior of the cultures during CCh stimulation, we normalized 

the results of each experiment to the mean values obtained during basal recording. In the WT cultures 

(Figure 6.5C, blue line), the activity level evaluated by means of the MFR increased after CCh 

administration compared to the basal condition but we did not found any statistical difference. At the 

same time, CCh application resulted in an increased number of isolated spikes (i.e., a higher IBR 

value, Figure 6.5D) and a decrease in the BI (Figure 6.5D) and STTC (Figure 6.5E) compared to 

the basal phase, indicating a loss of bursting activity and of synchronicity. This was confirmed by the 

increase in the duration of the bursts (i.e., a higher BD value, Figure 6.5G) and by the decrease in 

the frequency of the spikes (i.e., a lower MFB value, Figure 6.5H). Indeed, the relative changes of 
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the analyzed parameters upon CCh administration in WT cultures are consistent with the previous 

results obtained in cortical cultures from embryonic rats despite the different DIVs of cultures 

recorded (Colombi et al., 2016). 

PWS cultures (Figure 6.5B, red line) showed an increase in MFR only in the second hour after CCh 

treatment. The number of isolated spikes (i.e. IBR) and BI showed an increase after CCh 

administration compared to the basal condition, especially in the second hour. During the first hour, 

WT cultures showed higher values of MFR, MBR, BD, IBR and BI than the PWS cultures. 

Conversely, the BI of WT cultures was lower than that of PWS cultures. In the second hour after 

CCh administration, the levels of the selected parameters described above were comparable 

between groups. We found a statistical difference between the two time-points of CCh 

administration (CCh 60’ and CCh 120’) for the BI, the STTCs, BD and MFIB only in PWS culture. 

This suggests that CCh has a delayed effect in PWS cultures despite the fact that the starting level 

of firing and bursting activity was comparable (Figure 6.4B). 
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Figure 6.5 MUA analysis of WT and PWS cortical cultures following CCh administration. A) Experimental protocol 

adopted for the experiments. The 2 hours of CCh recording used in the analysis are highlighted. We normalized the values 

for each culture and for each parameter with respect to the basal values. B) 150-s raster plots of cortical cultures at DIV 

17 during basal and CCh administration for WT and PWS cultures C) Comparison of MFR in WT (blue line, N=6, DIV= 

19±1, mean ± SD) and PWS (red line, N=12, DIV= 18±1, mean ± SD) cultures following CCh administration. We did not 

find any significant differences in MFR between WT (blue box) and PWS (red box) cultures during the first and second 

hours of treatment. D) Comparison of IBR in WT (blue line, N=6, DIV= 19±1, mean ± SD) and PWS (red line, N=12, 

DIV= 18±1, mean ± SD) cultures following CCh administration. CCh caused an increase in spike activity outside the 

burst in both genotypes. In particular, WT appears to be less correlated during the first hour of treatment. E) Comparison 

of BI in WT (blue line, N=6, DIV= 19±1, mean ± SD) and PWS (red line, N=12, DIV= 18±1, mean ± SD) cultures 

following CCh administration. CCh administration resulted in a decrease in the prevalence of burst activity in both 

genotypes. WT cultures showed lower values of the burstiness index, indicating lower correlation as indicated by the IBR 

parameter. F) Comparison of the top 100 STTC values obtained for WT (blue line, N=6, DIV= 19±1, mean ± SD) and 

PWS (red line, N=12, DIV= 18±1, mean ± SD) cultures following CCh administration. CCh caused desynchronization of 

the activity in both genotypes. The mean values recorded during each of the two hours are comparable. G) Comparison 

of BD in WT (blue line, N=6, DIV= 19±1, mean ± SD) and PWS (red line, N=12, DIV= 18±1, mean ± SD) cultures 

following CCh administration. CCh caused an increase in burst duration in both genotypes. We observed a statistically 

significant difference between WT and PWS only during the first hour. H) Comparison of MFB in WT (blue line, N=6, 

DIV= 19±1, mean ± SD) and PWS (red line, N=12, DIV= 18±1, mean ± SD) cultures following CCh administration. CCh 

caused a decrease in the mean frequency of spikes within every burst in both genotypes. This is consistent with the finding 

that BD:CCh treatment increased the burst duration by increasing the distance between spikes within each burst. The 

burst duration appeared to decrease less in PWS than in WT. The gray shaded area indicates the 10-min period after CCh 

addition during which activity was not recorded; this was done to prevent experimental bias due to drug release into the 

medium. In each box plot (B-H), the small square indicates the mean, the central line indicates the median, and the box 

limits indicate the 25th and 75th percentiles. All data are presented as the mean +/- SEM. Statistical analysis was 

performed using Tukey’s post hoc test following two-way repeated-measures ANOVA ( *p<0.05 indicated statistical 

difference among the different time points treatment (i.e. CCh 60’ and CCh 120’) within the same genotype,º p <0.05 

indicated statistical difference within the same genotype during Cch administration with respect to the basal condition). 

Then we analyzed the changes in network burst activity by measuring the variation in the number, 

the duration and the distance for each NB (Figure 6.6). During the basal phase, we found no 

difference in NB duration in the two genotypes. In contrast, PWS showed a reduced number of NB 

(i.e., a lower level of NBR) separated by a greater distance (i.e., higher IBI) (Figure 6.6 B, light blue 

and light red lines). As shown for the parameters in Figure 6.5 (Panel C-G), WT cultures and PWS 

cultures showed different behavioral profiles following CCh administration. WT cultures displayed 

higher NBR and NB duration and significantly lower INbI in the first hour (Figure 6.6 B, blue line 

and red line). With time, NBR and NB duration became comparable in the two genotypes, while the 

IBI remained higher in PWS. The analysis of the cross-correlation of burst events (Figure 6.6 C) 

revealed a statistically significant difference in the latency of the top 100 connections between the 

two groups under basal conditions (Figure 6.6 C).  

We did not find any significant difference in the Cpeak value. Following CCh administration, we 

observed an increase in the latency and a decrease in the Cpeak values for both genotypes. We found a 

statistically significant difference between WT and PWS cultures only during the second hour. When 

normalizing the data, we did not find any difference between WT and PWS, indicating that the 

variation is the same in the two groups (Figure 6.6 D). 
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Figure 6.6 Network burst analysis and cross-correlation of burst events in WT and PWS cortical cultures. A) 

Experimental protocol adopted for the experiments. B) Network burst activity recorded from three representative 

channels. We did not find any difference in the NB duration or in NBR between WT and PWS cultures. PWS mice showed 

a higher inter-network burst interval (INbI) during basal recording. After CCh administration, PWS and WT cultures 

showed two opposite behavioral profiles: the INbI of PWS significantly increased with respect to the basal condition, 

especially in the first 30 minutes, whereas the INbI of WT decreased. We found a significant difference only during the 

first 30 minutes of treatment. C) Cross-correlation analysis of burst events. (Middle panel) Plot of the 100 highest Cpeak 

values at each 30-minute time point. PWS cultures showed lower Cpeak values than WT cultures. (Right panel) Plot of the 

corresponding peak latency values (Lpeak) of the preselected 100 highest Cpeak values. PWS cultures showed a higher 

latency that was maintained during CCh application. D) Box plots of the 100 highest Cpeak values and the corresponding 

peak latency values (Lpeak) of WT (light blue box) and PWS (light red box) cultures during basal recording. We normalized 

each parameter with respect to the basal recording. We did not find any difference in the variation of the Cpeak and Lpeak 

values. For each box plot (D), the small square indicates the mean, the central line illustrates the median, and the box 

limits indicate the 25th and 75th percentiles. All data are presented as the mean +/- SEM. Statistical analysis was 
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performed using the two-sample t- test (*p<0.05). 

 

The analysis of the LFP in WT and PWS mice did not indicate differences between the genotypes 

during the basal phase (Figure 6.7 B). CCh application resulted in strong suppression of all main 

waves (i.e., delta, theta and to some extent beta) that characterize the classical sleep-wake cycle 

(Figure 6.7 C).  

We normalized each power with respect to the basal condition. Following CCh administration, the 

power of the delta waves decreased by 80% in both sets of cultures (Figure 6.7 D). We found a 

significant difference between the two sets of cultures (i.e., WT and PWS) only in the theta waves 

after 1 hour of CCh application (Figure 6.7 E). The theta power of the WT cultures decreased by 

60%, whereas that of the PWS cultures decreased by 30%. These results are consistent with the results 

of a previous study that revealed abnormalities in theta waves during REM sleep. Beta waves did not 

show significant differences in the two genotypes. 
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Figure 6.7 LFP analysis of PWS and WT cultures. A) Experimental protocol adopted for the experiments. B) Power 

spectral density of basal segments for WT and PWS cultures. We computed the power for each set of bands delta (1-4 Hz), 

theta (5-9 Hz) and beta (9-13 Hz). We did not find any differences during the basal phase. C) Power spectral density of 

WT and PWS under baseline conditions and during CCh application. CCh caused suppression of all the low waves 

considered for both genotypes. D) Delta power following CCh administration. We normalized the power with respect to 

the basal value (indicated by the dashed line). CCh caused a decrease of 80% for both groups. After dividing the entire 

recording into 30-minute intervals, we did not find a significant difference between WT and PWS. E) Theta power 

following CCh administration. We normalized the power with respect to the basal value (indicated by the dashed line). 

CCh caused a decrease of 60% in WT cultures and a decrease of 30% in PWS cultures. After dividing the entire recording 

into 30-minute intervals, we found a significant difference between WT and PWS after 1 hour of treatment. F) Beta power 

following CCh administration. We normalized the power with respect to the basal value (indicated by the dashed line). 

Beta waves were not affected by the treatment in PWS cultures. WT cultures showed a decrease of 90% compared to the 

basal values. After dividing the entire recording into 30-minute intervals, we did not find a significant difference between 

WT and PWS. For each box plot (B), the small square indicates the mean, the central line illustrates the median, and the 

box limits indicate the 25th and 75th percentiles. All data are presented as the mean +/- SEM. Statistical analysis was 

performed using the two-sample t- test (*p<0.05). 

