12 research outputs found

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    Code design and analysis for multiple access communications

    Get PDF
    This thesis explores various coding aspects of multiple access communications, mainly for spread spectrum multiaccess(SSMA) communications and collaborative coding multiaccess(CCMA) communications. Both the SSMA and CCMA techniques permit efficient simultaneous transmission by several users sharing a common channel, without subdivision in time or frequency. The general principle behind these two multiaccess schemes is that one can find sets of signals (codes) which can be combined together to form a composite signal; on reception, the individual signals in the set can each be recovered from the composite signal. For the CCMA scheme, the isolation between users is based on the code structure; for the SSMA scheme, on the other hand, the isolation between users is based on the autocorrelation functions(ACFs) and crosscorrelation functions (CCFs) of the code sequences. It is clear that, in either case, the code design is the key to the system design.For the CCMA system with a multiaccess binary adder channel, a class of superimposed codes is analyzed. It is proved that every constant weight code of weight w and maximal correlation λ corresponds to a subclass of disjunctive codes of order T 3, the out-of-phase ACFs and CCFs of the codes are constant and equal to √L. In addition, all codes of the same length are mutually orthogonal.2. Maximal length sequences (m-sequences) over Gaussian integers, suitable for use with QAM modulation, are considered. Two sub-classes of m-sequences with quasi-perfect periodic autocorrelations are obtained. The CCFs between the decimated m-sequences are studied. By applying a simple operation, it is shown that some m-sequences over rational and Gaussian integers can be transformed into perfect sequences with impulsive ACFs.3. Frank codes and Chu codes have perfect periodic ACFs and optimum periodic CCFs. In addition, it is shown that they also have very favourable nonperiodic ACFs; some new results concerning the behaviour of the nonperiodic ACFs are derived. Further, it is proved that the sets of combinedFrank/Chu codes, which contain a larger number of codes than either of the two constituent sets, also have very good periodic CCFs. Based on Frank codes and Chu codes, two interesting classes of real-valued codes with good correlation properties are defined. It is shown that these codes have periodic complementary properties and good periodic and nonperiodic ACF/CCFs.Finally, a hybrid CCMA/SSMA coding scheme is proposed. This new hybrid coding scheme provides a very flexible and powerful multiple accessing capability and allows simple and efficient decoding. Given an SSMA system with K users and a CCMA system with N users, where at most T users are active at any time, then the hybrid system will have K . N users with at most T.K users active at any time. The hybrid CCMA/SSMA coding scheme is superior to the individual CCMA system or SSMA system in terms of information rate, number of users, decoding complexity and external interference rejection capability

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    Design of tch-type sequences for communications

    Get PDF
    This thesis deals with the design of a class of cyclic codes inspired by TCH codewords. Since TCH codes are linked to finite fields the fundamental concepts and facts about abstract algebra, namely group theory and number theory, constitute the first part of the thesis. By exploring group geometric properties and identifying an equivalence between some operations on codes and the symmetries of the dihedral group we were able to simplify the generation of codewords thus saving on the necessary number of computations. Moreover, we also presented an algebraic method to obtain binary generalized TCH codewords of length N = 2k, k = 1,2, . . . , 16. By exploring Zech logarithm’s properties as well as a group theoretic isomorphism we developed a method that is both faster and less complex than what was proposed before. In addition, it is valid for all relevant cases relating the codeword length N and not only those resulting from N = p

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    Mitigating Fiber Nonlinearity with Machine Learning

    Get PDF
    Nowadays, optical communication transmission is based mainly on optical fiber networks. Increasing demands for higher-capacity systems are hampered by signal distortions due to nonlinear effects of the commercial optic fibers. Different techniques have been proposed to reverse and mitigate this noise effect on the transmitted signal such as the digital backpropagation (DBP), the Volterra nonlinear compensation, the advanced modulation transmission, and perturbation pre-compensation techniques. While these techniques achieve good results they are too complicated for practical industrial implementation and add more complexity overhead on the system. This thesis is focused on investigating the merits of optical fiber mitigation using Artificial Intelligence (AI) techniques instead of analytical methods. Different AI techniques combined with perturbation-based nonlinear compensation method are used to predict the added nonlinear noise to a 16-Quadrature Amplitude Modulation (QAM) propagating signal. A MATLAB simulation program has been used to model the propagation of the signal and generate the transmitted data. The AI simulations have been employed using Python on dual-polarization single channel systems using single-stage AI techniques such as Neural Network (NN) at receiver or transmitter side and Siamese neural network (SNN), or two-stage AI techniques. In the two-stage method, different supervised classifiers have been used at the receiver side such as multi-layer perceptrons (MLP), decision tree, AdaBoosting, GBoosting, random forest, and extra trees while NN is placed at the transmitter. Additionally, different complexity reduction techniques have been applied to the proposed systems to achieve more practical performance in industrial environment applications. For the first time, a nonlinear-compensation robustness study is applied to the proposed AI techniques by detecting the performance of each technique while changing the single-mode fiber’s nonlinear coefficient value. Moreover, empirical equations are developed to represent the system’s Q-factor enhancement achieved using each of the proposed techniques as a function of the fiber nonlinear coefficient and the data features

