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Preface

The research work described in this book is some of the works carried out by the
authors whilst working in the Coding Group at the University of Plymouth, U.K.
The Coding Group consists of enthusiastic research students, research and teaching
staff members providing a very stimulating environment to work. Also being driven
by academic research, a significant number of studies were driven by the com-
munications industry with their many varying applications and requirements of
error-correcting codes. This partly explains the variety of topics covered in this
book.
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Part I
Theoretical Performance

of Error-Correcting Codes

This part of the book dealswith the theoretical performance of error-correcting codes.
Upper and lower bounds are given for the achievable performance of error-correcting
codes for the additive white Gaussian noise (AWGN) channel. Also given are bounds
on constructions of error-correcting codes in terms of normalised minimum distance
and code rate. Differences between ideal soft decision decoding and hard decision
decoding are also explored. The results from the numerical evaluation of several
different code examples are compared to the theoretical boundswith some interesting
conclusions.



Chapter 1
Bounds on Error-Correction Coding
Performance

1.1 Gallager’s Coding Theorem

The sphere packing bound by Shannon [18] provides a lower bound to the frame
error rate (FER) achievable by an (n, k, d) code but is not directly applicable to
binary codes. Gallager [4] presented his coding theorem for the average FER for
the ensemble of all random binary (n, k, d) codes. There are 2n possible binary
combinations for each codeword which in terms of the n-dimensional signal space
hypercube corresponds to one vertex taken from 2n possible vertices. There are
2k codewords, and therefore 2nk different possible random codes. The receiver is
considered to be composed of 2k matched filters, one for each codeword and a
decoder error occurs if any of the matched filter receivers has a larger output than
the matched filter receiver corresponding to the transmitted codeword. Consider this
matched filter receiver and another different matched filter receiver, and assume that
the two codewords differ in d bit positions. The Hamming distance between the two
codewords is d. The energy per transmitted bit is Es = k

n Eb, where Eb is the energy
per information bit. The noise variance per matched filtered received bit, σ 2 = N0

2 ,
where N0 is the single sided noise spectral density. In the absence of noise, the output
of the matched filter receiver for the transmitted codeword is n

√
Es and the output

of the other codeword matched filter receiver is (n − 2d)
√
Es . The noise voltage at

the output of the matched filter receiver for the transmitted codeword is denoted as
nc − n1, and the noise voltage at the output of the other matched filter receiver will
be nc + n1. The common noise voltage nc arises from correlation of the bits common
to both codewords with the received noise and the noise voltages −n1 and n1 arise,
respectively, from correlation of the other d bits with the received noise. A decoder
error occurs if

(n − 2d)
√
Es + nc + n1 > n

√
Es + nc − n1 (1.1)

that is, a decoder error occurs when 2n1 > 2d
√
Es .

© The Author(s) 2017
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4 1 Bounds on Error-Correction Coding Performance

The average noise power associated with n1 is dσ 2 = d N0
2 and as the noise is

Gaussian distributed, the probability of decoder error, pd , is given by

pd = 1√
πdN0

∫ ∞

d
√
Es

e
−x2

dN0 dx (1.2)

This may be expressed in terms of the complementary error function (erfc)

erfc(y) = 2
1√
2π

∫ ∞

y
e

−x2

2 dx (1.3)

and

pd = 1

2
erfc

(√

d
k

n

Eb

N0

)

(1.4)

Each of the other 2k − 2 codewords may also cause a decoder error but the weight
distribution of the code Ci is usually unknown. However by averaging over all pos-
sible random codes, knowledge of the weight distribution of a particular code is not
required. The probability of two codewords of a randomly chosen code Ci , differing
in d bit positions, p(d|Ci ) is given by the binomial distribution

p(d|Ci ) =
(n
d

)

2n
, (1.5)

where
(a
b

) = a!
(a − b)!b! . A given linear code Ci cannot have codewords of arbitrary

weight, because the sum of a subset of codewords is also a codeword. However, for
non linear codes, pd may be averaged over all of the codes without this constraint.
Thus, we have

pC =
2n2k∑

i=1

p(d|Ci )p(Ci ) <
1

2n2k

n∑

d=0

2n2k∑

i=1

(n
d

)

2n+1
erfc

(√

d
k

n

Eb

N0

)

(1.6)

Rearranging the order of summation

pC <
1

2n2k

2n2k∑

i=1

n∑

d=0

(n
d

)

2n+1
erfc

(√

d
k

n

Eb

N0

)

(1.7)

and

pC <
1

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.8)
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Remembering that any of the 2k − 1 matched filters may cause a decoder error, the
overall probability of decoder error averaged over all possible binary codes poverall, is

poverall = 1 − (1 − pC)2k−1 < 2k pC (1.9)

and

poverall <
2k

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.10)

An analytic solution may be obtained by observing that 1
2 erfc(y) is upper bounded

by e−y2
and therefore,

poverall <
2k

2n

n∑

d=0

(
n

d

)
e−d k

n
Eb
N0 (1.11)

and as observed in [21],

(
1 + e− k

n
Eb
N0

)n
=

n∑

d=0

(
n

d

)
e−d k

n
Eb
N0 (1.12)

and

pC <
1

2n

(
1 + e− k

n
Eb
N0

)n
(1.13)

poverall <
2k

2n

(
1 + e− k

n
Eb
N0

)n
(1.14)

Traditionally, a cut-off rate R0 is defined after observing that

2k

2n

(
1 + e− k

n
Eb
N0

)n
= 2k

⎛

⎝1 + e− k
n

Eb
N0

2

⎞

⎠

n

(1.15)

with

2R0 = 2

1 + e− k
n

Eb
N0

(1.16)
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Fig. 1.1 Approximate and exact Gallager bounds for (128, 264), (256, 2128) and (512, 2256) non-
linear binary codes

then

poverall < 2k2−nR0 = 2k−nR0 = 2−n(R0− k
n ) (1.17)

This result may be interpreted as providing the number of information bits of the
code is less than the length of the code times the cut-off rate, then the probability
of decoder error will approach zero as the length of the code approaches infinity.
Alternatively, provided the rate of the code, k

n , is less than the cut-off rate, R0, then the
probability of decoder error will approach zero as the length of the code approaches
infinity. The cut-off rate R0, particularly in the period from the late 1950s to the 1970s
was used as a practical measure of the code rate of an achievable error-correction
system [11, 20–22]. However, plotting the exact expression for probability of decoder
error, Eq. (1.10), in comparison to the cut-off rate approximation Eq. (1.17), shows a
significant difference in performance, as shown in Fig. 1.1. The codes shown are the
(128, 264), (256, 2128) and (512, 2256) code ensembles of nonlinear, random binary
codes. It is recommended that the exact expression, Eq. (1.10) be evaluated unless
the code in question is a long code. As a consequence, in the following sections we
shall only use the exact Gallager bound.

Shown in Fig. 1.2 is the sphere packing lower bound, offset by the loss attributable
to binary transmission and the Gallager upper bound for the (128, 264), (256, 2128)

and (512, 2256) nonlinear binary codes. For each code, the exact Gallager upper
bound given by (1.10), is shown. One reason why Gallager’s bound is some way



1.1 Gallager’s Coding Theorem 7

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5  6

FE
R

Eb/No [dB]

Gallager bound (128,64) 
binary sphere packing bound for (128,64)

Gallager bound (256,128) 
binary sphere packing bound for (256,128)

Gallager bound (512,256) 
binary sphere packing bound for (512,256)

Fig. 1.2 Sphere packing and Gallager bounds for (128, 264), (256, 2128) and (512, 2256) nonlinear
binary codes

from the sphere packing lower bound as shown in Fig. 1.2 is that the bound is based
on the union bound and counts all error events as if these are independent. Except for
orthogonal codes, this produces increasing inaccuracy as the Eb

N0
is reduced. Equiva-

lently expressed, double counting is taking place since some codewords include the
support of other codewords. It is shown in the next section that for linear codes the
Gallager bound may be improved by considering the erasure correcting capability
of codes, viz. no (n, k) code can correct more than n − k erasures.

1.1.1 Linear Codes with a Binomial Weight Distribution

The weight enumerator polynomial of a code is defined as A(z) which is given by

A(z) =
n∑

i=0

Ai z
i (1.18)

For many good and exceptional, linear, binary codes including algebraic and quasi-
cyclic codes, the weight distributions of the codes closely approximates to a binomial
distribution where,
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A(z) = 1

2n−k

n∑

i=0

n!
(n − i)!i ! z

i (1.19)

with coefficients Ai given by

Ai = 1

2n−k

n!
(n − i)!i ! = 1

2n−k

(
n

i

)
. (1.20)

Tables of the best-known linear codes have been published from time to time [3, 10,
13, 16, 19] and a regularly updated database is maintained by Markus Grassl [5].
Remembering that for a linear code, the difference between any two codewords is
also a codeword, and hence the distribution of the Hamming distances between a
codeword and all other codewords is the same as the weight distribution of the code.
Accordingly, the overall probability of decoder error, for the same system as before
using a bank of 2k matched filters with each filter matched to a codeword is upper
bounded by

poverall <
1

2

n∑

d=0

Aderfc

(√

d
k

n

Eb

N0

)

(1.21)

For codes having a binomial weight distribution

poverall <
1

2

n∑

d=0

1

2n−k

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

(1.22)

which becomes

poverall <
2k

2n+1

n∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.23)

It will be noticed that this equation is identical to Eq. (1.10). This leads to the some-
what surprising conclusion that the decoder error probability performance of some
of the best-known, linear, binary codes is the same as the average performance of the
ensemble of all randomly chosen, binary nonlinear codes having the same values for
n and k. Moreover, some of the nonlinear codes must have better performance than
their average, and hence some nonlinear codes must be better than the best-known
linear codes.

A tighter upper bound than the Gallager bound may be obtained by considering
the erasure correcting capability of the code. It is shown in Chap. 14 that for the
erasure channel, given a probability of erasure, p, the probability of decoder error,
Pcode(p), is bounded by

http://dx.doi.org/10.1007/978-3-319-51103-0_14
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Pcode(p) <

n−k∑

s=dmin

s∑

j=dmin

A j
(n − j)! (n − s)!

(s − j)! ps(1 − p)(n−s)+
n∑

s=n−k+1

ps(1 − p)(n−s).

(1.24)

In Eq. (1.24), the first term depends upon the weight distribution of the code while
the second term is independent of the code. The basic principle in the above equation
is that an erasure decoder error is caused if an erasure pattern includes the support
of a codeword. Since no erasure pattern can be corrected if it contains more than
n − k errors, only codewords with weight less than or equal to n − k are involved.
Consequently, a much tighter bound is obtained than a bound based on the union
bound as there is less likelihood of double counting error events.

Considering the maximum likelihood decoder consisting of a bank of correlators,
a decoder error occurs if one correlator has a higher output than the correlator corre-
sponding to the correct codeword where the two codewords differ in s bit positions.
To the decoder, it makes no difference if the decoder error event is due to erasures,
from the erasure channel, or Gaussian noise from the AWGN channel; the outcome is
the same. For the erasure channel, the probability of this error event due to erasures,
Perasure(p) is

Perasure(p) = ps (1.25)

The probability of this error event due to noise, Pnoise

(
Eb

N0

)
is

Pnoise

(
Eb

N0

)
= 1

2
erfc

(√

s
k

n

Eb

N0

)

(1.26)

Equating Eqs. (1.25) to (1.26), for these probabilities gives a relationship between
the erasure probability, p and Eb

N0
and the Hamming distance, s.

ps = 1

2
erfc

(√

s
k

n

Eb

N0

)

(1.27)

For many codes, the erasure decoding performance is determined by a narrow range
of Hamming distances and the variation in Eb

N0
as a function of s is insignificant. This

is illustrated in Fig. 1.3 which shows the variation in Es
N0

as a function of s and p.
It is well known that the distance distribution for many linear, binary codes includ-

ing BCH codes, Goppa codes, self-dual codes [7, 8, 10, 14] approximates to a bino-
mial distribution. Accordingly,

A j ≈ n!
(n − j)! j ! 2n−k

. (1.28)
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Fig. 1.3 Es
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as a function of Hamming distance s and erasure probability p

Substituting this into Eq. (1.24) produces

Pcode(p) <

n−k∑

s=1

2s − 1

2n−k

(
n

s

)
ps(1 − p)(n−s) +

n∑

s=n−k+1

ps(1 − p)(n−s) (1.29)

With the assumption of a binomial weight distribution, an upper bound may be
determined for the erasure performance of any (n, k) code, and in turn, equating
Eq. (1.25) with Eq. (1.26) produces an upper bound for the AWGN channel. For
example, Fig. 1.4 shows an upper bound of the erasure decoding performance of a
(128, 64) code with a binomial weight distribution.

Using Eq. (1.27), the decoding performance may be expressed in terms of Eb
N0

and Fig. 1.5 shows the upper bound of the decoding performance of the same code
against Gaussian noise, as a function of Eb

N0
.

The comparison of the sphere packing bound and the Gallager bounds is shown
in Fig. 1.6. Also shown in Fig. 1.6 is the performance of the BCH (128, 64, 22) code
evaluated using the modified Dorsch decoder. It can be seen from Fig. 1.6 that the
erasure-based upper bound is very close to the sphere packing lower bound and
tighter than the Gallager bound.

Figure 1.7 gives the bounds for the (512, 256) and (256, 128) codes. It will be
noticed that the gap between the sphere packing bound and the erasure-based upper
bound increases with code length, but is tighter than the Gallager bound.
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1.1.2 Covering Radius of Codes

The covering radius of a code,cr if it is known, together with the weight spectrum of
the low-weight codewords may be used to tighten the Union bound upper bound on
decoder performance given by Eq. (1.23). The covering radius of a code is defined as
the minimum radius which when placed around each codeword includes all possible
qn vectors. Equivalently, the covering radius is the maximum number of hard decision
errors that are correctable by the code. For a perfect code, such as the Hamming codes,
the covering radius is equal to dmin−1

2 . For the [2m − 1, 2m − m − 1, 3] Hamming
codes, the covering radius is equal to 1 and for the (23, 12, 7) Golay code the covering
radius is equal to 3. As a corollary, for any received vector in Euclidean space, there
is always a codeword within a Euclidean distance of cr + 0.5. It follows that the
summation in Eq. (1.23) may be limited to codewords of weight 2cr + 1 to produce

poverall <
2k

2n+1

2cr+1∑

d=0

(
n

d

)
erfc

(√

d
k

n

Eb

N0

)

. (1.30)

1.1.3 Usefulness of Bounds

The usefulness of bounds may be realised from Fig. 1.8 which shows the performance
of optimised codes and decoders all (512, 256) codes for a turbo code, LDPC code
and a concatenated code.

1.2 Bounds on the Construction of Error-Correcting Codes

A code (linear or nonlinear),C , defined in a finite field of size q can be described with
its length n, number of codewords1 M and minimum distance d. We use (n, M, d)q to
denote these four important parameters of a code. Given any number of codes defined
in a field of size q with the same length n and distance d, the code with the maximum
number of codewords M is the most desirable. Equivalently, one may choose to fix
n, M and q and maximise d or fix M , d and q and maximise n. As a result, it is of
interest in coding theory to determine the maximum number of codewords possible
of any code defined in a field of size q, with minimum distance d and length n. This
number is denoted by Aq(n, d). Bounds on Aq(n, d) are indicators to the maximum
performance achievable from any code with parameters (n, M, d)q . As a result,
these bounds are especially useful when one constructs good error-correcting codes.
The tables in [5] contain the best-known upper and lower bounds on Aq(n, d) for
linear codes. The tables in [9] contain bounds on A2(n, d) for nonlinear binary codes.

1Where the code dimension k = logq M .
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Fig. 1.8 Comparison of sphere packing, Gallager and erasure-based bounds to the performance
realised for a (512, 256, 18) turbo code, (512, 256, 14) LDPC code and (512, 256, 32) concatenated
code

Lower bounds on Aq(n, d) tend to be code specific; however, there are several generic
upper bounds. As an example, consider the best-known upper and lower bounds on
A2(128, d) obtained from the tables in [5]. These are shown in Fig. 1.9 for the range
1 ≤ d ≤ 128. Optimal codes of length n = 128 are codes whose lower and upper
bounds on A2(128, d) coincide. The two curves coincide when k is small and d is
large or vice versa. The gap between the upper and lower bounds that exists for other
values of k and d suggests that one can construct good codes with a larger number of
codewords and improve the lower bounds. An additional observation is that extended
BCH codes count as some of the known codes with the most number of codewords.

It is often useful to see the performance of codes as their code lengths become
arbitrarily large. We define the information rate

αq(δ) = lim
n→∞

logq(Aq(n, δn))

n
, (1.31)

where δ = d
n is called the relative distance. Since the dimension of the code is defined

as k = logq(Aq(n, δn)), then a bound on the information rate αq(δ) is a bound on k
n ,

as n → ∞.
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Fig. 1.9 Upper and lower bounds on A2(128, d)

1.2.1 Upper Bounds

1.2.1.1 Sphere Packing (Hamming) Bound

Let Vq(n, t) represent the number of vectors in each sphere then,

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i . (1.32)

Theorem 1.1 (Sphere Packing Bound)Themaximumnumberof codewords Aq (n, d)

is upper bounded by,

Aq(n, d) ≤ qn

t∑

i=0

(
n

i

)
(q − 1)i

Proof A code C is a subset of a vector space GF(q)n . Each codeword of C has only
those vectors GF(q)n but not in C lying at a hamming distance t = ⌊

d−1
2

⌋
from it

since codewords are spaced at least d places apart. In other words, no codewords lie
in a sphere of radius t around any codeword of C . As such, for counting purposes,
these spheres can represent individual codewords. The Hamming bound counts the
number of such non-overlapping spheres in the vector space GF(q)n .
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Codes that meet this bound are called perfect codes. In order to state the asymptotic
sphere packing bound, we first define the qary entropy function, Hq(x), for the values
0 ≤ x ≤ r ,

Hq(x) =
{

0 if x = 0

x logq(q − 1) − x logq x − (1 − x) logq(1 − x) if 0 < x ≤ r

(1.33)

Theorem 1.2 (Asymptotic Sphere Packing Bound) The information rate of a code
αq(δ) is upper bounded by,

αq(δ) ≤ 1 − Hq

(
δ

2

)

for the range 0 < δ ≤ 1 − q−1.

1.2.1.2 Plotkin Bound

Theorem 1.3 (Plotkin Bound) Provided d > θn, where θ = 1 − q−1, then,

Aq(n, d) ≤
⌊

d

d − θn

⌋

Proof Let S = ∑
d(x, y) for all codewords x, y ∈ C , and x �= y, and d(x, y) denotes

the hamming distance between codewords x and y. Assume that all the codewords
of C are arranged in an M × n matrix D. Since d(x, y) ≥ d,

S ≥ M !
(M − 2)!d = M(M − 1)d. (1.34)

Let ni,α be the number of times an element α in the defining field of the code GF(q)

occurs in the i th column of the matrix D. Then,
∑

α∈GF(q)

ni,α = M . For each ni,α there

are M − ni,α entries of the matrix D in column i that have elements other than α.
These entries are a hamming distance 1 from the ni,α entries and there are n possible
columns. Thus,

S = n
n∑

i=1

∑

α∈GF(q)

ni,α(M − ni,α)

= nM2 −
n∑

i=1

∑

α∈GF(q)

n2
i,α. (1.35)
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From the Cauchy–Schwartz inequality,

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

≤ q
∑

α∈GF(q)

n2
i,α. (1.36)

Equation (1.35) becomes,

S ≤ nM2 −
n∑

i=1

q−1

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

(1.37)

Let θ = 1 − q−1,

S ≤ nM2 −
n∑

i=1

q−1

⎛

⎝
∑

α∈GF(q)

ni,α

⎞

⎠

2

≤ nM2 − q−1nM2

≤ nθM2. (1.38)

Thus from (1.34) and (1.38) we have,

M(M − 1)d ≤ S ≤ nθM2 (1.39)

M ≤
⌊

d

d − θn

⌋
(1.40)

and clearly d > θn.

Corollary 1.1 (Asymptotic Plotkin Bound) The asymptotic Plotkin bound is given
by,

αq(δ) = 0 if θ ≤ δ ≤ 1

αq(δ) ≤ 1 − δ

θ
if 0 ≤ δ ≤ θ.

1.2.1.3 Singleton Bound

Theorem 1.4 (Singleton Bound) The maximum number of codewords Aq(n, d) is
upper bounded by,

Aq(n, d) ≤ qn−d+1.
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Codes that meet this bound with equality, i.e. d = n − k + 1, are called maxi-
mum distance separable codes (MDS). The asymptotic Singleton bound is given
Theorem 1.5.

Theorem 1.5 (Asymptotic Singleton Bound) The information rate αq(δ) is upper
bounded by,

αq(n, δ) ≤ 1 − δ.

The asymptotic Singleton bound does not depend on the field size q and is a straight
line with a negative slope in a plot of αq(δ) against δ for every field.

1.2.1.4 Elias Bound

Another upper bound is the Elias bound [17]. This bound was discovered by P. Elias
but was never published by the author. We only state the bound here as the proof is
beyond the scope of this text. For a complete treatment see [6, 10].

Theorem 1.6 (Elias Bound) A code C of length n with codewords having weight at
most w, w < θn with θ = 1 − q−1 has,

d ≤ Mw

M − 1

(
2 − w

θn

)

Theorem 1.7 (Asymptotic Elias Bound) The information rate αq(δ) is upper
bounded by,

αq(δ) ≤ 1 − Hq(θ − √
θ(θ − δ))

provided 0 < δ < θ where θ = 1 − q−1.

1.2.1.5 MRRW Bounds

The McEliece–Rodemich–Rumsey–Welch (MRRW) bounds are asymptotic bounds
obtained using linear programming.

Theorem 1.8 (Asymptotic MRRW Bound I) Provided 0 < r < θ , θ = 1 − q−1

then,

αq(δ) ≤ Hq

(
1

q
(q − 1 − (q − 2)δ − 2

√
δ(1 − δ)(q − 1))

)

The second MRRW bound applies to the case when q = 2.

Theorem 1.9 (MRRW Bound II) Provided 0 < δ < 1
2 and q = 2 then,

α2(δ) ≤ min
0≤u≤1−2δ

{1 + g(u2) − g(u2 + 2δu + 2δ)}
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where

g(x) = H2

(
1 − √

1 − x

2

)

.

The MRRW bounds are the best-known upper bound on the information rate for the
binary case. The MRRW-II bound is better than the MRRW-I bound when δ is small
and q = 2. An in depth treatment and proofs of the bounds can be found in [12].

1.2.2 Lower Bounds

1.2.2.1 Gilbert–Varshamov Bound

Theorem 1.10 (Gilbert–Varshamov Bound) The maximum number of codewords
Aq(n, d) is lower bounded by,

Aq(n, d) ≥ qn

Vq(n, d − 1)
= qn

d−1∑

i=0

(
n

i

)
(q − 1)i

.

Proof We know that Vq(n, d − 1) represents the volume of a sphere centred on a
codeword of C of radius d − 1. Suppose C has Aq(n, d) codewords. Every vector
v ∈ F

n
q lies within a sphere of volume Vq(n, d − 1) centred at a codeword of C as

such, ∣
∣
∣
∣
∣
∣

Aq (n,d)⋃

i=1

Si

∣
∣
∣
∣
∣
∣
= |Fn

q |,

where Si is a set containing all vectors in a sphere of radius d − 1 centred on a
codeword ofC . The spheres Si are not mutually disjoint. If we assume Si are mutually
disjoint then,

Aq(n, d)Vq(n, d − 1) ≥ |Fn
q |.

Theorem 1.11 The information rate of a code is lower bounded by,

αq(δ) ≥ 1 − Hq(δ)

for 0 ≤ δ ≤ θ , θ = 1 − q−1.

Figures 1.10 and 1.11 show the asymptotic upper and lower bounds for the cases
where q = 2 and q = 32, respectively. Figure 1.11 shows that the MRRW bounds
are the best-known upper bounds when q = 2. Observe that the Plotkin bound is the
best upper bound for the case when q = 32.



20 1 Bounds on Error-Correction Coding Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

α
q

(δ
)

δ

GV bound
Plotkin bound

MRRW-I bound
Singleton bound
Hamming bound

Elias bound
MRRW-II bound

Fig. 1.10 αq (δ) against δ for q = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

α
q

(δ
)

δ

GV bound
Plotkin bound

MRRW-I bound
Singleton bound
Hamming bound

Elias  bound

Fig. 1.11 αq (δ) against δ for q = 32



1.2 Bounds on the Construction of Error-Correcting Codes 21

Table 1.1 Ranges for codes Finite field Range

F2 1 ≤ k ≤ n ≤ 256

F3 1 ≤ k ≤ n ≤ 243

F4 1 ≤ k ≤ n ≤ 256

F5 1 ≤ k ≤ n ≤ 130

F7 1 ≤ k ≤ n ≤ 100

F8 1 ≤ k ≤ n ≤ 130

F9 1 ≤ k ≤ n ≤ 130

1.2.3 Lower Bounds from Code Tables

Tables of best-known codes are maintained such that if a code defined in a field q
is constructed with an evaluated and verifiable minimum Hamming distance d that
exceeds a previously best-known code with the same length n and dimension, the
dimension of the new code is a lower bound on Aq(n, d). The first catalogue of best-
known codes was presented by Calabi and Myrvaagnes [2] containing binary codes
of length n and dimension k in the range 1 ≤ k ≤ n ≤ 24. Brouwer and Verhoeff [1]
subsequently presented a comprehensive update to the tables which included codes
with finite fields up to size 9 with the ranges for k and n.

At present, Grassl [5] maintains a significantly updated version of the tables in [1].
The tables now contain codes with k and n in ranges from Table 1.1. Finally, Schimd
and Shurer [15] provide an online database for optimal parameters of (t,m, s)-
nets, (t, s)-sequences, orthogonal arrays, linear codes and ordered orthogonal arrays.
These are relatively new tables and give the best-known codes up to finite fields of size
256. The search for codes whose dimension exceeds the best-known lower bounds
on Aq(n, d) is an active area of research with the research community constantly
finding improvements.

1.3 Summary

In this chapter we discussed the theoretical performance of binary codes for the
additive white Gaussian noise (AWGN) channel. In particular the usefulness of Gal-
lager’s coding theorem for binary codes was explored. By assuming a binomial
weight distribution for linear codes, it was shown that the decoder error probability
performance of some of the best, known linear, binary codes is the same as the aver-
age performance of the ensemble of all randomly chosen, binary nonlinear codes
having the same length and dimension. Assuming a binomial weight distribution, an
upper bound was determined for the erasure performance of any code, and it was
shown that this can be translated into an upper bound for code performance in the
AWGN channel. Different theoretical bounds on the construction of error-correction
codes were discussed. For the purpose of constructing good error-correcting codes,
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theoretical upper bounds provide fundamental limits beyond which no improvement
is possible.
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Chapter 2
Soft and Hard Decision Decoding
Performance

2.1 Introduction

This chapter is concerned with the performance of binary codes under maximum
likelihood soft decision decoding and maximum likelihood hard decision decoding.
Maximum likelihood decoding gives the best performance possible for a code and
is therefore used to assess the quality of the code. In practice, maximum likelihood
decoding of codes is computationally difficult, and as such, theoretical bounds on
the performance of codes are used instead. These bounds are in lower and upper
form and the expected performance of the code is within the region bounded by the
two. For hard decision decoding, lower and upper bounds on maximum likelihood
decoding are computed using information on the coset weight leader distribution.
For maximum likelihood soft decision decoding, the bounds are computed using the
weight distribution of the codes. The union bound is a simple and well-known bound
for the performance of codes under maximum likelihood soft decision decoding.
The union bound can be expressed as both an upper and lower bound. Using these
bounds, we see that as the SNR per bit becomes large the performance of the codes
can be completely determined by the lower bound. However, this is not the case with
the bounds on maximum likelihood hard decision decoding of codes. In general, soft
decision decoding has better performance than hard decision decoding and being
able to estimate the performance of codes under soft decision decoding is attractive.
Computation of the union bound requires the knowledge of the weight distribution of
the code. In Sect. 2.3.1, we use a binomial approximation for the weight distribution
of codes for which the actual computation of the weight distribution is prohibitive.
As a result, it possible to calculate within an acceptable degree of error the region in
which the performance of codes can be completely predicted.

© The Author(s) 2017
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2.2 Hard Decision Performance

2.2.1 Complete and Bounded Distance Decoding

Hard decision decoding is concerned with decoding of the received sequence in
hamming space. Typically, the real-valued received sequence is quantised using a
threshold to a binary sequence. A bounded distance decoder is guaranteed to correct
all t errors or less, where t is called the packing radius and is given by:

t =
⌊
d − 1

2

⌋

and d is the minimum hamming distance of the code. Within a sphere centred
around a codeword in the hamming space of radius t there is no other codeword,
and the received sequence in this sphere is closest to the codeword. Beyond the
packing radius, some error patterns may be corrected. A complete decoder exhaus-
tively matches all codewords to the received sequence and selects the codeword with
minimum hamming distance. A complete decoder is also called a minimum dis-
tance decoder or maximum likelihood decoder. Thus, a complete decoder corrects
some patterns of error beyond the packing radius. The complexity of implementing
a complete decoder is known to be NP-complete [3]. Complete decoding can be
accomplished using a standard array. In order to discuss standard array decoding, we
first need to define cosets and coset leaders.

Definition 2.1 A coset of a code C is a set containing all the codewords of C
corrupted by a single sequence a ∈ F

n
q \ C ∪ {0}.

A coset of a binary code contains 2k sequences and there are 2n−k possible cosets.
Any sequence of minimum hamming weight in a coset can be chosen as a coset
leader. In order to use a standard array, the coset leaders of all the cosets of a code
must be known. We illustrate complete decoding with an example. Using a (7, 3)

dual Hamming code with the following generator matrix

G =
[

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

]

This code has codewords

C =

⎧
⎪⎪⎨

⎪⎪⎩

0 0 0 0 0 0 0
1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1
1 1 0 1 1 0 0
0 1 1 0 1 1 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

⎫
⎪⎪⎬

⎪⎪⎭
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Coset Leaders

0000000 1000111 0101011 0011101 1101100 0110110 1011010 1110001

0000001 1000110 0101010 0011100 1101101 0110111 1011011 1110000
0000010 1000101 0101001 0011111 1101110 0110100 1011000 1110011
0000100 1000011 0101111 0011001 1101000 0110010 1011110 1110101
0001000 1001111 0100011 0010101 1100100 0111110 1010010 1111001
0010000 1010111 0111011 0001101 1111100 0111110 1001010 1100001
0100000 1100111 0001011 0111101 1001100 0010110 1111010 1010001
1000000 0000111 1101011 1011101 0101100 1110110 0011010 0110001

0000011 1000100 0101000 0011110 1101111 0110101 1011001 1110010
0000110 1000001 0101101 0011011 1101010 0110000 1011100 1110111
0001100 1001011 0100111 0010001 1100000 0111010 1010110 1111101
0011000 1011111 0110011 0000101 1110100 0101110 1000010 1101001
0001010 1001101 0100001 0010111 1100110 0111100 1010000 1111011
0010100 1010011 0111111 0001001 1111000 0100010 1001110 1100101
0010010 1010101 0111001 0001111 1111110 0100100 1001000 1100011
0001110 1001001 0100101 0010011 1100010 0111000 1010100 1111111

Fig. 2.1 Standard array for the (7, 3, 4) binary code

Complete decoding can be accomplished using standard array decoding. The example
code is decoded using standard array decoding as follows, The top row of the array
in Fig. 2.1 in bold contains the codewords of the (7, 3, 4) code.1 Subsequent rows
contain all the other cosets of the code with the array arranged so that the coset
leaders are in the first column. The decoder finds the received sequence on a row
in the array and then subtracts the coset leader corresponding to that row from it to
obtain a decoded sequence. The standard array is partitioned based on the weight of
the coset leaders. Received sequences on rows with coset leaders of weight less than
or equal to t = 3−1

2 = 1 are all corrected. Some received sequences on rows with
coset leaders with weight greater than t are also corrected. Examining the standard
array, it can be seen that the code can correct all single error sequences, some two
error sequences and one three error sequence. The coset weight Ci distribution is

C0 = 1

C1 = 7

C2 = 7

C3 = 1

The covering radius of the code is the weight of the largest coset leader (in this
example it is 3).

1It is worth noting that a code itself can be considered as a coset with the sequence a an all zero
sequence.
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2.2.2 The Performance of Codes on the Binary Symmetric
Channel

Consider a real-valued sequence received from a transmission through an AWGN
channel. If a demodulator makes hard decisions at the receiver, the channel may be
modelled as a binary symmetric channel. Assuming the probability of bit error for
the BSC is p, the probability of decoding error with a bounded distance decoder is
given by,

PBDD(e) = 1 −
t∑

i=0

Ci p
i (1 − p)n−i (2.1)

where Ci is the number of coset leaders with weight i . Ci known for 0 ≤ i ≤ t and
is given by,

Ci =
(
n

i

)
0 ≤ i ≤ t.

However, Ci , i > t need to be computed for individual codes. The probability of
error after full decoding is

PFull(e) = 1 −
n∑

i=0

Ci p
i (1 − p)n−i . (2.2)

Figure 2.2 shows the performance of the bounded distance decoder and the full
decoder for different codes. The bounds are computed using (2.1) and (2.2). As
expected, there is significant coding gain between unencoded and coded transmission
(bounded distance and full decoding) for all the cases. There is a small coding gain
between bounded distance and full decoders. This coding gain depends on the coset
leader weight distribution Ci for i > t of the individual codes. The balance between
complexity and performance for full and bounded distance decoders2 ensures that
the latter are preferred in practice. Observe that in Fig. 2.2 that the complete decoder
consistently outperforms the bounded distance decoder as the probability of error
decreases and Eb

N0
increases. We will see in Sect. 2.3 that a similar setup using soft

decision decoding in Euclidean space produces different results.

2.2.2.1 Bounds on Decoding on the BSC Channel

Suppose s is such that Cs is the maximum non-zero value for a code then s is the
covering radius of the code. If the covering radius s of a code is known and Ci , i > t
are not known, then the probability of error after decoding can be bounded by

2Bounded distance decoders usually have polynomial complexity, e.g. the Berlekamp Massey
decoder for BCH codes has complexity O(t2) [1].
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Fig. 2.2 BCH code BDD and full decoder performance, frame error rate (FER) against Eb
N0

Pe ≥ 1 −
[

t∑

i=0

(
n

i

)
pi (1 − p)n−i + ps(1 − p)n−s

]

(2.3)

≤ 1 −
[ t∑

i=0

(
n

i

)
pi (1 − p)n−i + Ws p

s(1 − p)n−s

]
(2.4)

assuming the code can correct t errors and

Ws = 2n−k −
t∑

i=0

(
n

i

)
.
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The lower bound assumes that there is a single coset leader of weight s, and hence
the term ps(1 − p)n−s while the upper bound assumes that all the coset leaders of
weight greater than t have weight equal to the covering radius s. For the lower bound
to hold, Ws ≥ 1. The lower bound can be further tightened by assuming that the
Ws − 1 cosets have weight of t + 1, t + 2, . . . until they can all be accounted for.3

2.3 Soft Decision Performance

The union bound for the probability of sequence error using maximum likelihood
soft decoding performance on binary codes with BPSK modulation in the AWGN
channel is given by [2],

Ps ≤ 1

2

n∑

j=1

A j erfc

(√
Eb

N0
Rj

)

(2.5)

where R is the code rate, A j is the number of codewords of weight j and Eb
N0

is the SNR
per bit. The union bound is obtained by assuming that events in which the received
sequence is closer in euclidean distance to a codeword of weight j are independent
as such the probability of error is the sum of all these events. A drawback to the
exact computation of the union bound is the fact that the weight distribution A j ,
0 ≤ j ≤ n of the code is required. Except for a small number of cases, the complete
weight distribution of many codes is not known due to complexity limitations. Since
A j = 0 for 1 ≤ j < d where d is the minimum distance of the code we can express
(2.5) as,

Ps ≤ 1

2

n∑

j=d

A j erfc

(√
Eb

N0
Rj

)

(2.6)

≤ 1

2
Ad erfc

(√
Eb

N0
Rd

)

+ 1

2

n∑

j=d+1

Aj erfc

(√
Eb

N0
Rj

)

(2.7)

A lower bound on the probability of error can be obtained if it is assumed that error
events occur only when the received sequence is closer in euclidean distance to
codewords at a distance d from the correct codeword.

Ps ≥ 1

2
Ad erfc

(√
Eb

N0
Rd

)

(2.8)

3This can be viewed as the code only has one term at the covering radius, and all other terms are at
t + 1.
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where

1

2

n∑

j=d+1

A j erfc

(√
Eb

N0
Rj

)

= 0. (2.9)

As such,

1

2
Ad erfc

(√
Eb

N0
Rd

)

≤ Ps ≤ 1

2

n∑

j=d

Aj erfc

(√
Eb

N0
Rj

)

(2.10)

Therefore, the practical soft decision performance of a binary code lies between
the upper and lower Union bound. It will be instructive to observe the union bound
performance for actual codes using their computed weight distributions as the SNR
per bit Eb

N0
increases. By allowing Eb

N0
to become large (and Ps to decrease) simulations

for several codes suggest that at a certain intersection value of Eb
N0

the upper bound
equals the lower bound. Consider Figs. 2.3, 2.4 and 2.5 which show the frame error
rate against the SNR per bit for three types of codes. The upper bounds in the figures
are obtained using the complete weight distribution of the codes with Eq. (2.5). The
lower bounds are obtained using only the number of codewords of minimum weight
of the codes with Eq. (2.8). It can be observed that as Eb

N0
becomes large, the upper

bound meets and equals the lower bound. The significance of this observation is that
for Eb

N0
values above the point where the two bounds intersect the performance of

the codes under soft decision can be completely determined by the lower bound (or
the upper bound). In this region where the bounds agree, when errors occur they
do so because the received sequence is closer to codewords a distance d away from
the correct codeword. The actual performance of the codes before this region is
somewhere between the upper and lower bounds. As we have seen earlier, the two
bounds agree when the sum in (2.9) approaches 0. It may be useful to consider an
approximation of the complementary error function (erfc),

erfc(x) < e−x2

in which case the condition becomes

1

2

n∑

j=d+1

A j e− Eb
N0

Rj ≈ 0. (2.11)

Clearly, the sum approximates to zero if each term in the sum also approximates to

zero. It is safe to assume that the term A j erfc
(√

Eb
N0

Rj
)

decreases as j increases

since erfc
(√

Eb
N0

Rj
)

reduces exponentially with j and A j increases in a binomial

(in most cases). The size of the gap between the lower and upper bounds is also
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Fig. 2.3 Extended BCH code lower and upper union bound performance, frame error rate (FER)
against Eb

N0

determined by these terms. Each term A j e− Eb
N0

Rj becomes small if one or both of the
following conditions are met,

(a) Some of the A j , j > d are zero. This is common in low rate binary codes with
a small number of codewords.

(b) The product Eb
N0
R j for j > d becomes very large.

Observing Fig. 2.3, 2.4 and 2.5, it can be seen that at small values of Eb
N0

and for low

rate codes for which R = k
n is small have some A j = 0, j > d and as such the gaps
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Fig. 2.4 BCH code lower and upper union bound performance, frame error rate (FER) against Eb
N0

between the upper and lower bounds are small. As an example consider the low rate
(127, 22, 47) BCH code in Fig. 2.4a which has,

A j = 0 j ∈ {49 . . . 54} ∪ {57 . . . 62} ∪ {65 . . . 70} ∪ {73 . . . 78} ∪ {81 . . . 126}.

For the high rate codes, R is large so that the product Eb
N0
R j becomes very large

therefore the gaps between the upper and lower bounds are small.
Figure 2.6 compares bounded distance decoding and full decoding with maximum

likelihood soft decision decoding of the (63, 39) and (63, 36) BCH codes. It can be
seen from the figure that whilst the probability of error for maximum likelihood
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Fig. 2.5 Reed–Muller code lower and upper union bound performance, frame error rate (FER)
against Eb

N0

hard decision decoding is smaller than that of bounded distance decoding for all the
values of Eb

N0
, the upper bound on the probability of error for maximum likelihood

soft decision decoding agrees with the lower bound from certain values of Eb
N0

. This
suggests that for soft decision decoding, the probability of error can be accurately
determined by the lower union bound from a certain value of Eb

N0
. Computing the lower

union bound from (2.10) requires only the knowledge of the minimum distance of
the code d and the multiplicity of the minimum weight terms Ad . In practice, Ad is
much easier to obtain than the complete weight distribution of the code.
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Fig. 2.6 BCH code: Bounded distance, full and maximum likelihood soft decoding

2.3.1 Performance Assuming a Binomial Weight Distribution

Evaluating the performance of long codes with many codewords using the union
upper bound is difficult since one needs to compute the complete weight distribution
of the codes. For many good linear binary codes, the weight distributions of the codes
closely approximates to a binomial distribution. Computing the weight distribution

of a binary code is known to be NP-complete [3]. Let
(

Eb
N0

)

δ
be defined as,
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Fig. 2.7 Union bounds using binomial and actual weight distributions (WD) for best known codes

1

2
Ad erfc

(√
Eb

N0
Rd

) ∣
∣
∣
∣

Eb
N0

=
(

Eb
N0

)

δ

≈ 1

2

n∑

j=d

Aj erfc

(√
Eb

N0
Rj

) ∣
∣
∣
∣

Eb
N0

=
(

Eb
N0

)

δ

. (2.12)

Hence,
(

Eb
N0

)

δ
is the SNR per bit at which the difference between upper and lower

union bound for the code is very small. It is worth noting that equality is only possible

when Eb
N0

approaches infinity in (2.12) since lim
x→∞erfc(x) = 0. To find

(
Eb
N0

)

δ
for a

binary code (n, k, d) we simply assume a binomial weight distribution for the code
so that,

Ai = 2k

2n

(
n

i

)
(2.13)
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Fig. 2.8 Union bounds using binomial and actual weight distributions (WD) for the (255, 120, 40)
best known code

and compute an Eb
N0

value that satisfies (2.12). It must be noted that
(

Eb
N0

)

δ
obtained

using this approach is only an estimate. The accuracy of
(

Eb
N0

)

δ
depends on how

closely the weight distribution of the code approximates to a binomial and how small
the difference between the upper and lower union bounds Pupper − Plower is. Consider
Fig. 2.7 that show the upper and lower union bounds using binomial weight distrib-
utions and the actual weight distributions of the codes. From Fig. 2.7a, it can be seen
that for the low rate code (127, 30, 37) the performance of the code using the binomial
approximation of the weight distribution does not agree with the performance using
the actual weight distribution at low values of Eb

N0
. Interestingly Fig. 2.7b–d show

that as the rate of the codes increases the actual weight distribution of the codes
approximates to a binomial. The difference in the performance of the codes using
the binomial approximation and actual weight distribution decreases as Eb

N0
increases.

Figure 2.8 shows the performance of the (255, 120, 40) using a binomial weight dis-

tribution. An estimate for
(

Eb
N0

)

δ
from the figure is 5.2 dB. Thus for Eb

N0
≥ 5.2 dB, we

can estimate the performance of the (255, 120, 40) code under maximum likelihood
soft decision decoding in the AWGN channel using the lower union bound.
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Fig. 2.9 Performance of self-dual codes
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2.3.2 Performance of Self-dual Codes

A self-dual code C has the property that it is its own dual such that,

C = C ⊥.

Self-dual codes are always half rate with parameters (n, 1
2n, d). These codes are

known to meet the Gilbert–Varshamov bound and some of the best known codes are
self-dual codes. Self-dual codes form a subclass of formally self-dual codes which
have the property that,

W (C ) = W (C ⊥).

where W (C ) means the weight distribution of C . The weight distribution of certain
types of formally self-dual codes can be computed without enumerating all the code-
words of the code. For this reason, these codes can readily be used for analytical
purposes. The fact that self-dual codes have the same code rate and good properties
makes them ideal for performance evaluation of codes of varying length. Consider
Fig. 2.9 which shows the performance of binary self-dual (and formally self-dual)
codes of different lengths using the upper and lower union bounds with actual weight
distributions, bounded distance decoding and unencoded transmission. Figure 2.10

2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00

 20  40  60  80  100  120  140  160  180  200

C
od

e 
G

ai
n,

 d
B

Code Length

(128,64,22)
(168,84,24)(136,68,24)

(104,52,20)

(80,40,16)

(48,24,12)

(24,12,8)

SDD code gain at FER 10e-20
SDD code gain at FER 10e-10
BDD code gain at FER 10e-20
BDD code gain at FER 10e-10

Fig. 2.10 Coding gain against code length for self-dual codes at FER 10−10 and 10−20
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shows the coding gain of the self-dual codes at frame error rates (FER) 10−10 and
10−20 for soft decision decoding (SDD) and bounded distance decoding (BDD). The
coding gain represents the difference in dB between the SDD/BDD performance and
unencoded transmission. The coding gain is a measure of the power saving obtainable
from a coded system relative to an unencoded system in dB at a certain probability
of error. The SDD performance of codes with length 168, 136 and 128 at FER 10−10

are obtained from the union upper bound because the upper and lower bound do
not agree at this FER. Thus, the coding gain for these cases is a lower bound. It is
instructive to note that the difference between the coding gain for SDD and BDD at
the two values of FER increases as the length of the code increases. At FER of 10−20

SDD gives 3.36 dB coding gain over BDD for the code of length 168 and 2.70 dB
for the code of length 24. At a FER of 10−10, SDD gives 3.70 dB coding gain over
BDD for the code of length 168 and 2.44 dB for the code of length 24.

2.4 Summary

In this chapter, we discussed the performance of codes under hard and soft deci-
sion decoding. For hard decision decoding, the performance of codes in the binary
symmetric channel was discussed and numerically evaluated results for the bounded
distance decoder compared to the full decoder were presented for a range of codes
whose coset leader weight distribution is known. It was shown that as the SNR per
information bit increases there is still an observable difference between bounded
distance and full decoders. A lower and upper bound for decoding in the BSC was
also given for cases where the covering radius of the code is known. For soft decision
decoding, the performance of a wide range of specific codes was evaluated numer-
ically using the union bounds. The upper and lower union bounds were shown to
converge for all codes as the SNR per information bit increases. It was apparent that
for surprisingly low values of Eb

N0
the performance of a linear code can be predicted

by only using knowledge of the multiplicity of codewords of minimum weight. It
was also shown for those codes whose weight distribution is difficult to compute, a
binomial weight distribution can be used instead.
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Chapter 3
Soft Decision and Quantised
Soft Decision Decoding

3.1 Introduction

The use of hard decision decoding results in a decoding loss compared to soft decision
decoding. There are several references that have quantified the losswhich is a function
of the operating Eb

N0
ratio, the error-correcting code and the quantisation of the soft

decisions. Wozencraft and Jacobs [6] give a detailed analysis of the effects of soft
decision quantisation on the probability of decoding error,Pec, for the ensemble of
all binary codes of length n without restriction of the choice of code. Their analysis
follows from theCoding Theorem, presented byGallager for the ensemble of random
binary codes [3].

3.2 Soft Decision Bounds

There are 2n possible binary combinations for each codeword, which in terms of
the n-dimensional signal space hypercube corresponds to one vertex taken from
2n possible vertices. There are 2k codewords and therefore 2nk different possible
codes. The receiver is considered to be composed of 2k matched filters, one for each
codeword, and a decoder error occurs if any of thematched filter receivers has a larger
output than the matched filter receiver corresponding to the transmitted codeword.
Consider this matched filter receiver and another different matched filter receiver,
and consider that the two codewords differ in d bit positions. The Hamming distance
between the two codewords is d. The energy per transmitted bit is Es = k

n Eb, where
Eb is the energy per information bit. The noise variance per matched filtered received
bit, σ 2 = N0

2 , where N0 is the single sided noise spectral density. In the absence of
noise, the output of the matched filter receiver for the transmitted codeword is n

√
Es ,

and the output of the other codeword matched filter receiver is (n − 2d)
√
Es . The

noise voltage at the output of the matched filter receiver for the transmitted codeword
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is denoted as nc − n1, and the noise voltage at the output of the other matched filter
receiver will be nc + n1. The common noise voltage nc arises from correlation of the
bits common to both codewords with the received noise, and the noise voltages −n1
and n1 arise respectively from correlation of the other d bits with the received noise.

A decoder error occurs if

(n − 2d)
√
Es + nc + n1 > n

√
Es + nc − n1, (3.1)

that is, a decoder error occurs when 2n1 > 2d
√
Es .

The average noise power associated with n1 is dσ 2 = d N0
2 , and as the noise is

Gaussian distributed, the probability of decoder error, pd , is given by

pd = 1√
πdN0

∫ ∞

d
√
Es

e
−x2

dN0 dx . (3.2)

This may be expressed in terms of the complementary error function

erfc(y) = 2
1√
2π

∫ ∞

y
e

−x2

2 dx (3.3)

and leads to

pd = 1

2
erfc

(√

d
k

n

Eb

N0

)

(3.4)

Each of the other 2k − 2 codewords may also cause a decoder error but the weight
distribution of the code Ci is unknown. However, by averaging over all possible
codes, knowledge of the weight distribution of a particular code is not required. The
probability of two codewords of a code Ci , differing in d bit positions, p(d|Ci ) is
given by the Binomial distribution

p(d|Ci ) =
n!

(n−d)!d!
2n

(3.5)

A given linear code Ci cannot have codewords of arbitrary weight, because the sum
of a sub-set of codewords is also a codeword. However, for non linear codes, pd may
be averaged over all of the codes without this constraint.

pC =
2n2

k

∑

i=1

p(d|Ci )p(Ci ) <
1

2n2k

n∑

d=0

2n2
k

∑

i=1

n!
(n−d)!d!
2n+1

erfc

(√

d
k

n

Eb

N0

)

(3.6)



3.2 Soft Decision Bounds 45

rearranging the order of summation

pC <
1

2n2k

2n2
k

∑

i=1

n∑

d=0

n!
(n−d)!d!
2n+1

erfc

(√

d
k

n

Eb

N0

)

(3.7)

and

pC <
1

2n+1

n∑

d=0

n!
(n − d)!d!erfc

(√

d
k

n

Eb

N0

)

(3.8)

Remembering that any of the 2k − 1 matched filters may cause a decoder error, the
overall probability of decoder error averaged over all possible binary codes poverall,
is

poverall = 1 − (1 − pC)2
k−1 < 2k pC (3.9)

and

poverall <
2k

2n+1

n∑

d=0

n!
(n − d)!d!erfc

(√

d
k

n

Eb

N0

)

(3.10)

An analytic solution may be obtained by observing that 1
2 erfc(y) is upper bounded

by e−y2 ,

poverall <
2k

2n

n∑

d=0

n!
(n − d)!d!e

−d k
n

Eb
N0 (3.11)

and as observed by Wozencraft and Jacobs [6],

(1 + e− k
n

Eb
N0 )n =

n∑

d=0

n!
(n − d)!d!e

−d k
n

Eb
N0 (3.12)

and

pC <
1

2n
(1 + e− k

n
Eb
N0 )n (3.13)

poverall <
2k

2n
(1 + e− k

n
Eb
N0 )n (3.14)
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Traditionally, a cut-off rate R0 is defined after observing that

2k

2n
(1 + e− k

n
Eb
N0 )n = 2k

⎛

⎝1 + e− k
n

Eb
N0

2

⎞

⎠

n

(3.15)

with

2R0 =
(

2

1 + e− k
n

Eb
N0

)

, (3.16)

then

poverall < 2k2−nR0 = 2k−nR0 = 2−n(R0− k
n ) (3.17)

This result may be interpreted as, providing the number of information bits of the
code is less than the length of the code times the cut-off rate, then the probability
of decoder error will approach zero as the length of the code approaches infinity.
Alternatively, provided the rate of the code, k

n , is less than the cut-off rate, R0,
then the probability of decoder error will approach zero as the length of the code
approaches infinity.

When s quantised soft decisions are used with integer levels 0 to 2s−1, for s even
and integer levels 0 to s − 1 for s odd, the transmitted binary signal has levels 0 and
2(s − 1), for s even and levels 0 and s − 1, for s odd and the probability distribution
of the quantised signal (bit) plus noise, after matched filtering, has probability pi ,
i = 0 to s − 1, represented as

p(z) =
s−1∑

i=0

pi z
−2i , for s even (3.18)

and

p(z) =
s−1∑

i=0

pi z
−i , for s odd (3.19)

A decoder error occurs if

s(n − 2d) + nc + n1 > sn + nc − n1 (3.20)

and occurs when

n1 > sd (3.21)
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and has probability 0.5 when

n1 = sd (3.22)

The probability of decoder error may be determined from a summation of terms
from the overall probability distribution for the sum of d independent, quantised
noise samples, and is given by a polynomial qd(z) at z = 0, where qd(z) is given by

qd(z) = p(z)d
(
1 − z(s−1)d+1

1 − z
− 0.5z(s−1)d

)
, for s even (3.23)

The 0.5z(s−1)d term corresponds to n1 = sd when the probability of decoder error is
0.5.

qd(z) = p(z)d
(
1 − z

s−1
2 d+1

1 − z
− 0.5z

s−1
2 d

)

, when s is odd (3.24)

and the 0.5z
s−1
2 d term corresponds to n1 = sd when the probability of decoder error

is 0.5.
The probability of decoder error is given by qd(z) when z = 0,

pd = qd(0) (3.25)

The evaluationof the averageprobability of decoder error for quantised soft decisions,
pCQ is given, as before by averaging over all codes and rearranging the order of
summation

pCQ <
1

2n2k

2n2
k

∑

i=1

n∑

d=0

n!
(n−d)!d!
2n

qd(0) (3.26)

Simplifying

pCQ <

n∑

d=0

n!
(n−d)!d!
2n

qd(0) (3.27)

When hard decisions are used, the probability of each transmitted bit being
received in error is given by

pb = 0.5erfc

(√
k

n

Eb

N0

)

(3.28)
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Accordingly,

p(z) = 1 − pb + pbz
−2 (3.29)

and qd(z) for hard decisions becomes

qd(z) = (1 − pb + pbz
−2)d

(
1 − zd+1

1 − z
− 0.5zd

)
(3.30)

giving

pCQ <

n∑

d=0

n!
(n−d)!d!
2n

(1 − pb + pbz
−2)d

(
1 − zd+1

1 − z
− 0.5zd

)
for z = 0 (3.31)

As before, any of the 2k − 1 matched filters may cause a decoder error, the overall
probability of decoder error averaged over all possible binary codes poverallQ , is

poverallQ < 1 − (1 − pCQ )2
k−1 < 2k pCQ (3.32)

and

poverallQ <
2k

2n

n∑

d=0

n!
(n − d)!d! (1 − pb + pbz

−2)d
(
1 − zd+1

1 − z
− 0.5zd

)
, for z = 0

(3.33)

When three-level quantisation is used for the received signal plus noise, a threshold,
vthresh is defined, whereby, if the magnitude of the received signal plus noise is less
than vthresh , an erasure is declared otherwise a hard decision is made. The probability
of an erasure, perase is given by

perase = 2√
πN0

∫ √
k
n Eb−vthresh

0
e

−x2

N0 dx (3.34)

The probability of a bit error for the hard decision, pb, is now given by

pb = 1√
πN0

∫ ∞
√

k
n Eb+vthresh

e
−x2

N0 dx (3.35)

Accordingly, p(z) becomes

p(z) = 1 − pb − perase + perasez
−1 + pbz

−2 (3.36)

and qd(z) for three-level soft decisions is
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= k

n
Eb
N0

and dmin

qd(z) = (1 − pb − perase + perasez
−1 + pbz

−2)d
(
1 − zd+1

1 − z
− 0.5zd

)
(3.37)

giving

poverallQ <
2k

2n

n∑

d=0

(
n!

(n − d)!d! (1 − pb − perase + perasez
−1 + pbz

−2)d

(
1 − zd+1

1 − z
− 0.5zd

))
for z = 0 (3.38)

There is a best choice of vthresh which minimises poverallQ and this is dependent
on the code parameters, (n, k), and Eb

N0
. However, vthresh is not an unduly sensitive

parameter and best values typically range from 0.6 to 0.7σ . The value of 0.65σ is
mentioned in Wozencraft and Jacobs [6]. Optimum values of vthresh are given in
Fig. 3.1.

3.3 Examples

The overall probability of decoder error averaged over all possible binary codes
has been evaluated for k

n = 1
2 for soft decisions, using Eq. (3.10), the approxima-

tion given by Eq. (3.14) and for hard decisions, using Eq. (3.38), for various code



50 3 Soft Decision and Quantised Soft Decision Decoding

lengths. Results are shown in Fig. 3.2 for the ensemble of (100, 50) binary codes.
The difference between the exact random coding bound, Eq. (3.10), and the orig-
inal, approximate, random coding bound, Eq. (3.14) is about 0.5dB for (100, 50)
codes. The loss due to hard decisions is around 2.1dB (at 1×10−5 it is 2.18dB), and
for three-level quantisation is around 1dB (at 1 × 10−5 it is 1.03dB). Also shown
in Fig. 3.2 is the sphere packing bound offset by the loss associated with binary
transmission.

Results are shown in Fig. 3.3 for the ensemble of (200, 100) binary codes. The
difference between the exact random coding bound, Eq. (3.10), and the original,
approximate, random coding bound, Eq. (3.14) is about 0.25dB for (200, 100) codes.
The loss due to hard decisions is around 2.1dB, (at 1 × 10−5 it is 2.15dB) and for
three-level quantisation is around 1dB, (at 1 × 10−5 it is 0.999dB). Also shown
in Fig. 3.3 is the sphere packing bound offset by the loss associated with binary
transmission. The exact random coding bound is now much closer to the sphere
packing bound, offset by the loss associated with binary transmission, with a gap of
about 0.2dB at 10−8. It should be noted that the sphere packing bound is a lower
bound whilst the random binary code bound is an upper bound.

Instead of considering random codes, the effect of soft decision quantisation is
analysed for codes with a given weight spectrum. The analysis is restricted to two-
level and three-level quantisation because these are the most common. In other cases,
the quantisation is chosen such that near ideal soft decision decoding is realised. The
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Fig. 3.2 Exact and approximate random coding bounds for [100, 50] binary codes and quantised
decisions
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Fig. 3.3 Exact and approximate random coding bounds for [200, 100] binary codes and quantised
decisions

analysis starts with a hypothetical code in which the Hamming distance between all
codewords is the same, dmin . The probability of decoder error due to a singlematched
filter having a greater output than the correct matched filter follows immediately
from Eq. (3.4) and the code parameters may be eliminated by considering Es

N0
instead

of Eb
N0
.

pd = 1

2
erfc

(√

dmin
Es

N0

)

(3.39)

For hard decisions and three-level quantisation, pd is given by

pd = (1 − pb − perase + perasez
−1 + pbz

−2)dmin

(
1 − zdmin+1

1 − z
− 0.5zdmin

)

, for z = 0

(3.40)

For hard decisions, perase is set equal to zero and pb is given by Eq. (3.28). For three-
level quantisation, perase is expressed in terms of EQs

N0
, the EQs

N0
ratio required when

quantised soft decision decoding is used.
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perase = 2√
πN0

∫ √
EQs−vthresh

0
e

−x2

N0 dx (3.41)

Similarly, the probability of a bit error for the hard decision, pb is given by

pb = 1√
πN0

∫ ∞
√

EQs+vthresh

e
−x2

N0 dx (3.42)

By equating Eq. (3.39) with Eq. (3.40), the EQs

N0
required for the same decoder error

probability may be determined as a function of EQs

N0
and dmin . The loss, in dB, due to

soft decision quantisation may be defined as

LossQ = 10 × log10
EQs

N0
− 10 × log10

Es

N0
(3.43)

Figure3.4 shows the soft decision quantisation loss, LossQ , as a function of dmin and
Es
N0

for hard decisions. For low dmin , the loss is around 1.5dB but rises rapidly with

dmin to around 2dB. For
Es
N0

= 3dB, practical systems operate with dmin less than 15
or so because the decoder error rate is so very low (at dmin = 15, the decoder error
rate is less than 1 × 10−20). Most practical systems will operate where the loss is
around 2dB. Low code rate systems ( 13 or less) operate with negative Es

N0
ratios with

dmin in the range 25 to 40 whereas 1
2 code rate systems with dmin in the range 20 to
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and dmin

30 will typically operate at Es
N0

around 0dB. Of course not all decoder error events
are dmin events, but the asymptotic nature of the loss produces an average loss of
around 2dB.

Figure3.5 shows the soft decision quantisation loss, LossQ , as a function of dmin

and Es
N0

for three-level soft decisions. An optimum threshold has been determined for

each value of dmin and
Es
N0
, and these threshold values are in terms of

√
Es − y × σ

with y × σ plotted against dmin in Fig. 3.1. Unlike the hard decision case, for three-
level quantisation the lowest loss occurs at high dmin values. In common with hard
decisions, the lowest loss is for the smallest Es

N0
values, which are negative when

expressed in dB. In absolute terms, the lowest loss is less than 1dB for Es
N0

= −3dB

and high dmin . This corresponds to low-rate codes with code rates of 1
3 or

1
4 . The loss

for three-level quantisation is so much better than hard decisions that it is somewhat
surprising that three-level quantisation is not found more often in practical systems.
The erasure channel is much underrated.

3.4 A Hard Decision Dorsch Decoder and BCH Codes

The effects of soft decision quantisation on the decoding performance of BCH codes
may be explored using the extended Dorsch decoder (see Chap.15) and by a bounded
distance, hard decision decoder, first devised by Peterson [5], refined by Chien [2],
Berlekamp [1] and Massey [4]. The extended Dorsch decoder may be used directly

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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on the received three-level quantised soft decisions and of course, on the received
unquantised soft decisions. It may also be used on the received hard decisions, to
form a near maximum likelihood decoder which is a non bounded distance, hard
decision decoder, but requires some modification.

The first stage of the extended Dorsch decoder is to rank the received signal
samples in order of likelihood. For hard decisions, all signal samples have equal
likelihood and no ranking is possible. However, a random ranking of k, independent
bits may be substituted for the ranked k most reliable, independent bits. Provided
the number of bit errors contained in these k bits is within the search space of the
decoder, themost likely, or the correct codeword, will be found by the decoder. Given
the received hard decisions contain t errors, and assuming the search space of the
decoder can accommodate m errors, the probability of finding the correct codeword,
or a more likely codeword, p f is given by

p f =
m∑

i=0

n!
(n − i)! i !

(
t

n

)i (
1 − t

n

)n−i

(3.44)

This probabilitymay be improved by repeatedly carrying out a randomordering of
the received samples and running the decoder.With N such orderings, the probability
of finding the correct codeword, or amore likely codeword, pN f becomesmore likely
and is given by

pN f = 1 −
(

1 −
m∑

i=0

n!
(n − i)! i !

(
t

n

)i (
1 − t

n

)n−i
)N

(3.45)

Increasing N gives

(

1 −
m∑

i=0

n!
(n − i)! i !

(
t

n

)i (
1 − t

n

)n−i
)N

� 0 (3.46)

and

pN f � 1 (3.47)

Of course there is a price to be paid because the complexity of the decoder increases
with N . The parity check matrix needs to be solved N times. On the other hand,
the size of the search space may be reduced because the repeated decoding allows
several chances for the correct codeword to be found.

Themodified Dorsch decoder and a bounded distance hard decision BCH decoder
have been applied to the [63, 36, 11] BCH code and the simulation results are shown
in Fig. 3.6. The decoder search space was set to search 1 × 106 codewords for each
received vector which ensures that quasi maximum likelihood decoding is obtained.
Also shown in Fig. 3.6 is the sphere packing bound for a (63, 36) code offset by
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Fig. 3.6 Soft decision decoding of the (63, 36, 11) BCH code compared to hard decision decoding

the binary transmission loss. As can be seen, the unquantised soft decision decoder
produces a performance close to the offset sphere packing bound. The three-level
quantisation decoder results are offset approximately 0.9dB at 1 × 10−5 from the
unquantised soft decision performance. For hard decisions, the modified Dorsch
decoder has a performance approximately 2dB at 1 × 10−3 from the unquantised
soft decision performance and approximately 2.2dB at 1 × 10−5. Interestingly, this
hard decision performance is approximately 0.4dB better than the bounded distance
BCH decoder correcting up to and including 5 errors.

The results for the BCH (127, 92, 11) code are shown in Fig. 3.7. These results
are similar to those of the (63, 36, 11) BCH code. At 1 × 10−5 Frame Error Rate
(FER), the unquantised soft decision decoder produces a performance nearly 0.2dB
from the offset sphere packing bound. The three-level quantisation decoder results
are offset approximately 1.1dB at 1 × 10−5 from the unquantised soft decision
performance. This is a higher rate code than the (63, 36, 11) code, and at 1 × 10−5

the Es
N0

ratio is 4.1dB. Figure3.5 for a dmin of 11 and an Es
N0

ratio of 3dB indicates a
loss of 1.1dB, giving good agreement to the simulation results. For hard decisions,
the modified Dorsch decoder has a performance approximately 2dB at 1×10−3 from
the unquantised soft decision performance, and approximately 2.1dB at 1 × 10−5.
This is consistent with the theoretical hard decision losses shown in Fig. 3.4. As
before, the hard decision performance obtained with the modified Dorsch decoder
is better than the bounded distance BCH decoder correcting up to and including five
errors, and shows almost 0.5dB improvement.
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Fig. 3.7 Soft decision decoding of the (127, 92, 11) BCH code compared to hard decision decoding

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  1  2  3  4  5  6  7  8

F
E

R

Eb/No [dB]

BCH (127,64,21) Berlekamp hard 
BCH (127,64,21) ord hard 
BCH (127,64,21) ord soft 

BCH (127,62,21) ord erasures 
binary sphere packing bound for (127,64)

Fig. 3.8 Soft decision decoding of the (127, 64, 21) BCH code compared to hard decision decoding
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The results for the BCH (127, 64, 21) code are shown in Fig. 3.8. This is an
outstanding code, and consequently the unquantised soft decision decoding perfor-
mance is very close to the offset sphere packing bound, being almost 0.1dB away
from the bound at 1× 10−5. However, a list size of 107 codewords was used in order
to ensure that near maximum likelihood performance was obtained by the modified
Dorsch decoder. Similar to before the three-level quantisation decoder results are
offset approximately 1.1dB at 1 × 10−5 from the unquantised soft decision perfor-
mance. However, 3×107 codewordswere necessary in order to obtain nearmaximum
likelihood performance was obtained by the modified Dorsch decoder operating on
the three-level quantised decisions. The BCH bounded distance decoder is approx-
imately 3dB offset from the unquantised soft decision decoding performance and
1dB from the modified Dorsch decoder operating on the quantised hard decisions.

These simulation results for the losses due to quantisation of the soft decisions
show a very close agreement to the losses anticipated from the theoretical analysis.

3.5 Summary

In this chapter, we derived both approximate and exact bounds on the performance
of soft decision decoding compared to hard decision decoding as a function of code
parameters. The effects of soft decision quantisation were explored showing the
decoding performance loss as a function of number of quantisation levels. Results
were presented for the ensembles of all (100, 50) and (200, 100) codes. It was shown
that the loss due to quantisation is a function of both dmin and SNR. Performance
graphs showing the relationship were presented.

It was shown that the near maximum likelihood decoder, the Dorsch decoder
described in Chap.15, may be adapted for hard decision decoding in order to pro-
duce better performance than bounded distance decoding. Performance graphs were
presented for some BCH codes showing the performance achieved compared to
bounded distance decoding.
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Part II
Code Construction

This part of the book deals with the construction of error-correcting codes having
good code properties. With an emphasis on binary codes, a wide range of different
code constructions are described including cyclic codes, double circulant codes,
quadratic residue codes, Goppa codes, Lagrange codes, BCH codes and Reed–
Solomon codes. Code combining constructions such as Construction X are also
included. For shorter codes, typically less than 512 symbols long, the emphasis is on
the highest minimum Hamming distance for a given length and code rate. The con-
struction of some outstanding codes is described in detail together with the derivation
of the weight distributions of the codes. For longer codes, the emphasis is on the best
code design for a given type of decoder, such as the iterative decoder. Binary convo-
lutional codes are discussed from the point of view of their historical performance in
comparison to the performance realised with modern best decoding techniques. Con-
volutional codes, designed for space communications in the 1960s, are implemented
as tail-biting block codes. The performance realised with near maximum likelihood
decoding, featuring the modifed Dorsch decoder described in Chap. 15, is somewhat
surprising.
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Chapter 4
Cyclotomic Cosets, the Mattson–Solomon
Polynomial, Idempotents and Cyclic Codes

4.1 Introduction

Much of the pioneering research on cyclic codes was carried out by Prange [5] in the
1950s and considerably developed by Peterson [4] in terms of generator and parity-
check polynomials. MacWilliams and Sloane [2] showed that cyclic codes could be
generated from idempotents and the Mattson–Solomon polynomial, first introduced
by Mattson and Solomon in 1961 [3]. The binary idempotent polynomials follow
directly from cyclotomic cosets.

4.2 Cyclotomic Cosets

Consider the expansion of polynomial a(x) = ∏m−1
i=0 (x − α2i). The coefficients of

a(x) are a cyclotomic coset of powers of α or a sum of cyclotomic cosets of powers
of α. For example, if m = 4

a(x) = (x − α)(x − α2)(x − α4)(x − α8) (4.1)

and expanding a(x) produces

a(x) = x4 − (α + α2 + α4 + α8)x3 + (α3 + α6 + α12 + α9 + α5 + α10)x2

+ (α7 + α14 + α13 + α11)x + α15. (4.2)

Definition 4.1 (Cyclotomic Coset) Let s be a positive integer, and the 2−cyclotomic
coset of s (mod n) is given by

© The Author(s) 2017
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DOI 10.1007/978-3-319-51103-0_4
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Cs = {2is (mod n) | 0 ≤ i ≤ t},

where s is the smallest element in the set Cs and t is the smallest positive integer
such that 2t+1s ≡ s (mod n).

For convenience, we will use the term cyclotomic coset to refer to 2−cyclotomic
coset. If N is the set consisting of the smallest elements of all possible cyclotomic
cosets, then it follows that

C =
⋃

s∈N
Cs = {0, 1, 2, . . . , n − 1}.

Example 4.1 The entire cyclotomic cosets of 15 are as follows:

C0 = {0}
C1 = {1, 2, 4, 8}
C3 = {3, 6, 12, 9}
C5 = {5, 10}
C7 = {7, 14, 13, 11}

and N = {0, 1, 3, 5, 7}.
It can be seen that for GF(24) above, Eq. (4.2), the coefficients of a(x) are a cyclo-
tomic coset of powers ofα or a sumof cyclotomic cosets of powers ofα. For example,
the coefficient of x3 is the sum of powers of α from cyclotomic coset C1.

In the next step of the argument we note that there is an important property of
Galois fields.

Theorem 4.1 For a Galois field GF(pm), then

(
b(x) + c(x)

)p = b(x)p + c(x)p.

Proof Expanding
(
b(x) + c(x)

)p
produces

(
b(x) + c(x)

)p = b(x)p +
(
p

1

)
b(x)p−1c(x) +

(
p

2

)
b(x)p−2c(x)2 + (4.3)

. . . +
(

p

p − 1

)
b(x)c(x)p−1 + c(x)p.

As p modulo p = 0, then all of the binomial coefficients
(p
r

) = 0 and

(
b(x) + c(x)

)p = b(x)p + c(x)p.
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Another theorem follows.

Theorem 4.2 The sum of powers of α that are from a cyclotomic coset Ci is equal
to either 1 or 0.

Proof The sum of powers of α that are from a cyclotomic coset Ci must equal to a
field element, some power, j of α, αj or 0. Also, from Theorem 1.1,

( ∑
αCi

)2 =
∑

αCi .

If the sum of powers of α is non-zero then

(∑
αCi

)2 = α2j =
∑

αCi = αj.

The only non-zero field element that satisfies α2j = αj is α0 = 1. Hence, the sum of
powers of α that are from a cyclotomic coset Ci is equal to either 1 or 0.

In the example of C1 from GF(24) we have

(α + α2 + α4 + α8)2 = α2 + α4 + α8 + α16 = α2 + α4 + α8 + α

and so

α + α2 + α4 + α8 = 0 or 1.

Returning to the expansion of polynomial a(x) = ∏m−1
i=0 (x − α2i). Since the coeffi-

cients of a(x) are a cyclotomic coset of powers of α or a sum of cyclotomic cosets
of powers of α, the coefficients of a(x) must be 0 or 1 and a(x) must have binary
coefficients after noting that the coefficient of x0 is

∏m−1
i=0 α2i = α2m−1 = 1, the max-

imum order of α. Considering the previous example of m = 4 (GF(24)), since a(x)
is constrained to have binary coefficients, we have the following possible identities:

α15 = 1

α + α2 + α4 + α8 = 0 or 1

α7 + α14 + α13 + α11 = 0 or 1

α3 + α6 + α12 + α9 + α5 + α10 = 0 or 1.

(4.4)

These identities are determined by the choice of primitive polynomial used to gen-
erate the extension field. This can be seen from the Trace function, Tm(x), defined
as
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Tm(x) =
m−1∑

i=0

x2
i

(4.5)

and expanding the product of Tm(x)
(
1 + Tm(x)

)
produces the identity

Tm(x)
(
1 + Tm(x)

) = x(1 − xn). (4.6)

α is a root of (1− xn) and so α is a root of either Tm(x) or
(
1+ Tm(x)

)
, and so either

Tm(α) = 0 or
(
1 + Tm(α)

) = 0. For GF(24)

Tm(x) =
3∑

i=0

x2
i = x + x2 + x4 + x8. (4.7)

Factorising produces

x + x2 + x4 + x8 = x(1 + x)(1 + x + x2)(1 + x + x4), (4.8)

and

1 + Tm(x) = 1 +
3∑

i=0

x2
i = 1 + x + x2 + x4 + x8. (4.9)

Factorising produces

1 + x + x2 + x4 + x8 = (1 + x3 + x4)(1 + x + x2 + x3 + x4). (4.10)

It may be verified that

Tm(x)
(
1 + Tm(x)

) = (x + x2 + x4 + x8)(1 + x + x2 + x4 + x8)

= x(1 + x)(1 + x + x2)(1 + x + x4)(1 + x3 + x4)

(1 + x + x2 + x3 + x4)

= x(1 − x15).

Consequently, if 1 + x + x4 is used to generate the extension field GF(16) then
α + α2 + α4 + α8 = 0 and if 1 + x3 + x4 is used to generate the extension field
GF(16), then 1 + α + α2 + α4 + α8 = 0.

Taking the case that a(x) = 1 + x + x4 is used to generate the extension field
GF(16) by comparing the coefficients given by Eq. (4.2), we can solve the identities
of (4.4) after noting that α5 + α10 must equal 1 otherwise the order of α is equal to
5, contradicting α being a primitive root. All of the identities of the sum for each
cyclotomic coset of powers of α are denoted by Si m and these are
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S0 4 = α0 = 1

S1 4 = α + α2 + α4 + α8 = 0

S3 4 = α3 + α6 + α12 + α9 = 1

S5 4 = α5 + α10 = 1

S7 4 = α7 + α14 + α13 + α11 = 1

S15 4 = α15 = 1. (4.11)

The lowest degree polynomial that has β as a root is traditionally known as aminimal
polynomial [2], and is denoted as Mim where β = αi. With Mim having binary
coefficients

Mim =
m−1∏

j=0

(x − αi2j ). (4.12)

For GF(24) and considering M3 4 for example,

M3 4 = (x − α3)(x − α6)(x − α12)(x − α9), (4.13)

and expanding leads to

M3 4 = x4 − (α3 + α6 + α12 + α9)x3 + (α9 + α3 + α6 + α12)x2

+ (α6 + α12 + α9 + α3)x + 1. (4.14)

It will be noticed that this is the same as Eq. (4.2) with α replaced with α3. Using the
identities of Eq. (4.11), it is found that

M3 4 = x4 + x3 + x2 + x + 1. (4.15)

Similarly, it is found that for M5 4 substitution produces x4 + x2 + 1 which is (x2 +
x + 1)2, and so

M5 4 = x2 + x + 1; (4.16)

similarly, it is found that

M7 4 = x4 + x3 + 1 (4.17)

forM0 4 with β = 15, and substitution produces x4 + 1 = (1 + x)4 and

M0 4 = x + 1. (4.18)
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It will be noticed that all of the minimal polynomials correspond to the factors of
1 + x15 given above. Also, it was not necessary to generate a table of GF(24) field
elements in order to determine all of the minimal polynomials onceM1 4 was chosen.

A recurrence relation exists for the cyclotomic cosets with increasing m for

Mim+1 =
( m−1∏

j=0

(x − αi2j )
)
x − αi2m . (4.19)

For m = 4,

M1 4 = x4 + S1 4x
3 + (S3 4 + S5 4)x

2 + S7 4x + α15 (4.20)

and so

M1 5 =
(
x4 + S1 4x

3 + (S3 4 + S5 4)x
2 + S7 4x + α15

)
(x + α16)

(4.21)

and

M1 5 = x5 + (α16 + S1 4)x
4 + (α16S1 4 + (S3 4 + S5 4))x

3

+ (
α16(S3 4 + S5 4) + S7 4

)
x2 + (α16S7 4 + α15)x + α31 (4.22)

and we find that

M1 5 = x5 + S1 5x
4 + (S3 5 + S5 5)x

3

+ (S7 5 + S11 5)x
2 + S15 5x + α31. (4.23)

We have the following identities, linking the cyclotomic cosets ofGF(24) toGF(25)

S3 5 + S5 5 = α16S1 4 + S3 4 + S5 4

S7 5 + S11 5 = α16(S3 4 + S5 4) + S7 4

S15 5 = α16S7 4 + α15.

With 1 + x2 + x5 used to generate the extension field GF(32), then α + α2 + α4 +
α8 + α16 = 0. Evaluating the cyclotomic cosets of powers of α produces

S0 5 = α0 = 1

S1 5 = α + α2 + α4 + α8 + α16 = 0

S3 5 = α3 + α6 + α12 + α24 + α17 = 1

S5 5 = α5 + α10 + α20 + α9 + α18 = 1

S7 5 = α7 + α14 + α28 + α25 + α19 = 0
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S11 5 = α11 + α22 + α13 + α26 + α21 = 1

S15 5 = α15 + α30 + α29 + α27 + α23 = 0.

(4.24)

Substituting for the minimal polynomials, Mi,5 produces

M0 5 = x + 1

M1 5 = x5 + x2 + 1

M3 5 = x5 + x4 + x3 + x2 + 1

M5 5 = x5 + x4 + x2 + x + 1

M7 5 = x5 + x3 + x2 + x + 1

M11 5 = x5 + x4 + x3 + x + 1

M15 5 = x5 + x3 + 1.

(4.25)

For GF(25), the order of a root of a primitive polynomial is 31, a prime number.
Moreover, 31 is a Mersenne prime (2p − 1) and the first 12 Mersenne primes cor-
respond to p = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107 and 127. Interestingly, only 49
Mersenne primes are known. The last known Mersenne prime being 274207281 − 1,
discovered in January 2016. As (25 − 1) is prime, each of the minimal polynomials
in Eq. (4.25) is primitive.

If α is a root of Tm(x) andm is even, then 1+T2m(x) = 1+Tm(x)+(
1+Tm(x)

)2m

and α
22m−1
2m−1 is a root of x2

2m
. For example, if α is a root of 1 + x + x2, α is of order 3

and α5 is a root of x+ x2 + x4 + x8. Correspondingly, 1+ x+ x2 is a factor of 1+ x3

and also a factor of1 + x15 and necessarily 22m − 1 cannot be prime. Similarly, if m
is not a prime and m = ab, then

2m − 1

2a − 1
= 2b(a−1) + 2b(a−2) + 2b(a−3) . . . + 1 (4.26)

and so

2m − 1 = (2b(a−1) + 2b(a−2) + 2b(a−3) . . . + 1)2a − 1. (4.27)

Similarly

2m − 1 = (2a(b−1) + 2a(b−2) + 2a(b−3) . . . + 1)2b − 1. (4.28)

As a consequence

M(2b(a−1)+2b(a−2)+2b(a−3)...+1)×j m = Mj a (4.29)
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for all minimal polynomials of x2
a−1 − 1, and

M(2a(b−1)+2a(b−2)+2a(b−3)...+1)×j m = Mj b (4.30)

for all minimal polynomials of x2
b−1 − 1.

For M1 6, following the same procedure,

M1 6 = x6 + S1 6x
5 + (S3 6 + S5 6 + S9 6)x

4 + (S7 6 + S11 6 + S13 6 + S21 6)x
3

+ (S15 6 + S23 6 + S27 6)x
2 + S15 6x

2 + S31 6x + α63. (4.31)

Substituting for the minimal polynomials, Mi,6 produces

M0 6 = x + 1

M1 6 = x6 + x + 1

M3 6 = x6 + x4 + x2 + x + 1

M5 6 = x6 + x5 + x2 + x + 1

M7 6 = x6 + x3 + 1

M9 6 = x3 + x2 + 1

M11 6 = x6 + x5 + x3 + x2 + 1

M13 6 = x6 + x4 + x3 + x + 1

M15 6 = x6 + x5 + x4 + x2 + 1

M21 6 = x2 + x + 1

M23 6 = x6 + x5 + x4 + x + 1

M27 6 = x3 + x + 1

M31 6 = x6 + x5 + 1. (4.32)

Notice that M9 6 = M3 4 because α9 + α18 + α36 = 1 and M27 6 = M1 4 because
α9 +α18 +α36 = 0.M21 6 = M1 3 because α21 +α42 = 1. The order of α is 63 which
factorises to 7 × 3 × 3 and so x63 − 1 will have roots of order 7 (α9) and roots of
order 3 (α21). Another way of looking at this is the factorisation of x63 − 1. x7 − 1
is a factor and x3 − 1 is a factor

x63 − 1 = (x7 − 1)(1 + x7 + x14 + x21

+x28 + x35 + x42 + x49 + x56) (4.33)

also

x63 − 1 = (x3 − 1)(1 + x3 + x6 + x9 + x12 + x15 + x18 + x21

+ x24 + x27 + x30 + x33 + x36 + x39 + x42 + x45

+ x48 + x51 + x54 + x57 + x60)
(4.34)
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and

x3 − 1 = (x + 1)(x2 + x + 1)

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1)

x63 − 1 = (x + 1)(x2 + x + 1)(x3 + x + 1)(x3 + x2 + 1)(x6 + x + 1)

(x6 + x4 + x2 + x + 1) . . . (x6 + x5 + 1). (4.35)

For M1 7

M1 7 = x7 + S1 7x
6 + (S3 7 + S5 7 + S9 7)x

4 + (S7 7 + S11 7 + S13 7+S19 7 + S21 7)x
3

+ (S15 7 + S23 7 + S27 7 + S29 7)x
3 + (S15 7 + S31 7 + S43 7+S47 7 + S55 7)x

2

+ S63 7x + α127.

(4.36)

Although the above procedure using the sums of powers of α from the cyclotomic
cosetsmay be used to generate theminimal polynomialsMim for anym, the procedure
becomes tedious with increasing m, and it is easier to use the Mattson Polynomial
or combinations of the idempotents as described in Sect. 4.4.

4.3 The Mattson–Solomon Polynomial

The Mattson–Solomon polynomial is very useful for it can be conveniently used to
generate minimal polynomials and idempotents. It also may be used to design cyclic
codes, RS codes and Goppa codes as well as determining the weight distribution
of codes. The Mattson–Solomon polynomial [2] of a polynomial a(x) is a linear
transformation of a(x) to A(z). The Mattson–Solomon polynomial is the same as the
inverse Discrete Fourier Transform over a finite field. The polynomial variables x
and z are used to distinguish the polynomials in either domain.

Let the splitting field of xn − 1 over F2 be F2m , where n is an odd integer and
m > 1, and let a generator of F2m be α and an integer r = (2m − 1)/n. Let a(x) be a
polynomial of degree at most n − 1 with coefficients over F2m .

Definition 4.2 (Mattson–Solomon polynomial) The Mattson–Solomon polynomial
of a(x) is the linear transformation of a(x) to A(z) and is defined by [2]

A(z) = MS(a(x)) =
n−1∑

j=0

a(α−rj)zj. (4.37)

The inverse Mattson–Solomon transformation or Fourier transform is
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Table 4.1 GF(16) extension field defined by 1 + α + α4 = 0

α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = 1 + α

α5 = α + α2

α6 = α2 + α3

α7 = 1 + α + α3

α8 = 1 + α2

α9 = α + α3

α10 = 1 + α + α2

α11 = α + α2 + α3

α12 = 1 + α + α2 + α3

α13 = 1 + α2 + α3

α14 = 1 + α3

a(x) = MS−1(A(z)) = 1

n

n−1∑

i=0

A(αri)xi. (4.38)

The integer r comes into play when 2m − 1 is not a prime, that is, 2m − 1 is not
a Mersenne prime, otherwise r = 1. As an example, we will consider F24 and the
extension field table of non-zero elements is given in Table4.1 with 1+α +α4 = 0,
modulo 1 + x15.

Consider the polynomial a(x) denoted as

a(x) =
n−1∑

i=0

aix
i = 1 + x3 + x4. (4.39)

We will evaluate the Mattson–Solomon polynomial coefficient by coefficient:

A(0) = a0 + a3 + a4 = 1 + 1 + 1 = 1

A(1) = a0 + a3α
−3 + a4α

−4 = 1 + α12 + α11 = 1 + 1 + α + α2 + α3 + α + α2 + α3 = 0

A(2) = a0 + a3α
−6 + a4α

−8 = 1 + α9 + α7 = 1 + α + α3 + 1 + α + α3 = 0

A(3) = a0 + a3α
−9 + a4α

−12 = 1 + α6 + α3 = 1 + α2 + α3 + α3 = α8

A(4) = a0 + a3α
−12 + a4α

−16 = 1 + α3 + α14 = 1 + α3 + 1 + α3 = 0

A(5) = a0 + a3α
−15 + a4α

−20 = 1 + 1 + α10 = α10

A(6) = a0 + a3α
−18 + a4α

−24 = 1 + α12 + α6 = α

A(7) = a0 + a3α
−21 + a4α

−28 = 1 + α9 + α2 = 1 + α + α3 + α2 = α12

A(8) = a0 + a3α
−24 + a4α

−32 = 1 + α6 + α13 = 0
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A(9) = a0 + a3α
−27 + a4α

−36 = 1 + α3 + α9 = 1 + α = α4

A(10) = a0 + a3α
−30 + a4α

−40 = 1 + 1 + α5 = α5

A(11) = a0 + a3α
−33 + a4α

−44 = 1 + α12 + α = α6

A(12) = a0 + a3α
−36 + a4α

−48 = 1 + α9 + α12 = α2

A(13) = a0 + a3α
−39 + a4α

−52 = 1 + α6 + α8 = α3

A(14) = a0 + a3α
−42 + a4α

−56 = 1 + α3 + α4 = α9. (4.40)

It can be seen that A(z) is

A(z) = 1 + α8z3 + α10z5 + αz6 + α12z7 + α4z9 + α5z(10) + α6z11 + α2z12

+ α3z13 + α9z14.

A(z) has four zeros corresponding to the roots α−1, α−2, α−4 and α−8, and these
are the roots of 1 + x3 + x4. These are also 4 of the 15 roots of 1 + x15. Factorising
1 + x15 produces the identity

1 + x15 = (1 + x)(1 + x + x2)(1 + x + x4)(1 + x3 + x4)(1 + x + x2 + x3 + x4).

(4.41)

It can be seen that 1 + x3 + x4 is one of the factors of 1 + x15.
Another point to notice is thatA(z) = A(z)2 andA(z) is an idempotent. The reason

for this is that the inverse Mattson–Solomon polynomial of A(z) will produce a(x) a
polynomial that has binary coefficients. Let · denote the dot product of polynomials,
i.e.

(∑
Aiz

i
)

·
(∑

Biz
i
)

=
∑

AiBiz
i.

It follows from the Mattson–Solomon polynomial that with a(x)b(x) = c(x),∑
Cizi = ∑

AiBizi.
This concept is analogous to multiplication and convolution in the time and fre-

quency domains, where the Fourier and inverse Fourier transforms correspond to the
inverse Mattson–Solomon and Mattson–Solomon polynomials, respectively. In the
above example, A(z) is an idempotent which leads to the following lemma.

Lemma 4.1 TheMattson–Solomon polynomial of a polynomial having binary coef-
ficients is an idempotent.

Proof Let c(x) = a(x) · b(x). The Mattson–Solomon polynomial of c(x) is C(z) =
A(z)B(z). Setting b(x) = a(x) then C(z) = A(z)A(z) = A(z)2. If a(x) has binary
coefficients, then c(x) = a(x) · a(x) = a(x) and A(z)2 = A(z). Therefore A(z) is an
idempotent.
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Of course the reverse is true.

Lemma 4.2 The Mattson–Solomon polynomial of an idempotent is a polynomial
having binary coefficients.