 

The electrophysiological study was complemented by gene expression assessment performed by the 

group of V. Tucci. In particular, we first determined whether the differences in the network sleep 

suppression states between PWS and WT cultures identified by MEA recordings are associated with 

differences in the transcriptome observed in vivo.  
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For the in vitro analyses, cortical cultures were stimulated with 20 µM of CCh, and RNA was 

extracted 1 h later. For the in vivo gene expression analyses, mice were sleep-deprived for 6 h, and 

their brains were collected 1 hour later. Control mice were kept undisturbed in their home cages, and 

control cultures were sham-stimulated with water. The data were normalized with respect to the 

control condition both in vivo and in vitro (dashed green line, Figure 6.8).  

As expected, two classical immediately early genes (IEGs), Homer 1a (Figure 6.8 C), and C- fos 

(Figure 6.8A) were significantly overexpressed after sleep deprivation as well as after CCh 

stimulation of cell cultures. We are going to check the level of Arc in the following weeks. The relative 

mRNA levels of Per2 (Figure 6.8 E), Dpb (Figure 6.7 B) and Bmal (Figure 6.8 D), three circadian 

genes, were significantly affected by the treatment both in vitro and in vivo. In contrast, PWS mice 

and cultures did not show any significant variation after Sleep-deprivation (SD) in vivo or after CCh 

stimulation in vitro. Comparing the two genotypes, both circadian and homeostatic genes were found 

to be differently affected by SD in WT and PWS mice. In particular, PWS cultures did not show any 

significant variations in the relative mRNA levels upon CCh administration. This suggest that the 

paternal deletion of the Snord116 gene could affected both the homeostatic and the circadian genes.  
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Figure 6.8. Comparison of gene expression in WT and PWS in vitro and in vivo.(Left) In vivo gene expression was 

measured using frontal cortex (FC) and parietal cortex (PC) from WT (n=5) and PWS mice (n=5). The animals were 

sacrificed 1 hour after sleep deprivation. The data were normalized with respect to control samples from WT (n=5) or 

PWS (n=5) mice without sleep deprivation (green dotted line) (Right). In vitro gene expression analysis of cortical cells 

after 1 hour of CCh administration t WT (n=5) or PWS (n=5) cultures. The data were normalized with respect to control 

cultures treated with standard medium (green dashed line). 
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6.3 Conclusion 

In this study, we presented electrophysiological evidence indicating that primary cortical cultures that 

display synchronized low-frequency firing patterns under spontaneous conditions are also able to 

encompass some essential features of sleep in a pathological model. We presented experiments and 

analyses suggesting that our results potentially replicate those obtained in vivo in animals.  

During the spontaneous phase, the starting level of firing and bursting activity is comparable between 

genotypes. PWS cultures displayed less synchronized activity than the WT cultures, as indicated by 

their higher IBR, lower BI and lower STTC. However, we did not find significant differences in the 

spontaneous synchronized activity of PWS and WT cultures. 

CCh administration caused evident desynchronization of the activity of both genotypes, but WT and 

PWS cultures showed different response profiles after CCh treatment. In particular, PWS cultures 

displayed less reactivity in response to the stimulation, especially during the first hour. After that 

period, the profiles of the two groups were similar. 

 To assess possible differences in connectivity, we analyzed the network burst activity and the 

correlation between burst events. We found no significant difference in the duration of NB events, 

although PWS exhibited a higher NB rate and longer IBI during basal recording than the WT cultures. 

Moreover, the analysis of the cross-correlation during the basal period showed higher Cpeak values 

and lower latencies for WT cultures than for PWS cultures. Hence, more strongly synchronized 

neuronal networks were observed in the WT cultures than in the PWS cultures. These results suggest 

that there is less neuronal connectivity in PWS cultures than in WT cultures at the same 

developmental stage. Since one of the phenotypes of Snord116 mice is delayed development, we 

hypothesize that a similar trend occurs in the neuronal cultures. For confirming that, in the future we 

will assess morphological changes with immunofluorescence analysis to marker possible difference 

in the number of neurons, and in the glutamatergic and GABAergic synapses.  

The analysis of LFP revealed abnormalities in the theta waves similar to those observed in animals 

in vivo and in PWS patients (Lassi et al., 2016b). No differences in LFP were found between PWS 

and WT cultures during the sleep-like state (i.e., the basal phase). These results are consistent with 

the results previously reported by Lassi(Lassi et al., 2016b).  

Distinct classes of genes are differentially expressed during sleep and wakefulness (Pompeiano et al., 

1994, 1997; Cirelli et al., 1996, 2004, 2006; Cirelli and Tononi, 1999, 2000a,b; Wisor et al., 2002; 

Terao et al., 2003; Mackiewicz et al., 2007; Maret et al., 2007; Mongrain et al., 2010). One important 

class of genes that is overexpressed during spontaneous or enforced wakefulness is immediate early 
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genes (IEG). Recent studies have shown that among the IEGs, Homer1a expression is the most 

reliable marker for sleep need (Maret et al., 2007; Hinard 2012). We showed that Homer1a and Cfos 

were significantly overexpressed both in vivo and in vitro after sleep deprivation in WT animals. 

Moreover, SD causes a significant increase in the relative levels of Per2 and Bmal. WT cultures 

treated with CCh showed similar behavior, i.e., all the IEGs examined were overexpressed, as shown 

in our previous work (Colombi et al., 2016). In PWS, the expression of these genes did not show any 

rebound after SD, suggesting an alteration in the control of the homeostatic process. These alterations 

could be due to deletion of the SNORD 116 gene in PWS.  

In conclusion, our results showed that MEA recordings coupled to cortical cultures could recapitulate 

functional and molecular key mechanisms of the complex in-vivo brain networks both in 

physiological and pathological conditions.  
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Introduction 

Central nervous system diseases (CNS) constitute 6.3% of the global burden of disease and impact 

on quality of life: the problems related to such diseases involve cognitive, psychological and social 

consequences. There are more than 600 diseases of the nervous system, such as brain tumors, 

epilepsy, Parkinson's disease and stroke. Therapies for neurological disorders usually include 

physiotherapy, pain management, and medication. Among the Central nervous system diseases (CNS) 

during my PhD project I was involved in two different side projects in the field of epilepsy and Down 

syndrome.  

The first project is the Marie Skłodowska-Curie project Re.B.Us (Rewiring Brain Units) granted to 

Dr G. Panuccio. One of the project’s aims was to suppress ictal-like activity of brain slices with 

specific patterns of electrical stimulation. Currently, drug therapies are the most common approach 

to alleviate seizures, but unfortunately up to 30% of epilepsy patients do not respond to 

pharmacological treatment (Pineau et al., 2009). While surgical ablation of the epileptogenic tissue 

may ameliorate the patient’s condition, it is not feasible in all patients and may not guarantee a 

completely seizure-free life (Tanriverdi et al., 2008). Modulation of epileptic limbic networks by 

electrical DBS is a promising approach when pharmacological treatment or neurosurgery are not 

suitable. For this reason starting from the second year, we developed a custom methodology in order 

to guarantee the maintenance for good and stable ictal-like activity over several hours (Panuccio et 

al., 2018). 

During the third year I then adapted this methodology to record spontaneous activity from 

hippocampal brain slices. The purpose of these experiments was to validate the effect of Bumetanide 

on Down syndrome mice both in cultures and in slices (see Chapter 8). Our approaches had 

significantly improved the feasibility of MEA recording from brain slices, allowing us to record stable 

activity along different hours. 
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Chapter 7:  

Developing a methodology for brain slice 

experiments 

Rodent brain slices are a valuable tool for studying how neuronal networks function in health and 

disease (Dingledine, 2013) by means of ex vivo electrophysiological techniques because they 

preserve, at least in part, the original architecture and connectivity of the brain region(s) of interest 

(ROI). 

MEAs permit the recording of electrical activity generated by neuronal networks from a greater 

number of observation points compared to conventional extracellular field potential recording, where 

spatial restrictions limit the number of electrodes that can be accommodated on the surface of the 

brain slice. Moreover, MEA chips offer the added advantage of known interelectrode distance, which 

is very useful in tracing impulse propagation and assessing the traveling velocity of recorded signals. 

Although initially conceived for recording from cultured neurons (Gross et al., 1995;Novellino et al., 

2011;Vassallo et al., 2017), MEAs are now also used to characterize the electrophysiological features 

of acute brain slices obtained from rodents (Reinartz et al., 2014) and humans (Dossi et al., 2014). 

However, MEA recording inherently involves technical challenges associated with obtaining or 

maintaining stable patterns of activity throughout long (several hours) experimental protocols. First, 

tissue oxygenation may not be adequate within the large, round, submerged-type recording chamber 

(Hajos et al., 2009;Ivanov and Zilberter, 2011) that is typical of commercially available MEAs, while 

poor signal-to-noise ratio and temperature instability may affect the quality of the recording when a 

high perfusion rate (6-10 mL/min) is used to increase the oxygen supply to the brain slice. Second, 

signals with high-frequency components are rarely observed when submerged-type recording 

chambers are used (Hajos et al., 2009). To overcome these limitations, several strategies have been 

proposed by researchers. For example, increasing the perfusion rate (Hajos et al., 2009) while 

reducing brain slice thickness (≤ 400 µM) and area is crucial in achieving adequate oxygen supply to 

the tissue. Although the described approaches have significantly improved the feasibility of MEA 

recording from acute brain slices, they have not been tested in prolonged recording sessions of several 

hours’ duration, which can cause significant stress to brain tissue. For these reasons, we developed a 

custom methodology that allowed us to record stable and prolonged activity from brain slices 

(paragraph 7.2). ). Moreover, since our laboratory had no previous expertise in analyzing brain slice 
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signals, I personally developed a custom Graphical User Interface (GUI) for the analysis of signals 

from different regions of the brain tissue. In this chapter, I will first introduce the user-friendly 

software that I developed for mapping the electrodes with respect to the ROI in real time. I will then 

describe the seizure detection algorithm I developed for the analysis of ictal-like activity in the ReBus 

project.   