    Some Notes on Code-Based Cryptography

    Get PDF
    This thesis presents new cryptanalytic results in several areas of coding-based cryptography. In addition, we also investigate the possibility of using convolutional codes in code-based public-key cryptography. The first algorithm that we present is an information-set decoding algorithm, aiming towards the problem of decoding random linear codes. We apply the generalized birthday technique to information-set decoding, improving the computational complexity over previous approaches. Next, we present a new version of the McEliece public-key cryptosystem based on convolutional codes. The original construction uses Goppa codes, which is an algebraic code family admitting a well-defined code structure. In the two constructions proposed, large parts of randomly generated parity checks are used. By increasing the entropy of the generator matrix, this presumably makes structured attacks more difficult. Following this, we analyze a McEliece variant based on quasi-cylic MDPC codes. We show that when the underlying code construction has an even dimension, the system is susceptible to, what we call, a squaring attack. Our results show that the new squaring attack allows for great complexity improvements over previous attacks on this particular McEliece construction. Then, we introduce two new techniques for finding low-weight polynomial multiples. Firstly, we propose a general technique based on a reduction to the minimum-distance problem in coding, which increases the multiplicity of the low-weight codeword by extending the code. We use this algorithm to break some of the instances used by the TCHo cryptosystem. Secondly, we propose an algorithm for finding weight-4 polynomials. By using the generalized birthday technique in conjunction with increasing the multiplicity of the low-weight polynomial multiple, we obtain a much better complexity than previously known algorithms. Lastly, two new algorithms for the learning parities with noise (LPN) problem are proposed. The first one is a general algorithm, applicable to any instance of LPN. The algorithm performs favorably compared to previously known algorithms, breaking the 80-bit security of the widely used (512,1/8) instance. The second one focuses on LPN instances over a polynomial ring, when the generator polynomial is reducible. Using the algorithm, we break an 80-bit security instance of the Lapin cryptosystem

    Bioterrorism

    Get PDF
    This book consists of nine chapters, written by international authorities, discussing various aspects of bioterrorism preparedness and response. Five of the chapters are agent-specific and highlight the pathogenesis, prevention and treatment, and the potential of specific organisms (Rickettsia and Yersinia pestis) or toxins (ricin, botulinum neurotoxins, and staphylococcal enterotoxins) to be used for nefarious purposes. Four chapters discuss different aspects of detecting and responding to a bioterrorism attack. These include methods for spatio-temporal disease surveillance, international laboratory response strategies, detection of botulinum neurotoxins in food and other matrices, and the use of physical methods (ie Raman spectroscopy) to detect spores

    Convex reconstruction from structured measurements

    Get PDF
    Convex signal reconstruction is the art of solving ill-posed inverse problems via convex optimization. It is applicable to a great number of problems from engineering, signal analysis, quantum mechanics and many more. The most prominent example is compressed sensing, where one aims at reconstructing sparse vectors from an under-determined set of linear measurements. In many cases, one can prove rigorous performance guarantees for these convex algorithms. The combination of practical importance and theoretical tractability has directed a significant amount of attention to this young field of applied mathematics. However, rigorous proofs are usually only available for certain "generic cases"---for instance situations, where all measurements are represented by random Gaussian vectors. The focus of this thesis is to overcome this drawback by devising mathematical proof techniques can be applied to more "structured" measurements. Here, structure can have various meanings. E.g. it could refer to the type of measurements that occur in a given concrete application. Or, more abstractly, structure in the sense that a measurement ensemble is small and exhibits rich geometric features. The main focus of this thesis is phase retrieval: The problem of inferring phase information from amplitude measurements. This task is ubiquitous in, for instance, in crystallography, astronomy and diffraction imaging. Throughout this project, a series of increasingly better convex reconstruction guarantees have been established. On the one hand, we improved results for certain measurement models that mimic typical experimental setups in diffraction imaging. On the other hand, we identified spherical t-designs as a general purpose tool for the derandomization of data recovery schemes. Loosely speaking, a t-design is a finite configuration of vectors that is "evenly distributed" in the sense that it reproduces the first 2t moments of the uniform measure. Such configurations have been studied, for instance, in algebraic combinatorics, coding theory, and quantum information. We have shown that already spherical 4-designs allow for proving close-to-optimal convex reconstruction guarantees for phase retrieval. The success of this program depends on explicit constructions of spherical t-designs. In this regard, we have studied the design properties of stabilizer states. These are configurations of vectors that feature prominently in quantum information theory. Mathematically, they can be related to objects in discrete symplectic vector spaces---a structure we use heavily. We have shown that these vectors form a spherical 3-design and are, in some sense, close to a spherical 4-design. Putting these efforts together, we establish tight bounds on phase retrieval from stabilizer measurements. While working on the derandomization of phase retrieval, I obtained a number of results on other convex signal reconstruction problems. These include compressed sensing from anisotropic measurements, non-negative compressed sensing in the presence of noise and identifying improved convex regularizers for low rank matrix reconstruction. Going even further, the mathematical methods I used to tackle ill-posed inverse problems can be applied to a plethora of problems from quantum information theory. In particular, the causal structure behind Bell inequalities, new ways to compare experiments to fault-tolerance thresholds in quantum error correction, a novel benchmark for quantum state tomography via Bayesian estimation, and the task of distinguishing quantum states
    corecore