Proof Let c(x) = a(x)b(x). The Mattson–Solomon polynomial of c(x) is C(z) =
A(z)B(z). Setting b(x) = a(x) then C(z) = A(z) ·A(z). If a(x) is an idempotent then
c(x) = a(x)2 = a(x) and A(z) = A(z) · A(z). The only values for the coefficients of
A(z) that satisfy this constraint are the values 0 and 1. Hence, the Mattson Solomon
polynomial, A(z), has binary coefficients.

A polynomial that has binary coefficients and is an idempotent is a binary idem-
potent, and combining Lemmas4.1 and 4.2 produces the following lemma.

Lemma 4.3 The Mattson–Solomon polynomial of a binary idempotent is also a
binary idempotent.

Proof The proof follows immediately from the proofs of Lemmas4.1 and 4.2. As
a(x) is an idempotent, then from Lemma4.1, A(z) has binary coefficients. As a(x)
also has binary coefficients, then from Lemma4.2, A(z) is an idempotent. Hence,
A(z) is a binary idempotent.

As an example consider the binary idempotent a(x) from GF(16) listed in
Table4.1:

a(x) = x + x2 + x3 + x4 + x6 + x8 + x9 + x12.

The Mattson–Solomon polynomial A(z) is

A(z) = z7 + z11 + z13 + z14,

which is also a binary idempotent.
Since the Mattson polynomial of a(x−1) is the same as the inverse Mattson poly-

nomial of a(x) consider the following example:

a(x) = x−7 + x−11 + x−13 + x−14 = x + x2 + x4 + x4.

The Mattson–Solomon polynomial A(z) is the binary idempotent

A(z) = z + z2 + z3 + z4 + z6 + z8 + z9 + z12.

This is the reverse of the first example above.
The polynomial 1 + x + x3 has no roots of 1 + x15 and so defining b(x)

b(x) = (1 + x + x3)(1 + x3 + x4) = 1 + x + x5 + x6 + x7. (4.42)

When the Mattson–Solomon polynomial is evaluated, B(z) is given by

B(z) = 1 + z + z5 + z6 + z7. (4.43)
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4.4 Binary Cyclic Codes Derived from Idempotents

In their book, MacWilliams and Sloane [2] describe the Mattson–Solomon polyno-
mial and show that cyclic codes may be constructed straightforwardly from idem-
potents. An idempotent is a polynomial θ(x) with coefficients from a base field
GF(p) that has the property that θp(x) = θ(x). The family of Bose–Chaudhuri–
Hocquenghem (BCH) cyclic codes may be constructed directly from the Mattson–
Solomon polynomial. From the idempotents, other cyclic codes may be constructed
which have low-weight dual-code codewords or equivalently sparseness of the parity-
check matrix (see Chap.12).

Definition 4.3 (Binary Idempotent) Consider e(x) ∈ T(x), e(x) is an idempotent if
the property of e(x) = e2(x) = e(x2) mod (xn − 1) is satisfied.

An (n, k) binary cyclic codemay be described by the generator polynomial g(x) ∈
T(x) of degree n− k and the parity-check polynomial h(x) ∈ T(x) of degree k, such
that g(x)h(x) = xn−1. According to [2], as an alternative to g(x), an idempotent may
also be used to generate cyclic codes. Any binary cyclic code can be described by a
unique idempotent eg(x) ∈ T(x) which consists of a sum of primitive idempotents.
The unique idempotent eg(x) is known as the generating idempotent and as the name
implies, g(x) is a divisor of eg(x), and to be more specific eg(x) = m(x)g(x), where
m(x) ∈ T(x) contains repeated factors or non-factors of xn − 1.

Lemma 4.4 If e(x) ∈ T(x) is an idempotent, E(z) = MS(e(x)) ∈ T(z).

Proof Since e(x) = e(x)2 (mod xn − 1), from (4.37) it follows that e(α−rj) =
e(α−rj)2 for j = {0, 1, . . . , n − 1} and some integer r. Clearly e(α−rj) ∈ {0, 1}
implying that E(z) is a binary polynomial.

Definition 4.4 (Cyclotomic Coset) Let s be a positive integer, and the 2−cyclotomic
coset of s (mod n) is given by

Cs = {
2is (mod n) | 0 ≤ i ≤ t

}
,

where we shall always assume that the subscript s is the smallest element in the set
Cs and t is the smallest positive integer such that 2t+1s ≡ s (mod n).

For convenience, we will use the term cyclotomic coset to refer to 2−cyclotomic
coset throughout this book. IfN is the set consisting of the smallest elements of all
possible cyclotomic cosets, then it follows that

C =
⋃

s∈N
Cs = {0, 1, 2, . . . , n − 1}.

Definition 4.5 (Binary Cyclotomic Idempotent) Let the polynomial es(x) ∈ T(x) be
given by

http://dx.doi.org/10.1007/978-3-319-51103-0_12


74 4 Cyclotomic Cosets, the Mattson–Solomon Polynomial …

es(x) =
∑

0≤i≤|Cs|−1

xCs,i , (4.44)

where |Cs| is the number of elements in Cs and Cs,i = 2is (mod n), the (i + 1)th
element of Cs. The polynomial es(x) is called a binary cyclotomic idempotent.

Example 4.2 The entire cyclotomic cosets of 63 and their corresponding binary
cyclotomic idempotents are as follows:

C0 = {0} e0(x) = 1

C1 = {1, 2, 4, 8, 16, 32} e1(x) = x + x2 + x4 + x8 + x16 + x32

C3 = {3, 6, 12, 24, 48, 33} e3(x) = x3 + x6 + x12 + x24 + x33 + x48

C5 = {5, 10, 20, 40, 17, 34} e5(x) = x5 + x10 + x17 + x20 + x34 + x40

C7 = {7, 14, 28, 56, 49, 35} e7(x) = x7 + x14 + x28 + x35 + x49 + x56

C9 = {9, 18, 36} e9(x) = x9 + x18 + x36

C11 = {11, 22, 44, 25, 50, 37} e11(x) = x11 + x22 + x25 + x37 + x44 + x50

C13 = {13, 26, 52, 41, 19, 38} e13(x) = x13 + x19 + x26 + x38 + x41 + x52

C15 = {15, 30, 60, 57, 51, 39} e15(x) = x15 + x30 + x39 + x51 + x57 + x60

C21 = {21, 42} e21(x) = x21 + x42

C23 = {23, 46, 29, 58, 53, 43} e23(x) = x23 + x29 + x43 + x46 + x53 + x58

C27 = {27, 54, 45} e27(x) = x27 + x45 + x54

C31 = {31, 62, 61, 59, 55, 47} e31(x) = x31 + x47 + x55 + x59 + x61 + x62

and N = {0, 1, 3, 5, 7, 9, 11, 13, 15, 21, 23, 27, 31}.
Definition 4.6 (Binary Parity-Check Idempotent) LetM ⊆ N and let the polyno-
mial u(x) ∈ T(x) be defined by

u(x) =
∑

s∈M
es(x), (4.45)

where es(x) is an idempotent. The polynomial u(x) is called a binary parity-check
idempotent.

The binary parity-check idempotent u(x) can be used to describe an [n, k] cyclic
code. SinceGCD(u(x), xn−1) = h(x), the polynomial ū(x) = xdeg(u(x))u(x−1) and its
n cyclic shifts (mod xn−1) can be used to define the parity-checkmatrix of a binary
cyclic code. In general, wtH(ū(x)) is much lower than wtH(h(x)), and therefore a
sparse parity-check matrix can be derived from ū(x). This is important for cyclic
codes designed to be used as low-density parity-check (LDPC) codes, see Chap.12.

http://dx.doi.org/10.1007/978-3-319-51103-0_12
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4.4.1 Non-Primitive Cyclic Codes Derived from Idempotents

The factors of 2m − 1 dictate the degrees of the minimal polynomials through the
order of the cyclotomic cosets. Some relatively short non-primitive cyclic codes have
minimal polynomials of high degree which makes it tedious to derive the generator
polynomial or parity-check polynomial using theMattson–Solomonpolynomial. The
prime factors of 2m − 1 for m ≤ 43 are tabulated below in Table4.2.

The Mersenne primes shown in Table4.2 are 23 − 1, 25 − 1, 27 − 1, 213 − 1,
217 − 1, 219 − 1, 223 − 1 and 231 − 1, and cyclic codes of these lengths are primitive
cyclic codes. Non-primitive cyclic codes have lengths corresponding to factors of
2m − 1 which are not Mersenne primes. Also it may be seen in Table4.2 that for m
even, 3 is a common factor. Where m is congruent to 5, with m = 5 × s, 31 is a
common factor and allMj 5 minimal polynomials will be contained in the set,Mj 5×s

of minimal polynomials.
As an example of how useful Table4.2 can be, consider a code of length 113.

Table4.2 shows that 228 − 1 contains 113 as a factor. This means that there is a
polynomial of degree 28 that has a root β of order 113. In fact, β = α2375535, where
α is a primitive root, because 228 − 1 = 2375535 × 113.

The cyclotomic cosets of 113 are as follows:

C0 = {0}
C1 = {1, 2, 4, 8, 16, 32, 64, 15, 30, 60, 7, 14, 28, 56,

112, 111, 109, 105, 97, 81, 49, 98, 83, 53, 106, 99, 85, 57}
C3 = {3, 6, 12, 24, 48, 96, 79, 45, 90, 67, 21, 42, 84,

55, 110, 107, 101, 89, 65, 17, 34, 68, 23, 46, 92, 71, 29, 58}
C5 = {5, 10, 20, 40, 80, 47, 94, 75, 37, 74, 35, 70, 27,

54, 108, 103, 93, 73, 33, 66, 19, 38, 76, 39, 78, 43, 86, 59}
C7 = {9, 18, 36, 72, 31, 62, 11, 22, 44, 88, 63, 13, 26,

52, 104, 95, 77, 41, 82, 51, 102, 91, 69, 25, 50, 100, 87, 61}.

Each coset apart from C0 may be used to define 28 roots from a polynomial
having binary coefficients and of degree 28. Alternatively, each cyclotomic coset
may be used to define the non-zero coefficients of a polynomial, a minimum weight
idempotent (see Sect. 4.4). Adding together any combination of the 5 minimum
weight idempotents generates a cyclic code of length 113. Consequently, there are
only 25 − 2 = 30 non-trivial, different cyclic codes of length 113 and some of these
will be equivalent codes. Using Euclid’s algorithm, it is easy to find the common
factors of each idempotent combination and x113 − 1. The resulting polynomial may
be used as the generator polynomial, or the parity-check polynomial of the cyclic
code.
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For example, consider the GCD of C1 + C3 = x + x2 + x3 + x4 + x6 + x8 + . . . +
x109 + x110 + x111 + x112 and x113 − 1. This is the polynomial, u(x), which turns out
to have degree 57

u(x) = 1 + x + x2 + x3 + x5 + x6 + x7 + x10 + x13

. . . + x51 + x52 + x54 + x55 + x56 + x57.

Using u(x) as the parity-check polynomial of the cyclic code produces a (113, 57,
18) code. This is quite a good code as the very best (113, 57) code has a minimum
Hamming distance of 19.

As another example of using this method for non-primitive cyclic code construc-
tion, consider the factors of 239 − 1 in Table4.2. It will be seen that 79 is a factor
and so a cyclic code of length 79 may be constructed from polynomials of degree
39. The cyclotomic cosets of 79 are as follows:

C0 = {0}
C1 = {1, 2, 4, 8, 16, 32, 64, 49, 19, 38, 76, 73, . . . 20, 40}
C3 = {3, 6, 12, 24, 48, 17, 34, 68, 57, 35, 70, . . . 60, 41}.

The GCD of the idempotent sum given by the cyclotomic cosets C0 +C1 and x79 −1
is the polynomial, u(x), of degree 40:

u(x) = 1 + x + x3 + x5 + x8 + x11 + x12 + x16

. . . + x28 + x29 + x34 + x36 + x37 + x40.

Using u(x) as the parity-check polynomial of the cyclic code produces a (79, 40,
15) code. This is the quadratic residue cyclic code for the prime number 79 and is a
best-known code.

In a further exampleTable4.2 shows that 237−1has 223 as a factor. TheGCDof the
idempotent given by the cyclotomic cosetC3 x3+x6+x12+x24+x48+ . . . +x198+x204

and x223 − 1 is the polynomial, u(x), of degree 111

u(x) = 1 + x2 + x3 + x5 + x8 + x9 + x10 + x12

. . . + x92 + x93 + x95 + x103 + x107 + x111.

Using u(x) as the parity-check polynomial of the cyclic code produces a (223, 111,
32) cyclic code.
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4.5 Binary Cyclic Codes of Odd Lengths from 129 to 189

Since many of the best-known codes are cyclic codes, it is useful to have a table of
the best cyclic codes. The literature already contains tables of the best cyclic codes
up to length 127 and so the following table starts at 129. All possible binary cyclic
codes up to length 189 have been constructed and their minimumHamming distance
has been evaluated.

The highest minimum distance attainable by all binary cyclic codes of odd lengths
129 ≤ n ≤ 189 is tabulated in Table4.3. The column “Roots of g(x)” in Table4.3
denotes the exponents of roots of the generator polynomial g(x), excluding the con-
jugate roots. All cyclic codes with generator polynomials 1+x and (xn −1)/(1+x),
since they are trivial codes, are excluded in Table4.3 and since primes n = 8m ± 3
contain these trivial cyclic codes only, there is no entry in the table for these primes.
The number of permutation inequivalent and non-degenerate cyclic codes, excluding
the two trivial codes mentioned earlier, for each odd integer n is given by NC . The
primitive polynomial m(x) defining the field is given in octal. Full details describing
the derivation of Table4.3 are provided in Sect. 5.3.

In Table4.3, there is no cyclic code that improves the lower bound given by
Brouwer [1], but there are 134 cyclic codes that meet this lower bound and these
codes are printed in bold.

4.6 Summary

The important large family of binary cyclic codes has been explored in this chapter.
Starting with cyclotomic cosets, the minimal polynomials were introduced. The
Mattson–Solomon polynomial was described and it was shown to be an inverse
discrete Fourier transform based on a primitive root of unity. The usefulness of the
Mattson–Solomon polynomial in the design of cyclic codes was demonstrated. The
relationship between idempotents and the Mattson–Solomon polynomial of a poly-
nomial that has binary coefficients was described with examples given. It was shown
how binary cyclic codes may be easily derived from idempotents and the cyclotomic
cosets. In particular, a method was described based on cyclotomic cosets for the
design of high-degree non-primitive binary cyclic codes. Code examples using the
method were presented.
A table listing the complete set of the best binary cyclic codes, having the highest
minimumHamming distance, has been included for all code lengths from 129 to 189
bits.

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Chapter 5
Good Binary Linear Codes

5.1 Introduction

Two of the important performance indicators for a linear code are the minimum
Hamming distance and the weight distribution. Efficient algorithms for computing
the minimum distance and weight distribution of linear codes are explored below.
Using thesemethods, theminimumdistances of all binary cyclic codes of length 129–
189 have been enumerated. The results are presented in Chap.4.Many improvements
to the database of best-known codes are described below. In addition, methods of
combining known codes to produce good codes are explored in detail. Thesemethods
are applied to cyclic codes, and many new binary codes have been found and are
given below.

The quest of achieving Shannon’s limit for the AWGN channel has been
approached in a number of different ways. Here we consider the problem formu-
lated by Shannon of the construction of good codes which maximise the difference
between the error rate performance for uncoded transmission and coded transmis-
sion. For uncoded, bipolar transmission with matched filtered reception, it is well
known (see for example Proakis [20]) that the bit error rate, pb, is given by

pb = 1

2
erfc

(√
Eb

N0

)

. (5.1)

Comparing this equation with the equation for the probability of error when using
coding, viz. the probability of deciding on one codeword rather than another, Eq. (1.4)
given in Chap.1, it can be seen that the improvement due to coding, the coding
gain is indicated by the term dmin .

k
n , the product of the minimum distance between

codewords and the code rate. This is not the end of the story in calculating the overall
probability of decoder error because this error probability needs to be multiplied by
the number of codewords distance dmin apart.

For a linear binary code, the Hamming distance between two codewords is equal
to the Hamming weight of the codeword formed by adding the two codewords
together. Moreover, as the probability of decoder error at high Eb

N0
values depends

on the minimum Hamming distance between codewords, for a linear binary code,
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the performance of the code depends on the minimum Hamming weight codewords
of the code, the dmin of the code and the number of codewords with this weight
(the multiplicity). For a given code rate ( kn ) and length n, the higher the weight of
the minimum Hamming weight codewords of the code, the better the performance,
assuming the multiplicity is not too high. It is for this reason that a great deal of
research effort has been extended, around the world in determining codes with the
highest minimum Hamming weight for a given code rate ( kn ) and length n. These
codes are called the best-known codes with parameters (n, k, d), where d is under-
stood to be the dmin of the code, and the codes are tabulated in a database available
online [12] with sometimes a brief description or reference to their method of con-
struction.1

In this approach, it is assumed that a decoding algorithm either exists or will be
invented which realises the full performance of a best-known code. For binary codes
of length less than 200 bits the Dorsch decoder described in Chap.15 does realise
the full performance of the code.

Computing the minimum Hamming weight codewords of a linear code is, in
general, a Nondeterministic Polynomial-time (NP) hard problem, as conjectured by
[2] and later proved by [24]. Nowadays, it is a common practice to use a multi-
threaded algorithm which runs on multiple parallel computers (grid computing) for
minimum Hamming distance evaluation. Even then, it is not always possible to
evaluate the exact minimum Hamming distance for large codes. For some algebraic
codes, however, there are some shortcuts that make it possible to obtain the lower
and upper bounds on this distance. But knowing these bounds are not sufficient
as the whole idea is to know explicitly the exact minimum Hamming distance of a
specific constructed code. As a consequence, algorithms for evaluating the minimum
Hamming distance of a code are very important in this subject area and these are
described in the following section.

It is worth mentioning that a more accurate benchmark of how good a code is,
in fact its Hamming weight distribution. Whilst computing the minimum Hamming
distance of a code is in general NP-hard, computing theHammingweight distribution
of a code is even more complex. In general, for two codes of the same length and
dimension but of differentminimumHammingdistance,we can be reasonably certain
that the code with the higher distance is the superior code. Unless we are required to
decide between two codes with the same parameters, including minimum Hamming
distance, it is not necessary to go down the route of evaluating the Hamming weight
distribution of both codes.

1Multiplicities are ignored in the compiling of the best, known code Tables with the result that
sometimes the best, known code from the Tables is not the code that has the best performance.

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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5.2 Algorithms to Compute the Minimum Hamming
Distance of Binary Linear Codes

5.2.1 The First Approach to Minimum Distance Evaluation

For a [n, k, d] linear code over F2 with a reduced-echelon generator matrix Gsys =
[I k |P], where I k and P are k × k identity and k × (n − k) matrices respectively,
a codeword of this linear code can be generated by taking a linear combination of
some rows of Gsys . Since the minimum Hamming distance of a linear code is the
minimum non-zero weight among all of the 2k codewords, a brute-force method to
compute the minimum distance is to generate codewords by taking

(
k

1

)
,

(
k

2

)
,

(
k

3

)
, . . . ,

(
k

k − 1

)
, and

(
k

k

)

linear combinations of the rows in Gsys , noting the weight of each codeword gener-
ated and returning the minimum weight codeword of all 2k −1 non-zero codewords.
This method gives not only the minimum distance, but also the weight distribution of
a code. It is obvious that as k grows larger this method becomes infeasible. However,
if n − k is not too large, the minimum distance can still be obtained by evaluating
the weight distribution of the [n, n − k, d ′] dual code and using the MacWilliams
Identities to compute the weight distribution of the code. It should be noted that the
whole weight distribution of the [n, n − k, d ′] dual code has to be obtained, not just
the minimum distance of the dual code.

In direct codeword evaluation, it is clear that there are too many unnecessary
codeword enumerations involved. A better approach which avoids enumerating large
numbers of unnecessary codewords can be devised. Let

c = (i | p) = (c0, c1, . . . , ck−1|ck, . . . , cn−2, cn−1)

be a codeword of a binary linear code of minimum distance d. Let c′ = (i ′| p′) be a
codeword ofweightd, then ifwtH (i ′) = w for some integerw < d, wtH ( p′) = d−w.
This means that at most

min{d−1,k}∑

w=1

(
k

w

)
(5.2)

codewords are required to be enumerated.
In practice, d is unknown and an upper bound dub on the minimum distance is

required during the evaluation and the minimumHamming weight found thus far can
be used for this purpose. It is clear that once all

∑w
w′=1

( k
w′
)
codewords of information

weight w′ are enumerated,

• we know that we have considered all possibilities of d ≤ w; and
• if w < dub, we also know that the minimum distance of the code is at least w+ 1.
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Therefore, having an upper bound, a lower bound dlb = w + 1 on the minimum
distance can also be obtained. The evaluation continues until the condition dlb ≥ dub
is met and in this event, dub is the minimum Hamming distance.

5.2.2 Brouwer’s Algorithm for Linear Codes

There is an apparent drawback of the above approach. In general, the minimum
distance of a low-rate linear code is greater than its dimension. This implies that∑k

w=1

(k
w

)
codewords would need to be enumerated. A more efficient algorithm was

attributed to Brouwer2 and the idea behind this approach is to use a collection of
generator matrices of mutually disjoint information sets [11].

Definition 5.1 (Information Set) Let the set S = {0, 1, 2, . . . , n−} be the coordi-
nates of an [n, k, d] binary linear code with generator matrix G. The set I ⊆ S of
k elements is an information set if the corresponding coordinates in the generator
matrix is linearly independent and the submatrix corresponding to the coordinates in
I has rank k, hence, it can be transformed into a k × k identity matrix.

In other words, we can say, in relation to a codeword, the k symbols user message
is contained at the coordinates specified byI and the redundant symbols are stored
in the remaining n − k positions.

An information set corresponds to a reduced-echelon generator matrix and it
may be obtained as follows. Starting with a reduced-echelon generator matrix
G(1)

sys = Gsys = [I k |P], Gaussian elimination is applied to submatrix P so that
it is transformed to reduced-echelon form.

The resulting generator matrix now becomes G(2)
sys = [A|I k |P ′], where P ′ is

a k × (n − 2k) matrix. Next, submatrix P ′ is put into reduced-echelon form and
the process continues until there exists a k × (n − lk) submatrix of rank less than
k, for some integer l. Note that column permutations may be necessary during the
transformation to maximise the number of disjoint information sets.

Let G be a collection of m reduced-echelon generator matrices of disjoint infor-
mation sets, G = {

G(1)
sys, G

(2)
sys, . . . , G

(m)
sys

}
.

Using these m matrices means that after
∑w

w′=1

( k
w′
)
enumerations

• all possibilities of d ≤ mw have been considered; and
• if mw < dub, the minimum distance of the code is at least m(w + 1), i.e. dlb =
m(w + 1).

We can see that the lower bound has been increased by a factor of m, instead of 1
compared to the previous approach. For w ≤ k/2, we know that

(k
w

) � ( k
w−1

)
and

this lower bound increment reduces the bulk of computations significantly.
Ifd is theminimumdistanceof the code, the total number of enumerations required

is given by

2Zimmermann attributed this algorithm to Brouwer in [25].
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min{�d/m�−1,k}∑

w=1

m

(
k

w

)
. (5.3)

Example 5.1 (Disjoint Information Sets) Consider the [55, 15, 20]2 optimal binary
linear, a shortened code of the Goppa code discovered by [15]. The reduced-echelon
generator matrices of disjoint information sets are given by

G(1)
sys =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

100000000000000 010110111110101001110 1010101010100000000
010000000000000 1000111001101011110100 100111001000110000
001000000000000 1011001111011010111010111111001001000001
000100000000000 10 10 10 10 1 1 10 1 10 1 10 1 1 1 1 1 10 10 0 0 100 10 10 10 10
000010000000000 0011110100111110110110 1000 11000 10 10 1110 1
000001000000000 0101000010100101111110001110001010001110
000000100000000 1001001110100010100110011001010010100111
000000010000000 1011000100110100000001110010110011110101
000000001000000 101011010111111010100 1001011101110100001
000000000100000 101000010100101100000 1110101111101100010
000000000010000 1101101011110001001011111011100101010100
000000000001000 1101101110101111110011101111110000011011
000000000000100 0000010001010011101110 0 100 1 100 10 1 1 10 1 10 1
000000000000010 0101100000011101011110010001100111000011
000000000000001 0011111001011000111001010001000000111011

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

G(2)
sys =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

101101001011001 100000000000000 0011110011110111110110000
000000011000110 010000000000000 1011000111011110001111010
001111100100011 001000000000000 0011101001010011100000101
010110100111101 000100000000000 1100101001010101110011011
111111001000100 000010000000000 0 1 100 1 100 1 100 10 1 10 100 0 100
111110010101001 000001000000000 0000000100011111100110001
111100100011110 000000100000000 10 100 10 1 10 1 10 10 1 100 0 1 1 10 1
000001100111111 000000010000000 1101000100101011100010001
000000101000001 000000001000000 1110110000011111100111101
111001100100100 000000000100000 1100100111100111011010111
100011111001111 000000000010000 0100001100100001000101110
010110000110 111 000000000001000 1101110101101101011100100
001011011111111 000000000000100 0101010011001011111111110
100 10 10 1 100 10 1 1 000000000000010 0110000111001000110010011
110100101110101 000000000000001 0010100011000100001111100

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

G(3)
sys =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

010010100110100010111110001110 100000000000000 1100010001
111101011110000111110111110011 010000000000000 1000110111
011101101111001011001110110100 001000000000000 1 10 10 0 0 10 1
001100010010101010010001111101 000100000000000 0110011100
00011110 1 10 10 10 1 10 1 10 1 10 10 10 1 1 000010000000000 1011000101
10 1110 10 100 1000 100 110 10 100 1000 000001000000000 0 110 10 10 11
0 10 10 10 0 0 1 10 10 0 000010111100110 000000100000000 0011001111
100101101110111100001101101010 000000010000000 0100000001
100100110101011110011110011000 000000001000000 110111100 1
011001100011100111110111011111 000000000100000 01111110 10
101110001111100011101101101111 000000000010000 0 1 1 10 10 1 1 1
10000110110 10 10000101110110 110 000000000001000 1000110010
011101010000010001011101101000 000000000000100 1101100011
010011111010001100010001011001 000000000000010 1101111111
110100111100111001100111101101 000000000000001 0000011110

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Brouwer’s algorithm requires 9948 codewords to be evaluated to prove the minimum
distance of this code is 20. In contrast, for the same proof, 32767 codewords would
need to be evaluated if only one generator matrix is employed.
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5.2.3 Zimmermann’s Algorithm for Linear Codes and Some
Improvements

A further refinement to the minimum distance algorithm is due to Zimmermann
[25]. Similar to Brouwer’s approach, a set of reduced-echelon generator matrices
are required. While in Brouwer’s approach the procedure is stopped once a non-
full-rank submatrix is reached; Zimmermann’s approach proceeds further to obtain
submatriceswith overlapping information sets. LetG(m)

sys = [Am |I k |Bm+1] be the last
generator matrix which contains a disjoint information set. To obtain matrices with
overlapping information sets, Gaussian elimination is performed on the submatrix
Bm+1 and this yields

G(m+1)
sys =

[
Âm

0 I rm+1

I k−rm+1 0
Bm+2

]
,

where rm+1 = Rank (Bm+1). Next, G(m+2)
sys is produced by carrying out Gaussian

elimination on the submatrix Bm+2 and so on.
From G(3)

sys of Example5.1, we can see that the last 10 coordinates do not form an
information set since the rank of this submatrix is clearly less than k. Nonetheless, a
“partial” reduced-echelon generator matrix can be obtained from G(3)

sys ,

G(4)
sys =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

011111100101101001010 0110001100101010000 00000 1000000000
11001100000101100000 10111110000110101110 00000 0100000000
1010010000110001011100111001110100001110 00000 0010000000
0010010010001100001001001001111011101111 00000 0001000000
1011110010101000101110010011100001100010 00000 0000100000
1010001011011101111000001000101101010100 00000 0000010000
0100000100011011101111011111110010001111 00000 0000001000
101110101100101110110 1001111111100111011 00000 0000000100
0111010111111100010011111101000111110111 00000 0000000010
0101101011111001000001100100100110101010 00000 0000000001
1100001101000000101011001011001001111101 10000 0000000000
1001001100000111011010 111010001110010001 01000 0000000000
0111000001101001110100010110011000101110 00 100 0000000000
000100111100001101110 10 0 0 0 10 10 10 1 100 1 1 10 00010 0000000000
1111111100111111110000011110110100010111 00001 0000000000

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

From G(4)
sys , we can see that the last k columns is also an information set, but k −

Rank
(
G(4)

sys

)
coordinates of which overlap with those in G(3)

sys . The generator matrix

G(4)
sys then may be used to enumerate codewords with condition that the effect of

overlapping information set has to be taken into account.
Assuming that all codewordswith informationweight≤ w have been enumerated,

we know that

• for all G(i)
sys of full-rank, say there are m of these matrices, all cases of d ≤ mw

have been considered and each contributes to the lower bound.
As a result, the lower bound becomes dlb = m(w + 1).

• for each G(i)
sys that do not have full-rank, we can join G(i)

sys with column subsets

of G( j)
sys , for j < i , so that we have an information set Ii , which of course

overlaps with information set I j . Therefore, for all of these matrices, say M ,
all cases of d ≤ Mw have been considered, but some of which are attributed
to other information sets, and considering these would result in double counting.
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According to Zimmermann [25], for each matrix G(m+ j)
sys with an overlapping

information set unless w ≥ k−Rank
(
Bm+ j

)
for which the lower bound becomes

dlb = dlb + {
w − (

k − Rank
(
Bm+ j

)) + 1
}
, there is no contribution to the lower

bound.

Let the collection of full rank-reduced echelon matrices be denoted by, as before,
G = {

G(1)
sys, G

(2)
sys, . . . , G

(m)
sys

}
, and let G ′ denote the collection of M rank matri-

ces with overlapping information sets G ′ = {
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}
. All

m + M generator matrices are needed by the [25] algorithm. Clearly, if the con-
dition w ≥ k − Rank

(
Bm+ j

)
is never satisfied throughout the enumeration, the

corresponding generator matrix contributes nothing to the lower bound and, hence,
can be excluded [11]. In order to accommodate this improvement, we need to know
wmax the maximum information weight that would need to be enumerated before the
minimum distance is found. This can be accomplished as follows: Say at information
weightw, a lowerweight codeword is found, i.e. new dub, starting fromw′ = w, we let
X = G ′, set dlb = m(w′ +1) and then increment it by (w′ − (k−Rank(Bm+ j ))+1)
for each matrix in G ′ that satisfies w′ ≥ k −Rank

(
Bm+ j

)
. Each matrix that satisfies

this condition is also excluded fromX . The weight w′ is incremented, dlb is recom-
puted and at the point when dlb ≥ dub, we have wmax and all matrices inX are those
to be excluded from codeword enumeration.

In some cases, it has been observed that while enumerating codewords of informa-
tion weightw, a codeword, whose weight coincides with the lower bound obtained at
enumeration stepw−1, appears. Clearly, this implies that the newly found codeword
is indeed a minimum weight codeword; any other codeword of lower weight, if they
exist, would have been found in the earlier enumeration steps. This suggests that the
enumeration at stepwmay be terminated immediately. Since the bulk of computation
time increases exponentially as the information weight is increased, this termination
may result in a considerable saving of time.

Without loss of generality, we can assume that Rank(Bm+ j ) > Rank(Bm+ j+1).
With this consideration, we can implement the Zimmermann approach to minimum
distance evaluation of linear code over F2–with the improvements, in Algorithm5.1.
The procedure to update wmax and X is given in Algorithm5.2.

If there is additional code structure, the computation time required by Algo-
rithm5.1 can be reduced. For example, in some cases it is known that the binary
code considered has even weight codewords only, then at the end of codeword enu-
meration at each step, the lower bound dlb that we obtained may be rounded down
to the next multiple of 2. Similarly, for codes where the weight of every codeword
is divisible by 4, the lower bound may be rounded down to the next multiple of 4.

5.2.4 Chen’s Algorithm for Cyclic Codes

Binary cyclic codes, which were introduced by Prange [19], form an important
class of block codes over F2. Cyclic codes constitute many well-known error-
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Algorithm 5.1Minimum distance algorithm: improved Zimmermann’s approach

Input: G =
{
G(1)

sys , G
(2)
sys , . . . , G

(m)
sys

}
where |G | = m

Input: G ′ =
{
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}
where |G ′| = M

Output: d (minimum distance)
1: d ′ ← dub ← wmax ← k
2: dlb ← w ← 1
3: X = ∅
4: repeat
5: M ← M − |X |
6: for all i ∈ F

k
2 where wtH (i) = w do

7: for 1 ≤ j ≤ m do
8: d ′ ← wtH (i · G( j)

sys)

9: if d ′ < dub then
10: dub ← d ′
11: if dub ≤ dlb then
12: Goto Step 36
13: end if
14: wmax ,X ← Updatewmax andX

(
dub, k,m,G ′)

15: end if
16: end for
17: for 1 ≤ j ≤ M do
18: d ′ ← wtH (i · G(m+ j)

sys )

19: if d ′ < dub then
20: dub ← d ′
21: if dub ≤ dlb then
22: Goto Step 36
23: end if
24: wmax ,X ← Updatewmax andX

(
dub, k,m,G ′)

25: end if
26: end for
27: end for
28: dlb ← m(w + 1)
29: for 1 ≤ j ≤ M do
30: if w ≥ {

k − Rank
(
Bm+ j

)}
then

31: dlb = dlb + {
w − (

k − Rank
(
Bm+ j

)) + 1
}

32: end if
33: end for
34: w ← w + 1
35: until dlb ≥ dub OR w > k
36: d ⇐ dub

correcting codes, such as the quadratic-residue codes and the commonly used in
practice Bose–Chaudhuri–Hocquenghem (BCH) and Reed–Solomon (RS) codes. A
binary cyclic code of length n, where n is necessarily odd, has the property that
if c(x) = ∑n−1

i=0 ci x
i , where ci ∈ F2 is a codeword of the cyclic code, then x j c(x)

(mod xn−1), for some integer j , is also a codeword of that cyclic code. That is to say
that the automorphism group of a cyclic code contains the coordinate permutation
i → i + 1 (mod n).
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Algorithm 5.2 wmax ,X = Updatewmax andX
(
dub, k,m,G ′)

Input: dub, k, m

Input: G ′
{
G(m+1)

sys , G(m+2)
sys , . . . , G(m+M)

sys

}

Output: wmax and X
1: X ← G ′
2: wmax ← 1
3: repeat
4: dlb ← m(wmax + 1)
5: for 1 ≤ j ≤ |G ′| do
6: if wmax ≥ {

k − Rank
(
Bm+ j

)}
then

7: Remove G(m+ j)
sys from X if G(m+ j)

sys ∈ X
8: dlb = dlb + {

wmax − (
k − Rank

(
Bm+ j

)) + 1
}

9: end if
10: end for
11: wmax ← wmax + 1
12: until dlb ≥ dub OR wmax > k
13: return wmax and X

An [n, k, d] binary cyclic code is defined by a generator polynomial g(x) of degree
n − k, and a parity-check polynomial h(x) of degree k, such that g(x)h(x) = 0
(mod xn − 1). Any codeword of this cyclic code is a multiple of g(x), that is c(x) =
u(x)g(x), where u(x) is any polynomial of degree less than k. The generator matrix
G can be simply formed from the cyclic shifts of g(x), i.e.

G =

⎡

⎢
⎢
⎢
⎣

g(x) (mod xn − 1)
xg(x) (mod xn − 1)

...

xk−1g(x) (mod xn − 1)

⎤

⎥
⎥
⎥
⎦

. (5.4)

Since for some integer i , xi = qi (x)g(x)+ ri (x) where ri (x) = xi (mod g(x)), we
can write

xk
(
xn−k+i − rn−k+i (x)

) = xkqi (x)g(x)

and based on this, a reduced-echelon generator matrix Gsys of a cyclic code is
obtained:

Gsys =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−xn−k (mod g(x))
−xn−k+1 (mod g(x)) −xn−k+1 (mod g(x))

I k −xn−k+2 (mod g(x))
...

−xn−1 (mod g(x))

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.5)
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The matrix Gsys in (5.5) may contain several mutually disjoint information sets.
But because each codeword is invariant under a cyclic shift, a codeword generated
by information set Ii can be obtained from information set I j by means of a
simple cyclic shift. For an [n, k, d] cyclic code, there always exists �n/k� mutually
disjoint information sets. As a consequence of this, using a single information set is
sufficient to improve the lower bound to �n/k�(w + 1) at the end of enumeration
step w. However, Chen [7] showed that this lower bound could be further improved
by noting that the average number of non-zeros of a weight w0 codeword in an
information set is w0k/n. After enumerating

∑w
i=1

(k
i

)
codewords, we know that the

weight of a codeword restricted to the coordinates specified by an information set is
at least w+ 1. Relating this to the average weight of codeword in an information set,
we have an improved lower bound of dlb = �(w+1)n/k�. Algorithm 5.3 summarises
Chen’s [7] approach to minimum distance evaluation of a binary cyclic code. Note
that Algorithm 5.3 takes into account the early termination condition suggested in
Sect. 5.2.3.

Algorithm 5.3Minimum distance algorithm for cyclic codes: Chen’s approach
Input: Gsys = [Ik |P] {see (5.5)}
Output: d (minimum distance)
1: dub ← k
2: dlb ← 1
3: w ← 1
4: repeat
5: d ′ ← k
6: for all i ∈ F

k
2 where wtH (i) = w do

7: d ′ ← wtH (i · Gsys)

8: if d ′ < dub then
9: dub ← d ′
10: if dub ≤ dlb then
11: Goto Step 18
12: end if
13: end if
14: end for
15: dlb ←

⌈n
k

(w + 1)
⌉

16: w ← w + 1
17: until dlb ≥ dub OR w > k
18: d ⇐ dub

It is worth noting that both minimum distance evaluation algorithms of Zimmer-
mann [25] for linear codes and that of Chen [7] for cyclic codes may be used to
compute the number of codewords of a given weight. In evaluating the minimum
distance d, we stop the algorithm after enumerating all codewords having informa-
tion weight i to w, where w is the smallest integer at which the condition dlb ≥ d is
reached. To compute the number of codewords of weight d, in addition to enumer-
ating all codewords of weight i to w in their information set, all codewords having
weightw+1 in their information set, also need to be enumerated. For Zimmermann’s
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method, we use all of the available information sets, including those that overlap,
and store all codewords whose weight matches d. In contrast to Chen’s algorithm,
we use only a single information set but for each codeword of weight d found, we
accumulate this codeword and all of the n − 1 cyclic shifts. In both approaches, it
is necessary to remove the doubly-counted codewords at the end of the enumeration
stage.

5.2.5 Codeword Enumeration Algorithm

The core of all minimum distance evaluation and codeword counting algorithms lies
in the codeword enumeration. Given a reduced-echelon generator matrix, codewords
can be enumerated by taking linear combinations of the rows in the generator matrix.
This suggests the need for an efficient algorithm to generate combinations.

One of the most efficient algorithm for this purpose is the revolving-door algo-
rithm, see [4, 13, 17]. The efficiency of the revolving-door algorithm arises from
the property that in going from one combination pattern to the next, there is only
one element that is exchanged. An efficient implementation of the revolving-door
algorithm is given in [13], called Algorithm R, which is attributed to [18].3

In many cases, using a single-threaded program to either compute the minimum
distance, or count the number of codewords of a given weight, of a linear code may
take a considerable amount of computer time and can take several weeks.

For these long codes, we may resort to a multi-threaded approach by splitting
the codeword enumeration task between multiple computers. The revolving-door
algorithm has a nice property that allows such splitting to be neatly realised. Let
atat−1 . . . a2a1, where at > at−1 > . . . > a2 > a1 be a pattern of an t out of
s combinations–Cs

t . A pattern is said to have rank i if this pattern appears as the
(i + 1)th element in the list of all Cs

t combinations.4 Let Rank(atat−1 . . . a2a1) be
the rank of pattern atat−1 . . . a2a1, the revolving-door algorithm has the property
that [13]

Rank(atat−1 . . . a2a1)=
[(

at + 1

t

)
− 1

]
− Rank(at−1 . . . a2a1) (5.6)

and, for each integer N , where 0 ≤ N ≤ (s
t

) − 1, we can represent it uniquely
with an ordered pattern atat−1 . . . a2a1. As an implication of this and (5.6), if all
(k
t

)
codewords need to be enumerated, we can split the enumeration into

⌈(k
t

)
/M

⌉

blocks, where in each block only at most M codewords need to be generated. In

3This is the version that the authors implemented to compute the minimum distance and to count
the number of codewords of a given weight of a binary linear code.
4Here it is assume that the first element in the list of all Cs

t combinations has rank 0.
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Fig. 5.1 C6
4 and C7

5 revolving-door combination patterns

this way, we can do the enumeration of each block on a separate computer and this
allows a parallelisation of the minimum distance evaluation, as well as the counting
of the number of codewords of a given weight. We know that at the i th block, the
enumeration would start from rank (i − 1)M , and the corresponding pattern can be
easily obtained following (5.6) and Lemma 5.1 below.

All atat−1 . . . a2a1 revolving-door patterns of Cs
t satisfy the property that if the

values in position at grow in an increasing order, then for fixed at , the values in
position at−1 grow in a decreasing order, moreover for fixed atat−1 the values in
position at−2 grow in an increasing order, and so on in an alternating order. This
behaviour is evident by observing all revolving-door patterns of C6

4 (left) and C7
5

(right) shown in Fig. 5.1.
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From this figure, we can also observe that

Cs
t ⊃ Cs−1

t ⊃ . . . ⊃ Ct+1
t ⊃ Ct

t , (5.7)

and this suggests the following lemma.

Lemma 5.1 (Maximum and Minimum Ranks) Consider the atat−1 . . . a2a1
revolving-door combination pattern, if we consider patterns with fixed at , the maxi-
mum and minimum ranks of such pattern are respectively given by

(
at + 1

t

)
− 1 and

(
at
t

)
.

Example 5.2 (Maximum and Minimum Ranks) Say, if we consider all C6
4 revolving-

door combination patterns (left portion of Fig. 5.1) where a4 = 4. From Lemma 5.1,
we have a maximum rank of

(5
4

) − 1 = 4, and a minimum rank of
(4
4

) = 1. We can
see that these rank values are correct from Fig. 5.1.

Example 5.3 (The Revolving-Door Algorithm) Consider combinationsC7
5 generated

by the revolving-door algorithm, we would like to determine the rank of combina-
tion pattern 17. We know that the combination pattern takes the ordered form of
a5a4a3a2a1, where ai > ai−1. Starting from a5, which can takes values from 0 to
6, we need to find a5 such that the inequality

(a5
5

) ≤ 17 ≤ (a5+1
5

) − 1 is satisfied
(Lemma 5.1). It follows that a5 = 6 and using (5.6), we have

17 = Rank(6a4a3a2a1)

=
[(

6 + 1

5

)
− 1

]
− Rank(a4a3a2a1)

Rank(a4a3a2a1) = 20 − 17 = 3 .

Next, we consider a4 and as before, we need to find a4 ∈ {5, 4, 3, 2, 1, 0} such
that the inequality

(a4
4

) ≤ Rank(a4a3a2a1) ≤ (a4+1
4

) − 1 is satisfied. It follows that
a4 = 4 and from (5.6), we have

3 = Rank(4a3a2a1)

=
[(

4 + 1

4

)
− 1

]
− Rank(a3a2a1)

Rank(a3a2a1) = 4 − 3 = 1 .

Next, we need to find a3, which can only take a value less than 4, such that the
inequality

(a3
3

) ≤ Rank(a3a2a1) ≤ (a3+1
3

) − 1 is satisfied. It follows that a3 = 3 and

from (5.6), Rank(a2a1)=
[(3+1

3

) − 1
]

− 1 = 2.
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So far we have 643a2a1, only a2 and a1 are unknown. Since a3 = 3, a2 can only
take a value less than 3. The inequality

(a2
2

) ≤ Rank(a2a1) ≤ (a2+1
2

) − 1 is satisfied

if a2 = 2 and correspondingly, Rank(a1)=
[(2+1

2

) − 1
]

− 2 = 0.

For the last case, the inequality
(a1
1

) ≤ Rank(a1) ≤ (a1+1
1

) − 1 is true if and
only if a1 = 0. Thus, we have 64320 as the rank 17 C7

5 revolving-door pattern.
Cross-checking this with Fig. 5.1, we can see that 64320 is indeed of rank 17.

From (5.6) and Example 5.3, we can see that given a rank N , where 0 ≤ N ≤(s
t

) − 1, we can construct an ordered pattern of Cs
t revolving-door combinations

atat−1 . . . a2a1, recursively. A software realisation of this recursive approach is given
in Algorithm 5.4.

Algorithm 5.4 Recursively Compute ai (Rank(aiai−1 . . . a2a1), i)
Input: i and Rank(ai ai−1 . . . a2a1)
Output: ai
1: Find ai , where 0 ≤ ai < ai+1, such that

(ai
i

) ≤ Rank(ai ai−1 . . . a2a1) ≤
[(ai+1

i

) − 1
]

2: if i > i then
3: Compute Rank(ai−1 . . . a2a1) =

[(ai+1
i

) − 1
]

− Rank(ai ai−1 . . . a2a1)

4: RecursiveCompute ai (Rank(ai−1 . . . a2a1), i − 1)
5: end if
6: return ai

5.3 Binary Cyclic Codes of Lengths 129 ≤ n ≤ 189

The minimum distance of all binary cyclic codes of lengths less than or equal to 99
has been determined by Chen [7, 8] and Promhouse et al. [21].

This was later extended to longer codes with the evaluation of the minimum
distance of binary cyclic codes of lengths from 101 to 127 by Schomaker et al.
[22]. We extend this work to include all cyclic codes of odd lengths from 129 to
189 in this book. The aim was to produce a Table of codes as a reference source
for the highest minimum distance, with the corresponding roots of the generator
polynomial, attainable by all cyclic codes over F2 of odd lengths from 129 to 189.
It is well known that the coordinate permutation σ : i → μi , where μ is an integer
relatively prime to n, produces equivalent cyclic codes [3, p. 141f]. With respect to
this property, we construct a list of generator polynomials g(x) of all inequivalent and
non-degenerate [16, p. 223f] cyclic codes of 129 ≤ n ≤ 189 by taking products of the
irreducible factors of xn − 1. Two trivial cases are excluded, namely g(x) = x + 1
and g(x) = (xn − 1)/(x + 1), since these codes have trivial minimum distance
and exist for any odd integer n. The idea is for each g(x) of cyclic codes of odd
length n; the systematic generator matrix is formed and the minimum distance of
the code is determined using Chen’s algorithm (Algorithm 5.3). However, due to
the large number of cyclic codes and the fact that we are only interested in those of
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largest minimum distance for given n and k, we include a threshold distance dth in
Algorithm 5.3. Say, for given n and k, we have a list of generator polynomials g(x) of
all inequivalent cyclic codes. Starting from the top of the list, theminimumdistance of
the corresponding cyclic code is evaluated. If a codeword of weight less than or equal
to dth is found during the enumeration, the computation is terminated immediately
and the next g(x) is then processed. The threshold dth , which is initialised with 0, is
updated with the largest minimum distance found so far for given n and k.

Table4.3 in Sect. 4.5 shows the highest attainable minimum distance of all binary
cyclic codes of odd lengths from 129 to 189. The number of inequivalent and non-
degenerate cyclic codes for a given odd integer n, excluding the two trivial cases
mentioned above, is denoted by NC .

Note that Table4.3 does not contain entries for primes n = 8m±3. This is because
for these primes, 2 is not a quadratic residue modulo n and hence, ord2(n) = n − 1.
As a consequence, xn−1 factors into two irreducible polynomials only, namely x+1
and (xn − 1)/(x + 1) which generate trivial codes. Let β be a primitive nth root of
unity, the roots of g(x) of a cyclic code (excluding the conjugate roots) are given
in terms of the exponents of β. The polynomial m(x) is the minimal polynomial of
β and it is represented in octal format with most significant bit on the left. That is,
m(x) = 166761, as in the case for n = 151, represents x15 + x14 + x13 + x11 +
x10 + x8 + x7 + x6 + x5 + x4 + 1.

5.4 Some New Binary Cyclic Codes Having Large
Minimum Distance

Constructing an [n, k] linear code possessing the largest minimum distance is one of
the main problems in coding theory. There exists a database containing the lower and
upper bounds of minimum distance of binary linear codes of lengths 1 ≤ n ≤ 256.
This database appears in [6] and the updated version is accessible online.5

The lower bound corresponds to the largest minimum distance for a given [n, k]q
code that has been found to date. Constructing codes which improves Brouwer’s
lower bounds is an on-going research activity in coding theory. Recently, Tables of
lower- and upper-bounds of not only codes over finite-fields, but also quantum error-
correcting codes, have been published by Grassl [12]. These bounds for codes over
finite-fields, which are derived fromMAGMA [5], appear to be more up-to-date than
those of Brouwer.

We have presented in Sect. 5.3, the highest minimum distance attainable by all
binary cyclic codes of odd lengths from 129 to 189 and found none of these cyclic
codes has larger minimum distance than the corresponding Brouwer’s lower bound
for the same n and k. The next step is to consider longer length cyclic codes, 191 ≤

5The database is available at http://www.win.tue.nl/~aeb/voorlincod.html.
Note that, since 12th March 2007, A. Brouwer has stopped maintaining his database and hence

it is no longer accessible. This database is now superseded by the one maintained by Grassl [12].

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://www.win.tue.nl/~aeb/voorlincod.html
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n ≤ 255. For these lengths, unfortunately, we have not been able to repeat the
exhaustive approach of Sect. 5.3 in a reasonable amount of time. This is due to the
computation time to determine the minimum distance of these cyclic codes and also,
for some lengths (e.g. 195 and 255), there are a tremendous number of inequivalent
cyclic codes. Having said that, we can still search for improvements from lower rate
cyclic codes of these lengths for which the minimum distance computation can be
completed in a reasonable time. We have found many new cyclic codes that improve
Brouwer’s lower bound and before we present these codes, we should first consider
the evaluation procedure.

As before, let β be a primitive nth root of unity and let Λ be a set containing
all distinct (excluding the conjugates) exponents of β. The polynomial xn − 1 can
be factorised into irreducible polynomials fi (x) over F2, xn − 1 = ∏

i∈Λ fi (x).
For notational purposes, we denote the irreducible polynomial fi (x) as the minimal
polynomial of β i . The generator and parity-check polynomials, denoted by g(x) and
h(x) respectively, are products of fi (x). Given a set Γ ⊆ Λ, a cyclic code C which
has β i , i ∈ Γ , as the non-zeros can be constructed. This means the parity-check
polynomial h(x) is given by

h(x) =
∏

i∈Γ

fi (x)

and the dimension k of this cyclic code is
∑

i∈Γ deg( fi (x)), where deg( f (x)) denotes
the degree of f (x). Let Γ ′ ⊆ Λ\{0}, h′(x) = ∏

i∈Γ ′ fi (x) and h(x) = (1+ x)h′(x).
GivenC with parity-check polynomial h(x), there exists an [n, k−1, d ′] expurgated
cyclic code, C ′, which has parity-check polynomial h′(x). For this cyclic code,
wtH (c) ≡ 0 (mod 2) for all c ∈ C ′. For convenience, we call C the augmented
code of C ′.

Consider an [n, k − 1, d ′] expurgated cyclic code C ′, let the set Γ = {Γ1, Γ2,

. . . , Γr } where, for 1 ≤ j ≤ r , Γ j ⊆ Λ \ {0} and ∑
i∈Γ j

deg( fi (x)) = k − 1. For
eachΓ j ∈ Γ , we compute h′(x) and constructC ′. Having constructed the expurgated
code, the augmented code can be easily obtained as shownbelow.LetG be a generator
matrix of the augmented code C , and without loss of generality, it can be written as

G = G′

v

(5.8)

where G′ is a generator matrix of C ′ and the vector v is a coset of C ′ in C . Using
the arrangement in (5.8), we evaluate d ′ by enumerating codewords c ∈ C ′ from G′.
The minimum distance of C , denoted by d, is simply minc∈C ′ {d ′,wtH (c + v)} for
all codewords c enumerated. We follow Algorithm 5.3 to evaluate d ′. Let dBrouwer
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and d ′
Brouwer denote the lower bounds of [6] for linear codes of the same length and

dimension as those of C and C ′ respectively. During the enumerations, as soon as
d ≤ dBrouwer and d ′ ≤ d ′

Brouwer , the evaluation is terminated and the next Γ j in Γ

is then processed. However, if d ≤ dBrouwer and d ′ > d ′
Brouwer , only the evaluation

for C is discarded. Nothing is discarded if both d ′ > d ′
Brouwer and d > dBrouwer .

This procedure continues until an improvement is obtained; or the set in Γ has been
exhausted, which means that there does not exist [n, k − 1] and [n, k] cyclic codes
which are improvements to Brouwer’s lower bounds. In cases where the minimum
distance computation is not feasible using a single computer, we switch to a parallel
version using grid computers.

Table5.1 presents the results of the search for new binary cyclic codes having
lengths 195 ≤ n ≤ 255. The cyclic codes in this table are expressed in terms of the
parity-check polynomial h(x), which is given in the last column by the exponents of
β (excluding the conjugates). Note that the polynomialm(x), which is given in octal
with the most significant bit on the left, is the minimal polynomial of β. In many
cases, the entries of C and C ′ are combined in a single row and this is indicated by
“a/b” where the parameters a and b are for C ′ and C , respectively. The notation
“[0]” indicates that the polynomial (1 + x) is to be excluded from the parity-check
polynomial of C ′.
Some of these tabulated cyclic codes have a minimum Hamming distance which
coincides with the lower bounds given in [12]. These are presented in Table5.1 with
the indicative mark “†”.

In the late 1970s, computing theminimumdistance of extendedQuadraticResidue
(QR) codeswas posed as an open research problem byMacWilliams and Sloane [16].
Since then, the minimum distance of the extended QR code for the prime 199 has
remained an open question. For this code, the bounds of the minimum distance were
given as 16 − 32 in [16] and the lower bound was improved to 24 in [9]. Since
199 ≡ −1 (mod 8), the extended code is a doubly even self-dual code and its
automorphism group contains a projective special linear group, which is known to
be doubly transitive [16]. As a result, the minimum distance of the binary [199, 100]
QR code is odd, i.e. d ≡ 3 (mod 4), and hence, d = 23, 27 or 31. Due to the cyclic
property and the rate of this QR code [7], we can safely assume that a codeword
of weight d has maximum information weight of �d/2�. If a weight d codeword
does not satisfy this property, there must exist one of its cyclic shifts that does. After
enumerating all codewords up to (and including) information weight 13 using grid
computers, no codeword of weight less than 31 was found, implying that d of this
binary [199, 100] QR code is indeed 31.

Without exploiting the property that d ≡ 3 (mod 4), an additional
(100
14

) + (100
15

)

codewords (88,373,885,354,647,200 codewords) would need to be enumerated in
order to establish the same result and beyond available computer resources. Accord-
ingly, we now know that there exists the [199, 99, 32] expurgated QR code and the
[200, 100, 32] extended QR code.

It is interesting to note that many of the code improvements are contributed by
low-rate cyclic codes of length 255 and there are 16 cases of this. Furthermore, it is
also interesting that Table5.1 includes a [255, 55, 70] cyclic code and a [255, 63, 65]
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Table 5.1 New binary cyclic codes
[m(x)]8 n k d dBrouwer h(x)

17277 195 † 66/67 42/41 40/40 [0], 3, 5, 9, 19, 39, 65, 67
† 68/69 40/39 39/38 [0], 1, 3, 13, 19, 35, 67, 91
† 73 38 37 0, 3, 7, 19, 33, 35, 47
† 74/75 38/37 36/36 [0], 3, 7, 19, 33, 35, 47, 65
78 36 35 3, 7, 9, 11, 19, 35, 39, 65

13237042705- 199 99/100 32/31 28/28 [0], 1
30057231362-

555070452551

6727273 205 † 60 48 46 5, 11, 31
† 61 46 44 0, 3, 11, 31

3346667657 215 70/71 46/46 44/44 [0], 3, 13, 35
3705317547055 223 74/75 48/47 46/45 [0], 5, 9
3460425444467- 229 76 48 46 1

7544446504147

6704436621 233 † 58/59 60/60 56/56 [0], 3, 29
150153013 241 † 49 68 65 0, 1, 21

73 54 53 0, 1, 3, 25

435 255 48/49 76/75 75/72 [0], 47, 55, 91, 95, 111, 127
50/51 74/74 72/72 [0], 9, 13, 23, 47, 61, 85, 127
52/53 72/72 71/68 [0], 7, 9, 17, 47, 55, 111, 127
54/55 70/70 68/68 [0], 3, 7, 23, 47, 55, 85, 119, 127
56/57 68/68 67/65 [0], 7, 27, 31, 45, 47, 55, 127
58 66 64 7, 39, 43, 45, 47, 55, 85, 127

60 66 64 7, 17, 23, 39, 45, 47, 55, 127

62/63 66/65 64/63 [0], 11, 21, 47, 55, 61, 85, 87, 119, 127
64/65 64/63 62/62 [0], 19, 31, 39, 47, 55, 63, 91, 127

cyclic code, which are superior to the BCH codes of the same length and dimension.
Both of these BCH codes have minimum distance 63 only.

5.5 Constructing New Codes from Existing Ones

It is difficult to explicitly construct a new code with large minimum distance. How-
ever, the alternative approach,which starts fromaknowncodewhich alreadyhas large
minimum distance, seems to be more fruitful. Some of these methods are described
below and in the following subsections, we present some new binary codes con-
structed using these methods, which improve on Brouwer’s lower bound.

Theorem 5.1 (Construction X) Let B1 and B2 be [n, k1, d1] and [n, k2, d2] linear
codes over Fq respectively, where B1 ⊃ B2 (B2 is a subcode of B1). Let A
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be an [n′, k3 = k1 − k2, d ′] auxiliary code over the same field. There exists an
[n + n′, k1,min{d2, d1 + d ′}] code CX over Fq .

Construction X is due to Sloane et al. [23] and it basically adds a tail, which is a
codeword of the auxiliary codeA , toB1 so that the minimum distance is increased.
The effect of Construction X can be visualised as follows. Let GC be the generator
matrix of code C . Since B1 ⊃ B2, we may express GB1 as

GB1 =

⎡

⎢
⎢
⎣

GB2

V

⎤

⎥
⎥
⎦ ,

where V is a (k1 −k2)×n matrix which contains the cosets ofB2 inB1. We can see
that the code generated by GB2 has minimum distance d2, and the set of codewords
{v + c2}, for all v ∈ V and all codewords c2 generated by GB2 , have minimum
weight of d1. By appending non-zero weight codewords of A to the set {v + c2},
and all zeros codeword to each codeword ofB2, we have a lengthened code of larger
minimum distance, CX , whose generator matrix is given by

GCX =

⎡

⎢
⎢
⎣

GB2 0

V GA

⎤

⎥
⎥
⎦ . (5.9)

We can see that, for binary cyclic linear codes of odd minimum distance, code
extension by annexing an overall parity-check bit is an instance of Construction X.
In this case, B2 is the even-weight subcode of B1 and the auxiliary code A is the
trivial [1, 1, 1]2 code.

Construction X given in Theorem5.1 considers a chain of two codes only. There
also exists a variant of Construction X, called Construction XX, which makes use of
Construction X twice and it was introduced by Alltop [1].

Theorem 5.2 (Construction XX) Consider three linear codes of the same length,
B1 = [n, k1, d1], B2 = [n, k2, d2] and B3 = [n, k3, d3] where B2 ⊂ B1 and
B3 ⊂ B1. Let B4 be an [n, k4, d4] linear code which is the intersection code of
B2 and B3, i.e. B4 = B2 ∩ B3. Using auxiliary codes A1 = [n1, k1 − k2, d ′

1] and
A2 = [n2, k1 − k3, d ′

2], there exists an [n + n1 + n2, k1, d] linear code CXX , where
d = min{d4, d3 + d ′

1, d2 + d ′
2, d1 + d ′

1 + d ′
2}.

The relationship amongB1,B2,B3 andB4 can be illustrated as a lattice shown
below [11].
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Since B1 ⊃ B2, B1 ⊃ B3, B4 ⊂ B2 and B4 ⊂ B3, the generator matrices of
B2, B3 and B1 can be written as

GB2 =

⎡

⎢
⎢
⎣

GB4

V2

⎤

⎥
⎥
⎦ , GB3 =

⎡

⎢
⎢
⎣

GB4

V3

⎤

⎥
⎥
⎦

and GB1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

GB4

V2

V3

V

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

respectively, where V i , i = 2, 3, is the coset of B4 in Bi , and V contains the
cosets of B2 and B3 in B1. Construction XX starts by applying Construction X to
the pair of codes B1 ⊃ B2 using A1 as the auxiliary code. The resulting code is
CX = [n + n1, k1,min{d2, d1 + d ′

1}], whose generator matrix is given by

GCX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GB4 0

V2

V3

V
GA1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

This generator matrix can be rearranged such that the codewords formed from the
first n coordinates are cosets ofB3 inB1. This rearrangement results in the following
generator matrix of CX ,

GCX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GB4 0

V3 G(1)
A1

V2 0
V G(2)

A1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where GA1 =
[
G(1)

A1

G(2)
A1

]

. Next, usingA2 as the auxiliary code, applying Construction

X to the pairB1 ⊃ B3 with the rearrangement above,weobtainCXX whosegenerator
matrix is

GCXX =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

GB4 0 0

V3 G(1)
A1

V2 0

V G(2)
A1

GA2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

While Constructions X and XX result in a code with increased length, there also
exists a technique to obtain a shorter code with known minimum distance lower
bounded from a longer code whose minimum distance and also that of its dual code
are known explicitly. This technique is due to Sloane et al. [23] and it is called
Construction Y1.

Theorem 5.3 (Construction Y1) Given an [n, k, d] linear code C , which has an
[n, n − k, d⊥] C ⊥ as its dual, an [n − d⊥, k − d⊥ + 1,≥ d] code C ′ can be
constructed.

Given an [n, k, d] code, with standard code shortening, we obtain an [n− i, k− i,
≥ d] code where i indicates the number of coordinates to shorten.With Construction
Y1, however, we can gain an additional dimension in the resulting shortened code.
This can be explained as follows. Without loss of generality, we can assume the
parity-check matrix of C , which is also the generator matrix of C ⊥, H contains
a codeword c⊥ of weight d⊥. If we delete the coordinates which form the support
of c⊥ from H , now H becomes an (n − k) × n − d⊥ matrix and there is a row
which contains all zeros among these n − k rows. Removing this all zeros row, we
have an (n − k − 1) × (n − d⊥) matrix H ′, which is the parity-check matrix of an
[n − d⊥, n − d⊥ − (n − k − 1),≥ d] = [n − d⊥, k − d⊥ + 1,≥ d] code C ′.

5.5.1 New Binary Codes from Cyclic Codes of Length 151

Amongst all of the cyclic codes in Table4.3, those of length 151 have minimum
distances that were found to have the highest number of matches against Brouwer’s
[6] lower bounds. This shows that binary cyclic codes of length 151 are indeed good
codes. Since 151 is a prime, cyclic codes of this length are special as all of the
irreducible factors of x151 − 1, apart from 1 + x , have a fixed degree of 15. Having
a fixed degree implies that duadic codes [14], which includes the quadratic residue
codes, also exist for this length. Due to their large minimum distance, they are good
candidate component codes for Constructions X and XX.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
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Table 5.2 Order of β in an optimum chain of [151, ki , di ] cyclic codes
i ki di Roots of g(x), excluding conjugate roots

1 150 2 β0

2 135 6 β0 β1

3 120 8 β0 β1 β3

4 105 14 β0 β1 β3 β5

5 90 18 β0 β1 β3 β5 β11

6 75 24 β0 β1 β3 β5 β11 β15

7 60 32 β0 β1 β3 β5 β11 β15 β37

8 45 36 β0 β1 β3 β5 β11 β15 β23 β37

9 30 48 β0 β1 β3 β5 β11 β15 β23 β35 β37

10 15 60 β0 β1 β3 β5 β7 β11 β15 β23 β35 β37

Definition 5.2 (Chain of Cyclic Codes) A pair of cyclic codes, C1 = [n, k1, d1]
and C2 = [n, k2, d2] where k1 > k2, is nested, denoted C1 ⊃ C2, if all roots of
C1 are contained in C2. Here, the roots refer to those of the generator polynomial.
By appropriate arrangement of their roots, cyclic codes of the same length may be
partitioned into a sequence of cyclic codes C1 ⊃ C2 ⊃ . . . ⊃ Ct . This sequence of
codes is termed a chain of cyclic codes.

Given all cyclic codes of the same length, it is important to order the roots of
these cyclic codes so that an optimum chain can be obtained. For all cyclic codes of
length 151 given in Table4.3, whose generator polynomial contains 1+ x as a factor,
an ordering of roots (excluding the conjugate roots) shown in Table5.2 results in
an optimum chain arrangement. Here β is a primitive 151st root of unity. Similarly,
a chain which contains cyclic codes, whose generator polynomial does not divide
1 + x , can also be obtained.

All the constituent codes in the chainC1 ⊃ C2 ⊃ . . . ⊃ C10 of Table5.2 are cyclic.
Following Grassl [10], a chain of non-cyclic subcodes may also be constructed from
a chain of cyclic codes. This is because for a given generator matrix of an [n, k, d]
cyclic code (not necessarily in row-echelon form), removing the last i rows of this
matrix will produce an [n, k − i,≥ d] code which will no longer be cyclic. As
a consequence, with respect to Table5.2, there exists [151, k, d] linear codes, for
15 ≤ k ≤ 150.

Each combination of pairs of codes in the [151, k, d] chain is a nested pair which
can be used as component codes for Construction X to produce another linear code
with increased distance. There is a chance that the minimum distance of the resulting
linear code is larger than that of the best-known codes for the same length and
dimension. In order to find the existence of such cases, the following exhaustive
approach has been taken. There are

(150−15+1
2

) = (136
2

)
distinct pair of codes in the

above chain of linear codes, and each pair sayC1 = [n, k1, d1] ⊃ C2 = [n, k2, d1], is
combined usingConstructionXwith an auxiliary codeA , which is an [n′, k1−k2, d ′]
best-known linear code. The minimum distance of the resulting code CX is then

http://dx.doi.org/10.1007/978-3-319-51103-0_4
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compared to that of the best-known linear code for the same length and dimension
to check for a possible improvement. Two improvements were obtained and they are
tabulated in in the top half of Table5.3.

In the case where k1 − k2 is small, the minimum distance of C1, i.e. d1, obtained
from a chain of linear codes, can be unsatisfactory.We can improve d1 by augmenting
C1 with a vector v of length n, i.e. add v as an additional row inGC2 . In finding a vector
v that can maximise the minimum distance of the enlarged code, we have adopted
the following procedure. Choose a code C2 = [n, k2, d2] that has sufficiently high
minimum distance.

Assuming that GC2 is in reduced-echelon format, generate a vector v which sat-
isfies the following conditions:

1. vi = 0 for 0 ≤ i ≤ k − 1 where vi is the i th element of v,
2. wtH (v) > d1, and
3. wtH (v+Gr ) > d1 for all r ∈ {0, 1, . . . , k2 −1} where GC2,r denotes the r th row

of GC2 .

The vector v is then appended to GC2 as an additional row. Theminimum distance
of the resulting code is computed using Algorithm 5.1. A threshold is applied during
the minimum distance evaluation and a termination is called whenever: dub ≤ d1, in
which case a different v is chosen and Algorithm 5.1 is restarted; or d1 < dub ≤ dlb
which means that an improvement has been found.

Using this approach, we found two new linear codes, [151, 77, 20] and
[151, 62, 27], which have higher minimum distance than the corresponding codes
obtained from a chain of nested cyclic codes. These two codes are obtained start-
ing from the cyclic code [151, 76, 23]–which has roots {β, β5, β15, β35, β37} and the
cyclic code [151, 61, 31]–which has roots {β, β3, β5, β11, β15, β37}, respectively and
therefore

[151, 77, 20] ⊃ [151, 76, 23]

and
[151, 62, 27] ⊃ [151, 61, 31].

The second half of Table5.3 shows the foundation codes for these new codes.
Note that when searching for the [151, 62, 27] code, we exploited the property

that the [152, 61, 32] code obtained by extending the [151, 61, 31] cyclic code is
doubly even. We chose the additional vector v such that extending the enlarged
code [151, 62, d1] yields again a doubly even code. This implies the congruence
d1 = 0, 3 mod 4 for theminimumdistance of the enlarged code.Hence, it is sufficient
to establish a lower bound dlb = 25 using Algorithm 5.1 to show that d1 ≥ 27.

Furthermore, we also derived two different codes, C2 = [151, 62, 27] ⊂ C1

and C3 = [151, 62, 27] ⊂ C1, where C1 = [151, 63, 23] and C4 = C2 ∩ C3 =
[151, 61, 31]. UsingConstructionXX, a [159, 63, 31] code is obtained, see Table5.4.
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Table 5.3 New binary codes from Construction X and cyclic codes of length 151

C1 C2 A CX

Using chain of linear codes

[151,72,24] [151,60,32] [23,12,7] [174,72,31]

[151,60,32] [151,45,36] [20,15,3] [171,60,35]

Using an improved subcode

[151,77,20] [151,76,23] [3,1,3] [154,77,23]

[151,62,27] [151,61,31] [4,1,4] [155,62,31]

Table 5.4 New binary code from Construction XX and cyclic codes of length 151

C1 C2 C3 C4 = C2 ∩ C3 A1 A2 CXX

[151, 63, 23] [151, 62, 27] [151, 62, 27] [151, 61, 31] [4, 1, 4] [4, 1, 4] [159, 63, 31]

5.5.2 New Binary Codes from Cyclic Codes of Length ≥ 199

We know from Table5.1 that there exists an outstanding [199, 100, 31] cyclic
code. The extended code, obtained by annexing an overall parity-check bit, is a
[200, 100, 32] doubly even self-dual code. As the name implies, being self-dual
we know that the dual code has minimum distance 32. By using Construction Y1
(Theorem 5.3), a [168, 69, 32] new, improved binary code is obtained. Theminimum
distance of the [168, 69] previously considered best-known binary linear code is 30.

Considering cyclic codes of length 205, in addition to a [205, 61, 46] cyclic
code (see Table5.1), there also exists a [205, 61, 45] cyclic code which contains
a [205, 60, 48] cyclic code as its even-weight subcode. Applying Construction X
(Theorem 5.1) to the [205, 61, 45] ⊃ [205, 60, 48] pair of cyclic codes with a repe-
tition code of length 3 as the auxiliary code, a [208, 61, 48] new binary linear code
is constructed, which improves Brouwer’s lower bound distance by 2.

Furthermore, by analysing the dual codes of the [255, 65, 63] cyclic code in
Table5.1 and its [255, 64, 64] even weight subcode it was found that both have
minimum distance of 8. Applying Construction Y1 (Theorem 5.3), we obtain the
[247, 57, 64] and the [247, 58, 63] new binary linear codes, which improves on
Brouwer’s lower bound distances by 2 and 1, respectively.

5.6 Concluding Observations on Producing New Binary
Codes

In the search for error-correcting codes with large minimum distance, having a fast,
efficient algorithm to compute the exact minimum distance of a linear code is impor-
tant. The evolution of various algorithms to evaluate theminimumdistance of a binary
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linear code, from the naive approach to Zimmermann’s efficient approach, have been
explored in detail. In addition to these algorithms, Chen’s approach in computing
the minimum distance of binary cyclic codes is a significant breakthrough.

The core basis of a minimum distance evaluation algorithm is codeword enumer-
ation. As we increase the weight of the information vector, the number of codewords
grows exponentially. Zimmermann’s very useful algorithm may be improved by
omitting generator matrices with overlapping information sets that never contribute
to the lower bound throughout the enumeration. Early termination is important in
the event that a new minimum distance is found that meets the lower bound value of
the previous enumeration step. In addition, if the code under consideration has the
property that every codeword weight is divisible by 2 or 4, the number of codewords
that need to be enumerated can be considerably reduced.

With some simple modifications, these algorithms can also be used to collect and
hence, count all codewords of a given weight to determine all or part of the weight
spectrum of a code.

Given a generator matrix, codewordsmay be efficiently generated by taking linear
combinations of rows of this matrix. This implies the faster we can generate the
combinations, the less time the minimum distance evaluation algorithm will take.
One such efficient algorithm to generate these combinations is called the revolving-
door algorithm. The revolving-door algorithm has a nice property that allows the
problem of generating combinations to be readily implemented in parallel. Having
an efficient minimum distance computation algorithm, which can be computed in
parallel on multiple computers has allowed us to extend earlier research results [8,
21, 22] in the evaluation of the minimum distance of cyclic codes. In this way, we
obtained the highest minimum distance attainable by all binary cyclic codes of odd
lengths from 129 to 189. We found that none of these cyclic codes has a minimum
distance that exceeds the minimum distance of the best-known linear codes of the
same length and dimension, which are given as lower bounds in [6]. However there
are 134 cyclic codes that meet the lower bounds, see Sect. 5.3 and encoders and
decoders may be easier to implement for the cyclic codes.

Having an efficient, multiple computer based, minimum distance computation
algorithm also allowed us to search for the existence of binary cyclic codes of length
longer than 189 which are improvements to Brouwer’s lower bounds. We found 35
of these cyclic codes, namely

[195, 66, 42], [195, 67, 41], [195, 68, 40], [195, 69, 39], [195, 73, 38], [195, 74, 38],
[195, 75, 37], [195, 78, 36], [199, 99, 32], [199, 100, 32], [205, 60, 48], [205, 61, 46],
[215, 70, 46], [215, 71, 46], [223, 74, 48], [223, 75, 47], [229, 76, 48], [233, 58, 60],
[233, 59, 60], [255, 48, 76], [255, 49, 75], [255, 50, 74], [255, 51, 74], [255, 52, 72],
[255, 53, 72], [255, 54, 70], [255, 55, 70], [255, 56, 68], [255, 57, 68], [255, 58, 66],
[255, 60, 66], [255, 62, 66], [255, 63, 65], [255, 64, 64], [255, 65, 63].

From the cyclic codes above, using Construction X to lengthen the code or Con-
struction Y1 to shorten the code, four additional improvements to [6] lower bound
are found, namely
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38
38

38
38

E
36

36
36

19
7

19
8

46
44

44
44

44
44

42
42

42
42

42
E

42
E

40
40

40
38

38
38

38
38

36
36

36
19
8

19
9

46
45

S
44

44
44

44
43

42
42

42
42

E
42

E
40

40
40

38
38

38
38

38
36

36
36

19
9

(c
on
tin

ue
d)
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Ta
bl
e
5.
6

(c
on
tin

ue
d)

n\
k

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
k/

n

20
0

47
S

46
S

45
S

44
44

44
44

42
42

42
42

E
42

E
40

40
40

38
38

38
38

38
37

36
36

20
0

20
1

48
S

47
S

46
S

45
S

44
44

44
42

42
42

42
42

E
40

40
40

38
38

38
38

38
38

37
36

20
1

20
2

48
S

48
S

47
S

46
S

45
P

44
44

43
42

42
42

42
E

40
40

40
39

38
38

38
38

38
38

37
20
2

20
3

48
S

48
S

48
S

47
S

46
P

44
44

44
43

42
42

42
E

40
40

40
40

39
38

38
38

38
38

38
20
3

20
4

48
S

48
S

48
S

48
S

47
P

45
P

44
44

44
43

42
42

41
40

40
40

40
39

38
38

38
38

38
20
4

20
5

48
48

S
48

S
48

S
48

C
46

C
45

S
44

44
44

42
42

42
41

40
40

40
40

39
38

38
38

38
20
5

20
6

48
48

S
48

S
48

S
48

E
46

E
46

S
45

S
44

44
43

42
42

42
41

40
40

40
40

39
38

38
38

20
6

20
7

48
48

48
S

48
S

48
E

47
P

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

40
38

38
38

20
7

20
8

48
48

48
48

S
48

E
48

X
46

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

39
38

38
20
8

20
9

49
48

48
48

48
E

48
E

46
46

46
S

46
S

45
S

44
44

43
42

42
42

41
40

40
40

39
38

20
9

21
0

50
48

48
48

48
48

E
47

S
46

46
46

S
46

S
45

S
44

44
43

42
42

42
40

40
40

40
39

21
0

21
1

50
49

48
48

48
48

E
48

S
47

S
46

46
S

46
S

46
S

45
S

44
44

43
42

42
41

40
40

40
40

21
1

21
2

50
50

49
48

48
48

48
S

48
S

47
S

46
46

S
46

S
46

S
45

S
44

44
43

42
42

41
40

40
40

21
2

21
3

50
50

50
49

48
48

48
48

S
48

S
47

S
46

46
S

46
S

46
S

45
S

44
44

43
42

42
41

40
40

21
3

21
4

51
50

50
50

49
48

48
48

48
S

48
S

47
S

46
46

S
46

S
46

S
45

P
44

44
43

42
42

41
40

21
4

21
5

52
50

50
50

50
48

48
48

48
48

S
48

S
47

S
46

46
S

46
C

46
C

44
44

44
43

42
42

40
21
5

21
6

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
47

S
46

S
46

E
46

E
44

44
44

44
43

42
41

21
6

21
7

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

47
S

46
E

46
E

44
44

44
44

44
43

42
21
7

21
8

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
47

S
46

E
45

S
44

44
44

44
44

43
21
8

21
9

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

47
S

46
S

45
S

44
44

44
44

44
21
9

22
0

54
52

52
52

52
50

50
50

50
48

48
48

48
48

S
48

S
48

S
47

S
46

S
45

P
44

44
44

44
22
0

22
1

54
53

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
48

S
47

S
46

P
45

P
44

44
44

22
1

22
2

54
54

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
S

48
S

47
P

46
P

44
44

44
22
2

22
3

54
54

54
53

52
52

52
51

50
50

50
49

48
48

48
48

S
48

S
48

S
48

C
47

C
44

44
44

22
3

22
4

55
54

54
54

53
52

52
52

51
50

50
50

49
48

48
48

48
S

48
S

48
E

48
E

45
44

44
22
4
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Ta
bl
e
5.
7

U
pd
at
ed

m
in
im

um
di
st
an
ce

lo
w
er

bo
un
ds

of
lin

ea
r
co
de
s
C

=
[n,

k]
fo
r
17
5

≤
n

≤
22
4
an
d
79

≤
k

≤
10
0

n\
k

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
10
0

k/
n

17
5

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

22
21

17
5

17
6

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

22
17
6

17
7

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
22

17
7

17
8

31
S

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

22
17
8

17
9

32
S

31
S

30
S

29
S

28
28

28
27

26
26

26
26

25
24

24
24

24
23

22
22

22
22

17
9

18
0

32
S

32
S

31
S

30
S

29
S

28
28

28
26

26
26

26
26

24
24

24
24

24
23

22
22

22
18
0

18
1

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

22
22

18
1

18
2

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

22
18
2

18
3

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
23

18
3

18
4

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

27
26

26
26

26
25

24
24

24
24

24
18
4

18
5

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

28
27

26
26

26
26

25
24

24
24

24
18
5

18
6

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
28

26
26

26
26

26
24

24
24

24
18
6

18
7

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
25

24
24

24
18
7

18
8

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

26
26

26
26

25
24

24
18
8

18
9

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
25

24
18
9

19
0

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

26
26

26
26

25
19
0

19
1

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

27
26

26
26

26
19
1

19
2

34
34

32
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
27

S
26

26
26

19
2

19
3

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
S

27
S

26
26

19
3

19
4

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

S
28

S
27

P
26

19
4

19
5

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
S

29
S

28
P

27
P

19
5

19
6

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

S
30

S
29

P
28

P
19
6

19
7

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
S

31
S

30
P

29
P

19
7

19
8

36
36

34
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
31

P
30

P
19
8

19
9

36
36

34
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

C
31

C
19
9
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Ta
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e
5.
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tin
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n\
k

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
10
0

k/
n

20
0

36
36

35
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
0

20
1

36
36

36
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
1

20
2

36
36

36
34

34
34

34
34

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
2

20
3

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
S

32
S

32
E

32
E

20
3

20
4

38
37

36
36

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

S
32

S
32

E
32

E
20
4

20
5

38
38

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
S

32
S

32
E

32
E

20
5

20
6

38
38

38
37

36
36

35
34

34
34

34
33

32
32

32
32

32
32

S
32

S
32

S
32

E
32

E
20
6

20
7

38
38

38
38

37
36

36
35

34
34

34
34

33
32

32
32

32
32

32
S

32
S

32
E

32
E

20
7

20
8

38
38

38
38

38
37

36
36

34
34

34
34

34
32

32
32

32
32

32
S

32
S

32
E

32
E

20
8

20
9

38
38

38
38

38
38

37
36

35
34

34
34

34
32

32
32

32
32

32
32

S
32

E
32

E
20
9

21
0

38
38

38
38

38
38

38
37

36
35

34
34

34
32

32
32

32
32

32
32

S
32

E
32

E
21
0

21
1

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

32
32

S
32

E
32

E
21
1

21
2

40
39

38
38

38
38

38
38

38
37

36
35

34
34

33
32

32
32

32
32

S
32

E
32

E
21
2

21
3

40
40

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

32
E

32
E

21
3

21
4

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
34

33
32

32
32

32
32

E
21
4

21
5

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

34
33

32
32

32
32

21
5

21
6

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
34

32
32

32
32

21
6

21
7

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

33
32

32
32

21
7

21
8

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
33

32
32

21
8

21
9

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

33
32

21
9

22
0

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

34
33

22
0

22
1

44
44

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

35
34

22
1

22
2

44
44

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

36
35

22
2

22
3

44
44

44
44

43
42

41
40

40
40

40
40

39
38

38
38

38
38

38
38

37
36

22
3

22
4

44
44

44
44

44
43

42
41

40
40

40
40

40
39

38
38

38
38

38
38

38
37

22
4
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Ta
bl
e
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U
pd
at
ed

m
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im
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di
st
an
ce
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w
er
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lin
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r
co
de
s
C

=
[n,

k]
fo
r
22
5

≤
n

≤
25
6
an
d
48

≤
k

≤
62

n\
k

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
k/

n

22
5

60
60

S
60

S
60

S
59

S
58

S
57

S
56

56
54

54
54

54
52

52
22
5

22
6

60
60

60
S

60
S

60
S

59
S

58
S

57
S

56
55

S
54

54
54

52
52

22
6

22
7

60
60

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
S

55
S

54
54

52
52

22
7

22
8

61
60

60
S

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
S

55
P

54
53

S
52

22
8

22
9

62
60

60
S

60
S

60
S

60
S

60
S

60
S

59
S

58
S

57
S

56
P

54
54

S
53

S
22
9

23
0

62
60

60
60

S
60

S
60

S
60

S
60

S
60

S
59

S
58

S
57

P
54

54
54

S
23
0

23
1

63
61

60
60

60
S

60
S

60
S

60
S

60
S

60
S

59
S

58
P

54
54

54
23
1

23
2

64
62

60
60

60
60

S
60

S
60

S
60

S
60

S
60

S
59

P
54

54
54

23
2

23
3

64
62

60
60

60
60

S
60

S
60

S
60

S
60

S
60

C
60

C
54

54
54

23
3

23
4

64
62

61
60

60
60

60
S

60
S

60
S

60
S

60
E

60
E

55
54

54
23
4

23
5

64
63

62
61

60
60

60
60

S
60

S
60

S
60

E
60

E
56

55
54

23
5

23
6

65
64

62
62

61
60

60
60

60
S

60
S

60
E

60
E

56
56

54
23
6

23
7

66
64

63
62

62
61

60
60

60
60

S
60

E
60

E
56

56
55

23
7

23
8

66
65

P
64

63
62

62
61

60
60

60
60

E
60

E
57

56
56

23
8

23
9

67
66

P
64

64
63

62
62

61
60

60
60

60
E

58
57

56
23
9

24
0

68
67

P
64

64
64

62
62

62
61

60
60

60
58

58
56

24
0

24
1

68
68

C
64

64
64

62
62

62
62

61
60

60
58

58
57

24
1

24
2

68
68

E
65

64
64

63
S

62
62

62
62

61
60

59
58

58
24
2

24
3

68
68

E
66

65
64

64
S

63
S

62
62

62
62

61
60

59
58

24
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Ta
bl
e
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8

(c
on
tin

ue
d)
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Table 5.9 Updated minimum distance lower bounds of linear codes C = [n, k] for 225 ≤ n ≤ 256
and 63 ≤ k ≤ 76

n\k 63 64 65 66 67 68 69 70 71 72 73 74 75 76 k/n

225 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 225

226 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 226

227 52 52 50 50 50 50 48 48 48 48 48S 48E 48E 46 227

228 52 52 50 50 50 50 48 48 48 48 48 48E 48E 47P 228

229 52 52 51 50 50 50 49 48 48 48 48 48E 48E 48C 229

230 53S 52 52 51 50 50 50 48 48 48 48 48E 48E 48E 230

231 54S 53S 52 52 51 50 50 48 48 48 48 48 48E 48E 231

232 54 54S 53S 52 52 51 50 49 48 48 48 48 48 48E 232

233 54 54 54S 53S 52 52 51 50 49 48 48 48 48 48 233

234 54 54 54 54S 53S 52 52 51 50 49 48 48 48 48 234

235 54 54 54 54 54S 53S 52 52 51 50 49 48 48 48 235

236 54 54 54 54 54 54S 53S 52 52 51 50 49 48 48 236

237 54 54 54 54 54 54 54S 53S 52 52 51 50 49 48 237

238 55 54 54 54 54 54 54 54S 53S 52 52 51 50 49 238

239 56 55 54 54 54 54 54 54 54S 53S 52 52 51 50 239

240 56 56 54 54 54 54 54 54 54 54S 53P 52 52 51 240

241 56 56 55 54 54 54 54 54 54 54 54C 52 52 52 241

242 57 56 56 55 54 54 54 54 54 54 54 53 52 52 242

243 58 57 56 56 55 54 54 54 54 54 54 54 53 52 243

244 58 58 56 56 56 55 54 54 54 54 54 54 54 53 244

245 59 58 57 56 56 56 55 54 54 54 54 54 54 54 245

246 60 59 58 57 56 56 56 55 54 54 54 54 54 54 246

247 61 60 59 58 57 56 56 56 55 54 54 54 54 54 247

248 62 61 60 59 58 57 56 56 56 55 54 54 54 54 248

249 62 62 61 60 59 58 57 56 56 56 55 54 54 54 249

250 62 62 62 61 60 59 58 57 56 56 56 55 54 54 250

251 62 62 62 62 61 60 59 58 57 56 56 56 55 54 251

252 62 62 62 62 62 61 60 59 58 56 56 56 56 55 252

253 63P 62 62 62 62 62 61 60 59 56 56 56 56 56 253

254 64P 63P 62 62 62 62 62 61 60 57 56 56 56 56 254

255 65C 64C 63C 62 62 62 62 62 61 58 57 56 56 56 255

256 66E 64E 64E 62 62 62 62 62 62 58 58 56 56 56 256
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[168, 69, 32], [208, 61, 48], [247, 57, 64], [247, 58, 63] .

Five new linear codes, which are derived from cyclic codes of length 151, have
also been constructed. These new codes, which are produced by Constructions X
and XX, are

[154, 77, 23], [155, 62, 31], [159, 63, 31], [171, 60, 35], [174, 72, 31] .

Given an [n, k, d] code C , where d is larger than the minimum distance of the
best-known linear code of the same n and k, it is possible to obtain more codes,
whose minimum distance is still larger than that of the corresponding best-known
linear code, by recursively extending (annexing parity-checks), puncturing and/or
shortening C . For example, consider the new code [168, 69, 32] as a starting point.
New codes can be obtained by annexing parity-check bits [168 + i, 69, 32], for
1 ≤ i ≤ 3. With puncturing by one bit a [167, 69, 31] new code is obtained by
shortening [168 − i, 69 − i, 32], for 1 ≤ i ≤ 5, 5 new codes are obtained with a
minimum distance of 32. More improvements are also obtained by shortening these
extended and punctured codes. Overall, with all of the new codes described and
presented in this chapter, there are some 901 new binary linear codes which improve
on Brouwer’s lower bounds. The updated lower bounds are tabulated in Tables5.5,
5.6, 5.7, 5.8 and 5.9 inAppendix “ImprovedLowerBounds of theMinimumDistance
of Binary Linear Codes”.