 

7.1 Setup for acute brain slices 

Hippocampal-EC slices coupled to MEA were employed in the electrophysiological studies. Below, 

we briefly describe the procedure that was used to record spontaneous activity based on our recent 

work published in Jove (Panuccio et al., 2018). 

Dissection procedure 

Adult (4-6-week-old) male CD1 mice were perfused intracardially with ice-cold (0-2 °C) ACSF under 

deep isoflurane anesthesia and then decapitated. Their brains was quickly removed (within 60 

seconds, Figure 7.1A) and placed in a small bowl containing equilibrated ice-cold (0-2 °C) cutting 

ACSF; the ACSF was continuously bubbled with a gas mixture (5% CO2 and 95% O2) to equilibrate 

it at pH 7.35-7.40. The brain was allowed to chill for 90-120 seconds (Figure 7.1B, right panel). The 

cerebellum was removed, and a straight cut was made along the coronal plane to remove the frontal 

third of the brain (Figure 7.1C). The isolated tissue block was glued with cyanoacrylate to the 

specimen disc of the vibratome (VT1000S, Leica, Germany) with the entorhinal cortex facing the 

blade and immediately placed in the slicing chamber containing carbogenated (5% CO2 and 95% O2) 

cold (0-2 °C) cutting ACSF (Figure 7.1D). Hippocampus-EC slices (400 μm thick) were cut in the 

horizontal plane. Tissue sections were discarded until the hippocampus was clearly visible (usually 

~900 µm). The two hemispheres were separated using a scalpel blade. The brain slices were gently 

transferred to a beaker using an inverted Pasteur pipette and rinsed twice with standard ACSF 

solution. The slices were then transferred to a commercial holding chamber (KF Technologies) 

containing carbogenated ACSF solution and incubated for approximately 20 minutes at 32 °C and 

then for at least 1 hour at room temperature (Figure 7.1D).  
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Figure 7.1 Schematic representation of the brain slice preparation. A) Once the head is cut, the scalp is removed using 

scissors (left panel, 1-2). Using the scissors, two mediolateral cuts are made above the eyes (middle panel, 1); 

subsequently, two more cuts are made at the base of the head (middle panel, 2). Then, by a postero-anterior cut in the 

midline of the skull, two skull flaps are formed (middle panel 3). The brain is exposed using scissors, and a small spatula 

is used to gently extract it from the skull (left panel). C) The brain is immersed in ice-cold ACSF for at least 2-3 min. C) 

The brain is placed in a cold Petri dish, and the cerebellum and one third of the frontal brain (along the coronal plane) 

are removed. D) The isolated tissue block is glued with cyanoacrylate to the specimen disc of the vibratome (VT1000S, 

Leica, Germany) with the entorhinal cortex facing the blade. E) The brain slices are gently transferred to a beaker using 

an inverted Pasteur pipette and rinsed twice with standard ACSF solution. F) The slices are then transferred to a 

commercial holding chamber (KF Technologies) containing carbogenated ACSF solution and incubated for 

approximately 20 min at 32 °C and then for at least 1 hour at room temperature. 

Custom chamber and perfusion control system for brain slices 

For brain slices, we used a customized recording chamber inspired by the design of the patch-clamp 

recording chamber; this provides stable and reliable laminar flow that is crucial for the successful 

MEA recording (Figure 7.2). The use of this chamber also allows the thickness of the brain slice to 

be increased to 400 µm, making it possible to achieve a fair trade-off between tissue viability and 

intrinsic connectivity. The use of recording chambers with relatively small volume (~1.5 mL) and a 

high perfusion rate (5-6 mL/min) allows adequate exchange of the perfusion medium (≥3 times/min). 
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The customized chamber can be obtained from commercial sources (e.g., Crisel Instruments) at an 

affordable price or produced in-house using 3D printing technology. 

 

Figure 7.2 A) MEA 30/200 made by Multi Channel Systems with small ring. B) Custom recording chamber. in: inlet 

reservoir to accommodate the heating cannula and the reference electrode; out: outlet reservoir to accommodate the 

suction needle; rec: recording chamber. C) Final assembly of the recording chamber mounted on the MEA chip. A brain 

slice rests on the bottom and is held in place by the anchor. The red arrow indicates the PTFE tubing covering the heating 

cannula; the red circle indicates the reference electrode, a saturated KCl pellet submerged in ACSF in the inlet reservoir. 

The blue arrow indicates the suction needle in the outlet reservoir. 

 

The standard MEA electrophysiology setup can also be combined with a perfusion system. 

Continuous flow of artificial CSF (ACSF) saturated with 95% O2 and 5% CO2 is necessary to 

maintain acute slices in functional condition during the MEA recording. Since in the laboratory of 

IIT we had no prior experience using acute brain slices on MEA, we tested several arrangements to 

find the best setup configuration. Initially, we attempted to control the perfusion flow using a 

peristaltic pump, but we encountered several problems with the resulting noise during the recording 

and with the level of oxygenation of the brain slice. For these reasons, we decided to control the flow 

by gravity only. The custom recording chamber described above (Figure 7.2) allows exchange of the 

perfusion medium 6-10 times/min at a flow rate of 2 mL/min. Thus, an adequate oxygen supply to 

the brain slices is guaranteed even at relatively medium-low perfusion rates while still ensuring a 

stable recording temperature and high signal-to-noise ratio. Figure 7.3 depicts the setup used for 

brain slice recording.  

A B C 
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Figure 7.13 Experimental setup used for brain slices experiments 

7.2 Data analysis tools for brain slices: sliceGUI 

When we began to record from brain slices, we decided to adapt the GUI used for the analysis of 

culture signals (SpyCode, Chapter 2, paragraph 2.4.2). The new GUI, named SliceGUI, offers tools 

that focus primarily on analysis of the low-frequency portion of the signals, including filtering, 

detection and power spectral density estimation. Since I have been involved in the ReBus project 

focused on epilepsy, I implemented a new seizure detection method with the specific aim of being 

simple and fast. Several parameters that are often used in EEG analysis, such as energy and the 

estimation of the fluctuation index, were also implemented. 
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Figure 7.4 Running SliceGUI. The main Graphical User Interface (GUI) is depicted during a working session of the 

software. Additional GUIs for data input are shown to the user before launching each computation. The output of an 

analysis session is provided through a series of figures (.fig or .jpg format) or results files (.mat or ASCII format). 

Figure 7.5 schematically shows the organization of the software. It includes a block for data 

conversion, one for mapping the electrodes in different brain structures (optional), and the cascade of 

analyses that can be performed after data filtering has been performed, i.e., seizure detection, features 

computation, events detection (both spikes and LFP) and the events analysis, which includes PSD 

estimation and MFR evaluation. 

 

Figure 7.5 Schematic overview of the data analysis procedure implemented within Spycode. The functional blocks show 

the main computational and algorithmic options offered by the software.  
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In the following, we briefly describe the GUI used to map the electrodes and the seizure detection 

algorithm. 

7.2.1 Labeling electrodes (MapGUI) 

Our user-friendly GUI provides a quick, simple and flexible tool for mapping electrodes in various 

brain structures. Unlike commercial software, it is possible even for users with only basic 

programming skills to add custom MEA layouts. Images can be acquired in bright field; thus, any 

general-purpose camera that has good resolution and fits on a microscope is suitable. An inverted 

microscope is essential for visualizing the position of the microelectrodes relative to the brain slice, 

since these would be hidden underneath the tissue if an upright microscope were used. Once a picture 

of the slice has been obtained and loaded into the GUI, it is possible to select the top and bottom 

electrodes in the leftmost row of the array to mark the XY coordinates for image straightening using 

the “Activate Pointer button”. Using the numbered pushbuttons below the brain slice image, the user 

can select the electrodes corresponding to the ROI and click the corresponding pushbutton in the 

structures panel to assign them (Figure 7.5B). By selecting the “Enter New Structures” button, it is 

possible to customize the structures. The default structures for the horizontal brain slice are depicted 

in Figure 2A. 

 

Figure 7.6 GUI for live MEA electrode mapping. (A) Schematic representation of the combined hippocampus-EC slice 

positioned on the MEA. The default structures used for this protocol are the cornu ammonis 3 (CA3), the entorhinal cortex 
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(EC), the perirhinal cortex (PC), and the subiculum (SUB). The reference electrode is schematized as a triangle; the 

electrodes encircled by dotted lines represent the XY coordinates for image straightening. (B) Screen capture of the GUI 

during live MEA mapping. The flow chart on the left of the capture outlines the step-by-step procedure that is followed. 

 

7.2.2 Seizure detection & analysis 

Seizure-like activity can be acutely induced in brain slices by changing the ionic composition of the 

artificial cerebrospinal fluid (ACSF), for example by decreasing magnesium while increasing 

potassium (Rutecki et al., 1985;Traynelis and Dingledine, 1988;Huberfeld et al., 2011), or by means 

of pharmacological manipulations such as blocking inhibitory GABAergic activity (Pitkänen et al., 

2017). However, because these models are based on an unbalanced alteration of excitation and 

inhibition, they do not allow study of the interactions of excitatory and inhibitory networks and their 

concerted contribution to ictogenesis. Continuous perfusion of brain slices with the convulsant drug 

4-AP, a K+ channel blocker (Rudy, 1988) (Rutecki et al., 1987), enhances both excitatory and 

inhibitory neurotransmission, thus allowing the investigator to study acute ictogenesis while keeping 

overall synaptic activity intact (Rutecki et al., 1987). The slices were incubated in 4-AP at 32 oC for 

at least 1 hour before recording.  

The mouse hippocampus-entorhinal cortex (EC) slice presents epileptiform-like activity that is 

induced by 4-AP and generated in the EC. The hippocampus and the EC are brain structures located 

in the medial temporal lobe. Pathologically, they play a special role in the development of seizures, 

especially in the case of temporal lobe epilepsy. The mechanism for controlling epileptogenesis is 

shown in Figure 7.6 A, i.e., ictal discharges form in the EC, propagate to the dentate gyrus via the 

perforant path, and follow the hippocampal loop to project back to the EC. Interictal discharges form 

in CA3, propagate to CA1 via the Schaffer collaterals and are projected back to the EC. The role of 

the re-entrant activity is to prevent rather than to sustain prolonged ictal events (Barbarosie and Avoli, 

1997). Cell damage in the CA3 area is frequently found in patients with temporal lobe epilepsy; this 

type of damage can be simulated by cutting the Schaffer collaterals, represented in Figure 4A by a 

thick dotted line. This prevents interictal discharges from propagating and thereby increasing the 

epileptiform activity. As reported in previous work (Pineau et al., 2009), fixed low-frequency (1 Hz) 

stimulation of the subiculum is known to be effective in suppressing epileptiform activity in this ex-

vivo model of epilepsy. 

Therefore, we recorded specific regions in each slice, i.e., superficial and deeper EC, CA3, and 

subiculum (SUB), as depicted in Figure 7.6B.   
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Figure 7.6. A) A schematic of the organization of the hippocampus-EC slice. B) Slice on the 60-channel MEA. C) 60-MEA 

channel recording using Mc Rack software during epileptic activity induced by 4 AP. 

 

My expertise, which was acquired through the in vitro culture experiments (cf. Part II of this thesis), 

was in the analysis of the electrophysiological signals. The high-frequency activity (i.e., the spiking 

activity) of these cultures revealed a synchronized pattern of burst events consisting of a sequence of 

highly packed spikes with features similar to ictal-like activity (Figure 7.7). I then adapted the 

algorithm developed by my group for burst detection(Pasquale et al., 2010),  so that it could be used 

to automatically detect ictal-like discharges in the ex-vivo brain slice assay.  

Wide-band signals were first downsampled to 1 kHz; a low-pass filter (cutoff frequency 200 Hz) was 

then applied using a Hamming-window FIR filter of order 30. 
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Figure 7.7 Comparison of single burst activity in a neuronal culture and ictal-like activity in a brain slice (recorded using 

one electrode in the entorhinal cortex) 

We then computed the discrete wavelet transformation. Wavelets are mathematical functions that are 

capable of localizing a function or a set of data in both time and frequency. They are particularly 

useful for representing various aspects of signals such as trends, discontinuities, and repeated patterns. 

This method is especially powerful for nonstationary signal analysis.  

There are two different wavelet functions, a continuous one (CWS) and a discrete one (DWS). In 

CWT, the signal to be analyzed is matched and convolved with the wavelet basis function at 

continuous time and frequency increments. In DWS, the product is taken at discrete points (usually 

dyadic to ensure orthogonality); the result is a weighted sum of a series of basic functions. In 

particular, the signal is decomposed using detailed coefficients that represent local details in the 

original function (such as a high-pass filter) and an approximation coefficient that gives the general 

trend of the original signal (such as a low-pass filter). 

: 

  

Wavelet basic functions are families of functions that satisfy prescribed conditions such as continuity, 

zero mean amplitude, and finite or near finite duration. The Daubechies family of wavelets (Dhande 

and Gulhane, 2015)is one of the most commonly used orthogonal wavelets; it satisfies the 
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admissibility conditions, thus allowing reconstruction of the original signal from the wavelet 

coefficients.  

The Daubechies order 4 wavelet was found to be the most appropriate for analysis of epileptic EEG 

data(Adeli et al., 2003;Dhande and Gulhane, 2015). As reported in a previous work (Adeli et al., 

2003;De Guzman et al., 2004), the ictal activity is centered in a frequency range between 0.3 and 29 

Hz, while the ictal onset appears in the theta range (9-11 Hz). To capture this activity, we selected the 

fifth level that is specific for these frequency ranges (Figure 7.8). 

 

Figure 7.8 Daubechies order 4 decomposition on a single channel from Enthorinal/Cortex of CD1 mouse upon 4AP 

administration. We selected the fifth level that is specific for capturing the ictal onset (9-11 Hz). 

We then performed event detection by setting a hard threshold, chosen as twelve times the standard 

deviation of the wavelet’s noise (-10 σn). To classify different types of events, we computed the 

histogram of the interevent intervals. The histogram presents two peaks that correspond to high-

packed and sparse activity, respectively.  

We selected the minimum between these peaks as a threshold to discriminate among 

1. Ictal core (tonic) events 

2. Short interictal events 

3. Long interictal events 

The different types of events are depicted in Figure 7.9. 



 154 

 

Figure 7.9 Types of events selected using an automatic threshold based on the distribution of events. Zoom of the three 

different types of events discriminate in the first step of the algorithm: the ictal core (tonic) events (numbered as 1 in the 

figure), short interictal events (events numbered as 2) and long interictal events (events numbered as 2). Below, one single 

ictal-like event with the different types of events depicted before.  

If the algorithm detected only one peak, the threshold was set as the first value that was less than 10% 

of the first peak. To discriminate between these three types of events, we computed another histogram 

showing the duration of all detected events. We found two peaks; the first peak represents the short 

interictal events, and the second peak represents the ictal core and the long interictal events. We 

selected as a threshold the first value that was less than 10% of the second peak. 

Ictal-like activity consists of a tonic phase that is characteristic of the onset of the activity and a 

subsequent clonic phase. To identify the clonic phase, we used the interevent distance (IEI), which 

was calculated as the difference between the end and the start of the next event. If the histogram of 

IEIs presented two peaks, we selected the minimum; otherwise, we took a percentage (10%) of the 

first peak as a threshold (min_IEI). If two ictal events were closer than a threshold (equal to min_IEI), 

they were merged. Ictal-like activities with duration less than 3 s were excluded. 

1	

2	 3	
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Figure 7.10 Schematic representation of the step of seizure detection algorithm 

 The seizure detection algorithm is implemented in a GUI that allow the user to compute the analysis 

in the selected ROI and phase as shown in Figure 7.11.  

 

Figure 7.11 Running SeizureDetectionGUI. The main graphical user interface (GUI) is depicted during a working session 

of the software. 

The user can easily insert and modify the parameters required by the software in text form. The 

computation can be performed for all of the mapped electrodes or for the visualized channel (Figure 
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7.12). Manual labeling was also implemented for false positives and negatives (using the plus or 

minus button) and for modifying the start or the stop of a detected seizure (using the edit button) 

(Figure 7.12). 

 

 

 

Figure 7.12 Examples of the output of the GUI. (Above) Seizure detection in a representative channel (the red bar indicates 

the seizure detected by the algorithm). (Below) Manual labeling for seizure correction. 
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Chapter 8 

Modulation of electrophysiological activity in 

neuronal networks of Ts65Dn mice  

Down syndrome (DS) is a genetic disorder that causes intellectual disability in children and adults. 

The disorder results from the presence of an extra copy of human chromosome 21 (HSA21) or of a 

major portion of this chromosome; hence, it is also referred to as trisomy 21.  

The onset of DS-related phenotypes occurs during prenatal development, although some of the 

manifestations of the disorder may also become apparent in adulthood (Dierssen, 2012). Learning 

deficits in DS children involve both short-term and long-term memory. DS children perform 

significantly worse than normal children on explicit memory tasks. However, they show normal 

learning ability for tasks requiring implicit memory processing, indicating a functional dissociation 

between implicit and explicit memory. Poor information encoding, impaired retrieval ability and 

attention deficits have also been demonstrated consistently in adults with DS, accounting for the 

selective impairment of explicit memory (Contestabile et al., 2010). The early occurrence of 

neuroanatomical abnormalities suggests that neurodevelopmental impairment is the major 

determinant of intellectual disability in DS. 

Previous studies have demonstrated that trisomic DS mouse models reproduce the main genetic and 

cognitive disabilities associated with the human syndrome (Dierssen, 2012;Rueda et al., 2012;Aziz 

et al., 2018). The best-characterized and most widely investigated animal model of DS is the Ts65Dn 

mouse; it carries an extra copy of the distal segment of mouse chromosome 16, which is syntenic to 

the long arm of human chromosome 21.  

Altered GABAergic signaling through chloride-permeable GABAA receptors (GABAARs) seems to 

play a major role in brain dysfunction and cognitive impairment in DS mouse models. The alteration 

involves neuronal network dynamics and synaptic inhibitory/excitatory balance in neurons 

(Kleschevnikov et al., 2004;Contestabile et al., 2017).  

In the adult mammalian brain, GABA (-aminobutyric acid) is the main inhibitory neurotransmitter 

through GABAARs. GABAARs are ligand-gated ion channels that are permeable to chloride (Cl-); 

however, the flux of Cl- through these receptors depends on the chloride reversal potential, which in 

turn depends on the intracellular chloride concentration ([Cl-]i). [Cl-]i is mainly determined by the 
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opposing actions of the Cl- importer NKCC1 and the Cl- exporter KCC2. In the adult brain, neuronal 

KCC2 expression predominates over NKCC1 expression, resulting in low [Cl-]I and 

hyperpolarizing/inhibitory action of GABA.  

During neuronal development, expression of the exporter KCC2 is extremely low; therefore, [Cl-]i is 

low, and GABA exerts a depolarizing/excitatory action (Figure 1, from (Ben-Ari, 2017)). This 

developmental shift in GABA signaling has been observed in a wide range of brain structures 

including the hippocampus (Berninger et al., 1995;Leinekugel et al., 1995;Khazipov et al., 

1997;Ganguly et al., 2001;Gao and Van Den Pol, 2001), the neocortex (Luhmann and Prince, 

1991;Owens et al., 1996;Barker et al., 1998;Dammerman et al., 2000;Maric et al., 2001), the 

hypothalamus (Wang et al., 1994;Chen et al., 1996;Obrietan and van den Pol, 1999), the spinal cord 

(Reichling et al., 1994;Wang et al., 1994;Serafini et al., 1995;Vinay and Clarac, 1999) and the 

cerebellum (Yuste and Katz, 1991;Eilers et al., 2001).  