5.7 Summary

Methods have been described and presented which may be used to determine the
minimum Hamming distance and weight distribution of a linear code. These are
the main tools for testing new codes which are candidates for improvements to
currently known, best codes. Several efficient algorithms for computing theminimum
distance and weight distribution of linear codes have been explored in detail. The
many differentmethods of constructing codes have been described, particularly those
based on using known good or outstanding codes as a construction basis. Using such
methods, several hundred new codes have been presented or described which are
improvements to the public database of best, known codes.
For cyclic codes, which have implementation advantages over other codes, many
new outstanding codes have been presented including the determination of a table
giving the code designs and highest attainable minimum distance of all binary cyclic
codes of odd lengths from 129 to 189. It has been shown that outstanding cyclic
codes may be used as code components to produce new codes that are better than
the previously thought best codes, for the same code length and code rate.
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Appendix

Improved Lower Bounds of the Minimum Distance
of Binary Linear Codes

The following tables list the updated lower bounds of minimum distance of linear
codes over F2. These improvements—there are 901 of them in total—are due to
the new binary linear codes described above. In the tables, entries marked with C
refer to cyclic codes, those marked with X , XX and Y1 refer to codes obtained
from Constructions X, XX and Y1, respectively. Similarly, entries marked with E ,
P and S denote [n, k, d] codes obtained by extending (annexing an overall parity-
check bit) to (n − 1, k, d ′) codes, puncturing (n + 1, k, d + 1) codes and shortening
(n+1, k+1, d) codes, respectively. Unmarked entries are the original lower bounds
of Brouwer [6].
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Chapter 6
Lagrange Codes

6.1 Introduction

Joseph Louis Lagrange was a famous eighteenth century Italian mathematician [1]
credited with minimum degree polynomial interpolation amongst his many other
achievements. Polynomial interpolation may be applied straightforwardly using
Galois Fields and provides the basis for an extensive family of error-correcting codes.
For a Galois Field GF(2m), the maximum code length is 2m+1, consisting of 2m data
symbols and 2m parity symbols. Many of the different types of codes originated by
Goppa [3, 4] may be linked to Lagrange codes.

6.2 Lagrange Interpolation

The interpolation polynomial, p(z), is constructed such that the value of the poly-
nomial for each element of GF(2m) is equal to a data symbol xi also from GF(2m).
Thus,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p(0) = x0
p(1) = x1
p(α1) = x2
p(α2) = x3
. . . . . . . . .

p(α2m−3) = x2m−2

p(α2m−2) = x2m−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Using the method of Lagrange, the interpolation polynomial is constructed as a
summation of 2m polynomials, each of degree 2m − 1. Thus,

© The Author(s) 2017
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DOI 10.1007/978-3-319-51103-0_6

137



138 6 Lagrange Codes

Table 6.1 GF(8) extension
field defined by
1 + α1 + α3 = 0

α0 = 1

α1 = α

α2 = α2

α3 = 1 + α

α4 = α + α2

α5 = 1 + α + α2

α6 = 1 + α2

p(z) =
2m−1∑

i=0

pi(z) (6.1)

where

pi(z) = xi
z

αi

j=2m−2∏

j=0,j �=i

z − αj

αi − αj
for i �= 0 (6.2)

and

p0(z) = x0

j=2m−2∏

j=0

z − αj

(−αj)
(6.3)

The idea is that each of the pi(z) polynomials has a value of zero for z equal to
each element ofGF(2m), except for the one element corresponding to i (namely αi−1

except for i = 0).
A simpler form for the polynomials pi(z) is given by

pi(z) = xi
(αi − αj)

αi(αi − 1)

z(z2
m−1 − 1)

z − αj
for i �= 0 (6.4)

and

p0(z) = −x0(z
2m−1 − 1) (6.5)

In an example using GF(23), where all the nonzero field elements may express as a
power of a primitive root α of the primitive polynomial 1 + x + x3, modulo 1 + x7.
The nonzero field elements are tabulated in Table6.1.



6.2 Lagrange Interpolation 139

All of the 8 polynomials pi(z) are given below

p0(z) = x0(z7 +1)
p1(z) = x1(z7 +z6 +z5 +z4 +z3 +z2 +z)
p2(z) = x2(z7 +αz6 +α2z5 +α3z4 +α4z3 +α5z2 +α6z)
p3(z) = x3(z7 +α2z6 +α4z5 +α6z4 +αz3 +α3z2 +α5z)
p4(z) = x4(z7 +α3z6 +α6z5 +α2z4 +α5z3 +αz2 +α4z)
p5(z) = x5(z7 +α4z6 +αz5 +α5z4 +α2z3 +α6z2 +α3z)
p6(z) = x6(z7 +α5z6 +α3z5 +αz4 +α6z3 +α4z2 +α2z)
p7(z) = x7(z7 +α6z6 +α5z5 +α4z4 +α3z3 +α2z2 +αz)

These polynomials are simply summed to produce the Lagrange interpolation poly-
nomial p(z)

p(z) = z7(x0 +x1 +x2 +x3 +x4 +x5 +x6 +x7)
+ z6(αx1 +α2x2 +α3x3 +α4x4 +α5x5 +α6x6 +x7)
+ z5(α2x1 +α4x2 +α6x3 +αx4 +α3x5 +α5x6 +x7)
+ z4(α3x1 +α6x2 +α2x3 +α5x4 +αx5 +α4x6 +x7)
+ z3(α4x1 +αx2 +α5x3 +α2x4 +α6x5 +α3x6 +x7)
+ z2(α5x1 +α3x2 +αx3 +α6x4 +α4x5 +α2x6 +x7)
+ z(α6x1 +α5x2 +α4x3 +α3x4 +α2x5 +αx6 +x7)
+ x0

(6.6)

This can be easily verified by evaluating p(z) for each element of GR(23) to produce

p(0) = x0
p(1) = x1
p(α) = x2
p(α2) = x3
p(α3) = x4
p(α4) = x5
p(α5) = x6
p(α6) = x7

6.3 Lagrange Error-Correcting Codes

The interpolation polynomial p(z) may be expressed in terms of its coefficients and
used as a basis for defining error-correcting codes.

p(z) =
2m−1∑

i=0

μiz
i (6.7)
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It is clear that an interpolation equation and a parity check equation are equivalent,
and for the 8 identities given by the interpolation polynomial we may define 8 parity
check equations:

x0 + p(0) = 0
x1 + p(1) = 0
x2 + p(α) = 0
x3 + p(α2) = 0
x4 + p(α3) = 0
x5 + p(α4) = 0
x6 + p(α5) = 0
x7 + p(α6) = 0

(6.8)

The 8 parity check equations become

x0+ μ0 = 0
x1+ μ1+ μ2+ μ3+ μ4+ μ5+ μ6+ μ7 = 0
x2+ αμ1+ α2μ2+ α3μ3+ α4μ4+ α5μ5+ α6μ6+ μ7 = 0
x3+ α2μ1+ α4μ2+ α6μ3+ αμ4+ α3μ5+ α5μ6+ μ7 = 0
x4+ α3μ1+ α6μ2+ α2μ3+ α5μ4+ αμ5+ α4μ6+ μ7 = 0
x5+ α4μ1+ αμ2+ α5μ3+ α2μ4+ α6μ5+ α3μ6+ μ7 = 0
x6+ α5μ1+ α3μ2+ αμ3+ α6μ4+ α4μ5+ α2μ6+ μ7 = 0
x7+ α6μ1+ α5μ2+ α4μ3+ α3μ4+ α2μ5+ αμ6+ μ7 = 0

(6.9)

A number of different codes may be derived from these equations. Using the first
4 equations, apart from the first, and setting x2 and x3 equal to 0, the following parity
check matrix is obtained, producing a (9, 5) code:

H9,5 =

⎡

⎢
⎢
⎣

1 0 1 1 1 1 1 1 1
0 0 α α2 α3 α4 α5 α6 1
0 0 α2 α4 α6 α α3 α5 1
0 1 α3 α6 α2 α5 α α4 1

⎤

⎥
⎥
⎦

Rearranging the order of the columns produces a parity check matrix, Ĥ identical to
the MDS (9, 5, 5) code based on the doubly extended Reed–Solomon code [7].

Ĥ(9,5,5) =

⎡

⎢
⎢
⎣

1 1 1 1 1 1 1 1 0
1 α α2 α3 α4 α5 α6 0 0
1 α2 α4 α6 α α3 α5 0 0
1 α3 α6 α2 α5 α α4 0 1

⎤

⎥
⎥
⎦

Correspondingly, we know that the code with parity check matrix, H9,5 derived
from the Lagrange interpolating polynomial is MDS and has a minimum Hamming
distance of 5. Useful, longer codes can also be obtained. Adding the first row of (6.9)
to the second equation of the above example and setting x0 equal to x1, a parity check
matrix for a (10, 6) code is obtained:
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H10,6 =

⎡

⎢
⎢
⎣

0 1 0 1 1 1 1 1 1 1
1 1 0 α α2 α3 α4 α5 α6 1
0 0 0 α2 α4 α6 α α3 α5 1
0 0 1 α3 α6 α2 α5 α α4 1

⎤

⎥
⎥
⎦

It is straightforward to map any code with GF(2m) symbols into a binary code by
simply mapping each GF(2m) symbol into a m×m binary matrix using the GF(2m)

table of field elements. If the codeword coordinate is αi, the coordinate is replaced
with the matrix, where each column is the binary representation of the GF(2m)

symbol:
[
αi αi+1 αi+2 . . . αi+m−1

]

Asan example forGF(23), if the codeword coordinate isα3, the symbol is replaced
with the binary matrix whose columns are the binary values of α3, α4, and α5 using
Table6.1.

⎡

⎣
1 0 1
1 1 1
0 1 1

⎤

⎦

In another example the symbol α0 produces the identity matrix
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

The (10, 6) GF(8) code above forms a (30, 18) binary code with parity check
matrix

H30,18 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0
0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The minimum Hamming distance of this code has been evaluated and it turns out
to be 4. Methods for evaluating the minimum Hamming distance are described in
Chap.5. Consequently, extending the length of the code by one symbol has reduced
the dmin by 1. The dmin may be increased by 2 by adding an overall parity bit to the
first two symbols plus an overall parity bit to all bits to produce a (32, 18, 6) code
with parity check matrix

H32,18 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is a good code as weight spectrum analysis shows that it has the same
minimum Hamming distance as the best known (32, 18, 6) code [5]. It is interesting
to note that in extending the length of the code beyond the MDS length of 9 symbols
forGF(23), twoweak symbols are produced but these are counterbalanced by adding
an overall parity bit to these two symbols.

6.4 Error-Correcting Codes Derived from the Lagrange
Coefficients

In another approach, we may set some of the equations defining the Lagrange poly-
nomial coefficients to zero, and then use these equations to define parity checks for
the code. As an example, using GF(23), from Eq. (6.6) we may set coefficients μ7,
μ6, μ5, μ4 and μ3 equal to zero. The parity check equations become

x0 +x1 +x2 +x3 +x4 +x5 +x6 +x7 = 0
αx1 +α2x2 +α3x3 +α4x4 +α5x5 +α6x6 +x7 = 0
α2x1 +α4x2 +α6x3 +αx4 +α3x5 +α5x6 +x7 = 0
α3x1 +α6x2 +α2x3 +α5x4 +αx5 +α4x6 +x7 = 0
α4x1 +αx2 +α5x3 +α2x4 +α6x5 +α3x6 +x7 = 0

(6.10)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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and the corresponding parity check matrix is

H8,3 =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
0 α α2 α3 α4 α5 α6 1
0 α2 α4 α6 α α3 α5 1
0 α3 α6 α2 α5 α α4 1
0 α4 α α5 α2 α6 α3 1

⎤

⎥
⎥
⎥
⎥
⎦

(6.11)

As a GF(23) code, this code is MDS with a dmin of 6 and equivalent to the extended
Reed–Solomon code. As a binary code with the following parity check matrix a
(24, 9, 8) code is obtained. This is a good code as it has the sameminimumHamming
distance as the best known (24, 9, 8) code [5].

H24,9 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0
0 0 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 1

0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 0 0 1 0
0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1

0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0
0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0
0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1

0 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0
0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0
0 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6.5 Goppa Codes

So far codes have been constructed using the Lagrange interpolating polynomial
in a rather ad hoc manner. Goppa defined a family of codes [3] in terms of
the Lagrange interpolating polynomial, where the coordinates of each codeword
{c0, c1, c2, . . . c2m−1} with {c0 = x0, c1 = x1, c2 = x2, . . . c2m−1 = x2m−1} satisfy the
congruence p(z) modulo g(z) = 0 where g(z) is known as the Goppa polynomial.

Goppa codes have coefficients fromGF(2m) and provided g(z) has no roots which
are elements of GF(2m) (which is straightforward to achieve) the Goppa codes have
parameters (2m, k, 2m−k+1). These codes areMDS codes and satisfy the Singleton
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bound [8]. Goppa codes as binary codes, provided that g(z) has no roots which are
elements of GF(2m) and has no repeated roots, have parameters (2m, 2m −mt, dmin)
where dmin ≥ 2t + 1, the Goppa code bound on minimum Hamming distance. Most
binary Goppa codes have equality for the bound and t is the number of correctable
errors for hard decision, bounded distance decoding. Primitive binary BCH codes
have parameters (2m−1, 2m−mt−1, dmin), where dmin ≥ 2t+1 and so binaryGoppa
codes usually have the advantage over binaryBCHcodes of an additional information
bit for the sameminimumHamming distance.However, depending on the cyclotomic
cosets, many cases of BCH codes can be found having either k > 2m −mt − 1 for a
given t, or dmin > 2t + 1, giving BCH codes the advantage for these cases.

For a Goppa polynomial of degree r, there are r parity check equations derived
from the congruence p(z) modulo g(z) = 0. Denoting g(z) by

g(z) = grz
r + gr−1z

r−1 + gr−2z
r−2 + · · · + g1z + g0 (6.12)

2m−1∑

i=0

ci
z − αi

= 0 modulo g(z) (6.13)

Since (6.13) is modulo g(z) then g(z) is equivalent to 0, and we can add g(z) to the
numerator. Noting that

g(z) = (z − αi)qi(z) + rm (6.14)

where rm is the remainder, an element of GF(2m) after dividing g(z) by z − αi.
Dividing each term z − αi into 1 + g(z) produces the following:

g(z) + 1

z − αi
= qi(z) + rm + 1

z − αi
(6.15)

As rm is a scalar, we may simply pre-weight g(z) by 1
rm

so that the remainder
cancels with the other numerator term which is 1.

g(z)
rm

+ 1

z − αi
= qi(z)

rm
+

rm
rm

+ 1

z − αi
= qi(z)

rm
(6.16)

As a result of

g(z) = (z − αi)qi(z) + rm

when z = αi, rm = g(αi)
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Substituting for rm in (6.16) produces

g(z)
g(αi)

+ 1

z − αi
= qi(z)

g(αi)
(6.17)

Since g(z)
g(αi)

modulo g(z) = 0

1

z − αi
= qi(z)

g(αi)
(6.18)

The quotient polynomial qi(z) is a polynomial of degree r − 1, with coefficients
which are a function of αi and the Goppa polynomial coefficients. Denoting qi(z) as

qi(z) = qi,0 + qi,1z + qi,2z
2 + qi,3z

3 + · · · + qi,(r−1)z
r−1 (6.19)

Since the coefficients of each power of z sum to zero, the r parity check equations
are given by

2m−1∑

i=0

ciqi,j
g(αi)

= 0 for j = 0 to r − 1 (6.20)

If theGoppa polynomial has any roots which are elements ofGF(2m), sayαj, then the
codeword coordinate cj has to be permanently set to zero in order to satisfy the parity
check equations. Effectively, the code length is shortened by the number of roots
of g(z) which are elements of GF(2m). Usually, the Goppa polynomial is chosen to
have distinct roots which are not in GF(2m).

Consider an example of a Goppa (32, 28, 5) code. There are 4 parity check sym-
bols defined by the 4 parity check equations and the Goppa polynomial has degree 4.
Choosing somewhat arbitrarily the polynomial 1+ z+ z4 which has roots inGF(16)
but not in GF(32), we determine qi(z) by dividing by z − αi.

qi(z) = z3 + αiz
2 + α2

i z + (1 + α3
i ) (6.21)

The 4 parity check equations are

31∑

i=0

ci
g(αi)

= 0 (6.22)

31∑

i=0

ciαi

g(αi)
= 0 (6.23)

31∑

i=0

ciα2
i

g(αi)
= 0 (6.24)
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31∑

i=0

ci(1 + α3
i )

g(αi)
= 0 (6.25)

Using Table6.2 to evaluate the different terms forGF(25), the parity check matrix is

H(32, 28, 5) =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 α14 α20 α25 . . . α10

0 1 α15 α22 α28 . . . α9

0 1 α16 α24 1 . . . α8

0 1 α17 α26 α3 . . . α7

⎤

⎥
⎥
⎥
⎥
⎦

(6.26)

To implement the Goppa code as a binary code, the symbols in the parity check
matrix are replaced with their m-bit binary column representations of each respective
GF(2m) symbol. For the (32, 28, 5) Goppa code above, each of the 4 parity symbols
will be represented as a 5 bit symbol from Table6.2. The parity check matrix will
now have 20 rows for the binary code. TheminimumHamming distance of the binary
Goppa code is improved from r + 1 to 2r + 1, namely from 5 to 9. Correspondingly,
the binary Goppa code becomes a (32, 12, 9) code with parity check matrix

Table 6.2 GF(32) nonzero
extension field elements
defined by 1 + α2 + α5 = 0

α0 = 1 α16 = 1 + α + α3 + α4

α1 = α α17 = 1 + α + α4

α2 = α2 α18 = 1 + α

α3 = α3 α19 = α + α2

α4 = α4 α20 = α2 + α3

α5 = 1 + α2 α21 = α3 + α4

α6 = α + α3 α22 = 1 + α2 + α4

α7 = α2 + α4 α23 = 1 + α + α2 + α3

α8 = 1 + α2 + α3 α24 = α + α2 + α3 + α4

α9 = α + α3 + α4 α25 = 1 + α3 + α4

α10 = 1 + α4 α26 = 1 + α + α2 + α4

α11 = 1 + α + α2 α27 = 1 + α + α3

α12 = α + α2 + α3 α28 = α + α2 + α4

α13 = α2 + α3 + α4 α29 = 1 + α3

α14 = 1 + α2 + α3 + α4 α30 = α + α4

α15 = 1 + α + α2 + α3 + α4
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H(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 1 . . . 1
0 0 0 0 0 . . . 0
0 0 1 1 0 . . . 0
0 0 1 1 1 . . . 0
0 0 1 0 1 . . . 1
0 1 1 1 0 . . . 0
0 0 1 0 1 . . . 1
0 0 1 1 1 . . . 0
0 0 1 0 0 . . . 1
0 0 1 1 1 . . . 1
0 1 1 0 1 . . . 1
0 0 1 1 0 . . . 0
0 0 0 1 0 . . . 1
0 0 1 1 0 . . . 1
0 0 1 1 0 . . . 0
0 1 1 1 0 . . . 0
0 0 1 1 0 . . . 0
0 0 0 1 0 . . . 1
0 0 0 0 1 . . . 0
0 0 1 1 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.27)

6.6 BCH Codes as Goppa Codes

Surprisingly, the family of Goppa codes includes as a subset the family of BCH codes
with codeword coefficients fromGF(2m) and parameters (2m −1, 2m −1− t, t+1).
As binary codes, using codeword coefficients {0, 1}, the BCH codes have parameters
(2m − 1, 2m − 1 − mt, 2t + 1).

For a nonbinary BCH code to correspond to a Goppa code, the Goppa polynomial,
g(z), is given by

g(z) = zt (6.28)

There are t parity check equations relating to the codeword coordinates
{c0, c1, c2, . . . , c2m−2} and these are given by

2m−2∑

i=0

ci
z − αi

= 0 modulo zt (6.29)

Dividing 1 by z − αi starting with αi produces

1

z − αi
= α−i + α−2iz + α−3iz2 + α−3iz3 + · · · + α−tizt−1 + α−(t+1)izt

z − αi
(6.30)
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As α−(t+1)izt modulo zt = 0, the t parity check equations are given by

2m−2∑

i=0

ci(α
−i + α−2iz + α−3iz2 + α−4iz3 + · · · + α−tizt−1) = 0 (6.31)

Every coefficient of z0 through to zt−1 is equated to zero, producing t parity check
equations. The corresponding parity check matrix is

H(2m−1, 2m−t, t+1) =

⎡

⎢
⎢
⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 . . . α−(2m−2)

1 α−2 α−4 α−6 α−8 . . . α−2(2m−2)

1 α−3 α−6 α−9 α−12 . . . α−3(2m−2)

. . . . . . . . . . . . . . .

1 α−t α−2t α−3t α−4t . . . α−t(2m−2)

⎤

⎥
⎥
⎥
⎥
⎦

(6.32)

To obtain the binary BCH code, as before, the GF(2m) symbols are replaced with
their m-bit binary column representations for each corresponding GF(2m) value for
each symbol. As a result, only half of the parity check equations are independent and
the dependent equations may be deleted. To keep the same number of independent
parity check equations as before, the degree of the Goppa polynomial is doubled.
The Goppa polynomial is now given by

g(z) = z2t (6.33)

The parity check matrix for the binary Goppa BCH code is

H(2m−1, 2m−mt, 2t+1) =

⎡

⎢
⎢
⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 . . . α−(2m−2)

1 α−3 α−6 α−9 α−12 . . . α−3(2m−2)

1 α−5 α−10 α−15 α−20 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

1 α−2t−1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2)

⎤

⎥
⎥
⎥
⎥
⎦

For binary codes, any parity check equation may be squared and the resulting
parity check equation will still be satisfied. As a consequence, only one parity check
equation is needed for each representative from each respective cyclotomic coset.
This is clearer with an example.

The cyclotomic cosets of 31, expressed as negative integers for convenience, are
as follows

C0 = {0}
C−1 = {−1,−2,−4,−8,−16}
C−3 = {−3,−6,−12,−24,−17}
C−5 = {−5,−10,−20,−9,−18}
C−7 = {−7,−14,−28,−25,−19}
C−11 = {−11,−22,−13,−26,−21}
C−15 = {−15,−30,−29,−27,−23}
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To construct the GF(32) nonbinary (31, 27) BCH code, the Goppa polynomial is
g(z) = z4 and there are 4 parity check equations with parity check matrix:

H(31,27,5) =

⎡

⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 . . . α−30

1 α−2 α−4 α−6 α−8 . . . α−29

1 α−3 α−6 α−9 α−12 . . . α−28

1 α−4 α−8 α−12 α−16 . . . α−27

⎤

⎥
⎥
⎦ (6.34)

As a binary code with binary codeword coefficients, the parity check matrix has only
two independent rows. To construct the binary parity check matrix, each GF(32)
symbol is replacedwith its 5-bit column vector so that each parity symbolwill require
5 rows of the binary parity check matrix. The code becomes a (31, 21, 5) binary code.
The parity check matrix for the binary code after removing the dependent rows is
given by

H(31,21,5) =
[
1 α−1 α−2 α−3 α−4 . . . α−30

1 α−3 α−6 α−9 α−12 . . . α−28

]
(6.35)

To maintain 4 independent parity check equations for the binary code, the Goppa
polynomial is doubled in degree to become g(z) = z8. Replacing each GF(32)
symbol with its 5-bit column vector will produce a (31, 11) binary code. The parity
check matrix for the binary code is given by:

H(31, 11, ,9) =

⎡

⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 . . . α−30

1 α−3 α−6 α−9 α−12 . . . α−28

1 α−5 α−10 α−15 α−20 . . . α−26

1 α−7 α−14 α−21 α−28 . . . α−24

⎤

⎥
⎥
⎦ (6.36)

Looking at the cyclotomic cosets for 31, it will be noticed that α−9 is in the same
coset as α−5, and for codewords with binary coefficients, we may use the Goppa
polynomial g(z) = z10 with the corresponding parity check matrix

H(31, 11, 11) =

⎡

⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30

1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28

1 α−7 α−14 α−21 α−28 α−4 α−11 . . . α−24

1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22

⎤

⎥
⎥
⎦ (6.37)

Alternatively, we may use Goppa polynomial g(z) = z8 with parity check matrix
given by (6.36). The result is the same code. From this analysis we can see why the
dmin of this BCH code is greater by 2 than the BCH code bound because the degree
of the Goppa polynomial is 10.

To find other exceptional BCH codes we need to look at the cyclotomic cosets to
find similar cases where a row of the parity check matrix is equivalent to a higher
degree row. Consider the construction of the (31, 6, 2t + 1) BCH code which will
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have 5 parity check equations. From the cyclotomic cosets for 31, it will be noticed
that α−13 is in the same coset as α−11, and so we may use the Goppa polynomial
g(z) = z14 and obtain a (31, 6, 15) binary BCH code. The BCH bound indicates a
minimumHamming distance of 11. Another example is evident from the cyclotomic
cosets of 127 where α−17 is in the same coset as α−9. Setting the Goppa polynomial
g(z) = z30 produces the (127, 71, 19) BCH code, whilst the BCH bound indicates a
minimum Hamming distance of 17.

To see the details in the construction of the parity check matrix for the binary
BCH code, we will consider the (31, 11, 11) code with parity check matrix given by
matrix (6.37). Each GF(32) symbol is replaced with the binary representation given
by Table6.2, as a 5-bit column vector, where α is a primitive root of the polynomial
1 + x2 + x5.

The binary parity check matrix that is obtained is given by matrix (6.38).

H(31, 11, 11) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 1 1 . . . 0
0 1 0 1 1 1 0 . . . 1
0 0 0 1 0 1 0 . . . 0
0 0 1 0 1 0 1 . . . 0
0 1 0 1 0 1 1 . . . 0

1 0 1 1 0 1 0 . . . 0
0 1 0 0 1 1 0 . . . 0
0 1 0 1 1 0 1 . . . 0
0 0 1 0 0 1 1 . . . 1
0 1 1 1 0 1 1 . . . 0

1 1 0 1 1 0 0 . . . 1
0 1 0 1 1 1 1 . . . 0
0 1 0 0 1 0 0 . . . 1
0 0 1 1 0 1 0 . . . 0
0 1 1 1 0 0 0 . . . 0

1 1 0 0 1 1 1 . . . 0
0 0 0 0 1 1 0 . . . 1
0 1 1 0 1 0 1 . . . 0
0 0 1 0 0 0 1 . . . 1
0 1 1 1 1 1 0 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.38)

Evaluating the minimum Hamming distance of this code confirms that it is 11, an
increase of 2 over the BCH bound for the minimum Hamming distance.
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6.7 Extended BCH Codes as Goppa Codes

In a short paper in 1971 [4], Goppa showed how a binary Goppa code could be
constructed with parameters (2m + (m − 1)t, 2m − t, 2t + 1). Each parity check
symbol, m bits long has a Forney concatenation [2], i.e. an overall parity bit on each
symbol. In a completely novel approach by Goppa, each parity symbol, apart from
1 bit in each symbol, is external to the code as if these are additional parity symbols.
These symbols are also independent of each other extending the length of the code
and, importantly, increasing the dmin of the code. Sugiyama et al. [9, 10] described a
construction technique mixing the standard Goppa code construction with the Goppa
external parity check construction. We give below a simpler construction method
applicable to BCH codes and to more general Goppa codes.

Consider a binary BCH code constructed as a Goppa codewith Goppa polynomial
g(z) = z2t but extended by including an additional root α0, an element of GF(2m).
The Goppa polynomial is now g(z) = (z2t+1 + α0z2t). The parity check equations
are given by

2m−2∑

i=0

ci
z − αi

= 0 modulo g(z) αi �= α0 (6.39)

Substituting for rm and q(z), as in Sect. 6.5

1

z − αi
modulo g(z) = g(z) + g(αi)

g(αi)(z − αi)
(6.40)

For the extended binary BCH code with Goppa polynomial g(z) = (z2t+1 + αz2t)
the parity check equations are given by

∑2m−2
i=1

ci
z−αi = ∑2m−2

i=1 ci
(

z2t

αi2t(αi+α0)
+ z2t−1

αi2t + z2t−2

αi(2t−1) + z2t−3

αi(2t−2) + · · · + 1
αi

)

= 0

(6.41)

Equating each coefficient of powers of z to zero and using only the independent
parity check equations (as it is a binary code) produces t + 1 independent parity
check equations with parity check matrix

H(2m−2, 2m−2−mt−m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 . . . α−(2m−2)

α−3 α−6 α−9 . . . α−3(2m−2)

α−5 α−10 α−15 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) . . . α−(2t−1)(2m−2)

α−2t

α+α0

α−4t

α2+α0

α−6t

α3+α0
. . . α−2t(2m−2)

α2m−2+α0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.42)
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The last row may be simplified by noting that

1 + α−2t
0 α2t

(α0 + α)α2t
= α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.43)

Rearranging produces

1

(α0 + α)α2t
= α−2t

0 α2t

(α0 + α)α2t
+ α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.44)

and

α−2t

(α0 + α)
= α−2t

0

(α0 + α)
+ α−1

0

α2t−1
+ α−2

0

α2t−2
+ α−3

0

α2t−3
+ · · · + α−2t+1

0

α
(6.45)

The point here is because of the above equality, the last parity check equation in
(6.42) may be replaced with a simpler equation to produce the same Cauchy style
parity check given by Goppa in his 1971 paper [4]. The parity check matrix becomes

H(2m−2, 2m−2−mt−m) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 . . . α−(2m−2)

α−3 α−6 α−9 . . . α−3(2m−2)

α−5 α−10 α−15 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) . . . α−(2t−1)(2m−2)

1
α+α0

1
α2+α0

1
α3+α0

. . . 1
α2m−2+α0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.46)

The justification for this is that from (6.45), the last row of (6.42) is equal to a scalar
weighted linear combination of the rows of the parity checkmatrix(6.46), so that these
rows will produce the same code as the parity check matrix (6.42). By induction,
other roots of GF(2m) may be used to produce similar parity check equations to
increase the distance of the code producing parity check matrices of the form:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 α−4 . . . α−(2m−2)

α−3 α−6 α−9 α−12 . . . α−3(2m−2)

α−5 α−10 α−15 α−20 . . . α−5(2m−2)

. . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2)

1
α+α0

1
α2+α0

1
α3+α0

1
α4+α0

. . . 1
α2m−2+α0

1
α+α1

1
α2+α1

1
α3+α1

1
α4+α1

. . . 1
α2m−2+α1

. . . . . . . . . . . . . . .
1

α+αs0−1

1
α2+αs0−1

1
α3+αs0−1

1
α4+αs0−1

. . . 1
α2m−2+αs0−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.47)

The parity symbols given by the last s0 rows of this matrix are in the Cauchy matrix
style [7] and will necessarily reduce the length of the code for each root of the
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Goppa polynomial which is an element of GF(2m). However, Goppa was the first
to show [4] that the parity symbols may be optionally placed external to the code,
without decreasing the length of the code. For binary codes the length of the code
increases as will be shown below. Accordingly, with external parity symbols, the
parity check matrix becomes

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 α−4 . . . α−(2m−2) 0 0 0 0
α−3 α−6 α−9 α−12 . . . α−3(2m−2) 0 0 0 0
α−5 α−10 α−15 α−20 . . . α−5(2m−2) 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α−2t+1 α−2(2t−1) α−3(2t−1) α−4(2t−1) . . . α−(2t−1)(2m−2) 0 0 0 0
1

α+α0

1
α2+α0

1
α3+α0

1
α4+α0

. . . 1
α2m−2+α0

1 0 0 0
1

α+α1

1
α2+α1

1
α3+α1

1
α4+α1

. . . 1
α2m−2+α1

0 1 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1

α+αs0−1

1
α2+αs0−1

1
α3+αs0−1

1
α4+αs0−1

. . . 1
α2m−2+αs0−1

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.48)

As an example of the procedure, consider the (31, 11, 11) binary BCH code described
in Sect. 6.6. We shall add one external parity symbol to this code according to the
parity check matrix in (6.48) and eventually produce a (36, 10, 13) binary BCH code.
Arbitrarily, we shall choose α0 = 1. This means that the first column of the parity
check matrix for the (31, 11, 11) code given in (6.38) is deleted and there is one
additional parity check row. The parity check matrix for this (35, 10, 12) extended
BCH code is given below. Note we will add later an additional parity bit in a Forney
concatenation of the external parity symbol to produce the (36, 10, 13) code as a last
step.

H(35, 10, 12) =

⎡

⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1

α+1
1

α2+1
1

α3+1
1

α4+1
1

α5+1
1

α6+1 . . . 1
α29+1 1

⎤

⎥
⎥
⎥
⎥
⎦

(6.49)

Evaluating the last row by carrying out the additions, and inversions, referring to the
table of GF(32) symbols in Table6.2 produces the resulting parity check matrix

H(35, 10, 12) =

⎡

⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
α−13 α−26 α−2 α−21 α−29 α−4 . . . α−14 1

⎤

⎥
⎥
⎥
⎥
⎦

(6.50)

The next step is to determine the binary parity check matrix for the code by replacing
eachGF(32) symbol by its corresponding 5-bit representation using Table6.2, but as
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a 5-bit column vector. Also we will add an additional parity check row to implement
the Forney concatenation of the external parity symbol. The resulting binary parity
check matrix in (6.51) is obtained. Evaluating the minimum Hamming distance of
this code using one of the methods described in Chap.5 verifies that it is indeed 13.

Adding the external parity symbol has increased the minimumHamming distance
by 2, but at the cost of one data symbol. Instead of choosing α0 = 1, a good idea
is to choose α0 = 0, since 0 is a multiple root of the Goppa polynomial g(z) = z10

which caused the BCH code to be shortened from length 2m to 2m − 1 in the first
place. (The length of a Goppa code with Goppa polynomial g(z) having no roots in
GF(2m) is 2m). The resulting parity check matrix is given in (6.52).

H(36, 10, 13) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1 1 1 . . . 0 0 0 0 0 0 0
1 0 1 1 1 0 . . . 1 0 0 0 0 0 0
0 0 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 0 0 0 0 0 0 0
1 0 1 0 1 1 . . . 0 0 0 0 0 0 0

0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
1 0 0 1 1 0 . . . 0 0 0 0 0 0 0
1 0 1 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 0 1 1 . . . 1 0 0 0 0 0 0
1 1 1 0 1 1 . . . 0 0 0 0 0 0 0

1 0 1 1 0 0 . . . 1 0 0 0 0 0 0
1 0 1 1 1 1 . . . 0 0 0 0 0 0 0
1 0 0 1 0 0 . . . 1 0 0 0 0 0 0
0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
1 1 1 0 0 0 . . . 0 0 0 0 0 0 0

1 0 0 1 1 1 . . . 0 0 0 0 0 0 0
0 0 0 1 1 0 . . . 1 0 0 0 0 0 0
1 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 0 0 1 . . . 1 0 0 0 0 0 0
1 1 1 1 1 0 . . . 1 0 0 0 0 0 0

1 1 1 1 0 1 . . . 1 1 0 0 0 0 0
1 0 0 0 0 1 . . . 1 0 1 0 0 0 0
0 1 0 0 1 0 . . . 0 0 0 1 0 0 0
0 0 1 0 0 1 . . . 0 0 0 0 1 0 0
0 0 0 1 0 0 . . . 1 0 0 0 0 1 0
0 0 0 0 0 0 . . . 0 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.51)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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H(36, 11) =

⎡

⎢
⎢
⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 1

⎤

⎥
⎥
⎥
⎥
⎦

(6.52)

The problem with this is that the minimum Hamming distance is still 11 because
the last row of the parity check matrix is the same as the first row, apart from the
external parity symbol because 0 is a root of the Goppa polynomial. The solution
is to increase the degree of the Goppa polynomial but still retain the external parity
symbol. Referring to the cyclotomic cosets of 31, see (6.35), we should use g(z) = z12

to produce the parity check matrix

H(36, 11) =

⎡

⎢
⎢
⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0
1 α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1

⎤

⎥
⎥
⎥
⎥
⎦

(6.53)

As before, the next step is to determine the binary parity check matrix for the code
from this matrix by replacing each GF(32) symbol by its corresponding 5 bit rep-
resentation using Table6.2 as a 5 bit column vector. Also we will add an additional
parity check row to implement the Forney concatenation of the external parity sym-
bol. The resulting binary parity check matrix is obtained

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 1 1 . . . 0 0 0 0 0 0 0
0 1 0 1 1 1 0 . . . 1 0 0 0 0 0 0
0 0 0 1 0 1 0 . . . 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 1 0 1 0 1 1 . . . 0 0 0 0 0 0 0

1 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 0 0 1 1 0 . . . 0 0 0 0 0 0 0
0 1 0 1 1 0 1 . . . 0 0 0 0 0 0 0
0 0 1 0 0 1 1 . . . 1 0 0 0 0 0 0
0 1 1 1 0 1 1 . . . 0 0 0 0 0 0 0

1 1 0 1 1 0 0 . . . 1 0 0 0 0 0 0
0 1 0 1 1 1 1 . . . 0 0 0 0 0 0 0
0 1 0 0 1 0 0 . . . 1 0 0 0 0 0 0
0 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0
0 1 1 1 0 0 0 . . . 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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H(37, 11, 13) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 1 1 . . . 0 0 0 0 0 0 0
0 0 0 0 1 1 0 . . . 1 0 0 0 0 0 0
0 1 1 0 1 0 1 . . . 0 0 0 0 0 0 0
0 0 1 0 0 0 1 . . . 1 0 0 0 0 0 0
0 1 1 1 1 1 0 . . . 1 0 0 0 0 0 0

1 0 0 1 1 0 1 . . . 1 1 0 0 0 0 0
0 0 1 0 1 0 1 . . . 1 0 1 0 0 0 0
0 1 0 0 0 1 0 . . . 1 0 0 1 0 0 0
0 1 1 1 0 0 1 . . . 0 0 0 0 1 0 0
0 0 1 0 0 1 0 . . . 0 0 0 0 0 1 0
0 0 0 0 0 0 0 . . . 0 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.54)

Weight spectrum analysis of this code confirms that the dmin is indeed 13. One or
more Cauchy style parity check equations may be added to this code to increase the
dmin of the code. For example, with one more parity check equation again with the
choice of α0 = 1, the parity check matrix for the (42,10) code is

H(42, 10) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0 0
α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0 0
α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0 0
α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0 0
α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1 0
α−18 α−5 α−29 α−10 α−2 α−27 . . . α−17 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.55)

Replacing each GF(32) symbol by its corresponding 5 bit representation using
Table6.2 as a 5-bit column vector and adding an additional parity check row to
each external parity symbol produces the binary parity check matrix for the (42, 10,
15) code.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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H(42, 10, 15) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 . . . 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 . . . 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 . . . 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 . . . 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 . . . 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 . . . 0 1 1 1 1 1 1 0 0 0 0 0 0

0 1 0 0 1 0 . . . 1 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 0 0 0 . . . 1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 1 0 0
1 1 0 1 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.56)

Weight spectrum analysis of this code confirms that the dmin is indeed 15. In this con-
struction the information bit coordinate corresponding to α0 = 1 is deleted, reducing
the dimension of the code by 1. This is conventional practice when the Goppa poly-
nomial g(z) contains a root that is in GF(2m). However, on reflection, this is not
essential. Certainly, in the parity check symbol equations of the constructed code,
therewill be one parity check equationwhere the coordinate ismissing, but additional
parity check equations may be used to compensate for the missing coordinate(s).

Consider the (42, 10) code above, given by parity check matrix (6.55) without
the deletion of the first coordinate. The parity check matrix for the (42, 11) code
becomes

H(42, 11) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α−1 α−2 α−3 α−4 α−5 α−6 . . . α−30 0 0
1 α−3 α−6 α−9 α−12 α−15 α−18 . . . α−28 0 0
1 α−5 α−10 α−15 α−20 α−25 α−30 . . . α−26 0 0
1 α−9 α−18 α−27 α−5 α−14 α−23 . . . α−22 0 0
1 α−11 α−22 α−2 α−13 α−24 α−4 . . . α−20 1 0
0 α−18 α−5 α−29 α−10 α−2 α−27 . . . α−17 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.57)

It will be noticed that the first coordinate is not in the last parity check equation.
Constructing the binary code as before by replacing each GF(32) symbol by its cor-
responding 5-bit representation using Table6.2 as a 5-bit column vector and adding
an additional parity check row to each external parity symbol produces a (42, 11,
13) binary code. There is no improvement in the dmin of the (42, 11, 13) binary
code compared to the (37, 11, 13) binary code despite the 5 additional parity bits.
However, weight spectrum analysis of the (42, 11, 13) binary code shows that there
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is only 1 codeword of weight 13 and only 3 codewords of weight 14. All of these
low weight codewords contain the first coordinate which is not surprising. Two more
parity check equations containing the first coordinate need to be added to the parity
check matrix to compensate for the coordinate not being in the last equation of the
parity check symbol matrix (6.57).

It turns out that the coordinate in question can always be inserted into the overall
parity check equation to each external parity symbolwithout any loss, so that only one
additional parity check equation is required for each root of g(z) that is in GF(2m).

This produces the following binary parity check matrix for the (43, 11, 15) code.

H(43, 11, 15) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 . . . 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 . . . 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 . . . 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1 . . . 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 . . . 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 . . . 0 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 . . . 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 . . . 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.58)
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⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 1 0 0 0 . . . 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 1 1 0 . . . 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 1 . . . 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 1 1 1 1 1 0
1 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

It will be noticed that the last but one row is the Forney concatenation on the last
GF(32) symbol of parity check matrix (6.57), the overall parity check on parity bits
36–41. Bit 0 has been added to this equation. Also, the last row of the binary parity
check matrix is simply a repeat of bit 0. In this way, bit 0 has been fully compensated
for not being in the last row of parity check symbol matrix (6.57).

BCH codes extended in length in this way can be very competitive compared to
the best known codes [5]. The most efficient extensions of BCH codes are for g(z)
having only multiple roots of z = 0 because no additional deletions of information
bits are necessary nor are compensating parity check equations necessary. However,
n does need to be a Mersenne prime, and the maximum extension is 2 symbols with
2m + 2 additional, overall parity bits, increasing the dmin by 4. Where n is not a
Mersenne prime the maximum extension is 1 symbol with m + 1 additional, overall
parity bits, increasing the dmin by 2.

However regardless of n being a Mersenne prime or not, multiple symbol exten-
sions may be carried out if g(z) has additional roots from GF(2m), increasing the
dmin by 2 for each additional root. The additional root can also be z = 0.

As further examples, a (37, 11, 13) code and a (43, 11, 15) code can be constructed
in this way by extending the (31, 11, 11) BCH code. Also a (135, 92, 13) code and
a (143, 92, 15) code can be constructed by extending the (127, 92, 11) BCH code.
A (135, 71, 21) code and a (143, 71, 23) code can be constructed by extending the
(127, 71, 19) BCH code.

For more than 2 extended symbols for Mersenne primes, or more than 1 extended
symbol for non-Mersenne primes, it is necessary to use mixed roots of g(z) from
GF(2m) and have either deletions of information bits or compensating parity check
equations or both. As examples of these code constructions there are:

• An example of a non Mersenne prime, the (76, 50, 9) code constructed from the
BCH (63, 51, 5) code with additional roots of g(z) at z = 0 and α0 deleting the
first information bit.

• The (153, 71, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0 andα1 with 2 additional, compensating parity check bits.

• The (151, 70, 25) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0 andα1 with the first coordinate deleted reducing the dimension
by 1 and one additional, compensating parity check bit.

• The (160, 70, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0, α1 andα2 with the first coordinate deleted reducing the
dimension by 1 and with 2 additional, compensating parity check bits.

• The (158, 69, 27) code extended from the (127, 71, 19) code with additional roots
of g(z) at z = 0, α0, α1, α2 andα3 with the first 2 coordinates deleted reducing
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the dimension by 2 and one additional, compensating parity check bit. All of these
codes are best known codes [5].

6.8 Binary Codes from MDS Codes

The Goppa codes and BCH codes, which are a subset of Goppa codes, when con-
structed as codes with symbols from GF(q) are all MDS codes and are examples of
generalised Reed–Solomon codes [7]. MDS codes are exceptional codes and there
are not many construction methods for these codes. For (n, k) MDS codes the repe-
tition code, having k = 1, can have any length of n independently of the field size q.
For values k = 3 and k = q−1 and with q even the maximum value of n is n = q+2
[7]. For all other cases, the maximum value of n is n = q + 1 with a construction
known as the doubly extended Reed–Solomon codes. The parity check matrix for a
(q + 1, k) doubly extended Reed–Solomon code is

HRS+ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 . . . 1 1 0
1 α1 α2 α3 α4 α5 α6 . . . αq−2 0 0
1 α2

1 α2
2 α2

3 α2
4 α2

5 α2
6 . . . α2

q−2 0 0
1 α3

1 α3
2 α3

3 α3
4 α3

5 α3
6 . . . α3

q−2 0 0
1 α4

1 α4
2 α4

3 α4
4 α4

5 α4
6 . . . α4

q−2 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

1 α
q−k
1 α

q−k
2 α

q−k
3 α

q−k
4 α

q−k
5 α

q−k
6 . . . α

q−k
q−2 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.59)

where the q elements of GF(q) are {0, 1, α1, α2, α3, . . . , αq−1}.
As the codes are MDS, the minimum Hamming distance is q + 2 − k, forming a

family of (q + 1, k, q + 2 − k) codes meeting the Singleton bound [8].
The MDS codes may be used as binary codes simply by restricting the data

symbols to values of {0 and 1} to produce a subfield subcode. Alternatively for
GF(2m) each symbol may be replaced with a m × m binary matrix to produce the
family of ((2m + 1)m,mk, 2m + 2− k) of binary codes. As an example, with m = 4
and k = 12, the result is a (68, 48, 5) binary code. This is not a very competitive code
because the equivalent best known code [5], the (68, 48, 8) code, has much better
minimum Hamming distance.

However, using the Forney concatenation [2] on each symbol almost doubles
the minimum Hamming distance with little increase in redundancy and produces
the family of ((2m + 1)(m + 1),mk, 2(2m + 1 − k) + 1) of binary codes. With
the same example values for m and k the (85, 48, 11) binary code is produced.
Kasahara [6] noticed that it is sometimes possible with this code construction to add
an additional information bit by adding the all 1’s codeword to the generatormatrix of
the code. Equivalently expressed, all of the codewordsmay be complementedwithout
degrading the minimum Hamming distance. It is possible to go further depending
on the length of the code and the minimum Hamming distance. Since the binary
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parity of each symbol is always even, then if m + 1 is an odd number, then adding
the all 1’s pattern to each symbol will produce weight of at least 1 per symbol. For
the (85, 48, 11) constructed binary code m+ 1 = 5, an odd number and the number
of symbols is 17. Hence, adding the all 1’s pattern (i.e. 85 1’s) to each codeword
will produce a minimum weight of at least 17. Accordingly, a (85, 49, 11) code is
produced. Adding an overall parity bit to each codeword increases the minimum
Hamming distance to 12 producing a (86, 49, 12) code and shortening the code
by deleting one information bit produces a (85, 48, 12) code. This is a good code
because the corresponding best known code is also a (85, 48, 12) code. However,
the construction method is different because the best known code is derived from the
(89, 56, 11) cyclic code.

Looking at constructing binary codes from MDS codes by simply restricting the
data symbols to values of {0 and 1}, consider the example of the extended Reed–
Solomon code of length 16 using GF(24) with 2 parity symbols. The code is the
MDS (16, 14, 3) code. The parity check matrix is

H(16,14) =
[
1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 0
1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12 1

]
(6.60)

With binary codeword coordinates, denoted as ci the first parity check equation from
the first row of the parity check matrix is

14∑

i=0

ciα
i = 0 (6.61)

Squaring both sides of this equation produces

14∑

i=0

c2i α
2i = 0 (6.62)

As the codeword coordinates are binary, c2i = ci and so any codeword satisfying the
equations of (6.58) satisfies all of the following equations by induction from (6.60)

H(16,14) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14 0
1 α2 α4 α6 α8 α10 α12 α14 α1 α3 α5 α7 α9 α11 α13 0
1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12 1
1 α4 α8 α12 α1 α5 α9 α13 α2 α4 α10 α14 α3 α7 α11 0
1 α6 α12 α3 α9 1 α6 α12 α3 α9 1 α6 α12 α3 α9 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.63)

There are 4 consecutive zeros of the parent Reed–Solomon code from the first 4 rows
of the parity check matrix indicating that the minimum Hamming distance may be 5
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Table 6.3 GF(16) extension
field defined by
1 + α1 + α4 = 0

α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = 1 + α

α5 = α + α2

α6 = α2 + α3

α7 = 1 + α + α3

α8 = 1 + α2

α9 = α + α3

α10 = 1 + α + α2

α11 = α + α2 + α3

α12 = 1 + α + α2 + α3

α13 = 1 + α2 + α3

α14 = 1 + α3

for the binary code. However, comparing the last column of this matrix with (6.57)
indicates that this column is not correct.

Constructing the binary check matrix from the parity check equations, (6.58)
using Table6.3 substituting the respective 4 bit vector for each column vector of
each nonzero GF(16) symbol, (0 in GF(16) is 0000) produces the following binary
check matrix

H(16, 8) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 0
0 1 0 0 1 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.64)

Weight spectrum analysis indicates the minimum Hamming distance of this code
is 4 due to a single codeword of weight 4,{0, 5, 10, 15}. Deleting the last column of
the parity check matrix produces a (15, 8, 5) code. Another approach is needed to
go from the MDS code to a binary code without incurring a loss in the minimum
Hamming distance.

It is necessary to use the generalised Reed–Solomon MDS code. Here, each col-
umn of the parity check matrix is multiplied by a nonzero element of the GF(2m)

field defined as {μ0, μ1, μ2, μ3, . . . , μ2m}. It is not necessary for these to be dis-
tinct, just to have a multiplicative inverse. The parity check matrix for the (q+ 1, k)
generalised Reed–Solomon MDS code is
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HGRS+ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν0 ν1 ν2 ν3 ν4 ν5 . . . νq−2 νq−1 0
ν0 ν1α1 ν2α2 ν3α3 ν4α4 ν5α5 . . . νq−2αq−2 0 0
ν0 ν1α

2
1 ν2α

2
2 ν3α

2
3 ν4α

2
4 ν5α

2
5 . . . νq−2α

2
q−2 0 0

ν0 ν1α
3
1 ν2α

3
2 ν3α

3
3 ν4α

3
4 ν5α

3
5 . . . νq−2α

3
q−2 0 0

ν0 ν1α
4
1 ν2α

4
2 ν3α

4
3 ν4α

4
4 ν5α

4
5 . . . νq−2α

4
q−2 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ν0 ν1α
q−k
1 ν2α

q−k
2 ν3α

q−k
3 ν4α

q−k
4 ν5α

q−k
5 . . . νq−2α

q−k
q−2 0 νq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

It is clear that as a nonbinary code with codeword coefficients from GF(2m), the
distance properties will remain unchanged as the generalised Reed–Solomon is still
an MDS code. Depending on the coordinate position each nonzero element value
has a unique mapping to another nonzero element value. It is as subfield subcodes
that the generalised Reed–Solomon codes have an advantage. It should be noted that
Goppa codes are examples of a generalised Reed–Solomon code.

Returning to the relatively poor (16, 8, 4) binary code derived from the (16, 14, 3)
MDS code, consider the generalised (16, 14, 3) Reed–Solomon code with parity
check matrix.

H(16,14) =
[

ν0 ν1 ν2 ν3 ν4 ν5 ν6 . . . ν13 ν14 ν15
ν0 ν1α

1 ν2α
2 ν3α

3 ν4α
4 ν5α

5 ν6α
6 . . . ν13α

13 ν14α
14 0

]
(6.65)

Setting the vector ν to

{α12, α4, α3, α9, α4, α1, α8, α6, α3, α6, α1, α2, α2, α8, α9, α12}

Constructing the binary check matrix from these parity check equations using
Table6.3 by substituting the respective 4 bit vector for each column vector of each
nonzeroGF(16) symbol, (0 inGF(16) is 0000) produces the following binary check
matrix

H(16, 8, 5) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1
1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1
1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1
1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1

1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0
1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0
1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.66)

Weight spectrum analysis indicates that theminimumHamming distance of this code
is 5 and achieves the aim of deriving a binary code from anMDS code without loss of
minimum Hamming distance. Moreover, the additional symbol of 1, the last column
in (6.59), may be appended to produce the following check matrix for the (17, 9, 5)
binary code:
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H(17, 9, 5) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0
1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0
1 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0

1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1
1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0
1 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.67)

Not surprisingly, this code has the same parameters as the best known code [5]. The
reader will be asking, how is the vector ν chosen?

Using trial and error methods, it is extremely difficult, and somewhat tiresome to
find a suitable vector ν, even for such a short code. Also weight spectrum analysis
has to be carried out for each trial code.

The answer is that the vector ν is constructed from an irreducible Goppa poly-
nomial of degree 2 with g(z) = α3 + z + z2. Referring to Table6.3, the reader may
verify using all elements of GF(16), that ν is given by g(αi)

−1 for i = 0 to 15.
Unfortunately the technique is only valid for binary codes with minimum Ham-

ming distance of 5 and alsom has to be even.Weight spectrum analysis has confirmed
that the (65, 53, 5), (257, 241, 5), (1025, 1005, 5) and (4097, 4073, 5) codes can be
constructed in this way from doubly extended, generalised Reed–Solomon, MDS
codes.

6.9 Summary

It has been shown that interpolation plays an important, mostly hidden role in alge-
braic coding theory. The Reed–Solomon codes, BCH codes, and Goppa codes are all
codes that may be constructed via interpolation. It has also been demonstrated that all
of these codes form part of a large family of generalisedMDS codes. The encoding of
BCH and Goppa codes has been explored from the viewpoint of classical Lagrange
interpolation. It was shown in detail how Goppa codes are designed and constructed
starting from first principles. The parity check matrix of a BCH code was derived as
a Goppa code proving that BCH codes are a subset of Goppa codes. Following from
this result and using properties of the cyclotomic cosets it was explained how the
minimum Hamming distance of some BCH codes is able to exceed the BCH bound
producing outstanding codes. It was shown how these exceptional BCH codes can
be identified and constructed. A little known paper by Goppa was discussed and as
a result it was shown how Goppa codes and BCH codes may be extended in length
with additional parity check bits resulting in increased minimum Hamming distance
of the code. Several examples were given of the technique which results in some
outstanding codes. Reed–Solomon codes were explored as a means of constructing
binary codes resulting in improvements to the database of best known codes.
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Chapter 7
Reed–Solomon Codes and Binary
Transmission

7.1 Introduction

Reed–Solomon codes named after Reed and Solomon [9] following their publication
in 1960 have been used together with hard decision decoding in a wide range of
applications. Reed–Solomon codes are maximum distance separable (MDS) codes
and have the highest possible minimumHamming distance. The codes have symbols
from Fq with parameters (q −1, k, q − k). They are not binary codes but frequently
are used with q = 2m , and so there is a mapping of residue classes of a primitive
polynomial with binary coefficients [6] and each element of F2m is represented as a
binarym-tuple. Thus, binary codeswith codeparameters (m[2m−1], km, 2m−k) can
be constructed from Reed–Solomon codes. Reed–Solomon codes can be extended
in length by up to two symbols and in special cases extended in length by up to
three symbols. In terms of applications, they are probably the most popular family
of codes.

Researchers over the years have tried to come up with an efficient soft decision
decoding algorithm and a breakthrough in hard decision decoding in 1997 byMadhu
Sudan [10], enabledmore than 2m−k

2 errors to be correctedwith polynomial time com-
plexity. The algorithm was limited to low rate Reed–Solomon codes. An improved
algorithm for all code rates was discovered by Gursuswami and Sudan [3] and led
to the Guruswami and Sudan algorithm being applied in a soft decision decoder by
Kötter and Vardy [5]. A very readable, tutorial style explanation of the Guruswami
and Sudan algorithm is presented by McEliece [7]. Many papers followed, dis-
cussing soft decision decoding of Reed–Solomon codes [1] mostly featuring sim-
ulation results of short codes such as the (15, 11, 5) and the (31, 25, 7) code.
Binary transmission using baseband bipolar signalling or binary phase shift keying
(BPSK) [8] and the additive white gaussian noise (AWGN) channel is most com-
mon. Some authors have used quadrature amplitude modulation (QAM) [8] with 2m

levels to map to each F2m symbol [5]. In either case, there is a poor match between

© The Author(s) 2017
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the modulation method and the error-correcting code. The performance achieved is
not competitive compared to other error-correcting code arrangements. For binary
transmission, a binary error-correcting code should be used and not a symbol-based
error-correcting code. For QAM and other multilevel signalling, better performance
is obtained by applying low-rate codes to the least significant bits of received sym-
bols and high-rate codes to the most significant bits of received symbols. Applying
a fixed-rate error-correcting code to all symbol bits is the reason for the inefficiency
in using Reed–Solomon codes on binary channels.

Still, these modulation methods do provide a means of comparing different
decoder arrangements for RS codes. This theme is explored later in Sect. 7.3 where
soft decision decoding of RS codes is explored.

7.2 Reed–Solomon Codes Used with Binary
Transmission-Hard Decisions

Whilst RS codes are very efficient codes, being MDS codes, they are not particularly
well suited to the binary channel as it will become apparent from the results presented
below. Defining the RS code over F2m , RS codes extended with a single symbol
are considered with length n = 2m , with k information symbols, and with dmin =
n−k+1. The length in bits, nb = mn and there are kb information bits with kb = km.

The probability of a symbol errorwith binary transmission and theAWGNchannel
is

ps = 1 −
(

1 − 1

2
er f c

(√
k

n

Eb

N0

))m

(7.1)

The RS code can correct t errors where t =
⌊
n−k+1

2

⌋
. Accordingly, a decoder error

occurs if there are more than t symbol errors and the probability of decoder error,
pC is given by

pC =
n∑

i=t+1

n!
(n − i)!i ! p

i
s(1 − ps)

n−i (7.2)

As a practical example, we will consider the (256, 234, 23) extended RS code.
Representing each F28 symbol as a binary 8 tuple the RS code becomes a (2048,
1872, 23) binary code. The performance with hard decisions is shown in Fig. 7.1 as
a function of Eb

N0
. This code may be directly compared to the binary (2048, 1872,

33) Goppa code since their lengths and code rates are identical. The decoder error
probability for the binary Goppa code is given by
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Fig. 7.1 Comparison of hard decision decoding of the (256, 234, 23) RS code compared to the
(2048, 1872, 33) Goppa code (same code length in bits and code rate)

pC =
nm∑

i=tG+1

(nm)!
(nm − i)!i !

(
1

2
er f c

√
k

n

Eb

N0

)i(
1 − 1

2
er f c

√
k

n

Eb

N0

)nm−i

(7.3)

where tG =
⌊
dmin+1

2

⌋
for the binary Goppa code.

The comparison in performance is shown in Fig. 7.1 and it can be seen that the
Goppa code is approximately 0.75dB better than the RS code at 1 × 10−10 frame
error rate.

It is interesting to speculate whether the performance of the RS code could be
improved by using 3-level quantisation of the channel bits and erasing symbols if
any of the bits within a symbol are erased. The probabilities of a bit erasure perase
and bit error pb for 3-level quantisation are given in Chap.3, Eqs. (3.41) and (3.42)
respectively, but note that a lower threshold needs to be used for best performance
with these code parameters,

√
Es−0.2×σ instead of

√
Es−0.65×σ . The probability

of a symbol erasure, pS erase is given by

pS erase = 1 − (1 − perase)
m (7.4)

and the probability of a symbol error, pS error is given by

pS error = 1 −
(
1 − (1 − perase)

m
)

− (1 − pb)
m (7.5)

http://dx.doi.org/10.1007/978-3-319-51103-0_3
http://dx.doi.org/10.1007/978-3-319-51103-0_3
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Fig. 7.2 Comparison of hard decision and erasure decoding of the (256, 250, 7) RS code for the
binary channel

and

pS error = (1 − perase)
m − (1 − pb)

m (7.6)

For each received vector, provided the number of errors t and the number of erasures
s such that 2t + s ≤ n − k, then the received vector will be decoded correctly. A
decoder error occurs if 2t + s > n − k.

The probability distribution of errors and erasures in the received vector, e(z)may
be easily found by defining a polynomial p(z) and raising it to the power of n, the
number of symbols in a codeword.

e(z) = (
1 − pS error − pS erase + pS erasez

−1 + pS error z
−2

)n
(7.7)

The probability of decoder error pC is simply found from e(z) by summing all
coefficients of z−i where i is greater than n − k. This is very straightforward with a
symbolic mathematics program such as Mathematica. The results for the RS (256,
234, 23) code are shown in Fig. 7.1. It can be seen that there is an improvement over
the hard decision case but it is rather marginal.

A rather more convincing case is shown in Fig. 7.2 for the RS (256, 250, 7) code
where the performance is shown down to frame error rates of 1×10−20. In this case,
there is an improvement of approximately 0.4 dB.
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It has already been established that for the binary transmission channel, the RS
codes based on GF(2m), do not perform as well as a binary designed code with
the same code parameters. The problem is that bit errors occur independently and
it only takes a single bit error to cause a symbol error. Thus, the code structure,
being symbol based, is not well matched to the transmission channel. Another way
of looking at this is to consider the Hamming distance. For the binary (2048, 1872)
codes considered previously, the RS-based code turns out to have a binary Hamming
distance of 23whilst the binary Goppa code has a Hamming distance of 33. However,
there is a simple method of modifying RS codes to produce good binary codes as
discussed in Chap. 6. It is a code concatenation method best suited for producing
symbol-based binary codes whereby a single overall binary parity check is added to
each binary m-tuple representing each symbol. Starting with a RS (n, k, n − k − 1)
code, adding the overall binary parity checks produces a (n[m+1], km, 2[n−k−1])
binary code. Now the minimumweight of each symbol is 2, producing a binary code
with twice the minimum Hamming distance of the original RS code. Kasahara [4]
realised that in some cases an additional information bit may be added by adding the
all 1′s codeword to the generator matrix. Some best known codes are constructed in
this way as discussed in Chap.6. One example is the (161, 81, 23) binary code [6].

7.3 Reed–Solomon Codes and Binary Transmission Using
Soft Decisions

RS codes applied to the binary transmission channel will now be considered using
unquantised soft decision decoding. The best decoder to use is the modified Dorsch
decoder, discussed in Chap.15, because it provides near maximum likelihood decod-
ing. However when used with codes having a significant coding gain, the code length
needs to be typically less than 200 bits.

We will consider augmented, extended RS codes constructed from GF(2m). The
length is 2m + 1 and these are Maximum Distance Separable (MDS) codes with
parameters (2m + 1, k, 2m+1 − k). Moreover, the general case is that augmented,
extended RS codes may be constructed using any Galois Field GF(q) with parame-
ters (q+1, k, q+2−k) [6].Denoting theq field elements as 0, α0, α1, α2, . . . αq−2,
the parity-check matrix is given by

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α
j
0 α

j
1 α

j
2 . . . α

j
q−2 1 0

α
j+1
0 α

j+1
1 α

j+1
2 . . . α

j+1
q−2 0 0

α
j+2
0 α

j+2
1 α

j+2
2 . . . α

j+2
q−2 0 0

. . . . . . . . . . . . . . . . . . . . .

α
j+q−k−1
0 α

j+q−k−1
1 α

j+q−k−1
2 . . . α

j+q−k−1
q−2 0 0

α
j+q−k
0 α

j+q−k
1 α

j+q−k
2 . . . α

j+q−k
q−2 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Table 7.1 GF(32) non-zero
extension field elements
defined by 1 + α2 + α5 = 0

α0 = 1 α16 = 1 + α + α3 + α4

α1 = α α17 = 1 + α + α4

α2 = α2 α18 = 1 + α

α3 = α3 α19 = α + α2

α4 = α4 α20 = α2 + α3

α5 = 1 + α2 α21 = α3 + α4

α6 = α + α3 α22 = 1 + α2 + α4

α7 = α2 + α4 α23 = 1 + α + α2 + α3

α8 = 1 + α2 + α3 α24 = α + α2 + α3 + α4

α9 = α + α3 + α4 α25 = 1 + α3 + α4

α10 = 1 + α4 α26 = 1 + α + α2 + α4

α11 = 1 + α + α2 α27 = 1 + α + α3

α12 = α + α2 + α3 α28 = α + α2 + α4

α13 = α2 + α3 + α4 α29 = 1 + α3

α14 = 1 + α2 + α3 + α4 α30 = α + α4

α15 = 1 + α + α2 + α3 + α4

There are q − k + 1 rows of the matrix corresponding to the q − k + 1 parity
symbols of the code. Any of the q − k + 1 columns form a Vandermonde matrix
and the matrix is non-singular which means that any set of q − k + 1 symbols of
a codeword may be erased and solved using the parity-check equations. Thus, the
code is MDS. The columns of the parity-check matrix may be permuted into any
order and any set of s symbols of a codeword may be defined as parity symbols and
permanently erased. Thus, their respective columns of H may be deleted to form a
shortened (2m + 1 − s, k, 2m+1 − s − k) MDS code. This is an important property
of MDS codes, particularly for their practical realisation in the form of augmented,
extended RS codes because it enables efficient implementation in applications such
as incremental redundancy systems, discussed in Chap.17, and network coding.
Using the first q − 1 columns of H, and setting α0, α1, α2, . . . αq−2 equal to
α0, α1, α2, . . . αq−2, where α is a primitive element of GF(q) a cyclic code may
be constructed, which has advantages for encoding and decoding implementation.

Wewill consider the shortened RS code (30, 15, 16) constructed from theGF(25)
extension field with H constructed using j = 0 and α being the primitive root of
1 + x2 + x5. The GF(32) extension field table is given in Table7.1 based on the
primitive polynomial 1 + x2 + x5 so that 1 + α2 + α5 = 0, modulo 1 + x31.

The first step in the construction of the binary code is to construct the parity-check
matrix for the shortened RS code (30, 15, 16) which is

http://dx.doi.org/10.1007/978-3-319-51103-0_17
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H(30,15) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 α α2 . . . α29

1 α2 α4 . . . α27

1 α3 α6 . . . α25

. . . . . . . . . . . . . . .

1 α13 α26 . . . α5

1 α14 α28 . . . α3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Each element of this parity-checkmatrix is to be replaced with a 5×5matrix in terms
of the base field, which in this case is binary. First, the number of rows are expanded
to form H(30,75) given by matrix (7.8). The next step is to expand the columns in
terms of the base field by substituting for powers of α using Table7.1. For example,
if an element of the parity-check matrix H(30,75) is, say α26, then this is replaced by
1+ α + α2 + α4 which in binary is 11101. Proceeding in this way the binary matrix
H(150,75) is produced (some entries have been left as they were to show the procedure
partly completed) as in matrix (7.9).

H(30,75) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
α α α . . . α

α2 α2 α2 . . . α2

α3 α3 α3 . . . α3

α4 α4 α4 . . . α4

1 α α2 . . . α29

α α2 α3 . . . α30

α2 α3 α4 . . . 1
α3 α4 α5 . . . α

α4 α5 α6 . . . α2

1 α2 α4 . . . α27

α α3 α5 . . . α28

α2 α4 α6 . . . α29

α3 α5 α7 . . . α30

α4 α6 α8 . . . 1
1 α3 α6 . . . α25

α α4 α7 . . . α26

α2 α5 α8 . . . α27

α3 α6 α9 . . . α28

α4 α7 α10 . . . α27

. . . . . . . . . . . . . . .

1 α14 α28 . . . α3

α α15 α29 . . . α4

α2 α16 α30 . . . α5

α3 α17 1 . . . α6

α4 α18 α . . . α7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.8)
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H(150,75) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10000 10000 10000 . . . 10000
01000 01000 01000 . . . 01000
00100 00100 00100 . . . 00100
00010 00010 00010 . . . 00010
00001 00001 00001 . . . 00001
10000 01000 00100 . . . 10010
01000 00100 00010 . . . α30

00100 00010 00001 . . . 10000
00010 00001 10100 . . . 01000
00001 10100 01010 . . . 00100
10000 00100 00001 . . . 11010
01000 00010 10100 . . . 01101
00100 00001 01010 . . . 10010
00010 10100 00101 . . . α30

00001 01010 10110 . . . 10000
10000 00010 01010 . . . 10011
01000 00001 00101 . . . 11101
00100 10100 10110 . . . 11010
00010 01010 01011 . . . 01101
00001 00101 α10 . . . 11010

. . . . . . . . . . . . . . .
10000 α14 01101 . . . 00010
01000 α15 10010 . . . 00001
00100 α16 α30 . . . 10100
00010 α17 1 . . . 01010
00001 α18 α . . . 00101

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.9)

The resulting binary code is a (150, 75, 16) code with the dmin the same as the
symbol-based RS (30, 15, 16) code. As observed by MacWilliams [6], changing the
basis can increase the dmin of the resulting binary code, and making j = 3 in the RS
parity-check matrix above produces a (150, 75, 19) binary code.

A (150, 75, 22) binary code with increased dmin can be constructed using the
overall binary parity-check concatenation as discussed above. Starting with the (25,
15, 11) RS code, an overall parity check is added to each symbol, producing a parity-
check matrix, H(150,75,22) given by matrix (7.10). We have constructed two binary
(150, 75) codes from RS codes. It is interesting to compare these codes to the known
best code of length 150 and rate 1

2 . The known, best codes are to be found in a
database [2] and the best (150, 75) code has a dmin of 23 and is derived by shortening
by one bit (by deleting the x150 coordinate from the G matrix) of the (151, 76, 23)
cyclic code whose generator polynomial is

⎡

⎢
⎢
⎢
⎢
⎣

100001 100001 100001 . . . 100001
010001 010001 010001 . . . 010001
001001 001001 001001 . . . 001001
000101 000101 000101 . . . 000101
000011 000011 000011 . . . 000011

⎤

⎥
⎥
⎥
⎥
⎦
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H(150,75,22) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

100001 010001 001001 . . . 100100
010001 001001 000101 . . . 010010
001001 000101 000011 . . . 100001
000101 000011 101000 . . . 010001
000011 101000 010100 . . . 001001
100001 001001 000011 . . . 110101
010001 000101 101000 . . . 011011
001001 000011 010100 . . . 100100
000101 101000 001010 . . . 010010
000011 010100 101101 . . . 100001
100001 000101 010100 . . . 100111
010001 000011 001010 . . . 111010
001001 101000 101101 . . . 110101
000101 010100 010111 . . . 011011
000011 001010 100010 . . . 110101

. . . . . . . . . . . . . . .

100001 101110 011011 . . . 000101
010001 111111 100100 . . . 000011
001001 110110 010010 . . . 101000
000101 110011 1 . . . 010100
000011 110000 010001 . . . 001010

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7.10)

g(x) = 1 + x3 + x5 + x8 + x10 + x11 + x14 + x15 + x17 + x19 + x20 + x22

+ x25 + x27 + x28 + x30 + x31 + x34 + x36 + x37 + x39 + x40 + x45 + x46

+ x48 + x50 + x52 + x59 + x60 + x63 + x67 + x70 + x73 + x74 + x75 (7.11)

These three binary codes, the RS-based (150, 75, 19) and (150, 75, 22) codes together
with the (150, 75, 23) shortened cyclic code have been simulated using binary trans-
mission for the AWGN channel. The decoder used is a modified Dorsch decoder
set to evaluate 2 × 107 codewords per received vector. This is a large number of
codewords and is sufficient to ensure that quasi-maximum likelihood performance is
obtained. In this way, the true performance of each code is revealed rather than any
shortcomings of the decoder.

The results are shown in Fig. 7.3. Also shown in Fig. 7.3, for comparison purposes,
is the sphere packing bound and the erasure-based binomial bound discussed in
Chap.1. Interestingly, all three codes have very good performance and are very close
to the erasure-based binomial bound.Although not close to the sphere packing bound,
this bound is for non-binary codes and there is an asymptotic loss of 0.187dB for
rate 1

2 binary codes in comparison to the sphere packing bound as the code length
extends towards ∞.

Comparing the three codes, no code has the best overall performance over the
entire range of Eb

N0
, and, surprisingly the dmin of the code is no guide. The reason for

this can be seen from the Hamming distances of the codewords decoded in error for

http://dx.doi.org/10.1007/978-3-319-51103-0_1
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Fig. 7.3 Comparison of the (150, 75, 19) code derived from the RS(30, 15, 16) code, the concate-
nated (150, 75, 22) code and the known, best (150, 75, 23) code derived by shortening the (151, 76,
23) cyclic code

the three codes after 100 decoder error events. The results are shown in Table7.2 at
Eb
N0

= 3 dB. From Table7.2 it can be seen that the concatenated code (150, 75, 22) has
more error events with Hamming distances in the range 22–32, but the (150, 75, 23)
known, best code has more error events for Hamming distances up to 36 compared
to the (150, 75, 19) RS derived code, and this is the best code at Eb

N0
= 3 dB.

The distribution of error events is illustrated by the cumulative distribution of
error events plotted in Fig. 7.4 as a function of Hamming distance. The weakness of
the (150, 75, 22) code at Eb

N0
= 3 dB is apparent.

At higher values of Eb
N0
, the higher dmin of the (150, 75, 23) known, best code

causes it to have the best performance as can be seen from Fig. 7.3.

7.4 Summary

This chapter studied further the Reed–Solomon codes which are ideal symbol-based
codes because they are Maximum Distance Separable (MDS) codes. These codes
are not binary codes but were considered for use as binary codes in this chapter. The
performance of Reed–Solomon codes when used on a binary channel was explored
and compared to codes which are designed for binary transmission. The construction
of the parity-check matrices of RS codes for use as binary codes was described
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Table 7.2 Hamming distances and multiplicities of 100 error events for each of the (150, 75) codes
at Eb

N0
= 3 dB

Hamming
distance

(150, 75, 19) Code
number

(150, 75, 22) Code
number

(150, 75, 23) Code
number

22 0 4 0

24 0 4 0

25 1 0 0

26 1 9 0

27 3 0 7

28 5 7 6

29 4 0 0

30 8 22 0

31 7 0 15

32 7 19 20

33 14 0 0

34 8 14 0

35 5 0 19

36 8 13 18

37 3 0 0

38 8 5 0

39 7 0 9

40 6 1 2

41 2 0 0

42 1 2 0

43 1 0 1

44 1 0 1

47 0 0 1

48 0 0 1

in detail for specific code examples. The performance results of three differently
constructed (150, 75) codes simulated for the binary AWGN channel, using a near
maximum likelihood decoder, were presented. Surprisingly the best performing code
at 10−4 error rate is not the best, known (150, 75, 23) code. Error event analysis was
presented which showed that this was due to the higher multiplicities of weight
32–36 codeword errors. However, beyond 10−6 error rates the best, known (150, 75,
23) code was shown to be the best performing code.
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Chapter 8
Algebraic Geometry Codes

8.1 Introduction

In order tomeet channel capacity, as Shannon postulated, long error-correction codes
with large minimum distances need to be found. A large effort in research has been
dedicated to finding algebraic codes with good properties and efficient decoding
algorithms. Reed–Solomon (RS) codes are a product of this research and have over
the years found numerous applications, the most noteworthy being their implemen-
tation in satellite systems, compact discs, hard drives and modern, digitally based
communications. These codes are defined with non-binary alphabets and have the
maximum achievable minimum distance for codes of their lengths. A generalisation
of RS codes was introduced by Goppa using a unique construction of codes from
algebraic curves. This development led to active research in that area so that cur-
rently the complexity of encoding and decoding these codes has been reduced greatly
fromwhen they were first presented. These codes are algebraic geometry (AG) codes
and have much greater lengths than RS codes with the same alphabets. Furthermore
these codes can be improved if curves with desirable properties can be found. AG
codes have good properties and some families of these codes have been shown to be
asymptotically superior as they exceed the well-known Gilbert–Varshamov bound
[16] when the defining finite field Fq has size q ≥ 49 with q always a square.

8.2 Motivation for Studying AG Codes

Aside from their proven superior asymptotic performance when the field size q2 >

49, AG codes defined in much smaller fields have very good parameters. A closer
look at tables of best-known codes in [8, 15] shows that algebraic geometry codes
feature as the best-known linear codes for an appreciable range of code lengths for

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
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different field sizes q. To demonstrate a comparison the parameters of AG codes
with shortened BCH codes in fields with small sizes and characteristic 2 is given.
AG codes of length n, dimension k have minimum distance d = n−k−g+1 where
g is called the genus . Notice that n − k + 1 is the distance of a maximum distance
(MDS) separable code. The genus g is then the Singleton defect s of an AG code.
The Singleton defect is simply the difference between the distance of a code and the
distance some hypothetical MDS code of the same length and dimension. Similarly
a BCH code is a code with length n, dimension k, and distance d = n − k − s + 1
where s is the Singleton defect and number of non-consecutive roots of the BCH
code.

Consider Table8.1,which compares the parameters ofAGcodes from three curves
with genera 3, 7, and 14 with shortened BCH codes with similar code rates. At high
rates, BCHcodes tend to have betterminimumdistances or smaller Singleton defects.
This is because the roots of the BCH code with high rates are usually cyclically
consecutive and thus contribute to the minimum distance. For rates close to half, AG
codes are better than BCH codes since the number of non-consecutive roots of the
BCHcode is increased as a result of conjugacy classes. TheAGcodes benefit from the
fact that their Singleton defect or genus remains fixed for all rates. As a consequence
AG codes significantly outperform BCH codes at lower rates. However, the genera
of curves with many points in small finite fields are usually large and as the length
of the AG codes increases in F8, the BCH codes beat AG codes in performance.
Tables8.2 and 8.3 show the comparison between AG and BCH codes in fields F16

and F32, respectively. With larger field sizes, curves with many points and small
genera can be used, and AG codes do much better than BCH codes. It is worth noting
that Tables8.1, 8.2 and 8.3 show codes in fields with size less than 49.

8.2.1 Bounds Relevant to Algebraic Geometry Codes

Bounds on the performance of codes that are relevant to AG codes are presented in
order to show the performance of these codes. Let Aq(n, d) represent the number of
codewords in the code space of a code C with length n, minimum distance d and
defined over a field of size q. Let the information rate be R = k/n and the relative
minimum distance be δ = d/n for 0 ≤ δ ≤ 1, then

αq(δ) = lim
n→∞

1

n
Aq(n, δn)

which represents the k/n such that there exists a code over a field of size q that has
d/n converging to δ [18]. The q-ary entropy function is given by

Hq(x) =
{
0, x = 0

x logq(q − 1) − x logq x − (1 − x) logq(1 − x), 0 < x ≤ θ
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Table 8.1 Comparison between BCH and AG codes in F8

Rate AG code in F23 Number of
points

Genus Shortened BCH
code in F23

BCH code in
F23

0.2500 [23, 5, 16] 24 3 [23, 5, 12] [63, 45, 12]
0.3333 [23, 7, 14] 24 3 [23, 7, 11] [63, 47, 11]
0.5000 [23, 11, 10] 24 3 [23, 10, 8] [63, 50, 8]
0.6667 [23, 15, 6] 24 3 [23, 14, 6] [63, 54, 6]
0.7500 [23, 17, 4] 24 3 [23, 16, 5] [63, 56, 5]
0.8500 [23, 19, 2] 24 3 [23, 18, 4] [63, 58, 4]
0.2500 [33, 8, 19] 34 7 [33, 7, 16] [63, 37, 16]
0.3333 [33, 11, 16] 34 7 [33, 11, 14] [63, 41, 14]
0.5000 [33, 16, 11] 34 7 [33, 15, 12] [63, 45, 12]
0.6667 [33, 22, 5] 34 7 [33, 22, 7] [63, 52, 7]
0.7500 [33, 24, 3] 34 7 [33, 24, 6] [63, 54, 6]
0.2500 [64, 16, 35] 65 14 [64, 16, 37] [63, 15, 37]
0.3333 [64, 21, 30] 65 14 [64, 20, 31] [63, 19, 31]
0.5000 [64, 32, 19] 65 14 [64, 31, 22] [63, 30, 22]
0.6667 [64, 42, 9] 65 14 [64, 42, 14] [63, 41, 14]
0.7500 [64, 48, 3] 65 14 [64, 48, 11] [63, 47, 11]

Table 8.2 Comparison between BCH and AG codes in F16

Rate AG code in F24 Number of
points

Genus Shortened BCH
code in F24

BCH code in
F24

0.2500 [23, 5, 18] 24 1 [23, 4, 11] [255, 236, 11]
0.3333 [23, 7, 16] 24 1 [23, 6, 10] [255, 238, 10]
0.5000 [23, 11, 12] 24 1 [23, 10, 8] [255, 242, 8]
0.6667 [23, 15, 8] 24 1 [23, 14, 6] [255, 246, 6]
0.7500 [23, 17, 6] 24 1 [23, 16, 5] [255, 248, 5]
0.8500 [23, 19, 4] 24 1 [23, 18, 4] [255, 250, 4]
0.2500 [64, 16, 43] 65 6 [64, 16, 27] [255, 207, 27]
0.3333 [64, 21, 38] 65 6 [64, 20, 25] [255, 211, 25]
0.5000 [64, 32, 27] 65 6 [64, 32, 19] [255, 223, 19]
0.6667 [64, 42, 17] 65 6 [64, 41, 13] [255, 232, 13]
0.7500 [64, 48, 11] 65 6 [64, 47, 10] [255, 238, 10]
0.8500 [64, 54, 5] 65 6 [64, 53, 7] [255, 244, 7]
0.2500 [126, 31, 76] 127 20 [126, 30, 57] [255, 159, 57]
0.3333 [126, 42, 65] 127 20 [126, 41, 48] [255, 170, 48]
0.5000 [126, 63, 44] 127 20 [126, 63, 37] [255, 192, 37]
0.6667 [126, 84, 23] 127 20 [126, 84, 24] [255, 213, 24]
0.7500 [126, 94, 13] 127 20 [126, 94, 19] [255, 223, 19]
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Table 8.3 Comparison between BCH and AG codes in F32

Rate AG code in F24 Number of
points

Genus Shortened BCH
code in F24

BCH code in F24

0.2500 [43, 10, 33] 44 1 [43, 10, 18] [1023, 990, 18]
0.3333 [43, 14, 29] 44 1 [43, 14, 16] [1023, 994, 16]
0.5000 [43, 21, 22] 44 1 [43, 20, 13] [1023, 1000, 13]
0.6667 [43, 28, 15] 44 1 [43, 28, 9] [1023, 1008, 9]
0.7500 [43, 32, 11] 44 1 [43, 32, 7] [1023, 1012, 7]
0.8500 [43, 36, 7] 44 1 [43, 36, 5] [1023, 1016, 5]
0.2500 [75, 18, 53] 76 5 [75, 18, 30] [1023, 966, 30]
0.3333 [75, 25, 46] 76 5 [75, 24, 27] [1023, 972, 27]
0.5000 [75, 37, 34] 76 5 [75, 36, 21] [1023, 984, 21]
0.6667 [75, 50, 21] 76 5 [75, 50, 14] [1023, 998, 14]
0.7500 [75, 56, 15] 76 5 [75, 56, 11] [1023, 1004, 11]
0.8500 [75, 63, 8] 76 5 [75, 62, 8] [1023, 1010, 8]
0.2500 [103, 25, 70] 104 9 [103, 25, 42] [1023, 945, 42]
0.3333 [103, 34, 61] 104 9 [103, 33, 38] [1023, 953, 38]
0.5000 [103, 51, 44] 104 9 [103, 50, 28] [1023, 970, 28]
0.6667 [103, 68, 27] 104 9 [103, 68, 19] [1023, 988, 19]
0.7500 [103, 77, 18] 104 9 [103, 76, 15] [1023, 996, 15]
0.8500 [103, 87, 8] 104 9 [103, 86, 10] [1023, 1006, 10]

The asymptotic Gilbert–Varshamov lower bound on αq(δ) is given by,

αq(δ) ≥ 1 − Hq(δ) for 0 ≤ δ ≤ θ

The Tsfasman–Vladut–Zink bound is a lower bound on αq(δ) and holds true for
certain families of AG codes, it is given by

αq(δ) ≥ 1 − δ − 1√
q − 1

where
√
q ∈ N/0

The supremacy of AG codes lies in the fact that the TVZ bound ensures that these
codes have better performance when q is a perfect square and q ≥ 49.

The Figs. 8.1, 8.2 and 8.3 show the R vs δ plot of these bounds for some range
of q.
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Fig. 8.1 Tsfasman–Vladut–Zink and Gilbert–Varshamov bound for q = 32
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186 8 Algebraic Geometry Codes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

al
ph

a q
(n
,d
)

d/n

Gilbert-Varshamov
Tsfasman-Vladut-Zink

Fig. 8.3 Tsfasman–Vladut–Zink and Gilbert–Varshamov bound for q = 256

8.3 Curves and Planes

In this section, the notion of curves and planes are introduced. Definitions and discus-
sions are restricted to two-dimensional planes and all polynomials are assumed to be
defined with coefficients in the finite field Fq . The section draws from the following
sources [2, 12, 17, 18]. Let f (x, y) be a polynomial in the bivariate ring Fq [x, y].
Definition 8.1 (Curve) A curve is the set of points for which the polynomial f (x, y)
vanishes to zero.Mathematically, a curveX is associated with a polynomial f (x, y)
so that f (P) = {0|P ∈ X }.

A curve is a subset of a plane. There are two main types of planes; the affine plane
and the projective plane. These planes are multidimensional, however, we restrict
our discussion to two-dimensional planes only.

Definition 8.2 (Affine Plane) A two-dimensional affine plane denoted by A2(Fq) is
a set of points,

A
2(Fq) = {(α, β) : α, β ∈ Fq} (8.1)

which has cardinality q2.

A curve X is called an affine curve ifX ⊂ A
2(Fq).

Definition 8.3 (Projective Plane) A two-dimensional projective plane P2(Fq) is the
algebraic closure of A2 and is defined as the set of equivalence points,
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P
2(Fq) = {(α : β : 1) : α, β ∈ Fq}

⋃
{(α : 1 : 0) : α ∈ Fq}

⋃
{(1 : 0 : 0)}.

A curveX is said to lie in the projective plane ifX ⊂ P
2(Fq). The points in the

projective plane are called equivalence points since for any point P ∈ P
2(Fq),

if f (x0, y0, z0) = 0, then f (αx0, αy0, αz0) = 0 α ∈ F
∗
q , P = (x0 : y0 : z0)

because f (x, y, z) is homogeneous. The colons in the notation of a projective point
(x : y : z) represents this equivalence property.

The affine polynomial f (x, y) is in two variables, in order to define a projective
polynomial in three variables, homogenisation is used,

f (x, y, z) = zd f

(
x

z
,
y

z

)
d = Degree of f (x, y)

which turns f (x, y) into a homogeneous1 polynomial in three variables. An
n-dimensional projective polynomial has n + 1 variables. The affine space A2(Fq)

is a subset of P2(Fq) and is given by,

A
2(Fq) = {(α : β : 1) : α, β ∈ Fq} ⊂ P

2(Fq).

A projective curve can then be defined as a set of points,

X = {P : f (P) = 0, P ∈ P
2(Fq)}.

Definition 8.4 (Point at Infinity) A point on a projective curve X that coincides
with any of the points of P2(Fq) of the form,

{(α : 1 : 0) : α ∈ Fq} ∪ {(1 : 0 : 0)}

i.e. points (x0 : y0 : z0) for which z0 = 0 is called a point at infinity.

A third plane, called the bicyclic plane [1], is a subset of the A2(Fq) and consists
of points,

{(α, β) : α, β ∈ Fq \ {0}}.

This plane was defined so as to adapt the Fourier transform to AG codes since the
inverse Fourier transform is undefined for zero coordinates.

Example 8.1 Consider the two-dimensional affine planeA2(F4). Following the def-
inition of A2(F4) we have,

1Each term in the polynomial has degree equal to d.
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(0, 0) (0, 1) (1, 0) (1, 1)
(1, α) (α, 1) (1, α2) (α2, 1)
(α2, α) (α, α2) (0, α2) (0, α)

(α2, 0) (α, 0) (α2, α2) (α, α)

whereα is the primitive element of the finite fieldF4. The two-dimensional projective
plane P2(F4) is given by,

Affine Points Points at Infinity
(0 : 0 : 1) (0 : 1 : 1) (1 : 0 : 1) (1 : 1 : 1) (0 : 1 : 0) (1 : 0 : 0)
(1 : α : 1) (α : 1 : 1) (1 : α2 : 1) (α2 : 1 : 1) (α : 1 : 0)
(α2 : α : 1) (α : α2 : 1) (0 : α2 : 1) (0 : α : 1) (α2 : 1 : 0)
(α2 : 0 : 1) (α : 0 : 1) (α2 : α2 : 1) (α : α : 1) (1 : 1 : 0)

Definition 8.5 (Irreducible Curve) A curve associated with a polynomial f (x, y, z)
that cannot be reduced or factorised is called irreducible.

Definition 8.6 (Singular Point) A point on a curve is singular if its evaluation on all
partial derivatives of the defining polynomial with respect to each indeterminate is
zero.