Importantly, during development, GABAergic currents arise before glutamatergic currents and 

provide the first main excitatory input to developing neurons. This early activity is fundamental in 

organizing early patterns of activity and enabling neurons to fire and form synaptic connections. In 

particular GABA exerts a depolarizing and mainly excitatory action during early development (until 

the first or second postnatal week in rodents) (Sernagor et al., 2010;Ben-Ari et al., 2012).  

Indeed alteration of the GABAergic system during restricted developmental periods (Meredith, 2015) 

appears to be a key feature of many neurodevelopmental disorders, including autism spectrum 

disorders (ASD) (Chen et al., 1996;Coghlan et al., 2012), fragile X syndrome (Tyzio et al., 2014) and 

Down Syndrome(Lysenko et al., 2018). This result supports the hypothesis that the increased neuronal 

[Cl-]i represents a common feature and a potential target for the treatment of these diseases. 

 

 

Figure 8.1 GABA switch during development (from Ben-Ari et al 2015) 
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Remarkably, previous studies have shown that intracellular chloride accumulation depolarizes 

GABAARs-mediated currents in adult Ts65Dn mice (Deidda et al., 2015b). Intracellular chloride 

accumulation is paralleled by increased expression of the chloride importer NKCC1 in the brains of 

both Ts65Dn mice and DS patients, while the expression of the chloride exporter KCC2 is unaffected.  

Cell-attached patch clamp recording of CA1 pyramidal neurons revealed differences in the 

electrophysiological behavior of WT and Ts65Dn slices upon application of GABA (a GABAAR 

agonist) or bicuculline (BIC, a GABAAR antagonist) (Figure 8.2, from Deidda 2015).  

As shown in Figure 8.2 (adapted from Deidda et al., 2015), upon GABA administration neurons of 

WT mice showed a dose-dependent decrease in spike frequency. However, application of GABA at 

the same concentrations elicited a strong increase in spike frequency in neurons from Ts65Dn mice. 

Conversely, bath application of the GABAAR antagonist BIC caused an increase in spike frequency 

in neurons from WT mice. However, once again, Ts65Dn neurons showed the opposite behavior, 

displaying a decrease in spike frequency after the removal of GABAAR-mediated inhibition. These 

results confirmed that depolarizing GABAergic signaling occurs in Ts65Dn CA1 neurons, possibly 

due to excessive NKCC1 expression.  
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Figure 8.2 Cell-attached patch clamp recording of the activity of CA1 pyramidal neurons upon GABA or BIC 

administration. WT cells showed a marked decrease in spiking frequency during GABA application, while Ts65Dn 

neurons showed a dose-dependent increase. Conversely, BIC application induced a marked increase in the firing rate in 

WT slices, whereas Ts65Dn slices displayed a significant decrease in firing rate after BIC administration (from Deidda 

et al., 2015). 

 

In fact, pharmacological inhibition of NKCC1 activity using the FDA-approved drug bumetanide 

restored both intracellular chloride concentration ([Cl-]i) and GABAAR-mediated hyperpolarizing 

currents in trisomic neurons. Moreover, in vivo treatment of Ts65Dn mice with bumetanide rescued 

cognitive impairment in several behavioral tasks (Deidda et al., 2015b). 

However, the effects of depolarizing GABAAR signaling and pharmacological NKCC1 inhibition on 

neuronal network dynamics have never been directly studied in DS models. Under the supervision of 

Dr. A. Contestabile and Dr. L. Cancedda, we have evaluated the efficacy of pharmacological 

treatment with bumetanide in restoring GABAergic inhibition in Ts65Dn neurons coupled to MEA. 

In the first part of this study, we used a simplified neuronal model consisting of dissociated 
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hippocampal cultures plated on MEAs. We performed preliminary experiments using brain slices to 

analyze the effect of the pharmacological NKCC1 inhibition on the hippocampal CA1 network 

ensemble.  

8.1 Materials and Methods 

8.1.1 Hippocampal and cortical neuronal cultures 

All animal experiments were performed in accordance with the guidelines established by European 

Community Council Directive 2010/63/EU (September 22, 2010) and were approved by the Italian 

Ministry of Health. Ts65Dn and WT mice were generated by repeated backcrossing of Ts65Dn 

females (obtained from the Jackson Laboratory) to C57BL/6JEi × C3SnHeSnJ (B6EiC3) F1 males. 

Primary neuronal cultures were prepared from WT and Ts65Dn pups at postnatal day 2 (P2) as 

previously described (Beaudoin et al., 2012;Valente et al., 2016). In brief, brains were dissected under 

a stereomicroscope in ice-cold Dissection Buffer (DB) composed of Hank’s Balanced Salt Solution 

(HBSS; Gibco) supplemented with 6 mg/mL glucose, 3 mg/mL bovine serum albumin (BSA; Sigma), 

5.87 mM MgSO4, 5 g/mL gentamycin and 10 mM Hepes, pH 7.4. The tissue was minced and 

enzymatically digested with 0.25% trypsin in HBSS (Gibco) containing 0.6 mg/mL 

Deoxyribonuclease I (DNAse; Sigma) for 5 min at 37°C. Tissue chunks were washed in DB, 

incubated for 5 min in DB supplemented with 1 mg/mL of Soybean trypsin inhibitor (Sigma) and 

mechanically dissociated in DB supplemented with 0.6 mg/mL DNAse. The cells were passed 

through a 40 m cell strainer and then centrifuged (110 x g for 7 min at 4°C) to remove cellular debris. 

The cells were plated on MEA coated with poly-L-lysine (Sigma; 0.1 mg/mL in 100 mM borate 

buffer, pH 8.5). Neurons were maintained in culture medium consisting of Neurobasal medium 

supplemented with 2% B-27, 1% GlutaMax and 5 g/mL gentamycin (all from Gibco) at 37 °C in a 

humidified atmosphere (95% air, 5% CO2).  

. 

8.1.2 MEA recording from neuronal cultures 

Experimental protocol  

For these experiments, cultures 21 DIVs old were pretreated with bumetanide (10 M) or with the 

corresponding vehicle (0.01% DMSO) for 1 hour in the incubator prior to each recording session. 

The cultures were then transferred to the experimental setup, which was equipped with a custom-

made incubator chamber (37 °C in a humidified atmosphere consisting of 95% air and 5% CO2), and 

kept there for 20 minutes before beginning the recordings to allow the culture to adapt to the new 
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environment and reach a stable level of activity (Frega et al., 2012;Colombi et al., 2013;El Merhie et 

al., 2018). 

The spontaneous network activity of cultures treated with bumetanide or vehicle was recorded for 30 

minutes. We then applied bicuculline (BIC, 20 μM; Sigma) or GABA (100 μM; Sigma) and recorded 

the activity of the cultures for an additional 30 minutes.  

In another set of experiments, we assessed the effect of bumetanide on the spontaneous activity. For 

this aim, after adapting the culture to the recording setup for 20 minutes as described above, we 

recorded 30 minutes of basal activity. The cultures were then treated with bumetanide or vehicle as 

above and after 1 hour were recorded for an additional 30 minutes.  

Data analysis  

Data analysis was performed off-line using the custom software package SPYCODE (ref, Chapter 2). 

The steps in the analysis are described briefly below.  

Raw traces were high-pass-filtered (>300 Hz) to isolate spikes from the low fluctuation of the signal 

(LFP). We computed the spike detection as described in Chapter 2.  

To characterize the activity level of the analyzed networks, we calculated the mean firing rate (MFR), 

which is defined as the mean number of spikes per second measured over the total recording time. 

We considered electrodes active if they recorded a firing rate greater than 0.02 spikes per second. The 

low threshold guarantees that only electrodes that are not covered by cells and those with very few 

spikes are excluded and that all others are retained.  

We computed the percentage of variation for each active electrode and, using a bootstrap method 

(ref), we evaluated statistically significant changes with respect to the basal condition. The percentage 

of variation was computed as follows: 

% 𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝐶ℎ =
𝑀𝐹𝑅𝑑𝑟𝑢𝑔 − 𝑀𝐹𝑅𝑏𝑎𝑠𝑎𝑙

𝑀𝐹𝑅𝑏𝑎𝑠𝑎𝑙
 

For the bootstrap analysis, the peak train for each time segment (basal or drug) was divided into 1-

minute bins. The MFRs recorded during each 1-minute bin for the two time segments for each well 

were randomly shuffled into two groups 10,000 times. The differences between the means of the 

randomly shuffled groups produced a null distribution (Figure 8.3). For each channel, we computed 

the real difference between the basal and the drug values and assessed whether it fell outside the 95% 

confidence interval of the null distribution. 
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Figure 8.14 Bootstrap analysis method. The spike train for each channel was measured in 1-minute bins and shuffled 

10,000 times. The differences between the means of the two randomly shuffled groups produced a null distribution. For 

each channel, we computed the real difference between the basal and the drug values and assessed whether it fell outside 

the 95% confidence interval of the null distribution. 

 

To assess changes in the synchronicity of the neuronal networks, we computed the cross-correlation 

function between each pair of spike trains recorded from active channels. The cross-correlation 

function represents the probability of observing a spike in one channel i at time (t+τ, τ=3 ms) given 

that there is a spike in a second channel i+1 at time t. To quantify the strength of correlation between 

each pair of electrodes, we evaluated the correlation peak (Cpeak). Then we analyzed changed in the 

Cpeak of the Cross Correlation function computed between the first spikes for each burst for all pairs 

of active channels. 

 

8.1.2 MEA recording from ex vivo acute hippocampal slices  

Hippocampal slices preparation 

All animal experiments were performed in accordance with the guidelines established by European 
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Community Council Directive 2010/63/EU (September 22, 2010) and were approved by the Italian 

Ministry of Health. Ts65Dn and WT mice were generated by repeated backcrossing of Ts65Dn 

females (obtained from the Jackson Laboratory) to C57BL/6JEi × C3SnHeSnJ (B6EiC3) F1 males. 

Animals were genotyped by PCR as previously described (Duchon et al., 2011;Deidda et al., 2015b). 

Animals between 10 and 16 weeks of age were used in the experiments. Only male mice were used 

in the electrophysiology experiments.  