Suppose fx , fy , and fz denote partial derivatives of f (x, y, z) with respect to x ,
y, and z respectively. A point P ∈ X is singular if,

∂ f (x, y, z)

∂x
= fx ,

∂ f (x, y, z)

∂y
= fy,

∂ f (x, y, z)

∂z
= fz

fx (P) = fy(P) = fz(P) = 0.

Definition 8.7 (Smooth Curve) A curveX is nonsingular or smooth does not con-
tain any singular points.

To obtain AG codes, it is required that the defining curve is both irreducible and
smooth.

Definition 8.8 (Genus) The genus of a curve can be seen as a measure of how many
bends a curve has on its plane. The genus of a smooth curve defined by f (x, y, z) is
given by the Plücker formula,

g = (d − 1)(d − 2)

2
, d = Degree of f (x, y, z)

The genus plays an important role in determining the quality of AG codes. It is
desirable for curves that define AG codes to have small genera.
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Example 8.2 Consider the Hermitian curve in F4 defined as,

f (x, y) = x3 + y2 + y affine

f (x, y, z) = x3 + y2z + yz2 projective via homogenisation

It is straightforward to verify that the curve is irreducible. The curve has the following
projective points,

(0 : 0 : 1) (0 : 1 : 1) (α : α : 1) (α : α2 : 1)
(α2 : α : 1) (α2 : α2 : 1) (1 : α : 1) (1 : α2 : 1) (0 : 1 : 0)

Notice the curve has a single point at infinity P∞ = (0 : 1 : 0). One can easily check
that the curve has no singular points and is thus smooth.

8.3.1 Important Theorems and Concepts

The length of an AG code is utmost the number of points on the defining curve. Since
it is desirable to obtain codes that are as long as possible, it is desirable to know what
the maximum number of points attainable from a curve, given a genus is.

Theorem 8.1 (Hasse–Weil with Serre’s Improvement [2]) The Hasse–Weil theorem
with Serre’s improvement says that the number of rational points2 of an irreducible
curve, n, with genus g in Fq is upper bounded by,

n ≤ q + 1 + g�2√q�.

Curves that meet this bound are called maximal curves. The Hermitian curves
are examples of maximal curves. Bezout’s theorem is an important theorem, and is
used to determine the minimum distance of algebraic geometry codes. It describes
the size of the set which is the intersection of two curves in the projective plane.

Theorem 8.2 (Bezout’s Theorem [2]) Any two curves Xa and Xb with degrees of
their associated polynomials as m and n respectively, have utmost m × n common
roots in the projective plane counted with multiplicity.

Definition 8.9 (Divisor) A divisor on a curve X is a formal sum associated with
the points of the curve.

D =
∑

P∈X
np P

where np are integers.

2A rational point is a point of degree one. See Sect. 8.4 for the definition of the degree of point on
a curve.
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A zero divisor is one that has np = 0 for all P ∈ X . A divisor is called effective
if it is not a zero divisor. The support of a divisor is a subset ofX for which np = 0.
The degree of a divisor is given as,

deg(D) =
∑

P∈X
np deg(P)

For simplicity, it is assumed that the degree of points P ∈ X , i.e. deg(P) is 1
(points of higher degree are discussed in Sect. 8.4). Addition of two divisors D1 =∑

P∈X np P and D2 = ∑
P∈X ń p P is so defined,

D1 + D2 =
∑

P∈X
(np + ń p)P.

Divisors are simply book-keeping structures that store information on points of a
curve. Below is an example the intersection divisor of two curves.

Example 8.3 Consider the Hermitian curve in F4 defined as,

f1(x, y, z) = x3 + y2z + yz2

with points given in Example 8.2 and the curve defined by

f2(x, y, z) = x

with points

(0 : 0 : 1) (0 : 1 : 1) (0 : α : 1) (0 : α2 : 1) (0 : 1 : 0)

These two curves intersect at 3 points below all with multiplicity 1,

(0 : 0 : 1) (0 : 1 : 0) (0 : 1 : 1).

Alternatively, this may be represented using a divisor D,

D = (0 : 0 : 1) + (0 : 1 : 0) + (0 : 1 : 1)

with np the multiplicity, equal to 1 for all the points. Notice that the two curves meet
at exactly deg( f1)deg( f2) = 3 points in agreement with Bezout’s theorem.

For rational functions with denominators, points in divisor with np < 0 are poles.
For example, D = P1 − 2P2 will denote an intersection divisor of two curves that
have one zero P1 and pole P2 with multiplicity two in common. Below is the formal
definition of the field of fractions of a curve X .

Definition 8.10 (Field of fractions) The field of fractions Fq(X ) of a curve X
defined by a polynomial f (x, y, z) contains all rational functions of the form
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g(x, y, z)

h(x, y, z)

with the restriction that g(x, y, z) and h(x, y, z) are homogeneous polynomials that
have the same degree and are not divisible by f (x, y, z).

A subset (Riemann–Roch space) of the field of fractions of X meeting certain
conditions are evaluated at points of the curveX to form codewords of an AG code.
Thus, there is a one-to-one mapping between rational functions in this subset and
codewords of an AG code. The Riemann–Roch theorem defines this subset and gives
a lower bound on the dimension of AG codes. The definition of a Riemann–Roch
space is given.

Definition 8.11 (Riemann–Roch Space) The Riemann–Roch space associated with
a divisor D is given by,

L(D) = {t ∈ Fq(X )|(t) + D ≥ 0} ∪ 0

whereFq(X ) is the field of fractions and (t) is the intersection divisor3 of the rational
function t and the curve X .

Essentially, the Riemann–Roch space associated with a divisor D is a set of
functions of the form t from the field of fractions Fq(X ) such that the divisor sum
(t) + D has no poles, i.e. (t) + D ≥ 0.

The rational functions in L(D) are functions from the field of fractions Fq(X )

that must have poles only in the zeros (positive terms) contained in the divisor D,
each pole occurring with utmost the multiplicity defined in the divisor D and most
have zeros only in the poles (negative terms) contained in the divisor D, each zero
occurring with at least the multiplicity defined in the divisor D.

Example 8.4 Suppose a hypothetical curve X has points of degree one,

X = {P1, P2, P3, P4}

We choose a divisor D = 2P1 − 5P2 with degree −3, and define a Riemann–Roch
space L(D). If we randomly select three functions t1, t2, and t3 from the field of
fractions Fq(X ) such that they have divisors,

(t1) = −3P1 + 5P2 + 4P4 (t2) = 2P1 + 4P2 (t3) = −P1 + 8P2 + P3.

t1 /∈ L(D) since (t1) + D = −P1 + 4P4 contains negative terms or poles. Also,
t2 /∈ L(D) since (t2) + D = 4P1 − P2 contains negative terms. However, t3 ∈ L(D)

since (t3)+D = P1+3P2+P3 contains no negative terms. Any function t ∈ Fq(X )

is also in L(D) if it has a pole at P1 with multiplicity at most 2 (with no other poles
in common withX ) and a zero at P2 with multiplicity at least 5.

3An intersection divisor is a divisor that contains information on the points of intersection of two
curves.
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The Riemann–Roch space is a vector space (with rational functions as elements)
thus, a set of basis functions. The size of this set is the dimension of the space.

Theorem 8.3 (Riemann Roch Theorem [2]) LetX be a curve with genus g and D
any divisor with degree (D) > 2g − 2, then the dimension of the Riemann–Roch
space associated with D, denoted by l(D) is,

l(D) = degree(D) − g + 1

Algebraic geometry codes are the image of an evaluation map of a Riemann–Roch
space associated with a divisor D so that

L(D) → F
n
q

t → (t (P1), t (P2), . . . , t (Pn))

where X = {P1, P2, . . . , Pn, Px } is a smooth irreducible projective curve of genus
g defined over Fq . The divisor D must have no points in common with a divisor T
associated withX , i.e. it has support disjoint from T . For example, if the divisor T
is of the form

T = P1 + P2 + · · · + Pn

then, D = mPx .
Codes defined by the divisors T and D = mPx are called one-point AG codes

(since the divisor D has a support containing only one point), and AG codes are
predominantly defined as so since the parameters of such codes are easily deter-
mined [10].

8.3.2 Construction of AG Codes

The following steps are necessary in order to construct a generator matrix of an AG
code,

1. Find the points of a smooth irreducible curve and its genus.
2. Choose divisors D and T = P1 + · · · + Pn . From the Riemann–Roch theo-

rem determine the dimension of the Riemann–Roch space L(D) associated with
divisor D. This dimension l(D) is the dimension of the AG code.

3. Find k = l(D) linearly independent rational functions from L(D). These form
the basis functions of L(D).

4. Evaluate all k basis functions on the points in the support of T to form the k rows
of a generator matrix of the AG code.
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Example 8.5 Consider again the Hermitian curve defined in F4 as,

f (x, y, z) = x3 + y2z + yz2

1. In Example 8.2 this curve was shown to have 8 affine points and one point at
infinity. The genus of this curve is given by the Plücker formula,

g = (r − 1)(r − 2)

2
= 1

where r = 3 is the degree of f (x, y, z).
2. Let D = 5P∞ where P∞ = (0 : 1 : 0) and T be the sum of all 8 affine points.

The dimension of the Riemann–Roch space is then given by,

l(5P∞) = 5 − 1 + 1 = 5

thus, the AG code has dimension k = 5.
3. The basis functions for the space L(5P∞) are

{t1, . . . , tk} =
{
1,

x

z
,
x2

z2
,
y

z
,
xy

z2

}

By examining the basis, it is clear that t1 = 1 has no poles, thus, (t1) + D has
no poles also. Basis functions with denominator z have (ti ) = S − P∞, where S
is a divisor of the numerator. Thus, (ti ) + D has no poles. Basis functions with
denominator z2 have (t j ) = S − 2P∞, where S is a divisor of the numerator.
Thus, (t j ) + D also has no poles.

4. The generator matrix of the Hermitian code defined with divisor D = 5P∞ is
thus,

G =
⎡

⎢
⎣

t1(P1) · · · t1(Pn)
...

. . .
...

tk(P1) · · · tk(Pn)

⎤

⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 α2 α2 1
0 1 0 0 0 α2 α 0
0 0 1 0 0 α 1 α

0 0 0 1 0 α 0 α2

0 0 0 0 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

Example 8.6 Consider the curve defined in F8 as,

f (x, y, z) = x
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1. This curve is a straight line and has 8 affine points of the form (0 : β : 1) and one
point at infinity (0 : 1 : 0). The curve is both irreducible and smooth. The genus
of this curve is given by the Plücker formula,

g = (r − 1)(r − 2)

2
= 0

where r = 1 is the degree of f (x, y, z). Clearly, the genus is zero since the curve
is straight line and has no bends.

2. Let D = 5P∞, where P∞ = (0 : 1 : 0) and T be the sum of all 8 affine points.
The dimension of the Riemann–Roch space is then given by,

l(5P∞) = 5 − 0 + 1 = 6

thus, the AG code has dimension k = 6.
3. The basis functions for the space L(5P∞) are

{t1, . . . , tk} =
{
1,

y

z
,
y2

z2
,
y3

z3
,
y4

z4
,
y5

z5

}

By examining the basis, it is clear that t1 = 1 has no poles, thus, (t1) + D has
no poles also. Basis functions with denominator z have (t1) = S − P∞ where
S = (0 : 0 : 1) is a divisor of the numerator. The denominator polynomial
z evaluates to zero at the point at infinity P∞ of the divisor D, thus, (t1) + D
has no poles. Basis functions with denominator z2 have (t2) = S − 2P∞ where
S = 2 × (0 : 0 : 1) is a divisor of the numerator. The denominator polynomial
z2 evaluates to zero at the point at infinity P∞ of the divisor D with multiplicity
2, thus, (t2) + D has no poles. Basis functions with denominator z3 have (t3) =
S − 3P∞ where S = 3× (0 : 0 : 1) is a divisor of the numerator. Thus, (t3) + D
also has no poles. And so on.

4. The generator matrix of the code defined with divisor D = 5P∞ is thus,

G =
⎡

⎢
⎣

t1(P1) · · · t1(Pn)
...

. . .
...

tk(P1) · · · tk(Pn)

⎤

⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1 1 1
0 α α2 α3 α4 α5 α6 1
0 α2 α4 α6 α α3 α5 1
0 α3 α6 α2 α5 α α4 1
0 α4 α α5 α2 α6 α3 1
0 α5 α3 α α6 α4 α2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Clearly, this is a generator matrix of an extended Reed–Solomon code with para-
meters [3, 6, 8]8.
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Theorem 8.4 (From [2]) The minimum distance of an AG code is given by,

d ≥ n − degree(D)

Thus, the Hermitian code defined by D = 5P∞ is a [8, 5, 3]4 code. The dual of an
AG code has parameters [17],

Dimension, k⊥ = n − degree(D) + g − 1

Distance, d⊥ ≥ degree(D) − 2g + 2

8.4 Generalised AG Codes

Algebraic geometry codes and codes obtained from them feature prominently in the
databases of best-known codes [8, 15] for an appreciable range of code lengths for
different field sizes q. Generalised algebraic geometry codes were first presented
by Niederreiter et al. [21], Xing et al. [13]. A subsequent paper by Ozbudak and
Stichtenoth [14] shed more light on the construction. AG codes as defined by Goppa
utilised places of degree one or rational places. Generalised AG codes however were
constructed by Xing et al. using places of higher degree (including places of degree
one). In [20], the authors presented a method of constructing generalised AG codes
which uses a concatenation concept. The paper showed that best-known codes were
obtainable via this construction. In [4] it was shown that the method can be effective
in constructing new codes and the authors presented 59 codes in finite fields F4, F8

and F9 better than the codes in [8]. In [11], the authors presented a construction
method based on [20] that uses a subfield image concept and obtained new binary
codes as a result. In [19] the authors presented some new curves as well as 129 new
codes in F8 and F9.

8.4.1 Concept of Places of Higher Degree

Recall from Chap.8 that a two-dimensional affine space A2(Fq) is given by the set
of points

{(α, β) : α, β ∈ Fq}

while its projective closure P2(Fq) is given by the set of equivalence points

{{(α : β : 1)} ∪ {(α : 1 : 0)} ∪ {(1 : 0 : 0)} : α, β ∈ Fq}.

Given a homogeneous polynomial F(x, y, z), a curveX /Fq defined in P2(Fq) is a
set of distinct points
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X /Fq = {T ∈ P
2(Fq) : F(T ) = 0}

Let Fq� be an extension of the field Fq , the Frobenius automorphism is given as

φq,� : Fq� → Fq�

φq,�(β) = βq β ∈ Fq�

and its action on a projective point (x : y : z) in Fq� is

φq,�((x : y : z)) = (xq : yq : zq).

Definition 8.12 (Place of Degree from [18]) A place of degree � is a set of � points
of a curve defined in the extension field Fq� denoted by {T0, T1, . . . , T�−1} where
each Ti = φi

q,l(T0). Places of degree one are called rational places.

Example 8.7 Consider the curve in F4 defined as,

F(x, y, z) = x

The curve has the following projective rational points (points of degree 1),

(0 : 0 : 1) (0 : 1 : 1) (0 : α : 1) (0 : α2 : 1)
(0 : 1 : 0)

where α is the primitive polynomial of F4. The curve has the following places of
degree 2,

{(0 : β : 1), (0 : β4 : 1)} {(0 : β2 : 1), (0 : β8 : 1)}
{(0 : β3 : 1), (0 : β12 : 1)} {(0 : β6 : 1), (0 : β9 : 1)}
{(0 : β7 : 1), (0 : β13 : 1)} {(0 : β11 : 1), (0 : β14 : 1)}

where β is the primitive element of F16.

8.4.2 Generalised Construction

This section gives details of the construction of generalised AG codes as described
in [21]. Two maps that are useful in the construction of generalised AG codes are
now described. Observe that Fq is a subfield of Fq� for all � ≥ 2. It is then possible
to map Fq� to an �-dimensional vector space with elements from Fq using a suitable
basis. The map π� is defined as such,
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π� : Fq� → F
�
q

π�(β) = (c1 c2 . . . c�) β ∈ Fq� , ci ∈ Fq .

Suppose (γ1, γ2, . . . , γ�) forms a suitable basis of the vector space F�
q , then β =

c1γ1 + c2γ2 + · · · + c�γ�. Finally, the map σ�,n is used to represent an encoding map
from an �-dimensional message space in Fq to an n-dimensional code space,

σ�,n : F�
q → F

n
q

with � ≤ n.
A description of generalisedAGcodes as presented in [4, 13, 21] is nowpresented.

Let F = F(x, y, z) be a homogeneous polynomial defined in Fq . Let g be the genus
of a smooth irreducible curve X /Fq corresponding to the polynomial F. Also, let
P1, P2, . . . , Pr be r distinct places of X /Fq and ki = deg(Pi ) (deg is degree of).
W is a divisor of the curve X /Fq such that

W = P1 + P2 + · · · + Pr

and another divisor G such that the two do not intersect.4 Specifically, the divisor
G = m(Q − R) where deg(Q) = deg(R) + 1 for arbitrary5 divisors Q and R. As
mentioned earlier, associated with the divisor G is a Riemann–Roch space L (G)

with m = deg(G)) an integer, m ≥ 0. From the Riemann–Roch theorem (Theorem
8.3) it is known that the dimension of L (G) is given by l(G) and

l(G) ≥ m − g + 1.

Also, associated with each Pi is a q-ary code Ci with parameters [ni , ki =
deg(Pi ), di ]q with the restriction that di ≤ ki . Let

{ f1, f2, .., fk : fl ∈ L (G)}

denote a set of k linearly independent elements ofL (G) that formabasis.Agenerator
matrix for a generalised AG code is given as such,

M =

⎡

⎢
⎢
⎢
⎣

σk1,n1(πk1( f1(P1))) · · · · · · σkr ,nr (πkr ( f1(Pr )))
σk1,n1(πk1( f2(P1))) · · · · · · σkr ,nr (πkr ( f2(Pr )))

...
. . .

...

σk1,n1(πk1( fk(P1))) · · · · · · σkr ,nr (πkr ( fk(Pr )))

⎤

⎥
⎥
⎥
⎦

4This is consistent with the definition of AG codes. The two divisors should have no points in
common.
5These are randomly chosen places such that the difference between their degrees is 1 and G does
not intersect W .
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where fl(Pi ) is an evaluation of a polynomial and basis element fl at a place Pi , πki
is a mapping from Fqki to Fq and σki ,ni is the encoding of a message vector in F

ki
q

to a code vector in F
ni
q . This is a 3 step process. The place Pi is first evaluated at fl

resulting in an element of Fki
q . The result is then mapped to a vector of length ki in the

subfield Fq . Finally, this vector is encoded with code with parameters [ni , ki , di ]q .
It is desirable to choose the maximum possible minimum distance for all codes

Ci so that di = ki [21]. The same code is used in the map σki ,ni for all points of the
same degree ki , i.e. the code C j has parameters [n j , j, d j ]q for a place of degree j .
Let A j be an integer denoting the number of places of degree j and Bj be an integer
such that 0 ≤ Bj ≤ A j .

If t is the maximum degree of any place Pi that is chosen in the construction, then
the generalised AG code is represented as a

C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ).

Let [n, k, d]q represent a linear code in Fq with length n, dimension k, and minimum
distance d, then a generalised AG code is given by the parameters [21],

k = l(G) ≥ m − g + 1

n =
r∑

i=1

ni =
t∑

j=1

Bjn j

d ≥
r∑

i=1

di − g − k + 1 =
t∑

j=1

Bjd j − g − k + 1.

Below are two examples showing the construction of generalised AG codes.

Example 8.8 Let F(x, y, z) = x3 + xyz + xz2 + y2z [21] be a polynomial in F2.
The curveX /F2 has genus g = 1 and A1 = 4 places of degree 1 and A2 = 2 places
of degree 2.

Table8.4 gives the places of X /F2 up degree 2. The field F22 is defined by a
primitive polynomial s2 + s + 1 with α as its primitive element. Points

R = (1 : a3 + a2 : 1)

as a place of degree 4 and

Q = (1 : b4 + b3 + b2 : 1)

as a place of degree 5 are also chosen arbitrarily while a and b are primitive elements
of F24 (defined by the polynomial s4 + s3 + s2 + s + 1) and F25 (defined by the
polynomial s5 + s2 + 1),g respectively. The divisor W is

W = P1 + · · · + P6.
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Table 8.4 Places of X /F2 # Pi deg(Pi )

P1 (0 : 1 : 0) 1

P2 (0 : 0 : 1) 1

P3 (1 : 0 : 1) 1

P4 (1 : 1 : 1) 1

P5 {(α : 1 : 1), (α2 :
1 : 1)}

2

P6 {(α : α + 1 :
1), (α2 : α : 1)}

2

The basis of the Riemann–Roch space L (2D) with D = Q − R and m = 2 is
obtained with computer algebra software MAGMA [3] as,

f1 = (x7 + x3 + x)/(x10 + x4 + 1)y

+ (x10 + x9 + x7 + x6 + x5 + x + 1)/(x10 + x4 + 1)

f2 = (x8 + x7 + x4 + x3 + x + 1)/(x10 + x4 + 1)y

+ (x8 + x4 + x2)/(x10 + x4 + 1)

For the map σki ,ni the codes; c1 a [1, 1, 1]2 cyclic code for places of degree 1 and
c2 a [3, 2, 2]2 cyclic code places of degree 2 are used. For the map π2 which applies
to places of degree 2, a polynomial basis [γ1, γ2] = [1, α] is used. Only the first
point in the place Pi for deg(Pi ) = 2 in the evaluation of f1 and f2 at Pi is utilised.
The generator matrix M of the resulting [10, 2, 6]2 generalised AG code over F2 is,

M =
[
1 1 0 1 0 1 1 0 1 1
0 0 1 1 1 1 0 1 0 1

]

Example 8.9 Consider again the polynomial

F(x, y, z) = x3 + xyz + xz2 + y2z

with coefficients fromF2 whose curve (with genus equal to 1) has places up to degree
2 as in Table8.4. An element f of the Riemann–Roch space defined by the divisor
G = (R − Q) with

Q = (a : a3 + a2 : 1)

and
R = (b : b4 + b3 + b2 + b + 1 : 1)

where a and b primitive elements of F24 and F25 (since the curve has no place of
degree 3) respectively, is given by,
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f = (x3x + x2z2 + z4)y/(x5 + x3z2 + z5)

+ (x5 + x4z + x3z2 + z3x2 + xz4 + z5)/(x5 + x3z2 + z5)

Evaluating f at all the 5 places Pi from the Table8.4 and using the map πdeg(Pi ) that
maps all evaluations to F2 results in,

[
f (Pi ) |deg(Pi )=1
︷ ︸︸ ︷
1 | 1 | 0 | 1| 1 | α2

︸ ︷︷ ︸
f (Pi ) |deg(Pi )=2

]

This forms the code [6, 1, 5]4.6 In F2 this becomes,

[ 1 | 1 | 0 | 1 | 1 0︸︷︷︸
1

| 1 1︸︷︷︸
α2

]

which forms the code [8, 1, 5]2. Short auxiliary codes [1, 1, 1]2 to encode
f (Pi ) |deg(Pi )=1 and [3, 2, 2]2 to encode f (Pi ) |deg(Pi )=2 are used. The resulting
codeword of a generalised AG code is,

[ 1 | 1 | 0 | 1 | 1 0 1 | 1 1 0 ].

This forms the code [10, 1, 7]2.
Three polynomials and their associated curves are used to obtain codes in F16 better
than the best-known codes in [15]. The three polynomials are given in Table8.5,
while Table8.6 gives a summary of the properties of their associated curves (with
t = 4). w is the primitive element of F16. The number of places of degree j , A j , is
determined by computer algebra system MAGMA [3]. The best-known linear codes
from [15] over F16 with j = d j for 1 ≤ j ≤ 4 are

[1, 1, 1]16 [3, 2, 2]16 [5, 3, 3]16 [7, 4, 4]16
which correspond to C1, C2, C3 and C4, respectively. Since t = 4 for all the codes
in this paper and

[d1, d2, d3, d4] = [1, 2, 3, 4]

The representation C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ) is shortened as such,

C1(k; t; B1, B2, . . . , Bt ; d1, d2, . . . , dt ) ≡ C1(k; B1, B2, . . . , Bt ).

Tables8.7 to 8.9 show improved codes from generalised AG codes with better
minimum distance than codes in [15]. It is also worth noting that codes of the form

6From Bezout’s dmin = n − m = n − k − g + 1.
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Table 8.5 Polynomials in F16

F1 = x5 + y4z + yz4

F2 = x16 + x4y15 + x4 + xy15 + w4y15 + w4

F3 = x28 + wx20 + x18 + w10x17 + w10x15 + w4x14 + w3x13 + w3x12 + wx11 + x10 +
w11x9 + w12x8 + w14x7 + w13x6y2 + w9x6y + w6x6 + w2x5y2 + w13x5y + w14x5 +
w14x4y4 + w7x4y2 + w6x4y + w9x4 + w8x3y4 + w11x3y + w4x3 + w11x2y4 + w11x2y2 +
wx2y + w5x2 + w8xy4 + w6xy2 + w9xy + w11y8 + y4 + w2y2 + w3y

Table 8.6 Properties of Xi/F16

Curve Genus A1 A2 A3 A4 Reference

X1 6 65 0 1600 15600

X2 40 225 0 904 16920 [5]

X3 13 97 16 1376 15840 [6] via [9]

Table 8.7 New codes from X1/F16

Codes k Range Description #

[70, k, d ≥ 63 − k]16 10 ≤ k ≤ 50 C1(k; [65, 0, 1, 0]) 41

Table 8.8 New codes from X2/F16

Code k Range Description #

[232, k, 190 − k] 102 ≥ k ≥ 129 C1(k; [225, 0, 0, 1]) 28

[230, k, 189 − k] 100 ≥ k ≥ 129 C1(k; [225, 0, 1, 0]) 30

[235, k, 192 − k] 105 ≥ k ≥ 121 C1(k; [225, 0, 2, 0]) 17

C1(k; N , 0, 0, 0) are simply Goppa codes (defined with only rational points). The
symbol # in the Tables8.7 to 8.9 denotes the number of new codes from each gen-
eralised AG code C1(k; B1, B2, . . . , Bt ). The tables in [7] contain curves known to
have the most number of rational points for a given genus. The curve X2/F16 is
defined by the well-known Hermitian polynomial [5].

Table 8.9 New codes from X3/F16

Codes k Range Description #

[102, k, 88 − k] 8 ≤ k ≤ 66 C(k; [97, 0, 1, 0]) 59

[103, k, 89 − k] 8 ≤ k ≤ 68 C(k; [97, 2, 0, 0]) 61

[106, k, 91 − k] k = 8 C(k; [97, 3, 0, 0]) 1
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8.5 Summary

Algebraic geometry codes are codes obtained from curves. First, the motivation for
studying these codes was given. From an asymptotic point of view, some families
of AG codes have superior performance than the previous best known bound on the
performance of linear codes, the Gilbert–Varshamov bound. For codes of moderate
length, AG codes have better minimum distances than their main competitors, non-
binary BCH codes with the same rate defined in the same finite fields. Theorems and
definitions as a precursor to AG codes was given. Key theorems are Bezout’s and
Riemann–Roch. Examples using the well-known Hermitian code in a finite field of
cardinality 4 were then discussed. The concept of place of higher degrees of curves
was presented. This notion was used in the construction of generalised AG codes.
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Chapter 9
Algebraic Quasi Cyclic Codes

9.1 Introduction

Binary self-dual codes have an interesting structure and some are known to have
the best possible minimum Hamming distance of any known codes. Closely related
to the self-dual codes are the double-circulant codes. Many good binary self-dual
codes can be constructed in double-circulant form. Double-circulant codes as a class
of codes have been the subject of a great deal of attention, probably because they
include codes, or the equivalent codes, of some of the most powerful and efficient
codes known to date. An interesting family of binary, double-circulant codes, which
includes self-dual and formally self-dual codes, is the family of codes based on
primes. A classic paper for this family was published by Karlin [9] in which double-
circulant codes based on primes congruent to±1 and±3 modulo 8 were considered.
Self-dual codes are an important category of codes because there are bounds on their
minimal distance [? ]. The possibilities for their weight spectrum are constrained,
and known ahead of the discovery, and analysis of the codes themselves. This has
created a great deal of excitement among researchers in the rush to be the first in
finding some of these codes. A paper summarising the state of knowledge of these
codes was given by Dougherty et al. [1]. Advances in high-speed digital processors
nowmake it feasible to implement near maximum likelihood, soft decision decoders
for these codes and thus, make it possible to approach the predictions for frame
error rate (FER) performance for the additive white Gaussian noise channel made
by Claude Shannon back in 1959 [16].

This chapter considers the binary double-circulant codes based on primes, espe-
cially in analysis of their Hamming weight distributions. Section9.2 introduces the
notation used to describe double-circulant codes and gives a review of double-
circulant codes based on primes congruent to ±1 and ±3 modulo 8. Section9.4
describes the construction of double-circulant codes for these primes and Sect. 9.5
presents an improved algorithm to compute theminimumHamming distance and also
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the number of codewords of a given Hamming weight for certain double-circulant
codes. The algorithm presented in this section requires the enumeration of less code-
words than that of the commonly used technique [4, 18] e.g. Sect. 9.6 considers
the Hamming weight distribution of the double-circulant codes based on primes.
A method to provide an independent verification to the number of codewords of
a given Hamming weight in these double-circulant codes is also discussed in this
section. In the last section of this chapter, Sect. 9.7, a probabilistic method−based
on its automorphism group, to determine the minimum Hamming distance of these
double-circulant codes is described.

Note that, as we consider Hamming space only in this chapter, we shall omit the
word “Hamming” when we refer to Hamming weight and distance.

9.2 Background and Notation

A code C is called self-dual if,
C = C ⊥

where C ⊥ is the dual of C . There are two types of self-dual code: doubly even or
Type-II for which the weight of every codeword is divisible by 4; singly even or
Type-I for which the weight of every codeword is divisible by 2. Furthermore, the
code length of a Type-II code is divisible by 8. On the other hand, formally self-dual
(FSD) codes are codes that have

C �= C ⊥,

but satisfy AC (z) = AC⊥(z), where A(C ) denotes the weight distribution of the
code C . A self-dual, or FSD, code is called extremal if its minimum distance is the
highest possible given its parameters. The bound of the minimum distance of the
extremal codes is [15]

d ≤ 4
⌊ n

24

⌋
+ 4 + ε, (9.1)

where

ε =

⎧
⎪⎨

⎪⎩

−2 if C is Type-I with n = 2, 4, or 6,

2, if C is Type-I with n ≡ 22 (mod 24), or

0, if C is Type-I or Type-II with n �≡ 22 (mod 24).

(9.2)

for an extremal FSD code with length n and minimum distance d. For an FSD code,
the minimum distance of the extremal case is upper bounded by [4]

d ≤ 2
⌊n
8

⌋
+ 2. (9.3)
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As a consequence of this upper bound, extremal FSD codes are known to only
exist for lengths n ≤ 30 and n �= 16 and n �= 26 [7]. Databases of best-known, not
necessary extremal, self-dual codes are given in [3, 15]. A table of binary self-dual
double-circulant codes is also provided in [15].

As a class, double-circulant codes are (n, k) linear codes, where k = n/2, whose
generator matrix G consists of two circulant matrices.

Definition 9.1 (Circulant Matrix) A circulant matrix is a square matrix in which
each row is a cyclic shift of the adjacent row. In addition, each column is also a
cyclic shift of the adjacent column and the number of non-zeros per column is equal
to those per row.

A circulant matrix is completely characterised by a polynomial formed by its first
row

r(x) =
m−1∑

i=0

ri x
i ,

which is called the defining polynomial.
Note that the algebra of polynomials modulo xm − 1 is isomorphic to that of

circulants [13]. Let the polynomial r(x) have a maximum degree of m, and the
corresponding circulant matrix R is an m × m square matrix of the form

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r(x) (mod xm − 1)
xr(x) (mod xm − 1)

...

xir(x) (mod xm − 1)
...

xm−1r(x) (mod xm − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9.4)

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial.

9.2.1 Description of Double-Circulant Codes

A double-circulant binary code is an (n, n
2 ) code in which the generator matrix

is defined by two circulant matrices, each matrix being n
2 by n

2 bits. Circulant
consists of cyclically shifted rows, modulo n

2 , of a generator polynomial. These
generator polynomials are defined as r1(x) and r2(x). Each codeword consists
of two parts: the information data, defined as u(x), convolved with r1(x) mod-
ulo (1 + x

n
2 ) adjoined with u(x) and convolved with r2(x) modulo (1 + x

n
2 ). The

code is the same as a non-systematic, tail-biting convolutional code of rate one



208 9 Algebraic Quasi Cyclic Codes

half. Each codeword is [u(x)r1(x), u(x)r2(x)]. If r1(x) [or r2(x)] has no common
factors of (1 + x

n
2 ), then the respective circulant matrix is non-singular and may

be inverted. The inverted circulant matrix becomes an identity matrix, and each
codeword is defined by u(x), u(x)r(x), where r(x) = r1(x)

r2(x)
modulo (1 + x

n
2 ), [or

r(x) = r2(x)
r1(x)

modulo (1 + x
n
2 ), respectively]. The code is now the same as a system-

atic, tail-biting convolutional code of rate one half.
For double-circulant codes where one circulant matrix is non-singular andmay be

inverted, the codes can be put into two classes, namely pure, and bordered double-
circulant codes, whose generator matrices G p and Gb are shown in (9.5a)

G p =

1 . . . 1 α

1
I k R

...

1

(9.5a)

and (9.5b),

Gb =
1 . . . 1 α

1

I k R
...

1

(9.5b)

respectively. Here, I k is a k-dimensional identity matrix, and α ∈ {0, 1}.
Definition 9.2 (Quadratic Residues) Letα be a generator of the finite fieldFp , where
p be an odd prime, r ≡ α2 (mod p) is called a quadratic residue modulo p and so is
r i ∈ Fp for some integer i . Because the element α has (multiplicative) order p − 1
over Fp, r = α2 has order 1

2 (p − 1). A set of quadratic residues modulo p, Q and
non-quadratic residues modulo p, N , are defined as

Q = {r, r2, . . . , r i , . . . , r p−3
2 , r

p−1
2 = 1}

= {α2, α4, . . . , α2i . . . , α p−3, α p−1 = 1} (9.6a)

and

N = {n : ∀n ∈ Fp, n �= Q and n �= 0}
= {nr, nr2, . . . , nr i , . . . , nr p−3

2 , n}
= {α2i+1 : 0 ≤ i ≤ p−3

2 }
(9.6b)

respectively.

As such R ∪ Q ∪ {0} = Fp. It can be seen from the definition of Q and N that, if
r ∈ Q, r = αe for even e; and if n ∈ N , n = αe for odd e. Hence, if n ∈ N and
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r ∈ Q, rn = α2iα2 j+1 = α2(i+ j)+1 ∈ N . Similarly, rr = α2iα2 j = α2(i+ j) ∈ Q and
nn = α2i+1α2 j+1 = α2(i+ j+1) ∈ Q.

Furthermore,

• 2 ∈ Q if p ≡ ±1 (mod 8), and 2 ∈ N if p ≡ ±3 (mod 8)
• −1 ∈ Q if p ≡ 1 (mod 8) or p ≡ −3 (mod 8), and−1 ∈ N if p ≡ −1 (mod 8)
and p ≡ 3 (mod 8)

9.3 Good Double-Circulant Codes

9.3.1 Circulants Based Upon Prime Numbers Congruent
to ±3 Modulo 8

An important category is circulantswhose length is equal to a prime number, p, which
is congruent to±3modulo 8. For many of these prime numbers, there is only a single
cyclotomic coset, apart from zero. In these cases, 1 + x p factorises into the product
of two irreducible polynomials, (1 + x)(1 + x + x2 + x3 + · · · + x p−1). Apart from
the polynomial, (1 + x + x2 + x3 + · · · + x p−1), all of the other 2p − 2 non-zero
polynomials of degree less than p are in one of two sets: The set of 2p−1 even weight,
polynomials with 1 + x as a factor, denoted as Sf , and the set of 2p−1 odd weight
polynomials which are relatively prime to 1 + x p, denoted as Sr. The multiplicative
order of each set is 2p−1 − 1, and each forms a ring of polynomials modulo 1 + x p.
Any non-zero polynomial apart from (1 + x + x2 + x3 + · · · + x p−1) is equal to
α(x)i for some integer i if the polynomial is in Sf or is equal to a(x)i for some
integer i if in Sr. An example for p = 11 is given in Appendix “Circulant Analysis
p = 11”. In this table, α(x) = 1 + x + x2 + x4 and a(x) = 1 + x + x3. For these
primes, as the circulant length is equal to p, the generator polynomial r(x) can
either contain 1 + x as a factor, or not contain 1 + x as a factor, or be equal to
(1 + x + x2 + x3 + · · · + x p−1). For the last case, this is not a good choice for r(x)
as theminimumcodewordweight is 2, which occurswhen u(x) = 1 + x . In this case,
r(x)u(x) = 1 + x p = 0 modulo 1 + x p and the codeword is [1 + x, 0], a weight of
2.

When r(x) is in the ring Sf , u(x)r(x) must also be in Sf and therefore, be of even
weight, except when u(x) = (1 + x + x2 + x3 + · · · + x p−1).

In this case u(x)r(x) = 0 modulo 1 + x p and the codeword is [1 + x + x2 +
x3 + · · · + x p−1, 0]ofweight p.Whenu(x)has evenweight, the resulting codewords
are doubly even. When u(x) has odd weight, the resulting codewords consist of two
parts, one with odd weight and the other with even weight. The net result is the
codewords that always have odd weight. Thus, there are both even and odd weight
codewords when u(x) is from Sf .

When r(x) is in the ring Sr, u(x)r(x) is always non-zero and is in Sf (even
weight) only when u(x) has even weight, and the resulting codewords are dou-
bly even. When u(x) has odd weight, u(x) = a(x) j and u(x)r(x) = a(x) j a(x)i =
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a(x)i+ j and hence is in the ring Sf and has odd weight. The resulting codewords
have even weight since they consist of two parts, each with odd weight. Thus,
when r(x) is from Sr all of the codewords have even weight. Furthermore, since
r(x) = a(x)i , r(x)a(x)2

(p−1)−1−i = a(x)2
(p−1)−1 = 1 and hence, the inverse of r(x),

1
g(x) = a(x)2

(p−1)−1−i .
By constructing a table (or sampled table) of Sr, it is very straightforward to

design non-singular double-circulant codes. The minimum codeword weight of the
code dmin cannot exceed the weight of r(x) + 1. Hence, the weight of a(x)i needs to
be at least dmin − 1 to be considered as a candidate for r(x). The weight of the inverse
of r(x), a(x)2

(p−1)−1−i also needs to be at least dmin − 1. For oddweight u(x) = a(x) j

and u(x)r(x) = a(x) j a(x)i = a(x)( j+i). Hence, theweight of u(x)r(x) can be found
simply by looking up the weight of a(x)i+ j from the table. Self-dual codes are those
with 1

r(x) = r(x−1). With a single cyclotomic coset 2
(p−1)

2 = −1, and it follows that

a(x)2
(p−1)

2 = a(x−1). With r(x) = a(x)i , r(x−1) = a(x)2
(p−1)

2 i .
In order that 1

r(x) = r(x−1), it is necessary that

a(x)2
(p−1)−1−i = a(x)2

(p−1)
2 i . (9.7)

Equating the exponents, modulo 2(p−1) − 1, gives

2
(p−1)

2 i = m(2(p−1) − 1) − i, (9.8)

where m is an integer. Solving for i:

i = m(2(p−1) − 1)

(2
(p−1)

2 + 1)
. (9.9)

Hence, the number of distinct self-dual codes is equal to (2
(p−1)

2 + 1).
For the example, p = 13 as above,

i = m
2(p−1) − 1

2
(p−1)

2 + 1
= m

4095

65
= 63m

and there are 2
(p−1)

2 + 1 = 65 self-dual codes for 1 ≤ j ≤ 65 and these are a(x)63,
a(x)126, a(x)189, . . . , a(x)4095.

As p is congruent to ±3, the set (u(x)r(x))2
t
maps to (u(x)r(x)) for t = 1 → r ,

where r is the size of the cyclotomic cosets of 2
(p−1)

2 + 1. In the case of p = 13
above, there are 4 cyclotomic cosets of 65, three of length 10 and one of length 2.
This implies that there on 4 non-equivalent self-dual codes.

For p congruent to−3modulo 8, (2
(p−1)

2 + 1) is not divisible by 3. This means that
the pure double-circulant quadratic residue code is not self-dual. Since the quadratic
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residue code hasmultiplicative order 3, thismeans that for p congruent to−3modulo
8, the quadratic residue, pure double-circulant code is self-orthogonal, and r(x) =
r(x−1).

For p congruent to 3, (2
(p−1)

2 + 1) is divisible by 3 and the pure double-circulant
quadratic residue code is self-dual. In this case, a(x) has multiplicative order of

2(p−1) − 1, and a(x)
(2(p−1)−1)

3 must have exponents equal to the quadratic residues

(or non-residues). The inverse polynomial is a(x)
2(2(p−1)−1)

3 with exponents equal
to the non-residues (or residues, respectively), and defines a self-dual circulant
code. As an example, for p = 11 as listed in Appendix “Circulant Analysis p =
11”, 2(p−1) − 1 = 1023 and a(x)341 = x + x3 + x4 + x5 + x9, the quadratic non-
residues of 11 are 1, 4, 5, 9 and 3. a(x)682 = x2 + x6 + x7 + x8 + x10 corresponding
to the quadratic residues: 2, 8, 10, 7 and 6 as can be seen from Appendix “Circulant
Analysis p = 11”. Section9.4.3 discusses inmore detail pure double-circulant codes
for these primes.

9.3.2 Circulants Based Upon Prime Numbers Congruent
to ±1 Modulo 8: Cyclic Codes

MacWilliams and Sloane [13] discuss the Automorphism group of the extended
cyclic quadratic residue (eQR) codes and show that this includes the projective special
linear group PSL2(p). They describe a procedure in which a double-circulant code
may be constructed from a codeword of the eQR code. It is fairly straightforward. The
projective special linear group PSL2(p) for a prime p is defined by the permutation
y → ay+b

cy+d mod p, where the integers a, b, c, d are such that two cyclic groups of

order p+1
2 are obtained. A codeword of the (p + 1, p+1

2 ) eQR code is obtained and
the non-zero coordinates of the codeword placed in each cyclic group. This splits the
codeword into two cyclic parts each of which defines a circulant polynomial.

The procedure is best illustrated with an example. Let α ∈ Fp2 be a primitive
(p2 − 1)ti root of unity; then, β = α2p−2 is a primitive 1

2 (p + 1)TA root of unity
since p2 − 1 = 1

2 (2p − 2)(p − 1). Let λ = 1/(1 + β) and a = λ2 − λ; then, the
permutation π1 on a coordinate y is defined as

π1 : y 
→ y + 1

ay
mod p

where π1 ∈ PSL2(p) (see Sect. 9.4.3 for the definition of PSL2(p)). As an example,
consider the prime p = 23. The permutation π1 : y → y+1

5y mod p produces the two
cyclic groups

(1, 5, 3, 11, 9, 13, 8, 10, 20, 17, 4, 6)

and
(2, 21, 7, 16, 12, 19, 22, 0, 23, 14, 15, 18).
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There are 3 cyclotomic cosets for p = 23 as follows:

C0 = {0}
C1 = {1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12}
C5 = {5, 10, 20, 17, 11, 22, 21, 19, 15, 7, 14}.

The idempotent given by C1 may be used to define a generator polynomial, r(x),
which defines the (23, 12, 7) cyclic quadratic residue code:

r(x) = x + x2 + x3 + x4 + x6 + x8 + x9 + x12 + x13 + x16 + x18. (9.10)

Codewords of the (23, 12, 7) cyclic code are given by u(x)r(x) modulo 1 + x23 and
with u(x) = 1 the non-zero coordinates of the codeword obtained are

(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12)

the cyclotomic coset C1.
The extended code has an additional parity check using coordinate 23 to produce

the corresponding codeword of the extended (24, 12, 8) code with the non-zero
coordinates:

(1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 23).

Mapping these coordinates to the cyclic groups with 1 in the position, where each
coordinate is in the respective cyclic group and 0 otherwise, produces

(1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1)

and
(1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1)

which define the two circulant polynomials, r1(x) and r2(x), for the (24, 12, 8) pure
double-circulant code

r1(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11

r2(x) = 1 + x3 + x4 + x8 + x11. (9.11)

The inverse of r1(x) modulo (1 + x12) is ψ(x), where

ψ(x) = 1 + x + x2 + x6 + x7 + x8 + x10,

and this may be used to produce an equivalent (24, 12, 8) pure double-circulant code
which has the identity matrix as the first circulant
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Table 9.1 Double-circulant codes mostly based upon quadratic residues of prime numbers

Prime (p) p mod 8 Circulant codes
(2p, p)

Circulant codes
(2p + 2, p + 1)

Circulant codes
(p + 1, p+1

2 )

dmin

7 −1 (8, 4, 4) 4

17 1 (18, 9, 6) 6

11 3 a(22, 11, 7) β(x) (24, 12, 8) 8

23 −1 a(24, 12, 8) 8

13 −3 (26, 13, 7) b(x) 7

31 −1 (32, 16, 8) 8

19 3 (38, 19, 8) b(x) 8

41 1 (82, 41, 14) (42, 21, 10) 10

47 −1 a(48, 24, 12) 12

29 −3 (58, 29, 11) β(x) (60, 30, 12) 12

71 −1 (72, 36, 12) 12
b(72, 36, 14) 14

73 1 (74, 37, 14) 14

37 −3 (74, 37, 12) b(x) 12

79 −1 a(80, 40, 16) 16

43 3 (86, 43, 16) β(x) (88, 44, 16) 16

97 1 (98, 49, 16) 16

103 −1 a(104, 52, 20) 20

53 −3 (106, 53, 19) β(x) (108, 54, 20) 20

113 1 (114, 57, 16) 16

59 3 (118, 59, 19) β(x) (120, 60, 20) 20

61 −3 (122, 61, 19) β(x) (124, 62, 20) 20

127 −1 (128, 64, 20) 20

67 3 a(134, 67, 23) β(x) (136, 68, 24) 24

137 1 (138, 69, 22) 22

151 −1 (152, 76, 20) 20

83 3 (166, 83, 23) β(x) (168, 84, 24) 24

191 −1 (192, 96, 28) 28

193 1 (194, 97, 28) 28

199 −1 a(200, 100, 32) 32

101 −3 (202, 101, 23) β(x) (204, 102, 24) 24

107 3 (214, 107, 23) β(x) (216, 108, 24) 24

109 −3 (218, 109, 30) b(x) 30

223 −1 (224, 112, 32) 32

233 1 (234, 117, 26) 26

239 −1 (240, 120, 32) 32

241 1 (242, 121, 32?) 32?

131 3 a(262, 131, 38?) b(x) 38?
aCodes with outstanding dmin
bCodes not based on quadratic residues
The best (2p, p) circulant polynomial either contains the factor 1 + x : β(x) or is relatively prime
to 1 + xn : b(x)
β(x) circulants can be bordered to produce (2p + 2, p + 1) circulants
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r̂1(x) = (1 + x2 + x4 + x5 + x6 + x10 + x11)ψ(x) modulo (1 + x12)

r̂2(x) = (1 + x3 + x4 + x8 + x11)ψ(x) modulo (1 + x12).

After evaluating terms, the two circulant polynomials are found to be

r̂1(x) = 1

r̂2(x) = 1 + x + x2 + x4 + x5 + x9 + x11, (9.12)

and it can be seen that the first circulant will produce the identity matrix of dimension
12. Jenson [8] lists the circulant codes for primes p < 200 that can be constructed
in this way. There are two cases, p = 89 and p = 167, where a systematic double-
circulant construction is not possible. A non-systematic double-circulant code is
possible for all cases but the existence of a systematic code depends upon one of the
circulantmatrices being non-singular.Apart from p = 89 and p = 167 (for p < 200)
a systematic circulant code can always be constructed in each case.

Table9.1 lists the best circulant codes as a function of length. Most of these codes
are well known and have been previously published but not necessarily as circulant
codes. Moreover, the dmin of some of the longer codes have only been bounded and
have not been explicitly stated in the literature. Nearly, all of the best codes are codes

Table 9.2 Generator polynomials for pure double-circulant codes

Code Circulant generator polynomial exponents

(8, 4, 4) 0, 1, 2

(24, 12, 8) 0, 1, 3, 4, 5, 6, 8

(48, 24, 12) 0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 13, 14, 16, 17, 18

(80, 40, 16) 0, 1, 5, 7, 9, 10, 11, 14, 15, 19, 23, 25, 27, 30, 38

(104, 52, 20) 0, 2, 5, 7, 10, 13, 14, 17, 18, 22, 23, 25, 26, 27, 28, 37, 38, 39, 40, 41, 42, 44,
45, 46, 47, 48, 49

(122, 61, 20) 0, 1, 3, 4, 5, 9, 12, 13, 14, 15, 16, 19, 20, 22, 25, 27, 34, 36, 39, 41, 42, 45, 46,
47, 48, 49, 52, 56, 57, 58, 60

(134, 67, 23) 0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36, 37,
39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65

(156, 78, 22) 0, 2, 3, 4, 8, 9, 11, 12, 14, 16, 17, 18, 20, 22, 24, 26, 27, 29, 33, 38, 39, 41, 42,
43, 44, 45, 46, 48, 49, 50, 52, 55, 56, 60, 64, 66, 68, 71, 72, 73, 74, 75, 77

(166, 83, 24) 1, 3, 4, 7, 9, 10, 11, 12, 16, 17, 21, 23, 25, 26, 27, 28, 29, 30, 31, 33, 36, 37,
38, 40, 41, 44, 48, 49, 51, 59, 61, 63, 64, 65, 68, 69, 70, 75, 77, 78, 81

(180, 90, 26) 0, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 19, 21, 22, 23, 28, 36, 37, 41, 45, 50,
51, 53, 55, 58, 59, 60, 61, 62, 63, 67, 68, 69, 72, 75, 76, 78, 81, 82, 83, 84, 85,
88

(200, 100, 32) 0, 1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37, 38,
39, 42, 44, 45, 50, 51, 52, 53, 57, 58, 59, 64, 66, 67, 70, 73, 75, 76, 77, 80, 82,
85, 86, 89, 92, 93, 97, 98
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based upon the two types of quadratic residue circulant codes. For codes based upon
p = ±3 mod 8, it is an open questionwhether a better circulant code exists than that
given by the quadratic residues. For p = ±1 mod 8, there are counter examples.
For example, the (72, 36, 14) code in Table9.1 is better than the (72, 36, 12) circulant
code which is based upon the extended cyclic quadratic residue code of length 71.
The circulant generator polynomial g(x) for all of the codes of Table9.1 is given in
Table9.2.

In Table9.1, where the best (2p, p) code is given as b(x), the (2p + 2, p + 1)
circulant code can still be constructed from β(x) but this code has the same dmin

as the pure, double-circulant, shorter code. For example, for the prime 109, b(x)
produces a double-circulant (218, 109, 30) code. The polynomial β(x) produces
a double-circulant (218, 109, 29) code, which bordered becomes a (220, 110, 30)
code. It should be noted that β(x) need not have the overall parity bit border added.
In this case, a (2p + 1, p + 1) code is produced but with the same dmin as the β(x)
code. In the latter example, a (219, 110, 29) code is produced.

9.4 Code Construction

Two binary linear codes,A andB, are equivalent if there exists a permutation π on
the coordinates of the codewords whichmaps the codewords ofA onto codewords of
B. We shall write this asB = π(A ). If π transforms C into itself, then we say that
π fixes the code, and the set of all permutations of this kind forms the automorphism
group of C , denoted as Aut(C ). MacWilliams and Sloane [13] gives some necessary
but not sufficient conditions on the equivalence of double-circulant codes, which are
restated for convenience in the lemma below.

Lemma 9.1 (cf. [13, Problem 7, Chap. 16]) LetA andB be double-circulant codes
with generator matrices [I k |A] and [I k |B], respectively. Let the polynomials a(x)
and b(x) be the defining polynomials of A and B. The codesA andB are equivalent
if any of the following conditions holds:

(i) B = AT , or
(ii) b(x) is the reciprocal of a(x), or
(iii) a(x)b(x) = 1 (mod xm − 1), or
(iv) b(x) = a(xu), where m and u are relatively prime.

Proof

(i) We can clearly see that b(x) = ∑m−1
i=0 ai xm−i . It follows that b(x) = π(a(x)),

where π : i → m − i (mod m) and hence, A and B are equivalent.
(ii) Given a polynomial a(x), its reciprocal polynomial can be written as ā(x) =∑m−1

i=0 ai xm−i−1. It follows that ā(x) = π(a(x)), where π : i → m − i − 1
(mod m).
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(iii) Consider the code A , since b(x) has degree less than m, it can be one of the
possible data patterns and in this case, the codeword ofA has the form |b(x)|1|.
Clearly, this is a permuted codeword ofB.

(iv) If (u,m) = 1, then π : i → iu (mod m) is a permutation on {0, 1, . . . ,m − 1}.
So b(x) = a(xu) is in the code π(A ).

Consider an (n, k, d) pure double-circulant code, we can see that for a given user
message, represented by a polynomial u(x) of degree at most k − 1, a codeword of
the double-circulant code has the form (u(x)|u(x)r(x) (mod xm − 1)). The defining
polynomial r(x) characterises the resulting double-circulant code. Before the choice
of r(x) is discussed, consider the following lemmas and corollary.

Lemma 9.2 Let a(x) be a polynomial over F2 of degree at most m − 1, i.e.
a(x) = ∑m−1

i=0 ai xi where ai ∈ {0, 1}. The weight of the polynomial (1 + x)a(x)
(mod xm − 1), denoted by wtH ((1 + x)a(x)) is even.

Proof Let w = wtH (a(x)) = wtH (xa(x)) and S = {i : ai+1 mod m = ai �= 0, 0 ≤
i ≤ m − 1}:

wtH ((1 + x)a(x)) = wtH (a(x)) + wtH (xa(x)) − 2|S|
= 2(w − |S|),

which is even.

Lemma 9.3 An m × m circulant matrix R with defining polynomial r(x) is non-
singular if and only if r(x) is relatively prime to xm − 1.

Proof If r(x) is not relatively prime to xm − 1, i.e. GCD (r(x), xm − 1) = t (x) for
some polynomial t (x) �= 1, then from the extended Euclidean algorithm, it follows
that, for some unique polynomials a(x) and b(x), r(x)a(x) + (xm − 1)b(x) = 0,
and therefore R is singular.

If r(x) is relatively prime to xm − 1, i.e. GCD (r(x), xm − 1) = 1, then from
the extended Euclidean algorithm, it follows that, for some unique polynomials
a(x) and b(x), r(x)a(x) + (xm − 1)b(x) = 1, which is equivalent to r(x)a(x) = 1
(mod xm − 1). Hence R is non-singular, being invertiblewith amatrix inversewhose
defining polynomial is a(x).

Corollary 9.1 From Lemma 9.3,

(i) if R is non-singular, R−1 is an m × m circulant matrix with defining polynomial
r(x)−1, and

(ii) the weight of r(x) or r(x)−1 is odd.

Proof The proof for the first case is obvious from the proof of Lemma 9.3. For the
second case, if the weight of r(x) is even then r(x) is divisible by 1 + x . Since 1 + x
is a factor of xm − 1 then r(x) is not relatively prime to xm − 1 and the weight of
r(x) is necessarily odd. The inverse of r(x)−1 is r(x) and for this to exist r(x)−1

must be relatively prime to xm − 1 and the weight of r(x)−1 is necessarily odd.
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Lemma 9.4 Let p be an odd prime, and then

(i) p | 2p−1 − 1, and
(ii) the integer q for pq = 2p−1 − 1 is odd.

Proof From Fermat’s little theorem, we know that for any integer a and a prime
p, a p−1 ≡ 1 (mod p). This is equivalent to a p−1 − 1 = pq for some integer q. Let
a = 2, we have

q = 2p−1 − 1

p

which is clearly odd since neither denominator nor numerator contains 2 as a factor.

Lemma 9.5 Let p be a prime and j (x) = ∑p−1
i=0 xi ; then

(1 + x)2
p−1−1 = 1 + j (x) mod (x p − 1).

Proof We can write (1 + x)2
p−1−1 as

(1 + x)2
p−1−1 = (1 + x)2

p−1

1 + x
= 1 + x2

p−1

1 + x

=
2p−1−1∑

i=0

xi .

From Lemma 9.4, we know that the integer q = (2p−1 − 1)/p and is odd. We can
then write

∑2p−1−1
i=0 xi in terms of j (x) as follows:

2p−1−1∑

i=0

xi = 1 + x
(
1 + x + · · · + x p−1

)

︸ ︷︷ ︸
j (x)

+ x p+1
(
1 + x + · · · + x p−1

)

︸ ︷︷ ︸
j (x)

+ . . .+

x (q−3)p+1
(
1 + x + · · · + x p−1

)

︸ ︷︷ ︸
j (x)

+ x (q−2)p+1
(
1 + x + · · · + x p−1

)

︸ ︷︷ ︸
j (x)

+

x (q−1)p+1
(
1 + x + · · · + x p−1

)

︸ ︷︷ ︸
j (x)

= 1 + x j (x)(1 + x p) + x2p+1 j (x)(1 + x p) + . . . + x (q−3)p+1 j (x)(1 + x p)
︸ ︷︷ ︸

J (x)

+

x (q−1)p+1 j (x)



218 9 Algebraic Quasi Cyclic Codes

Since (1 + x p) (mod x p − 1) = 0 for a binary polynomial, J (x) = 0 and we have

2p−1−1∑

i=0

xi = 1 + xx (q−1)p j (x) (mod x p − 1).

Because xip (mod x p − 1) = 1,

2p−1−1∑

i=0

xi = 1 + x j (x) (mod x p − 1)

= 1 + j (x) (mod x p − 1).

For the rest of this chapter,we consider the bordered case only and for convenience,
unless otherwise stated, we shall assume that the term double-circulant code refers to
(9.5b). Furthermore, we call the double-circulant codes based on primes congruent
to ±1 modulo 8, the [p + 1, 1

2 (p + 1), d] extended quadratic residue (QR) codes
since these exist only for p ≡ ±1 (mod 8).

Following Gaborone [2], we call those double-circulant codes based on primes
congruent to ±3 modulo 8 the [2(p + 1), p + 1, d] quadratic double-circulant
(QDC) codes, i.e. p ≡ ±3 (mod 8).

9.4.1 Double-Circulant Codes from Extended Quadratic
Residue Codes

The following is a summary of the extended QR codes as double-circulant codes [8,
9, 13].

Binary QR codes are cyclic codes of length p over F2. For a given p, there exist
four QR codes:

1. L̄p, ¯Np which are equivalent and have dimension 1
2 (p − 1), and

2. Lp,Np which are equivalent and have dimension 1
2 (p + 1).

The (p + 1, 1
2 (p + 1), d) extended quadratic residue code, denoted by L̂p (resp.

ˆNp), is obtained by annexing an overall parity check to Lp (resp. Np). If p ≡ −1
(mod 8), L̂p (resp. ˆNp) is Type-II; otherwise it is FSD.

It iswell known that1 Aut(L̂p) contains the projective special linear group denoted
by PSL2(p) [13]. If r is a generator of the cyclic group Q, then σ : i → (mod p)
is a member of PSL2(p). Given n ∈ N , the cycles of σ can be written as

1Since L̂p and ˆNp are equivalent, considering either one is sufficient.
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(∞)(n, nr, nr2, . . . , nr t )(1, r, r2, . . . , r t )(0), (9.13)

where t = 1
2 (p − 3). Due to this property, G, the generator matrix of L̂p can be

arranged into circulants as shown in (9.14),

G =

∞ n nr . . . nr t−1 nr t 1 r . . . r t−1 r t 0
∞ 1 1 1 . . . 1 1 1 1 . . . 1 1 1
β 0 1
βr 0 1
...

... L R
...

βr t−1 0 1
βr t 0 1

,

(9.14)

where L and R are 1
2 (p − 1) × 1

2 (p − 1) circulantmatrices. The rowsβ, βr, . . . , βr t

in the above generator matrix contain ēβ(x), ēβr (x), . . . , ēβr t (x), where ēi (x) =
xi e(x) whose coordinates are arranged in the order of (9.13). Note that (9.14) can
be transformed to (9.5b) as follows:

[
1 J
0T L−1

]
×
[
1 J J 1
0T L R JT

]
=
[
1 J + w(LT ) J + w(RT ) 1

2 (p + 1)
0T I 1

2 (p−1) L−1R w(L−1)T

]

(9.15)

where J is an all-ones vector and w(A) = [wtH (A0) (mod 2),wtH (A1)

(mod 2), . . .], Ai being the i th row vector of matrix A. The multiplication in (9.15)
assumes that L−1 exists and following Corollary 9.1, wtH (l−1(x)) = wtH (l(x)) is
odd. Therefore, (9.15) becomes

G =

J + w(RT ) 1
2 (p + 1)

I 1
2 (p+1)

1

L−1R
...

1

. (9.16)

In relation to (9.14), consider extended QR codes for the classes of primes:

1. p = 8m + 1, the idempotent e(x) = ∑
n∈N xn and β ∈ N . Following [13, Theo-

rem 24, Chap. 16], we know that ēβr i (x) where βr i ∈ N , for 0 ≤ i ≤ t , contains
2m + 1 quadratic residues modulo p (including 0) and 2m − 1 non-quadratic
residues modulo p. As a consequence, wtH (r(x)) is even, implying w(RT ) = 0
and r(x) is not invertible (cf. Corollary 9.1); andwtH (l(x)) is odd and l(x)may be
invertible over polynomial modulo x

1
2 (p−1) − 1 (cf. Corollary 9.1). Furthermore,

referring to (9.5b), we have α = 1
2 (p + 1) = 4m + 1 = 1 mod 2.
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2. p = 8m − 1, the idempotent e(x) = 1 +∑
n∈N xn and β ∈ Q. Following [13,

Theorem 24, Chap. 16], if we have a set S containing 0 and 4m − 1 non-quadratic
residues modulo p, the set β + S contains 2m + 1 quadratic residues modulo
p (including 0) and 2m − 1 non-quadratic residues modulo p. It follows that
ēβr i (x), where βr i ∈ Q, for 0 ≤ i ≤ t , contains 2m quadratic residues modulo
p (excluding 0), implying that R is singular (cf. Corollary 9.1); and 2m − 1
non-quadratic residues modulo p, implying L−1 may exist (cf. Corollary 9.1).
Furthermore,w(RT ) = 0 and referring to (9.5b), we haveα = 1

2 (p + 1) = 4m =
0 mod 2.

For many L̂p, L is invertible and Karlin [9] has shown that p = 73, 97, 127, 137,
241 are the known cases where the canonical form (9.5b) cannot be obtained.

Consider the case for p = 73, with β = 5 ∈ N , we have l(x), the defining poly-
nomial of the left circulant, given by

l(x) = x2 + x3 + x4 + x5 + x6 + x11 + x15 + x16 + x18+
x20 + x21 + x25 + x30 + x31 + x32 + x33 + x34.

The polynomial l(x) contains some irreducible factors of x
1
2 (p−1) − 1 = x36 − 1, i.e.

GCD (l(x), x36 − 1) = 1 + x2 + x4, and hence, it is not invertible. In addition to
form (9.5b), G can also be transformed to (9.5a), and Jenson [8] has shown that, for
7 ≤ p ≤ 199, except for p = 89, 167, the canonical form (9.5a) exists.

9.4.2 Pure Double-Circulant Codes for Primes ±3 Modulo 8

Recall that Sr is a multiplicative group of order 2p−1 − 1 containing all polynomials
of odd weight (excluding the all-ones polynomial) of degree at most p − 1, where p
is a prime. We assume that a(x) is a generator of Sr. For p ≡ ±3 (mod 8), we have
the following lemma.

Lemma 9.6 For p ≡ ±3 (mod 8), let the polynomials q(x) = ∑
i∈Q xi andn(x) =

∑
i∈N xi . Self-dual pure double-circulant codes with r(x) = q(x) or r(x) = n(x)

exist if and only if p ≡ 3 (mod 8).

Proof For self-dual codes the condition q(x)T = n(x) must be satisfied where
q(x)T = q(x−1) = ∑

i∈Q x−i . Let r(x) = q(x), for the casewhen p ≡ ±3 (mod 8),
2 ∈ N we have q(x)2 = ∑

i∈Q x2i = n(x). We know that 1 + q(x) + n(x) = j (x),
therefore, q(x)3 = q(x)2q(x) = n(x)q(x) = (1 + q(x) + j (x))q(x) = q(x) +
n(x) + j (x) = 1. Then, q(x)2

q(x)3 = q(x)2 and q(x)2 = n(x) = q(x)−1 = q(x−1). On

the other hand, −1 ∈ N if p ≡ 3 (mod 8) and thus q(x)T = n(x). If p ≡ −3
(mod 8), −1 ∈ Q, we have q(x)T = q(x). For r(x) = n(x), the same arguments
follow.



9.4 Code Construction 221

LetPp denote a (2p, p, d) pure double-circulant code for p ≡ ±3 (mod 8). The
properties of Pp can be summarised as follows:

1. For p ≡ 3 (mod 8), since q(x)3 = 1 and a2
p−1−1 = 1, we have q(x) =

a(x)(2
p−1−1)/3 and q(x)T = a(x)(2

p−2)/3. There are two full-rank generator matri-
ces with mutually disjoint information sets associated withPp for these primes.
Let G1 be a reduced echelon generator matrix ofPp, which has the form of (9.5a)
with R = B, where B is a circulantmatrixwith defining polynomial b(x) = q(x).
The other full-rank generator matrix G2 can be obtained as follows:

G2 =
XXXX
BT

X X XX
× G1 =

XXXX XXXX
BT I p

X X X X XXXX
. (9.17)

The self-duality of this pure double-circulant code is obvious from G2.
2. For p ≡ −3 (mod 8), (p − 1)/2 is even and hence, neither q(x) nor n(x) is

invertible, which means that if this polynomial was chosen as the defining poly-
nomial forPp, there exists only one full-rank generator matrix. However, either
1 + q(x) (resp. 1 + n(x)) is invertible and the inverse is 1 + n(x) (resp. 1 + q(x)),
i.e.

(1 + q(x))(1 + n(x)) = 1 + q(x) + n(x) + q(x)n(x)

= 1 + q(x) + n(x) + q(x)(1 + j (x) + q(x))

= 1 + q(x) + n(x) + q(x) + q(x) j (x) + q(x)2,

and since q(x) j (x) = 0 and q(x)2 = n(x) under polynomial modulo x p − 1, it
follows that

(1 + q(x))(1 + n(x)) = 1 (mod x p − 1).

Let G1 be the first reduced echelon generator matrix, which has the form of
(9.5a) where R = I p + Q. The other full-rank generator matrix with disjoint
information sets G2 can be obtained as follows:

G2 =
XXXX
I p + N
XXXX

× G1 =
XXXX XXXX
I p + N I p

X X X X XXXX
. (9.18)

Since−1 ∈ Q for this prime, (I p + Q)T = I p + Q implying that the (2p, p, d)

pure double-circulant code is FSD, i.e. the generator matrix of P⊥
p is given by

G⊥ =
XXXX XXXX
I p + Q I p

X X X X XXXX
.
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A bordered double-circulant construction based on these primes—commonly
known as the quadratic double-circulant construction—also exists, see Sect. 9.4.3
below.

9.4.3 Quadratic Double-Circulant Codes

Let p be a prime that is congruent to ±3 modulo 8. A (2(p + 1), p + 1, d) binary
quadratic double-circulant code, denoted byBp, can be constructed using the defin-
ing polynomial

b(x) =
{
1 + q(x) if p ≡ 3 (mod 8), and

q(x) if p ≡ −3 (mod 8)
(9.19)

where q(x) = ∑
i∈Q xi . Following [13], the generator matrix G ofBp is

G =

l∞ l0 . . . l p−1 r∞ r0 . . . rp−1

1 0
... I p

... B
1 0
0 0 . . . 0 1 1 . . . 1

(9.20)

which is, if the last row of G is rearranged as the first row, the columns indexed by
l∞ and r∞ are rearranged as the last and the first columns, respectively, equivalent
to (9.5b) with α = 0 and k = p + 1. Let j (x) = 1 + x + x2 + · · · + x p−1, and the
following are some properties of Bp [9]:

1. for p ≡ 3 (mod 8), b(x)3 = (1 + q(x))2(1 + q(x)) = (1 + n(x))(1 + q(x)) =
1 + j (x), sinceq(x)2 = n(x) (2 ∈ N for this prime) andq(x) j (x) = n(x) j (x) =
j (x) (wtH (q(x)) = wtH (n(x)) is odd). Also, (b(x) + j (x))3 = (1 + q(x) +
j (x))2(1 + q(x) + j (x)) = n(x)2(1 + q(x) + j (x)) = q(x)+ n(x)+ j (x)= 1
because n(x)2 = q(x). Since −1 ∈ N and we have b(x)T = 1 +∑

i∈Q x−i =
1 + n(x) and thus, b(x)b(x)T = (1 + q(x))(1 + n(x)) = 1 + j (x).
There are two generator full-rank matrices with disjoint information sets forBp.
This is because, although b(x) has no inverse, b(x) + j (x) does, and the inverse
is (b(x) + j (x))2.
Let G1 has the form of (9.5b) where R = B, and the other full-rank generator
matrix G2 can be obtained as follows:
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G2 =
1 1 . . . 1
0
... BT

0

× G1 =
0 1 . . . 1 1 0 . . . 0
1 0
... BT

... I p

1 0

. (9.21)

It is obvious that G2 is identical to the generator matrix of B⊥
p and hence, it is

self-dual.
2. for p ≡ −3 (mod 8), b(x)3 = n(x)q(x) = (1 + j (x) + q(x))q(x) = 1 + j (x)

since q(x)2 = n(x) (2 ∈ N for this prime) and q(x) j (x) = n(x) j (x) = 0
(wtH (q(x)) = wtH (n(x)) is even). Also, (b(x) + j (x))3 = (q(x) + j (x))2(1 +
n(x)) = q(x)2 + q(x)2n(x) + j (x)2 + j (x)2n(x) = n(x) + q(x) + j (x) = 1
because n(x)2 = q(x). Since −1 ∈ Q and we have b(x)T = ∑

i∈Q x−i = b(x)
and it follows that Bp is FSD, i.e. the generator matrix ofB⊥

p is given by

G⊥ =
0 1 . . . 1 1 0 . . . 0
1 0
... B

... I p

1 0

Since (b(x) + j (x))−1 = (b(x) + j (x))2, there exist full-rank two generator
matrices of disjoint information sets forBp. Let G1 has the form of (9.5b) where
R = B, and the other full-rank generator matrix G2 can be obtained as follows:

G2 =
1 1 . . . 1
0
... B2

0

× G1 =
0 1 . . . 1 1 0 . . . 0
1 0
... B2

... I p

1 0

(9.22)

Codes of the form Bp form an interesting family of double-circulant codes.
In terms of self-dual codes, the family contains the longest extremal Type-II code
known, n = 136. Probably, it is the longest extremal code that exists, see Sect. 9.7.
Moreover, Bp is the binary image of the extended QR code over F4 [10].

The (p + 1, 1
2 (p + 1), d) double-circulant codes for p ≡ ±1 (mod 8) are fixed

by PSL2(p), see Sect. 9.4.1. This linear group PSL2(p) is generated by the set of all
permutations to the coordinates (∞, 0, 1, . . . , p − 1) of the form

y → ay + b

cy + d
, (9.23)

where a, b, c, d ∈ Fp, ad − bc = 1, y ∈ Fp ∪ {∞}, and it is assumed that ± 1
0 = ∞

and ± 1
∞ = 0 in the arithmetic operations.
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We know from [13] that this form of permutation is generated by the following
transformations:

S : y → y + 1

V : y → α2y

T : y → −1

y
,

(9.24)

where α is a primitive element of Fp. In fact, V is redundant since it can be obtained
from S and T , i.e.

V = T SαT SμT Sα (9.25)

for2 μ = α−1 ∈ Fp.
The linear group PSL2(p) fixes not only the (p + 1, 1

2 (p + 1), d) binary double-
circulant codes, for p ≡ ±1 (mod 8), but also the (2(p + 1), p + 1, d) binary
quadratic double-circulant codes, as shown as follows. Consider the coordinates
(∞, 0, 1, . . . , p − 1) of a circulant, the transformation S leaves the coordinate ∞
invariant and introduces a cyclic shift to the rest of the coordinates and hence S fixes
a circulant. Let Ri and Li denote the i th row of the right and left circulants of (9.20),
respectively (we assume that the index starts with 0), and let J and J ′ denote the
last row of the right and left circulant of (9.20), respectively.

Consider the primes p = 8m + 3, R0 = (
0 | 1 +∑

i∈Q xi
)
. Let ei and f j , for

some integers i and j , be even and odd integers, respectively. If i ∈ Q, −1/ i =
−1 × α p−1/αe1 = α f1 × αe2−e1 ∈ N since −1 ∈ N for these primes. Therefore, the
transformation T interchanges residues to non-residues and vice versa. In addition,
we also know that T interchanges coordinates ∞ and 0. Applying transformation T
to R0, T (R0), results in

T (R0) =
⎛

⎝1 |
∑

j∈N
x j

⎞

⎠ = R0 + J .

Similarly, for the first row of L, which has 1 at coordinates ∞ and 0 only, i.e.
L0 = (1 | 1)

T (L0) = L0 + J .

2T SαT SμT Sα(y) = T SαT SμT (y + α) = T SαT Sμ(−y−1+α) = T SαT
(
− 1

y+μ
+ α

)
=

T SαT(
αy+αμ−1

y+μ

)
= T Sα

(−αy−1+αμ−1
−y−1+μ

)
= T

(−α(y+α)−1+αμ−1
−(y+α)−1+μ

)
= T

(
(αμ−1)y+α(αμ−1)−α

μy+(αμ−1)

)
=

(
(−αμ−1)y−1+α(αμ−1)−α

−μy−1+(αμ−1)

)
=
( −α

−μy−1

)
= α2y = V (y).
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Let s ∈ Q and let the set Q̂ = Q ∪ {0}, Rs =
(
0 | ∑i∈Q̂ xs+i

)
andT

(∑
i∈Q̂ xs+i

)
=

∑
i∈Q̂ x−1/(s+i). FollowingMacWilliams and Sloane [13, Theorem 24, Chap. 16], we

know that the exponents of
∑

i∈Q̂ xs+i contain 2m + 1 residues and
2m + 1 non-residues. Note that s + i produces no 0.3 It follows that −1/(s +
i) contains 2m + 1 non-residues and 2m + 1 residues. Now consider R−1/s =(
0 | ∑i∈Q̂ x i−1/s

)
, i − 1/s contains4 0 i, s ∈ Q, 2m residues and 2m + 1 non-

residues. We can write −1/(s + i) as

− 1

s + i
= i/s

s + i
− 1

s
= z − 1

s
.

Let I ⊂ Q̂ be a set of all residues such that for all i ∈ I , i − 1/s ∈ N . If −1/
(s + i) ∈ N , z ∈ Q̂ and we can see that z must belong to I such that z − 1/s ∈ N .
This means these non-residues cancel each other in T (Rs) + R−1/s . On the other
hand, if −1/(s + i) ∈ Q, z ∈ N and it is obvious that z − 1/s �= i − 1/s for all
i ∈ Q̂, implying that all 2m + 1 residues in T (Rs) are disjoint from all 2m + 1

residues (including 0) in R−1/s . Therefore, T (Rs) + R−1/s =
(
0 | ∑i∈Q̂ x i

)
, i.e.

T (Rs) = R−1/s + R0.

Similarly, T (Ls) = (
0 | 1 + x−1/s

)
and L−1/s = (

1 | x−1/s
)
, which means

T (Ls) = L−1/s + L0.

Let t ∈ N , Rt =
(
0 | ∑i∈Q̂ x t+i

)
and T

(∑
i∈Q̂ x t+i

)
= ∑

i∈Q̂ x−1/(t+i). We know

that t + i contains 0, 2m residues and 2m + 1 non-residues [13, Theorem 24, Chap.
16], and correspondingly −1/(t + i) contains ∞, 2m non-residues and 2m + 1

residues. As before, now consider R−1/t =
(
0 | ∑i∈Q̂ x i−1/t

)
. There are 2m + 1

residues (excluding 0) and 2m + 1 non-residues in i − 1/t , and let I ′ ⊂ Q̂ be a
set of all residues such that, for all i ∈ I ′, i − 1/t ∈ Q. As before, we can write
−1/(t + i) as z − 1/t , where z = (i/t)/(t + i). If −1/(t + i) ∈ Q, z ∈ I ′ and
hence, the 2m + 1 residues from −1/(t + i) are identical to those from i − 1/t .
If −1/(t + i) ∈ N , z ∈ N and hence, all of the 2m non-residues of −1/(t + i)
are disjoint from all 2m + 1 non-residues of i − 1/t . Therefore, T (Rt ) + R−1/t =(
1 | ∑i∈N xi

)
, i.e.

T (Rt ) = R−1/t + R0 + J .

3Consider a prime p = ±3 (mod 8), q ∈ Q and an integer a where (a, p) = 1. In order for
q + a = 0 to happen, a = −q. The integer a is a residue if p = 8m − 3 and a non-residue if
p = 8m + 3.
4This is because all i ∈ Q are considered and 1/s ∈ Q.
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Similarly, T (Lt ) = (
0 | 1 + x−1/t

)
and L−1/t = (

1 | x−1/t
)
, which means

T (Lt ) = L−1/t + L0 + J ′.

For primes p = 8m − 3, R0 = (
0 | ∑i∈Q xi

)
and since −1 ∈ Q, −1/ i ∈ Q for

i ∈ Q. Thus,

T (R0) =
⎛

⎝0 |
∑

i∈Q
x−1/ i

⎞

⎠ = R0.

Similarly, for L0, which contains 1 at coordinates 0 and ∞,

T (L0) = L0.

Consider Rs = (
0 | ∑i∈Q xs+i

)
, for s ∈ Q,T

(∑
i∈Q xs+i

) = ∑
i∈Q x−1/(s+i). There

are 0 (when i = −s ∈ Q), 2m − 2 residues and 2m − 1 non-residues in the set
s + i [13, Theorem 24, Chap. 16]. Correspondingly, −1/(s + i) = z − 1/s, where
z = (i/s)/(s + i), contains∞, 2m − 2 residues and 2m − 1 non-residues. Now con-
sider R−1/s = (

0 | ∑i∈Q xi−1/s
)
, the set i − 1/s contains 0 (when i = 1/s ∈ Q),

2m − 2 residues and 2m − 1 non-residues. Let I ⊂ Q be a set of all residues such
that for all i ∈ I , i − 1/s ∈ Q. If −1/(s + i) ∈ Q then z − 1/s ∈ Q which means
z ∈ Q and z must belong to I . This means all 2m − 2 residues of −1/(s + i) and
those of i − 1/s are identical. On the contrary, if −1/(s + i) ∈ N , z ∈ N and this
means z − 1/s �= i − 1/s for all i ∈ Q, and therefore all non-residues in−1/(s + i)
and i − 1/s are mutually disjoint. Thus, T (Rs) + R−1/s = (

1 | 1 +∑
i∈N xi

)
, i.e.

T (Rs) = R−1/s + R0 + J .

Similarly, T (Ls) = (
0 | 1 + x−1/s

)
, and we can write

T (Ls) = L−1/s + L0 + J ′.

For t ∈ N , we have Rt = (
0 | ∑i∈Q xt+i

)
and T (

∑
i∈Q xt+i ) = ∑

i∈Q x−1/(t+i). Fol-
lowing [13, Theorem 24, Chap. 16], there are 2m − 1 residues and 2m − 1 non-
residues in the set t + i and the same distributions are contained in the set−1/(t + i).
Considering R−1/t = (

0 | ∑i∈Q xi−1/t
)
, there are 2m − 1 residues and 2m − 1 non-

residues in i − 1/t . Rewriting −1/(t + i) = z − 1/t , for z = (i/t)/(t + i), and
letting I ′ ⊂ Q be a set of all residues such that for all i ∈ I ′, i − 1/t ∈ N , we
know that if −1/(t + i) ∈ N then z − 1/t ∈ N which means that z ∈ Q and z
must belong to I ′. Hence, the non-residues in i − 1/t and −1/(t + i) are iden-
tical. If −1/(t + i) ∈ Q, however, z ∈ N and for all i ∈ Q, i − 1/t �= z − 1/t ,
implying that the residues in −1/(t + i) and i − 1/t are mutually disjoint. Thus,
T (Rt ) + R−1/t = (

0 | ∑i∈Q xi
)
, i.e.
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T (Rt ) = R−1/t + R0.

Similarly, T (Lt ) = (
0 | 1 + x−1/t

)
, and we can write

T (Lt ) = L−1/t + L0.

The effect T to the circulants is summarised as follows:

T for p ≡ 3 (mod 8) for p ≡ −3 (mod 8)
T (R0) R0 + J R0

T (Rs) R−1/s + R0 R−1/s + J
T (Rt ) R−1/t + R0 + J R−1/t + R0

T (L0) L0 + J ′ L0

T (Ls) L−1/s + L0 L−1/s + J ′
T (Lt ) L−1/t + L0 + J ′ L−1/t + L0

where s ∈ Q and t ∈ N . This shows that, for p ≡ ±3 (mod 8), the transformation
T is a linear combination of at most three rows of the circulant and hence it fixes the
circulant. This establishes the following theorem on Aut(Bp) [2, 13].

Theorem 9.1 Theautomorphismgroupof the (2(p + 1), p + 1, d)binaryquadratic
double-circulant codes contains PSL2(p) applied simultaneously to both circulants.

The knowledge of Aut(Bp) can be exploited to deduce the modular congruence
weight distributions of Bp as shown in Sect. 9.6.

9.5 Evaluation of the Number of Codewords of Given
Weight and the Minimum Distance: A More Efficient
Approach

In Chap.5 algorithms to compute the minimum distance of a binary linear code
and to count the number of codewords of a given weight are described. Assuming
the code rate of the code is a half and its generator matrix contains two mutually
disjoint information sets, each of rank k (the code dimension), these algorithms
require enumeration of

(
k

w/2

)
+ 2

w/2−1∑

i=1

(
k

i

)

codewords in order to count the number of codewords of weight w. For FSD double-
circulant codes with p ≡ −3 (mod 8) and self-dual double-circulant codes a more
efficient approach exists. This approach applies to both pure and bordered double-
circulant cases.

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Lemma 9.7 Let Tm(x) be a set of binary polynomials with degree at most m.
Let ui (x), vi (x) ∈ Tk−1(x) for i = 1, 2, and e(x), f (x) ∈ Tk−2(x). The numbers of
weight w codewords of the form c1(x) = (u1(x)|v1(x)) and c2(x) = (v2(x)|u2(x))
are equal, where

(i) for self-dual pure double-circulant codes, u2(x) = u1(x)T and v2(x) = v1(x)T ;
(ii) for self-dual bordered double-circulant codes, u1(x) = (ε|e(x)), v1(x) =

(γ | f (x)), u2(x) = (ε|e(x)T ) and v2(x) = (γ | f (x)T ), where γ = wtH (e(x))
(mod 2);

(iii) for FSD pure double-circulant codes (p ≡ −3 (mod 8)), u2(x) = u1(x)2 and
v2(x) = v1(x)2;

(iv) for FSD bordered double-circulant codes (p ≡ −3 (mod 8)), u1(x)=(ε|e(x)),
v1(x) = (γ | f (x)), u2(x) = (ε|e(x)2), v2(x) = (γ | f (x)2), where γ = wtH
(e(x)) (mod 2).

Proof

(i) Let G1 = [I k |R] and G2 = [RT |I k] be the two full-rank generator matrices
withmutually disjoint information sets of a self-dual pure double-circulant code.
Assume that r(x) and r(x)T are the defining polynomials of G1 and G2, respec-
tively. Given u1(x) as an input, we have a codeword c1(x) = (u1(x)|v1(x)),
where v1(x) = u1(x)r(x), from G1. Another codeword c2(x) can be obtained
from G2 using u1(x)T as an input, c2(x) = (v1(x)T |u1(x)T ), where v1(x)T =
u1(x)T r(x)T = (u1(x)r(x))T . Since the weight of a polynomial and that of its
transpose are equal, for a given polynomial of degree at most k − 1, there exist
two distinct codewords of the same weight.

(ii) Let G1, given by (9.5b), and G2 be two full-rank generator matrices with pair-
wise disjoint information sets, of bordered self-dual double-circulant codes. It is
assumed that the form of G2 is identical to that given by (9.21) with RT = BT .
Let f (x) = e(x)r(x), consider the following cases:

a. ε = 0 and wtH (e(x)) is odd, we have a codeword c1(x) = (0 | e(x) | 1 |
f (x)) from G1. Applying

(
0 | e(x)T ) as an information vector to G2, we

have another codeword c2(x) = (
1 | e(x)T r(x)T | 0 | e(x)T ) = (

1 | f (x)T

| 0 | e(x)T ).
b. ε = 1 and wtH (e(x)) is odd, G1 produces c1(x)= (1 | e(x) | 1 |

f (x)+ j (x)).Applying
(
1 | e(x)T ) as an informationvector toG2,wehave a

codeword c2(x)= (
1 | e(x)T r(x)T + j (x) | 1 | e(x)T ) = (

1 | f (x)T +
j (x) | 1 | e(x)T ).

c. ε = 0 andwtH (e(x)) is even,G1 produces a codeword c1(x) = (0 | e(x) | 0 |
f (x)). Applying

(
0 | e(x)T ) as an information vector toG2, we have another

codeword c2(x) = (
0 | e(x)T r(x)T | 0 | e(x)T ) = (

0 | f (x)T | 0 | e(x)T ).
d. ε = 1 and wtH (e(x)) is even, G1 produces c1(x) = (1 | e(x) | 0 | f (x)+

j (x)). Applying
(
1 | e(x)T ) as an information vector to G2, we have a code-

word c2(x) = (
0 | e(x)T r(x)T + j (x) | 1 | e(x)T ) = (

0 | f (x)T + j (x)
| 1 | e(x)T ).
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It is clear that in all cases, wtH (c1(x)) = wtH (c2(x)) since wtH (v(x)) =
wtH (v(x)T ) and wtH (v(x) + j (x)) = wtH (v(x)T + j (x)) for some polyno-
mial v(x). This means that given an information vector, there always exist two
distinct codewords of the same weight.

(iii) Let G1, given by (9.5a) with R = I p + Q, and G2, given by (9.18), be two full-
rank generator matrices with pairwise disjoint information sets, of pure FSD
double-circulant codes for p ≡ −3 (mod 8).
Given u1(x) as input, we have a codeword c1(x) = (u1(x)|v1(x)), where
v1(x) = u1(x)(1 + q(x)), from G1 and another codeword c2(x) = (v2(x)|u2
(x)), where u2(x) = u1(x)2 and v2(x) = u1(x)2(1 + n(x)) = u1(x)2(1
+q(x))2 = v1(x)2, from G2. Since the weight of a polynomial and that of its
square are the same over F2, the proof follows.

(iv) Let G1, given by (9.5b) with B = R, and G2, given by (9.22), be two full-rank
generator matrices with pairwise disjoint information sets, of bordered FSD
double-circulant codes for p ≡ −3 (mod 8). Let f (x) = e(x)b(x), consider
the following cases:

a. ε = 0 andwtH (e(x)) is odd,wehave a codeword c1(x)= (0 | e(x) | 1 | f (x))
from G1. Applying

(
0 | e(x)2) as an information vector to G2, we have

another codeword c2(x) = (
1 | e(x)2n(x) | 0 | e(x)2). Since e(x)2n(x) =

e(x)2b(x)2 = f (x)2, the codeword c2 = (
1 | f (x)2 | 0 | e(x)2).

b. ε = 1 and wtH (e(x)) is odd, G1 produces c1(x) = (1 | e(x) | 1 | f (x)
+ j (x)). Applying

(
1 | e(x)2) as an information vector to G2, we have a

codeword c2(x) = (
1 | e(x)2n(x) + j (x) | 1 | e(x)2) = (

1 | f (x)2 + j (x)
| 1 | e(x)2).

c. ε = 0 and wtH (e(x)) is even, G1 produces a codeword c1(x) = (0 | e(x) | 0
| f (x)). Applying

(
0 | e(x)2) as an information vector to G2, we have

another codeword c2(x) = (
0 | e(x)2n(x) | 0 | e(x)2) = (

0 | f (x)2 | 0
| e(x)2).

d. ε = 1 and wtH (e(x)) is even, G1 produces c1(x) = (1 | e(x) | 0 | f (x)
+ j (x)). Applying

(
1 | e(x)2) as an information vector to G2, we have a

codeword c2(x) = (
0 | e(x)2n(x) + j (x) | 1 | e(x)2) = (

0 | f (x)2 + j (x)
| 1 | e(x)2).