Slices were obtained as described in Chapter 7. Briefly, mice were anesthetized with isoflurane and 

transcardially perfused with an ice-cold cutting solution (pH 7.4, oxygenated with 95% O2 and 5% 

CO2; see appendix A for the composition of the solutions). The animals were decapitated, and their 

brains were removed and immersed in ice-cold cutting solution. Combined entorhinal/hippocampal 

slices (400 μm thick, cut with a VT1000S Leica Microsystems vibratome) were incubated at 32 °C 

for 20 min in artificial cerebrospinal fluid (ACSF) oxygenated with 95% O2 and 5% CO2 (see 

appendix A for the compositions of the solutions). The slices were then maintained in ACSF solution 

for at least 1 hour to allow recovery.   

Experimental protocol  

Slices were pre-incubated with standard ACSF (see appendix A) or with BUME (10 μM) for 45 

minutes. As described for the cultures, we adapted slices for 20 minutes on the MEA setup while 

continuously perfusing them with oxygenated ACSF and then recorded basal spontaneous activity for 

30 minutes. We applied bicuculline or GABA (as described above) for the same amounts of time. We 

discarded the recordings made during the first 15 minutes of drug application to ensure complete 

exchange of the solution.   

Data analysis  

Wide-band raw signals were high-pass-filtered (up to 300 Hz) to isolate spikes. We determined the 

significant variation for each channel before and after the treatment using the bootstrap method 

described in paragraph 8.1.2. To consider the lower component of the signal, we low-pass-filtered the 

wide band raw signal between 1 and 200 Hz. The power spectral density was computed as described 

in Chapter 4.   

For the moment, we only considered the lower frequency bands of the signal, namely, the delta (1-4 

Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (12-25 Hz) bands. To characterize the LFP, we 

calculated the power in each of those frequency bands. 

All of the results presented here were obtained from the CA1 area. We are currently analyzing and 

collecting additional data that will be used to show the behavior of the entire hippocampus.  
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8.2 Results on hippocampal cultures 

In the first part of the present study, we examined the effect of bumetanide on hippocampal neuronal 

networks coupled to MEA.  

As a first step, we assessed whether NKCC1 is overexpressed in Ts65Dn neurons in culture. To this 

aim, we analyzed the levels of NKCC1 protein in hippocampal and cortical primary neuronal cultures 

prepared from WT and Ts65Dn mice. 

After 15 days in vitro (DIV), neurons were lysed, and NKCC1 protein expression was measured by 

immunoblotting. Consistent with the previous in vivo results (Deidda et al., 2015b), immunoblotting 

analysis showed that overexpression of NKCC1 occurs in both cortical and hippocampal trisomic 

neuronal cultures (Figure 8.4). 

 

Figure 8.4 NKCC1 expression in Ts65Dn and WT cortical and hippocampal neuronal cultures measured by 

immunoblotting at 15 DIV. **p<0.01; *** p<0.001; unpaired Student’s t-test. 

Since previous studies have shown that the expression of NKCC1 and KCC2 is developmentally 

regulated during neuronal maturation (Ben-Ari et al., 2007;Kaila et al., 2014), we next evaluated the 

expression of both cotransporters in Ts65Dn neurons during in vitro development. We found that 

NKCC1 expression increased in Ts65Dn neurons beginning at 15 DIV and that it persisted afterwards 

(Figure 8.5). Conversely, the developmental increase in KCC2 expression appeared similar in WT 

and Ts65Dn mice (Ben-Ari, 2002). 
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Figure 8.5 Developmental changes in NKCC1 and KCC2 protein expression in Ts65Dn and WT neuronal cultures. 

*p<0.05; ** p<0.01; Tukey’s post hoc test following two-way ANOVA. 

Because NKCC1 expression appeared to be upregulated in Ts65Dn neurons during in vitro 

maturation, we next evaluated the occurrence and timing of the developmental GABA switch in 

Ts65Dn cultures. To this aim, we evaluated GABA-induced Ca2+ responses in developing neuronal 

cultures by live imaging with the Ca2+-sensitive dye fluo-4 at four different developmental stages, 

namely, 2, 7, 15, and 21 DIV. The optical trace for each cell was normalized to baseline (ΔF/F0), and 

we evaluated the percentage of cells showing GABA-induced Ca2+ responses. 

 As expected, WT neurons showed a progressive decrease in the GABA-induced Ca2+ response 

beginning at 7 DIV that reflects the developmental GABA shift from excitatory to inhibitory (Figure 

6). Conversely, Ts65Dn neurons displayed an incomplete developmental GABA shift compared to 

WT cultures. Consistent with the increased NKCC1 expression (Figure 5), we found a statistically 

significant increase in the number of neurons showing GABA-induced Ca2+ responses in Ts65Dn 

cultures at both 15 and 21 DIV. Then, we measured the GABA-induced Ca2+ responses upon 

Bumetanide application in hippocampal cultures at DIV 15. During the control phase (vehicle phase) 

we found a statistical difference between Ts65Dn and WT cultures that is completely recover after 

Bumetanide applications.  
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Figure 8.15 Developmental GABA switch in Ts65Dn and WT neuronal cultures measured by live Ca2+ imaging. GABA 

induced CA2+ response in hippocampal cultures at DIV 15 upon Bumetanide applications.  **p<0.01; ***p<0.001; 

Tukey’s post hoc test following two-way ANOVA. 

 

We next assessed the effect of depolarizing GABAAR signaling on neuronal network dynamics by 

means of MEA recordings.  

Initially, we performed experiments with the aim of determining whether pharmacological blockade 

of NKCC1 activity with bumetanide influenced spontaneous neuronal network activity.  Although the 

mean of the firing rates of neurons of the two genotypes were comparable both at baseline and during 

bumetanide treatment (Figure 8.7B), the synchronization levels were affected both at baseline and 

after bumetanide treatment (Figure 8.7C). In fact, bumetanide application resulted in a significant 

decrease in synchronization for both genotypes. Moreover, the Ts65Dn neuronal network showed 

lower Cpeak values than the WT network both at baseline and during bumetanide application (Figure 

8.7 C). The MBR level of activity was not significant affected by the treatment for both genotypes 

(Figure 8.7 D), although the synchronization between burst events was strongly affected (Figure 8.7 

E). 
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Figure 8.7 MFR and MBR quantification and Cpeak comparison computed on spikes and burst train between WT and 

Ts65Dn cultures. A) 1-second raster plot of WT cultures and Ts65Dn cultures treated with Bumetanide. B) Comparison 

of the MFR for cultured WT (n=38 cultures, green bar) and Ts65Dn (n=35 cultures, red bar) neurons before and after 

treatment with bumetanide (BUME, light green bar for WT and red for Ts65Dn). C) Neuronal network synchronization 

was evaluated by analyzing the Cpeak values for both genotypes during basal conditions and after bumetanide application. 

D) Neuronal network synchronization on burst activity was evaluated by analyzing the Cpeak values on burst events for 

both genotypes during basal conditions and after bumetanide application. All data are presented as the mean +/- SEM. 

*p<0.05; ** p<0.01; Tukey’s post hoc test following two-way repeated-measures ANOVA. 

 

Next, we evaluated the percentage of channels showing changes in MFR after bumetanide application 

using bootstrap statistics (Figure 8.8A; see paragraph 8.1.2 for details). We found that WT cultures 

exhibited a higher percentage of channels (43%) with increased MFR compared to Ts65Dn cultures 

(29%) (Figure 8.8B, green box). Conversely, Ts65Dn cultures showed a higher percentage of 

channels (37%) with decreased MFR compared to the WT cultures (25%) (Figure 8.8B, red box). A 

difference of similar magnitude was found by counting the number of experiments that showed higher 

percentages of channels showing a decrease or an increase in MFR or vice versa (Figure 8.8C).  
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Figure 8.8 Comparison of MFR before and after bumetanide application to WT and Ts65Dn neurons. A) MFR variation 

caused by the administration of bumetanide. The gray dots indicate channels that recorded significantly increased MFR 

compared to the basal level; light gray dots indicate channels that recorded significantly decreased MFR compared to 

the basal level, and the black dots indicate channels that did not change after bumetanide application. B) Quantification 

of the percentage of channels that changed significantly upon bumetanide application for WT (n=38) and Ts65Dn (n=35) 

neurons. C) Quantification of the percentage of experiments showing MFR decreases that were higher than the MFR 

increases and vice versa. All data are presented as the mean +/- SEM. *** p<0.001, unpaired Student’s t-test. 

 

In another set of experiments, we evaluated the efficacy of bumetanide in restoring the inhibitory 

GABAergic signal during the administration of bicuculline (a GABAAR blocker) or GABA 

(GABAAR agonist). We normalized the results obtained in each experiment to the mean of each 

electrophysiological parameter during basal recording. Regarding the WT cultures (Figure 8.9 A, 

green bar) the activity level, evaluated by means of the MFR, increased after BIC administration with 

respect to the basal condition. WT cultures pre-treated with Bumetanide showed a higher increase 

after the BIC treatment (Figure 8.9 A, green light bar). Regarding Ts65Dn cultures pre-treated with 

vehicle, we observed a lower increase in the MFR with respect to the WT cultures (Figure 8.9 A, red 

bar). Bumetanide pre-treatment to Ts65Dn cultures caused a significant increase in the MFR with 

respect to the cultures pretreated with vehicle (Figure 8.9 A, orange bar). 
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In another set of experiments, we examined the effect of the GABAAR blocker bicuculline. WT 

cultures treated with vehicle or Bumetanide showed a strong decrease in the MFR after GABA 

application (Figure 8.9 B, green and light green bars). Ts65Dn showed a lower decrease in the MFR 

with respect to the WT cultures pre-treated with Bumetanide (Figure 8.9 B, red bar). We found no 

significant difference between WT and Ts65Dn pre-treated with Bumetanide during GABA 

administration. 

Regarding bursting activity we found a significant difference between WT and Ts65Dn cultures 

during BIC treatment: Ts65Dn showed a lower increase in the MBR with respect to the WT cultures 

(Figure8.9 C). The treatment with Bumetanide caused a significant increase in the MBR of Ts65Dn 

with respect to the vehicle condition. No significant difference was found between WT and Ts65Dn 

cultures pre-treated with Bumetanide. The analysis of the Cpeak values, computed on the spike trains, 

revealed an increase in the synchronicity of WT cultures after the removal of GABAA blocker 

(Figure 8.9 D). Ts65Dn cultures, as for the above parameters, displayed a lower increase in the 

synchronization with respect to the WT cultures. Bumetanide treatment caused a significant increase 

of C peak valued of Ts65Dn cultures. We observed the same behavior for the Cpeak parameter 

computed on burst train (Figure 8.9 E): WT cultures exhibit a higher increase of the C peak values 

with respect to the WT that is completely recovery by the Bumetanide application.  

Then, we evaluated the percentage of the MFR variations for each active electrodes upon GABA/BIC 

administration. As expected, administration of GABA caused abrupt suppression of the firing activity 

in the WT cultures, as shown by the distribution of the percentage MFR variation from all active 

electrodes, which peaked at -100% (Figure 8.9A left, green). On the other hand, after GABA 

application to Ts65Dn cultures, the distribution of the percentage MFR variation appeared very 

different from that observed for WT; the data were widely dispersed and even showed increased MFR 

from some electrodes, indicating reduced efficacy of GABA inhibition and partial excitatory activity 

(Figure 8.10 A left, red). In fact, by bootstrap analysis we found that virtually all (99.7%) active 

channels in the WT cultures displayed a significant decrease in firing after GABA application (Figure 

8.10 B, green box). However, in Ts65Dn cultures, only 67% of the active channels showed a decrease 

in MFR after GABA application, while 7% of the analyzed channels showed an increase (Figure 8.10 

B, red box). 

Interestingly, treatment with bumetanide fully restored inhibitory GABA signaling in Ts65Dn 

cultures, as demonstrated by the distribution of the percentage MFR variation, which in that case was 

indistinguishable from that of WT cultures (Figure 8.10 A, right). Moreover, after bumetanide 

pretreatment, all recorded electrodes (100%) in the Ts65Dn cultures showed a GABA-mediated 
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decrease in firing rate (Figure 8.10 B, red box). 

 

 

 

Figure 8.9. Electrophysiological parameters evaluated during BIC/GABA administration for the WT and Ts65Dn. A) 

Comparison of the MFR ratio during BIC administration for the cultures pretreated with vehicle (n=9 for WT green bar; 

n=12 for Ts65Dn red bar) or bumetanide (n=9 for WT light green bar; n=9 for Ts65Dn orange bar). B) Comparison of 

the MFR ratio during GABA administration for the cultures pretreated with vehicle (n=9 for WT green bar; n=12 for 

Ts65Dn red bar) or bumetanide (n=9 for WT light green bar; n=9 for Ts65Dn orange bar). C) Comparison of the MBR 

ratio during BIC administration for the cultures pretreated with vehicle (n=9 for WT green bar; n=12 for Ts65Dn red 

bar) or bumetanide (n=9 for WT light green bar; n=9 for Ts65Dn orange bar).D) C peak ratio computed on spike trains 

for every couples of channels for the cultures pretreated with vehicle (n=9 for WT green bar; n=12 for Ts65Dn red bar) 

or bumetanide (n=9 for WT light green bar; n=9 for Ts65Dn orange bar). E) C peak ratio computed on burst trains for 

every couples of channels for the cultures pretreated with vehicle (n=9 for WT green bar; n=12 for Ts65Dn red bar) or 

bumetanide (n=9 for WT light green bar; n=9 for Ts65Dn orange bar). All data are presented as the mean +/- SEM. 

*p<0.05; ** p<0.01; Tukey’s post hoc test following two-way repeated-measures ANOVA. 

 

Upon removing endogenous GABA-mediated inhibition, the distribution of the percentage MFR 

variation peaked at +100% in the WT cultures, highlighting the expected firing increase (Figure 8.10 

C, left, green). Conversely, in Ts65Dn cultures the distribution of the percentage MFR variation 

showed a bimodal distribution characterized by both positive and negative values, indicative of a 
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mixed response to bicuculline treatment (Figure 8.10 C left, red).  

Bootstrap analysis was used to quantify the percentage of channels displaying significant MFR 

changes upon bicuculline administration. The results showed that in WT cultures 85% of the active 

channels increased firing, while 6% showed a decrease compared to the basal values. In contrast, in 

Ts65Dn cultures only 60% of the active channels showed a significant increase in MFR after 

bicuculline administration, while 23% of channels showed a significant decrease in MFR, indicative 

of aberrant GABAergic signaling. However, pretreatment of Ts65Dn cultures with bumetanide 

shifted the distribution of the percentage MFR variation towards higher values, indicating rescue of 

GABA-mediated inhibition (Figure 8.10 C right, red). Accordingly, bumetanide treatment rescued 

the percentage of active channels showing a significant MFR increase (84%) upon bicuculline 

administration in Ts65Dn cultures (Figure 8.10 D, red box). 

These results confirm that depolarizing GABAA signaling occurs in Ts65Dn neurons. No significant 

effects of bumetanide were found upon GABA/bicuculline treatment of WT cultures. 

 

Figure 8.10 Variation in MFR during BIC or GABA application to WT and Ts65Dn cultures. A) Violin plot of the 

percentage MFR variation during GABA administration for WT (green violin) and Ts65Dn (red violin) pretreated with 

vehicle (n=9 for WT; n=12 for Ts65Dn) or bumetanide (n=9 for WT; n=9 for Ts65Dn) B) Percentage of channels that 

changed significantly with respect to their basal conditions during GABA administration. C) Violin plot of the percentage 

MFR variation during BIC administration for WT (green violin) and Ts65Dn (red violin) pretreated with vehicle (n=11 

for WT; n=15 for Ts65Dn) or bumetanide (n=20 for WT; n=12 for Ts65Dn). D) Percentage of channels that changed 



 176 

significantly with respect to their basal conditions during BIC administration. All data are presented as the mean +/- 

SEM. *p<0.05; **p<0.01; *** p<0.001; Tukey’s post hoc test following two-way ANOVA. 

 

 

 

8.3 Results obtained with hippocampal slices 

In the second part of the present study, we conducted a preliminary examination of the effect of 

bumetanide on hippocampal slices from WT and Ts65Dn mice coupled to MEA. We performed 

preliminary experiments with the aim of investigating the efficacy of the treatment on the CA1 

hippocampal region. Although recording from brain slices on MEA has several advantages compared 

to conventional extracellular field potential recording, a compromise between tissue oxygenation and 

signal-to-noise ratio has to be found; a high perfusion rate (i.e., approximately 2 ml/min) was needed 

to record signals with high-frequency components(Hajos et al., 2009). In the previous chapter 

(Chapter 7) we described the customization of the experimental setup and of the MEA chamber that 

allows us to record activity featuring high- and low-frequency patterns. 

Regarding the high-frequency components of the signal (i.e., spike activity), as mentioned earlier for 

cultures, we filtered the signal above 300 Hz. We computed the percentage of channels that changed 

significantly upon drug administration using the bootstrap method (see paragraph 8.1.2).  

GABA application caused a significant decrease in the MFR recorded at all electrodes in WT slices 

compared to the basal condition (Figure 8.11 A). On the other hand, the majority of electrodes in 

Ts65Dn slices recorded increased MFR compared to the basal condition (Figure 8.11 B). Bumetanide 

application restored inhibitory GABAergic signaling in Ts65Dn slices, as demonstrated by the 

decrease in MFR observed at the majority of recorded electrodes (Figure 8.11 C). We are still 

collecting the data obtained for WT slices recorded after preincubation with bumetanide.  
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Figure 8.11 MFR comparison between WT and Ts65Dn hippocampal slices. A) MFR of WT slices (n= 6 slices) upon 

GABA application. B) MFR of Ts65Dn slices (n= 7 slices) upon GABA application. C) MFR of Ts65Dn slices preincubated 

with BUME (n= 5 slices) upon GABA application. In each plot (A-C), the green dots indicate channels that recorded 

significantly increased MFR compared to the basal level, the red dots indicate channels that recorded significantly 

decreased MFR compared to the basal level, and the black dots indicate channels that did not change after BUME 

application. 

On the other hand, upon BIC administration, WT slices showed increased MFR in the majority of 

channels compared to the basal phase (Figure 8.12A). Bumetanide application to WT slices did not 

cause any changes in MFR (Figure 8.12B). Conversely, bicuculline administration to Ts65Dn slices 

resulted in a higher percentage of channels with significantly decreased MFR than was observed in 

WT slices (Figure 8.12C). Preincubation with bumetanide restored inhibitory GABA signaling in 

Ts65Dn slices (Figure 8.12D). 
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Figure 8.12 Comparison of MFR in WT and Ts65Dn slices. A) MFR in WT slices (n= 6 slices) upon BIC application. B) 

MFR in WT slices preincubated with BUME (n= 4 slices) upon BIC application. C) MFR in Ts65Dn slices (n= 5 slices) 

upon BIC application. C) MFR in Ts65Dn slices preincubated with BUME (n= 6 slices) upon BIC application. In each 

plot (A-C), the green dots indicate channels that recorded significantly increased MFR with respect to the basal level, the 

red dots indicate channels that recorded significantly decreased MFR with respect to the basal level, and black dots 

indicate channels that did not change after BUME application. 

 

Local field potential analysis revealed different contributions of frequency band components in the 

two genotypes following GABA administration. The results of the local field potential analysis of 

BIC experiments are not shown because we are still analyzing the data.  

Figure 8.13 A shows a representative trace for each experimental condition. The signal from Ts65Dn 

slices showed a robust increase in both frequency and amplitude upon GABA application, whereas 

WT slices exhibited a marked decrease in activity. Ts65Dn slices treated with bumetanide showed 

marked decreases in both the amplitude and the frequency of activity after GABA administration.  