It is clear that in all cases, wtH (c1(x)) = wtH (c2(x)) since wtH (v(x)) =
wtH (v(x)2) and wtH (v(x) + j (x)) = wtH (v(x)2 + j (x)) for some polynomial
v(x). Thismeans that given an information vector, there always exist two distinct
codewords of the same weight.

From Lemma 9.7, it follows that, in order to count the number of codewords of
weight w, we only require

w/2∑

i=1

(
k

i

)

codewords to be enumerated and if Aw denotes the number of codewords of weightw,
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Aw = aw/2 + 2
w/2−1∑

i=1

ai (9.26)

where ai is the number of weight w codewords which have i non-zeros in the first k
coordinates.

Similarly, the commonly used method to compute the minimum distance of half-
rate codes with two full-rank generator matrices of mutually disjoint information
sets, for example, see van Dijk et al. [18], assuming that d is the minimum distance
of the code, requires as many as

S = 2
d/2−1∑

i=1

(
n

i

)

codewords to be enumerated. Following Lemma 9.7, only S/2 codewords are
required forPp andBp for p ≡ −3 (mod 8), and self-dual double-circulant codes.
Note that the bound d/2 − 1may be improved for singly even and doubly even codes,
but we consider the general case here.

9.6 Weight Distributions

The automorphism group of both (p + 1, 1
2 (p + 1), d) extended QR and (2(p +

1), p + 1, d) quadratic double-circulant codes contains the projective special linear
group, PSL2(p). LetH be a subgroup of the automorphism group of a linear code,
and the number of codewords of weight i , denoted by Ai , can be categorised into
two classes:

1. a class of weight i codewords which are invariant under some element ofH ; and
2. a class of weight i codewords which forms an orbit of size |H |, the order ofH .

In the other words, if c is a codeword of this class, applying all elements of H
to c, |H | distinct codewords are obtained.

Thus, we can write Ai in terms of congruence as follows:

Ai = ni × |H | + Ai (H ),

≡ Ai (H ) (mod |H |) (9.27)

where Ai (H ) is the number of codewords of weight i fixed by some element of
H . This was originally shown by Mykkeltveit et al. [14], where it was applied to
extended QR codes for primes 97 and 103.
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9.6.1 The Number of Codewords of a Given Weight
in Quadratic Double-Circulant Codes

For Bp, we shall choose H = PSL2(p), which has order |H | = 1
2 p(p

2 − 1). Let
the matrix

[
a b
c d

]
represent an element of PSL2(p), see (9.23). Since |H | can be

factorised as |H | = ∏
j q

e j
j , where q j is a prime and e j is some integer, Ai (H )

(mod |H |) can be obtained by applying the Chinese remainder theorem to Ai (Sq j )

(mod q
e j
j ) for all q j that divides |H |, where Sq j is the Sylow-q j -subgroup of H .

In order to compute Ai (Sq j ), a subcode ofBp which is invariant under Sq j needs to
be obtained in the first place. This invariant subcode, in general, has a considerably
smaller dimension thanBp, and hence, its weight distribution can be easily obtained.

For each odd prime q j , Sq j is a cyclic group which can be generated by some[
a b
c d

] ∈ PSL2(p) of order q j . Because Sq j is cyclic, it is straightforward to obtain
the invariant subcode, from which we can compute Ai (Sq j ).

On the other hand, the case of q j = 2 is more complicated. For q j = 2, S2 is a
dihedral group of order 2m+1, where m + 1 is the maximum power of 2 that divides
|H | [? ]. For p = 8m ± 3, we know that

|H | = 1

2
(8m ± 3)

(
(8m ± 3)2 − 1

) = 22
(
64m3 ± 72m2 + 26m ± 3

)
,

which shows that the highest power of 2 that divides |H | is 22 (m = 1). Following
[? ], there are 2m + 1 subgroups of order 2 in S2, namely

H2 = {1, P},
G0

2 = {1, T }, and

G1
2 = {1, PT },

where P, T ∈ PSL2(p), P2 = T 2 = 1 and T PT−1 = P−1.
Let T = [

0 p−1
1 0

]
, which has order 2. It can be shown that any order 2 permutation,

P = [
a b
c d

]
, if a constraint b = c is imposed, we have a = −d. All these subgroups,

however, are conjugates in PSL2(p) [? ] and therefore, the subcodes fixed by G0
2, G

1
2

and H2 have identical weight distributions and considering any of them, say G0
2, is

sufficient.
Apart from 2m + 1 subgroups of order 2, S2 also contains a cyclic subgroup of

order 4, 2m−1 non-cyclic subgroups of order 4, and subgroups of order 2 j for j ≥ 3.
Following [14], only the subgroups of order 2 and the non-cyclic subgroups of

order 4 make contributions towards Ai (S2). For p ≡ ±3 (mod 8), there is only
one non-cyclic subgroup of order 4, denoted by G4, which contains, apart from an
identity, three permutations of order 2 [? ], i.e. a Klein 4 group,

G4 = {1, P, T, PT }.
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Having obtained Ai (G0
2) and Ai (G4), following the argument in [14], the number of

codewords of weight i that are fixed by some element of S2 is given by

Ai (S2) ≡ 3Ai (G
0
2) − 2Ai (G4) (mod 4). (9.28)

In summary, in order to deduce the modular congruence of the number of weight
i codewords inBp, it is sufficient to do the following steps:

1. compute the number of weight i codewords in the subcodes fixed by G0
2, G4 and

Sq , for all odd primes q that divide |H |;
2. apply (9.28) to Ai (G0

2) and Ai (G4) to obtain Ai (S2); and then
3. apply the Chinese remainder theorem to Ai (S2) and all Ai (Sq) to obtain Ai (H )

(mod |H |).
GivenBp and an element of PSL2(p), how can we find the subcode consisting of

the codewords fixed by this element? Assume that Z = [
a b
c d

] ∈ PSL2(p) of prime
order. Let cli (resp. cri ) and cli ′ (resp. cri ′ ) denote the i th coordinate and πZ (i)th
coordinate (i th coordinate with the respect to permutation πZ ), in the left (resp.
right) circulant form, respectively. The invariant subcode can be obtained by solving
a set of linear equations consisting of the parity-check matrix of Bp (denoted by
H), cli + cli ′ = 0 (denoted by π Z (L)) and cri + cri ′ = 0 (denoted by π Z (R)) for all
i ∈ Fp ∪ {∞}, i.e.

H sub =
H

π Z (L)

π Z (R)

.

The solution to H sub is amatrix of rank r > (p + 1), which is the parity-checkmatrix
of the (2(p + 1), 2(p + 1) − r, d ′) invariant subcode. For subgroup G4, which con-
sists of permutations P , T and PT , we need to solve the following matrix

H sub =

H

π P(L)

π P(R)

πT (L)

πT (R)

π PT (L)

π PT (R)

to obtain the invariant subcode. Note that the parity-check matrix ofBp is assumed
to have the following form:
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H =

l∞ l0 . . . l p−1 r∞ r0 . . . rp−1

0 1
... BT

... I p

0 1
1 1 . . . 1 0 0 . . . 0

. (9.29)

One useful application of the modular congruence of the number of codewords
of weight w is to verify, independently, the number of codewords of a given weight
w that were computed exhaustively.

Computing the number of codewords of a given weight in small codes using a
single-threaded algorithm is tractable, but for longer codes, it is necessary to use
multiple computers working in parallel to produce a result within a reasonable time.
Even so it can take several weeks, using hundreds of computers, to evaluate a long
code. In order to do the splitting, the codeword enumeration task is distributed among
all of the computers and each computer just needs to evaluate a predetermined number
of codewords, finding the partial weight distributions. In the end, the results are
combined to give the total number of codewords of a given weight. There is always
the possibility of software bugs or mistakes to be made, particularly in any parallel
computing scheme. The splitting may not be done correctly or double-counting or
miscounting introduced as a result, apart frompossible errors in combining the partial
results. Fortunately, the modular congruence approach can also provide detection of
computing errors by revealing inconsistencies in the summed results. The importance
of this facet of modular congruence will be demonstrated in determining the weight
distributions of extended QR codes in Sect. 9.6.2. In the following examples wework
through the application of themodular congruence technique in evaluating theweight
distributions of the quadratic double-circulant codes of primes 37 and 83.

Example 9.1 For prime 37, there exists an FSD (76, 38, 12) quadratic double-
circulant code, B37. The weight enumerator of an FSD code is given by Gleason’s
theorem [15]

A(z) =
� n
8 �∑

i=0

Ki (1 + z2)
n
2 −4i (z2 − 2z4 + z6)i (9.30)

for integers Ki . The number of codewords of any weightw is given by the coefficient
of zw of A(z). In order to compute A(z) of B37, we need only to compute A2i for
6 ≤ i ≤ 9. Using the technique described in Sect. 9.5, the number of codewords of
desired weights is obtained and then substituted into (9.30). The resulting weight
enumerator function giving the whole weight distribution of the (76, 38, 12) code,
B37 is
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A(z) = (
1 + z76

)+ 2109 × (
z12 + z64

)+
86469 × (

z16 + z60
)+ 961704 × (

z18 + z58
)+

7489059 × (
z20 + z56

)+ 53574224 × (
z22 + z54

)+
275509215 × (

z24 + z52
)+ 1113906312 × (

z26 + z50
)+

3626095793 × (
z28 + z48

)+ 9404812736 × (
z30 + z46

)+
19610283420 × (

z32 + z44
)+ 33067534032 × (

z34 + z42
)+

45200010670 × (
z36 + z40

)+ 50157375456 × z38.

(9.31)

Let H = PSL2(37), and we know that |H | = 22 × 32 × 19 × 37 = 25308. Con-
sider the odd primes as factors q. For q = 3,

[
0 1
36 1

]
generates the following permu-

tation of order 3:

(∞, 0, 1)(2, 36, 19)(3, 18, 13)(4, 12, 10)(5, 9, 23)(6, 22, 7)(8, 21, 24)

(11)(14, 17, 30)(15, 29, 33)(16, 32, 31)(20, 35, 25)(26, 34, 28)(27)

The corresponding invariant subcode has a generator matrix G(S3) of dimension 14,
which is given by

G(S3) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

and its weight enumerator function is

A(S3)(z) = (
1 + z76

)+ 3 × (
z12 + z64

)+ 24 × (
z16 + z60

)+
54 × (

z18 + z58
)+ 150 × (

z20 + z56
)+ 176 × (

z22 + z54
)+

171 × (
z24 + z52

)+ 468 × (
z26 + z50

)+ 788 × (
z28 + z48

)+
980 × (

z30 + z46
)+ 1386 × (

z32 + z44
)+ 1350 × (

z34 + z42
)+

1573 × (
z36 + z40

)+ 2136 × z38.
(9.32)

For q = 19,
[

0 1
36 3

]
generates the following permutation of order 19:

(∞, 0, 25, 5, 18, 32, 14, 10, 21, 2, 1, 19, 30, 26, 8, 22, 35, 15, 3)

(4, 36, 28, 34, 31, 33, 16, 17, 29, 27, 20, 13, 11, 23, 24, 7, 9, 6, 12).

The resulting generator matrix of the invariant subcode G(S19), which has dimension
2, is
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G(S19) = [ 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]

and its weight enumerator function is

A(S19)(z) = 1 + 2z38 + z76. (9.33)

For the last odd prime, q = 37, a permutation of order 37

(∞, 0, 18, 24, 27, 14, 30, 15, 13, 32, 25, 26, 33, 19, 7, 4, 6, 23, 34,

1, 12, 29, 31, 28, 16, 2, 9, 10, 3, 22, 20, 5, 21, 8, 11, 17, 35)(36)

is generated by
[

0 1
36 35

]
and it turns out that the corresponding invariant subcode, and

hence, the weight enumerator function, are identical to those of q = 19.
For q = 2, subcodes fixed by some element of G0

2 and G4 are required. We have
P = [

3 8
8 34

]
and T = [

0 36
1 0

]
, and the resulting order 2 permutations generated by P ,

T and PT are

(∞, 5)(0, 22)(1, 17)(2, 21)(3, 29)(4, 16)(6, 31)(7, 18)(8, 26)(9, 30)(10, 25)

(11, 34)(12, 14)(13, 36)(15)(19, 28)(20, 24)(23, 27)(32)(33, 35)

(∞, 0)(1, 36)(2, 18)(3, 12)(4, 9)(5, 22)(6)(7, 21)(8, 23)(10, 11)(13, 17)

(14, 29)(15, 32)(16, 30)(19, 35)(20, 24)(25, 34)(26, 27)(28, 33)(31)

and

(∞, 22)(0, 5)(1, 13)(2, 7)(3, 14)(4, 30)(6, 31)(8, 27)(9, 16)(10, 34)(11, 25)

(12, 29)(15, 32)(17, 36)(18, 21)(19, 33)(20)(23, 26)(24)(28, 35)

respectively. It follows that the corresponding generator matrices and weight enu-
merator functions of the invariant subcodes are

G(G0
2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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which has dimension 20, with

A(G0
2)(z) = (

1 + z76
)+ 21 × (

z12 + z64
)+ 153 × (

z16 + z60
)+

744 × (
z18 + z58

)+ 1883 × (
z20 + z56

)+ 4472 × (
z22 + z54

)+
10119 × (

z24 + z52
)+ 21000 × (

z26 + z50
)+ 36885 × (

z28 + z48
)+

58656 × (
z30 + z46

)+ 85548 × (
z32 + z44

)+ 108816 × (
z34 + z42

)+
127534 × (

z36 + z40
)+ 136912 × z38

(9.34)

and

G(G4) =

⎡

⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎦ ,

which has dimension 12, with

A(G4)(z) = (
1 + z76

)+ 3 × (
z12 + z64

)+ 11 × (
z16 + z60

)+
20 × (

z18 + z58
)+ 51 × (

z20 + z56
)+ 56 × (

z22 + z54
)+

111 × (
z24 + z52

)+ 164 × (
z26 + z50

)+ 187 × (
z28 + z48

)+
224 × (

z30 + z46
)+ 294 × (

z32 + z44
)+ 328 × (

z34 + z42
)+

366 × (
z36 + z40

)+ 464 × z38

(9.35)

respectively. Consider the number of codewords of weight 12, from (9.31)−(9.35),
we know that A12(G0

2) = 21 and A12(G4) = 3; applying (9.28),

A12(S2) ≡ 3 × 21 − 2 × 3 (mod 4) ≡ 1 (mod 4)

and thus, we have the following set of simultaneous congruences:

A12(S2) ≡ 1 (mod 22)

A12(S3) ≡ 3 (mod 32)

A12(S19) ≡ 0 (mod 19)

A12(S37) ≡ 0 (mod 37).

Following the Chinese remainder theorem, a solution to the above congruences,
denotedby A12(H ), is congruentmoduloLCM{22, 32, 19, 37},whereLCM{22, 32, 19,
37} is the least common multiple of the moduli 22, 32, 19 and 37, which is equal to
22 × 32 × 19 × 37 = 25308 in this case. Since these moduli are pairwise coprime,
by the extended Euclidean algorithm, we can write
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1 = 4 × 1582 + 25308

4
× (−1)

1 = 9 × 625 + 25308

9
× (−2)

1 = 19 × 631 + 25308

19
× (−9)

1 = 37 × 37 + 25308

37
× (−2).

A solution to the congruences above is given by

A12(H ) = 1 ×
[
(−1)

25308

4

]
+ 3 ×

[
(−2)

25308

9

]
+ 0 ×

[
(−9)

25308

19

]

+ 0 ×
[
(−2)

25308

37

]
(mod 25308)

= − 1 × 6327 + −6 × 2812 (mod 25308)

= 2109 (mod 25308)

= 25308n12 + 2109.

Referring to the weight enumerator function, (9.31), we can immediately see that
n12 = 0, indicating that A12 has been accurately evaluated. Repeating the above pro-
cedures for weights larger than 12, we have Table9.3 which shows that the weight
distributions of B37 are indeed accurate. In fact, since the complete weight distrib-

Table 9.3 Modular congruence weight distributions of B37

i/n − i Ai (S2) Ai (S3) Ai (S19) Ai (S37) Ai (H ) ni in

mod 22 mod 32 mod 19 mod 37 mod 25308 Ai = 25308ni + Ai (H )

0/76 1 1 1 1 1 0

12/64 1 3 0 0 2109 0

16/60 1 6 0 0 10545 3

18/58 0 0 0 0 0 38

20/56 3 6 0 0 23199 295

22/54 0 5 0 0 22496 2116

24/52 3 0 0 0 6327 10886

26/50 0 0 0 0 0 44014

28/48 1 5 0 0 16169 143278

30/46 0 8 0 0 5624 371614

32/44 0 0 0 0 0 774865

34/42 0 0 0 0 0 1306604

36/40 2 7 0 0 23902 1785996

38 0 3 2 2 7032 1981878
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utions can be obtained once the first few terms required by Gleason’s theorem are
known, verification of these few terms is sufficient.

Example 9.2 Gulliver et al. [6] have shown that the (168, 84, 24) doubly even self-
dual quadratic double-circulant code B83 is not extremal since it has minimum
distance less than or equal to 28. The weight enumerator of a Type-II code of length
n is given by Gleason’s theorem, which is expressed as [15]

A(z) =
�n/24�∑

i=0

Ki (1 + 14z4 + z8)
n
8 −3i {z4(1 − z4)4}i , (9.36)

where Ki are some integers. As shown by (9.36), only the first few terms of Ai are
required in order to completely determine the weight distribution of a Type-II code.
For B83, only the first eight terms of Ai are required. Using the parallel version
of the efficient codeword enumeration method described in Chap.5, Sect. 9.5, we
determined that all of these eight terms are 0 apart from A0 = 1, A24 = 571704 and
A28 = 17008194.

We need to verify independently whether or not A24 and A28 have been correctly
evaluated. As in the previous example, the modular congruence method can be used
for this purpose. For p = 83, we have |H | = 22 × 3 × 7 × 41 × 83 = 285852. We
will consider the odd prime cases in the first place.

For prime q = 3, a cyclic group of order 3, S3 can be generated by
[

0 1
82 1

] ∈
PSL2(83), and we found that the subcode invariant under S3 has dimension 28 and
has 63 and 0 codewords of weights 24 and 28, respectively.

For prime q = 7, we have
[

0 1
82 10

]
which generates S7. The subcode fixed by S7

has dimension 12 and no codewords of weight 24 or 28 are contained in this subcode.
Similarly, for prime q = 41, the subcode fixed by S41, which is generated by[

0 1
82 4

]
and has dimension 4, contains no codewords of weight 24 or 28.

Finally, for prime q = 83, the invariant subcode of dimension 2 contains the all-
zeros, the all-ones, {0, 0, . . . , 0, 0︸ ︷︷ ︸

84

, 1, 1, . . . , 1, 1︸ ︷︷ ︸
84

} and {1, 1, . . . , 1, 1︸ ︷︷ ︸
84

, 0, 0, . . . , 0, 0︸ ︷︷ ︸
84

}

codewords only. The cyclic group S83 is generated by
[

0 1
82 81

]
.

For the case of q = 2, we have P = [
1 9
9 82

]
and T = [

0 82
1 0

]
. The subcode fixed

by S2, which has dimension 42, contains 196 and 1050 codewords of weights 24
and 28, respectively. Meanwhile, the subcode fixed by G4, which has dimension 22,
contains 4 and 6 codewords of weights 24 and 28, respectively.

Thus, using (9.28), the numbers of codewords of weights 24 and 28 fixed by S2
are

A24(S2) = 3 × 196 − 2 × 4 ≡ 0 (mod 4), and

A28(S2) = 3 × 1050 − 2 × 6 ≡ 2 (mod 4)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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and by applying the Chinese remainder theorem to all Ai (Sq) for i = 24, 28, we
arrive at

A24 = n24 × 285852 (9.37a)

and

A28 = n28 × 285852 + 142926 . (9.37b)

From (9.37) we have now verified A24 and A28, since they have equality for non-
negative integers n24 and n28 (n24 = 2 and n28 = 59). Using Gleason’s theorem,
i.e. (9.36), the weight enumerator function of the (168, 84, 24) codeB83 is obtained
and it is given by

A(z) = (z0 + z168)+
571704 × (z24 + z144)+
17008194 × (z28 + z140)+
5507510484 × (z32 + z136)+
1252615755636 × (z36 + z132)+
166058829151929 × (z40 + z128)+
13047194638256310 × (z44 + z124)+
629048483051034984 × (z48 + z120)+
19087129808556586056 × (z52 + z116)+
372099697089030108600 × (z56 + z112)+
4739291490433882602066 × (z60 + z108)+
39973673426117369814414 × (z64 + z104)+
225696677517789500207052 × (z68 + z100)+
860241109321000217491044 × (z72 + z96)+
2227390682939806465038006 × (z76 + z92)+
3935099587279668544910376 × (z80 + z88)+
4755747411704650343205104 × z84 .

(9.38)

For the complete weight distributions and their congruences of the (2(p + 1),
p + 1, d) quadratic double-circulant codes, for 11 ≤ p ≤ 83, except p = 37 as it
has already been given in Example 9.1, refer to Appendix “Weight Distributions of
Quadratic Double-Circulant Codes and their Modulo Congruence”.
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9.6.2 The Number of Codewords of a Given Weight
in Extended Quadratic Residue Codes

Wehavemodified themodular congruence approach ofMykkeltveit et al. [14], which
was originally introduced for extended QR codes L̂p, so that it is applicable to the
quadratic double-circulant codes. Whilst Bp contains one non-cyclic subgroup of
order 4, L̂p contains two distinct non-cyclic subgroups of this order, namely G0

4 and
G1

4. As a consequence, (9.28) becomes

Ai (S2) ≡ (2m + 1)Ai (H2) − 2m−1Ai (G
0
4) − 2m−1Ai (G

1
4) (mod 2m+1), (9.39)

where 2m+1 is the highest power of 2 that divides |H |. Unlike Bp, where there are
two circulants in which each one is fixed by PSL2(p), a linear group PSL2(p) acts on
the entire coordinates of L̂p. In order to obtain the invariant subcode, we only need
a set of linear equations containing the parity-check matrix of L̂p, which is arranged
in (0, 1, . . . , p − 2, p − 1)(∞) order, and ci + ci ′ = 0 for all i ∈ Fp ∪ {∞}. Note
that ci and ci ′ are defined in the same manner as in Sect. 9.6.1.

We demonstrate the importance of this modular congruence approach by proving
that the published results for the weight distributions of L̂151 and L̂137 are incorrect.
However, first let us derive the weight distribution of L̂167.

Example 9.3 There exists an extendedQR code L̂167 which has identical parameters
(n = 168, k = 84 and d = 24) as the code B83. Since L̂167 can be put into double-
circulant form and it is Type-II self-dual, the algorithm in Sect. 9.5 can be used to
compute the number of codewords of weights 24 and 28, denoted by A′

24 and A′
28 for

convenience, from which we can use Gleason’s theorem (9.36) to derive the weight
enumerator function of the code, A′(z). By codeword enumeration using multiple
computers we found that

A′
24 = 776216

A′
28 = 18130188.

(9.40)

In order to verify the accuracy of A′
24 and A′

28, the modular congruence method
is used. In this case, we have Aut(L̂167) ⊇ H = PSL2(167). We also know that
|PSL2(167)| = 23 × 3 × 7 × 83 × 167 = 2328648. Let P = [

12 32
32 155

]
and T =[

0 166
1 0

]
.

Let the permutations of orders 3, 7, 83 and 167 be generated by
[

0 1
166 1

]
,
[

0 1
166 19

]
,[

0 1
166 4

]
and

[
0 1
166 165

]
, respectively. The numbers of codewords of weights 24 and 28

in the various invariant subcodes of dimension k are

H2 G0
4 G1

4 S3 S7 S83 S167
k 42 22 21 28 12 2 1

A24 252 6 4 140 0 0 0
A28 1812 36 0 0 6 0 0
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For L̂167, equation (9.39) becomes

Ai (S2) ≡ 5 × Ai (H2) − 2 × Ai (G
0
4) − 2 × Ai (G

1
4) (mod 8) . (9.41)

It follows that

A24(S2) ≡ 0 (mod 8)

A28(S2) ≡ 4 (mod 8)

and thus,

A′
24 = n′

24 × 2328648 + 776216 (9.42a)

and

A′
28 = n′

28 × 2328648 + 1829652 (9.42b)

from the Chinese remainder theorem.
From (9.37a) and (9.42a), we can see thatB83 and L̂167 are indeed inequivalent.

This is because for integers n24, n′
24 ≥ 0, A24 �= A′

24.
Comparing Eq. (9.40) with (9.42a) and (9.42b) establishes that A′

24 = 776216
(n′

24 = 0) and A′
28 = 18130188 (n′

28 = 7). Theweight enumerator of L̂167 is derived
from (9.36) and it is given in (9.43). In comparison to (9.38), it may be seen that
L̂167 is a slightly inferior code than B83 having more codewords of weights 24, 28
and 32.

A′(z) =(z0 + z168)+
776216 × (z24 + z144)+
18130188 × (z28 + z140)+
5550332508 × (z32 + z136)+
1251282702264 × (z36 + z132)+
166071600559137 × (z40 + z128)+
13047136918828740 × (z44 + z124)+
629048543890724216 × (z48 + z120)+
19087130695796615088 × (z52 + z116)+
372099690249351071112 × (z56 + z112)+
4739291519495550245228 × (z60 + z108)+
39973673337590380474086 × (z64 + z104)+
225696677727188690570184 × (z68 + z100)+
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860241108921860741947676 × (z72 + z96)+
2227390683565491780127428 × (z76 + z92)+
3935099586463594172460648 × (z80 + z88)+
4755747412595715344169376 × z84 .

(9.43)

Example 9.4 Gaborit et al. [4] gave A2i , for 22 ≤ 2i ≤ 32, of L̂137 and we will
check the consistency of the published results. For p = 137, we have |PSL2(137)| =
23 × 3 × 17 × 23 × 137 = 1285608 and we need to compute A2i (Sq), where 22 ≤
2i ≤ 32, for all primes q dividing |PSL2(137)|. Let P = [

137 51
51 1

]
and T = [

0 136
1 0

]
.

Let
[

0 1
136 1

]
,
[

0 1
136 6

]
and

[
0 1
136 11

]
be generators of permutation of orders 3, 17 and

23, respectively. It is not necessary to find a generator of permutation of order 137
as it fixes the all-zeros and all-ones codewords only. Subcodes that are invariant
under G0

2, G
0
4, G

1
4, S3, S17 and S23 are obtained and the number of weight i , for

22 ≤ 2i ≤ 32, codewords in these subcodes is then computed. The results are shown
as follows, where k denotes the dimension of the corresponding subcode,

H2 G0
4 G1

4 S3 S17 S23 S137
k 35 19 18 23 5 3 1
A22 170 6 6 0 0 0 0
A24 612 10 18 46 0 0 0
A26 1666 36 6 0 0 0 0
A28 8194 36 60 0 0 0 0
A30 34816 126 22 943 0 0 0
A32 114563 261 189 0 0 0 0

.

We have

Ai (S2) ≡ 5 × Ai (H2) − 2 × Ai (G
0
4) − 2 × Ai (G

1
4) (mod 8) ,

for L̂137, which is identical to that for L̂167 since they both have 23 as the highest
power of 2 that divides |H |. Using this formulation, we obtain

A22(S2) = 2 (mod 8)

A24(S2) = 4 (mod 8)

A26(S2) = 6 (mod 8)

A28(S2) = 2 (mod 8)

A30(S2) = 0 (mod 8)

A32(S2) = 3 (mod 8)

and combining all the results using the Chinese remainder theorem, we arrive at
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A22 = n22 × 1285608 + 321402

A24 = n24 × 1285608 + 1071340

A26 = n26 × 1285608 + 964206

A28 = n28 × 1285608 + 321402

A30 = n30 × 1285608 + 428536

A32 = n32 × 1285608 + 1124907

(9.44)

for some non-negative integers ni . Comparing these to the results in [4], we can
immediately see that n22 = 0, n24 = 1, n26 = 16, n28 = 381, and both A30 and A32

were incorrectly reported. By codeword enumeration using multiple computers in
parallel, we have determined that

A30 = 6648307504

A32 = 77865259035

hence, referring to (9.44) it is found that n30 = 5171 and n32 = 60566.

Example 9.5 Gaborit et al. [4] also published the weight distribution of L̂151 and
we will show that this has also been incorrectly reported. For L̂151, |PSL2(151)| =
23 × 3 × 52 × 19 × 151 = 1721400 and we have P = [

104 31
31 47

]
and T = [

0 150
1 0

]
.

Let
[

0 1
150 1

]
,
[

0 1
150 27

]
and

[
0 1

150 8

]
be generators of permutation of orders 3, 5 and 19,

respectively. The numbers of weight i codewords for i = 20 and 24, in the various
fixed subcodes of dimension k, are

H2 G0
4 G1

4 S3 S5 S19 S151
k 38 20 19 26 16 4 1
A20 38 2 0 25 15 0 0
A24 266 4 4 100 0 0 0

and Ai (S2) is again the same as that for primes 167 and 137, see (9.41). Using this
equation, we have A20(S2) = A24(S2) = 2 (mod 8). Following the Chinese remain-
der theorem, we obtain

A20 = n20 × 1721400 + 28690

A24 = n24 × 1721400 + 717250
. (9.45)

It follows that A20 is correctly reported in [4], but A24 is incorrectly reported as
717230. Using the method in Sect. 9.5 implemented on multiple computers, we have
determined that

A20 = 28690

A24 = 717250,
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hence n20 = 0 and n24 = 0 in (9.45). Since A20 and A24 are required to derive the
complete weight distribution of L̂151 according to Gleason’s theorem for Type-II
codes (9.36), the weight distribution of L̂151 given in [4] is not correct. The correct
weight distribution of this code, given in terms of the weight enumerator function, is

A(z) = (
z0 + z152

)+
28690 × (

z20 + z132
)+

717250 × (
z24 + z128

)+
164250250 × (

z28 + z124
)+

39390351505 × (
z32 + z120

)+
5498418962110 × (

z36 + z116
)+

430930711621830 × (
z40 + z112

)+
19714914846904500 × (

z44 + z108
)+

542987434093298550 × (
z48 + z104

)+
9222363801696269658 × (

z52 + z100
)+

98458872937331749615 × (
z56 + z96

)+
670740325520798111830 × (

z60 + z92
)+

2949674479653615754525 × (
z64 + z88

)+
8446025592483506824150 × (

z68 + z84
)+

15840564760239238232420 × (
z72 + z80

)+
19527364659006697265368 × z76.

(9.46)

9.7 Minimum Distance Evaluation: A Probabilistic
Approach

An interesting observation is that theminimumweight codewords of L̂p, for p ≡ ±1
(mod 8), andBp, for p ≡ ±3 (mod 8) are always contained in one or more of their
fixed subcodes. At least, this is true for all known cases (n ≤ 200) and this is depicted
in Table9.4. We can see that the subcode fixed by H2 appears in all the known cases.
In Table9.4, the column dU denotes the minimum distance upper bound of extremal
doubly even self-dual codes of a given length and the last column indicates the
various subgroups whose fixed subcodes contain the minimum weight codewords.
The highest n, for which the minimum distance of extended QR codes is known,
is 168 [5] and we provide further results for n = 192, 194, and 200. We obtained
the minimum distance of these extended QR codes using the parallel version of the
minimum distance algorithm for cyclic codes (QR codes are cyclic) described in
Chap.5, Sect. 5.4. Note that the fact that the code is singly even (n = 194) or doubly

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Table 9.4 The minimum distance of L̂p and Bp for 12 ≤ n ≤ 200

n p p mod 8 d dU Subgroups

12 5 −3 4 H2, G4

18 17 1 6 H2, G0
4, S3

24 23 −1 8 8 H2, G0
4, G

1
4

28 13 −3 6 H2, G4, S3
32 31 −1 8 8 H2, G0

4, S3
40 19 3 8 8 H2, G4, S3
42 41 1 10 H2, G1

4, S5
48 47 −1 12 12 H2, G1

4, S5
60 29 −3 12 H2, S3
72 71 −1 12 16 H2, G1

4, S3, S5
74 73 1 14 H2, G0

4, G
1
4, S3

76 37 −3 12 H2, G4, S3
80 79 −1 16 16 H2, G0

4, G
1
4, S3

88 43 3 16 16 H2, S3, S7
90 89 1 18 H2, G0

4, G
1
4, S3

98 97 1 16 H2, G0
4

104 103 −1 20 20 H2, G0
4, S3

108 53 −3 20 H2, G4

114a 113 1 16 H2, G1
4, S7

120 59 3 20 24 H2, G4, S5
124 61 −3 20 H2, G4, S3, S5
128 127 −1 20 24 H2, S3
136 67 3 24 24 H2, G4, S3, S11
138 137 1 22 H2, G0

4, G
1
4

152a 151 −1 20 28 H2, G0
4, S3, S5

168 167 −1 24 32 H2, G0
4, G

1
4, S3

168 83 3 24 32 H2, G4, S3
192 191 −1 28 36 H2, G1

4

194 193 1 28 H2, G1
4, S3

200 199 −1 32 36 H2, G0
4, G

1
4, S3

aExtended duadic code [12] has higher minimum distance

even (n = 192, 200) is also taken into account in order to reduce the number of
codewords that need to be enumerated, see Chap.5, Sects. 5.2.3 and 5.4. This code
property is also taken into account for computing the minimum distance ofBp using
the method described in Sect. 9.5.

Based on the above observation, a probabilistic approach to minimum distance
evaluation is developed. Given L̂p orBp, the minimum distance of the code is upper
bounded by

d ≤ min
Z={G0

2,G
0
4,G

1
4,Sq1 ,Sq2 ,...}

{d(Z)} , (9.47)

http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_5
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Table 9.5 The minimum distance of L̂p and Bp for 204 ≤ n ≤ 450

n p p mod 8 d dU Subgroups

203 101 −3 ≤ 24 H2, G4, S5
216 107 3 ≤ 24 40 H2, G4, S3
220 109 −3 ≤ 30 H2, S3
224 223 −1 ≤ 32 40 H2, G0

4, G
1
4

234a 233 1 ≤ 26 H2, S13
240b 239 −1 ≤ 32 44 H2, G1

4

242b 241 1 ≤ 32 H2, G1
4, S3, S5

258b 257 1 ≤ 34 H2, G1
4

264b 263 −1 ≤ 36 48 H2, G0
4, S3

264b 131 3 ≤ 40 48 H2, G4

272b 271 −1 ≤ 40 48 H2, G0
4, G

1
4, S3

280b 139 3 ≤ 36 48 H2, S3
282b 281 1 ≤ 36 H2, G0

4, G
1
4, S3

300b 149 −3 ≤ 36 H2, G4

312b 311 −1 ≤ 36 56 H2, G0
4, S3

314b 313 1 ≤ 40 H2, G1
4, S3

316b 157 −3 ≤ 40 H2, S3
328b 163 3 ≤ 44 56 H2, G4

338b 337 1 ≤ 40 H2, G1
4, S3

348b 173 −3 ≤ 42 H2, S3
354b 353 1 ≤ 42 H2, G1

4

360b 359 −1 ≤ 40 64 H2, G0
4, G

1
4, Z5

360b 179 3 ≤ 40 64 H2, G4, Z5

364b 181 −3 ≤ 40 H2, G4, Z3

368b 367 −1 ≤ 48 64 H2, G0
4, Z3,

384b 383 −1 ≤ 48 68 H2, G0
4, Z3

396b 197 −3 ≤ 44 H2, Z11

402b 201 1 ≤ 42 H2, G0
4, G

1
4, Z5

410b 409 1 ≤ 48 H2, G0
4, Z3

424b 211 3 ≤ 56 72 H2, G4, Z3, Z7

432b 431 −1 ≤ 48 76 H2, G0
4, G

1
4, Z3

434b 433 1 ≤ 38 H2, G0
4, Z3

440b 440 −1 ≤ 48 76 H2, G0
4, G

1
4, Z3

450b 449 1 ≤ 56 H2, G1
4

aExtended duadic code [12] has higher minimum distance
bThe minimum distance of the subcode is computed probabilistically

where d(Z) is the minimum distance of the subcode fixed by Z ∈ PSL2(p) and q
runs through all odd primes that divide |PSL2(p)|. Note that forBp,G0

4 = G1
4 hence,

only one is required. Using (9.47), we give an upper bound of the minimum distance
of L̂p and Bp for all codes where n ≤ 450 and this is tabulated in Table9.5. The
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Fig. 9.1 Minimum distance and the extremal bound for distance of doubly even self-dual codes

various fixed subgroups where the minimum weight codewords are found are given
in the last column of this table. As shown in Tables9.4 and 9.5, there is no extremal
extended QR or quadratic double-circulant codes for 136 < n ≤ 450 and we plot the
minimum distance (or its upper bound for n > 200) against the extremal bound in
Fig. 9.1. From this figure, it is obvious that, as the block length increases, the gap
between the extremal bound and the minimum distance widens and it seems that
longer block lengths will follow the same trend. Thus, we conjecture that n = 136 is
the longest doubly even extremal self-dual double-circulant code. It is worth noting
that, for extended QR codes, the results obtained using this probabilistic method are
the same as those published by Leon [11].

9.8 Conclusions

Bordered double-circulant codes based on primes can be classified into two classes:
(p + 1, (p + 1)/2, d) extended QR codes, for primes ±1 (mod 8), and (2(p +
1), p + 1, d) quadratic double-circulant codes, for primes ±3 (mod 8).

Whilst quadratic double-circulant codes always exist, given a prime p ≡ ±3
(mod 8), bordered double-circulant codes may not exist given a prime p ≡ ±1
(mod 8).

There always exist (2p, p, d) pure double-circulant codes for any prime p ≡ ±3
(mod 8).
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For primes p ≡ −1, 3 (mod 8), the double-circulant codes are self-dual and for
other primes, the double-circulant codes are formally self-dual.

By exploiting the code structure of formally self-dual, double-circulant codes for
p ≡ −3 (mod 8) and also the self-dual double-circulant codes for both pure and
bordered cases, we have shown that, compared to the standard method of evaluation,
the number of codewords required to evaluate the minimum distance or to count the
number of codewords of a given weight can be reduced by a factor of 2.

The automorphismgroup of the (p + 1, (p + 1)/2, d) extendedQRcode contains
the projective special linear group PSL2(p) acting on the coordinates (∞)(0, 1, . . . ,
p − 2, p − 1).

The automorphism group of the (2(p + 1), p + 1, d) quadratic double-circulant
code contains PSL2(p), acting on coordinates (∞)(0, 1, . . . , p − 2, p − 1), applied
simultaneously to left and right circulants.

The number of codewords of weight i of prime-based double-circulant codes,
denoted by Ai , can be written as Ai = ni × |PSL2(p)| + Ai (PSL2(p)) ≡
Ai (PSL2(p)) (mod |PSL2(p)|) where Ai (PSL2(p)) denotes the number of code-
words of weight i that are fixed by some element of PSL2(p). This result was due
to Mykkeltveit et al. [14] and was originally introduced for extended QR codes. We
have shown in this chapter that, with some modifications, this modulo congruence
method can also be applied to quadratic double-circulant codes.

The modulo congruence technique is found to be very useful in verifying the
number of codewords of a given weight obtained exhaustively by computation. We
have shown the usefulness of this method by providing corrections to mistakes in
previously published results of the weight distributions of extended QR codes for
primes 137 and 151.

The weight distribution of the (168, 84, 24) extended QR code, which was previ-
ously unknown, has been evaluated and presented above. There also exists a quadratic
double-circulant code with identical parameters (n, k and d) and the weight dis-
tribution of this code has also been presented above. The (168, 84, 24) quadratic
double-circulant code is a better code than the (168, 84, 24) extended QR code since
it has less low-weight codewords. The usefulness of the modulo congruence method
in checking weight distribution results has been demonstrated in verifying the cor-
rectness of the weight distributions of these two codes.

The weight enumerator polynomial of an extended QR code of prime p, denoted
by AL̂ (z), can be obtained using Gleason’s theorem once the first few terms are
known. Since PSL2(p) is doubly transitive [13], knowing AL̂ (z) implies AL (z),
the weight enumerator polynomial of the corresponding cyclic QR code, is also
known, i.e.

AL (z) = AL̂ (z) + 1 − z

p + 1
A′
L̂

(z)
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where A′
L̂

(z) is the first derivative of AL̂ (z) with the respect to z [19]. As a con-
sequence, we have been able to evaluate the weight distributions of the QR codes
for primes 151 and 167. These are tabulated in Appendix “Weight Distributions of
Quadratic Residues Codes for Primes 151 and 167”, Tables9.19 and 9.20, respec-
tively.

A new probabilistic method to obtain the minimum distance of double-circulant
codes based on primes has been described. This probabilistic approach is based on the
observation that theminimumweight codewords are always contained in one ormore
subcodes fixed by some element of PSL2(p). Using this approach, we conjecture that
there are no extremal double-circulant self-dual codes longer than 136 and that this
is the last extremal code to be found.

9.9 Summary

In this chapter, self-dual and binary double-circulant codes based on primes have
been described in detail. These binary codes are some of the most powerful codes
known and as such form an important class of codes due to their powerful error-
correcting capabilities and their rich mathematical structure. This structure enables
the entire weight distribution of a code to be determined. With these properties,
this family of codes has been a subject of extensive research for many years. For
these codes that are longer than around 150 bits, an accurate determination of the
codeword weight distributions has been an unsolved challenge. We have shown that
the code structure may be used in a new algorithm that requires less codewords to
be enumerated than traditional methods. As a consequence we have presented new
weight distribution results for codes of length 152, 168, 192, 194 and 200. We have
shown how a modular congruence method can be used to check weight distributions
and have corrected somemistakes in previously published results for codes of lengths
137 and 151. For evaluation of the minimum Hamming distance for very long codes
a new probabilistic method has been presented along with results for codes up to
450 bits long. It is conjectured that the (136, 68, 24) self-dual code is the longest
extremal code, meeting the upper bound for minimum Hamming distance, and no
other, longer, extremal code exists.

Appendix

Circulant Analysis p = 11

See Tables 9.6, 9.7 and 9.8.
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1,
2,

3,
9

36
2

0,
1,

2,
3,

6,
7,

9,
10

36
3

1,
4,

7,
10

36
4

2,
4,

6,
7,

9,
10

36
5

0,
1,

5,
6,

8,
10

36
6

4,
10

36
7

0,
1,

3,
4,

5,
6,

8,
10

36
8

3,
4,
6,

7,
8,

10
36
9

7,
10

37
0

1,
3,

7,
8,

9,
10

37
1

0,
1,
3,

4,
9,

10
37
2

0,
1,

2,
3,

4,
5,

6,
7,

8,
9

37
3

0,
1,

3,
10

37
4

1,
3,

7,
10

37
5

2,
3,

4,
8,

9,
10

37
6

3,
4,

7,
10

37
7

1,
6,

9,
10

37
8

5,
6,
7,

8,
9,

10
37
9

0,
2,

3,
5,

7,
8

38
0

4,
7,

9,
10

38
1

0,
1,

2,
3,

4,
5,

6,
7

38
2

2,
3,

8,
10

38
3

0,
2,

3,
5,

6,
7,
8,

9
38
4

0,
2,

4,
6,

8,
10

38
5

1,
4,

5,
6,

7,
8,

9,
10

38
6

0,
1,

4,
5,
6,

7
38
7

3,
5,

6,
7,

8,
10

38
8

4,
8,

9,
10

38
9

2,
3,

4,
5,

6,
10

39
0

0,
1,

2,
3,

4,
5,

7,
9

39
1

0,
3,
6,

7,
9,

10
39
2

5,
6,

7,
10

39
3

1,
3,

5,
7

39
4

0,
1,

2,
4,
5,

6,
7,

8
39
5

1,
2,

4,
5,

7,
9

39
6

1,
2,
5,

6,
9,

10
39
7

2,
3,

4,
6,

8,
10

39
8

0,
2,

3,
4,

6,
8,

9,
10

39
9

0,
1,

2,
3,

6,
8

40
0

0,
1,

2,
3,

4,
9

40
1

3,
5,
7,

8,
9,

10
40
2

0,
2,

4,
6,

7,
10

40
3

0,
4,

5,
6,

8,
9

40
4

6,
8,

9,
10

40
5

2,
3,

6,
7

40
6

0,
2,
5,

7,
9,

10
40
7

2,
5,

8,
9

40
8

0,
1,

3,
4,

5,
7,
8,

9
40
9

0,
1,

2,
4,

7,
8

41
0

1,
2,

4,
7,

8,
10

41
1

1,
3,

7,
8

41
2

0,
2,

4,
10

41
3

4,
5,

8,
10

41
4

0,
3,
4,

7
41
5

1,
2,

3,
4,

6,
9

41
6

0,
1,

2,
3,

4,
5,

6,
9

41
7

3,
7

41
8

0,
3,

4,
5,

8,
9

41
9

3,
4,
5,

9
42
0

0,
2,

3,
5,

8,
10

42
1

1,
3,

4,
8

42
2

2,
5,

6,
7,

9,
10

42
3

0,
1,

4,
5,

6,
7,

9,
10

42
4

1,
2,

5,
6,

7,
8,

9,
10

42
5

0,
1,

2,
3,

4,
6,

7,
8

42
6

1,
2,

3,
5,
6,

7
42
7

0,
1,

3,
5,

6,
10

42
8

1,
3,

5,
7,

8,
9

42
9

4,
5,
6,

7
43
0

0,
4,

6,
7,

8,
10

43
1

0,
1,
2,

3,
5,

10
43
2

1,
2,

4,
5,

9,
10

43
3

2,
3,

5,
6,

7,
8

43
4

0,
1,

2,
6,

8,
9

43
5

1,
5,

7,
10

43
6

2,
6,

8,
10

43
7

0,
2,

4,
7,

9,
10

43
8

2,
4,

5,
7

43
9

0,
2,
3,

6
44
0

0,
1,

4,
5,

8,
10

44
1

5,
7

44
2

0,
5,

6,
8

44
3

0,
2,

4,
5

44
4

0,
1,

3,
4,
6,

7,
8,

9
44
5

0,
1,

2,
4,

5,
7,

9,
10

44
6

1,
3,

4,
5,
6,

9
44
7

0,
1,

6,
7

44
8

3,
4,
5,

6,
9,

10
44
9

1,
2,

5,
6,

7,
10

45
0

3,
4,

6,
7

45
1

0,
3,
7,

8,
9,

10
45
2

1,
5,

9,
10

45
3

6,
7

45
4

0,
6,

9,
10

45
5

0,
3,

4,
6,

7,
8,

9,
10

45
6

1,
4,

7,
9

45
7

1,
3,

4,
6,

7,
10

45
8

2,
3,

5,
7,

8,
9

45
9

1,
7

46
0

0,
1,

2,
3,

5,
7,

8,
9

46
1

0,
1,

3,
4,
5,

7
46
2

4,
7

46
3

0,
4,

5,
6,

7,
9

46
4

0,
1,

6,
7,

8,
9

46
5

0,
1,

2,
3,

4,
5,

6,
8,

9,
10

46
6

0,
7,

8,
9

46
7

0,
4,

7,
9

46
8

0,
1,
5,

6,
7,

10
46
9

0,
1,
4,

7
47
0

3,
6,

7,
9

47
1

2,
3,

4,
5,
6,

7
47
2

0,
2,

4,
5,

8,
10

47
3

1,
4,

6,
7

47
4

0,
1,

2,
3,

4,
8,

9,
10

47
5

0,
5,

7,
10

47
6

0,
2,

3,
4,

5,
6,

8,
10

47
7

1,
3,

5,
7,

8,
10

47
8

1,
2,

3,
4,

5,
6,
7,

9
47
9

1,
2,

3,
4,

8,
9

48
0

0,
2,

3,
4,

5,
7

(c
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i
α
(x

)i
i

α
(x

)i
i

α
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)i
i

α
(x

)i
i

α
(x
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48
1

1,
5,

6,
7

48
2

0,
1,

2,
3,

7,
10

48
3

0,
1,

2,
4,

6,
8,

9,
10

48
4

0,
3,

4,
6,

7,
8

48
5

2,
3,

4,
7

48
6

0,
2,

4,
9

48
7

1,
2,

3,
4,

5,
8,

9,
10

48
8

1,
2,

4,
6,

9,
10

48
9

2,
3,

6,
7,

9,
10

49
0

0,
1,

3,
5,
7,

10

49
1

0,
1,

3,
5,

6,
7,

8,
10

49
2

0,
3,

5,
8,

9,
10

49
3

0,
1,

6,
8,

9,
10

49
4

0,
2,

4,
5,

6,
7

49
5

1,
3,

4,
7,
8,

10

49
6

1,
2,

3,
5,
6,

8
49
7

3,
5,

6,
7

49
8

0,
3,

4,
10

49
9

2,
4,

6,
7,

8,
10

50
0

2,
5,

6,
10

50
1

0,
1,

2,
4,

5,
6,

8,
9

50
2

1,
4,

5,
8,

9,
10

50
3

1,
4,

5,
7,

9,
10

50
4

0,
4,

5,
9

50
5

1,
7,

8,
10

50
6

1,
2,

5,
7

50
7

0,
1,

4,
8

50
8

0,
1,

3,
6,

9,
10

50
9

0,
1,

2,
3,

6,
8,

9,
10

51
0

0,
4

51
1

0,
1,

2,
5,
6,

8
51
2

0,
1,

2,
6

51
3

0,
2,

5,
7,

8,
10

51
4

0,
1,

5,
9

51
5

2,
3,

4,
6,
7,

10

51
6

1,
2,

3,
4,

6,
7,

8,
9

51
7

2,
3,

4,
5,

6,
7,

9,
10

51
8

0,
1,

3,
4,

5,
8,

9,
10

51
9

0,
2,

3,
4,

9,
10

52
0

0,
2,

3,
7,

8,
9

52
1

0,
2,

4,
5,
6,

9
52
2

1,
2,

3,
4

52
3

1,
3,

4,
5,

7,
8

52
4

0,
2,

7,
8,

9,
10

52
5

1,
2,

6,
7,
9,

10

52
6

0,
2,
3,

4,
5,

10
52
7

3,
5,

6,
8,

9,
10

52
8

2,
4,

7,
9

52
9

3,
5,

7,
10

53
0

1,
4,

6,
7,
8,

10

53
1

1,
2,

4,
10

53
2

0,
3,

8,
10

53
3

1,
2,

5,
7,

8,
9

53
4

2,
4

53
5

2,
3,

5,
8

53
6

1,
2,

8,
10

53
7

0,
1,

3,
4,

5,
6,

8,
9

53
8

1,
2,

4,
6,

7,
8,

9,
10

53
9

0,
1,

2,
3,

6,
9

54
0

3,
4,

8,
9

54
1

0,
1,

2,
3,
6,

7
54
2

2,
3,

4,
7,

9,
10

54
3

0,
1,

3,
4

54
4

0,
4,

5,
6,

7,
8

54
5

2,
6,

7,
9

54
6

3,
4

54
7

3,
6,

7,
8

54
8

0,
1,

3,
4,

5,
6,

7,
8

54
9

1,
4,

6,
9

55
0

0,
1,

3,
4,

7,
9

55
1

0,
2,
4,

5,
6,

10
55
2

4,
9

55
3

0,
2,

4,
5,

6,
8,

9,
10

55
4

0,
1,

2,
4,

8,
9

55
5

1,
4

55
6

1,
2,

3,
4,
6,

8
55
7

3,
4,
5,

6,
8,

9
55
8

0,
1,

2,
3,

5,
6,

7,
8,

9,
10

55
9

4,
5,

6,
8

56
0

1,
4,

6,
8

56
1

2,
3,

4,
7,
8,

9
56
2

1,
4,

8,
9

56
3

0,
3,

4,
6

56
4

0,
1,

2,
3,

4,
10

56
5

1,
2,

5,
7,
8,

10

56
6

1,
3,

4,
9

56
7

0,
1,

5,
6,

7,
8,

9,
10

56
8

2,
4,

7,
8

56
9

0,
1,

2,
3,

5,
7,

8,
10

57
0

0,
2,

4,
5,

7,
9

57
1

0,
1,

2,
3,

4,
6,

9,
10

57
2

0,
1,

5,
6,

9,
10

57
3

0,
1,

2,
4,

8,
10

57
4

2,
3,

4,
9

57
5

0,
4,

7,
8,
9,

10

57
6

1,
3,

5,
6,

7,
8,

9,
10

57
7

0,
1,
3,

4,
5,

8
57
8

0,
1,

4,
10

57
9

1,
6,

8,
10

58
0

0,
1,

2,
5,

6,
7,

9,
10

58
1

1,
3,
6,

7,
9,

10
58
2

0,
3,

4,
6,

7,
10

58
3

0,
2,

4,
7,

8,
9

58
4

0,
2,

3,
4,

5,
7,

8,
9

58
5

0,
2,

5,
6,

7,
8

58
6

3,
5,

6,
7,
8,

9
58
7

1,
2,

3,
4,

8,
10

58
8

0,
1,

4,
5,

7,
9

58
9

0,
2,

3,
5,

9,
10

59
0

0,
2,

3,
4

59
1

0,
1,

7,
8

59
2

1,
3,

4,
5,

7,
10

59
3

2,
3,

7,
10

59
4

1,
2,

3,
5,

6,
8,

9,
10

59
5

1,
2,

5,
6,

7,
9

(c
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59
6

1,
2,

4,
6,

7,
9

59
7

1,
2,

6,
8

59
8

4,
5,

7,
9

59
9

2,
4,

9,
10

60
0

1,
5,

8,
9

60
1

0,
3,

6,
7,

8,
9

60
2

0,
3,

5,
6,

7,
8,

9,
10

60
3

1,
8

60
4

2,
3,

5,
8,

9,
10

60
5

3,
8,

9,
10

60
6

2,
4,

5,
7,

8,
10

60
7

2,
6,

8,
9

60
8

0,
1,

3,
4,

7,
10

60
9

0,
1,

3,
4,

5,
6,

9,
10

61
0

0,
1,

2,
3,

4,
6,

7,
10

61
1

0,
1,

2,
5,
6,

7,
8,

9
61
2

0,
1,

6,
7,

8,
10

61
3

0,
4,

5,
6,

8,
10

61
4

1,
2,

3,
6,

8,
10

61
5

0,
1,

9,
10

61
6

0,
1,

2,
4,

5,
9

61
7

4,
5,

6,
7,

8,
10

61
8

3,
4,

6,
7,

9,
10

61
9

0,
1,

2,
7,

8,
10

62
0

0,
2,

3,
5,

6,
7

62
1

1,
4,

6,
10

62
2

0,
2,

4,
7

62
3

1,
3,

4,
5,

7,
9

62
4

1,
7,

9,
10

62
5

0,
5,

7,
8

62
6

2,
4,

5,
6,

9,
10

62
7

1,
10

62
8

0,
2,

5,
10

62
9

5,
7,

9,
10

63
0

0,
1,

2,
3,

5,
6,

8,
9

63
1

1,
3,
4,

5,
6,

7,
9,

10
63
2

0,
3,

6,
8,

9,
10

63
3

0,
1,

5,
6

63
4

0,
3,

4,
8,

9,
10

63
5

0,
1,

4,
6,
7,

10

63
6

0,
1,
8,

9
63
7

1,
2,

3,
4,

5,
8

63
8

3,
4,

6,
10

63
9

0,
1

64
0

0,
3,

4,
5

64
1

0,
1,

2,
3,
4,

5,
8,

9
64
2

1,
3,

6,
9

64
3

0,
1,

4,
6,

8,
9

64
4

1,
2,

3,
7,

8,
10

64
5

1,
6

64
6

1,
2,
3,

5,
6,

7,
8,

10
64
7

1,
5,

6,
8,

9,
10

64
8

1,
9

64
9

0,
1,

3,
5,

9,
10

65
0

0,
1,

2,
3,

5,
6

65
1

0,
2,

3,
4,

5,
6,

7,
8,

9,
10

65
2

1,
2,

3,
5

65
3

1,
3,

5,
9

65
4

0,
1,

4,
5,

6,
10

65
5

1,
5,

6,
9

65
6

0,
1,
3,

8
65
7

0,
1,

7,
8,

9,
10

65
8

2,
4,

5,
7,

9,
10

65
9

0,
1,

6,
9

66
0

2,
3,

4,
5,

6,
7,

8,
9

66
1

1,
4,

5,
10

66
2

0,
2,

4,
5,

7,
8,

9,
10

66
3

1,
2,

4,
6,

8,
10

66
4

0,
1,

3,
6,

7,
8,

9,
10

66
5

2,
3,

6,
7,

8,
9

66
6

1,
5,

7,
8,

9,
10

66
7

0,
1,

6,
10

66
8

1,
4,

5,
6,

7,
8

66
9

0,
2,

3,
4,

5,
6,

7,
9

67
0

0,
1,

2,
5,

8,
9

67
1

1,
7,
8,

9
67
2

3,
5,

7,
9

67
3

2,
3,

4,
6,

7,
8,

9,
10

67
4

0,
3,

4,
6,

7,
9

67
5

0,
1,

3,
4,

7,
8

67
6

1,
4,

5,
6,

8,
10

67
7

0,
1,

2,
4,

5,
6,

8,
10

67
8

2,
3,

4,
5,

8,
10

67
9

0,
2,

3,
4,

5,
6

68
0

0,
1,

5,
7,
9,

10

68
1

1,
2,

4,
6,

8,
9

68
2

0,
2,

6,
7,

8,
10

68
3

0,
1,

8,
10

68
4

4,
5,

8,
9

68
5

0,
1,

2,
4,

7,
9

68
6

0,
4,

7,
10

68
7

0,
2,

3,
5,

6,
7,

9,
10

68
8

2,
3,

4,
6,

9,
10

68
9

1,
3,

4,
6,

9,
10

69
0

3,
5,

9,
10

69
1

1,
2,
4,

6
69
2

1,
6,

7,
10

69
3

2,
5,

6,
9

69
4

0,
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Table 9.8 Circulant analysis p = 11, j (x) = 1 + x + x2 + x3 + x4 + x5 + x6 + x7 + x8 +
x9 + x10, factors of 1 + x p

i j (x)i

1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Weight Distributions of Quadratic Double-Circulant Codes
and their Modulo Congruence

Primes +3 Modulo 8

Prime 11

We have P = [
1 3
3 10

]
and T = [

0 10
1 0

]
, P, T ∈ PSL2(11), and the permutations of

order 3, 5 and 11 are generated by
[

0 1
10 1

]
,
[

0 1
10 3

]
and

[
0 1
10 9

]
, respectively. In addition,

PSL2(11) = 22 · 3 · 5 · 11· = 660

and the weight enumerator polynomials of the invariant subcodes are

A
G0

2
B11

(z) = (
1 + z24

)+ 15 · (z8 + z16
)+ 32 · z12

AG4
B11

(z) = (
1 + z24

)+ 3 · (z8 + z16
)+ 8 · z12

AS3
B11

(z) = (
1 + z24

)+ 14 · z12
AS5
B11

(z) = (
1 + z24

)+ 4 · (z8 + z16
)+ 6 · z12

AS11
B11

(z) = (
1 + z24

)+ 2 · z12 .

Theweight distributions ofB11 and theirmodular congruence are shown inTable9.9.

Table 9.9 Modular congruence weight distributions of B11

i Ai (S2) Ai (S3) Ai (S5) Ai (S11) Ai (H ) ni a Ai

mod 22 mod 3 mod 5 mod 11 mod 660

0 1 1 1 1 1 0 1

8 3 0 4 0 99 1 759

12 0 2 1 2 596 3 2576

16 3 0 4 0 99 1 759

24 1 1 1 1 1 0 1

ani = Ai−Ai (H )

660
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Prime 19

We have P = [
1 6
6 18

]
and T = [

0 18
1 0

]
, P, T ∈ PSL2(19), and the permutations of

order 3, 5 and 19 are generated by
[

0 1
18 1

]
,
[

0 1
18 4

]
and

[
0 1
18 17

]
, respectively. In addition,

PSL2(19) = 22 · 32 · 5 · 19· = 3420

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B19
(z) =

(
1 + z40

)
+ 5 ·

(
z8 + z32

)
+ 80 ·

(
z12 + z28

)
+ 250 ·

(
z16 + z24

)
+ 352 · z20

A(G4)

B19
(z) =

(
1 + z40

)
+ 1 ·

(
z8 + z32

)
+ 8 ·

(
z12 + z28

)
+ 14 ·

(
z16 + z24

)
+ 16 · z20

A(S3)
B19

(z) =
(
1 + z40

)
+ 6 ·

(
z8 + z32

)
+ 22 ·

(
z12 + z28

)
+ 57 ·

(
z16 + z24

)
+ 84 · z20

A(S5)
B19

(z) =
(
1 + z40

)
+ 14 · z20

A(S19)
B19

(z) =
(
1 + z40

)
+ 2 · z20.

The weight distributions of B19 and their modular congruence are shown in
Table9.10.

Prime 43

We have P = [
1 16
16 42

]
and T = [

0 42
1 0

]
, P, T ∈ PSL2(43), and the permutations of

order 3, 7, 11 and 43 are generated by
[

0 1
42 1

]
,
[

0 1
42 8

]
,
[

0 1
42 4

]
and

[
0 1
42 41

]
, respectively.

In addition,

PSL2(43) = 22 · 3 · 7 · 11 · 43· = 39732

Table 9.10 Modular congruence weight distributions of B19

i Ai (S2) Ai (S3) Ai (S5) Ai (S19) Ai (H ) ni a Ai

mod 22 mod 32 mod 5 mod 19 mod 3420

0 1 1 1 1 1 0 1

8 1 6 0 0 285 0 285

12 0 4 0 0 760 6 21280

16 2 3 0 0 570 70 239970

20 0 3 4 2 2244 153 525504

24 2 3 0 0 570 70 239970

28 0 4 0 0 760 6 21280

32 1 6 0 0 285 0 285

40 1 1 1 1 1 0 1

ani=
Ai−Ai (H )

3420
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and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B43
(z) =

(
1 + z88

)
+ 44 ·

(
z16 + z72

)
+ 1232 ·

(
z20 + z68

)
+ 10241 ·

(
z24 + z64

)
+

54560 ·
(
z28 + z60

)
+ 198374 ·

(
z32 + z56

)
+ 491568 ·

(
z36 + z52

)
+

839916 ·
(
z40 + z48

)
+ 1002432 · z44

A(G4)

B43
(z) =

(
1 + z88

)
+ 32 ·

(
z20 + z68

)
+ 77 ·

(
z24 + z64

)
+ 160 ·

(
z28 + z60

)
+

330 ·
(
z32 + z56

)
+ 480 ·

(
z36 + z52

)
+ 616 ·

(
z40 + z48

)
+ 704 · z44

A(S3)
B43

(z) =
(
1 + z88

)
+ 7 ·

(
z16 + z72

)
+ 168 ·

(
z20 + z68

)
+ 445 ·

(
z24 + z64

)
+

1960 ·
(
z28 + z60

)
+ 4704 ·

(
z32 + z56

)
+ 7224 ·

(
z36 + z52

)
+

10843 ·
(
z40 + z48

)
+ 14832 · z44

A(S7)
B43

(z) =
(
1 + z88

)
+ 6 ·

(
z16 + z72

)
+ 16 ·

(
z24 + z64

)
+ 6 ·

(
z28 + z60

)
+

9 ·
(
z32 + z56

)
+ 48 ·

(
z36 + z52

)
+ 84 · z44

A(S11)
B43

(z) =
(
1 + z88

)
+ 14 · z44

A(S43)
B43

(z) =
(
1 + z88

)
+ 2 · z44.

The weight distributions of B43 and their modular congruence are shown in
Table9.11.

Prime 59

We have P = [
1 23
23 58

]
and T = [

0 58
1 0

]
, P, T ∈ PSL2(59), and the permutations of

order 3, 5, 29 and 59 are generated by
[

0 1
58 1

]
,
[

0 1
58 25

]
,
[

0 1
58 3

]
and

[
0 1
58 57

]
, respectively.

In addition,

PSL2(59) = 22 · 3 · 5 · 29 · 59· = 102660

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B59
(z) =

(
1 + z120

)
+ 90 ·

(
z20 + z100

)
+ 2555 ·

(
z24 + z96

)
+

32700 ·
(
z28 + z92

)
+ 278865 ·

(
z32 + z88

)
+ 1721810 ·

(
z36 + z84

)
+

7807800 ·
(
z40 + z80

)
+ 26366160 ·

(
z44 + z76

)
+ 67152520 ·

(
z48 + z72

)
+

130171860 ·
(
z52 + z68

)
+ 193193715 ·

(
z56 + z64

)
+ 220285672 · z60
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A(G4)
B59

(z) =
(
1 + z120

)
+ 6 ·

(
z20 + z100

)
+ 19 ·

(
z24 + z96

)
+ 132 ·

(
z28 + z92

)
+

393 ·
(
z32 + z88

)
+ 878 ·

(
z36 + z84

)
+ 1848 ·

(
z40 + z80

)
+ 3312 ·

(
z44 + z76

)
+

5192 ·
(
z48 + z72

)
+ 7308 ·

(
z52 + z68

)
+ 8931 ·

(
z56 + z64

)
+ 9496 · z60

A(S3)
B59

(z) =
(
1 + z120

)
+ 285 ·

(
z24 + z96

)
+ 21280 ·

(
z36 + z84

)
+

239970 ·
(
z48 + z72

)
+ 525504 · z60

A(S5)
B59

(z) =
(
1 + z120

)
+ 12 ·

(
z20 + z100

)
+ 711 ·

(
z40 + z80

)
+ 2648 · z60

A(S29)
B59

(z) =
(
1 + z120

)
+ 4 ·

(
z32 + z88

)
+ 6 · z60

A(S59)
B59

(z) =
(
1 + z120

)
+ 2 · z60.

The weight distributions of B59 and their modular congruence are shown in
Table9.12.

Prime 67

We have P = [
1 20
20 66

]
and T = [

0 66
1 0

]
, P, T ∈ PSL2(67), and the permutations of

order 3, 11, 17 and 67 are generated by
[

0 1
66 1

]
,
[

0 1
66 17

]
,
[

0 1
66 4

]
and

[
0 1
66 65

]
, respectively.

In addition,

PSL2(67) = 22 · 3 · 11 · 17 · 67· = 150348

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B67
(z) = (

1 + z136
)+ 578 · (z24 + z112

)+ 14688 · (z28 + z108
)+

173247 · (z32 + z104
)+ 1480768 · (z36 + z100

)+ 9551297 · (z40 + z96
)+

46687712 · (z44 + z92
)+ 175068210 · (z48 + z88

)+ 509510400 ·
(
z52 + z84

)
+

1160576876 ·
(
z56 + z80

)
+ 2081112256 · (z60 + z76

)+ 2949597087 · (z64 + z72
)+

3312322944 · z68
A(G4)
B67

(z) = (
1 + z136

)+ 18 · (z24 + z112
)+ 88 · (z28 + z108

)+ 271 · (z32 + z104
)+

816 · (z36 + z100
)+ 2001 · (z40 + z96

)+ 4344 · (z44 + z92
)+

8386 · (z48 + z88
)+ 14144 ·

(
z52 + z84

)
+ 21260 ·

(
z56 + z80

)
+

28336 · (z60 + z76
)+ 33599 · (z64 + z72

)+ 35616 · z68
A(S3)
B67

(z) = (
1 + z136

)+ 66 · (z24 + z112
)+ 682 · (z28 + z108

)+ 3696 · (z32 + z104
)+

12390 · (z36 + z100
)+ 54747 · (z40 + z96

)+ 163680 · (z44 + z92
)+

318516 · (z48 + z88
)+ 753522 ·

(
z52 + z84

)
+ 1474704 ·

(
z56 + z80

)
+

1763454 · (z60 + z76
)+ 2339502 · (z64 + z72

)+ 3007296 · z68
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A(S11)
B67

(z) = (
1 + z136

)+ 6 · (z24 + z112
)+ 16 · (z36 + z100

)+ 6 · (z44 + z92
)+

9 · (z48 + z88
)+ 48 ·

(
z56 + z80

)
+ 84 · z68

A(S17)
B67

(z) = (
1 + z136

)+ 14 · z68

A(S67)
B67

(z) = (
1 + z136

)+ 2 · z68

The weight distributions of B67 and their modular congruence are shown in
Table9.13.

Prime 83

We have P = [
1 9
9 82

]
and T = [

0 82
1 0

]
, P, T ∈ PSL2(83), and the permutations of

order 3, 7, 41 and 83 are generated by
[

0 1
82 1

]
,
[

0 1
82 10

]
,
[

0 1
82 4

]
and

[
0 1
82 81

]
, respectively.

In addition,

PSL2(83) = 22 · 3 · 7 · 41 · 83· = 285852

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B83
(z) =

(
1 + z168

)
+ 196 ·

(
z24 + z144

)
+ 1050 ·

(
z28 + z140

)
+

29232 ·
(
z32 + z136

)
+ 443156 ·

(
z36 + z132

)
+

4866477 ·
(
z40 + z128

)
+ 42512190 ·

(
z44 + z124

)
+

292033644 ·
(
z48 + z120

)
+ 1590338568 ·

(
z52 + z116

)
+

6952198884 ·
(
z56 + z112

)
+ 24612232106 ·

(
z60 + z108

)
+

71013075210 ·
(
z64 + z104

)
+ 167850453036 ·

(
z68 + z100

)
+

326369180312 ·
(
z72 + z96

)
+ 523672883454 ·

(
z76 + z92

)
+

694880243820 ·
(
z80 + z88

)
+ 763485528432 · z84

A(G4)
B83

(z) =
(
1 + z168

)
+ 4 ·

(
z24 + z144

)
+ 6 ·

(
z28 + z140

)
+

96 ·
(
z32 + z136

)
+ 532 ·

(
z36 + z132

)
+ 1437 ·

(
z40 + z128

)
+

3810 ·
(
z44 + z124

)
+ 10572 ·

(
z48 + z120

)
+ 24456 ·

(
z52 + z116

)
+

50244 ·
(
z56 + z112

)
+ 95030 ·

(
z60 + z108

)
+ 158874 ·

(
z64 + z104

)
+

241452 ·
(
z68 + z100

)
+ 337640 ·

(
z72 + z96

)
+ 425442 ·

(
z76 + z92

)
+

489708 ·
(
z80 + z88

)
+ 515696 · z84
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A(S3)
B83

(z) =
(
1 + z168

)
+ 63 ·

(
z24 + z144

)
+ 8568 ·

(
z36 + z132

)
+ 617085 ·

(
z48 + z120

)
+

11720352 ·
(
z60 + z108

)
+ 64866627 ·

(
z72 + z96

)
+ 114010064 · z84

A(S7)
B83

(z) =
(
1 + z168

)
+ 759 ·

(
z56 + z112

)
+ 2576 · z84

A(S41)
B83

(z) =
(
1 + z168

)
+ 4 ·

(
z44 + z124

)
+ 6 · z84

A(S83)
B83

(z) =
(
1 + z168

)
+ 2 · z84.

The weight distributions of B83 and their modular congruence are shown in
Table9.14.

Primes −3 Modulo 8

Prime 13

We have P = [
3 4
4 10

]
and T = [

0 12
1 0

]
, P, T ∈ PSL2(13), and the permutations of

order 3, 7 and 13 are generated by
[

0 1
12 1

]
,
[

0 1
12 3

]
and

[
0 1
12 11

]
, respectively. In addition,

PSL2(13) = 22 · 3 · 7 · 13· = 1092

and the weight enumerator polynomials of the invariant subcodes are

A
G0
2

B13
(z) =

(
1 + z28

)
+ 26 ·

(
z8 + z20

)
+ 32 ·

(
z10 + z18

)
+ 37 ·

(
z12 + z16

)
+ 64 · z14

AG4
B13

(z) =
(
1 + z28

)
+ 10 ·

(
z8 + z20

)
+ 8 ·

(
z10 + z18

)
+ 5 ·

(
z12 + z16

)
+ 16 · z14

AS3
B13

(z) =
(
1 + z28

)
+ 6 ·

(
z8 + z20

)
+ 10 ·

(
z10 + z18

)
+ 9 ·

(
z12 + z16

)
+ 12 · z14

AS7
B13

(z) =
(
1 + z28

)
+ 2 · z14

AS13
B13

(z) =
(
1 + z28

)
+ 2 · z14 .

The weight distributions of B13 and their modular congruence are shown in
Table9.15.

Prime 29

We have P = [
2 13
13 27

]
and T = [

0 28
1 0

]
, P, T ∈ PSL2(29), and the permutations of

order 3, 5, 7 and 29 are generated by
[

0 1
28 1

]
,
[

0 1
28 5

]
,
[

0 1
28 3

]
and

[
0 1
28 27

]
, respectively.

In addition,

PSL2(29) = 22 · 3 · 5 · 7 · 29· = 12180
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Table 9.15 Modular congruence weight distributions of B13

i Ai (S2) Ai (S3) Ai (S7) Ai (S13) Ai (H ) ni a Ai

mod 22 mod 3 mod 7 mod 13 mod 1092

0 1 1 1 1 1 0 1

8 2 0 0 0 546 0 546

10 0 1 0 0 364 1 1456

12 1 0 0 0 273 3 3549

14 0 0 2 2 912 4 5280

16 1 0 0 0 273 3 3549

18 0 1 0 0 364 1 1456

20 2 0 0 0 546 0 546

28 1 1 1 1 1 0 1

ani = Ai−Ai (H )

1092

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B29
(z) =

(
1 + z60

)
+ 28 ·

(
z12 + z48

)
+ 112 ·

(
z14 + z46

)
+ 394 ·

(
z16 + z44

)
+

1024 ·
(
z18 + z42

)
+ 1708 ·

(
z20 + z40

)
+ 3136 ·

(
z22 + z38

)
+ 5516 ·

(
z24 + z36

)
+

7168 ·
(
z26 + z34

)
+ 8737 ·

(
z28 + z32

)
+ 9888 · z30

A
(G4)
B29

(z) =
(
1 + z60

)
+ 12 ·

(
z14 + z46

)
+ 30 ·

(
z16 + z44

)
+ 32 ·

(
z18 + z42

)
+

60 ·
(
z20 + z40

)
+ 48 ·

(
z22 + z38

)
+ 60 ·

(
z24 + z36

)
+ 96 ·

(
z26 + z34

)
+

105 ·
(
z28 + z32

)
+ 136 · z30

A
(S3)
B29

(z) =
(
1 + z60

)
+ 10 ·

(
z12 + z48

)
+ 70 ·

(
z18 + z42

)
+ 245 ·

(
z24 + z36

)
+ 372 · z30

A
(S5)
B29

(z) =
(
1 + z60

)
+ 15 ·

(
z20 + z40

)
+ 32 · z30

A
(S7)
B29

(z) =
(
1 + z60

)
+ 6 ·

(
z16 + z44

)
+ 2 ·

(
z18 + z42

)
+ 8 ·

(
z22 + z38

)
+ 8 ·

(
z24 + z36

)
+

1 ·
(
z28 + z32

)
+ 12 · z30

A
(S29)
B29

(z) =
(
1 + z60

)
+ 2 · z30.

The weight distributions of B29 and their modular congruence are shown in
Table9.16.

Prime 53

We have P = [
3 19
19 50

]
and T = [

0 52
1 0

]
, P, T ∈ PSL2(53), and the permutations of

order 3, 13 and53 are generated by
[

0 1
52 1

]
,
[

0 1
52 8

]
and

[
0 1
52 51

]
, respectively. In addition,

PSL2(53) = 22 · 33 · 13 · 53· = 74412
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Table 9.16 Modular congruence weight distributions of B29

i Ai (S2) Ai (S3) Ai (S5) Ai (S7) Ai (S29) Ai (H ) ni a Ai

mod 22 mod 3 mod 5 mod 7 mod 29 mod 12180

0 1 1 1 1 1 1 0 1

12 0 1 0 0 0 4060 0 4060

14 0 0 0 0 0 0 2 24360

16 2 0 0 6 0 2610 24 294930

18 0 1 0 2 0 11020 141 1728400

20 0 0 0 0 0 0 637 7758660

22 0 0 0 1 0 3480 2162 26336640

24 0 2 0 1 0 11600 5533 67403540

26 0 0 0 0 0 0 10668 129936240

28 1 0 0 1 0 6525 15843 192974265

30 0 0 2 5 2 8412 18129 220819632

32 1 0 0 1 0 6525 15843 192974265

34 0 0 0 0 0 0 10668 129936240

36 0 2 0 1 0 11600 5533 67403540

38 0 0 0 1 0 3480 2162 26336640

40 0 0 0 0 0 0 637 7758660

42 0 1 0 2 0 11020 141 1728400

44 2 0 0 6 0 2610 24 294930

46 0 0 0 0 0 0 2 24360

48 0 1 0 0 0 4060 0 4060

60 1 1 1 1 1 1 0 1

ani = Ai−Ai (H )

12180

and the weight enumerator polynomials of the invariant subcodes are

A
(G0

2)

B53
(z) = (

1 + z108
)+ 234 · (z20 + z88

)+ 1768 · (z22 + z86
)+ 5655 · (z24 + z84

)+
16328 · (z26 + z82

)+ 47335 · (z28 + z80
)+ 127896 · (z30 + z78

)+
316043 · (z32 + z76

)+ 705848 · (z34 + z74
)+ 1442883 · (z36 + z72

)+
2728336 · (z38 + z70

)+ 4786873 · (z40 + z68
)+ 7768488 · (z42 + z66

)+
11636144 · (z44 + z64

)+ 16175848 · (z46 + z62
)+ 20897565 · (z48 + z60

)+
25055576 ·

(
z50 + z58

)
+ 27976131 ·

(
z52 + z56

)
+ 29057552 · z54

A(G4)
B53

(z) = (
1 + z108

)+ 12 · (z20 + z88
)+ 12 · (z22 + z86

)+ 77 · (z24 + z84
)+

108 · (z26 + z82
)+ 243 · (z28 + z80

)+ 296 · (z30 + z78
)+ 543 · (z32 + z76

)+
612 · (z34 + z74

)+ 1127 · (z36 + z72
)+ 1440 · (z38 + z70

)+ 2037 · (z40 + z68
)+

2636 · (z42 + z66
)+ 3180 · (z44 + z64

)+ 3672 · (z46 + z62
)+ 4289 · (z48 + z60

)+
4836 ·

(
z50 + z58

)
+ 4875 ·

(
z52 + z56

)
+ 5544 · z54
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Table 9.17 Modular congruence weight distributions of B53

i Ai (S2) Ai (S3) Ai (S13) Ai (S53) Ai (H ) ni a Ai

mod 22 mod 33 mod 13 mod 53 mod 74412

0 1 1 1 1 1 0 1

20 2 0 0 0 37206 3 260442

22 0 0 0 0 0 78 5804136

24 3 18 0 0 43407 1000 74455407

26 0 0 0 0 0 10034 746650008

28 3 0 6 0 64395 91060 6776021115

30 0 18 2 0 64872 658342 48988609776

32 3 0 0 0 18603 3981207 296249593887

34 0 0 0 0 0 20237958 1505946930696

36 3 6 0 0 26871 86771673 6456853758147

38 0 0 0 0 0 315441840 23472658198080

40 1 0 8 0 67257 976699540 72678166237737

42 0 0 8 0 11448 2584166840 192293022909528

44 0 0 0 0 0 5859307669 436002802265628

46 0 0 0 0 0 11412955404 849260837522448

48 1 9 0 0 31005 19133084721 1423731100290057

50 0 0 0 0 0 27645086470 2057126174405640

52 3 0 1 0 1431 34462554487 2564427604488075

54 0 5 12 2 55652 37087868793 2759782492680368

56 3 0 1 0 1431 34462554487 2564427604488075

58 0 0 0 0 0 27645086470 2057126174405640

60 1 9 0 0 31005 19133084721 1423731100290057

62 0 0 0 0 0 11412955404 849260837522448

64 0 0 0 0 0 5859307669 436002802265628

66 0 0 8 0 11448 2584166840 192293022909528

68 1 0 8 0 67257 976699540 72678166237737

70 0 0 0 0 0 315441840 23472658198080

72 3 6 0 0 26871 86771673 6456853758147

74 0 0 0 0 0 20237958 1505946930696

76 3 0 0 0 18603 3981207 296249593887

78 0 18 2 0 64872 658342 48988609776

80 3 0 6 0 64395 91060 6776021115

82 0 0 0 0 0 10034 746650008

84 3 18 0 0 43407 1000 74455407

86 0 0 0 0 0 78 5804136

88 2 0 0 0 37206 3 260442

108 1 1 1 1 1 0 1

ani = Ai−Ai (H )

74412
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Table 9.18 Modular congruence weight distributions of B61

i Ai (S2) Ai (S3) Ai (S5) Ai (S31) Ai (S61) Ai (H ) ni
a Ai

mod 22 mod 3 mod 5 mod 31 mod 61 mod 113460

0 1 1 1 1 1 1 0 1

20 0 0 3 0 0 90768 0 90768

22 0 1 0 0 0 75640 4 529480

24 2 2 0 0 0 94550 95 10873250

26 0 2 4 0 0 83204 1508 171180884

28 2 2 3 0 0 71858 19029 2159102198

30 0 0 1 0 0 68076 199795 22668808776

32 0 1 0 0 0 75640 1759003 199576556020

34 0 0 3 0 0 90768 13123969 1489045613508

36 2 0 3 0 0 34038 83433715 9466389337938

38 0 1 1 0 0 30256 454337550 51549138453256

40 0 2 0 0 0 37820 2128953815 241551099887720

42 0 0 3 0 0 90768 8619600220 977979841051968

44 0 0 2 0 0 22692 30259781792 3433274842143012

46 0 2 1 0 0 105896 92387524246 10482288501057056

48 0 2 0 0 0 37820 245957173186 27906300869721380

50 0 2 0 0 0 37820 572226179533 64924782329852000

52 0 2 1 0 0 105896 1165598694540 132248827882614296

54 0 2 3 0 0 15128 2081950370302 236218089014480048

56 0 2 2 0 0 60512 3264875882211 370432817595720572

58 0 2 2 0 0 60512 4499326496930 510493584341738312

60 1 2 1 0 0 20801 5452574159887 618649064180799821

62 0 2 1 2 2 102116 5813004046431 659543439108163376

64 1 2 1 0 0 20801 5452574159887 618649064180799821

66 0 2 2 0 0 60512 4499326496930 510493584341738312

68 0 2 2 0 0 60512 3264875882211 370432817595720572

70 0 2 3 0 0 15128 2081950370302 236218089014480048

72 0 2 1 0 0 105896 1165598694540 132248827882614296

74 0 2 0 0 0 37820 572226179533 64924782329852000

76 0 2 0 0 0 37820 245957173186 27906300869721380

78 0 2 1 0 0 105896 92387524246 10482288501057056

80 0 0 2 0 0 22692 30259781792 3433274842143012

82 0 0 3 0 0 90768 8619600220 977979841051968

84 0 2 0 0 0 37820 2128953815 241551099887720

86 0 1 1 0 0 30256 454337550 51549138453256

(continued)
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Table 9.18 (continued)

i Ai (S2) Ai (S3) Ai (S5) Ai (S31) Ai (S61) Ai (H ) ni
a Ai

mod 22 mod 3 mod 5 mod 31 mod 61 mod 113460

88 2 0 3 0 0 34038 83433715 9466389337938

90 0 0 3 0 0 90768 13123969 1489045613508

92 0 1 0 0 0 75640 1759003 199576556020

94 0 0 1 0 0 68076 199795 22668808776

96 2 2 3 0 0 71858 19029 2159102198

98 0 2 4 0 0 83204 1508 171180884

100 2 2 0 0 0 94550 95 10873250

102 0 1 0 0 0 75640 4 529480

104 0 0 3 0 0 90768 0 90768

124 1 1 1 1 1 1 0 1

ani = Ai−Ai (H )

113460

A(S3)
B53

(z) = (
1 + z108

)+ 234 · (z24 + z84
)+ 1962 · (z30 + z78

)+ 9672 · (z36 + z72
)+

28728 · (z42 + z66
)+ 55629 · (z48 + z60

)+ 69692 · z54
A(S13)
B53

(z) = (
1 + z108

)+ 6 · (z28 + z80
)+ 2 · (z30 + z78

)+ 8 · (z40 + z68
)+

8 · (z42 + z66
)+ 1 ·

(
z52 + z56

)
+ 12 · z54

A(S53)
B53

(z) = (
1 + z108

)+ 2 · z54.

The weight distributions of B53 and their modular congruence are shown in
Table9.17.

Prime 61

We have P = [
2 19
19 59

]
and T = [

0 60
1 0

]
, P, T ∈ PSL2(61), and the permutations of

order 3, 5, 31 and 61 are generated by
[

0 1
60 1

]
,
[

0 1
60 17

]
,
[

0 1
60 5

]
and

[
0 1
60 59

]
, respectively.

In addition,

PSL2(61) = 22 · 3 · 5 · 31 · 61· = 113460

and the weight enumerator polynomials of the invariant subcodes are
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A
(G0

2)

B61
=
(
1 + z124

)
+ 208 ·

(
z20 + z104

)
+ 400 ·

(
z22 + z102

)
+ 1930 ·

(
z24 + z100

)
+

8180 ·
(
z26 + z98

)
+ 26430 ·

(
z28 + z96

)
+ 84936 ·

(
z30 + z94

)
+

253572 ·
(
z32 + z92

)
+ 696468 ·

(
z34 + z90

)
+ 1725330 ·

(
z36 + z88

)
+

3972240 ·
(
z38 + z86

)
+ 8585008 ·

(
z40 + z84

)
+ 17159632 ·

(
z42 + z82

)
+

31929532 ·
(
z44 + z80

)
+ 55569120 ·

(
z46 + z78

)
+ 90336940 ·

(
z48 + z76

)
+

137329552 ·
(
z50 + z74

)
+ 195328240 ·

(
z52 + z72

)
+ 260435936 ·

(
z54 + z70

)
+

325698420 ·
(
z56 + z68

)
+ 381677080 ·

(
z58 + z66

)
+ 419856213 ·

(
z60 + z64

)
+

433616560 · z62
A

(G4)
B61

=
(
1 + z124

)
+ 12 ·

(
z20 + z104

)
+ 12 ·

(
z22 + z102

)
+ 36 ·

(
z24 + z100

)
+

40 ·
(
z26 + z98

)
+ 140 ·

(
z28 + z96

)
+ 176 ·

(
z30 + z94

)
+ 498 ·

(
z32 + z92

)
+

576 ·
(
z34 + z90

)
+ 1340 ·

(
z36 + z88

)
+ 1580 ·

(
z38 + z86

)
+ 2660 ·

(
z40 + z84

)
+

3432 ·
(
z42 + z82

)
+ 4932 ·

(
z44 + z80

)
+ 6368 ·

(
z46 + z78

)
+ 8820 ·

(
z48 + z76

)
+

10424 ·
(
z50 + z74

)
+ 12752 ·

(
z52 + z72

)
+ 14536 ·

(
z54 + z70

)
+ 15840 ·

(
z56 + z68

)
+

18296 ·
(
z58 + z66

)
+ 18505 ·

(
z60 + z64

)
+ 20192 · z62

A
(S3)
B61

=
(
1 + z124

)
+ 30 ·

(
z20 + z104

)
+ 10 ·

(
z22 + z102

)
+ 50 ·

(
z24 + z100

)
+

200 ·
(
z26 + z98

)
+ 620 ·

(
z28 + z96

)
+ 960 ·

(
z30 + z94

)
+

2416 ·
(
z32 + z92

)
+ 4992 ·

(
z34 + z90

)
+ 6945 ·

(
z36 + z88

)
+

15340 ·
(
z38 + z86

)
+ 25085 ·

(
z40 + z84

)
+ 34920 ·

(
z42 + z82

)
+

68700 ·
(
z44 + z80

)
+ 87548 ·

(
z46 + z78

)
+ 104513 ·

(
z48 + z76

)
+

177800 ·
(
z50 + z74

)
+ 201440 ·

(
z52 + z72

)
+ 225290 ·

(
z54 + z70

)
+

322070 ·
(
z56 + z68

)
+ 301640 ·

(
z58 + z66

)
+ 316706 ·

(
z60 + z64

)
+

399752 · z62

A
(S5)
B61

=
(
1 + z124

)
+ 3 ·

(
z20 + z104

)
+ 24 ·

(
z26 + z98

)
+ 48 ·

(
z28 + z96

)
+

6 ·
(
z30 + z94

)
+ 150 ·

(
z32 + z92

)
+ 8 ·

(
z34 + z90

)
+ 168 ·

(
z36 + z88

)
+

96 ·
(
z38 + z86

)
+ 75 ·

(
z40 + z84

)
+ 468 ·

(
z42 + z82

)
+ 132 ·

(
z44 + z80

)
+

656 ·
(
z46 + z78

)
+ 680 ·

(
z48 + z76

)
+ 300 ·

(
z50 + z74

)
+ 1386 ·

(
z52 + z72

)
+

198 ·
(
z54 + z70

)
+ 1152 ·

(
z56 + z68

)
+ 1272 ·

(
z58 + z66

)
+ 301 ·

(
z60 + z64

)
+

2136 · z62
A

(S31)
B61

=
(
1 + z124

)
+ 2 · z62

A
(S61)
B61

=
(
1 + z124

)
+ 2 · z62
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The weight distributions of B61 and their modular congruence are shown in
Table9.18.