To quantify the power of the signal for each band, we computed the area under the power spectral 

density. We normalized each power band to the mean value observed under basal conditions. As 

shown in Figure 8.13 B, all the power bands considered (delta, theta, alpha, and beta) were decreased 

in WT slices but not in Ts65Dn slices. Once again, bumetanide pretreatment of Ts65Dn slices caused 

a decrease in the power of the theta, beta and alpha bands, similar to its effect in WT slices.  
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Figure 8.13 Power spectral density analysis for WT and Ts65Dn slices during GABA administration. All power bands 

were normalized with respect to the basal conditions. A) Representative traces of one channel for each experimental 

condition: WT (green lines) and Ts65Dn (red lines) upon GABA administration and Ts65Dn with bumetanide pretreatment 

and GABA administration (orange lines). B) Power estimation for four different bands: delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz) and beta (12-24 Hz).   
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8.4 Conclusion 

In the first part of this study, we showed that GABAergic signaling is altered in hippocampal cultures 

prepared from Down syndrome mice during development. This alteration was paralleled by 

overexpression of NKCC1 in Ts65Dn cultures, whereas KCC2 expression was spared. Remarkably, 

GABA-induced Ca2+ responses displayed the same developmental profile as NKCC1 protein 

expression in Ts65Dn neurons.  

Analysis of the single-channel variation of MFR upon bumetanide application to hippocampal 

cultures revealed that larger decreases in firing rate occur in Ts65Dn than in WT cultures due to the 

difference in the starting level of GABA inhibitory signaling in DS mice.   

We demonstrated that altered GABAergic signaling in Ts65Dn cultures resulted in a lower level of 

network synchronization. This difference was not mediated by NKCC1 since the application of 

bumetanide (NKCC1 blocker) did not recover the difference between WT and Ts65Dn.   

We then showed that Ts65Dn neuronal network activity exhibited alterations in GABAergic 

inhibition. Application of bumetanide restored the normal inhibitory action of GABA in Ts65Dn 

neuronal cultures without altering the behavior of the WT cultures.  

We confirmed these results by conducting experiments on the hippocampal CA1 region in which we 

recorded brain slices on MEA. Although our preliminary results confirmed our previous observations, 

it will be necessary to increase the number of experiments to assess the reproducibility of the results.  

Although bumetanide is an FDA-approved drug, chronic treatment with this drug is limited due to its 

side effects, which include mild hypokalemia and electrolyte imbalance. Moreover, brain penetration 

of bumetanide is not optimal, although several studies have reported its efficacy in reaching the brain 

(Li et al., 2011;Cleary et al., 2013;Deidda et al., 2015a). 

To overcome the limitations of drug treatment, we recently established a gene therapy approach that 

can be used to knock down NKCC1 expression and thereby restore the correct balance of GABAergic 

inhibition. In future studies, we will perform experiments using adeno-associated viral vectors (AAV) 

developed in our laboratory with the aim of re-establishing appropriate GABAergic inhibition 

through the modulation of neuronal [Cl-]i. AAV vectors have been used in several clinical trials and 

have demonstrated excellent efficacy and safety when used in the treatment of various neurological 

diseases (Weinberg et al., 2013). Animals will receive AAV vectors by intracerebroventricular (ICV) 

injection during the postnatal period, and we will assess the efficacy of the treatment during their 

adulthood using brain slices on MEAs.  

In contrast to pharmacological treatments with NKCC1 inhibitors, a gene therapy approach offers 
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numerous advantages, including the absence of side effects at the renal level, specificity of action at 

the neuronal level and single administration. On the other hand, these therapeutic approaches cannot 

be immediately regarded as a safe therapeutic approach for clinical trials in subjects with DS. 

Moreover, since we observed that the treatment with Bumetanide on adult mice was not able to induce 

permanent changes in the GABAergic inhibition we will try to act on a specific time interval during 

the development (i.e. between P3 and P15). We believe that the treatment during the development 

and specifically during the GABA switching, could induce permanent changes that will be maintain 

during the adult period.  

In any case, for both therapeutic approaches, it is important to evaluate the effect of treatment on 

neuronal activity patterns not only at the level of single neurons but also at the network level. In this 

context, MEAs have been established as a technological platform for conducting electrophysiological 

studies with the possibility of recording from multiple electrodes simultaneously. They represent a 

simple, low-risk, accessible model for evaluating, in terms of electrophysiological activity, the 

effectiveness of new therapies in the preclinical phase. 

In conclusion, MEA coupled to neuronal networks could be used to predict the effectiveness of new 

therapies in pathologies that exhibit alterations of GABAergic inhibition, such as autism and 

neurodevelopmental diseases.  
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Conclusion 

The study reported in the present PhD thesis aimed to investigate sleep-related network features 

displayed by primary cultures of cortical neurons plated on microelectrode arrays. In fact, despite 

their simplicity, these networks retain some basic sleep features similar to those present in in vivo 

sleeping animals.  

Our approach involved the following three main steps:  

1. We focused on the slow-frequency synchronized activity spontaneously generated by in vitro 

cortical networks, exploiting novel methodological approaches and considering both spikes 

and local field potentials; we then manipulated the electrophysiological activity by simply 

altering the membrane excitability with the cholinergic agonist carbachol (CCh), as reported 

in previously published works (Tateno et al., 2005; Corner, 2013).  

2. We delivered electrical stimuli to cell cultures following CCh administration to determine 

whether CCh affects the complexity of the evoked response, a phenomenon that has been 

observed in humans. 

3. Based on our previous findings (1), we were interested in understanding how brain 

electrophysiological signaling is altered in pathologies in which sleep is compromised, such 

as Prader Willi syndrome. To enable us to understand possible differences in the homeostatic 

and circadian processes, we complemented the MEA recordings by performing gene 

expression analysis of both in vitro and in vivo samples.  

The main results regarding sleep-related electrophysiology can be summarized as follows: 

 In Chapter 4, we presented electrophysiological and genetic evidence that primary cortical 

cultures, which usually display synchronized low-frequency firing patterns under spontaneous 

conditions, are able to encompass some essential features of sleep in a controllable way. LFP 

analysis complemented MUA analysis and allowed us to look for classical sleep 

electrophysiological signatures (i.e., slow waves) in our simplified in vitro experimental 

model. The application of CCh represented an efficient experimental strategy for suppressing 

classical sleep-like properties of activity, resulting in an asynchronous firing pattern with 

many isolated spikes. Moreover, administration of CCh induced suppression of delta and theta 

waves, a range encompassing the entire spectrum of sleep in vivo. As a complement to the 

above experiments, analysis of gene expression profiles confirmed the effects of CCh on the 
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circadian and synaptic homeostatic components. 

 In Chapter 5, we showed that the Perturbation Complexity Index computed during the 

baseline period (i.e., in the absence of CCh stimulation) exhibited values similar to that 

recorded from humans during sleep. Upon CCh administration, the responsiveness of cortical 

cultures to stimulation decreased in a manner similar to the results obtained in humans. The 

increase in PCI observed after CCh administration in the majority of the experiments indicated 

a more complex responsiveness. Interestingly, the PCI of hippocampal cultures on HDMEAs 

did not show any variation after the application of norepinephrine. 

 In Chapter 6, we showed that Prader Willi mice display altered synchronized activity 

compared to WT mice, as displayed by lower latencies. These results suggest that there is 

lower connectivity within PWS cultures than in WT cultures at the same developmental 

stages. Since one of the phenotypes of Snord116 mice is delayed development, we can 

hypothesize that a similar trend also occurs in the neuronal cultures. The analysis of LFP 

revealed abnormalities in the theta waves similar to those observed in animals in vivo and in 

PWS patients (Lassi). Gene expression analysis both in vivo and in vitro showed that Homer1a 

and Cfos were significantly overexpressed in WT animals after sleep deprivation. In contrast, 

PWS did not show a rebound after sleep deprivation, suggesting an alteration in the control 

of the homeostatic process.  

The foregoing evidence suggests that MEA recordings coupled to cortical cultures represent a 

favorable model for investigating the essential neuronal network features of sleep in vitro under both 

physiological and pathological conditions. The next step in this research will be to combine new gene 

editing technologies such as the CRISPR/cas9 system with MEA recording to accelerate the 

investigation of loss or gain of function due to gene mutations in sleep studies. 

In neuropharmacological studies using MEAs, we performed experiments with both hippocampal 

cultures and hippocampal slices. The main goal of this project was to evaluate the efficacy of 

bumetanide in restoring inhibitory GABAergic signaling in Down syndrome mice.  

Ts65Dn neuronal networks pretreated with BUME showed restored GABAA inhibitory signaling. In 

contrast, no significant effects of bumetanide on GABA/BIC-induced spiking activity were found in 

cultures prepared from WT mice. Then, because we were interested in a specific region of the 

hippocampus, we performed preliminary experiments using mouse brain slices on MEA. Our 

preliminary results confirm our previous observations and suggest that MEA coupled to neuronal 

networks can be used to predict the effectiveness of new therapies in pathologies that lead to 

alterations in GABAergic inhibition, such as autism and neurodevelopmental diseases. 
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Appendix A 

1) Slicing sucrose-ACSF 

Compound Concentration (mM) 

Sucrose 208 

KCl 2 

KH2PO4 1.25 

MgCl2*6H2O 5 

MgSO4*6H2O 2 

CaCl2*2H2O 0.5 

D-Glucose 10 

NaHCO3 26 

L-Ascorbic Acid 1 

Pyruvic Acid 3 

 

2) Holding ACSF 

Compound Concentration (mM) 

NaCl 115 

KCl 2 

KH2PO4 1.25 
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MgSO4*6H2O 1.3 

CaCl2*2H2O 2 

D-Glucose 25 

NaHCO3 26 

L-Ascorbic Acid 1 

 

3) Recording ACSF 

Compound Concentration (mM) 

NaCl 115 

KCl 3.75 

KH2PO4 1.25 

MgSO4*6H2O 0.5 

CaCl2*2H2O 2.4 

D-Glucose 25 

NaHCO3 26 

L-Ascorbic Acid 1 

 