Weight Distributions of Quadratic Residues Codes for Primes
151 and 167

See Tables9.19 and 9.20

Table 9.19 Weight distributions of QR and extended QR codes of prime 151

i Ai of [152, 76, 20] code Ai of [151, 76, 19] code
0 1 1

19 0 3775

20 28690 24915

23 0 113250

24 717250 604000

27 0 30256625

28 164250250 133993625

31 0 8292705580

32 39390351505 31097645925

35 0 1302257122605

36 5498418962110 4196161839505

39 0 113402818847850

40 430930711621830 317527892773980

43 0 5706949034630250

44 19714914846904500 14007965812274250

47 0 171469716029462700

48 542987434093298550 371517718063835850

51 0 3155019195317144883

52 9222363801696269658 6067344606379124775

55 0 36274321608490644595

56 98458872937331749615 62184551328841105020

59 0 264765917968736096775

60 670740325520798111830 405974407552062015055

63 0 1241968201959417159800

64 2949674479653615754525 1707706277694198594725

67 0 3778485133479463579225

68 8446025592483506824150 4667540459004043244925

71 0 7503425412744902320620

72 15840564760239238232420 8337139347494335911800

75 0 9763682329503348632684

76 19527364659006697265368 9763682329503348632684
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Table 9.20 Weight distributions of QR and extended QR codes of prime 167

i Ai of [168, 84, 24] code Ai of [167, 84, 23] code
0 1 1

23 0 110888

24 776216 665328

27 0 3021698

28 18130188 15108490

31 0 1057206192

32 5550332508 4493126316

35 0 268132007628

36 1251282702264 983150694636

39 0 39540857275985

40 166071600559137 126530743283152

43 0 3417107288264670

44 13047136918828740 9630029630564070

47 0 179728155397349776

48 629048543890724216 449320388493374440

51 0 5907921405841809432

52 19087130695796615088 13179209289954805656

55 0 124033230083117023704

56 372099690249351071112 248066460166234047408

59 0 1692604114105553659010

60 4739291519495550245228 3046687405389996586218

63 0 15228066033367763990128

64 39973673337590380474086 24745607304222616483958

67 0 91353417175290660468884

68 225696677727188690570184 134343260551898030101300

71 0 368674760966511746549004

72 860241108921860741947676 491566347955348995398672

75 0 1007629118755817710057646

76 2227390683565491780127428 1219761564809674070069782

79 0 1873856945935044844028880

80 3935099586463594172460648 2061242640528549328431768

83 0 2377873706297857672084688

84 4755747412595715344169376 2377873706297857672084688
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Chapter 10
Historical Convolutional Codes as Tail-Biting
Block Codes

10.1 Introduction

In the late 1950s, a branch of error-correcting codes known as convolutional codes
[1, 6, 11, 14] was explored almost independently of block codes and each discipline
had their champions. For convolutional codes, sequential decoding was the norm and
most of the literature on the subject was concerned with the performance of practical
decoders and different decoding algorithms [2]. There were few publications on the
theoretical analysis of convolutional codes. In contrast, there was a great deal of
theory about linear, binary block codes and not a great deal about decoders, except
for hard decision decoding of block codes. Soft decision decoding of block codes
was considered to be quite impractical, except for trivial, very short codes.

WithAndrewViterbi’s invention [13] of themaximum likelihood decoder in 1967,
featuring a trellis based decoder, an enormous impetus was given to convolutional
codes and soft decision decoding. Interestingly, the algorithm itself, for solving the
travelling saleman’s problem [12], had been known since 1960. Consequently, inter-
est in hard decision decoding of convolutional codes waned in favour of soft decision
decoding. Correspondingly, block codes were suddenly out of fashion except for the
ubiquitous Reed–Solomon codes.

For sequential decoder applications, the convolutional codes usedwere systematic
codes with one or more feedforward polynomials, whereas for applications using a
Viterbi decoder, the convolutional codes were optimised for largest, minimum Ham-
ming distance between codewords, d f ree, for a given memory (the highest degree of
the generator polynomials defining the code). The result is always a non-systematic
code. It should be noted that in the context of convolutional codes, the minimum
Hamming distance between codewords is understood to be evaluated over the con-
straint length, the memory of the code. This is traditionally called dmin . This is
rather confusing when comparing the minimum Hamming distance of block codes
with that of convolutional codes. A true comparison should compare the d f ree of a
convolutional code to the dmin of a block code, for a given code rate.

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_10
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Table 10.1 Best rate 1
2 convolutional codes designed for Viterbi decoding

Memory Generator Polynomial r1(x) Generator Polynomial r2(x) d f ree

2 1 + x + x2 1 + x2 5

3 1 + x + x2 + x3 1 + x + x3 6

4 1 + x + x2 + x4 1 + x3 + x4 7

5 1 + x + x2 + x3 + x5 1 + x2 + x4 + x5 8

6 1 + x + x2 + x3 + x6 1 + x2 + x3 + x5 + x6 10

7 1 + x + x2 + x3 + x4 + x7 1 + x2 + x5 + x6 + x7 10

8 1 + x + x2 + x3 + x5 + x7 + x8 1 + x2 + x3 + x4 + x8 12

Since the early 1960s, a lot of work has been carried out on block codes and con-
volutional codes for applications in deep space communications, primarily because
providing a high signal-to-noise ratio is so expensive. Error-correcting codes allowed
the signal to noise ratio to be reduced.

The first coding arrangement implemented for space [6, 9] was part of the pay-
load of Pioneer 9 which was launched into space in 1968. The payload featured a
systematic, convolutional code designed by Lin and Lyne [7] with a d f ree of 12 and
memory of 20. The generator polynomial is

r(x) = 1 + x + x2 + x5 + x6 + x8 + x9 + x12 + x13 + x14 + x16 + x17 + x18 + x19 + x20.

This convolutional code was used with soft decision, sequential decoding featuring
the Fano algorithm [2] to realise a coding gain of 3 dB. Interestingly, it was initially
planned as a communications experiment and not envisaged to be used operationally
to send telemetry data to Earth. However, its superior performance over the standard
operational communications systemwhich featured uncoded transmissionmeant that
it was always used instead of the standard system.

In 1969, the Mariner’69 spacecraft was launched with a first order Reed–Muller
(32, 6, 16) code [8] equivalent to the extended (32, 6, 16) cyclic code. A maximum
likelihood correlation decoder was used. The coding gain was 2.2 dB [9].

By the mid 1970s, the standard for soft decision decoding on the AWGN channel
notably applications for satellite communications and space communications was to
use convolutional codes with Viterbi decoding, featuring the memory 7 code listed
in Table10.1. The generator polynomials are r1(x) = 1 + x + x2 + x3 + x6 and
r2(x) = 1+x2+x3+x5+x6 convolutional code, best known, in octal representation,
as the (171, 133) code. The best half rate convolutional codes designed to be used
with Viterbi decoding [1, 6] are tabulated in Table10.1.

The (171, 133) code with Viterbi soft decision decoding featured a coding gain
of 5.1 dB at 10−5 bit error rate which was around 2 dB better than its nearest rival
featuring a high memory convolutional code and hard decision, sequential decoding.
The (171, 133) convolutional code is one of the recommended NASA Planetary
Standard Codes [3].
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However, more coding gain was achieved by concatenating the (171, 133) con-
volutional code with a (255, 233) Reed–Solomon (RS) code which is able to correct
16 symbol errors, each symbol being 8 bits. Quite a long interleaver needs to be
used between the Viterbi decoder output and the RS decoder in order to break up the
occasional error bursts which are output from the Viterbi decoder. Interleaver lengths
vary from 4080 bits to 16320 bits and with the longest interleaver the coding gain of
the concatenated arrangement is 7.25 dB, ( Eb

N0
= 2.35 dB at 10−5 bit error rate), and

it is a CCSDS [3] standard for space communications.

10.2 Convolutional Codes and Circulant Block Codes

It is straightforward to show that a double-circulant code is a half rate, tail-biting,
feedforward convolutional code. Consider the Pioneer 9, half rate, convolutional
code invented by Lin and Lyne [7] with generator polynomial

r(x) = 1+x+x2+x5+x6+x8+x9+x12+x13+x14+x16+x17+x18+x19+x20

For a semi-infinite data sequence defined by d(x), the corresponding codeword, c(x),
of the convolutional code consists of

c(x) = d(x)‖d(x)r(x) (10.1)

where ‖ represents interlacing of the data polynomial representing the data sequence
and the parity polynomial representing the sequence of parity bits.

The same generator polynomial can be used to define a block code of length 2n,
a (2n, n) double-circulant code with a codeword consisting of

c(x) = d(x)‖d(x)r(x) modulo (1 + xn) (10.2)

(Double-circulant codewords usually consist of one circulant followed by the second
but it is clear that an equivalent code is obtained by interlacing the two circulants
instead.)

While comparing Eq. (10.1) with (10.2) as n → ∞, it can be seen that the
same codewords will be obtained. For finite n, it is apparent that the tail of the
convolution of d(x) and r(x) will wrap around adding to the beginning as in a
tail-biting convolutional code. It is also clear that if n is sufficiently long, only the
Hamming weight of long convolutions, will be affected by the wrap around and
these long convolution results will be of high Hamming weight anyway leading to
the conclusion that if n is sufficiently long the dmin of the circulant code will be the
same as the d f ree of the convolutional code. Indeed, the low weight spectral terms
of the two codes will be identical, as is borne out by codeword enumeration using
the methods described in Chap.5.

http://dx.doi.org/10.1007/978-3-319-51103-0_5
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For the Pioneer 9 code, having a d f ree of 12, a double-circulant code with dmin

also equal to 12 can be obtained with n as low as 34, producing a (68, 34, 12) code.
It is noteworthy that this is not a very long code, particularly by modern standards.

Codewords of the double-circulant code are given by

c(x) = d(x)|d(x)(1 + x + x2 + x5 + x6 + x8 + x9 + x12 + x13 + x14

+ x16 + x17 + x18 + x19 + x20) modulo (1 + x34) (10.3)

As a double-circulant block code, this code can be soft decision decoded, with
near maximum likelihood decoding using an extended Dorsch decoder, described
in Chap.15. The results for the AWGN channel are shown plotted in Fig. 10.1. Also
plotted in Fig. 10.1 are the results obtained with the same convolutional code realised
as a (120, 60, 12) double-circulant code which features less wrap around effects com-
pared to the (68, 34, 12) code.

Using the original sequential decoding with 8 level quantisation of the soft deci-
sions realised a coding gain of 3 dB at a BER of 5×10−4. Using the modified Dorsch
decoder with this code can realise a coding gain of over 5 dB at a BER of 5 × 10−4

and over 6 dB at a BER of 10−6 as is evident from Fig. 10.1. Moreover, there is
no need for termination bits with the tail-biting arrangement. However, it should be
noted that the state of the art, modified Dorsch decoder with soft decision decoding

10-6

10-5

10-4

10-3

10-2

10-1
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0 2 4 6 8 10
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E

R

Eb/No [dB]

QPSK Coherent detection
Pioneer 9 convolutional code as (68,34,12) code, hard

Pioneer 9 convolutional code (120,60,12) code, hard
Pioneer 9 convolutional code (68,34,12) code

Pioneer 9 convolutional code as (120,60,12) code

Fig. 10.1 BER performance of the Pioneer 9 convolutional code encoded as a (68, 34, 12) or
(120, 60, 12) double-circulant code with soft and hard decision, extended Dorsch decoding in
comparison to uncoded QPSK

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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needs to evaluate up to 500,000 codewords per received vector for the (68, 34, 12)
double-circulant code realisation and up to 1,000,000 codewords per received vector
for the (120, 60, 12) double-circulant code version in order to achieve nearmaximum
likelihood decoding. Figure10.1 also shows the hard decision decoding performance
realised with the modified, hard decision Dorsch decoder, also described in Chap. 15.
The (120, 60, 12) double-circulant code version, has a degradation of 2.3 dB at 10−4

BER compared to soft decision decoding, but still achieves a coding gain of 3.3 dB
at 10−4 BER. Similarly, the (68, 34, 12) double-circulant code version, has a degra-
dation of 2.2 dB at 10−4 BER compared to soft decision decoding, but still achieves
a coding gain of 2.3 dB at 10−4 BER.

The conclusion to be drawn from Fig. 10.1 is that the Pioneer 9 coding system
was limited not by the design of the code but by the design of the decoder. However
to be fair, the cost of a Dorsch decoder would have been considered beyond reach
back in 1967.

It is interesting to discuss the differences in performance between the (68, 34, 12)
and (120, 60, 12) double-circulant code versions of the Pioneer 9 convolutional code.
Both have a dmin of 12. However the number of weight 12 codewords, the multi-
plicities of weight 12 codewords of the codes’ weight distributions, is higher for the
(68, 34, 12) double-circulant code version due to the wrap around of the second cir-
culant which is only of length 34. The tails of the circulants of codewords of higher
weight than 12 do suffer some cancellation with the beginning of the circulants. In
fact, exhaustive weight spectrum analysis, (see Chaps. 5 and 13 for description of
the different methods that can be used), shows that the multiplicity of weight 12
codewords is 714 for the (68, 34, 12) code and only 183 for the (120, 60, 12) code.

Moreover, the covering radius of the (68, 34, 12) code has been evaluated and
found to be 10 indicating that this code is well packed, whereas the covering radius
of the (120, 60, 12) code is much higher at 16 indicating that the code is not so
well packed. Indeed the code rate of the (120, 60, 12) code can be increased without
degrading the minimum Hamming distance because with a covering radius of 16 at
least one more information bit may be added to the code.

With maximum likelihood, hard decision decoding, which the modified Dorsch
decoder is able to achieve, up to 10 hard decision errors can be corrected with the
(68, 34, 12) code in comparison with up to 16 hard decision errors correctable by the
(120, 60, 12) code. Note that these are considerably higher numbers of correctable
errors in both cases than suggested by the d f ree of the code (only five hard decision
errors are guaranteed to be correctable). This is a recurrent theme for maximum
likelihood, hard decision decoding of codes, as discussed in Chap.3, compared to
bounded distance decoding.

It is also interesting to compare the performance of other convolutional codes that
have been designed for space applications and were originally intended to be used
with sequential decoding. Of course now we have available the far more powerful
(and more signal processing intensive) modified Dorsch decoder, which can be used
with any linear code.

Massey and Costello [6, 10] constructed a rate 1
2 , memory 31 non-systematic

code which was more powerful than any systematic code with the same memory

http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_5
http://dx.doi.org/10.1007/978-3-319-51103-0_13
http://dx.doi.org/10.1007/978-3-319-51103-0_3


294 10 Historical Convolutional Codes as Tail-Biting Block Codes

and had the useful property that the information bits could be obtained from the two
convolutionally encoded parity streams just by adding them together, modulo 2. The
necessary condition for this property is that the two generator polynomials differ
only in a single coefficient. The two generator polynomials, r0(x) and r1(x) may be
described by the exponents of the non-zero coefficients:

r0(x) ← {0, 1, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}
r1(x) ← {0, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31}

As can be seen the two generator polynomials differ only in the coefficient of x .
This code has a d f ree of 23 and can be realised as a double-circulant (180, 90, 23)
code from the tail-biting version of the same convolutional code. This convolutional
code has exceptional performance and in double-circulant form it, of course, may
be decoded using the extended Dorsch decoder. The performance of the code in
(180, 90, 23) form, for the soft decision and hard decision AWGN channel, is shown
in Fig. 10.2. For comparison purposes, the performances of the Pioneer 9 codes are
also shown in Fig. 10.2. Shorter double-circulant code constructions are possible
from this convolutional code in tail-biting form, without compromising the dmin of
the double-circulant code. The shortest version is the (166, 83, 23) double-circulant
code.
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Fig. 10.2 BER performance of the Massey Costello convolutional code in (180, 90, 23) double-
circulant code form for the AWGN channel, using soft and hard decisions, with extended Dorsch
decoding
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By truncating the generator polynomials, r0(x) and r1(x) above, a reduced mem-
ory convolutional code with memory 23 and d f ree of 17 can be obtained as dis-
cussed byMassey and Lin [6, 10] which still has the non-systematic, quick decoding
property. The generator polynomials are given by the exponents of the non-zero
coefficients:

r̂0(x) ← {0, 1, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23}
r̂1(x) ← {0, 2, 4, 5, 7, 8, 9, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23}

A (160, 80, 17) double-circulant code can be obtained from the tail-biting version
of this convolutional code. In fact, many double-circulant codes with high dmin can
be obtained from tail-biting versions of convolutional codes.

It is straightforward to write a program in C++ which searches for the generator
polynomials that produce the convolutional codes with the highest values of d f ree.
The only other constraint is that the the generator polynomials need to be relatively
prime to each other, that is, the GCD of the generator polynomials needs to be 1
in order to avoid a catastrophic code [6]. However, it is also necessary in selecting
the generator polynomials that the wrap around effects of the circulants are taken
into account otherwise the dmin of the double-circulant code is not as high as the
d f ree of the convolutional code from which it is derived. Indeed to construct a good
code in this way with high d f ree and high dmin , it has to be constructed as a tail-
biting convolutional code right from the start. One example of a good tail-biting
convolutional code that has been found in this way has generator polynomials, r0(x)
and r1(x) given by the exponents of the non-zero coefficients:

r0(x) ← {0, 2, 5, 8, 9, 10, 12, 13, 14, 15, 27}
r1(x) ← {0, 1, 2, 3, 4, 5, 7, 8, 11, 12, 16, 18, 20, 23, 27}

This code has amemory of 27 and a d f ree of 26. It may be realised in double-circulant
form as a (180, 90, 26) double-circulant code and weight spectrum analysis shows
that this code has the same dmin of 26 as the best-known code with the same code
parameters [4]. The two polynomials r0(x) and r1(x) factorise into polynomials with
the following exponents of the non-zero coefficients:

r0(x) ← {0, 3, 5}{0, 2, 3, 5, 6, 7, 8, 10, 13, 14, 16, 17, 18, 20, 22}
r1(x) ← {0, 3, 5, 6, 8}{0, 1, 3, 4, 5, 6, 8}{0, 2, 4, 7, 11}

It can be seen that neither polynomial has a common factor and so the GCD is 1.
Correspondingly, the convolutional code is not a catastrophic code.

As well as constructing double-circulant codes from convolutional codes, double-
circulant codes may be used to construct good convolutional codes. The idea of
generating convolutional codes from good block codes is not that new. Massey et al.
in 1973 generated a convolutional code for space communications froma (89, 44, 18)
quadratic residue cyclic code [5, 6]. As described in Chap.9, prime numbers which

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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are congruent to ±3 modulo 8 may be used to generate double-circulant codes using
the quadratic residues to construct one circulant, the other circulant being the identity
circulant; the length of the circulants are equal to the prime number.

Particularly, good double-circulant codes are obtained in this way as discussed in
Chap.9. For example, the prime number 67 can be used to generate a (134, 67, 23)
double-circulant code with the circulants defined by the two polynomials with the
following exponents of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35, 36,

37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65}

Using these two polynomials as the generator polynomials for a 1
2 rate convolutional

code, a systematic convolutional code having a d f ree of 30 is obtained. Interestingly,
deriving another double-circulant code from the tail-biting version of this convolu-
tional code only produces good results when the circulants are exactly equal to 67,
thereby reproducing the original code. For longer circulants, the dmin is degraded
unless the circulants are much longer. It is found that the circulants have to be as
long as 110 to produce a (220, 110, 30) double-circulant code having a dmin equal
to that of the original convolutional code. Moreover, this is a good code because the
code has the same parameters as the corresponding best-known code [4].

Adouble-circulant codemay also be used to derive a non-systematic convolutional
code with much smaller memory and a d f ree equal to the dmin of the double-circulant
code by selecting a codeword of the double-circulant codewhich features low-degree
polynomials in each circulant. It is necessary to check that these polynomials are
relatively prime otherwise a catastrophic convolutional code is produced. In this event
a new codeword is selected. The code produced is a non-systematic convolutional
code with memory equal to the highest degree of the two circulant polynomials.
For example, a memory 41 non-systematic convolutional code can be derived from
a memory 65, systematic convolutional code based on the (134, 67, 23) double-
circulant code with the following exponents of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 4, 6, 9, 10, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 29, 33, 35

36, 37, 39, 40, 47, 49, 54, 55, 56, 59, 60, 62, 64, 65}

Codeword analysis of the double-circulant code is carried out to find the low
memory generator polynomials. The following two generator polynomials were
obtained from the two circulant polynomials making up a weight 23 codeword of
the (134, 67, 23) code:

r0(x) ← {0, 1, 2, 4, 5, 10, 12, 32, 34, 36, 39, 41}
r1(x) ← {0, 2, 4, 13, 19, 24, 25, 26, 33, 35, 37}

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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In another example, the outstanding (200, 100, 32) extended cyclic quadratic
residue code may be put in double-circulant form using the following exponents
of the non-zero coefficients:

r0(x) ← {0}
r1(x) ← {0, 1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17, 18, 19, 20, 26, 27, 28, 31, 34, 35, 37,

38, 39, 42, 44, 45, 50, 51, 52, 53, 57, 58, 59, 64, 66, 67, 70, 73, 75, 76,

77, 80, 82, 85, 86, 89, 92, 93, 97, 98}

Enumeration of the codewords shows that there is a weight 32 codeword that
defines the generator polynomials of a memory 78, non-systematic convolutional
code. The codeword consists of two circulant polynomials, the highest degree of
which is 78. The generator polynomials have the following exponents of the non-
zero coefficients:

r0(x) ← {0, 2, 3, 8, 25, 27, 37, 44, 50, 52, 55, 57, 65, 66, 67, 69, 74, 75, 78}
r1(x) ← {0, 8, 14, 38, 49, 51, 52, 53, 62, 69, 71, 72, 73}

The non-systematic convolutional code that is produced has a d f ree of 32 equal
to the dmin of the double-circulant code. Usually, it is hard to verify high values
of d f ree for convolutional codes, but in this particular case, as the convolutional
code has been derived from the (200, 100, 32) extended quadratic residue, double-
circulant code which is self-dual and also fixed by the large projective special linear
group PSL2(199) the dmin of this code has been proven to be 32 as described in
Chap.9. Thus, the non-systematic convolutional code that is produced has to have a
d f ree of 32.

10.3 Summary

Convolutional codes have been explored from a historical and modern perspective.
Their performance, as traditionally used, has been compared to the performance
realised using maximum likelihood decoding featuring an extended Dorsch decoder
with the convolutional codes implemented as tail-biting block codes. It has been
shown that the convolutional codes designed for space applications and sequential
decoding over 40 years ago were very good codes, comparable to the best codes
known today. The performance realised back then was limited by the sequential
decoder as shown by the presented results. An additional 2 dB of coding gain could
have been realised using themodern, extendedDorsch decoder instead of the sequen-
tial decoder. However back then, this decoder had yet to be discovered and was
probably too expensive for the technology available at the time.

It has also been shown that convolutional codes may be used as the basis for
designing double-circulant block codes and vice versa. In particular, high, guaranteed
values ofd f reemaybeobtainedbybasing convolutional codes onoutstandingdouble-
circulant codes. A memory 78, non-systematic, half rate convolutional code with a
d f ree of 32 was presented based on the (200, 100, 32) extended quadratic residue,
double-circulant code.

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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Chapter 11
Analogue BCH Codes and Direct Reduced
Echelon Parity Check Matrix Construction

11.1 Introduction

Analogue error-correcting codes having real and complex number coefficients were
first discussed by Marshall [2]. Later on Jack Wolf [3] introduced Discrete Fourier
Transform (DFT) codes having complex number coefficients and showed that an
(n, k) DFT code can often correct up to n − k − 1 errors using a majority voting
type of decoder. The codes are first defined and it is shown that (n, k) DFT codes
have coordinate coefficients having complex values. These codes have a minimum
Hamming distance of n − k + 1 and are Maximum Distance Separable (MDS)
codes. The link between the Discrete Fourier Transform and the Mattson–Solomon
polynomial is discussed and it is shown that the parity check algorithm used to
generate DFT codes can be applied to all BCH codes including Reed–Solomon codes
simply by switching from complex number arithmetic to Galois Field arithmetic.
It is shown that it is straightforward to mix together quantised and non-quantised
codeword coefficients which can be useful in certain applications. Several worked
examples are described including that of analogue error-correction encoding and
decoding being applied to stereo audio waveforms (music).

In common with standard BCH or Reed–Solomon (RS) codes, it is shown that
parity check symbols may be calculated for any n − k arbitrary positions in each
codeword and an efficient method is described for doing this. A proof of the validity
of the method is given.

11.2 Analogue BCH Codes and DFT Codes

In a similar manner to conventional BCH codes, a codeword of an analogue (n, k)
BCH code is defined as

c(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + c5x

5 + · · · + cn−1x
n−1

© The Author(s) 2017
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where
c(x) = g(x)d(x)

g(x) is the generator polynomial of the code with degree n − k and d(x) is any data
polynomial of degree less than k. Correspondingly,

g(x) = g0 + g1x + g2x
2 + · · · + gn−k x

n−k

and
d(x) = d0 + d1x + d2x

2 + · · · + dk−1x
k−1

The coefficients of c(x) are complex numbers from the field of complex numbers.
A parity check polynomial h(x) is defined, where

h(x) = h0 + h1x + h2x
2 + h3x

3 + h4x
4 + h5x

5 + · · · + hn−1x
n−1

where
h(x)g(x) mod (xn − 1) = 0

and accordingly,
h(x)c(x) mod (xn − 1) = 0

The generator polynomial and the parity check polynomial may be defined in
terms of the Discrete Fourier Transform or equivalently by the Mattson–Solomon
polynomial.

Definition 11.1 (Definition of Mattson–Solomon polynomial) The Mattson–
Solomon polynomial of any polynomial a(x) is the linear transformation of a(x)
to A(z) and is defined by [1],

A(z) = MS(a(x)) =
n−1∑

i=0

a(α−i ) zi (11.1)

The inverse Mattson–Solomon polynomial or inverse Fourier transform is:

a(x) = MS−1(A(z)) = 1

n

n−1∑

i=0

A(αi ) xi (11.2)

α is a primitive root of unity with order n and for analogue BCH codes

α = e j 2πn (11.3)

where j = (−1)
1
2 .
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In terms of a narrow sense, primitive BCH code with a generator polynomial of g(x),
the coefficients of G(z) are all zero from z0 through zn−k−1 and the coefficients of
H(z) are all zero from zn−k through zn−1. Consequently, it follows that the coefficient
by coefficient product of G(z) and H(z) represented by �

G(z) � H(z) =
n−1∑

j=0

(G j � Hj ) z
j = 0 (11.4)

The nonzero terms of H(z) extend from z0 through to zn−k−1 and a valid parity check
matrix in the well known form is:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
1 α1 α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

1 α3 α6 . . . α3(n−1)

. . . . . . . . . . . . . . .

1 αn−k−1 α2(n−k−1) . . . αn−k−1(n−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

It will be noticed that each row of this matrix is simply given by the inverseMattson–
Solomon polynomial of H(z), where

H(z) = 1
H(z) = z
H(z) = z2

H(z) = . . .

H(z) = zn−k−1

(11.5)

Consider H(z) = z−αi , the inverseMattson–Solomon polynomial produces a parity
check equation defined by

1 − αi α1 − αi α2 − αi . . . 0 . . . αn−1 − αi

Notice that this parity check equation may be derived from linear combinations of
the first two rows of H by multiplying the first row by αi before subtracting it from
the second row of H. The resulting row may be conveniently represented by

αa0 αa1 αa2 αa3 . . . 0 . . . αan−2 αan−1

It will be noticed that the i th coordinate of the codeword is multiplied by zero,
and hence the parity symbol obtained by this parity check equation is independent
of the value of the i th coordinate. Each one of the other coordinates is multiplied
by a nonzero value. Hence any one of these n − 1 coordinates may be solved using
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this parity check equation in terms of the other n − 2 coordinates involved in the
equation.

Similarly, considering H(z) = z−α j , the inverse Mattson–Solomon polynomial
produces a parity check equation defined by

1 − α j α1 − α j α2 − α j . . . 0 . . . αn−1 − α j

and this may be conveniently represented by

αb0 αb1 αb2 αb3 . . . 0 . . . αbn−2 αbn−1

Now the j th coordinate is multiplied by zero and hence the parity symbol obtained
by this parity check equation is independent of the value of the j th coordinate.

Developing the argument, if we consider H(z) = (z − αi )(z − α j ), the inverse
Mattson–Solomon polynomial produces a parity check equation defined by

αa0αb0 αa1αb1 . . . 0 . . . 0 . . . αan−1αbn−1

This parity check equation has zeros in the i th and j th coordinate positions and
as each one of the other coordinates is multiplied by a nonzero value, any one of
these n − 2 coordinates may be solved using this parity check equation in terms of
the other n − 3 coordinates involved in the equation.

Proceeding in this way, for H(z) = (z−αi )(z−α j )(z−αk), the inverseMattson–
Solomon polynomial produces a parity check equation which is independent of the
i th , j th and kth coordinates and these coordinate positions may be arbitrarily chosen.
The parity check matrix is

Hm =

⎡

⎢
⎢
⎣

1 1 1 1 1 1 . . . 1
αu0 αu1 αu2 αu3 αu4 0 . . . αun−1

αv0 0 αv2 αv3 αv4 0 . . . αvn−1

αw0 0 αw2 0 αw4 0 . . . αwn−1

⎤

⎥
⎥
⎦

The point here is that this parity check matrix Hm has been obtained from linear
combinations of the original parity check matrix H and all parity check equations
from either H or Hm are satisfied by codewords of the code.

The parity check matrixHm may be used to solve for 4 parity check symbols in 4
arbitrary coordinate positions defined by the i th , j th and kth coordinate positions plus
any one of the other coordinate positions which will be denoted as the lth position.
The coordinate value in the lth position is solved first using the last equation. Parity
symbols in the i th , j th and kth positions are unknown but this does not matter as
these are multiplied by zero. The third parity check equation is used next to solve
for the parity symbol in the kth position. Then, the second parity check equation is
used to solve for the parity symbol in the j th position and lastly, the first parity check
equation is used to solve for the parity symbol in the i th position. The parity check
matrix values, for s = 0 through to n − 1, are given by:
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αus = αs − αi

αvs = (αs − αi )(αs − α j ) = αus (αs − α j )

αws = (αs − αi )(αs − α j )(αs − αk) = αvs (αs − αk)

Codewords of the code may be produced by first deciding on the number of parity
check symbols and their positions and then constructing the corresponding parity
check matrix Hm. From the information symbols, the parity check symbols are cal-
culated by using each row of Hm starting with the last row as described above.

In the above, there are 4 parity check rows and hence 4 parity check symbols
which can be in any positions of the code. Clearly, the method can be extended
to any number of parity check symbols. Any length of code may be produced by
simply assuming coordinates are always zero, eliminating these columns from the
parity check matrix. The columns of the parity check matrix may also be permuted
to any order but the resulting code will not be cyclic.

It follows that with the n−k parity check equations constructed using the method
above, codeword coordinates may be solved in any of n − k arbitrary positions. In
the construction of each parity check equation there is exactly one additional zero
compared to the previously constructed parity check equation. Hence there are n− k
independent parity check equations in any of n − k arbitrary positions.

Since these equations are all from the same code the minimumHamming distance
of the code is n − k + 1 and the code is MDS. A system for the calculation of parity
check symbols in arbitrary positionsmay be used for encoding or for the correction of
erasures. A block diagram of such an encoder/erasures decoder is shown in Fig. 11.1.

Fig. 11.1 The efficient encoder/erasures decoder realisation for BCH codes
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When operating as an erasures decoder in Fig. 11.1, the List of Parity Symbols is
replaced with a list of the erasures positions.

11.3 Error-Correction of Bandlimited Data

Inmany cases, the sampled data to be encodedwith the analogueBCHcode is already
bandlimited or near bandlimited in which case, the higher frequency coefficients of
the Mattson–Solomon polynomial, D(z) of the data polynomial d(x), consisting of
successive PAM samples, will be zero or near zero. An important point here is that
there is no need to add additional redundancy with additional parity check samples.
In a sense the data, as PAM samples, already contains the parity check samples.
Commonly, it is only necessary to modify a small number of samples to turn the
sampled data into codewords of the analogue BCH code as illustrated in the example
below. The broad sense BCH codes are used with the following parity check matrix,
with α = e− j 2πn .

Hf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 αβ α2β . . . α(n−1)β

1 αβ+1 α2(β+1) . . . α((n−1)(β+1)

1 αβ+2 α2(β+2) . . . α(n−1)(β+2)

1 αβ+3 α2(β+3) . . . α(n−1)(β+3)

. . . . . . . . . . . . . . .

1 −1 1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11.6)

Using this parity check matrix will ensure that the highest n − k Fourier coefficients
will be zero. Several alternative procedures may be used. n − k samples in each
sequence of n samples may be designated as parity symbols and solved using this
parity check matrix following the procedure above for constructing the reduced
echelon matrix so that the values of the designated parity samples may be calculated.
An alternative, more complicated procedure, is for each constructed codeword, to
allow the n − k parity samples to be in any of the n!

k!(n−k)! combinations of positions
and choose the combination which produces the minimummean squared differences
compared to the original n − k complex samples.

11.4 Analogue BCH Codes Based on Arbitrary
Field Elements

It is not necessary that the parity check matrix be based on increasing powers of α

with parity check equations corresponding to the forcing of Fourier coefficients to
be zero. An arbitrary ordering of complex field elements corresponding to permuted
powers of α may be used. With α = e− j 2πN where N ≥ n, consider the parity check
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matrix

Ha =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0 α0 α0 α0 . . . α0

α0 α1 α2 α3 . . . αn−1

α0 α2
1 α2

2 α2
3 . . . α2

n−1

α0 α3
1 α3

2 α3
3 . . . α3

n−1

. . . . . . . . . . . . . . . . . .

α0 αn−k−1
1 αn−k−1

2 αn−k−1
3 . . . αn−k−1

n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The {α0, α1, α2, α3, . . . , αn−1} complex number field elements are all distinct and
arbitrary powers of α. Any combination of any n − k columns, or less, of this
parity check matrix are independent because the matrix transpose is a Vandermonde
matrix [1]. Consequently, the code is a (n, k, n − k + 1) MDS code.

Following the same procedure as outlined above to produce directly a reduced
echelon parity check matrixHb with zeros in arbitrary columns, for example in three
columns headed by, αa , αb and αc.

Hb =

⎡

⎢
⎢
⎣

α0 α0 α0 α0 . . . α0
(α0 − αa ) 0 (α2 − αa ) (α3 − αa ) . . . (αn−1 − αa )

(α0 − αa )(α0 − αb) 0 0 (α3 − αa )(α3 − αb) . . . (αn−1 − αa )(αn−1 − αb)

(α0 − αa )(α0 − αb)(α0 − αc) 0 0 (α3 − αa )(α3 − αb)(α3 − αc) . . . 0

⎤

⎥
⎥
⎦

The parity check equation corresponding to the fourth row of this parity check
matrix is

n−1∑

i=0

(αi − αa)(αi − αb)(αi − αc)ci = 0 (11.7)

where the analogue BCH codeword consists of n complex numbers

{c0, c1, c2, c3, . . . , cn−1}

k of these complex numbers may be arbitrary, determined by the information source
and n − k complex numbers are calculated from the parity check equations:

Defining

(αi − αa)(αi − αb)(αi − αc) = α3
i + β2α

2
i + β1α

1
i + β0

Parity check Eq. (11.7) becomes

n−1∑

i=0

α3
i ci + β2

n−1∑

i=0

α2
i ci + β1

n−1∑

i=0

αi ci + β0

n−1∑

i=0

ci = 0 (11.8)
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This codeword is from the same code as defined by the parity check matrix Ha

because using parity check matrix Ha, codewords satisfy the equations

n−1∑

i=0

α3
i ci = 0

n−1∑

i=0

α2
i ci = 0

n−1∑

i=0

αi ci = 0
n−1∑

i=0

ci = 0

and consequently the codewords defined by Ha satisfy (11.8) as

0 + β20 + β10 + β00 = 0

It is apparent that the reduced echelon matrix Hb consists of linear combinations of
parity check matrix Ha and either matrix may be used to produce the same MDS,
analogue BCH code.

11.5 Examples

11.5.1 Example of Simple (5, 3, 3) Analogue Code

This simple code is the extended analogue BCH code having complex sample values
with α = e

j2π
4 and uses the parity check matrix:

H =
[
1 1 1 1 1
0 1 j −1 − j

]

This parity check matrix is used to encode 3 complex data values in the last 3
positions, viz (0.11 + 0.98 j, −0.22 − 0.88 j, 0.33 + 0.78 j). This produces the
codeword:

(−0.2−0.22 j, −0.02−0.66 j, 0.11+0.98 j, −0.22−0.88 j, 0.33+0.78 j)

Suppose the received vector has the last digit in error

(−0.2 − 0.22 j, −0.02 − 0.66 j, 0.11 + 0.98 j, −0.22 − 0.88 j, 0.4 + 0.9 j)

Applying the first parity check equation produces 0.07 + 0.12 j . This result tells us
that there is an error of 0.07+0.12 j in one of the received coordinates. Applying the
second parity check equation produces 0.12−0.07 j . Since this is the errormultiplied
by − j , this tells us that the error is in the last coordinate. Subtracting the error from
the last coordinate of the received vector produces (0.4+ 0.9 j) − (0.07+ 0.12 j) =
0.33 + 0.78 j and the error has been corrected.
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11.5.2 Example of Erasures Correction Using (15, 10, 4)
Binary BCH code

This is an example demonstrating that the erasures decoder shown in Fig. 11.1 may
be used to correct erasures in a binary BCH code as well as being able to correct
erasures using an analogue BCH code.

The code is a binaryBCHcode of length n = 15,with binary codewords generated
by the generator polynomial g(x) = (1+ x3 + x4)(1+ x). The Galois field is GF(24)
generated by the primitive rootα, which is a root of the primitive polynomial 1+x+x4

so that 1 + α + α4 = 0, and the Galois field consists of the following table of 15
field elements, plus the element, 0.

One example of a codeword from the code is

c(x) = x + x3 + x4 + x6 + x8 + x9 + x10 + x11 (11.9)

and consider that in a communication system, the codeword is received with erasures
in positions in λ0 = 5, λ1 = 0 and λ2 = 8, so that the received codeword is

ĉ(x) = ĉ0 + x + x3 + x4 + ĉ5x
5 + x6 + ĉ8x

8 + x9 + x10 + x11 (11.10)

To find the party check equations to solve for the erasures, referring to Fig. 11.1, the
first parity check equation, h0(x), the all 1’s vector is stored in the Register. The
second parity check equation h1(x) has zero for the coefficient of xn−λ0=n−5 and is
given by

h1(x) =
n−1∑

j=0

(α j − α10) x j (11.11)

Note that hi (x).ĉ(x) = 0 and these polynomials are derived with the intention that
the coefficient of x0 will be evaluated. Referring to Fig. 11.1, h1(x) is stored in the
corresponding Register. After substitution using Table11.1, it is found that

h1(x) = α5 + α8x + α4x2 + α12x3 + α2x4 + x5

+ α7x6 + α6x7 + αx8 + α13x9 + α14x11

+ α3x12 + α9x13 + α11x14 (11.12)

Notice that although the codeword is binary, the coefficients of this equation are from
the full extension field of GF(16). The third parity check equation h2(x) has zero in
position n − λ1 = n − 0 and is given by

h2(x) =
n−1∑

j=0

(α j − 1) x j (11.13)
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after evaluation

h2(x) = α4x + α8x2 + α14x3 + αx4 + α10x5

+ α13x6 + α9x7 + α2x8 + α7x9 + α5x10

+ α12x11 + α11x12 + α6x13 + α3x14 (11.14)

Referring to Fig. 11.1, this polynomial is stored in the corresponding Register.
The parity check equation which gives the solution for coefficient ĉ8 is h3(x) =

h0(x) � h1(x) � h2(x). Multiplying each of the corresponding coefficients together
of the polynomials h0(x), h1(x) and h2(x) produces

h3(x) = α12x + α12x2 + α11x3 + α3x4 + α10x5

+ α5x6 + x7 + α10x8 + α5x9 + α11x11

+ α14x12 + x13 + α14x14 (11.15)

Referring to Fig. 11.1, h3(x) will be input to Multiply and Sum. It should be noted
that the parity check equation h3(x) has non-binary coefficients, even though the
codeword is binary and the solution to the parity check equation has to be binary.

Evaluating the coefficient of x0 of h3(x)ĉ(x) gives α14 + α14 + α11 + α5 + ĉ8 +
α5 + α10 + α3 = 0, which simplifies to α11 + ĉ8 + α10 + α3 = 0. Using Table11.1
gives

(α + α2 + α3) + ĉ8 + (1 + α + α2) + α3 = 0

Table 11.1 All 15 Nonzero Galois Field elements of GF(16)

Symbol αi modulo 1 + α + α4

α0 = 1

α1 = α1

α2 = α2

α3 = α3

α4 = 1+ α

α5 = α+ α2

α6 = α2+ α3

α7 = 1+ α+ α3

α8 = 1+ α2

α9 = α+ α3

α10 = 1+ α+ α2

α11 = α+ α2+ α3

α12 = 1+ α+ α2+ α3

α13 = 1+ α2+ α3

α14 = 1+ α3
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and ĉ8 = 1. Referring to Fig. 11.1, Select produces from h3(x) the value of the
coefficient of x7 which is 1 and when inverted this is also equal to 1. The output of
the Multiply and Add is 1, producing a product of 1, which is used by Update to
update ĉ8 = 1 in the Input Vector ĉ(x).

The parity check equation h2(x) gives the solution for coefficient ĉ0. Evaluating
the coefficient of x0 of h2(x)ĉ(x) gives

0 = α3 + α11 + α12 + ĉ5α
5 + α7

+ α9 + α13 + α10 + α

Substituting using Table11.1 gives ĉ5α5 = 0 and ĉ5 = 0.
Lastly the parity check equation h0(x) gives the solution for coefficient ĉ0. Eval-

uating the coefficient of x0 of h0(x)ĉ(x) gives

0 = ĉ0 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 (11.16)

and it is found that ĉ0 = 0, and the updated ĉ(x) with all three erasures solved is

ĉ(x) = x + x3 + x4 + x6 + x8 + x9 + x10 + x11 (11.17)

equal to the original codeword.

11.5.3 Example of (128, 112, 17) Analogue BCH Code
and Error-Correction of Audio Data (Music)
Subjected to Impulsive Noise

In this example, a stereo music file sampled at 44.1 kHz in complex Pulse Ampli-
tude Modulation (PAM) format is split into sequences of 128 complex samples and
encoded using an analogue (128, 112, 17) BCH code with α = e

j2π
128 , and reassem-

bled into a single PAM stream. A short section of the stereo left channel waveform
before encoding is shown plotted in Fig. 11.2.

The encoding parity check matrix is the Hf matrix for bandlimited signals given
above in matrix (11.6). There are 16 parity symbols and to make these obvious they
are located at the beginning of each codeword. The same section of the stereo left
channel waveform as before but after encoding is shown plotted in Fig. 11.3. The
parity symbols are obvious as the newly introduced spikes in the waveform.
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Fig. 11.2 Section of music waveform prior to encoding
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Fig. 11.3 Section of music waveform after encoding
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Fig. 11.4 Section of music waveform after encoding and subjected to impulse noise

The parity symbols may be calculated for any combination of 16 coordinate posi-
tions and in amore complicated encoding arrangement the positions could be selected
as those that produce the minimummean square error. However, the frequency com-
ponents affected extend from 19.47 to 22.1kHz (these components are equal to zero
after encoding) and are beyond the hearing range of most people.

The encoded music waveform is subjected to randomly distributed impulse noise
with a uniformly distributed amplitude in the range ±16000. The result is shown
plotted in Fig. 11.4 for the same section of the waveform as before, although this is
not obvious in the plot.

The decoder strategy used is that in each received codeword the 16 received
PAM samples with the greatest magnitudes exceeding a dynamic threshold or with
largest change relative to neighbouring samples are erased. The erasures are then
solved using the parity check equations as outlined above. In several cases, correctly
received PAM samples are erased, but this does not matter provided the 112 non-
erased samples in each received codeword are correct. The decoded music waveform
is shown in Fig. 11.5, and is apparent that waveform after decoding is the same as
the encoded waveform and the impulse noise errors have been corrected.

Usually, impulse noise effects are handled by noise suppressors which produce
short, zero-valued waveform sections. These audible gaps are irritating to the lis-
tener. By using analogue BCH, error-correcting codes, there are no waveform gaps
following decoding.
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Fig. 11.5 Section of music waveform after decoding

11.6 Conclusions and Future Research

It has been demonstrated that for analogue (n, k, n−k+1) BCH codes, parity check
symbols having complex values may be calculated for any n − k arbitrary positions
in each codeword and an efficient method of calculating erased symbols for any BCH
code including binary codes has been presented. Bandlimited data naturally occurs
in many sources of information. In effect the source data has already been encoded
with an analogue BCH code. In practice the parity check equations of the BCH
code will only approximately equal zero for the PAM samples of the bandlimited
source. There is scope for determining those samples which require the minimum
of changes in order to satisfy the parity check equations. Similarly in decoding
codewords corrupted by a noisy channel there is the opportunity to use the statistics
of the noise source to design a maximum likelihood decoder for analogue BCH
codes. It appears likely that the extended Dorsch decoder described in Chap.15 may
be adapted for analogue BCH codes.

There are many ad hoc noise suppression algorithms used on analogue video
and audio waveforms which cause artefacts in the signal processed outputs. There
appears to be an opportunity to improve on these by using analogue BCH coding
since the output of the decoder is always a codeword. For high quality systems this
will predominantly be the transmitted codeword and therefore the decoder output
will be free of artefacts.

Whilst most communications these days is digitally based, analogue communi-
cations is usually far more bandwidth efficient, particularly in wireless applications.
By using analogue BCH codes, analogue communications may be attractive once
more, particularly for niche applications.

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Steganography is another area in which analogue BCH codes may be utilised.
Errors in parity check equations may be used to communicate data in a side channel.
By virtue of the parity check equations these errors may be distributed over multiple
PAM samples or pixels. Secrecy may be assured by using a combination of secret
permutations of the parity check matrix columns and a secret linear matrix trans-
formation so that the parity check equations are unknown by anyone other than the
originator.

11.7 Summary

Many information sources are naturally analogue and must be digitised if they are
to be transmitted digitally. The process of digitisation introduces quantisation errors
and increases the bandwidth required. The use of analogue error-correcting codes
eliminates the need for digitisation. It been shown that analogue BCH codes may
be constructed in the same way as finite field BCH codes, including Reed–Solomon
codes. The difference is that the field of complex numbers is used instead of a prime
field or prime power field. It has been shown how the Mattson–Solomon polynomial
or equivalently the Discrete Fourier transform may be used as the basis for the
construction of analogue codes. It has also been shown that a permuted parity check
matrix produces an equivalent code using a primitive root of unity to construct the
code as in discrete BCH codes.

A new algorithm was presented which uses symbolwise multiplication of rows
of a parity check matrix to produce directly the parity check matrix in reduced
echelon form. The algorithm may be used for constructing reduced echelon parity
check matrices for standard BCH and RS codes as well as analogue BCH codes.
Gaussian elimination or other means of solving parallel, simultaneous equations are
completely avoided by the method. It was also proven that analogue BCH codes are
MaximumDistance Separable (MDS) codes. Examples have been presented of using
the analogue BCH codes in providing error-correction for analogue, band-limited
data including the correctionof impulse noise errors inBCHencoded, analogue stereo
musicwaveforms. It is shown that since the data is bandlimited it is already redundant
and the parity check symbols replace existing values so that there is no need for
bandwidth expansion as in traditional error-correcting codes. Future research areas
have been outlined including an analogue, maximum likelihood, error-correcting
decoder based on the extendedDorsch decoder of Chap.15. Steganography is another
future application area for analogue BCH codes.

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Chapter 12
LDPC Codes

12.1 Background and Notation

LDPC codes are linear block codes whose parity-check matrix—as the name
implies—is sparse. These codes can be iteratively decoded using the sum prod-
uct [9] or equivalently the belief propagation [24] soft decision decoder. It has been
shown, for example by Chung et al. [3], that for long block lengths, the performance
of LDPC codes is close to the channel capacity. The theory of LDPC codes is related
to a branch of mathematics called graph theory. Some basic definitions used in graph
theory are briefly introduced as follows.

Definition 12.1 (Vertex,Edge,Adjacent and Incident)Agraph, denotedbyG(V, E),
consists of an ordered set of vertices and edges.

• (Vertex) A vertex is commonly drawn as a node or a dot. The set V (G) consists
of vertices of G(V, E) and if v is a vertex of G(V, E), it is denoted as v ∈ V (G).
The number of vertices of V (G) is denoted by |V (G)|.

• (Edge) An edge (u, v) connects two vertices u ∈ V (G) and v ∈ V (G) and it
is drawn as a line connecting vertices u and v. The set E(G) contains pairs of
elements of V (G), i.e. {(u, v) | u, v ∈ V (G)}.

• (Adjacent and Incident) If (u, v) ∈ E(G), then u ∈ V (G) and v ∈ V (G) are
adjacent or neighbouring vertices of G(V, E). Similarly, the vertices u and v are
incident with the edge (u, v).

Definition 12.2 (Degree) The degree of a vertex v ∈ V (G) is the number of edges
that are incident with vertex v, i.e. the number of edges that are connected to vertex v.

Definition 12.3 (Bipartite or Tanner graph) Bipartite or Tanner graph G(V, E)

consists of two disjoint sets of vertices, say Vv(G) and Vp(G), such that V (G) =
Vv(G) ∪ Vp(G), and every edge (vi , p j ) ∈ E(G), such that vi ∈ Vv(G) and p j ∈
Vp(G) for some integers i and j .
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An [n, k, d] LDPC code may be represented by a Tanner graph G(V, E). The
parity-check matrix H of the LDPC code consists of |Vp(G)| = n − k rows and
|Vv(G)| = n columns. The set of vertices Vv(G) and Vp(G) are called variable and
parity-check vertices, respectively. Figure12.1 shows the parity check and the cor-

Fig. 12.1 Representations of a [16, 4, 4] LDPC code
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responding Tanner graph of a [16, 4, 4] LDPC code. Let Vv(G) = (v0, v1, . . . , vn−1)

and Vp(G) = (p0, p1, . . . , pn−k−1); we can see that for each (vi , p j ) ∈ E(G), the
i th column and j th row of H , Hj,i �= 0, for 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − k − 1.

Definition 12.4 (Cycle) A cycle in a graphG(V, E) is a sequence of distinct vertices
that starts and ends in the same vertex. For bipartite graph G(V, E), exactly half of
these distinct vertices belong to Vv(G) and the remaining half belong to Vp(G).

Definition 12.5 (Girth and Local Girth) The girth of graph G(V, E) is the length
of the shortest cycle in the graph G(V, E). The local girth of a vertex v ∈ V (G) is
the length of shortest cycle that passes through vertex v.

The performance of a typical iteratively decodable code (e.g. an LDPC or turbo
code) may be partitioned into three regions, namely erroneous, waterfall and error
floor regions, see Fig. 12.2. The erroneous region occurs at low Eb/N0 values and
is indicated by the inability of the iterative decoder to correctly decode almost all
of the transmitted messages. As we increase the signal power, the error rate of the
iterative decoder decreases rapidly—resembling a waterfall. The Eb/N0 value at
which the waterfall region starts is commonly known as the convergence threshold
in the literature. At higher Eb/N0 values, the error rate starts to flatten—introducing
an error floor in the frame error rate (FER) curve.

In addition to this FER curve, the offset sphere packing lower bound and the
probability of error based on the union bound argument as described in Chap.1 are
also plotted in Fig. 12.2. The sphere packing lower bound represents the region of

Fig. 12.2 Waterfall and error regions of a typical LDPC code for the AWGN channel

http://dx.doi.org/10.1007/978-3-319-51103-0_1
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attainable performance of a coding system. The performance to the left of this lower
bound is not attainable, whereas that to the right may be achieved by some coding
and decoding arrangements. The other curve is the union bound of the probability of
error, which is dominated by the low Hamming weight codewords and the number of
codewords of these Hamming weights. The larger the minimum Hamming distance
of a code, the lower the union bound typically. For iteratively decodable codes which
are not designed to maximise the minimum Hamming distance, the union bound
intersects with the offset sphere packing lower bound at relatively low Eb/N0 values.

It may be seen that, with an ideal soft decision decoder, the performance of a
coding system would follow the sphere packing lower bound and at higher Eb/N0

values, the performance floors due to the limitation of theminimumHammingweight
codewords. However, as depicted in Fig. 12.2, there is a relatively wide gap between
the union bound and the error floor of a typical iteratively decodable code. This
is an inherent behaviour of iteratively decodable codes and it is attributed to the
weakness of the iterative decoder. There are other error events, which are not caused
by theminimumHammingweight codewords, that prevent the iterative decoder from
reaching the union bound.

In terms of the construction technique, we may divide LDPC codes into two
categories: random and algebraic LDPC codes. We may also classify LDPC codes
into two categories depending on the structure of the parity-check matrix, namely
regular and irregular codes—refer to Sect. 12.1.1 for the definition. Another attractive
construction method that has been shown to offer capacity-achieving performance
is non-binary construction.

12.1.1 Random Constructions

Gallager [8] introduced the (n, λ, ρ)LDPCcodeswhere n represents the block length
whilst the number of non-zeros per column and the number of non-zeros per row are
represented by λ and ρ, respectively.

The short notation (λ, ρ) is also commonly used to represent these LDPC codes.
The coderate of the Gallager (λ, ρ) codes is given by

R = 1 − λ

ρ
.

An example of the parity-check matrix of a Gallager (λ, ρ) LDPC code is shown
in Fig. 12.1a. It is a [16, 4, 4] code with a λ of 3 and a ρ of 4. The parity-check matrix
of the (λ, ρ) Gallager codes always have a fixed number of non-zeros per column
and per row, and because of this property, this class of LDPC codes is termed regular
LDPC codes. The performance of the Gallager LDPC codes in the waterfall region
is not as satisfactory as that of turbo codes for the same block length and code rate.
Many efforts have been devoted to improve the performance of the LDPC codes and
one example that provides significant improvement is the introduction of the irregular
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LDPC codes by Luby et al. [18]. The irregular LDPC codes, as the name implies,
do not have a fixed number of non-zeros per column or per row and thus the level
of error protection varies over a codeword. The columns of a parity check matrix
that have a higher number of non-zeros provide stronger error protection than those
that have a lower number of non-zeros. Given an input block in iterative decoding,
errors in the coordinates of this block, whose columns of the parity-check matrix
have a larger number of non-zeros, will be corrected earlier, i.e. only a small number
of iterations are required. In the subsequent iterations, the corrected values in these
coordinates will then be utilised to correct errors in the remaining coordinates of the
block.

Definition 12.6 (Degree Sequences) The polynomial Λλ(x) = ∑
i≥1 λi x i is called

the symbol or variable degree sequence, where λi is the fraction of vertices of degree
i . Similarly, Λρ(x) = ∑

i≥1 ρi x i is the check degree sequence, where ρi is the
fraction of vertices of degree i .

The degree sequences given in the above definition are usually known as vertex-
oriented degree sequences. Another representations are edge-oriented degree
sequences which consider the fraction of edges that are connected to a vertex of
certain degree. Irregular LDPC codes are defined by these degree sequences and it
is assumed that the degree sequences are vertex-oriented.

Example 12.1 An irregular LDPC code with the following degree sequences

Λλ(x) = 0.5x2 + 0.26x3 + 0.17x5 + 0.07x10

Λρ(x) = 0.80x14 + 0.20x15

has 50, 26, 17 and7%of the columnswith 2, 3, 5 and 10 ones per column, respectively,
and 80 and 20% of the rows with 14 and 15 ones per row, respectively.

Various techniques have been proposed to design good degree distributions.
Richardson et al. [27] used density evolution to determine the convergence thresh-
old and to optimise the degree distributions. Chung et al. [4] simplified the density
evolution approach using Gaussian approximation. With the optimised degree dis-
tributions, Chung et al. [3] showed that the bit error rate performance of a long block
length (n = 107) irregular LDPC code was within 0.04 dB away from the capacity
limit for binary transmission over the AWGN channel, discussed in Chap.1. This is
within 0.18 dB of Shannon’s limit [30]. The density evolution and Gaussian approxi-
mationmethods, whichmake use of the concentration theorem [28], can only be used
to design the degree distributions for infinitely long LDPC codes. The concentration
theorem states that the performance of cycle-free LDPC codes can be characterised
by the average performance of the ensemble. The cycle-free assumption is only valid
for infinitely long LDPC codes and cycles are inevitable for finite block-length LDPC
codes. As may be expected, the performance of finite block-length LDPC codes with
degree distributions derived based on the concentration theorem differs considerably
from the ensemble performance. There are various techniques to design good finite

http://dx.doi.org/10.1007/978-3-319-51103-0_1
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block-length LDPC codes, for instance see [1, 2, 10, 33]. In particular, the work of
Hu et al. [10] with the introduction of the progressive edge-growth (PEG) algorithm
to construct both regular and irregular LDPC codes, that of Tian et al. [33] with
the introduction of extrinsic message degree and recently, that of Richter et al. [29]
which improves the original PEG algorithm by introducing some construction con-
straints to avoid certain cycles involving variable vertices of degree 3, have provided
significant contributions to the construction of practical LDPC codes as well as the
lowering of the inherent error floor of these codes.

12.1.2 Algebraic Constructions

In general, LDPC codes constructed algebraically have a regular structure in their
parity-check matrix. The algebraic LDPC codes offer many advantages over ran-
domly generated codes. Some of these advantages are

1. The important property such as the minimum Hamming distance can be easily
determined or in the worst case, lower and upper bounds may be mathematically
derived. These bounds are generally more accurate than estimates for random
codes.

2. The minimum Hamming distance of algebraic LDPC codes is typically higher
than that of random codes. Due to the higher minimum Hamming distance, alge-
braic codes are not that likely to suffer from an early error floor.

3. The existence of a known structure in algebraic codes usually offers an attractive
and simple encoding scheme. In the case of random codes, in order to carry
out encoding, a Gaussian elimination process has to be carried out in the first
place and the entire reduced echelon parity-check matrix has to be stored in
the memory. Algebraically constructed codes such as cyclic or quasi-cyclic codes
can be completely defined by polynomials. The encoding of cyclic or quasi-cyclic
codes may be simply achieved using a linear-feedback shift-register circuit and
the memory requirement is minimum. Various efficient techniques for encoding
random LDPC codes have been proposed, see Ping et al. [26] for example, but
none of these techniques simplifies the storage requirements. The simplicity of the
encoder and decoder structure has led to many algebraically constructed LDPC
codes being adopted as industry standards [5].

4. Cyclic LDPC codes have n low Hamming weight parity-check equations and
therefore, compared to random codes, these cyclic LDPC codes have k extra
equations for the iterative decoder to iterate with and this leads to improved
performance.

One of the earliest algebraic LDPC code constructions was introduced by
Margulis [21] using the Ramanujan graphs. Lucas et al. [19] showed that the
well-known different set cyclic (DSC) [36] and one-step majority-logic decodable
(OSMLD) [17] codes have good performance under iterative decoding. The iter-
ative soft decision decoder offers significant improvement over the conventional
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hard decision majority-logic decoder. Another class of algebraic codes is the class
of the Euclidean and projective geometry codes which are discussed in detail by
Kou et al. [16]. Other algebraic constructions include those that use combinatorial
techniques [13–15, 35].

It has been observed that in general, there is an inverse performance relationship
between the minimum Hamming distance of the code and the convergence of the
iterative decoder. Irregular codes converge well with iterative decoding, but the min-
imum Hamming distance is relatively poor. In contrast, algebraically constructed
LDPC codes, which have high minimum Hamming distance, tend not to converge
well with iterative decoding. Consequently, compared to the performance of irreg-
ular codes, algebraic LDPC codes may perform worse in the low SNR region and
perform better in the high SNR region. This is attributed to the early error floor of
the irregular codes. As will be shown later, for short block lengths (n < 350), cyclic
algebraic LDPC codes offer some of the best performance available.

12.1.3 Non-binary Constructions

LDPC codes may be easily extended so that the symbols take values from the finite-
fieldF2m andDavey et al. [6] were the pioneers in this area. Given an LDPC code over
F2 with parity-check matrix H , we may construct an LDPC code over F2m form ≥ 2
by simply replacing every non-zero element of H with any non-zero element ofF2m in
a random or structured manner. Davey et al. [6] and Hu et al. [11] have shown that the
performance of LDPC codes can be improved by going beyond the binary field. The
non-binary LDPC codes have better convergence behaviour under iterative decod-
ing. Using some irregular non-binary LDPC codes, whose parity-check matrices are
derived by randomly replacing the non-zeros of the PEG-constructed irregular binary
LDPC codes, Hu et al. [11] demonstrated that an additional coding gain of 0.25 dB
was achieved. It may be regarded that the improved performance is attributable to the
improved graph structure in the non-binary arrangement. Consider a cycle of length
6 in the Tanner graph of a binary LDPC code, which is represented as the following
sequence of pairs of edges {(v0, p0), (v3, p0), (v3, p2), (v4, p2), (v4, p1), (v0, p1)}.
If we replace the corresponding entries in the parity-check matrix with some non-
zeros over F2m for m ≥ 2, provided that these six entries are not all the same, the
cycle length becomes longer than 6. According to McEliece et al. [22] and Etzion
et al. [7], the non-convergence of the iterative decoder is caused by the existence of
cycles in the Tanner graph representation of the code. Cycles, especially those of
short lengths, introduce correlations of reliability information exchanged in iterative
decoding. Since cycles are inevitable for finite block length codes, it is desirable to
have LDPC codes with large girth.

The non-binary LDPC codes also offer an attractive matching for higher order
modulation methods. The impact of increased complexity of the symbol-based iter-
ative decoder can be moderated as the reliability information from the component
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codes may be efficiently evaluated using the frequency-domain dual-code decoder
based on the Fast Walsh–Hadamard transform [6].

12.2 Algebraic LDPC Codes

Based on idempotents and cyclotomic cosets, see Chap.4, a class of cyclic codes that
is suitable for iterative decoding may be constructed. This class of cyclic codes falls
into the class of one-step majority-logic decodable (OSMLD) codes whose parity-
check polynomial is orthogonal on each bit position—implying the absence of a girth
of 4 in the underlying Tanner graph, and the corresponding parity-check matrix is
sparse, and thus can be used as LDPC codes.

Definition 12.7 (Binary Parity-Check Idempotent) Let M ⊆ N and let the poly-
nomial u(x) ∈ T (x) be defined by

u(x) =
∑

s∈M
es(x) (12.1)

where es(x) is an idempotent. The polynomial u(x) is called a binary parity-check
idempotent.

The binary parity-check idempotent u(x) can be used to describe an [n, k] cyclic
code as discussed in Chap.4. Since GCD(u(x), xn − 1) = h(x), the polynomial
ū(x) = xdeg(u(x))u(x−1) and its n cyclic shifts (mod xn − 1) can be used to define
the parity-check matrix of a binary cyclic code. In general, wtH (ū(x)) is much lower
than wtH (h(x)), and therefore a low-density parity-checkmatrix can be derived from
ū(x).

Let the parity-check polynomial ū(x) = xū0 + xū1 + · · · + xūt of weight t + 1.
Since the code defined by ū(x) is cyclic, for each non-zero coefficient ūi in ū(x),
there are another t parity-check polynomials of weight t + 1, which also have a
non-zero coefficient at position ūi . Furthermore, consider the set of these t + 1
polynomials that have a non-zero coefficient at position ūi , there is no more than
one polynomial in the set that have a non-zero at position ū j for some integer j . In
other words, if we count the number of times the positions 0, 1, . . . , n − 1 appear
in the exponents of the aforementioned set of t + 1 polynomials, we shall find that
all positions except ūi appear at most once. This set of t + 1 polynomials is said to
be orthogonal on position ūi . The mathematical expression of this orthogonality is
given in the following definition and lemma.

Definition 12.8 (Difference Enumerator Polynomial) Let the polynomial f (x) ∈
T (x). The difference enumerator of f (x), denoted as D( f (x)), is defined as

D( f (x)) = f (x) f
(
x−1

) = d0 + d1x + · · · + dn−1x
n−1, (12.2)

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
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where it is assumed that D( f (x)) is a modulo xn − 1 polynomial with coefficients
taking values from R (real coefficients).

Lemma 12.1 Let di for 0 ≤ i ≤ n − 1 denote the coefficients of D(ū(x)). If
di ∈ {0, 1}, for all i ∈ {1, 2, . . . , n − 1}, the parity-check polynomial derived from
ū(x) is orthogonal on each position in the n-tuple. Consequently,

(i) the minimum distance of the resulting LDPC code is 1 + wtH (ū(x)), and
(ii) the underlying Tanner Graph has girth of at least 6.

Proof (i) [25, Theorem 10.1] Let a codeword c(x) = c0 + c1x +· · ·+ cn−1xn−1 and
c(x) ∈ T (x). For each non-zero bit position c j of c(x), where j ∈ {0, 1, . . . , n −
1}, there are wtH (u(x)) parity-check equations orthogonal to position c j . Each of
the parity-check equations must check another non-zero bit cl , where l �= j , so
that the equation is satisfied. Clearly, wtH (c(x)) must equal to 1 + wtH (u(x)) and
this is the minimum weight of all codewords.
(ii) The direct consequence of having orthogonal parity-check equations is the
absence of cycles of length 4 in the Tanner Graphs. Let a, b and c, where a < b < c,
be three distinct coordinates in an n-tuple, since di ∈ {0, 1} for 1 ≤ i ≤ n − 1, this
implies that b − a �= c − b. We know that q(b − a) (mod n) ∈ {1, 2, . . . , n − 1}
and thus, q(b− a) (mod n) ≡ (c− b) for some integer q ∈ {1, 2, . . . , n − 1}. If we
associate the integers a, b and c with some variable vertices in the Tanner graph, a
cycle of length 6 is produced.

It can be deduced that the cyclic LDPC code with parity-check polynomial ū(x)
is an OSMLD code if di ∈ {0, 1}, for all i ∈ {1, 2, . . . , n − 1} or a difference set
cyclic (DSC) code if di = 1, for all i ∈ {1, 2, . . . , n − 1}, where di is the coefficient
of D(ū(x)).

In order to arrive at either OSMLD or DSC codes, the following design conditions
are imposed on ū(x) and therefore, u(x):

Condition 12.1 The idempotent u(x) must be chosen such that

wtH (u(x)) (wtH (u(x)) − 1)) ≤ n − 1.

Proof There are wtH (u(x)) polynomials of weight wtH (u(x)) that are orthogonal
on position j for some integer j . The number of distinct positions in this set of
polynomials is wtH (u(x)) (wtH (u(x)) − 1), and this number must be less than or
equal to the total number of distinct integers between 1 and n − 1.

Condition 12.2 Following Definition 12.8, let W = {i | di = 1, 1 ≤ i ≤ n − 1},
the cardinality of W must be equal to wtH (u(x)) (wtH (u(x)) − 1).

Proof The cyclic differences between the exponents of polynomial u(x) are given
by D (u(x)) = ∑n−1

i=0 di x
i , where the coefficient di is the number of differences

and the exponent i is the difference. The polynomial u(x) and some of its cyclic
shifts are orthogonal on position 0 and this means that all of the cyclic differences
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between the exponents of u(x) (excluding zero) must be distinct, i.e. di ∈ {0, 1} for
1 ≤ i �= n − 1. Since the weight of u(x) excluding x0 is wtH (u(x)) − 1 and there
are wtH (u(x)) cyclic shifts of u(x) that are orthogonal to x0, the number of distinct
exponents in the cyclic differences is wtH (u(x)) (wtH (u(x)) − 1) = W .

Condition 12.3 The exponents of u(x) must not contain a common factor of n,
otherwise a degenerate code, a repetition of a shorter cyclic code, is the result.

Proof If the exponents of u(x) contain a common factor of n, p with n = pr , then
factors of u(x) divide xr − 1 and form a cyclic code of length r . Every codeword of
the longer code is a repetition of the shorter cyclic code.

Condition 12.4 Following (12.1), unless wtH (es(x)) = 2, the binary parity-check
idempotent es(x) must not be self-reciprocal, i.e. es(x) �= ei

(
x−1

)
, for all i ∈ M .

Proof The number of non-zero coefficients of D(es(x)) is equal to

wtH (es(x)) (wtH (es(x)) − 1) .

For a self-reciprocal case, es(x)es
(
x−1

) = e2s (x) = es(x) with wtH (es(x)) non-zero
coefficients. Following Condition 12.1, the inequality

wtH (es(x)) (wtH (es(x) − 1) ≤ wtH (es(x))

becomes equality if and only if wtH (es(x)) = 2.

Condition 12.5 Following (12.1), u(x) must not contain es
(
x−1

)
, for all i ∈ M ,

unless es(x) is self-reciprocal.

Proof If u(x) contains es
(
x−1

)
for i ∈ M , then D(u(x)) will contain both

es(x)es
(
x−1

)
and es

(
x−1

)
es(x), hence, some of the coefficients of D(es(x)),

di �= {0, 1} for some integer i .

Although the above conditions seem overly restrictive, they turn out to be helpful
in code construction. Codes may be designed in stage-by-stage by adding candidate
idempotents to u(x), checking the above conditions at each stage.

In order to encode the cyclic LDPC codes constructed, there is no need to deter-
mine g(x). With α defined as a primitive nth root of unity, it follows from Lemma 4.4
that u(αi ) ∈ {0, 1} for 0 ≤ i ≤ n − 1. Let J = ( j0, j1, . . . , jn−k−1) be a set of
integers between 0 and n − 1, such that g(α j ) = 0, for all j ∈ J . Because u(x)
does not contain α j as its roots, it follows that u(α j ) = 1, for all j ∈ J . In F2,
1 + u(α j ) = 0 and the polynomial 1 + u(x) = eg(x), the generating idempotent of
the code may be used to generate the codewords as an alternative to g(x).

The number of information symbols of the cyclic LDPC codes can be determined
either from the number of roots of u(x) which are also roots of unity, i.e. n −
wtH (U (z)), or from the degree of (u(x), xn − 1) = h(x).

http://dx.doi.org/10.1007/978-3-319-51103-0_4
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Example 12.2 Consider the design of a cyclic LDPC code of length 63. The cyclo-
tomic coset modulo 63 is given in Example 4.2. Let u(x) be defined by C9, i.e.
u(x) = e9(x) = x9(1 + x9 + x27). D(ū(x)) indicates that the parity-check matrix
defined by ū(x) has no cycles of length 4; however, following Condition 12.3, it is
a degenerate code consisting of repetitions of codewords of length 7.

With u(x) = e23(x) = x23(1 + x6 + x20 + x23 + x30 + x35), the resulting cyclic
code is a [63, 31, 6] LDPC code which is non-degenerate and its underlying Tanner
graph has girth of 6. This code can be further improved by adding e21(x) to u(x).
Despite e21(x) being self-reciprocal, its weight is 2 satisfying Condition 12.4. Now,
u(x) = x21(1+ x2 + x8 + x21 + x22 + x25 + x32 + x37), and it is a [63, 37, 9] cyclic
LDPC code.

Based on the theory described above, an algorithm which exhaustively searches
for all non-degenerate cyclic LDPC codes of length n which have orthogonal parity-
check polynomials has been developed, and it is given in Algorithm 12.1.

Algorithm 12.1 CodeSearch(V, index)
Input:

index ⇐ an integer that is initialised to −1
V ⇐ a vector that is initialised to ∅
S ⇐ N excluding 0

Output:
CodesList contains set of cyclic codes which have orthogonal parity-check polynomial

1: T ⇐ V
2: for

(
i=index+1; i ≤ |S |; i++)

do
3: Tprev ⇐ T
4: if

(∑
∀t∈T |CSt | ≤ √

n, St is the t th element of S
)
then

5: Append i to T
6: u(x) = ∑

∀t∈T eSt (x)
7: if

(
u(x) is non-degenerate

)
and

(
u(x) is orthogonal on each position (Lemma 12.1)

)

then
8: U (z) = MS (u(x))
9: k = n − wtH (U (z))
10: C ⇐ a [n, k, 1 + wtH (u(x))] cyclic code defined by u(x)
11: if

(
k ≥ 1

4

)
and

(
C /∈ CodeList

)
then

12: Add C to CodeList
13: end if
14: end if
15: CodeSearch(T, i)
16: end if
17: T ⇐ Tprev
18: end for

Table12.1 lists some example of codes obtained from Algorithm 12.1. Note that
all codes with code rate less than 0.25 are excluded from the table and codes of longer
lengths may also be constructed.We can also see that some of the codes in Table12.1
have the same parameters as the Euclidean and projective geometry codes, which
have been shown by Jin et al. [16] to perform well under iterative decoding.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
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Table 12.1 Examples of
2-cyclotomic coset-based
LDPC codes

[n, k, d] Cyclotomic cosets

[21, 11, 6] C7,C9

[63, 37, 9] C21,C23

[93, 47, 8] C3,C31

[73, 45, 10] C1

[105, 53, 8] C7,C15

[219, 101, 12] C3,C73

[255, 135, 13] C1,C119

[255, 175, 17] C1,C27

[273, 191, 18] C1,C91,C117

[341, 205, 16] C1,C55

[511, 199, 19] C5,C37

[511, 259, 13] C1,C219

[819, 435, 13] C1

[819, 447, 19] C1,C351

[1023, 661, 23] C1,C53,C341

[1023, 781, 33] C1,C53,C123,C341

[1057, 813, 34] C5,C43,C151

[1387, 783, 28] C1,C247

[1971, 1105, 21] C1,C657

[2047, 1167, 23] C1,C27

[2325, 1335, 28] C1,C57,C775

[2325, 1373, 30] C1,C525,C1085

[2359, 1347, 22] C1

[3741, 2229, 29] C1

[3813, 2087, 28] C1,C369,C1271

[4095, 2767, 49] C1,C41,C235,C733

[4095, 3367, 65] C1,C41,C235,C273,C411,C733

[4161, 2827, 39] C1,C307,C1387

[4161, 3431, 66] C1,C285,C307,C357,C1387

[4681, 2681, 31] C1,C51

[5461, 3781, 43] C1,C77,C579

A key feature of the cyclotomic coset-based construction is the ability to increment
the minimum Hamming distance of a code by adding further weight from other
idempotents and so steadily decrease the sparseness of the resulting parity-check
matrix. Despite the construction method producing LDPC codes with no cycles of
length 4, it is important to remark that codes that have cycles of length 4 in their parity-
check matrices do not necessary have bad performance under iterative decoding, and
a similar finding has been demonstrated by Tang et al. [31]. It has been observed
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that there are many cyclotomic coset-based LDPC codes that have this property, and
the constraints in Algorithm 12.1 can be easily relaxed to allow the construction of
cyclic LDPC codes with girth 4.

12.2.1 Mattson–Solomon Domain Construction of Binary
Cyclic LDPC Codes

The [n, k, d] cyclic LDPC codes presented in Sect. 4.4 are constructed using the sum
of idempotents, which are derived from the cyclotomic cosets modulo n, to define
the parity-check matrix. A different insight into this construction technique may be
obtained by working in the Mattson–Solomon domain.

Let n be a positive odd integer, F2m be a splitting field for xn − 1 over F2, α be a
generator for F2m , and Tm(x) be a polynomial with maximum degree of n − 1 and
coefficients inF2m . Similar to Sect. 4.4, the notation of T (x) is used as an alternative to
T1(x) and the variables x and z are used to distinguish the polynomials in the domain
and codomain. Let the decomposition of zn −1 into irreducible polynomials over F2

be contained in a setF = { f1(z), f2(z), . . . , ft (z)}, i.e. ∏1≤i≤t fi (z) = zn − 1. For
each fi (z), there is a corresponding primitive idempotent, denoted as θi (z), which
can be obtained by [20]

θi (z) = z(zn − 1) f ′
i (z)

fi (z)
+ δ(zn − 1) (12.3)

where f ′
i (z) = d

dz fi (z), f
′
i (z) ∈ T (z) and the integer δ is defined by

δ =
{
1 if deg( fi (z)) is odd,

0 otherwise.

Let the decomposition of zn −1 and its corresponding primitive idempotent be listed
as follows:

u1(x) θ1(z) f1(z)
u2(x) θ2(z) f2(z)

...
...

...

ut (x) θt (z) ft (z).

Here u1(x), u2(x), . . . , ut (x) are the binary idempotents whose Mattson–Solomon
polynomials are θ1(z), θ2(z), . . . , θt (z), respectively.Assume thatI ⊆ {1, 2, . . . , t},
let the binary polynomials u(x) = ∑

∀i∈I ui (x), f (z) = ∏
∀i∈I fi (z), and θ(z) =

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
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∑
∀i∈I θi (z). It is apparent that, since ui (x) = MS−1 (θi (z)), u(x) = MS−1 (θ(z))

and u(x) is an idempotent.1

Recall that u(x) is a low-weight binary idempotent whose reciprocal polynomial
can be used to define the parity-check matrix of a cyclic LDPC code. The number of
distinct nth roots of unity which are also roots of the idempotent u(x) determines the
dimension of the resulting LDPC code. In this section, the design of cyclic LDPC
codes is based on several important features of a code. These features, which are
listed as follows, may be easily gleaned from the Mattson–Solomon polynomial of
u(x) and the binary irreducible factors of zn − 1.

1. Weight of the idempotent u(x)
The weight of u(x) is the number of nth roots of unity which are zeros of f (z).
Note that, f (αi ) = 0 if and only if θ(αi ) = 1 since an idempotent takes only the
values 0 and 1 over F2m . If u(x) is written as u0+ui x+· · ·+un−1xn−1, following
(11.2), we have

ui = θ(αi ) (mod 2) for i = {0, 1, . . . , n − 1}.

Therefore, ui = 1 precisely when f (αi ) = 0, giving wtH (u(x)) as the degree of
the polynomial f (z).

2. Number of zeros of u(x)
Following (11.1), it is apparent that the number of zeros of u(x) which are roots
of unity, which is also the dimension of the code k, is

Number of zeros of u(x) = k = n − wtH (θ(z)) . (12.4)

3. Minimum Hamming distance bound
The lower bound of the minimum Hamming distance of a cyclic code, defined
by idempotent u(x), is given by its BCH bound, which is determined by the
number of consecutive powers of α, taken cyclically (mod n), which are roots
of the generating idempotent eg(x) = 1 + u(x). In the context of u(x), it is the
same as the number of consecutive powers of α, taken cyclically (mod n), which
are not roots of u(x). Therefore, it is the largest number of consecutive non-zero
coefficients in θ(z), taken cyclically (mod n).

The method of finding fi (z) is well established and using the above information,
a systematic search for idempotents of suitable weight may be developed. To be
efficient, the search procedure has to start with an increasing order of wtH (u(x)) and
this requires rearrangement of the setF such that deg( fi (z)) < deg( fi i + 1(z)) for
all i . It is worth mentioning that it is not necessary to evaluate u(x) by taking the

1Since the Mattson–Solomon polynomial of a binary polynomial is an idempotent and vice-versa
[20], the Mattson–Solomon polynomial of a binary idempotent is also a binary idempotent.

http://dx.doi.org/10.1007/978-3-319-51103-0_11
http://dx.doi.org/10.1007/978-3-319-51103-0_11
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Mattson–Solomon polynomial of θ(z), for each f (z) obtained. It is more efficient to
obtain u(x) once the desired code criteria, listed above, are met.

For an exhaustive search, the complexity is of orderO
(
2|F |). A search algorithm,

seeAlgorithm12.2, has beendeveloped and it reduces the complexity considerablyby
targeting the search on the following key parameters. Note that this search algorithm,
which is constructed in the Mattson–Solomon domain, is not constrained to find
cyclic codes that have girth at least 6.

1. Sparseness of the parity-check matrix
Anecessary condition for the absence of cycles of length 4 is given by the inequal-
ity wtH (u(x)) (wtH (u(x)) − 1) ≤ n − 1. Since wtH (u(x)) = deg( f (z)), a rea-
sonable bound is

∑

∀i∈I
deg( fi (z)) ≤ √

n.

In practise, this limit is extended to enable the finding of good cyclic LDPC codes
which have girth of 4 in their underlying Tanner graph.

2. Code rate
The code rate is directly proportional to the number of roots of u(x). If Rmin

represents the minimum desired code rate, then it follows from (12.4) that we can
refine the search to consider the cases where

wtH (θ(z)) ≤ (1 − Rmin)n .

3. Minimum Hamming distance
If the idempotent u(x) is orthogonal on each position, then the minimum Ham-
ming distance of the resulting code defined by u(x) is equal to 1 + wtH (u(x)).
However, for cyclic codes with cycles of length 4, there is no direct method to
determine their minimum Hamming distance and the BCH bound provides a
lower bound to the minimum Hamming distance. Let d be the lowest desired
minimum Hamming distance and rθ be the largest number of consecutive non-
zero coefficients, taken cyclically, of θ(z). If a cyclic code has rθ of d, then its
minimumHamming distance is at least 1+d. It follows that we can further refine
the search with the constraint

rθ ≥ d − 1.

In comparison to the construction method described in Sect. 4.4, we can see that
the construction given in Sect. 4.4 starts from the idempotent u(x), whereas this
section starts from the idempotent θ(z), which is the Mattson–Solomon polynomial
of u(x). Both construction methods are equivalent and the same cyclic LDPC codes
are produced.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
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Algorithm 12.2 MSCodeSearch(V, index)
Input:

V ⇐ a vector initialised to ∅
index ⇐ an integer initialised to −1
Rmin ⇐ minimum code rate of interest
d ⇐ lowest expected minimum distance
δ ⇐ small positive integer
F(z) ⇐ { fi (z)} ∀i ∈ I sorted in ascending order of the degree
Q(z) ⇐ {θi (z)} ∀i ∈ I

Output:
CodesList contains set of codes

1: T ⇐ V
2: for

(
i=index+1; i ≤ |I |; i++)

do
3: Tprev ⇐ T
4: if

(∑
∀ j∈T deg( f j (x)) + deg( fi (x)) ≤ √

n + δ
)
then

5: Append i to T
6: θ(z) ⇐ ∑

∀ j∈T θ j (z)

7: if
(
wtH (θ(z)) ≤ (1 − Rmin)n and rθ > d

)
then

8: u(x) ⇐ MS−1 (θ(z))
9: if

(
u(x) is non-degenerate

)
then

10: C ⇐ a cyclic code defined by u(x)
11: if

(
C /∈ CodeList

)
then

12: Add C to CodeList
13: end if
14: end if
15: end if
16: MSCodeSearch(T, i)
17: end if
18: T ⇐ Tprev
19: end for

SomegoodcyclicLDPCcodeswith cycles of length 4 foundusingAlgorithm12.2,
which may also be found using Algorithm 12.1, are tabulated in Table12.2. A check
based on Lemma 12.1 may be easily incorporated in Step 12 of Algorithm 12.2 to
filter out cyclic codes whose Tanner graph has girth of 4.

Figure12.3 demonstrates the FER performance of several cyclic LDPC codes
found by Algorithm 12.2. It is assumed that binary antipodal signalling is employed
and the iterative decoder uses the RVCM algorithm described by Papagiannis
et al. [23]. The FER performance is compared against the sphere packing lower
bound offset for binary transmission. We can see that the codes [127, 84, 10] and
[127, 99, 7], despite having cycles of length 4, are around 0.3 dB from the offset
sphere packing lower bound at 10−4 FER. Figure12.3c compares two LDPC codes
of block size 255 and dimension 175, an algebraic code obtained by Algorithm 12.2
and an irregular code constructed using the PEG algorithm [10]. It can be seen that,
in addition to having improved minimum Hamming distance, the cyclic LDPC code
is 0.4 dB superior to the irregular code, and compared to the offset sphere packing
lower bound, it is within 0.25 dB away at 10−4 FER. The effect of the error floor
is apparent in the FER performance of the [341, 205, 6] irregular LDPC code, as



12.2 Algebraic LDPC Codes 331

Table 12.2 Several good cyclic LDPC codes with girth of 4

[n, k, d] u(x)

[51, 26, 10] 1 + x3 + x6 + x12 + x17 + x24 + x27 + x34 + x39 + x45 + x48

[63, 44, 8] 1+x9+x11+x18+x21+x22+x25+x27+x36+x37+x42+x44+x45+x50+x54

[117, 72, 12] 1 + x + x2 + x4 + x8 + x11 + x16 + x22 + x32 + x44 + x59 + x64 + x88

[127, 84, 10] 1+x+x2+x4+x8+x16+x32+x55+x59+x64+x91+x93+x109+x110+x118

[127, 91, 10] 1 + x2 + x10 + x18 + x29 + x32 + x33 + x49 + x50 + x54 + x58 + x65 +
x74 + x76 + x78 + x86 + x87 + x88 + x92 + x93 + x95

[127, 92, 7] 1 + x5 + x10 + x20 + x29 + x31 + x33 + x39 + x40 + x58 + x62 + x66 +
x78 + x79 + x80 + x83 + x103 + x105 + x115 + x116 + x121 + x124

[127, 99, 7] 1+x13+x16+x18+x22+x26+x39+x42+x45+x46+x49+x57+x65+x68+
x70+x78+x80+x90+x91+x92+x96+x97+x102+x103+x105+x108+x111
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Fig. 12.3 FER performance of some binary cyclic LDPC codes

shown in Fig. 12.3d. The floor of this irregular code is largely attributed to minimum
Hamming distance error events. Whilst this irregular code, at low SNR region, has
better convergence than does the algebraic LDPC code of the same block length and
dimension, the benefit of having higher minimum Hamming distance is obvious as
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the SNR increases. The [341, 205, 16] cyclic LDPC code is approximately 0.8 dB
away from the offset sphere packing lower bound at 10−4 FER.

It is clear that short block length (n ≤ 350) cyclic LDPC codes have outstanding
performance and the gap to the offset sphere packing lower bound is relatively close.
However, as the block length increases, the algebraic LDPC codes, although these
code have large minimum Hamming distance, have a convergence issue, and the
threshold to the waterfall region is at larger Eb/N0. The convergence problem arises
because as the minimum Hamming distance increases, the weight of the idempotent
u(x), which defines the parity-check matrix, also increases. In fact, if u(x) satisfies
Lemma 12.1, we know that wtH (u(x)) = d − 1, where d is the minimum Hamming
distance of the code. Large values of wtH (u(x)) result in a parity-check matrix that
is not as sparse as that of a good irregular LDPC code of the same block length and
dimension.

12.2.2 Non-Binary Extension of the Cyclotomic Coset-Based
LDPC Codes

The code construction technique for the cyclotomic coset-based binary cyclic LDPC
codes, which is discussed in Sect. 4.4, may be extended to non-binary fields. Similar
to the binary case, the non-binary construction produces the dual-code idempotent
which is used to define the parity-check matrix of the associated LDPC code.

Let m and m ′ be positive integers with m | m ′, so that F2m is a subfield of F2m′ .
Let n be a positive odd integer and F2m′ be the splitting field of xn − 1 over F2m , so
that n|2m ′ −1. Let r = (2m

′ −1)/n, l = (2m
′ −1)/(2m −1), α be a generator for F2m′

and β be a generator of F2m , where β = αl . Let Ta(x) be the set of polynomials of
degree at most n − 1 with coefficients in F2a . For the case of a = 1, we may denote
T1(x) by T (x) for convenience.

The Mattson–Solomon polynomial and its corresponding inverse, (11.1) and
(11.2), respectively, may be redefined as

A(z) = MS (a(x)) =
n−1∑

j=0

a(α−r j )z j (12.5)

a(x) = MS−1 (A(z)) = 1

n

n−1∑

i=0

A(αri )xi (12.6)

where a(x) ∈ Tm ′(x) and A(z) ∈ Tm ′(z).
Recall that a polynomial e(x) ∈ Tm(x) is termed an idempotent if the property

e(x) = e(x)2 (mod xn−1) is satisfied. Note that e(x) �= e(x2) (mod xn−1) unless
m = 1. The following definition shows how to construct an idempotent for binary
and non-binary polynomials.

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_11
http://dx.doi.org/10.1007/978-3-319-51103-0_11
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Definition 12.9 (Cyclotomic Idempotent) Assume that N be a set as defined in
Sect. 4.4, let s ∈ N and letCs,i represent the (i +1)th element ofCs , the cyclotomic
coset of s (mod n). Assume that the polynomial es(x) ∈ Tm(x) is given by

es(x) =
∑

0≤i≤|Cs |−1

eCs,i x
Cs,i , (12.7)

where |Cs | is the number of elements in Cs . In order for es(x) to be an idempotent,
its coefficients may be chosen in the following manner:

(i) if m = 1, eCs,i = 1,
(ii) otherwise, eCs,i is defined recursively as follows:

for i = 0, eCs,i ∈ {1, β, β2, . . . , β2m−2},
for i > 0, eCs,i = e2Cs,i−1

.

We refer to the idempotent es(x) as a cyclotomic idempotent.

Definition 12.10 (Parity-Check Idempotent) LetM ⊆ N and let u(x) ∈ Tm(x) be

u(x) =
∑

s∈M
es(x). (12.8)

The polynomial u(x) is an idempotent and it is called a parity-check idempotent.

As in Sect. 4.4, the parity-check idempotent u(x) is used to define the F2m cyclic
LDPC code over F2m , which may be denoted by [n, k, d]2m . The parity-check matrix
consists of n cyclic shifts of xdeg(u(x))u(x−1). For the non-binary case, the minimum
Hamming distance d of the cyclic code is bounded by

d0 + 1 ≤ d ≤ min (wtH (g(x)),wtH (1 + u(x))) ,

where d0 is the maximum run of consecutive ones in U (z) = MS(u(x)), taken
cyclically mod n.

Based on the description given above, a procedure to construct a cyclic LDPC
code over F2m is as follows.

1. For integers m and n, obtain the splitting field (F2m′ ) of xn − 1 over F2m . Unless
the condition of m | m ′ is satisfied, F2m cyclic LDPC code of length n cannot be
constructed.

2. Generate the cyclotomic cosets modulo 2m
′ − 1 denoted as C ′.

3. Derive a polynomial p(x) from C ′ and let s ∈ N be the smallest positive integer
such that |C ′

s | = m. The polynomial p(x) is the minimal polynomial of αs ,

p(x) =
∏

0≤i<m

(
x + αC ′

s,i

)
. (12.9)

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_4
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Construct all elements of F2m using p(x) as the primitive polynomial.
4. Let C be the cyclotomic cosets modulo n and let N be a set containing the

smallest number in each coset of C . Assume that there exists a non-empty set
M ⊂ N and following Definition 12.10 construct the parity-check idempotent
u(x). The coefficients of u(x) can be assigned following Definition 12.9.

5. Generate the parity-checkmatrix ofC using the n cyclic shifts of xdeg(u(x))u(x−1).
6. Compute r and l, and then take the Mattson–Solomon polynomial of u(x) to

produce U (z). Obtain the code dimension and the lower bound of the minimum
Hamming distance from U (z).

Example 12.3 Consider the construction of a n = 21 cyclic LDPC code over F26 .
The splitting field of x21 − 1 over F26 is F26 , and this implies that m = m ′ = 6,
r = 3 and l = 1. Let C and C ′ denote the cyclotomic cosets modulo n and 2m

′ − 1,
respectively.We know that |C ′

1| = 6 and therefore the primitive polynomial p(x) has
roots of α j , for all j ∈ C ′

1, i.e. p(x) = 1+ x + x6. By letting 1+ β + β6 = 0, all of
the elements of F26 can be defined. If u(x) is the parity-check idempotent generated
by the sum of the cyclotomic idempotents defined by Cs , where s ∈ {M : 5, 7, 9}
and eCs,0 for all s ∈ M be β23, 1 and 1, respectively,

u(x) =β23x5 + x7 + x9 + β46x10 + β43x13 + x14 + x15 + β53x17 + x18

+ β58x19 + β29x20

and itsMattson–Solomon polynomialU (z) indicates that it is a [21, 15,≥ 5]26 cyclic
code, whose binary image is a [126, 90, 8] linear code.

The following systematic search algorithm is based on summing each possible
combination of the cyclotomic idempotents to search for all possibleF2m cyclic codes
of a given length. As in Algorithm 12.2, the search algorithm targets the following
key parameters:

1. Sparseness of the resulting parity-check matrix
Since the parity-check matrix is directly derived from u(x) which consists of the
sum of the cyclotomic idempotents, only low-weight cyclotomic idempotents are
of interest. LetWmax be the maximum wtH (u(x)); then the search algorithm will
only choose the cyclotomic idempotents whose sum has total weight less than or
equal to Wmax .

2. High code rate
The number of roots of u(x) which are also roots of unity define the dimension
of the resulting LDPC code. Let the integer kmin be defined as the minimum code
dimension, and the cyclotomic idempotents that are of interest are those whose
Mattson–Solomon polynomial has at least kmin zeros.

3. High minimum Hamming distance
Let the integer d ′ be the smallest value of the minimum Hamming distance of
the code. The sum of the cyclotomic idempotents should have at least d ′ − 1
consecutive powers of β which are roots of unity but not roots of u(x).
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Table 12.3 Examples of [n, k, d]2m cyclic LDPC codes

q [n, k] u(x) d d†b Comment

F22 [51, 29] β2x3 + βx6 + β2x12 + β2x17 + βx24 +
βx27 + βx34 + β2x39 + βx45 + β2x48

≥5 10 m = 2,
m′ = 8,
r = 5 and
l = 85

[255, 175] βx7 + β2x14 + βx28 + β2x56 + x111 +
βx112 + x123 + β2x131 + x183 + x189 +
βx193+x219+x222+β2x224+x237+x246

≥17 ≤20 m = 2,
m′ = 8,
r = 1 and
l = 85

[273, 191] β2x23 + βx37 + βx46 + β2x74 +
βx91 + β2x92 + β2x95 + β2x107 +
x117 + βx148 + β2x155 + β2x182 +
βx184 + βx190 + x195 + βx214 + x234

≥18 ≤20 m = 2,
m′ = 12,
r = 15 and
l = 1365

F23 [63, 40] 1 + β5x9 + βx13 + β3x18 + β2x19 +
β2x26 +β6x36 +β4x38 +βx41 +β4x52

≥6 10 m = 3,
m′ = 6,
r = 1 and
l = 9

[63, 43] β2x9 + β3x11 + β4x18 + x21 +
β6x22 + β3x25 + x27 + βx36 + β5x37 +
x42 + β5x44 + x45 + β6x50 + x54

≥8 ≤12 m = 3,
m′ = 6,
r = 1 and
l = 9

[91, 63] β6x + β5x2 + β3x4 + β6x8 + βx13 +
β5x16+β5x23+β2x26+β3x32+β5x37+
β3x46+β4x52+β6x57+β6x64+β3x74

≥8 ≤10 m = 3,
m′ = 12,
r = 45 and
l = 585

F24 [85, 48] 1+ β12x21 + β9x42 + β6x53 + β3x69 +
β9x77 + β12x81 + β6x83 + β3x84

≥7 ≤12 m = 4,
m′ = 8,
r = 3 and
l = 17

F25 [31, 20] 1 + β28x5 + β7x9 + β25x10 + x11 +
x13+β14x18+β19x20+ x21+ x22+ x26

≥7 12 m = 5,
m′ = 5,
r = l and
l = 1

[31, 21] β23x5 + β29x9 + β15x10 + βx11 +
β4x13 + β27x18 + β30x20 + β16x21 +
β2x22 + β8x26

≥4 8 m = 5,
m′ = 5,
r = 1 and
l = 1

F26 [21, 15] β23x5 + x7 + x9 + β46x10 + β43x13 +
x14 + x15 + β53x17 + x18 + β58x19 +
β29x20

≥5 8 m = 6,
m′ = 6,
r = 3 and
l = 1

†The minimum Hamming distance of the binary image which has been determined using the improved Zimmermann

algorithm, Algorithm 5.1
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Following Definition 12.10 and the Mattson–Solomon polynomial

U (z) = MS

(
∑

s∈M
es(x)

)

=
∑

s∈M
Es(z),

it is possible to maximise the run of the consecutive ones in U (z) by varying the
coefficients of es(x). It is therefore important that all possible non-zero values of
eCs,0 for all s ∈ M are included to guarantee that codes with the highest possible
minimum Hamming distance are found.

Table12.3 outlines some examples of [n, k, d]2m cyclic LDPC codes. The non-
binary algebraic LDPC codes in this table perform well under iterative decoding as
shown in Fig. 12.4 assuming binary antipodal signalling and the AWGN channel.
The RVCM algorithm is employed in the iterative decoder. The FER performance
of these non-binary codes is compared to the offset sphere packing lower bound in
Fig. 12.4.

As mentioned in Sect. 12.1.2, there is an inverse relationship between the conver-
gence of the iterative decoder and the minimum Hamming distance of a code. The
algebraic LDPC codes, which have higher minimum Hamming distances compared
to irregular LDPC codes, do not converge well at long block lengths. It appears that
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Fig. 12.4 FER performance of some non-binary cyclic LDPC codes
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Fig. 12.5 FER performance of algebraic and irregular LDPC codes of rate 0.6924 and code length
5461 bits

the best convergence at long code lengths can only be realised by irregular LDPC
codes with good degree distributions. Figure12.5 shows the performance of two
LDPC codes of block length 5461 bits and code rate 0.6924; one is an irregular code
constructed using the PEG algorithm and the other one is an algebraic code of mini-
mum Hamming distance 43 based on cyclotomic coset and idempotent construction
(see Table12.1). These results are for the AWGN channel using binary antipodal
signalling with a belief propagation iterative decoder featuring 100 iterations. We
can see that at 10−5 FER, the irregular PEG code is superior by approximately 1.6 dB
compared to the algebraic cyclic LDPC code. However, for short code lengths, alge-
braic LDPC codes are superior. The codes have better performance and have simpler
encoders than ad hoc designed LDPC codes.

12.3 Irregular LDPC Codes from Progressive
Edge-Growth Construction

It is shown by Hu et al. [11] that LDPC codes obtained using the PEG construction
method can perform better than other types of randomly constructed LDPC codes.
The PEG algorithm adds edges to each vertex such that the local girth is maximised.
ThePEGalgorithmconsiders only the variable degree sequence, and the check degree
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Fig. 12.6 Effect of vertex degree ordering in PEG algorithm

sequence is maintained to be as uniform as possible. In this section, the results of
experimental constructions of irregular LDPC codes using the PEG algorithm are
presented. Analysis on the effects of the vertex degree ordering and degree sequences
have been carried out by means of computer simulations. All simulation results in
this section, unless otherwise stated, were obtained using binary antipodal signalling
with the belief propagation decoder using 100 iterations. Each simulation run was
terminated after the decoder had produced 100 erroneous frames.

Figure12.6 shows the FER performance of various [2048, 1024] irregular LDPC
codes constructed using the PEG algorithm with different vertex degree orderings.
These LDPC codes have variable degree sequence Λλ(x) = 0.475x2 + 0.280x3 +
0.035x4 + 0.109x5 + 0.101x15. Let (v0, v1, . . . , vi , . . . , vn−1) be a set of variable
vertices of an LDPC code. Code 0 and Code 1 LDPC codes were constructed with
an increasing vertex degree ordering, i.e. deg(v0) ≤ deg(v1) ≤ · · · ≤ deg(vn−1),
whereas the remaining LDPC codes were constructed with random vertex degree
ordering.

Figure12.6 clearly shows that, unless the degree of the variable vertices is assigned
in an increasing order, poor LDPC codes are obtained. In random degree ordering of
half rate codes, it is very likely to encounter the situation where, as the construction
approaches the end, there are some low-degree variable vertices that have no edge
connected to them. Since almost all of the variable vertices would have already had
edges connected to them, the low-degree variable vertices would not have many
choice of edges to connect in order to maximise the local girth. It has been observed
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that, in many cases, these low-degree variable vertices are connected to each other,
forming a cycle which involves all vertices, and the resulting LDPC codes often
have a low minimumHamming distance. If d variable vertices are connected to each
other and a cycle of length 2d is formed, then the minimum Hamming distance of
the resulting code is d because the sum of these d columns in the corresponding
parity-check matrix H is 0T .

In contrast, for the alternative construction which starts from an increasing degree
of the variable vertices, edges are connected to the low-degree variable vertices
earlier in the process. Short cycles, which involve the low-degree variable vertices
and lead to lowminimumHamming distance, may be avoided by ensuring these low-
degree variable vertices have edges connected to the parity-check vertices which are
connected to high-degree variable vertices.

It can be expected that the PEG algorithm will almost certainly produce poor
LDPC codes if the degree of the variable vertices is assigned in descending order. It
is concluded that all PEG-based LDPC codes should be constructed with increasing
variable vertex degree ordering.

Figure12.7 shows the effect of low-degree variable vertices, especially λ2 and
λ3, on the FER performance of various [512, 256] PEG-constructed irregular LDPC
codes. Table12.4 shows the variable degree sequences of the simulated irregular
codes. Figure12.7 indicates that, with the fraction of high-degree variable vertices
kept constant, the low-degree variable vertices have influence over the convergence

Fig. 12.7 Effect of low-degree variable vertices
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Table 12.4 Variable degree sequences for codes in Fig. 12.7

Code λ2 λ3 λ4 λ5 λ14

Code 0 0.150 0.350 0.350 0.050 0.100

Code 1 0.200 0.325 0.325 0.050 0.100

Code 2 0.250 0.300 0.300 0.050 0.100

Code 3 0.300 0.275 0.275 0.050 0.100

Code 4 0.350 0.250 0.250 0.050 0.100

Code 5 0.400 0.225 0.225 0.050 0.100

Code 6 0.450 0.200 0.200 0.050 0.100

Code 7 0.500 0.175 0.175 0.050 0.100

Code 8 0.550 0.150 0.150 0.050 0.100

Code 10 0.150 0.700 0.000 0.050 0.100

Code 11 0.200 0.550 0.100 0.050 0.100

Code 12 0.250 0.400 0.200 0.050 0.100

Code 13 0.300 0.250 0.300 0.050 0.100

Code 14 0.350 0.100 0.400 0.050 0.100

Code 20 0.150 0.000 0.700 0.050 0.100

Code 21 0.200 0.100 0.550 0.050 0.100

Code 22 0.250 0.200 0.400 0.050 0.100

Code 23 0.300 0.300 0.250 0.050 0.100

Code 24 0.350 0.400 0.100 0.050 0.100

in the waterfall region. As the fraction of low-degree variable vertices is increased,
the FER in the low signal-to-noise ratio (SNR) region improves. On the other hand,
LDPC codes with a high fraction of low-degree variable vertices tend to have low
minimum Hamming distance and as expected, these codes exhibit early error floors.
This effect is clearly depicted by Code 7 and Code 8, which have the highest
fraction of low-degree variable vertices among all the codes in Fig. 12.7. Of all of
the codes, Code 6 and Code 24 appear to have the best performance.

Figure12.8 demonstrates the effect of high-degree variable vertices on the FER
performance. These codes are rate 3/4 irregular LDPC codes of length 1024 bits
with the same degree sequences, apart from their maximum variable vertex degree.
One group has maximum degree of 8 and the other group has maximum degree of
12. From Fig. 12.8, it is clear that the LDPC codes with maximum variable vertex
degree of 12 converge better under iterative decoding than those codeswithmaximum
variable vertex degree of 8.

In a similar manner to Fig. 12.7, the effect of having various low-degree variable
vertices is also demonstrated inFig. 12.9. In this case, theLDPCcodes are constructed
to have the advantageous linear-time encoding complexity, where the parity symbols
are commonly described as having a zigzag pattern [26]. In this case, λ1 and λ2 of
these LDPC codes are fixed and the effect of varying λ3, λ4 and λ5 is investigated.
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Fig. 12.9 Effect of varying low-degree variable vertices
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Table 12.5 Variable degree sequences of LDPC codes in Fig. 12.9

Code λ1 λ2 λ3 λ4 λ5 λ12

Code 0 0.000625 0.249375 0.644375 0.105625

Code 1 0.000625 0.249375 0.420000 0.224375 0.105625

Code 2 0.000625 0.249375 0.195000 0.449375 0.105625

Code 3 0.000625 0.249375 0.420000 0.224375 0.105625

Code 4 0.000625 0.249375 0.195000 0.449375 0.105625

Code 5 0.000625 0.249375 0.420000 0.111875 0.111875 0.106250

Code 6 0.000625 0.249375 0.195000 0.224375 0.224375 0.106250

Code 7 0.000625 0.249375 0.420000 0.224375 0.105625

Code 8 0.000625 0.249375 0.195000 0.449375 0.105625

Code 9 0.000625 0.249375 0.449375 0.195000 0.105625

Code 10 0.000625 0.249375 0.449375 0.097500 0.097500 0.105625

Code 11 0.000625 0.249375 0.449375 0.044375 0.150000 0.106250

Code 12 0.000625 0.249375 0.495000 0.150000 0.105000

Code 13 0.000625 0.249375 0.495000 0.075000 0.075000 0.105000

Code 14 0.000625 0.249375 0.495000 0.037500 0.111875 0.105625

Code 15 0.000625 0.249375 0.570000 0.075000 0.105000

Code 16 0.000625 0.249375 0.570000 0.037500 0.037500 0.105000
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Fig. 12.10 Effect of varying high-degree variable vertices
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The variable degree sequences of the LDPC codes under investigation, which are
rate 3/4 codes of length 1600 bits, are depicted in Table12.5. The results show that,
as in the previous cases, these low-degree variable vertices contribute to the waterfall
region of the FER curve. The contribution of λi is more significant than that of λi+1

and this may be observed by comparing the FER curves of Code 1with either Code
3 or Code 4, which has λ3 of 0.0. We can also see that Code 0, which has the most
variable vertices of low degree, exhibits a high error floor.

In contrast to Fig. 12.9, Fig. 12.10 shows the effect of varying high-degree variable
vertices. TheLDPCcodes considered here all have the same code rate and code length
as those in Fig. 12.9 and their variable degree sequences are shown in Table12.6. The
results show that

• The contribution of the high-degree variable vertices is in the high SNR region.
Consider Code 10 to Code 33, those LDPC codes that have larger λ12 tend to
be more resilient to errors in the high SNR region than those with smaller λ12. At
Eb/No = 3.0 dB, Code 10, Code 11 and Code 12 are inferior to Code 13 and
similarly, Code 23 and Code 33 have the best performance in their group.

• Large values of maximum variable vertex degree may not always lead to improved
FER performance. For example, Code 5 and Code 6 do not perform as well as
Code 4 at Eb/No = 3.0 dB. This may be explained as follows. As the maximum
variable vertex degree is increased, some of the variable vertices have many edges
connected to them, in the other words the corresponding symbols are checked
by many parity-check equations. This increases the chances of having unreliable
information from some of these equations during iterative decoding. In addition, a
larger maximum variable vertex degree also increases the number of short cycles
in the underlying Tanner graph of the code. It was concluded also by McEliece
et al. [22] and by Etzion et al. [7] that short cycles lead to negative contributions
preventing the convergence of the iterative decoder.

12.4 Quasi-cyclic LDPC Codes and Protographs

Despite irregular LDPC codes having lower error rates than their regular counter-
parts, Luby et al. [18], the extra complexity of the encoder and decoder hardware
structure, has made this class of LDPC codes unattractive from an industry point
of view. In order to encode an irregular code which has a parity-check matrix H ,
Gaussian elimination has to be done to transform this matrix into reduced echelon
form. Irregular LDPC codes, as shown in Sect. 12.3, may also be constructed by
constraining the n − k low-degree variable vertices of the Tanner graph to form a
zigzag pattern, as pointed out by Ping et al. [26]. Translating these n − k variable
vertices of the Tanner graph into matrix form, we have
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H p =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1 1

...
...

1 1
1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (12.10)

The matrix H p is non-singular and the columns of this matrix may be used as the
coordinates of the parity-check bits of an LDPC code.

The use of zigzag parity checks does simplify the derivation of the encoder as the
Gaussian elimination process is no longer necessary and encoding, assuming that

H = [
Hu |H p

]

=

v0 v1 . . . vk−2 vk−1 vk vk+1 . . . vn−2 vn−1

u0,0 u0,1 . . . u0,k−2 u0,k−1 1
u1,0 u1,1 . . . u1,k−2 u1,k−1 1 1
...

...
...

...
...

. . .
. . .

un−k−2,0 un−k−2,1 . . . un−k−2,k−2 un−k−2,k−1 1 1
un−k−1,0 un−k−1,1 . . . un−k−1,k−2 un−k−1,k−1 1 1

,

can be performed by calculating parity-check bits as follows:

vk =
k−1∑

j=0

v ju0, j (mod 2)

vi = vi−1 +
k−1∑

j=0

v jui−k, j (mod 2) for k + 1 ≤ i ≤ n − 1 .

Nevertheless, zigzag parity bit checks do not lead to a significant reduction in encoder
storage space as the matrix Hu still needs to be stored. It is necessary to introduce
additional structure in Hu , such as using a quasi-cyclic property, to reduce signifi-
cantly the storage requirements of the encoder.

12.4.1 Quasi-cyclic LDPC Codes

Quasi-cyclic codes have the property that each codeword is a m-sized cyclic shift
of another codeword, where m is an integer. With this property simple feedback
shift registers may be used for the encoder. This type of code is known as circulant
codes defined by circulant polynomials and depending on the polynomials can have
significant mathematical structure as described in Chap. 9. A circulant matrix is a
square matrix where each row is a cyclic shift of the previous row and the first row

http://dx.doi.org/10.1007/978-3-319-51103-0_9
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is the cyclic shift of the last row. In addition, each column is also a cyclic shift of the
previous column and the column weight is equal to the row weight.

A circulant matrix is defined by a polynomial r(x). If r(x) has degree <m, the
corresponding circulant matrix is anm×m squarematrix. Let R be a circulant matrix
defined by r(x), then M is of the form

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r(x) (mod xm − 1)
xr(x) (mod xm − 1)

...

xir(x) (mod xm − 1)
...

xm−1r(x) (mod xm − 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12.11)

where the polynomial in each row can be represented by an m-dimensional vector,
which contains the coefficients of the corresponding polynomial. A quasi-cyclic code
can be built from the concatenation of circulant matrices to define the generator or
parity-check matrix.

Example 12.4 A quasi-cyclic code with defining polynomials r1(x) = 1 + x + x3

and r2(x) = 1+x2+x5, where both polynomials have degree less than themaximum
degree of 6, produces a parity-check matrix in the following form:

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 0 0 0 1 0 1 0 0 1
0 0 1 1 0 1 0 1 0 1 0 1 0 0
0 0 0 1 1 0 1 0 1 0 1 0 1 0
1 0 0 0 1 1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 1 1 0 0 1 0 1 0
1 0 1 0 0 0 1 0 1 0 0 1 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Definition 12.11 (Permutation Matrix) A permutation matrix is a type of circulant
matrix where each row or column has weight of 1. A permutation matrix, which is
denoted by Pm, j , has r(x) = x j (mod xm − 1) as the defining polynomial and it
satisfies the property that P2

m, j = Im , where Im is an m × m identity matrix.

Due to the sparseness of the permutationmatrix, these are usually used to construct
quasi-cyclic LDPC codes. The resulting LDPC codes produce a parity-check matrix
in the following form:

H =

⎡

⎢
⎢
⎢
⎣

Pm,O0,0 Pm,O0,1 . . . Pm,O0,t−1

Pm,O1,0 Pm,O1,1 . . . Pm,O1,t−1

...
...

...
...

Pm,Os−1,0 Pm,Os−1,1 . . . Pm,Os−1,t−1

⎤

⎥
⎥
⎥
⎦

(12.12)
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From (12.12), we can see that there exists a s × t matrix, denoted by O, in H .
This matrix is called an offset matrix and it represents the exponent of r(x) in each
permutation matrix, i.e.

O =

⎡

⎢
⎢
⎢
⎣

O0,0 O0,1 . . . O0,t−1

O1,0 O1,1 . . . O1,t−1
...

...
...

...

Os−1,0 Os−1,1 . . . Os−1,t−1

⎤

⎥
⎥
⎥
⎦

where 0 ≤ Oi, j ≤ m−1, for 0 ≤ i ≤ s−1 and 0 ≤ j ≤ t−1. The permutationmatrix
Pm, j has m rows and m columns, and since the matrix H contains s and t of these
matrices per row and column, respectively, the resulting code is a [mt,m(t − s), d]
quasi-cyclic LDPC code over F2.

In general, some of the permutationmatrices P i, j in (12.12)may be zeromatrices.
In this case, the resulting quasi-cyclic LDPC code is irregular and Oi, j for which
P i, j = O may be ignored. If none of the permutation matrices in (12.12) is a zero
matrix, the quasi-cyclic LDPC code defined by (12.12) is a (s, t) regular LDPC code.

12.4.2 Construction of Quasi-cyclic Codes
Using a Protograph

A protograph is a miniature prototype Tanner graph of arbitrary size, which can be
used to construct a larger Tanner graph by means of replicate and permute operations
as discussed by Thorpe [32]. A protographmay also be considered as an [n′, k ′] linear
code P of small block length and dimension. A longer code may be obtained by
expanding code P by an integer factor Q so that the resulting code has parameter
[n = n′Q, k = k ′Q] over the same field. A simplest way to expand codeP and also
to impose structure in the resulting code is by replacing a non-zero element of the
parity-check matrix of codeP with a Q×Q permutation matrix, and a zero element
with a Q × Q zero matrix. As a consequence, the resulting code has a quasi-cyclic
structure. The procedure is described in detail in the following example.

Example 12.5 Consider a code P = [4, 2] over F2 as a protograph. The parity-
check matrix of code P is given by

H ′ =
v0 v1 v2 v3

c0 1 1 0 1
c1 0 1 1 1

. (12.13)

Let the expansion factor Q = 5, the expanded code, which is a [20, 10] code, has a
parity-check matrix given by
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H =

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
c0 1 1 1
c1 1 1 1
c2 1 1 1
c3 1 1 1
c4 1 1 1
c5 1 1 1
c6 1 1 1
c7 1 1 1
c8 1 1 1
c9 1 1 1

,

(12.14)

where the zero elements have been omitted. This protograph construction may also
be described using the Tanner graph representation as shown in Fig. 12.11.

Initially, the Tanner graph of code P is replicated Q times. The edges of these
replicated Tanner graphs are then permuted. The edges may be permuted in many
ways and in this particular example,wewant the permutation to produce a codewhich
has quasi-cyclic structure. The edges shown in bold in Fig. 12.11 or equivalently the
non-zeros shown in bold in (12.14) represent the code P .

The minimum Hamming distance of code P is 2 and this may be seen from its
parity-check matrix, (12.13), where the summation of two column vectors, those of
v1 and v3, produces a zero vector. Since, in the expansion, only identity matrices are

Fig. 12.11 Code construction using a protograph
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employed, the expanded code will have the sameminimumHamming distance as the
protograph code. This is obvious from (12.14) where the summation of two column
vectors, those of v5 and v15, produces a zero vector. In order to avoid the expanded
code having low minimum Hamming distance, permutation matrices may be used
instead and the parity-check matrix of the expanded code is given by (12.15).

H =

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19
c0 1 1 1
c1 1 1 1
c2 1 1 1
c3 1 1 1
c4 1 1 1
c5 1 1 1
c6 1 1 1
c7 1 1 1
c8 1 1 1
c9 1 1 1

,

(12.15)

The code defined by this parity-check matrix has minimum Hamming distance of 3.
In addition, the cycle structure of the protograph is also preserved in the expanded
code if only identity matrices are used for expansion. Since the protograph is such a
small code, the variable vertex degree distribution required to design a good target
code, which has much larger size than a protograph does, in general, causes many
inevitable short cycles in the protograph. Using appropriate permutation matrices in
the expansion, these short cycles may be avoided in the expanded code.

In the following, we describe a construction of a long quasi-cyclic LDPC code for
application in satellite communications. The standard for digital video broadcasting
(DVB), which is commonly known as DVB-S2, makes use of a concatenation of
LDPC and BCH codes to protect the video stream. The parity-check matrices of
DVB-S2 LDPC codes contain a zigzag matrix for the n − k parity coordinates and
quasi-cyclic matrices on the remaining k coordinates. In the literature, the code with
this structure is commonly known as the irregular repeat accumulate (IRA) code [12].

The code construction described below, using a protograph and greedy PEG
expansion, is aimed at improving the performance compared to the rate 3/4 DVB-S2
LDPC code of block length 64800 bits. Let the [64800, 48600] LDPC code that we
will construct be denoted byC1. A protograph code, which has parameter [540, 405],
is constructed using the PEG algorithm with a good variable vertex degree distribu-
tions obtained from Urbanke [34],

Λλ1(x) = 0.00185185x + 0.248148x2︸ ︷︷ ︸
for zigzag matrix

+0.55x3 + 0.0592593x5

+ 0.0925926x8 + 0.00555556x12 + 0.00185185x15 + 0.0166667x19

+ 0.00185185x24 + 0.00185185x28 + 0.0203704x35.
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The constructed [540, 405] protograph code has a parity-check matrix H ′ = [H ′
u |

H ′
p] where H ′

p is a 135 × 135 zigzag matrix, see (12.10), and H ′
u is an irregular

matrix satisfying Λλ1(x) above. In order to construct a [64800, 48600] LDPC code
C1, we need to expand the protograph code by a factor of Q = 120. In expanding
the protograph code, we apply the greedy approach to construct the offset matrix
O in order to obtain a Tanner graph for the [64800, 48600] LDPC code C1, which
has local girth maximised. This greedy approach examines all offset values, from
0 to Q − 1, and picks an offset that results in highest girth or if there is more than
one choice, one of these is randomly chosen. A 16200 × 48600 matrix Hu can be
easily constructed by replacing a non-zero element at coordinate (i, j) in H ′

u with a
permutation matrix PQ,Oi, j . The resulting LDPC code C1 has a parity-check matrix
given by H = [Hu | H p], where, as before, H p is given by (12.10).

In comparison, the rate 3/4 LDPC code of block length 64800 bits specified in the
DVB-S2 standard takes a lower Q value, Q = 45. The protograph is a [1440, 1080]
code which has the following variable vertex degree distributions

Λλ2(x) = 0.000694x + 0.249306x2︸ ︷︷ ︸
for zigzag matrix

+ 0.666667x3 + 0.083333x12.

For convenience, we denote the DVB-S2 LDPC code by C2.
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Fig. 12.12 FER performance of the DVB-S2 and the designed [64800, 48600] LDPC codes
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Figure12.12 compares the FER performance of C1 and C2 using the belief propa-
gation decoder with 100 iterations. Binary antipodal signalling and AWGN channel
are assumed. Note that, although the outer concatenation of BCH code is not used,
there is still no sign of an error floor at FER as low as 10−6 which means that the
BCH code is no longer required. It may be seen from Fig. 12.12 that the designed
LDPC code, which at 10−5 FER performs approximately 0.35 dB away from the
sphere packing lower bound offset for binary transmission loss, is 0.1 dB better than
the DVB-S2 code.

12.5 Summary

The application of cyclotomic cosets, idempotents andMattson–Solomon polynomi-
als has been shown to produce many binary cyclic LDPC codes whose parity-check
equations are orthogonal in each position.Whilst some of these excellent cyclic codes
have the same parameters as the known class of finite geometry codes, other codes
are new. A key feature of this construction technique is the incremental approach
to the minimum Hamming distance and the sparseness of the resulting parity-check
matrix of the code. Binary cyclic LDPC codes may also be constructed by consid-
ering idempotents in the Mattson–Solomon domain. This approach has provided a
different insight into the cyclotomic coset-based construction. It has also been shown
that, for short algebraic LDPC codes, the myths of codes which have cycles of length
4 in their Tanner graph do not converge well with iterative decoding is not necessarily
true. It has been demonstrated that the cyclotomic coset-based construction can be
easily extended to produce good non-binary algebraic LDPC codes.

Good irregular LDPC codes may be constructed using the progressive edge-
growth algorithm. This algorithm adds edges to the variable and check vertices in
a way that maximises the local girth. Many code results have been presented show-
ing the effects of choosing different degree distributions. Guidelines are given for
designing the best codes.

Methods of producing structured LDPC codes, such as those which have quasi-
cyclic structure, have been described. These are of interest to industry due to the
simplification of the encoder and decoder. An example of such a construction to
produce a (64800, 48600) LDPC code, using a protograph, has been presented along
with performance results using iterative decoding. Better results are obtained with
this code than the (64800, 48600) LDPC code used in the DVB-S2 standard.
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Part III
Analysis and Decoders

This part is about the analysis of codes in terms of their codeword and stopping
set weight spectrum and various types of decoders. Decoders are described, which
include hard and soft decision decoders for the AWGN channel and decoders for the
erasure channel. Universal decoders are discussed, which are decoders that can be
used with any linear code for hard or soft decision decoding. One such decoder is
based on the Dorsch decoder and this is described in some detail together with its
performance using several different code examples. Other decoders such as the itera-
tive decoder require sparse parity-check matrices and codes specifically designed for
this type of decoder. Also included in this part is a novel concatenated |u|u+ v| code
arrangement featuring multiple near maximum likelihood decoders for an optimised
matching of codes and decoders. With some outstanding codes as constituent codes,
the concatenated coding arrangement is able to outperform the best LDPC and turbo
coding systems with the same code parameters.



Chapter 13
An Exhaustive Tree Search for Stopping
Sets of LDPC Codes

13.1 Introduction and Preliminaries

The performance of all error-correcting codes is determined by the minimum Ham-
ming distance between codewords. For codes which are iteratively decoded such as
LDPC codes and turbo codes, the performance of the codes for the erasure channel is
determined by the stopping set spectrum, the weight (and number) of erasure patterns
which cause the iterative decoder to fail to correct all of the erasures. Codes which
perform poorly on the erasure channel do not perform well on the AWGN channel.
To determine all of the stopping sets of a general (n, k) code is a prohibitive task, for
example, a binary (1000, 700) code would require evaluation of 21000 possible stop-
ping sets. It should be noted by the reader that all codewords are also stopping sets,
but most stopping sets are not codewords. Fortunately the properties of particular
types of codes may be used to reduce considerably the scale of the task, and in par-
ticular codes with sparse parity-check matrices such as LDPC codes and turbo codes
are amenable to analysis in practice. As the tree search is exhaustive, the emphasis
is first on focusing the search so that only low-weight stopping sets are found, up to
a specified weight, and second the emphasis is on the efficiency of the algorithms
involved.

In a landmark paper in 2007, Rosnes andYtrehus [7] showed that exhaustive, low-
weight stopping set analysis of codes whose parity-check matrix is sparse is feasible
using a bounded tree search over the length of the code with no distinction between
information and parity bits. A previous paper on the same topic of an exhaustive
search of stopping sets of LDPC codes by Wang et al. [2] used a different and much
less efficient algorithm. In commonwith this earlier research, we use similar notation
in the following preliminaries.

The code C is defined to be binary and linear of length n and dimension k and is a
k-dimensional subspace of {0, 1}n , and may be specified as the null space of am × n
binary parity-check matrix H of rank n − k. The number of parity-check equations,
m of H satisfies m ≥ (n − k), although there are, of course, only n − k independent
parity-check equations. It should be noted, as illustrated in the results below, that the
© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_13
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number of parity-check equations m in excess of n− k can have a dramatic effect on
the stopping set weight spectrum, excluding codewords of course, as these are not
affected.

As in [7], S is used to denote a subset of {0, 1}n , the set of all binary vectors of
length n. At any point in the tree search, a constraint set,F is defined consisting of
bit positions pi and the states of these bit positions spi , spi ∈ {0, 1}n . The support set
χ(F ) of the constraint set,F , is the set of positionswhere spi = 1, and theHamming
weight of F is the number of such positions. The sub-matrix Hχ(F ) consists of all
the columns of H where spi = 1, and the row weight of Hχ(F ) is the number of 1′s
in that row. An active row of Hχ(F ) is a row with unity row weight. It is obvious
that if all rows of Hχ(F ) have even row weight then F is a codeword, noting that
for an iterative decoder codewords are also stopping sets. If at least one row has odd
weight, 3 or higher and there are no active rows then F is a stopping set but not a
codeword. If there are active rows thenF has either to be appended with additional
bit positions or one or more states spi need to be changed to form a stopping set.With
this set of basic definitions, tree search algorithms may be described which carry out
an exhaustive search of {0, 1}n using a sequence of constraintsF to find all stopping
sets whose Hamming weight is ≤ τ .

13.2 An Efficient Tree Search Algorithm

At any given point in the search, the constraint set F is used to represent the set of
searched known bits (up to this point) of a code C , which forms a branch of the tree
in the tree search. The set of active rows in H is denoted by {h0, ..., hφ−1}, where φ

is the total number of active rows. A constraint set F with size n is said to be valid
if and only if there exists no active rows in H(F). In which case the constraint set
is equal to a stopping set. The pseudocode of one particularly efficient algorithm to
find all the stopping sets including codeword sets with weight equal to or less than τ

is given in Algorithm 13.1 below. Each time a stopping set is found, it is stored and
the algorithm progresses until the entire 2n space has been searched.

The modified iterative decoding is carried out on a n-length binary input vector
containing erasures in some of the positions. Let r j (F) be the rank (ones) of row
j , j ∈ {0, ...,m − 1} for the constrained position {pi : (pi , 1) ∈ F} intersected
by row j on H. And let r ′

j (F) be the rank of row j for the unconstrained position
{pi : (pi , 1) ∈ {0, ..., n − 1}\F} intersected by row j on H. The modified iterative
decoding algorithm based on belief-propagation decoding algorithm over the binary
erasure channel is shown in Algorithm 13.2. As noted in the line with marked (*),
the modified iterative decoder is not invoked if the condition of r j ≤ 1 and r ′

j = 1
is not met; or the branch with constraint set F has condition of r j = 1 and r ′

j = 0.
This significantly speeds up the tree search. As noted in the line with marked (*),
the modified iterative decoder is not necessary to call, if the condition of r j ≤ 1 and
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Algorithm 13.1 Tree search based Stopping Set Enumeration (TSSE)
repeat
Pick one untouched branch as a constraint set F .
if |F | = n and w(F) ≤ τ then
Constraint set F is saved, if F is valid

else
1). Pass F to the modified iterative decoder (*) with erasures in the unconstrained positions.
2). Construct a new constraint set F ′ with new decoded positions, which is the extended
branch.
if |F ′| = n and w(F ′) ≤ τ then
Constraint set F ′ is saved, if F ′ is valid

else if No contradiction is found in H(F ′), and w′(F ′) ≤ τ then
a). Pick an unconstrained position p.
b). Extending branch F ′ to position p to get new branch F ′′ = F ′ ⋃{(p, 1)} and branch
F ′′′ = F ′ ⋃{(p, 0)}.

end if
end if

until Tree has been fully explored

Algorithm 13.2 Modified Iterative Decoding
Get rank r(F) and r′(F) for all the equation rows on H.
repeat
if r j > 1 then
Row j is flagged

else if r j = 1 and r ′
j = 0 then

Contradiction → Quit decoder
else if r j ≤ 1 and r ′

j = 1 then
1). Row j is flagged
2). The variable bit i is decoded as the XOR of the value of r j .
3). Update the value of r j and r ′

j , if Hji = 1.
end if

until No new unconstrained bit is decoded

r ′
j = 1 is not met; or the branch with constraint set F can be ignored, if condition

of r j = 1 and r ′
j = 0 occurs. Thus the computing complexity can be significantly

reduced than calling it for every new branch with the corresponding constraint set F .

13.2.1 An Efficient Lower Bound

The tree search along the current branch may be terminated if the weight necessary
for additional bits to produce a stopping set plus the weight of the current constraint
set F exceeds τ . Instead of actually evaluating these bits, it is more effective to
calculate a lower bound on the weight of the additional bits. The bound uses the
active rows I (F) = {Ii0(F), ..., Iiq−1(F)}, where Ii0(F) is the set of active rows
with constraint set F corresponding to the i0th column hi0 ofH, and q is the number
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Table 13.3 WiMax 2/3A LDPC Codes

i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

13 15 76(76) 228(152) () () () () ()

14 14 80(0) 80(80) 160(0) () () () ()

15 15 84(84) 252(0) () () () () ()

16 15 88(88) 0(0) () () () () ()

17 15 92(92) 0(0) 92(92) 460(276) () () ()

18 15 96(96) 0(0) 96(96) 480(384) () () ()

Table 13.4 WiMax 2/3B LDPC Codes

i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

6 16 96(48) 432(48) () () () () ()

7 15 52(52) 0(0) 104(104) 156(104) 728(312) 2041(533) ()

8 16 63(63) 56(56) 196(56) 560(168) 1568(196) () ()

9 17 120(60) () () () () () ()

10 15 64(64) 0(0) 0(0) 0(0) 128(0) 384(64) ()

11 18 204(68) () () () () () ()

12 15 72(72) 0(0) 0(0) 72(0) () () ()

13 15 76(76) 0(0) 0(0) 0(0) 0(0) 76(0) ()

14 16 80(80) 80(0) () () () () ()

15 15 84(84) 0(0) 0(0) 0(0) 84(84) 294(168) ()

16 16 88(88) 88(0) () () () () ()

17 20 92(92) 92(0) 92(0) () () () ()

18 15 96(96) 0(0) 0(0) 0(0) 0(0) 144(96) ()

of intersected unknown bits. Let w(hI j (F)

j ) be the weight of ones on j th column of
H, which is the number of active rows intersected with j th column. Under a worst
case assumption, the I j (F) with larger column weight of ones on j th column is
always with value 1, then the active rows can be compensated by I j (F) and the total

number of active rows φ is reduced by w(hI j (F)

j ) until φ ≤ 0. Algorithm 13.3 shows
the pseudocode of computing the smallest number of intersected unknown bits q in
order to produce no active rows. The lower bound w′(F) = w(F) + q is the result.

Algorithm 13.3 Simple method to find the smallest collection set of active rows
1. Arrange the set ofI (F) in descending order, where hi ′0 is the columnwith themaximal column
weight corresponding to constraint F .
2. q is initialised as 0.
while φ > 0 do
1). φ is subtracted by w(hi ′0 ).
2). q is accumulated by 1.

end while
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Table 13.5 WiMax 3/4A LDPC Codes
i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

6 10 48(0) 0(0) 24(0) 240(48) 624(288) () ()

7 12 26(0) 156(52) 260(104) 2184(416) () () ()

8 12 28(0) 112(0) 224(168) 952(280) () () ()

9 12 90(60) 60(0) 180(60) 372(192) () () ()

11 12 34(0) 68(68) 0(0) 0(0) () () ()

12 12 36(0) 0(0) 0(0) 0(0) 72(0) 504(144) ()

13 12 38(0) 76(76) 0(0) 76(76) () () ()

14 12 40(0) 80(0) 160(0) 240(0) 240(0) 800(160) ()

15 12 42(0) 0(0) 0(0) 0(0) 0(0) 168(84) ()

16 12 44(0) 0(0) 0(0) 88(88) () () ()

17 12 46(0) 0(0) 0(0) 0(0) 0(0) 0(0) ()

18 12 48(0) 0(0) 0(0) 0(0) 0(0) 0(0) 96(0)

Table 13.6 WiMax 3/4B LDPC Codes
i Smin Nsmin Nsmin+1 Nsmin+2 Nsmin+3 Nsmin+4 Nsmin+5 Nsmin+6

7 9 52(52) 52(52) 52(52) 312(156) 988(416) 3094(1274) 11180(3952)

8 12 560(392) 616(224) 1792(616) 7784(2968) () () ()

9 10 60(60) 60(60) 130(10) 540(240) 2190(810) 7440(2940) ()

10 11 64(64) 128(128) 128(64) 960(640) 3648(1408) () ()

11 13 272(204) 748(544) 2992(1564) () () () ()

12 12 72(0) 576(432) 576(216) 2520(936) () () ()

13 12 228(228) 380(304) 988(836) 2888(836) () () ()

14 10 80(80) 0(0) 0(0) 0(0) 640(480) 2416(1216) ()

15 11 84(0) 84(84) 336(168) 546(294) 1260(588) () ()

16 14 176(88) 968(792) () () () () ()

17 13 184(92) 92(92) 1012(644) () () () ()

18 12 16(16) 96(96) 672(480) () () () ()

13.2.2 Best Next Coordinate Position Selection

In the evaluation of the lower bound above, the selected unconstrained positions
are assumed to have value 1. Correspondingly, the first position in the index list
has maximal column weight and is the best choice for the coordinate to add to the
constraint set F .
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Table 13.7 Weight Spectra and stopping set spectra for the WiMax LDPC Codes [1]

Code Length N = 576 + 96i

i 0 1 2 3 4 5 6 7 8 9

N 576 672 768 864 960 1056 1152 1248 1344 1440

Code Rate Minimum Codeword Weight dm

1/2 13 19 20 19 19 21 19 22 23 27

2/3A 10 9 8 11 13 10 14 13 14 13

2/3B 12 11 14 16 15 15 16 15 16 17

3/4A 10 10 10 12 12 13 13 13 14 12

3/4B 8 8 9 11 11 9 11 9 12 10

5/6 5 7 7 7 7 7 7 7 7 7

Minimum Stopping Set Weight sm

1/2 18 18 18 21 19 19 24 19 24 24

2/3A 10 10 11 9 12 13 13 14 14 14

2/3B 10 12 13 15 14 16 16 18 18 17

3/4A 9 8 10 11 12 12 10 12 12 12

3/4B 9 10 10 10 11 11 11 12 12 12

5/6 6 6 7 7 7 7 7 9 7 8

Code Length N = 576 + 96i

i 10 11 12 13 14 15 16 17 18

N 1536 1632 1728 1824 1920 2016 2112 2208 2304

Code Rate Minimum Codeword Weight dm

1/2 20 27 21 19 25 27 28 23 31

2/3A 12 13 15 15 15 15 15 15 15

2/3B 15 18 15 15 16 15 16 20 15

3/4A 14 13 17 13 17 17 15 20 19

3/4B 11 13 13 12 10 12 14 13 12

5/6 7 7 8 8 7 7 8 8 9

Minimum Stopping Set Weight sm

1/2 24 28 28 28 25 29 29 28 28

2/3A 15 12 14 16 14 16 17 18 18

2/3B 19 18 18 20 17 20 17 21 20

3/4A 12 12 12 12 12 12 12 12 12

3/4B 13 13 12 13 14 11 14 13 15

5/6 8 9 7 9 7 8 9 8 10

13.3 Results

The algorithms above have been used to evaluate all of the low-weight stopping
sets for some well-known LDPC codes. The results are given in Table13.1 together
with the respective references where details of the codes may be found. The total
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number of stopping sets are shown for a given weight with the number of codewords
in parentheses. Interestingly, the Tanner code has 93 parity-check equations, 2 more
than the 91 parity-check equations needed to encode the code. If only 91 parity-check
equations are used by the iterative decoder there is a stopping set of weight 12 instead
of 18 which will degrade the performance of the decoder. The corollary of this is that
the performance of some LDPC codes may be improved by introducing additional,
dependent, parity-check equations by selecting low-weight codewords of the dual
code. A subsequent tree search will reveal whether there has been an improvement
to the stopping sets as a result.

13.3.1 WiMax LDPC Codes

WiMax LDPC codes [1], as the IEEE 802.16e standard LDPC codes, have been
fully analysed and the low-weight stopping sets for all combinations of code rates
and lengths have been found. Detailed results for WiMax LDPC codes of code rates
1/2, 2/3A, 2/3B, 3/4A, 3/4B are given inTables13.2, 13.3, 13.4, 13.5, 13.6. In these
tables, the code index i is linked to the code length N by the formula N = 576+96i .
The minimum weight of non-codeword stopping sets (sm) and codeword stopping
sets (dm) for all WiMax LDPC codes is given in Table13.7.

13.4 Conclusions

An efficient algorithm has been presented which enables all of the low weight stop-
ping sets to be evaluated for some common LDPC codes. Future research is planned
that will explore the determination of efficient algorithms for use with multiple com-
puters operating in parallel in order to evaluate all low weight stopping sets for
commonly used LDPC codes several thousand bits long.

13.5 Summary

It has been shown that the indicative performance of an LDPC code may be deter-
mined from exhaustive analysis of the low-weight spectral terms of the code’s stop-
ping sets which by definition includes the low-weight codewords. In a breakthrough,
Rosnes and Ytrehus demonstrated the feasibility of exhaustive, low-weight stopping
set analysis of codes whose parity-checkmatrix is sparse using a bounded tree search
over the length of the code, with no distinction between information and parity bits.
For an (n, k) code, the potential total search space is of size 2n but a good choice of
bound dramatically reduces this search space to a practical size. Indeed, the choice of
bound is critical to the success of the algorithm. It has been shown that an improved
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algorithm can be obtained if the bounded tree search is applied to a set of k infor-
mation bits since the potential total search space is initially reduced to size 2k . Since
such a restriction will only find codewords and not all stopping sets, a class of bits is
defined as unsolved parity bits, and these are also searched as appended bits in order
to find all low-weight stopping sets. Weight spectrum results have been presented for
commonly used WiMax LDPC codes in addition to some other well-known LDPC
codes.

An interesting area of future research has been identified whose aim is to improve
the performance of the iterative decoder, for a given LDPC code, by determining
low-weight codewords of the dual code and using these as additional parity-check
equations. The tree search may be used to determine improvements to the code’s
stopping sets as a result.
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Chapter 14
Erasures and Error-Correcting Codes

14.1 Introduction

It is well known that an (n, k, dmin) error-correcting code C , where n and k denote
the code length and information length, can correct dmin − 1 erasures [15, 16] where
dmin is the minimumHamming distance of the code. However, it is not so well known
that the average number of erasures correctable by most codes is significantly higher
than this and almost equal to n − k. In this chapter, an expression is obtained for
the probability density function (PDF) of the number of correctable erasures as a
function of the weight enumerator function of the linear code. Analysis results are
given of several common codes in comparison to maximum likelihood decoding
performance for the binary erasure channel. Many codes including BCH codes,
Goppa codes, double-circulant and self-dual codes have weight distributions that
closely match the binomial distribution [13–15, 19]. It is shown for these codes that
a lower bound of the number of correctable erasures is n−k−2. The decoder error rate
performance for these codes is also analysed. Results are given for rate 0.9 codes and
it is shown for code lengths 5000 bits or longer that there is insignificant difference
in performance between these codes and the theoretical optimummaximum distance
separable (MDS) codes. The results for specific codes are given includingBCHcodes,
extended quadratic residue codes, LDPC codes designed using the progressive edge
growth (PEG) technique [12] and turbo codes [1].

The erasure correcting performance of codes and associated decoders has received
renewed interest in the study of network coding as a means of providing efficient
computer communication protocols [18]. Furthermore, the erasure performance of
LDPC codes, in particular, has been used as a measure of predicting the code perfor-
mance for the additive white Gaussian noise (AWGN) channel [6, 17]. One of the
first analyses of the erasure correction performance of particular linear block codes
is provided in a key-note paper by Dumer and Farrell [7] who derive the erasure
correcting performance of long binary BCH codes and their dual codes. Dumer and
Farrell show that these codes achieve capacity for the erasure channel.

© The Author(s) 2017
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14.2 Derivation of the PDF of Correctable Erasures

14.2.1 Background and Definitions

A set of s erasures is a list of erased bit positions defined as fi where

0 < i < s fi ∈ 0 . . . n − 1

A codeword x = x0, x1 . . . xn−1 satisfies the parity-check equations of the parity-
check matrix H

H xT = 0

A codeword with s erasures is defined as

x = (xu0 , xu1 . . . xun−1−s |xf0 , xf1 . . . xfs−1)

where xuj are the unerased coordinates of the codeword, and the set of s erased
coordinates is defined as fs. There are a total of n − k parity check equations and
provided the erased bit positions correspond to independent columns of theHmatrix,
each of the erased bits may be solved using a parity-check equation derived by the
classic technique of Gaussian reduction [15–17]. For maximum distance separable
(MDS) codes, [15], any set of s erasures are correctable by the code provided that

s ≤ n − k (14.1)

Unfortunately, the only binary MDS codes are trivial codes [15].

14.2.2 The Correspondence Between Uncorrectable Erasure
Patterns and Low-Weight Codewords

Provided the code is capable of correcting the set of s erasures, then a parity-check
equation may be used to solve each erasure, viz:

xf0 = h0,0xu0 +h0,1xu1 + h0,2xu2 + . . .h0,n−s−1xun−s−1

xf1 = h1,0xu0 +h1,1xu1 + h1,2xu2 + . . .h1,n−s−1xun−s−1

xf2 = h2,0xu0 +h2,1xu1 + h2,2xu2 + . . .h2,n−s−1xun−s−1

. . . . . . . . . . . . . . .

xfs−1 = hs−1,0xu0 +hs−1,1xu1 + hs−1,2xu2 + . . .hs−1,n−s−1xun−s−1

where hi,j is the coefficient of row i and column j of H.
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As the parity-check equations are Gaussian reduced, no erased bit is a function of
any other erased bits. There will also be n− k− s remaining parity-check equations,
which do not contain any of the erased bits’ coordinates xfj :

hs,0xu0 + hs,1xu1 + hs,2xu2 + · · · + hs,n−s−1xun−s−1 = 0

hs+1,0xu0 + hs+1,1xu1 + hs+1,2xu2 + · · · + hs+1,n−s−1xun−s−1 = 0

hs+2,0xu0 + hs+2,1xu1 + hs+2,2xu2 + · · · + hs+2,n−s−1xun−s−1 = 0

· · ·

· · ·

hn−k−1,0xu0 + hn−k−1,1xu1 + hn−k−1,2xu2 + · · · + hn−k−1,n−s−1xun−s−1 = 0

Further to this, the hypothetical case is considered where there is an additional erased
bit xfs . This bit coordinate is clearly one of the previously unerased bit coordinates,
denoted as xup .

xfs = xup

Also, in this case it is considered that these s+1 erased coordinates do not correspond
to s+ 1 independent columns of theH matrix, but only to s+ 1 dependent columns.
This means that xup is not contained in any of the n − k − s remaining parity-check
equations, and cannot be solved as the additional erased bit.

For the first s erased bits whose coordinates do correspond to s independent
columns of the H matrix, the set of codewords is considered in which all of the
unerased coordinates are equal to zero except for xup . In this case the parity-check
equations above are simplified to become:

xf0 = h0,pxup
xf1 = h1,pxup
xf2 = h2,pxup
. . . = . . .

. . . = . . .

xfs−1 = hs−1,pxup

As there are, by definition, at least n − s − 1 zero coordinates contained in each
codeword, themaximumweight of any of the codewords above is s+1. Furthermore,
any erased coordinate that is zeromay be considered as an unsolved coordinate, since
no non-zero coordinate is a function of this coordinate. This leads to the following
theorem.
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Theorem 1 The non-zero coordinates of a codeword of weight w that is not the
juxtaposition of two or more lower weight codewords, provide the coordinate posi-
tions of w− 1 erasures that can be solved and provide the coordinate positions of w
erasures that cannot be solved.

Proof The coordinates of a codeword of weight w must satisfy the equations of the
parity-check matrix. With the condition that the codeword is not constructed from
the juxtaposition of two or more lower weight codewords, the codeword must have
w − 1 coordinates that correspond to linearly independent columns of the H matrix
and w coordinates that correspond to linearly dependent columns of the H matrix.

Corollary 1 Given s coordinates corresponding to an erasure pattern containing s
erasures, s ≤ (n− k), of which w coordinates are equal to the non-zero coordinates
of a single codeword of weight w, the maximum number of erasures that can be
corrected is s − 1 and the minimum number that can be corrected is w − 1.

Corollary 2 Given w − 1 coordinates that correspond to linearly independent
columns of the H matrix and w coordinates that correspond to linearly dependent
columns of the H matrix, a codeword can be derived that has a weight less than or
equal to w.

The weight enumeration function of a code [15] is usually described as a homo-
geneous polynomial of degree n in x and y.

WC (x, y) =
n−1∑

i=0

Aix
n−iyi

The support of a codeword is defined [15] as the coordinates of the codeword that
are non-zero.Theprobability of the successful erasure correctionof sormore erasures
is equal to the probability that no subset of the s erasure coordinates corresponds to
the support of any codeword.

The number of possible erasure patterns of s erasures of a code of length n is
(n
s

)
.

For a single codeword of weightw, the number of erasure patterns with s coordinates
that include the support of this codeword is

(n−w
s−w

)
. Thus, the probability of a subset

of the s coordinates coinciding with the support of a single codeword of weight w,
prob(xw ∈ fs) is given by:

prob(xw ∈ fs) =
(n−w
s−w

)

(n
s

)

and

prob(xw ∈ fs) = (n − w)! s! (n − s)!
n! (s − w)! (n − s)!

simplifying

prob(xw ∈ fs) = (n − w)! s!
n! (s − w)!
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In such an event the s erasures are uncorrectable because, for these erasures, there
are not s independent parity-check equations [15, 16]. However, s − 1 erasures are
correctable provided the s− 1 erasures do not contain the support of a lower weight
codeword.

The probability that s erasures will contain the support of at least one codeword
of any weight, is upper and lower bounded by

1 −
s∏

j=dmin

1 − Aj
(n − j)!s!
n!(s − j)! < Ps ≤

s∑

j=dmin

Aj
(n − j)!s!
n!(s − j)! (14.2)

And given s + 1 erasures, the probability that exactly s erasures are correctable,
Pr(s) is given by

Pr(s) = Ps+1 − Ps (14.3)

Given up to n − k erasures the average number of erasures correctable by the
code is

Ne =
n−k∑

s=dmin

sPr(s) =
n−k∑

s=dmin

s
(
Ps+1 − Ps

)
. (14.4)

Carrying out the sum in reverse order and noting that Pn−k+1 = 1, the equation
simplifies to become

Ne = (n − k) −
n−k∑

s=dmin

Ps (14.5)

An MDS code can correct n − k erasures and is clearly the maximum number of
correctable erasures as there are only n − k independent parity-check equations. It
is useful to denote an MDS shortfall

MDSshortfall =
n−k∑

s=dmin

Ps (14.6)

and

Ne = (n − k) − MDSshortfall (14.7)

with

n−k∑

s=dmin

1 −
s∏

j=dmin

1 − Aj
(n − j)!s!
n!(s − j)! < MDSshortfall (14.8)
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and

MDSshortfall <

n−k∑

s=dmin

s∑

j=dmin

Aj
(n − j)!s!
n!(s − j)! (14.9)

The contribution made by the high multiplicity of low-weight codewords to the
shortfall in MDS performance is indicated by the probability P̂j that the support of at
least one codeword of weight j is contained in s erasures averaged over the number
of uncorrectable erasures s, from s = dmin to n − k, and is given by

P̂j =
n−k∑

s=dmin

Pr(s − 1)Aj
(n − j)!s!
n!(s − j)! (14.10)

14.3 Probability of Decoder Error

For the erasure channel with erasure probability p, the probability of codeword
decoder error, Pd(p) for the code may be derived in terms of the weight spectrum
of the code assuming ML decoding. It is assumed that a decoder error is declared
if more than n − k erasures occur and that the decoder does not resort to guessing
erasures. The probability of codeword decoder error is given by the familiar function
of p.

Pd(p) =
n∑

s=1

Psp
s(1 − p)(n−s) (14.11)

Splitting the sum into two parts

Pd(p) =
n−k∑

s=1

Psp
s(1 − p)(n−s) +

n∑

s=n−k+1

Psp
s(1 − p)(n−s) (14.12)

The second term gives the decoder error rate performance for a hypothetical MDS
code and the first term represents the degradation of the code compared to an MDS
code. Using the upper bound of Eq. (14.2),

Pd(p) ≤
n−k∑

s=1

s∑

j=1

Aj
(n − j)! s!
n! (s − j)!

n!
(n − s)! s!p

s(1 − p)(n−s)

+
n∑

s=n−k+1

n!
(n − s)! s!p

s(1 − p)(n−s) (14.13)
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As well as determining the performance shortfall, compared to MDS codes, in terms
of the number of correctable erasures it is also possible to determine the loss from
capacity for the erasure channel. The capacity of the erasure channel with erasure
probability p was originally determined by Elias [9] to be 1 − p. Capacity may be
approachedwith zero codeword error for very long codes, even using non-MDScodes
such as BCH codes [7]. However, short codes and even MDS codes, will produce
a non-zero frame error rate (FER). For (n, k, n − k + 1) MDS codes, a codeword
decoder error is deemed to occur whenever there are more than n − k erasures. (It
is assumed here that the decoder does not resort to guessing erasures that cannot be
solved). This probability, PMDS(p), is given by

PMDS(p) = 1 −
n−k∑

s=0

n!
(n − s)! s!p

s(1 − p)(n−s) (14.14)

The probability of codeword decoder error for the code may be derived from the
weight enumerator of the code using Eq. (14.13).

Pcode(p) =
n−k∑

s=dmin

s∑

j=dmin

(
Aj

(n − j)! s!
n! (s − j)!

n!
(n − s)! s!p

s(1 − p)(n−s)

+
n∑

s=n−k+1

n!
(n − s)! s!p

s(1 − p)(n−s)

)
(14.15)

This simplifies to become

Pcode(p) =
n−k∑

s=dmin

s∑

j=dmin

Aj
(n − j)! (n − s)!

(s − j)! ps(1 − p)(n−s) + PMDS(p) (14.16)

The first term in the above equation represents the loss fromMDS code performance.

14.4 Codes Whose Weight Enumerator Coefficients
Are Approximately Binomial

It is well known that the distance distribution for many linear, binary codes including
BCH codes, Goppa codes, self-dual codes [13–15, 19] approximates to a binomial
distribution. Accordingly,

Aj ≈ n!
(n − j)! j! 2n−k

(14.17)

For these codes, for which the approximation is true, the shortfall in performance
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compared to an MDS code, MDSshortfall is obtained by substitution into Eq. (14.9)

MDSshortfall =
n−k∑

s=1

s∑

j=1

n!
(n − j)! j! 2n−k

(n − j)! s!
n! (s − j)! (14.18)

which simplifies to

MDSshortfall =
n−k∑

s=1

2s − 1

2n−k
(14.19)

which leads to the simple result

MDSshortfall = 2 − n − k − 2

2n−k
≈ 2 (14.20)

It is apparent that for these codes the MDS shortfall is just 2 bits from correcting
all n − k erasures. It is shown later using the actual weight enumerator functions
for codes, where these are known, that this result is slightly pessimistic since in the
above analysis there is a non-zero number of codewords with distance less than dmin.
However, the error attributable to this is quite small. Simulation results for these codes
show that the actual MDS shortfall is closer to 1.6 bits due to the assumption that
there is never an erasure pattern which has the support of more than one codeword.

For these codes whose weight enumerator coefficients are approximately bino-
mial, the probability of the code being able to correct exactly s erasures, but no more,
may also be simplified from (14.2) and (14.3).

Pr(s) =
s+1∑

j=1

n!
(n − j)! j! 2n−k

(n − j)! (s + 1)!
n! (s + 1 − j)!

−
s∑

j=1

n!
(n − j)! j! 2n−k

(n − j)! s!
n! (s − j)! (14.21)

which simplifies to become

Pr(s) = 2s − 1

2n−k
(14.22)

for s < n − k and for s = n − k

Pr(n − k) = 1 −
n−k∑

j=1

n!
(n − j)! j! 2n−k

(n − j)! (n − k)!
n! (n − k − j)! (14.23)

and
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Table 14.1 PDF of number
of correctable erasures for
codes whose weight
enumerator coefficients are
binomial

Correctable erasures Probability

n − k 1
2n−k

n − k − 1 0.5 − 1
2n−k

n − k − 2 0.25 − 1
2n−k

n − k − 3 0.125 − 1
2n−k

n − k − 4 0.0625 − 1
2n−k

n − k − 5 0.03125 − 1
2n−k

n − k − 6 0.0150625 − 1
2n−k

n − k − 7 0.007503125 − 1
2n−k

.

.

.
.
.
.

n − k − s 1
2s − 1

2n−k

Pr(n − k) = 1

2n−k
(14.24)

For codes whose weight enumerator coefficients are approximately binomial, the pdf
of correctable erasures is given in Table14.1.

The probability of codeword decoder error for these codes is given by substitution
into (14.15),

Pcode(p) =
n−k∑

s=0

(2s − 1

2n−k

) n!
(n − s)! s!p

s(1 − p)(n−s) + PMDS(p) (14.25)

As first shown by Dumer and Farrell [7] as n is taken to ∞, these codes achieve the
erasure channel capacity. As examples, the probability of codeword decoder error
for hypothetical rate 0.9 codes, having binomial weight distributions, and lengths
100 to 10,000 bits are shown plotted in Fig. 14.1 as a function of the channel erasure
probability expressed in terms of relative erasure channel capacity 0.9

1−p . It can be

seen that at a decoder error rate of 10−8 the (1000, 900) code is operating at 95%
of channel capacity, and the (10,000, 9,000) code is operating at 98% of channel
capacity. A comparison with MDS codes is shown in Fig. 14.2. For codelengths
from 500 to 50,000 bits, it can be seen that for codelengths of 5,000 bits and above,
these rate 0.9 codes are optimum since their performance is indistinguishable from
the performance of MDS codes with the same length and rate.

A comparison of MDS codes to codes with binomial weight enumerator coeffi-
cients is shown in Fig. 14.3 for 1

2 rate codes with code lengths from 128 to 1024.
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Fig. 14.1 FER performance of codes with binomial weight enumerator coefficients
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Fig. 14.3 Comparison of half rate codes having binomial weight enumerator coefficientswithMDS
codes as a function of erasure probability

14.5 MDS Shortfall for Examples of Algebraic, LDPC
and Turbo Codes

The first example is the extended BCH code (128, 99, 10) whose coefficients up to
weight 30 of the weight enumerator polynomial [5] are tabulated in Table14.2.

Table 14.2 Low-weight
spectral terms for the
extended BCH (128, 99) code

Weight Ad

0 1

10 796544

12 90180160

14 6463889536

16 347764539928

18 14127559573120

20 445754705469248

22 11149685265467776

24 224811690627712384

26 3704895377802191104

28 50486556173121673600

30 574502176730571255552



378 14 Erasures and Error-Correcting Codes

The PDF of the number of erased bits that are correctable up to the maximum
of 29 erasures, derived from Eq. (14.1), is shown plotted in Fig. 14.4. Also shown
plotted in Fig. 14.4 is the performance obtained numerically. It is straightforward,
by computer simulation, to evaluate the erasure correcting performance of the code
by generating a pattern of erasures randomly and solving these in turn using the
parity-check equations. This procedure corresponds to maximum likelihood (ML)
decoding [6, 17].Moreover, the codeword responsible for any instances of non-MDS
performance, (due to this erasure pattern) can be determined by back substitution into
the solved parity-check equations. Except for short codes or very high rate codes, it
is not possible to complete this procedure exhaustively, because there are too many
combinations of erasure patterns. For example, there are 4.67 × 1028 combinations
of 29 erasures in this code of length 128 bits. In contrast, there are relatively few
low-weight codewords responsible for the non-MDS performance of the code. For
example, each codeword of weight 10 is responsible for

(118
19

) = 4.13×1021 erasures
patterns not being solvable.

As the dmin of this code is 10, the code is guaranteed to correct any erasure pattern
containing up to 9 erasures. It can be seen from Fig. 14.4 that the probability of not
being able to correct any pattern of 10 erasures is less than 10−8. The probability of
correcting29 erasures, themaximumnumber, is 0.29.The averagenumber of erasures
corrected is 27.44, almost three times the dmin, and the average shortfall from MDS
performance is 1.56 erased bits. The prediction of performance by the lower bound is
pessimistic due to double codeword counting in erasure patterns featuring more than
25bits or so.The effect of this is evident inFig. 14.4.The lower bound averagenumber
of erasures corrected is 27.07, and the shortfall from MDS performance is 1.93
erasures, an error of 0.37 erasures. The erasure performance evaluation by simulation
is complementary to the analysis using the weight distribution of the code, in that
the simulation, being a sampling procedure, is inaccurate for short, uncorrectable
erasure patterns, because few codewords are responsible for the performance in this
region. For short, uncorrectable erasure patterns, the lower bound analysis is tight
in this region because it not possible for these erasure patterns to contain more than
one codeword due to codewords differing by at least dmin.

The distribution of the codeword weights responsible for non-MDS performance
of this code is shown in Fig. 14.5.

This is in contrast to the distribution of low-weight codewords shown in Fig. 14.6.
Although there are a larger number of higher weight codewords, there is less chance
of an erasure pattern containing a higherweight codeword. Themaximumoccurrence
is for weight 14 codewords as shown in Fig. 14.5.

The FERperformance of theBCH (128, 107, 10) code is shown plotted in Fig. 14.7
as a function of relative capacity defined by (1−p)n

k . Also, plotted in Fig. 14.7 is the
FER performance of a hypothetical (128, 99, 30) MDS code. Equations (14.15) and
(14.14), respectively, were used to derive Fig. 14.7. As may be seen from Fig. 14.7,
there is a significant shortfall in capacity even for the optimum MDS code. This
shortfall is attributable to the relatively short length of the code. At 10−9 FER, the
BCH (128, 99, 10) code achieves approximately 80% of the erasure channel capacity.
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Table 14.3 Spectral terms up to weight 50 for the extended BCH (256, 207) code

Weight Ad

0 1

14 159479040

16 36023345712

18 6713050656000

20 996444422768640

22 119599526889384960

24 11813208348266177280

26 973987499253055749120

28 67857073021007558686720

30 4036793565003066065373696

32 206926366333597318696425720

34 9212465086525810564304939520

36 358715843060045310259622139904

38 12292268362368552720093779880960

40 372755158433879986474102933212928

42 10052700091541303286178365979008000

44 242189310556445744774611488568535040

46 5233629101357641331155176578460897024

48 101819140628807204943892435954902207120

50 1789357109760781792970450788764603959040

The maximum capacity achievable by any (128, 99) binary code as represented by a
(128, 99, 30) MDS code is approximately 82.5%.

An example of a longer code is the (256, 207, 14) extended BCH code. The
coefficients up to weight 50 of the weight enumerator polynomial [10] are tabulated
in Table14.3. The evaluated erasure correcting performance of this code is shown in
Fig. 14.8, and the code is able to correct up to 49 erasures. It can be seen fromFig. 14.8
that there is a closematch between the lower bound analysis and the simulation results
for the number of erasures between 34 and 46. Beyond 46 erasures, the lower bound
becomes increasingly pessimistic due to double counting of codewords. Below 34
erasures the simulation results are erratic due to insufficient samples. It can be seen
from Fig. 14.8 that the probability of correcting only 14 erasures is less than 10−13

(actually 5.4× 10−14) even though the dmin of the code is 14. If a significant level of
erasure correcting failures is defined as 10−6, then from Fig. 14.8, this code is capable
of correcting up to 30 erasures even though the guaranteed number of correctable
erasures is only 13. The average number of erasures correctable by the code is 47.4, an
average shortfall of 1.6 erased bits. The distribution of codeword weights responsible
for the non-MDS performance of this code is shown in Fig. 14.9.

The FER performance of the BCH (256, 207, 14) code is shown plotted in
Fig. 14.10 as a function of relative capacity defined by (1−p)n

k . Also plotted in
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Fig. 14.10 FER performance for the (256, 207, 14) BCH Code for the erasure channel

Fig. 14.10 is the FER performance of a hypothetical (256, 207, 50) MDS code.
Equations (14.15) and (14.14), respectively, were used to derive Fig. 14.10. As may
be seen from Fig. 14.10, there is less of a shortfall in capacity compared to the BCH
(128, 107, 10) code. At 10−9 FER, the BCH (256, 207, 14) code achieves approxi-
mately 85.5% of the erasure channel capacity. The maximum capacity achievable by
any (256, 207) binary code as represented by the (256, 207, 50) hypothetical MDS
code is approximately 87%.

The next code to be investigated is the (512, 457, 14) extended BCH code which
was chosen because it is comparable to the (256, 207, 14) code in being able to
correct a similar maximum number of erasures (55 cf. 49) and has the same dmin of
14. Unfortunately, the weight enumerator polynomial has yet to be determined, and
only erasure simulation resultsmay be obtained. Figure14.11 shows the performance
of this code. The average number of erasures corrected is 53.4, an average shortfall
of 1.6 erased bits. The average shortfall is identical to the (256, 207, 14) extended
BCH code. Also, the probability of achievingMDS code performance, i.e. being able
to correct all n − k erasures is also the same and equal to 0.29. The distribution of
codeword weights responsible for non-MDS performance of the (512, 457, 14) code
is very similar to that for the (256, 207, 14) code, as shown in Fig. 14.12.

An example of an extended cyclic quadratic residue code is the (168, 84, 24)
code whose coefficients of the weight enumerator polynomial have been recently
determined [20] and are tabulated up to weight 72 in Table14.4. This code is a
self-dual, doubly even code, but not extremal because its dmin is not 32 but 24 [3].
The FER performance of the (168, 84, 24) code is shown plotted in Fig. 14.13 as
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Fig. 14.12 Distribution of codeword weights responsible for non-MDS performance, for the
extended (512, 457, 14) BCH Code
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Table 14.4 Spectral terms
up to weight 72 for the
extended Quadratic Residue
(168, 84) code

Weight Ad

0 1

24 776216

28 18130188

32 5550332508

36 1251282702264

40 166071600559137

44 13047136918828740

48 629048543890724216

52 19087130695796615088

56 372099690249351071112

60 4739291519495550245228

64 39973673337590380474086

68 225696677727188690570184

72 860241108921860741947676
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Fig. 14.13 FER performance for the (168, 84, 24) eQR Code for the erasure channel

a function of relative capacity defined by (1−p)n
k . Also plotted in Fig. 14.13 is the

FER performance of a hypothetical (168, 84, 85) MDS code. Equations (14.15) and
(14.14), respectively, were used to derive Fig. 14.13. The performance of the (168,
84, 24) code is close to that of the hypothetical MDS code but both codes are around
30% from capacity at 10−6 FER.
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The erasure correcting performance of non-algebraic designed codes is quite dif-
ferent from algebraic designed codes as may be seen from the performance results
for a (240, 120, 16) turbo code shown in Fig. 14.14. The turbo code features mem-
ory 4 constituent recursive encoders and a code matched, modified S interleaver, in
order to maximise the dmin of the code. The average number of erasures correctable
by the code is 116.5 and the average shortfall is 3.5 erased bits. The distribution of
codeword weights responsible for non-MDS performance of the (240, 120, 16) code
is very different from the algebraic codes and features a flat distribution as shown in
Fig. 14.15.

Similarly, the erasure correcting performance of a (200, 100, 11) LDPC code
designed using the Progressive Edge Growth (PEG) algorithm [12] is again quite
different from the algebraic codes as shown in Fig. 14.16. As is typical of randomly
generated LDPC codes, the dmin of the code is quite small at 11, even though the
code has been optimised. For this code, the average number of correctable erasures
is 93.19 and the average shortfall is 6.81 erased bits. This is markedly worse than
the turbo code performance. It is the preponderance of low-weight codewords that
is responsible for the inferior performance of this code compared to the other codes
as shown by the codeword weight distribution in Fig. 14.17.

The relative weakness of the LDPC code and turbo code becomes clear when
compared to a good algebraic code with similar parameters. There is a (200, 100, 32)
extended quadratic residue code. The p.d.f. of the number of erasures corrected by
this code is shown in Fig. 14.18. The difference between having a dmin of 32 compared
to 16 for the turbo code and 10 for the LDPC code is dramatic. The average number
of correctable erasures is 98.4 and the average shortfall is 1.6 erased bits. The weight
enumerator polynomial of this self-dual code, is currently unknown as evaluation of
the 2100 codewords is currently beyond the reach of today’s computers. However, the
distribution of codeword weights responsible for non-MDS performance of the (200,
100, 32) code which is shown in Fig. 14.19 indicates the doubly even codewords of
this code and the dmin of 32.

14.5.1 Turbo Codes with Dithered Relative Prime (DRP)
Interleavers

DRP interleavers were introduced in [4]. They have been shown to produce some
of the largest minimum distances for turbo codes. However, the iterative decoding
algorithm does not exploit this performance to its full on AWGN channels where the
performance of these interleavers is similar to that of randomly designed interleavers
having lower minimum distance. This is due to convergence problems in the error
floor region. A DRP interleaver is a concatenation of 3 interleavers, the two dithers
A,B and a relative prime interleaver π :

I(i) = B(π(A(i))) (14.26)



14.5 MDS Shortfall for Examples of Algebraic, LDPC and Turbo Codes 387

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  20  40  60  80  100  120

P
ro

ba
bi

lit
y

PDF of number of corrected erased bits 

(240,120,16) simulation

Fig. 14.14 PDF of erasure corrections for the (240, 120, 16) turbo code
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Fig. 14.15 Distribution of codeword weights responsible for non-MDS performance, for the (240,
120, 16) turbo code
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Fig. 14.17 Distribution of codeword weights responsible for non-MDS performance, for the (200,
100, 10) PEG LDPC code
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Fig. 14.18 PDF of erasure corrections for the (200, 100, 32) Extended QR Code
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Fig. 14.19 Distribution of codeword weights responsible for non-MDS performance, for the (200,
100, 32) Extended QR Code
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Table 14.5 Minimum
distance of turbo codes using
DRP interleavers as compared
to S-random interleavers

k 40 200 400 1000

DRP 19 33 38 45

S-RAN 13 17 22 26

The dithers are short permutations, generally of length m = 4, 8, 16 depending
on the length of the overall interleaver. We have

A(i) = m �i/m� + ai%m (14.27)

B(i) = m �i/m� + bi%m (14.28)

π(i) = (pi + q)%m, (14.29)

where a, b, are permutations of length m and p must be relatively prime to k. If a, b
and p are properly chosen, the minimum distance of turbo codes can be drastically
improved as compared to that of a turbo code using a typicalS -random interleaver.
A comparison is shown in Table14.5 for memory 3 component codes.

As an example two turbo codes are considered, one employing aDRP interleavers,
having parameters (120, 40, 19) and another employing a typical S -random inter-
leaver and having parameters (120, 40, 13).

14.5.2 Effects of Weight Spectral Components

Theweight spectrumof each of the two turbo codes has been determined exhaustively
from the G matrix of each code by codeword enumeration using the revolving door
algorithm. Theweight spectrumof both of the two turbo codes is shown in Table14.6.
It should be noted that as the codes include the all ones codeword, An−j = Aj, only
weights up to A60 are shown in Table14.6.

Using the weight spectrum of each code the upper and lower bound cumulative
distributions and corresponding density functions have been derived usingEqs. (14.2)
and (14.3), respectively, and are compared in Fig. 14.20. It can be observed that the
DRP interleaver produces a code with a significantly smaller probability of failing
to correct a given number of erasures.

The MDS shortfall for the two codes is:

MDSshortfall(120, 40, 19) = 2.95 bits (14.30)

MDSshortfall(120, 40, 13) = 3.29 bits (14.31)

The distribution of the codeword weights responsible for the MDS shortfalls is
shown in Fig. 14.21. For interest, also shown in Fig. 14.21 is the distribution for
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Table 14.6 Weight spectrum of the (120, 40, 19) and (120, 40, 13) turbo codes. Multiplicity for
weights larger than 60 satisfy A60−i = A60+i

Weight Multiplicity

(120, 40, 19) (120, 40, 13)

0 1 1

13 0 3

14 0 6

15 0 3

16 0 15

17 0 21

18 0 17

19 10 52

20 100 82

21 130 136

22 300 270

23 450 462

24 880 875

25 1860 2100

26 3200 3684

27 7510 7204

28 14715 15739

29 29080 30930

30 63469 64602

31 137130 137976

32 279815 279700

33 611030 608029

34 1313930 1309472

35 2672760 2671331

36 5747915 5745253

37 12058930 12045467

38 24137345 24112022

39 49505760 49486066

40 97403290 97408987

41 183989250 184005387

42 347799180 347810249

43 626446060 626489895

44 1086030660 1086006724

45 1855409520 1855608450

46 3021193870 3021448047

47 4744599030 4744412946

48 7286393500 7286669468

49 10691309800 10690683197

50 15157473609 15156479947

(continued)
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Table 14.6 (continued)

Weight Multiplicity

(120, 40, 19) (120, 40, 13)

51 20938289040 20939153481

52 27702927865 27702635729

53 35480878330 35481273341

54 44209386960 44210370096

55 52854740864 52853468145

56 61256875090 61257409658

57 69008678970 69008947092

58 74677319465 74677092916

59 78428541430 78428875230

60 80007083570 80006086770
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Fig. 14.20 Probability of Maximum Likelihood decoder failure

(120, 40, 28) best known linear code. This code, which is chosen to have the same
block length and code rate as the turbo code, is derived by shortening a (130, 50, 28)
code obtained by adding two parity checks to the (128, 50, 28) extended BCH. This
linear code has an MDS shortfall of 1.62 bits and its weight spectrum consists of
doubly even codewords as shown in Table14.7. For the turbo codes the contribution
made by the lower weight codewords is apparent in Fig. 14.21, and this is confirmed
by the plot of the cumulative contribution made by the lower weight codewords
shown in Fig. 14.22.
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Table 14.7 Weight spectrum
of the linear (120, 40, 28)
code derived from the
extended BCH (128, 50, 28)
code

Weight j Multiplicity Aj

0 1

28 5936

32 448563

36 17974376

40 379035818

44 4415788318

48 29117944212

52 110647710572

56 245341756158

60 319670621834

64 245340760447

68 110648904336

72 29117236550

76 4415980114

80 379051988

84 17949020

88 453586

92 5910

96 37
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Fig. 14.21 Distribution of codeword weights responsible for non-MDS performance
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For the erasure channel, the performance of the two turbo codes and the
(120, 40, 28) code is given by (14.15) and is shown in Fig. 14.23 assuming ML
decoding. Also shown in Fig. 14.23 is the performance of a (hypothetical) binary
(120, 40, 81) MDS which is given by the second term of (14.15). The code derived
from the shortened, extended BCH code, (120, 40, 28), has the best performance
and compares well to the lower bound provided by the MDS hypothetical code. The
DRP interleaver turbo code also has good performance, but theS -random interleaver
turbo code shows an error floor due to the dmin of 13.

14.6 Determination of the dmin of Any Linear Code

It is well known that the determination of weights of any linear code is a Nondeter-
ministic Polynomial time (NP) hard problem [8] and except for short codes, the best
methods for determining the minimumHamming distance, dmin codeword of a linear
code, to date, are probabilistically based [2]. Most methods are based on the gener-
ator matrix, the G matrix of the code and tend to be biased towards searching using
constrained information weight codewords. Such methods become less effective for
long codes or codes with code rates around 1

2 because the weights of the evaluated
codewords tend to be binomially distributed with average weight n

2 [15].
Corollary 2 from Sect. 14.2 above, provides the basis of a probabilistic method to

find low-weight codewords in a significantly smaller search space than the G matrix
methods. Given an uncorrectable erasure pattern of n− k erasures, from Corollary 2,
the codeword weight is less than or equal to n − k. The search method suggested
by this, becomes one of randomly generating erasure patterns of n− k + 1 erasures,
which of course are uncorrectable by any (n,k) code, and determining the codeword
and its weight from (14.2). This time, the weights of the evaluated codewords will
tend to be binomially distributed with average weight n−k+1

2 . With this trend, for
Ntrials the number of codewords determined with weight d, Md is given by

Md = Ntrials
(n − k + 1)!

d!(n − k − d + 1)!2n−k+1
(14.32)

As an example of this approach, the self-dual, bordered, double-circulant code (168,
84) based on the prime number 83, is described in [11] as having an unconfirmed
dmin of 28. From (14.32) when using 18,000 trials, 10 codewords of weight 28 will
be found on average. However, as the code is doubly even and only has codewords
weights which are a multiple of 4, using 18,000 trials, 40 codewords are expected.
In a set of trials using this method for the (168, 84) code, 61 codewords of weight 28
were found with 18,000 trials. Furthermore, 87 codewords of weight 24 were also
found indicating that the dmin of this code is 24 and not 28 as was originally expected
in [11].

The search method can be improved by biasing towards the evaluation of erasure
patterns that have small numbers of erasures that cannot be solved. Recalling the
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analysis in Sect. 14.2, as the parity-check equations are Gaussian reduced, no erased
bit is a function of any other erased bits. There will be n − k − s remaining parity-
check equations, which do not contain the erased bit coordinates xf . These remaining
equations may be searched to see if there is an unerased bit coordinate, that is not
present in any of the equations. If there is one such coordinate, then this coordinate in
conjunction with the erased coordinates solved so far forms an uncorrectable erasure
pattern involving only s erasures instead of n− k + 1 erasures. With this procedure,
biased towards small numbers of unsolvable erasures, it was found that, for the above
code, 21 distinct codewords of weight 24 and 17 distinct codewords of weight 28
were determined in 1000 trials and the search took approximately 2 s on a typical
2.8GHz, Personal Computer (PC).

In another example, the (216, 108) self dual, bordered double-circulant code is
given in [11] with an unconfirmed dmin of 36. With 1000 trials which took 7s on
the PC, 11 distinct codewords were found with weight 24 and a longer evaluation
confirmed that the dmin of this code is indeed 24.

14.7 Summary

Analysis of the erasure correcting performance of linear, binary codes has provided
the surprising result thatmany codes can correct, on average, almost n−k erasures and
have a performance close to the optimum performance as represented by (hypothet-
ical), binary MDS codes. It was shown that for codes having a weight distribution
approximating to a binomial distribution, and this includes many common codes,
such as BCH codes, Goppa codes and self-dual codes, that these codes can correct at
least n−k−2 erasures on average, and closely match the FER performance of MDS
codes as code lengths increase. The asymptotic performance achieves capacity for
the erasure channel. It was also shown that codes designed for iterative decoders, the
turbo and LDPC codes, are relatively weak codes for the erasure channel and com-
pare poorly with algebraically designed codes. Turbo codes, designed for optimised
dmin, were found to outperform LDPC codes.

For turbo codes using DRP interleavers for the erasure channel using ML decod-
ing, the result is that these relatively short turbo codes are (on average), only about 3
erasures away from optimal MDS performance. The decoder error rate performance
of the two turbo codes when using ML decoding on the erasure channel was com-
pared to (120, 40, 28) best known linear code and a hypothetical binary MDS code.
The DRP interleaver demonstrated a clear advantage over theS -random interleaver
and was not too far way from MDS performance. Analysis of the performance of
longer turbo codes is rather problematic.

Determination of the erasure correcting performance of a code provides a means
of determining the dmin of a code and an efficient search method was described.
Using the method, the dmin results for two self-dual codes, whose dmin values were
previously unknown were determined, and these codes were found to be (168, 84,
24) and (216, 108, 24) codes.
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Chapter 15
The Modified Dorsch Decoder

15.1 Introduction

In a relatively unknown paper published in 1974, Dorsch [4] described a decoder for
linear binary block (n, k) codes using soft decisions quantised to J levels. The decoder
is applicable to any linear block code and does not rely upon any particular features of
the code, such as being a concatenated code or having a sparse parity-checkmatrix. In
the Dorsch decoder, hard decisions are derived from the soft decisions using standard
bit by bit detection, choosing the binary state closest to the received coordinate. The
hard decisions are then ranked in terms of their likelihoods and candidate codewords
are derived from a set of k, independent, most likely bits. This is done by producing
a new parity-check matrix HI obtained by reordering the columns of the original
H matrix according to the likelihood of each coordinate, and reducing the resulting
matrix to echelon canonical form by elementary row operations. After evaluation of
several candidate codewords, the codeword with the minimum soft decision metric
is output from the decoder. A decoder using a similar principle, but without soft
decision quantisation, has been described by Fossorier [5, 6]. Other approaches,
after ranking the reliability of the received bits, adopt various search strategies for
finding likely codewords [11] or utilise a hard decision decoder in conjunction with
a search for errors in the least likely bit positions [2, 15].

The power of the Dorsch decoder arises from the relatively unknown property
that most codes, on average, can correct almost n − k erasures [17], which is con-
siderably more than the guaranteed number of correctable erasures of dmin − 1, or
the guaranteed number of correctable hard decision errors of dmin−1

2 , where dmin is the
minimum Hamming distance of the code. In its operation, the Dorsch decoder needs
to correct any combination of n − k erasures which is impossible unless the code
is an MDS code [12]. Dorsch did not discuss this problem, or potential solutions,
in his original paper [4], although at least one solution is implied by the results he
presented.

© The Author(s) 2017
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In this chapter, a solution to the erasure correcting problem of being able to solve
n − k erasures for a non-MDS code is described. It is based on using alternative
columns of the parity-check matrix without the need for column permutations. It is
also shown that it is not necessary to keep recalculating each candidate codeword
and its associated soft decision metric in order to find the most likely codeword.
Instead, an incremental correlation approach is adopted which features low informa-
tion weight codewords and a correlation function involving only a small number of
coordinates of the received vector [17]. It is proven that maximum likelihood decod-
ing is realised provided all codewords are evaluated up to a bounded information
weight. This means that maximum likelihood decoding may be achieved for a high
percentage of received vectors. The decoder lends itself to a low complexity, parallel
implementation involving a concatenation of hard and soft decision decoding. It pro-
duces near maximum likelihood decoding for codes that can be as long as 1000 bits,
provided the code rate is high enough. When implementing the decoder, it is shown
that complexity may be traded-off against performance in a flexible manner. Decod-
ing results, achieved by the decoder, are presented for some of the most powerful
binary codes known and compared to Shannon’s sphere packing bound [14].

The extension to non-binary codes is straightforward and this is described in
Sect. 15.5.

15.2 The Incremental Correlation Dorsch Decoder

Codewords with binary coordinates having state 0 or 1, are denoted as:

x = (x0, x1, x2, . . . , xn−1)

For transmission, bipolar transmission is used with coordinates having binary state
0 mapped to +1 and having state 1 mapped to −1. Transmitted codewords are
denoted as

c = (c0, c1, c2, . . . , cn−1)

The received vector r consists of n coordinates (r0, r1, r2, . . . , rn−1) equal to the
transmitted codeword plus Additive White Gaussian Noise with variance σ 2. The
received vector processed by the decoder is assumed to have been matched filtered
and free from distortion so that 1

σ 2 = 2Eb
No

, where Eb is the energy per information bit
and No is the single sided noise power spectral density. Accordingly,

σ 2 = No

2Eb

The basic principle that is used is that the k most reliable bits of the received vector
are initially taken as correct and the n − k least reliable bits are treated as erasures.
The parity-check equations of the code, as represented by H, are used to solve for
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these erased bits and a codeword x̂ is obtained. This codeword is either equal to the
transmitted codeword or needs only small changes to produce a codeword equal to the
transmitted codeword. One difficulty is that, depending on the code, the n − k least
reliable bits usually cannot all be solved as erasures. This depends on the positions of
the erased coordinates and the power of the code. OnlyMaximumDistance Separable
(MDS) codes [12] are capable of solving n − k erasures regardless of the positions of
the erasures in the received codeword. Unfortunately, there are no binaryMDS codes
apart from trivial examples. However, a set of n − k erasures can always be solved
from n − k + s least reliable bit positions, and, depending on the code, s is usually a
small integer. In order to obtain best performance it is important that the very least
reliable bit positions are solved first, since the corollary that the n − k least reliable
bits usually cannot all be solved as erasures is that the k most reliable bits, used to
derive codeword x̂, must include a small number of least reliable bits. However, for
most received vectors, the difference in reliability between ranked bit k and ranked
bit k + s is usually small. For any received coordinate, the a priori log likelihood ratio
of the bit being correct is proportional to |ri|. The received vector r with coordinates
ranked in order of most likely to be correct is defined as (rμ0 , rμ1 , rμ2 , . . . , rμn−1),
where |rμ0 | > |rμ1 | > |rμ2 | > · · · > |rμn−1 |.

The decoder is most straightforward for a binary MDS code. The codeword
coordinates (xμ0 , xμ1 , xμ2 , . . . , xμk−1) are formed directly from the received vector
r using the bitwise decision rule xμi = 1 if rμi < 0 else xμi = 0. The n − k coordi-
nates (xμk , xμk+1 , xμk+2 , . . . , xμn−1) are considered to be erased and derived from the k
most reliable codeword coordinates (xμ0 , xμ1 , xμ2 , . . . , xμk−1) using the parity-check
equations.

For a non-MDS code, the n − k coordinates cannot always be solved from the
parity-check equations because the parity-check matrix is not a Cauchy or Vander-
monde matrix [12]. To get around this problem a slightly different order is defined
(xη0 , xη1 , xη2 , . . . , xηn−1).

The label of the last coordinate ηn−1 is set equal to μn−1 and xηn−1 solved first by
flagging the first parity-check equation that contains xηn−1 , and then subtracting this
equation from all other parity-check equations containing xηn−1 . Consequently, xηn−1

is now only contained in one equation, the first flagged equation.
The label of the next coordinate ηn−2 is set equal toμn−2 and an attempt is made to

solve xηn−2 byfinding anunflaggedparity-check equation containing xηn−2 . In the event
that there is not an unflagged equation containing xηn−2 , ηn−2 is set equal to μn−3 the
label of the next most reliable bit, xμn−3 and the procedure repeated until an unflagged
equation contains xηn−2 . As before, this equation is flagged that it will be used to solve
for xηn−2 and is subtracted fromall other unflagged equations containing xηn−2 . Thepro-
cedure continues until all of then − k codeword coordinates xηn−1 , xηn−2 , xηn−3 , . . . , xηk

have been solved and all n − k equations have beenflagged. In effect, the least reliable
coordinates are skipped if they cannot be solved. The remaining k ranked received
coordinates are set equal to (rη0 , rη1 , rη2 , . . . , rηk−1) in most reliable order, where
|rη0 | > |rη1 | > |rη2 | > · · · > |rηn−1 | and (xη0 , xη1 , xη2 , . . . , xηk−1) determined using the
bit decision rule xηi = 1 if rηi < 0 else xηi = 0. The flagged parity-check equations
are in upper triangular form and have to be solved in reverse order starting with the
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last flagged equation. This equation gives the solution to xηk which is back substituted
into the other equations and xηk+1 is solved next, back substituted, and so on, with
coordinate xηn−1 solved last.

This codeword is denoted as x̂ and the mapped version of the codeword is
denoted as ĉ.

As iswell-known [13], the codewordmost likely to be transmitted is the codeword,
denoted as x̆, which has the smallest squared Euclidean distance, D(x̆), between the
mapped codeword, c̆, and the received vector.

D(x̆) =
n−1∑

j=0

(rj − c̆j)
2

D(x̆) < D(x) for all other codewords x.
Equivalently x̆ is the codeword, after mapping, which has the highest cross

correlation

Y(x̆) =
n−1∑

j=0

rj × c̆j (15.1)

Y(x̆) > Y(x) for all other codewords x.
The decoder may be simplified if the cross correlation function is used to compare

candidate codewords. The cross correlation is firstly determined for the codeword x̂

Y(x̂) =
n−1∑

j=0

rj × ĉj (15.2)

It is interesting to make some observations about Y(x̂). Since the summation can be
carried out in any order

Y(x̂) =
n−1∑

j=0

rηj × ĉηj (15.3)

and

Y(x̂) =
k−1∑

j=0

rηj × ĉηj +
n−1∑

j=k

rηj × ĉηj (15.4)

Considering the first term

k−1∑

j=0

rηj × ĉηj =
k−1∑

j=0

|rηj | (15.5)
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This is because the sign of ĉηj equals the sign of ĉηj for j < k. Thus, this term is
independent of the code and Eq. (15.4) becomes

Y(x̂) =
k−1∑

j=0

|rηj | +
n−1∑

j=k

rηj × ĉηj (15.6)

Almost all of the k largest received coordinates (all of the k largest terms for anMDS
code) are contained in the first term of Eq. (15.6) and this ensures that the codeword
x̂, after mapping, has a high correlation with r.

A binary, (hard decision), received vector b may be derived from the received
vector r using the bitwise decision rule bj = 1 if rj < 0, else bj = 0 for j = 0 to
n − 1. It should be noted that in general the binary vector b is not a codeword.

It is useful to define a binary vector ẑ as

ẑ = b ⊕ x̂ (15.7)

The maximum attainable correlation Ymax is given by

Ymax =
n−1∑

j=0

|rηj | (15.8)

This correlation value occurswhen there are no bit errors in transmission and provides
an upper bound to the maximum achievable correlation for x̆. The correlation Y(x̂)
may be expressed in terms of Ymax and x̂ for

Y(x̂) = Ymax − 2
n−1∑

j=0

ẑηj × |rηj | (15.9)

equivalently,

Y(x̂) = Ymax − YΔ(x̂), (15.10)

where YΔ(x̂) is the shortfall from the maximum achievable correlation for the code-
word x̂ and is evidently

YΔ(x̂) = 2
n−1∑

j=0

ẑηj × |rηj | (15.11)

Some observations may be made about the binary vector ẑ. The coordinates ẑηj for
j = 0 to (k − 1) are always equal to zero. The maximum possible weight of ẑ is thus
n − k and the average weight is n−k

2 at low Eb
No

values. At high Eb
No

values, the average
weight of ẑ is small because there is a high chance that x̂ is equal to the transmitted
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codeword. It may be seen from Eq. (15.11) that, in general, the lower the weight of
ẑ the smaller will be YΔ(x̂) and the larger will be the correlation value Y(x̂).

Since there is no guarantee that the codeword x̂ is the transmitted codeword, the
decoder has to evaluate additional codewords since one ormore of thesemay produce
a correlation higher than x̂. There are 2k − 1 other codewords which may be derived
by considering all other 2k − 1 sign combinations of cηj for j = 0 to k − 1. For any
of these codewords denoted as ci the first term of the correlation given in Eq. (15.6)
is bound to be smaller since

k−1∑

j=0

rηj × ci,ηj <

k−1∑

j=0

|rηj | (15.12)

This is because there has to be, by definition, at least one sign change of ci,ηj compared
to ĉηj for j = 0 to k − 1. In order for Y(xi) to be larger than Y(x̂) the second term

of the correlation
∑n−1

j=k rηj × ci,ηj which uses the bits from the solved parity-check

equations must be larger than
∑n−1

j=k rηj × ĉηj plus the negative contribution from the
first term.

However, the first term has higher received magnitudes than the second term
because the received coordinates are ordered. It follows that codewords likely to have
a higher correlation than x̂ will have small number of differences in the coordinates
xηj for j = 0 to k − 1. As the code is linear these differences will correspond to
a codeword and codewords may be generated that have low weight in coordinates
xηj for j = 0 to k − 1. These codewords are represented as x̃i and referred to as
low information weight codewords since coordinates xηj for j = 0 to k − 1 form an
information set. Thus, codewords xi are given by

xi = x̂ ⊕ x̃i (15.13)

and x̃i are codewords chosen to have increasing weight in coordinates xηj for j = 0 to
k − 1 as i is incremented. This means that for increasing i it will become less likely
that a codeword will be found that has higher correlation than the correlation of a
codeword already found.

The difference in the correlation value YΔ(xi) as a function of x̃i may be derived.
Firstly, the binary vector zi is given by

zi = b ⊕ x̂ ⊕ x̃i (15.14)

which may be simplified to

zi = ẑ ⊕ x̃i (15.15)
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The cross correlation Y(xi) is given by

Y(xi) = Ymax − 2
n−1∑

j=0

zi, ηj × |rηj | (15.16)

equivalently

Y(xi) = Ymax − YΔ(xi) (15.17)

The shortfall from maximum correlation, YΔ(xi), is evidently

YΔ(xi) = 2
n−1∑

j=0

zi, ηj × |rηj | (15.18)

Substituting for zi gives YΔ(xi) as a function of x̃i.

YΔ(xi) = 2
n−1∑

j=0

(ẑj ⊕ x̃iηj ) × |rηj | (15.19)

It is apparent that instead of the decoder determining Y(xi) for each codeword, xi,
it is sufficient for the decoder to determine YΔ(xi) for each codeword x̃i and compare
the value with the smallest value obtained so far, denoted as YΔ(xmin), starting with
YΔ(x̂):

YΔ(xmin) = min
(
YΔ(x)

)
(15.20)

Thus it is more efficient for the decoder to compute the correlation (partial sum) of
the x̃i instead of deriving (x̂ ⊕ x̃i) by solvingHI and computing the squaredEuclidean
distance. Since codewords x̃i produce lowweight in zi, the number of non-zero terms
that need to be evaluated in Eq. (15.18) is typically n−k

2 rather than the n
2 terms of

Eq. (15.1) which makes for an efficient, fast decoder. Before Eq. (15.19) is evaluated,
the Hamming weight of zi may be compared to a threshold and the correlation stage
bypassed if the Hamming weight of zi is high. There is an associated performance
loss and results are presented in Sect. 15.4.

The maximum information weight winf max necessary to achieve maximum like-
lihood decoding may be upper bounded from YΔ(x̂) and |rηj | initially, updated by
YΔ(xmin) as decoding progresses, since

YΔ(xi) ≥
winf∑

m=0

|rηk−m−1 | (15.21)
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This is reasonably tight since there is a possibility of at least one codeword with
information weight winf max, for which all of the coordinates of the binary vector
zi corresponding to the parity bits of x̃i are zero. Correspondingly, winf max is the
smallest integer such that

winf max∑

m=0

|rηk−m−1 | ≥ YΔ(x̂) (15.22)

The codewords x̃i maybemost efficiently derived from theGmatrix corresponding to
the solved H matrix because the maximum information weight given by Eq. (15.22)
turns out to be small. Each row, i, of the solvedGmatrix is derived by setting xηj = 0
for j = 0 to k − 1, j �=i, and using the solved parity-check equations to determine xηj

for j = k to n − 1. The maximum number of rows of the G matrix that need to be
combined to produce x̃i is winf max.

15.3 Number of Codewords that Need to Be Evaluated
to Achieve Maximum Likelihood Decoding

For each received vector the decoder needs to evaluate the correlation shortfall for
the codewords x̃i for information weights up to the maximum information weight of
winf max in order to achievemaximum likelihood decoding. The number of codewords
that need to be evaluated is a function of the received vector. Not all of the codewords
having information weight less than or equal to winf max need be evaluated because
lower boundsmay be derived forYΔ(xi) in terms of the coordinates of the information
bits, their total weight and the magnitudes of selected coordinates of the received
vector. For an information weight of winf , YΔ(xi) is lower bounded by

YΔ(xi) ≥ |rηj | +
winf −1∑

m=0

|rηk−m−1 | 0 ≤ j < k − m (15.23)

and

|rηjmin(winf )
| ≥ YΔ(xi) −

winf −1∑

m=0

|rηk−m−1 | 0 ≤ j < k − m (15.24)

where jmin(winf ) is defined as the lower limit for j to satisfy Eq. (15.24). Theminimum
number of codewords that need to be evaluated as a function of the received vector
N(r) is given by the total number of combinations
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N(r) =
winf∑

m=0

(
k − jmin(m) − 1

m

)
(15.25)

For many short codes the minimum number of codewords that need to be evaluated
is surprisingly small in comparison to the total number of codewords.

15.4 Results for Some Powerful Binary Codes

The decoder can be used with any linear code and best results are obtained for
codes which have the highest known dmin for a given codelength n and number of
information symbols k. The best binary codes are tabulated up to length 257 in
Marcus Grassl’s on line data base [7]. Non-binary codes, for example, ternary codes
of length up to 243 symbols and GF(4) codes of length up to 256 symbols are also
tabulated.

A particularly good class of codes are the binary self-dual, double-circulant codes
first highlighted in a classic paper by Karlin [8]. For example the (24, 12, 8) extended
Golay code is included since it may be put in double-circulant form. There is also
the (48, 24, 12) bordered double-circulant code, based on quadratic residues of the
prime 47 and the (136, 68, 24) bordered double-circulant code based on quadratic
residues of the prime 67. These codes are extremal [3] and are doubly even, only
having codeword weights that are a multiple of 4, and in these cases it is necessary
that the codelengths are a multiple of 8 [3]. For higher code rates of length greater
than 256, the best codes are tabulated in [12], and some of these include cyclic codes
and Goppa codes.

15.4.1 The (136, 68, 24) Double-Circulant Code

This code is a bordered double-circulant code based on the identity matrix and
a matrix whose rows consist of all cyclic combinations, modulo 1 + x67, of the
polynomial b(x) defined by

b(x) = 1+ x+ x4 + x6 + x9 + x10 + x14 + x15 + x16 + x17 + x19 + x21 + x22 + x23 + x24 + x25 + x26 + x29

+ x33 + x35 + x36 + x37 + x39 + x40 + x47 + x49 + x54 + x55 + x56 + x59 + x60 + x62 + x64 + x65

(15.26)

The Frame Error Rate (FER) of this code using the extended Dorsch decoder with
a maximum number of codewords limited to 3 × 106 is shown in Fig. 15.1. Also,
shown in Fig. 15.1 is Shannon’s [14] sphere packing bound offset by the loss for
binary transmission [1], which is 0.19 dB for a code rate of 1

2 .
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Fig. 15.1 FER as a function of Eb
No

for the double-circulant (136, 68, 24) code using incremental
correlation decoding compared to the sphere packing bound, offset for binary transmission

It may be seen from Fig. 15.1 that the performance of the decoder in conjunction
with the double-circulant code is within 0.2 dB of the best achievable performance
for any (136, 68) code at 10−5 FER. Interestingly, there is a significant number of
maximum likelihood codeword errors which have a Hamming distance of 36 or 40
from the transmitted codeword. This indicates that a bounded distance decoderwould
not perform very well for this code. At the typical practical operating point of Eb

No

equal to 3.5 dB, the probability of the decoder processing each received vector as
a maximum likelihood decoder is shown plotted in Fig. 15.2 as a function of the
number of codewords evaluated.

Of course to guarantee maximum likelihood decoding, all 268 = 2.95 × 1020

codewords need to be evaluated by the decoder. Equation (15.21) has been evaluated
for the double-circulant (136, 68, 24) code in computer simulations, at an Eb

No
of 3.5 dB,

for each received vector and the cumulative distribution derived. Figure15.2 shows
that by evaluating 107 codewords per received vector, 65% of received vectors are
guaranteed to be maximum likelihood decoded. For the remaining 35% of received
vectors, although maximum likelihood decoding is not guaranteed, the probability
is very small that the codeword with the highest correlation is not the transmitted
codeword or a codeword closer to the received vector than the transmitted codeword.
This last point is illustrated by Fig. 15.3 which shows the FER performance of the
decoder as a function of the maximum number of evaluated codewords.
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Fig. 15.4 An example of received coordinate magnitudes in their solved order for the (136, 68, 24)
code at Eb

No
= 2.5 dB for a single received vector

The detailed operation of the decoder may be seen by considering an example
of a received vector at Eb

No
of 2.5 dB. The magnitudes of the received coordinates,

ordered in their solved order, is shown in Fig. 15.4. In this particular example, it is not
possible to solve for ordered coordinates 67 and 68 (in their order prior to solving of
the parity-checkmatrix) and so these coordinates are skipped andbecome coordinates
68 and 69, respectively, in the solved order. The transmitted bits are normalised with
magnitudes 1 and the σ of the noise is≈1.07. The shift in position of coordinate 69 (in
original position) to 67 (in solved order) is evident in Fig. 15.4. The positions of the
bits received in error in the same solved order is shown in Fig. 15.5. It may be noted
that the received bit errors are concentrated in the least reliable bit positions. There
are a total of 16 received bit errors and only two of these errors correspond to the
(data) bit coordinates 11 and 34 of the solvedGmatrix. Evaluation of 107 codewords
indicates that the minimum value of YΔ(xmin) is≈13.8, and this occurs for the 640th
codeword producing amaximum correlation of≈126.2with Ymax ≈ 140. Theweight
of zmin is 16 corresponding to the 16 received bit errors.

In practice, it is not necessary for YΔ(xi) given by the partial sum equation (15.18)
to be evaluated for each codeword. In most cases, the weight of the binary vector zi
is sufficiently high to indicate that this codeword is not the most likely codeword.
Shown in Fig. 15.6 are the cumulative probability distributions for the weight of zi
for the case where xi is equal to the transmitted codeword, and the case where it is not
equal to the transmitted codeword. Two operating values for Eb

No
are shown: 3.5 dB

and 4 dB. Considering the decoding rule that a weight 29 or more for zi is unlikely to
be produced by the transmitted codeword means that 95.4% of candidate codewords
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may be rejected at this point, and that the partial sum equation (15.18) need only be
evaluated for 4.6% of the candidate codewords. In reducing the decoder complexity
in this way, the degradation to the FER performance as a result of rejection of a
transmitted codeword corresponds to≈3% increase in the FER and is not significant.

15.4.2 The (255, 175, 17) Euclidean Geometry (EG) Code

This code is an EG code originally used in hard decision, one-step majority-logic
decoding by Lin and Costello, Jr. [10]. Finite geometry codes also have applications
as LDPC codes using iterative decoding with the belief propagation algorithm [9].
The (255, 175, 17) code is a cyclic code and its parity-check polynomial p(x) may
conveniently be generated from the cyclotomic idempotents as described in Chap. 12.
The parity-check polynomial is

p(x) = 1 + x + x3 + x7 + x15 + x26 + x31 + x53 + x63 + x98 (15.27)

+ x107 + x127 + x140 + x176 + x197 + x215 (15.28)

The FER performance of the code is shown in Fig. 15.7 and was obtained using the
incremental correlation decoder and is shown in comparison to using the iterative
decoder. Also shown in Fig. 15.7 is the sphere packing bound offset by the binary
transmission loss.
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Fig. 15.7 FER performance of the (255, 175, 17) EG code using belief propagation, iterative
decoding, compared to incremental correlation decoding
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Although this EG code performs well with iterative decoding it is apparent that
the incremental correlation decoder is able to improve the performance of the code
for the AWGN channel by 0.45 dB at 10−3 FER.

15.4.3 The (513, 467, 12) Extended Binary Goppa Code

Goppa codes are frequently better than the correspondingBCHcodes because there is
an additional information bit and the Goppa code is only one bit longer than the BCH
code. For example, the (512, 467, 11) binary Goppa Code has one more information
bit than the (511, 466, 11) BCH code and may be generated by the irreducible Goppa
polynomial 1 + x2 + x5, whose roots have order 31 which is relatively prime to 511.
The dmin of the binary Goppa code [12] is equal to twice the degree of the irreducible
polynomial plus 1 and is the same as the (511, 466, 11) BCH code. The Goppa code
may be extended by adding an overall parity check, increasing the dmin to 12.

The FER performance of the extended Goppa code is shown in Fig. 15.8 and was
obtained using the incremental correlation decoder. Also shown in Fig. 15.8 is the
sphere packing bound offset by the binary transmission loss. It can be seen that the
realised performance of the decoder is within 0.3 dB at 10−4.
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Fig. 15.9 FER performance of the (1023, 983, 9) binary BCH code using incremental correlation
decoding compared to hard decision decoding

15.4.4 The (1023, 983, 9) BCH Code

This code is a standardBCHcode thatmay be found in reference text book tables such
as by Lin and Costello, Jr. [10]. This example is considered here in order to show that
the decoder can produce near maximum likelihood performance for relatively long
codes. The performance obtained is shown in Fig. 15.9 with evaluation of candidate
codewords limited to 106 codewords. At 10−5 FER, the degradation from the sphere
packing bound, offset for binary transmission, is 1.8 dB. Although this may seem
excessive, the degradation of hard decision decoding is 3.6 dB as may also be seen
from Fig. 15.9.

15.5 Extension to Non-binary Codes

The extension of the decoder to non-binary codes is relatively straightforward, and
for simplicity binary transmission of the components of each non-binary symbol is
assumed. Codewords are denoted as before by xi but redefined with coefficients, γj i
from GF(2m)

xi = (γ0 i x0, γ1 i x1, γ2 i x2, . . . , γn−1 i xn−1) (15.29)
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The received vector r with coordinates ranked in order of those most likely to be
correct is redefined as

r =
m−1∑

l=0

(rlμ0 , rlμ1 , rlμ2 , . . . , rlμn−1) (15.30)

so that the received vector consists of n symbols, each with m values. The maximum
attainable correlation Ymax is straightforward and is given by

Ymax =
n−1∑

j=0

m−1∑

l=0

|rl j| (15.31)

The hard decided received vector r, is redefined as

b =
n−1∑

j=0

θj x
j (15.32)

where θj is the GF(2m) symbol corresponding to sign(rl j) for l = 0 to m − 1.
Decoding follows in a similar manner to the binary case. The received symbols

are ordered in terms of their symbol magnitudes |rμj |S where each symbol magnitude
is defined as

|rηj |S =
m−1∑

l=0

|rl ηj | (15.33)

The codeword x̂ is derived from the k coordinates xηj whose coefficients νηj are the
GF(2m) symbols corresponding to sign(rl ηj ) for l = 0 to m − 1; for j = 0 to k − 1
and then using the solved parity-check equations for the remaining n − k coordinates.

The vector zi is given by

zi = b ⊕ x̂ ⊕ x̃i mod GF(2m) (15.34)

which may be simplified as before to

zi = ẑ ⊕ x̃i mod GF(2m) (15.35)

Denoting the n binary vectors ρi l j corresponding to the n GF(2m) coefficients of zi

Y(xi) = Ymax − YΔ(xi) (15.36)
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where YΔ(xi), the shortfall from maximum correlation is given by

YΔ(xi) = 2
n−1∑

j=0

m−1∑

l=0

ρi l j × |rl j| (15.37)

In the implementation of the decoder, as in the binary case, the Hamming weight
of the vector zi may be used to decide whether it is necessary to evaluate the soft
decision metric given by Eq. (15.37) for each candidate codeword.

15.5.1 Results for the (63, 36, 13) GF(4) BCH Code

This is a non-binary BCH code with the generator polynomial g(x) defined by roots

{α1, α4, α16, α2, α8, α32, α3, α12, α48, α5, α20, α17, α6, α24, α33,

α7, α28, α29, α9, α36, α18, α10, α40, α34, α11, α44, α50}
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decoding compared to hard decision decoding
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The benefit of having GF(4) coefficients is that g(x) does not need to contain the
roots

{α14, α56, α35, α22, α25, α37}

which are necessary to constrain g(x) to binary coefficients [12]. Correspondingly,
the binary version of this BCH code is the lower rate (63, 30, 13) code with 6 less
information symbols (bits).

The performance of the (63, 36, 13) GF(4) BCH Code is shown in Fig. 15.10 for
the AWGN channel using Quadrature Amplitude Modulation (QAM). Also shown
in Fig. 15.10 is the performance of the code with hard decision decoding. It may
be seen that at 10−4 FER the performance of the incremental correlation decoder is
2.9 dB better than the performance of the hard decision decoder.

15.6 Conclusions

It has been shown that the extended Dorsch decoder may approach maximum like-
lihood decoding by an incremental correlation approach in which for each received
vector a partial summation metric is evaluated as a function of low information
weight codewords. Furthermore, the number of information weight codewords that
need to be evaluated to achieve maximum likelihood decoding may be calculated
as an upper bound for each received vector. Consequently, for each received vector
it is known whether the decoder has achieved maximum likelihood decoding. An
efficient decoder structure consisting of a combination of hard decision threshold
decoding followed by partial sum correlation was also described, which enables
practical decoders to trade-off performance against complexity.

The decoder for non-binary codes was shown to be straightforward for the AWGN
channel and an example was described for a GF(4) (63, 36, 13) BCH code using
QAM to transmit each GF(4) symbol. It is readily possible to extend the decoder to
other modulation formats by extensions to the incremental correlation of Eq. (15.37)
although this inevitably involves an increase in complexity. It is hoped that there will
sufficient interest from the coding community to address this research area.

Another interesting conclusion is just how well some codes in Brouwer’s table
perform with maximum likelihood decoding. In particular, the (136, 68, 24) double-
circulant, extremal, self-dual code is shown to be an outstanding code.

It seems that the implementation of this type of decoder coupledwith the availabil-
ity of powerful processors will eventually herald a new era in the application of error
control coding with the re-establishment of the importance of the optimality of codes
rather than the ease of decoding. Certainly, this type of decoder is more complex than
an iterative decoder, but the demonstrable performance, which is achievable for short
codes, can approach theoretical limits for error-correction coding performance such
as the sphere packing bound.
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15.7 Summary

The current day, unobtainable goal of a practical realisation of the maximum like-
lihood decoder that can be used with any error-correcting code has been partially
addressed with the description of the modified Dorsch decoder presented in this
chapter. A decoder based on enhancements to the original Dorsch decoder has been
describedwhich achieves nearmaximum likelihood performance for all codes whose
codelength is not too long. It is a practical decoder for half rate codes having a code-
length less than about 180 bits or so using current digital processors. The performance
achieved by the decoder when using different examples of outstanding binary codes
has been evaluated and the results presented in this chapter. A description of the
decoder suitable for use with non-binary codes has also been given. An example
showing the results obtained by the decoder using a (63, 36, 13) GF(4) non-binary
code for the AWGN channel has also been presented.
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Chapter 16
A Concatenated Error-Correction System
Using the |u|u + v| Code Construction

16.1 Introduction

There is a classical error-correcting code construction method where two good codes
are combined together to form a new, longer code. It is a method first pioneered by
Plotkin [1]. The Plotkin sum, also known as the |u|u + v| construction method [3],
consists of one or more codes having replicated codewords to which are added
codewords from one or more other codes to form a concatenated code. This code
construction may be exploited in the receiver with a decoder that first decodes one
or more individual codewords prior to the Plotkin sum from a received vector. The
detected codewords from this first decoding are used to undo the code concatenation
within the received vector to allow the replicated codewords to be decoded. The
output from the overall decoder of the concatenated code consists of the information
symbols from the first decoder followed by the information symbols from the second
stage decoder. Multiple codewords may be replicated and added to the codewords
from other codes so that the concatenated code consists of several shorter codewords
which are decoded first and the decoded codewords used to decode the remaining
codewords. It is possible to utilise a recurrent construction whereby the replicated
codewords are themselves concatenated codewords. It follows that the receiver has
to use more than two stages of decoding.

With suitable modifications, any type of error-correction decoder may be utilised
including iterative decoders, Viterbi decoders, list decoders, and ordered reliability
decoders, and of particular importance the modified Dorsch decoder described in
Chap.15. It is well known that for a given code rate longer codes have better per-
formance than shorter codes, but implementation of a maximum likelihood decoder
is much more difficult for longer codes. The Plotkin sum code construction method
provides a means whereby several decoders for short codes may be used together to
implement a near maximum likelihood decoder for a long code.

© The Author(s) 2017
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16.2 Description of the System

Figure16.1 shows the generic structure of the transmitted signal in which the code-
word of length n1 from code u, denoted as Cu is followed by a codeword comprising
the sum of the same codeword and another codeword from code v, denoted as Cv to
form a codeword denoted asCcat of length 2n1. This code construction is well known
as the |u|u+ v| code construction [3]. The addition is carried out symbol by symbol
using the arithmetic rules of the Galois Field being used, namely GF(q). If code u
is an (n1, k1, d1) code with k1 information symbols and Hamming distance d1 and
code v is an (n1, k2, d2) code with k2 information symbols and Hamming distance
d2, the concatenated code Ccat is an (2n1, k1 + k2, d3) code with Hamming distance
d3 equal to the smaller of 2× d1 and d2.

Prior to transmission, symbols from the concatenated codeword are mapped to
signal constellation points in order to maximise the Euclidean distance between
transmitted symbols in keeping with current best transmission practice. For example
see the text book by Professor J. Proakis [4]. The mapped concatenated codeword is
denoted as Xcat and is given by

Xcat = |Xu |Xu+v| = |Xu |Xw|, (16.1)

where Xw is used to represent Xu+v.

Xcat consists of 2 × n1 symbols and the first n1 symbols are the n1 symbols of
Xu and the second n1 symbols are the n1 symbols resulting from mapping of the
symbols resulting from the summation, symbol by symbol, of the n1 symbols of Cu ,
and the n1 symbols of codeword Cv.

The encoding system to produce the concatenated codeword format shown in
Fig. 16.1 is shown in Fig. 16.2. For each concatenated codeword, k1 information
symbols are input to the encoder for the (n1, k1, d1) code and n1 symbols are produced
at the output of the encoder and are stored in the codeword buffer A as shown in
Fig. 16.2. Additionally, for each concatenated codeword, k2 information symbols are
input to the encoder for the (n1, k2, d2) code andn1 symbols are produced at the output
and are stored in the codeword buffer B as shown in Fig. 16.2. The encoded symbols

Fig. 16.1 Format of transmitted codeword consisting of two shorter codewords
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Fig. 16.2 Concatenated code encoder and mapping for transmission

output from the codeword buffer A are added symbol by symbol to the encoded
symbols output from the codeword buffer B and the results are stored in codeword
buffer C. The codeword stored in codeword buffer A is Cu as depicted in Fig. 16.1
and the codeword stored in codeword buffer C isCu+Cv as also depicted in Fig. 16.1.
The encoded symbols output from the codeword buffer A aremapped to transmission
symbols and transmitted to the channel, and these are followed sequentially by the
symbols output from the codeword buffer C which are also mapped to transmission
symbols and transmitted to the channel as shown in Fig. 16.2.

After transmission through the communications medium each concatenated
mapped codeword is received as the received vector, denoted as Rcat and given
by

Rcat = |Ru |Ru+v| = |Ru |Rw|. (16.2)

Codeword Cv is decoded first as shown in Fig. 16.3. It is possible by comparing the
received samplesRu with the received samplesRu+v that the a priori log likelihoods
of the symbols ofRv may be determined, since it is clear that the difference between
the respective samples, in the absence of noise and distortion, is attributable to Cv.
This is done by the soft decision metric calculator shown in Fig. 16.3.

Binary codeword symbols are considered with values which are either 0 or 1.
The ith transmitted sample, Xui = (−1)Cui and the n1 + ith transmitted sample,
Xui+vi = (−1)Cui × (−1)Cvi . It is apparent that Xvi and Cvi may be derived from Xui
and Xui+vi .

An estimate of Xvi and Cvi may be derived from Rui and Rui+vi . First:

Xvi = Xui × Xui+vi = (−1)Cui × (−1)Cui × (−1)Cvi = (−1)Cvi (16.3)

Second, in the absence of distortion andwithGaussian distributed additive noise with
standard deviation σ , and normalised signal power, the log likelihood that Cvi = 0,
Llog(Cvi = 0) is given by

L log(Cvi = 0) = log

[
cosh

(
Rui + Rui+vi

σ 2

)]
− log

[
cosh

(
Rui − Rui+vi

σ 2

)]
.

(16.4)
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Fig. 16.3 Decoder for the concatenated code with the codeword format shown in Fig. 16.1

The soft decision metric calculator, shown in Fig. 16.3, calculates these log likeli-
hoods according to Eq. (16.4) and these are input to the decoder A shown in Fig. 16.3.
The decoder A determines the most likely codewordCv̂ of the (n1, k2, d2) code.With
the knowledge of the detected codeword, Cv̂, the received samples Ru+v, which are
stored in the n1 symbols buffer B, are remapped to form Rû by multiplying Ru+v

byXv̂.

Rû = Ru+v ×Xv̂. (16.5)

This remapping function is provided by the remapper shown in Fig. 16.3. The output
of the remapper isRû . If the decoder’s output is correct, Cv̂ = Cv and there are now
two independent received versions of the transmitted, mapped codeword Cu ,Rû and
the original received Ru . Both of these are input to the soft metric combiner shown
in Fig. 16.3, Rû from the output of the remapper and Ru from the output of the n1
symbols buffer A.

The soft metric combiner calculates the log likelihood of each bit of Cu , Cui from
the sum of the individual log likelihoods:

L log(Cui = 0) = 2Rui

σ 2
+ 2Rûi

σ 2
. (16.6)

These log likelihood values, L log(Cui = 0), output from the soft metric combiner
shown in Fig. 16.3 are input to the decoder B. The output of Decoder B is the k1
information bits of the detected codeword Cû of the (n1, k1, d1) code, and these
are input to the information symbols buffer shown in Fig. 16.3. The other input to
the information symbols buffer is the k2 information bits of the detected codeword
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Fig. 16.4 Format of transmitted codeword consisting of three shorter codewords

Cv̂ of the (n1, k2, d2) code, provided at the output of decoder A. The output of the
information symbols buffer, for each received vector, is the k1 + k2 information
bits which were originally encoded, provided both decoders’ outputs, A and B, are
correct.

In similar fashion to previous constructions, Fig. 16.4 shows the format of a con-
catenated codeword of length 4× n1 symbols consisting of three shorter codewords.
The codeword of length 2× n1 from a (2n1, k1, d1), code u, denoted as Cu is repli-
cated as shown in Fig. 16.4. The first half of the replicated codeword, Cu , is added
to the codeword Cv1 and the second half of the replicated codeword, Cu , is added to
the codeword Cv2, as shown in Fig. 16.4. Each codeword Cv1 and Cv2 is the result of
encoding k2 information symbols using code v, a (n1, k2, d2) code. The concatenated
codeword that results, Ccat , is from a (4n1, k1 + 2k2, d3) concatenated code where
d3 is the smaller of 2d1 or d2.

The decoder for the concatenated code with codeword format shown in Fig. 16.4
is similar to the decoder shown in Fig. 16.3 except that following soft decision metric
calculation each of the two codewords Cv1 and Cv2 are decoded independently. With
the knowledge of the detected codewords, Cv̂1 and Cv̂2 , the received samplesRu+v1 ,
which are buffered, are remapped to form the first n1 symbols ofRû by multiplying
Ru+v1 by Xv̂1 and the second n1 symbols of Rû are obtained by multiplying Ru+v2
byXv̂2 .The two independent received versions of the transmitted, mapped codeword
Cu , Rû and the original received Ru are input to a soft metric combiner prior to
decoding the codeword Cû .

In another code arrangement, Fig. 16.5 shows the format of a concatenated code-
word of length 3 × n1 symbols. The concatenated codeword is the result of three
layers of concatenation. A codeword of length n1 from a (n1, k1, d1), code u, denoted
asCu is replicated twice, as shown in Fig. 16.5. A second codeword of length n1 from
a (n1, k2, d2), code v, denoted as Cv is replicated and each of these two codewords is
added to the two replicated codewords Cu , as shown in Fig. 16.5. A third codeword
of length n1 from a (n1, k3, d3), code w, denoted as Cw is added to the codeword
summation Cu +Cv, as shown in Fig. 16.5. The concatenated codeword that results,
Ccat , is from a (3n1, k1 + k2 + k3, d4) concatenated code where d4 is the smallest of
3d1 or 2d2 or d3.
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Fig. 16.5 Format of transmitted codeword consisting of two levels of concatenation and three
shorter codewords

Fig. 16.6 Format of transmitted codeword after two stages of concatenation

The decoder for the three layered concatenated code with codeword format shown
in Fig. 16.5 uses similar signal processing to the decoder shown in Fig. 16.3 with
changes corresponding to the three layers of concatenation. The codeword Cŵ is
decoded first following soft decision metric calculation using theRu+v and Ru+v+w

sections of the received vector. The detected codeword Cŵ is used to obtain two
independent received versions of the transmitted, mapped result of the two code-
words summation Cu+v, R ˆu+v and the original received Ru+v. These are input to a
soft metric combiner and the output is input to the soft decision metric calculation
together with Ru , prior to decoding of codeword Cv̂. With the knowledge of code-
word Cv̂, remapping and soft metric combining is carried out prior to the decoding
of codeword Cû .

Figure16.6 shows the format of a concatenated codeword of length 4× n1 sym-
bols. The concatenated codeword is the result of three layers of concatenation. A
concatenated codeword with the format shown in Fig. 16.1 is replicated and added to
a codeword, Cŵ, of length 2n1 symbols from a (2n1, k3, d3) code to form a codeword
of an overall concatenated code having parameters (4n1, k1 + k2 + k3, d4), where d4
is equal to the smallest of 4d1, 2d2 or d3.

The decoder for the three layered concatenated code with codeword format shown
in Fig. 16.6 is similar to the decoder described above. Codeword Cŵ is detected
first following soft decision metric calculation using Ru and Ru+v sections of the
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received vector as one input and theRu+w andRu+v+w sections of the received vector
as the other input. The detected codeword Cŵ is used to obtain two independent
received versions of the concatenated codeword of length 2n1 symbols with format
equal to that of Fig. 16.1. Accordingly, following soft metric combining of the two
independent received versions of the concatenated codeword of length 2n1 symbols,
a vector of length equal to 2n1 symbols is obtained which may be input to the
concatenated code decoder shown in Fig. 16.3. This decoder provides at its output
the k1 + k2 detected information symbols which together with the k3 information
symbols already detected provide the complete detected output of the overall three
layer concatenated code.

Any type of code, binary or non-binary, LDPC, Turbo or algebraically constructed
code, may be used. Any corresponding type of decoder, for example an iterative
decoder or a list decoder may be used. As an illustration of this, Decoder A and
Decoder B, shown in Fig. 16.3, do not have to be the same type of decoder.

There are particular advantages in using the modified Dorsch decoder, described
in Chap.15, because the Dorsch decoder may realise close to maximum likelihood
decoding, with reasonable complexity of the decoder. The complexity increases
exponentially with codelength. Using modified Dorsch decoders. Both decoder A
and decoder B shown in Fig. 16.3 operate on n1 received samples and may realise
close to maximum likelihood decoding with reasonable complexity even though the
concatenated codelength is 2×n1 symbols and the total number of received samples
is 2×n1 samples. Using a single modified Dorsch decoder to decode the 2×n1 sam-
ples of the concatenated code directly will usually result in non-maximum likelihood
performance unless the list of codewords evaluated for each received vector is very
long. For example, a modified Dorsch decoder with moderate complexity, typically
will process 100,000 codewords for each received vector and realise near maximum
likelihood performance. Doubling the codelength will require typically in excess of
100,000,000 codewords to be processed for each received vector if near maximum
likelihood performance is to be maintained.

An example of the performance that may be achieved is shown in Fig. 16.7 for the
concatenated codeword format shown in Fig. 16.1. The encoder used is the same as
that shown in Fig. 16.2 and the concatenated code decoder is the same as that shown
in Fig. 16.3. The results were obtained by computer simulation using Quaternary
Phase Shift Keying (QPSK) modulation and featuring the Additive White Gaussian
Noise (AWGN) channel. The decoder error rate, the ratio of the number of incorrect
codewords output by the decoder to the total number of codewords output by the
decoder, is denoted by the Frame Error Rate (FER) and this is plotted against Eb

No
,

the ratio of the energy per information bit to the noise power spectral density. Binary
codes are used and the length of the concatenated code is 256 bits. For best results,
it is important to use outstanding codes for the constituent codes, particularly for
code v which is decoded first. In this example, code u is the (128,92,12) extended
Bose Chaudhuri Hocquenghem (BCH) code. Code v is the (128,36,36) extended
cyclic code, an optimum code described in [5] by D. Schoemaker and M. Wirtz.
The (128,36,36) extended cyclic code is not an extended BCH code as it has roots
{1, 3, 5, 7, 9, 11, 13, 19, 21, 27, 43, 47, 63}. The minimum Hamming distance

http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 16.7 The error rate performance for a (256,128,24) concatenated code compared to iterative
decoding of a (256,128,15) Turbo code and a (256,128,12) LDPC code

of the concatenated code is 2d1 = 24. Both decoder A and decoder B, as shown
in Fig. 16.3, are a modified Dorsch decoder and for both code u and code v, near
maximum likelihood performance is obtained with moderate decoder complexity.
For each point plotted in Fig. 16.7, the number of codewords transmitted was chosen
such that were at least 100 codewords decoded in error.

Also shown inFig. 16.7 is the performance of codes anddecoders designed accord-
ing to the currently known state of the art in error-correction coding that is Low
Density Parity Check (LDPC) codes using Belief Propagation (BP) iterative decod-
ing, and Turbo codes with BCJR iterative decoding. Featured in Fig. 16.7 is the
performance of an optimised Low Density Parity Check (LDPC) (256,128,12) code
using BP, iterative decoding and an optimised (256,128,15) Turbo code with iter-
ative decoding. As shown in Fig. 16.7 both the (256,128,15) Turbo code and the
(256,128,12) LDPC code suffer from an error floor for Eb

No
values higher than 3.5dB

whilst the concatenated code features a FER performance with no error floor. This is
attributable to the significantly higher minimum Hamming distance of the concate-
nated code which is equal to 24 in comparison to 15 for the Turbo code and 12 for
the LDPC code. Throughout the entire range of Eb

No
values the concatenated code can

be seen to outperform the other codes and decoders.
For (512,256) codes, using the concatenated code arrangement, the performance

achievable is shown in Fig. 16.8. The concatenated code arrangement uses the
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Fig. 16.8 Comparison of the error rate performance for a (512,256,32) concatenated code compared
to iterative decoding of a (512,256,18) Turbo code and a (512,256,14) LDPC code

concatenated codeword format which is shown in Fig. 16.4. As before, the FER
results were obtained by computer simulation using QPSK modulation and the
AWGN channel. Both codes v1 and v2 are the same and equal to the outstanding
(128,30,38) best-known code [6]. Code u is equal to a (256,196,16) extended cyclic
code. Featured in Fig. 16.8 is the performance of an optimised Low Density Par-
ity Check (LDPC) (512,256,14) code using BP iterative decoding and an optimised
(512,256,18) Turbo code with iterative decoding. For each point plotted in Fig. 16.8,
the number of codewords transmitted was chosen such that were at least 100 code-
words decoded in error. As shown in Fig. 16.8 both the (512,256,18) Turbo code
and the (512,256,14) LDPC code suffer from an error floor for Eb

No
values higher

than 3.4dB whilst the concatenated code features a FER performance with no error
floor. As before this is attributable to the significantly higher minimum Hamming
distance of the concatenated code which is equal to 32 in comparison to 18 for the
Turbo code and 14 for the LDPC code. Throughout the entire range of Eb

No
values, the

concatenated code system can be seen to outperform the other coding arrangements
for (512,256) codes.
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16.3 Concatenated Coding and Modulation Formats

With the |u|u + v| code construction and binary transmission, the received vector
for the codeword of code v suffers the full interference from the codeword of code
u because it is transmitted as u + v. The interference is removed by differential
detection using the first version of the codeword of code u. However, although the
effects of codeu are removed, differential detection introduces additional noise power
due to noise times noise components. One possible solution to reduce this effect is
to use multi-level modulation such as 8-PSK. Code u is transmitted as 4-PSK and
code vmodulates the 4-PSK constellation by±22.5 degrees. Now there is less direct
interference between code u and code v. Initial investigations show that this approach
is promising, particularly for higher rate systems.

16.4 Summary

Concatenation of good codes is a classic method of constructing longer codes which
are good. As codes are increased in length, it becomes progressively harder to realise
a near maximum likelihood decoder. This chapter presented a novel concatenated
code arrangement featuring multiple near maximum likelihood decoders for an opti-
mised matching of codes and decoders. It was demonstrated that by using some
outstanding codes as constituent codes, the concatenated coding arrangement is able
to outperform the best LDPC and Turbo coding systems with the same code para-
meters. The performance of a net (256,128) code achieved with the concatenated
arrangement is compared to a best (256,128) LDPC code and a best (256,128) Turbo
code. Similarly, the performance of a (512,256) net concatenated code is compared
to a best (512,256) LDPC code and a best (512,256) Turbo code. In both cases, the
new system was shown to outperform the LDPC and Turbo systems. To date, for
the AWGN channel and net, half rate codes no other codes or coding arrangement is
known that will outperform the system presented in this chapter for codes of lengths
256 and 512 bits.
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Part IV
Applications

This part is concerned with a wide variety of applications using error-correcting
codes. Analysis is presented of combined error-detecting and error-correcting codes
which enhance the reliability of digital communications by using the parity check bits
for error detection aswell as using the parity check bits for error-correction.Aworked
example of code construction for a (251, 113, 20) incremental redundancy error-
correcting code is described. The idea is that additional sequences of parity bits may
be transmitted in stages until the decoded codeword satisfies a Cyclic Redundancy
Check (CRC). A soft decision scheme for measuring codeword reliability is also
described which does not require a CRC to be transmitted. The relative performance
of the undetected error rate and throughput of the different systems is presented.

In this part it is also shown that error-correcting codes may be used for the auto-
matic correction of small errors in password authentication systems or in submitting
personal identification information. An adaptive mapping of GF(q) symbols is used
to convert a high percentage of passwords into Reed–Solomon codewords without
the need for additional parity check symbols. It is shown that a BCH decoder may be
used for error-correction or error detection.Worked examples of codes and passwords
are included.

Goppa codes are used as the basis of a public key cryptosystem invented by Pro-
fessor Robert McEliece. The way in which Goppa codes are designed into the cryp-
tosystem is illustrated with step by step worked examples showing how a ciphertext
is constructed and subsequently decrypted. The cryptosystem is described in con-
siderable detail together with some proposed system variations designed to reduce
the ciphertext length with no loss in security. An example is presented in which the
system realises 256 bits of security, normally requiring a ciphertext length of 8192
bits, that uses a ciphertext length of 1912 bits.

Different attacks, designed to break the McEliece cryptosystem are described
including the information set decoding attack. Analysis is provided showing the
security level achieved by the cryptosystem as a function of Goppa code length.
Vulnerabilities of the standard McEliece to chosen plaintext and chosen ciphertext
attacks are described, together with system modifications that defeat these attacks.
Some commercial applications are described that are based on using a smartphone
for secure messaging and cloud based, encrypted information access.
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The use of error-correcting codes in impressing watermarks on different media by
using dirty paper coding is included in this part. The method described, is based on
firstly decoding themedia or white noise with a cross correlating decoder so as to find
sets of codewords from a given code that will cause minimum change to the media,
but still be detectable. The best codewords are added to the media as a watermark so
as to convey additional information as in steganography. Some examples are included
using a binary (47, 24, 11) quadratic residue code.



Chapter 17
Combined Error Detection
and Error-Correction

17.1 Analysis of Undetected Error Probability

Let the space of vectors over a field with q elements Fq of length n be denoted by Fn
q .

Let [n, k, d]q denote a linear code over Fq of length n symbols, dimension k symbols
and minimum Hamming distance d. We know that a code with minimum Hamming
distance d can correct t = �(d−1)/2� errors. It is possible for an [n, k, d = 2t+1]q
linear code, which has qn−k syndromes, to use a subset of these syndromes to correct
τ < t errors and then to use the remaining syndromes for error detection. For
convenience, let C denote an [n, k, d]q linear code with cardinality |C |, and let a
codeword of C be denoted by cl = (cl,0, cl,1, . . . , cl,n−1), where 0 ≤ l < |C |.

Consider a codeword ci , for some integer i , which is transmitted over a q-ary
symmetric channel with symbol transition probability p/(q − 1). At the receiver, a
length n vector y is received. This vector y is not necessarily the same as ci and,
denoting dH (a, b) as the Hamming distance between vectors a and b, the follow-
ing possibilities may occur assuming that nearest neighbour decoding algorithm is
employed:

1. (no error) dH ( y, ci ) ≤ τ and y is decoded as ci ;
2. (error) dH ( y, c j ) > τ for 0 ≤ j < |C |; and
3. (undetected error) dH ( y, c j ) ≤ τ for j �= i and y is decoded as c j

Definition 17.1 A sphere of radius t centered at a vector v ∈ F
n
q , denoted by Stq(v),

is defined as

Stq(v) = {w | wtH (v − w) ≤ t for all w ∈ F
n
q}. (17.1)

It can be seen that, in an error-detection-after-correction case, Sτ
q (c)may be drawn

around all |C | codewords of the code C . For any vector falling within Sτ
q (c), the

decoder returns c the corresponding codeword which is the center of the sphere. It
is worth noting that all these |C | spheres are pairwise disjoint, i.e.
© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_17
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⋃

0≤i, j<|C |
i �= j

Sτ
q (ci ) ∩ Sτ

q (c j ) = ∅.

In a pure error-detection scenario, the radius of these spheres is zero and the proba-
bility of an undetected error is minimised. When the code is used to correct a given
number of errors, the radius increases and so does the probability of undetected error.

Lemma 17.1 The number of length n vectors over Fq of weight j within a sphere
of radius τ centered at a length n vector of weight i , denoted by N τ

q (n, i, j), is equal
to

N τ
q (n, i, j) =

eU∑

e=eL

δU∑

δ=δL

(
i

e

)(
e

δ

)(
n − i

j − i + δ

)
(q − 1) j−i+δ(q − 2)e−δ (17.2)

where eL = max(0, i − j), eU = min(τ, τ + i − j), δL = max(0, i − j) and
δU = min(e, τ + i − j − e, n − j).

Proof Let u be a vector of weight i and let sup(u) and sup(u) denote the support of
u, and the non-support of u, respectively, that is

sup(u) = {i | ui �= 0, for 0 ≤ i ≤ n − 1}
sup(u) = {0, 1, . . . , n − 1}\ sup(u).

A vector of weight j , denoted by v, may be obtained by adding a vector w, which
has e coordinates which are the elements of sup(u) and f coordinates which are the
elements of sup(u). In the case where q > 2, considering the coordinates in sup(u),
it is obvious that vector v = u + w can have more than i − e non-zeros in these
coordinates. Let δ, where 0 ≤ δ ≤ e, denote the number of coordinates for which
vi = 0 among sup(u) of v, i.e.

δ = | sup(u)\ (sup(u) ∩ sup(v)) |

Given an integer e, there are
(i
e

)
ways to generate e coordinates for which wi �= 0

where i ∈ sup(u). For each way, there are
( e
e−δ

)
(q − 2)e−δ ways to generate e − δ

non-zeros in the coordinates sup(u) ∩ sup(w) such that vi �= 0. It follows that
f = j − (i − e) − (e − δ) = j − i + δ and there are

( n−i
j−i+δ

)
(q − 1) j−i+δ ways to

generate f non-zero coordinates such that vi �= 0 where i ∈ sup(u). Therefore, for
given integers e and δ, we have

(
i

e

)(
e

δ

)(
n − i

j − i + δ

)
(q − 1) j−i+δ(q − 2)e−δ (17.3)

vectors w that produce wtH (v) = j . Note that
( e
e−δ

) = (e
δ

)
.
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It is obvious that 0 ≤ e, f ≤ τ and e + f ≤ τ . In the case of j ≤ i , the integer e
may not take the entire range of values from 0 to τ , it is not possible to have e < i− j .
On the other hand, for j ≥ i , the integer e ≥ 0 and thus, the lower limit on the value
of e is eL = max(0, i − j). The upper limit of e, denoted by eU , is dictated by the
condition e + f = τ . For j ≤ i , eU = τ since for any value of e, δ may be adjusted
such that wtH (v) = j . For the case j ≥ i , f ≥ 0 and for any value of e, there exists
at least one vector for which δ = 0, implying eU = τ − f = τ + i − j . It follows
that eU = min(τ, τ + i − j).

For a given value of e, δ takes certain values in the range between 0 and e such
that wtH (v) = j . The lower limit of δ is obvious δL = eL . The upper limit of δ

for j ≥ i case is also obvious, δU = e, since f ≥ 0. For the case j ≤ i , we
have e + f = e + ( j − i + δU ) ≤ τ , implying δU ≤ τ − e + i − j . In addition,
n − i ≥ j − i + δU and thus, we have δU = min(e, τ − e + i − j, n − j).

Corollary 17.1 For q = 2, we have

N τ
2 (n, i, j) =

�(τ+i− j)/2�∑

e=max(0,i− j)

(
i

e

)(
n − i

j − i + e

)
(17.4)

Proof For q = 2, it is obvious that δ = e and 00 = 1. Since e + f ≤ τ and
f = j − i + e, the upper limit of e, eL , becomes eL ≤ �(τ + i − j)/2�.
Theorem 17.1 For an [n, k, d = 2t + 1]q linear code C , the probability of unde-
tected error after correcting at most τ errors, where τ ≤ t , in a q-ary symmetric
channel with transition probability p/(q − 1), is given by

P (τ )
ue (C , p) =

n∑

i=d

Ai

i+τ∑

j=i−τ

N τ
q (n, i, j)

(
p

q − 1

) j

(1 − p)n− j (17.5)

where Ai is the number of codewords of weight i in C and N τ
q (n, i, j) is given in

Lemma 17.1.

Proof An undetected error occurs if the received vector falls within a sphere of
radius τ centered at any codeword C except the transmitted codeword. Without loss
of generality, as the code is linear, the transmission of the all zeros codeword may
be assumed. Consider ci a codeword of weight i > 0, all vectors within Sτ

q (ci ) have
weights ranging from i−τ to i+τ with respect to the transmitted all zeros codeword.
For each weight j in the range, there are N τ

q (n, i, j) such vectors in the sphere.

Following [2], if Bj denotes the number of codewords of weight j inC ⊥, the dual
code of C , A j may be written as

Am = 1

|C ⊥|
n∑

i=0

Bi Pq(n,m, i) (17.6)
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where

Pq(n,m, i) =
m∑

j=0

(−1) j qm− j

(
n − m + j

j

)(
n − i

m − j

)
(17.7)

is a Krawtchouk polynomial. Using (17.6) and (17.7), the probability of undetected
error after error-correction (17.5) may be rewritten in terms of the weight of the
codewords in the dual code.

17.2 Incremental-Redundancy Coding System

17.2.1 Description of the System

The main area of applications is two-way digital communication systems with par-
ticular importance to wireless communication systems which feature packet digital
communications using a two-way communicationsmedium. Inwireless communica-
tions, each received packet is subject to multipath effects and noise plus interference
causing errors in some of the received symbols. Typically forward error-correction
(FEC) is provided using convolutional codes, turbo codes, LDPC codes, or algebraic
block codes and at the receiver a forward error-correction decoder is used to correct
any transmission errors. Any residual errors are detected using a cyclic redundancy
check (CRC) which is included in each transmitted codeword. The CRC is calculated
for each codeword that is decoded from the corresponding received symbols and if
the CRC is not satisfied, then the codeword is declared to be in error. If such an error is
detected, the receiver requests the transmitter by means of a automatic repeat request
(ARQ) either to retransmit the codeword or to transmit additional redundant symbols.
Since this is a hybrid form of error-correction coupled with error-detection feedback
through the ARQmechanism, it is commonly referred to as a hybrid automatic repeat
request (HARQ) system.

The two known forms of HARQ are Chase combining and incremental redun-
dancy (IR). Chase combining is a simplified form of HARQ, wherein the receiver
simply requests retransmission of the original codeword and the received symbols
corresponding to the codeword are combined together prior to repeated decoding
and detection. IR provides for a transmission of additional parity symbols extending
the length of the codeword and increasing the minimum Hamming distance, dmin

between codewords. This results in a lower error rate following decoding of the
extended codeword. The average throughput of such a system is higher than a fixed
code rate system which always transmits codewords of maximum length and redun-
dancy. In HARQ systems, it is a prerequisite that a reliable means be provided to
detect errors in each decoded codeword. A system is described below which is able
to provide an improvement to current HARQ systems by providing a more reliable
means of error detection using the CRC and also provides for an improvement in
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ni = ni−1 + ri

n = nM

n1

r2
r1

rM

k−m

Fig. 17.1 Codeword format for conventional incremental-redundancy ARQ schemes

throughput by basing the error detection on the reliability of the detected codeword
without the need to transmit the CRC.

Figure17.1 shows the generic structure of the transmitted signal for a punctured
codeword system. The transmitted signal comprises the initial codeword followed by
additional parity symbols which are transmitted following each ARQ request up to a
total ofM transmissions for each codeword. All of the different types of codes used in
HARQ systems: convolutional codes, turbo codes, LDPC codes, and algebraic codes
can be constructed to fit into this generic codeword structure. As shown in Fig. 17.1,
the maximum length of each codeword is nM symbols transmitted in a total of M
transmissions resulting from the reception of M − 1 negative ACK’s (NACK’s).
The first transmission consists of m information symbols encoded into a total of
n1 symbols. There are r1 parity symbols in addition to the CRC symbols. This is
equivalent to puncturing the maximum length codeword in the last nM −n1 symbols.
If this codeword is not decoded correctly, a NACK is received by the transmitter,
(indicated either by the absence of an ACK being received or by a NACK signal
being received), and r2 parity symbols are transmitted as shown in Fig. 17.1.

The detection of an incorrect codeword is derived from the CRC in conventional
HARQsystems.After the decoding of the received codeword, theCRC is recalculated
and compared to the CRC symbols contained in the decoded codeword. If there is
no match, then an incorrect codeword is declared and a NACK is conveyed to the
transmitter. Following the second transmission, the decoder has a received codeword
consisting of n1 + r2 symbols which are decoded. The CRC is recalculated and
compared to the decodedCRCsymbols. If there is still nomatch, aNACK is conveyed
to the transmitter and the third transmission consists of the r3 parity symbols and
the net codeword consisting of n1 + r2 + r3 symbols is decoded, and so on. The IR
procedure ends eitherwhen anACK is received by the transmitter orwhen a codeword
of total length nM symbols has been transmitted in a total of M transmissions.

Most conventional HARQ systems first encode the m information symbols plus
CRC symbols into a codeword of length nM symbols, where CM = [nM , k, dM ]
denotes this code. The code CM is then punctured by removing the last nM − nM−1
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ni = ni−1 + ri

n = nM

n1

r1
r2

rM

Fig. 17.2 Codeword format for the incremental-redundancy ARQ scheme without a CRC

symbols to produce a code CM−1 = [nM−1, k, dM−1], the code CM−1 is then punc-
tured by removing the last nM−1 − nM−2 symbols to produce a code CM−2, and so
forth until a code C1 = [n1, k, d1] is obtained. In this way, a sequence of codes
C1 = [n1, k, d1], C2 = [n2, k, d2], . . ., CM = [nM , k, dM ] is obtained. In the first
transmission stage, a codeword C1 is transmitted, in the second transmission stage,
the punctured parity symbols of C2 is transmitted and so on as shown in Fig. 17.1.

An alternative IR code construction method is to produce a sequence of codes
using a generator matrix formed from a juxtaposition of the generator matrices of a
nested block code. In this way, no puncturing is required.

Figure17.2 shows the structure of the transmitted signal. The transmitted signal
format is the same as Fig. 17.1 except that noCRCsymbols are transmitted. The initial
codeword consists only of the m information symbols plus the r1 parity symbols.
Additional parity symbols are transmitted following each ARQ request up to a total
of M transmissions for each codeword. All of the different types of codes used in
HARQ systems: convolutional codes, turbo codes, LDPC codes, and algebraic codes
may be used in this format including the sequence of codes based on a nested block
code construction.

Figure17.3 shows a variation of the system where the k information symbols,
denoted by vector u, are encoded with the forward error-correction (FEC) encoder
into nM symbols denoted as cM which are stored in the transmission controller. In the
first transmission, n1 symbols are transmitted. At the end of the i th stage, a codeword
of total length ni symbols has been transmitted. This corresponds to a codeword of
length nM symbols punctured in the last nM −ni symbols. In Fig. 17.3, the codeword
of length ni is represented as a vector v, which is then passed through the channel to
produce y′ and buffered in the Received buffer as ywhich is forward error-correction
(FEC) decoded in the FEC decoder which produces the most likely codeword c1 and
the next most likely codeword c2.
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Fig. 17.3 The incremental-redundancy ARQ scheme with adjustable reliability without using a
CRC

Let us consider that the IR system has had i transmissions so that a total of ni
symbols have been received and the total length of the transmitted codeword is ni
symbols.

c1 is denoted as

c1 = c10 + c11x + c12x
2 + c13x

3 + c14x
4 + · · · + c1(ni−1)x

ni−1 (17.8)

and c2 is denoted as

c2 = c20 + c21x + c22x
2 + c23x

3 + c24x
4 + · · · + c2(ni−1)x

ni−1 (17.9)

and the received symbols y are denoted as

y = y0 + y1x + y2x
2 + y3x

3 + y4x
4 + · · · + y(ni−1)2x

ni−1 (17.10)

For each decoded codeword, c1 and c2, the squared Euclidean distances d2
E ( y, c1)

and d2
E ( y, c2) respectively are calculated between the codewords and the received

symbols y stored in the Received buffer.
d2
E ( y, c1) is given by

d2
E ( y, c1) =

ni−1∑

j=0

(y j − c1 j )
2 (17.11)

d2
E ( y, c2) is given by

d2
E ( y, c2) =

ni−1∑

j=0

(y j − c2 j )
2 (17.12)



442 17 Combined Error Detection and Error-Correction

The function of the Reliability estimator shown in Fig. 17.3 is to determine how
much smaller is d2

E ( y, c1) compared to d2
E ( y, c2) in order to estimate the likelihood

that the codeword c1 is correct. The Reliability estimator calculates the squared
Euclidean distances d2

E ( y, c1) and d2
E ( y, c2), and determines the difference Δ given

by

Δ = d2
E ( y, c2) − d2

E ( y, c1) (17.13)

Δ is compared to a threshold which is calculated from the minimum Hamming
distance of the first code in the sequence of codes, the absolute noise power, and
a multiplicative constant, termed κ . As shown in Fig. 17.3, Δ is compared to the
threshold by the Comparator. If Δ is not greater than the threshold, c1 is considered
to be insufficiently reliable, and the output of the comparator causes the ACK/NACK
generator to convey a NACK to the transmitter for more parity symbols to be trans-
mitted. If Δ is greater than or equal to the threshold then c1 is considered to be
correct, the output of the comparator causes the ACK/NACK generator to convey an
ACK to the transmitter and in turn, the ACK/NACK generator causes the switch to
close and c1 is switched to the output û. The ACK causes the entire IR procedure to
begin again with a new vector u. The way that Δ works as an indication of whether
the codeword c1 is correct or not. If c1 is correct, then d2

E ( y, c1) is a summation
of squared noise samples only because the signal terms cancel out. The codeword
c2 differs from c1 in a number of symbol positions equal to at least the minimum
Hamming distance of the current code, dmin . With the minimum squared Euclidean
distance between symbols defined as d2

S , Δ will be greater or equal to dmin × d2
S plus

a noise term dependent on the signal to noise ratio. If c1 is not correct d2
E ( y, c1) and

d2
E ( y, c2) will be similar and Δ will be small.
If more parity symbols are transmitted because Δ is less than the threshold, the

dmin of the code increases with each increase of codeword length and provided c1 is
correct, Δ will increase accordingly.

The Reliability measure shown in Fig. 17.3 uses the squared Euclidean distance
but it is apparent that equivalent soft decision metrics including cross-correlation and
log likelihood may be used to the same effect.

In the system shown in Fig. 17.4 a CRC is transmitted in the first transmitted
codeword. The m information symbols, shown as vector u in Fig. 17.4 are encoded
with the CRC encoder to form a total of k symbols, shown as vector x. The k
symbols are encoded by the FEC encoder into nM symbols denoted as cM which
are stored in the transmission controller. In the first transmission, n1 symbols are
transmitted. At the end of the i th stage, a codeword of total length ni symbols has
been transmitted. This corresponds to a codeword of length nM symbols punctured
in the last nM − ni symbols. In Fig. 17.4, the codeword of length ni is represented
as a vector v, which is then passed through the channel to produce y′ and buffered
in the Received buffer as y, which is forward error-correction (FEC) decoded in the
FEC decoder. The FEC decoder produces L codewords with decreasing reliability
as measured by the squared Euclidean distance between each codeword and the
received symbols or as measured by an equivalent soft decision metric such as cross-
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Fig. 17.4 The incremental-redundancy ARQ scheme with adjustable reliability using a CRC

correlation between each codeword and the received symbols. The L codewords are
input to CRC checking which determines the most reliable codeword, c j , which
satisfies the CRC and the next most reliable codeword, cl , which satisfies the CRC.
The Reliability estimator shown in Fig. 17.4 determines the difference, Δ, of the
squared Euclidean distances between codewords c j and cl and the corresponding
received symbols.

Δ is given by

Δ = d2
E ( y, cl) − d2

E ( y, c j ) (17.14)

Δ is compared to a threshold which is calculated from the minimum Hamming
distance of the first code in the sequence of codes, the absolute noise power, and a
multiplicative constant termed κ . As shown in Fig. 17.4,Δ is compared to the thresh-
old by the comparator. If Δ is not greater than the threshold, c j is considered to be
insufficiently reliable, and the output of the comparator causes the ACK/NACK gen-
erator to convey aNACK to the transmitter for more parity symbols to be transmitted.
If Δ is greater than or equal to the threshold then c j is considered to be correct, the
output of the comparator causes the ACK/NACK generator to convey an ACK to the
transmitter and in turn, the ACK/NACK generator causes the switch to close and c j
is switched to the output û. The ACK causes the entire IR procedure to begin again
with a new vector u.

The Reliability measure shown in Fig. 17.4 uses the squared Euclidean distance
but it is apparent that equivalent soft decision metrics including cross correlation and
log likelihood ratios may be used to the same effect.
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17.2.1.1 Code Generation Using Nested Block Codes

If C is a cyclic code, then there exists a generator polynomial g(x) ∈ F2[x] and a
parity-check polynomial h(x) ∈ F2[x] such that g(x)h(x) = xn1 − 1. Two cyclic
codes, C1 with g1(x) as the generator polynomial and C2 with g2(x) as the generator
polynomial, are said to be chained or nested, if g1(x)|g2(x), and we denote them by
C1 ⊃ C2. With reference to this definition, it is clear that narrow-sense BCH codes
of the same length form a chain of cyclic codes. Given a chain of two codes, using
a code construction method known as Construction X, a construction method first
described by Sloane et al. [5], the code with larger dimension can be lengthened to
produce a code with increased length and minimum distance.

A generalised form of Construction X involves more than two codes. Let Bi be
an [n1, ki , di ] code, given a chain of M codes, B1 ⊃ B2 ⊃ · · · ⊃ BM , and a set
of auxiliary codes Ai = [n′

i , k
′
i , d

′
i ], for 1 ≤ i ≤ M − 1, where k ′

i = k1 − ki , a
code CX = [n1 + ∑M−1

i=1 n′
i , k1, d] can be constructed, where d = min{dM , dM−1 +

d ′
M−1, dM−2 + d ′

M−2 + d ′
M−1, . . . , d1 + ∑M−1

i=1 d ′
i }.

Denoting z as a vector of length n1 formed by the first n1 coordinates of a codeword
of CX . A codeword of CX is a juxtaposition of codewords ofBi and Ai , where

( bM | 0 | 0 | . . . | 0 | 0 ) if z ∈ BM ,
( bM−1 | 0 | 0 | . . . | 0 | aM−1 ) if z ∈ BM−1,
( bM−2 | 0 | 0 | . . . | aM−2 | aM−1 ) if z ∈ BM−2,

...
...

( b2 | 0 | a2 | . . . | aM−2 | aM−1 ) if z ∈ B2,
( b1 | a1 | a2 | . . . | aM−2 | aM−1 ) if z ∈ B1,

where bi ∈ Bi and ai ∈ Ai .

17.2.1.2 Example of Code Generation Using Nested Block Codes

There exists a chain of extended BCH codes of length 128 bits,

B1 = [128, 113, 6] ⊃ B2 = [128, 92, 12] ⊃ B3 = [128, 78, 16] ⊃
B4 = [128, 71, 20].

Applying Construction X to [128, 113, 6] ⊃ [128, 92, 12] with an [32, 21, 6]
extended BCH code as auxiliary code, a [160, 113, 12] code is obtained, giving

[160, 113, 12] ⊃ [160, 92, 12] ⊃ [160, 78, 16] ⊃ [160, 71, 20].

Additionally, using a [42, 35, 4] shortened extended Hamming code as the auxiliary
code in applying Construction X to [160, 113, 12] ⊃ [160, 78, 16], giving
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[202, 113, 16] ⊃ [202, 92, 16] ⊃ [202, 78, 16] ⊃ [202, 71, 20].

Finally, applying Construction X to [202, 113, 16] ⊃ [202, 71, 20] with the short-
ened extended Hamming code [49, 42, 4] as the auxiliary code, giving

[251, 113, 20] ⊃ [251, 92, 20] ⊃ [251, 78, 20] ⊃ [251, 71, 20].

The resulting sequence of codes which are used in this example are [128, 113, 6],
[160, 113, 12], [202, 113, 16] and [251, 113, 20].

The generator matrix of the last code, the [251, 113, 20] code is given by

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I71 −R4 0 0 0

I7 −R3 GA3

0 I14 −R2 GA2

I21 −R1 GA1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17.15)

On the left hand side of the double bar, the generator matrix of the code B1 is
decomposed along the chainB1 ⊃ B2 ⊃ B3 ⊃ B4. The matricesGAi , for 1 ≤ i ≤
3 are the generator matrices of the auxiliary codes Ai .

This generatormatrix is used to generate each entire codeword of lengthnM = 251
bits, but these bits are not transmitted unless requested. The first 128 bits of each
entire codeword are selected to form the codeword of the code [128, 113, 6] and are
transmitted first, bit 0 through to bit 127. The next transmission (if requested by the
IR system) consists of 32 parity bits. These are bit 128 through to bit 159 of the
entire codeword. These 32 parity bits plus the original 128 bits form a codeword
of the [160, 113, 12] code. The next transmission (if requested by the IR system)
consists of 42 parity bits. These are bit 160 through to bit 201 of the entire code-
word. These 42 parity bits plus the previously transmitted 160 bits form a codeword
from the [202, 113, 16] code. The last transmission (if requested by the IR sys-
tem) consists of 49 parity bits. These are the last 49 bits, bit 202 through to bit
250, of the entire codeword. These 49 parity bits plus the previously transmitted
202 bits form a codeword from the [251, 113, 20] code. The sequence of increasing
length codewords with each transmission (if requested by the IR system) has a min-
imum Hamming distance which starts with 6, increases from 6 to 12, then to 16 and
finally, to 20. In turn this will produce an increasing reliability given by Eq. (17.13)
or (17.14) depending on the type of system.
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A completely different method of generating nested codes is to use the external
parity checks, augmentation method first suggested by Goppa in which independent
columns are added incrementally to the parity-checkmatrix. Themethod is described
in detail in Chap.6 and can be applied to any Goppa or BCH code.

In order to be used in the HARQ systems, a FEC decoder is needed that will
decode these nested block codes. One such universal decoder is the modified Dorsch
decoder described in Chap. 15 and results using this decoder are presented below.

17.2.1.3 List Decoder for Turbo and LDPC Codes

If LDPC or turbo codes are to be used, the HARQ system needs a decoder that pro-
vides several codewords at its output in order that the difference between the squared
Euclidean distances (or an equivalent soft decision metric) of the most likely trans-
mitted codeword and the next most likely transmitted codeword may be determined
and compared to the threshold. For turbo codes, the conventional decoder is not a
list decoder but Narayanan and Stuber [3] show how a list decoder may be provided
for turbo codes. Similarly for LDPC codes, Kristensen [1] shows how a list decoder
may be provided for LDPC codes.

17.2.1.4 Performance Results Using the Nested Codes

Computer simulations using the nested codes constructed above have been carried
out featuring all three HARQ systems. These systems include the traditional HARQ
system using hard decision checks of the CRC and the two new systems featuring
the soft decision, decoded codeword/received vector check, with or without a CRC.
All of the simulations of the three systems have been carried out using a modified
Dorsch decoder as described in Chap.15. Themodified Dorsch decoder can be easily
configured as a list decoder with hard and soft decision outputs.

For each one of the nested codes, the decoder exhibits almost optimummaximum
likelihood performance by virtue of its delta correlation algorithm corresponding to
a total of 106 codewords, that are closest to the received vector, being evaluated each
time there is a new received vector to input. Since the decoder knows which of the
nested codes it is decoding, it is possible to optimise the settings of the decoder for
each code.

For the CRC cases, an 8 bit CRC polynomial (1 + x)(1 + x2 + x5 + x6 + x7)
was used, the 8 CRC bits being included in each codeword. It should be noted that
in calculating the throughput these CRC bits are not counted as information bits.
In the CRC cases, there are 105 information bits per transmitted codeword. In the
computer simulations, an ACK is transmitted if Δ is greater than threshold or there
have been M IR transmissions, otherwise a NACK is transmitted.

The traditional HARQ system using a CRC is compared to the new system not
using a CRC in Figs. 17.5 and 17.6. The comparative frame error rate (FER) perfor-
mance is shown in Fig. 17.5 and the throughput is shown in Fig. 17.6 as a function

http://dx.doi.org/10.1007/978-3-319-51103-0_6
http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 17.5 The error rate performance in comparison to the classical HARQ scheme using a CRC

of the average Eb
No

ratio. The traditional CRC approach shows good throughput, but
exhibits an early error-floor of the FER, which is caused by undetected error events.
The FER performance shows the benefit of having increased reliability of error detec-
tion compared to the traditional CRC approach. Two threshold settings are provided
using the multiplicative constant κ and the effects of these are shown in Figs. 17.5
and 17.6. It is apparent from the graphs that the threshold setting may be used to
trade-off throughput against reduced FER. The improvements in both throughput
and FER provided by the new HARQ systems compared to the conventional HARQ
system, featuring a hard decision CRC check, are evident from Figs. 17.5 and 17.6.

The comparative FER performance and throughput with a CRC compared to not
using a CRC is shown in Figs. 17.7 and 17.8 for the new system where the threshold
is fixed by κ = 1. The new system using a CRC shows an improvement in FER,
Fig. 17.7, over the entire range of average Eb

No
and an improvement in throughput,

Fig. 17.8, also over the entire range of average Eb
No

compared to the traditional HARQ
approach using a CRC.
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Fig. 17.6 The throughput performance without using a CRC in comparison to the classical HARQ
scheme using a CRC
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17.3 Summary

This chapter has discussed the design of codes and systems for combined error
detection and correction, primarily aimed at applications featuring retransmission of
data packets which have not been decoded correctly. Several such Hybrid Automatic
ReQuest, HARQ, systems have been described including a novel system variation
which uses a retransmission metric based on a soft decision; the Euclidean distance
between the decoded codeword and the received vector. It has been shown that a
cyclic redundancy check, CRC, is not essential for this system and need not be
transmitted.

It has also been shown how to construct the generator matrix of a nested set of
block codes of length 251 bits by applying Construction X three times in succession
starting with an extended BCH (128, 113, 6) code. The resulting nested codes have
been used as the basis for an incremental-redundancy system whereby the first 128
bits transmitted is a codeword from the BCH code, followed by the transmission of a
further 32 bits, if requested, producing a codeword froma (160, 113, 12) code. Further
requests for additional transmitted bits finally result in a codeword from a (251, 113,
20) code, each time increasing the chance of correct decoding by increasing the
minimumHamming distance of the net received codeword. Performance graphs have
been presented showing the comparative error rate performances and throughputs of
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the new HARQ systems compared to the standard HARQ system. The advantages of
lower error floors and increased throughputs are evident from the presented graphs.
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Chapter 18
Password Correction and Confidential
Information Access System

18.1 Introduction and Background

Following the trend of an increasing need for security and protection of confiden-
tial information, personal access codes and passwords are increasing in length with
the result that they are becoming more difficult to remember correctly. The system
described in this chapter provides a solution to this problem by correcting small
errors in an entered password without compromising the security of the access sys-
tem.Moreover, additional levels of security are provided by the systemby associating
passwords with codewords of an error-correcting code and using a dynamic, user-
specific, mapping of Galois field symbols. This defeats password attacking systems
consisting of Rainbow tables because each user transmits what appears to be a ran-
dom byte stream as a password. A description of this system was first published by
the authors as a UK patent application in 2007 [1].

The system is a method for the encoding and decoding of passwords and the
encoding and decoding of confidential information which is accessed by use of these
passwords. Passwords may be composed of numbers and alphanumeric characters
and easily remembered names, phrases or notable words are the most convenient
from the point of view of users of the system.

Passwords are associated with the codewords of an error-correcting code and
consequently any small number of errors of an entered password may be automati-
cally corrected. Several additional parity symbols may be calculated by the system
to extend the password length prior to hashing so as to overwhelm any attacks based
on Rainbow tables. Dynamic mapping of code symbols is used to ensure a password
when first registered by the user is a codeword of the error-correcting code. In this
process sometimes a password, due to symbol contradictions, cannot be a codeword
and an alternative word or phrase, which is a codeword, is offered to the user by the
system. Alternatively, the user may elect to register a different password.

Feedback can be provided to users by the system of the number of errors corrected
for each user, re-entered password. Valid passwords are associated with a subset of
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the totality of all the codewords of the error-correcting code and an entered password,
may be confirmed to the user, as a valid password, or not.

Confidential information, for example Personal Identification Numbers (PIN)s,
bank account numbers, safe combinations, ormore general confidentialmessages, are
encrypted at source and stored as a sequence of encrypted messages. Each encrypted
message is uniquely associated with a cryptographic hash of a valid codeword.
Retrieval of the confidential information is achieved by the user entering a pass-
word which is equal to the corresponding valid password or differs from a valid
password in a small number of character positions. Any small number of errors are
corrected automatically and feedback is provided to the user that a valid password
has been decoded. The valid password is mapped to a single codeword from a very
large number of codewords that comprise the error-correcting code.

On receiving a valid hash, the cloud sends the stored encrypted message that
corresponds to the valid codeword. The encryption key may be derived from the
reconstituted password in conjunction of other user entered credentials, such as a
fingerprint. The retrieved encrypted message is decrypted and the confidential infor-
mation displayed to the user.

Security is provided by the system at a number of different levels. Codewords of
the error-correcting code are composed of a sequence of symbols with each symbol
taken from a set of Galois Field (GF) elements. Any size of Galois Field may be
used provided the number of GF elements is greater or equal to the alphabet of the
language used to construct passwords. The mapping of alphabet characters to GF
elements may be defined uniquely by each user and consequently there are at least
q! possible mappings.

The number of possible codewords of the error-correcting code is extremely large
and typically there can be 10500 possible codewords. The number of valid codewords
in the subset of codewords is typically less than 102 and so the brute force chance of a
randomly selected codeword being a valid codeword is 1

10500 . Even if an attacker, or an
eavesdropper enters a valid codeword, the information that is obtained is encrypted
and the confidential information cannot be retrieved without the encryption key,
which requires the user’s credentials.

One possible application of the system is as an information retrieval app on a
smartphone with encrypted information stored in the cloud. For each registered user
a cloud-based message server has stored a list of cryptographic hashes of valid
codewords of the error-correcting code and an associated list of encrypted messages
or files. The mapping of password characters to codeword GF symbols is carried out
within the user’s smartphone and is not able to be easily accessed by an eavesdropper
or an attacker unless the smartphone is stolen along with user login credentials.
Additionally, the decryption of received encryptedmessages is also carried outwithin
the user’smobile phone. To access a long, hard to remember PINor a long sequence of
cryptic characters, the user can enter the password, which is mapped to a GF symbol
stream, which is automatically corrected by the smartphone before cryptographic
hashing. The hash is encrypted, using a random session key exchanged using public
key cryptography, before being transmitted by the smartphone to the cloud. This
is to prevent replay attacks. If the codeword hash is correct, the cloud transmits
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the corresponding encrypted message or file, together with an acknowledgement.
The user’s smartphone receives the cipher text and decrypts it into the requested
information.

18.2 Details of the Password System

A block diagram of the system showing how user defined passwords are mapped to
sequences of GF symbols, encoded into codewords of an error-correcting code and
associated with encrypted confidential information is shown in Fig. 18.1.

We consider as an example, a system using passwords consisting of sequences of
up to 256 characters long with characters taken from the ANSI (American National
Standards Institute) single byte character set and an error-correcting code which is
a Reed–Solomon (RS) error-correcting code [2] described in Chaps. 7 and 11. RS
codes are MDS codes, constructed from GF(q) field elements. For the finite field
case, q is a prime or a power of a prime. In this example q = 28 and RS codewords
are constructed as sequences of GF(256) symbols. Codewords can be designed to be
any length up to q + 1 symbols long if the doubly extended version of the RS code
is utilised.

In general, any character set may be used in the system and any RS code may
be used provided the sequence of characters is less than or equal to the length of
the error-correcting code and each symbol of the error-correcting code is from an
alphabet size equal or greater than the alphabet size of the character set used to define
passwords. Formaximum security, themapping is chosen by a cryptographic random
number generator, with a seed provided by the user so that there is a high probability
that the resulting mapping table is unique to each user of the information retrieval
system.

It is convenient to use a binary base field and the Galois Field [3], GF(256), that is
used is an extension field consisting of 8 binary GF(2) field elements, generated by
residues of αn, n = 0 to 255 modulo 1+ x2 + x3 + x4 + x8, where 1+ x2 + x3 +
x4 + x8 is an example of a primitive polynomial, plus the zero symbol GF(0).

As an example, the registered password “silver” is considered, whose correspond-
ing sequence of ANSI numbers is

115 105 108 118 101 114

As shown in Fig. 18.1, a mapping table is used to map these numbers to GF(256)
symbols. In this example, the error-correcting code that is used is the (256, 254, 3)
extended RS code which is capable of correcting either two erased symbols or one
erroneous symbol, and the code has 254 information symbols and 2 parity-check
symbols. The first two symbols are chosen as parity-check symbols and denoted
as p1 and p2, respectively. Putting the parity symbols first is convenient because
short codewords can easily by accommodated by assuming any unused information
symbols have value zero and therefore do not affect the parity symbols. A general

http://dx.doi.org/10.1007/978-3-319-51103-0_7
http://dx.doi.org/10.1007/978-3-319-51103-0_11
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codeword of this code as an extended GF(256) RS code is

p1 p2 x1 x2 x3 x4 . . . x254

The general parity-check matrix of an extended RS code with n − k parity-check
symbols is

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1 1
1 α1 α2 . . . αn−1 0
1 α2 α4 . . . α2(n−1) 0
1 α3 α6 . . . α3(n−1) 0
. . . . . . . . . . . . . . .

1 αn−k−1 α2(n−k−1) . . . αn−k−1(n−1) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

To provide more flexibility in symbol mapping, as described below, the generalised
extended RS code may be used with parity-check matrix Hη.

Hη =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

η0 η1 η2 . . . ηn−1 ηn
η0 η1α

1 η2α
2 . . . ηn−1α

n−1 0
η0 η1α

2 η2α
4 . . . ηn−1α

2(n−1) 0
η0 η1α

3 η2α
6 . . . ηn−1α

3(n−1) 0
. . . . . . . . . . . . . . . . . .

η0 η1α
n−k−1 η2α

2(n−k−1) . . . ηn−1α
n−k−1(n−1) 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

The constants η1, η2, η3, . . . ηn may be arbitrarily chosen provided they are non-
zero symbols of GF(q).

With two parity-check symbols, only the first two rows of H are needed and we
may conveniently place the last column first to obtain the reduced echelon parity-
check matrix H2

H2 =
[
1 1 1 1 . . . 1
0 1 α1 α2 . . . αn−1

]

Any pseudo random, one to one, mapping of ANSI numbers to GF(256) symbols
may be used. It is convenient to map always the null character, ANSI number = 32,
to the field element GF(0) otherwise each password would consist of 256 characters
and 256 password characters would have to be entered for each password. With the
null character mapping, a shortened RS codeword is equal to the full length codeword
since any of the GF(0) symbols may be deleted without affecting the parity-check
symbols. Consequently, short passwords may be accommodated very easily.

It is possible to choose a fixed one to one mapping of ANSI numbers to GF(256)
symbols and make this equal for all users but in this case many passwords on first
registering would fail as non-valid passwords, unless arbitrarily assigned characters
are allowed in the parity symbol positions. However, this is an unnecessary con-
straint on the system since codewords and passwords of different users are processed
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independently from each other. Moreover, security is enhanced if each user uses a
different mapping.

In the following example, dynamic mapping is used and the mapping chosen is
such that the information symbols of the RS codeword corresponding to “silver” are
equal to a primitive root α raised to the power corresponding to the ANSI number of
the character of the password in the same respective position as the codeword, except
for the null character which is set to GF(0). As the codeword has parity symbols in
the first two positions, and these symbols are a function of the other symbols in the
codeword, (the information symbols), the mapping of the first two characters needs
to be different. Accordingly, the codeword is

p1 p2 α108 α118 α101 α114 0 . . . 0

From the parity-check matrix H2, the parity-check symbols are given by

p2 =
254∑

i=1

αi xi (18.1)

p1 =
254∑

i=1

xi + p2 (18.2)

After substituting into Eq. (18.2) and then Eq. (18.1), it is found that p1 = α220 and
p2 = α57 and the complete RS codeword corresponding to the defined password
“silver” is

α220 α57 α108 α118 α101 α114 0 . . . 0

The RS codeword encoder is shown in Fig. 18.1 and uses the mapping of defined
password characters to GF(256) symbols as input and outputs to the mapping table,
as shown in Fig. 18.1, the mapping of the parity symbols. Accordingly, the mapping
of the first two characters of the password is that ANSI number 115 is mapped to
α220 and ANSI number 220 is mapped to α115 and the mapping table is updated
accordingly, as indicated in Fig. 18.1 by the two directional vectors. Of course in
order for these mappings to be valid, neither ANSI number 115, nor ANSI number
220, nor GF(256) symbols α220, nor α115 must be already mapped otherwise the
mapping of prior defined passwords will be affected.

As new passwords are defined and new valid codewords calculated, it is rela-
tively straightforward to amend the list of assigned and unassigned mappings of the
mapping table in a dynamic manner. This dynamic mapping assignment is a feature
in that it not only increases the range of possible passwords but has a secondary
advantage. This secondary advantage arises from the mapping of entered passwords
and the subsequent error-correction decoding. Any entered password character not
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having an assigned ANSI number cannot be part of a valid password and accordingly
the corresponding GF(256) symbol is marked as an erased symbol. Since on aver-
age, twice as many erased characters can be corrected by an error-correcting code
compared to the number of correctable erroneous characters, a distinct advantage
arises.

The confidential information corresponding to “silver” is, for example:
“The safe combination is 29 53 77 22” and as shown in Fig. 18.1 confidential infor-
mation input to the system is encrypted using an encryption key. The encryption key
is usually chosen from a master encryption key, unique to each user. Once input, the
confidential information is only retained in encrypted form. The encrypted confiden-
tial information associated with “silver” forms the encrypted text:

AjelMHjq+iw&ndˆfh)y!"16f@h:G#)P7=3Mq|2=0+YX?z/+6sGs+2|Zl

-GWp<)g/,HDZ)H4D7F/j+gFAqYlFcXZPMY6$3"/

As shown in Fig. 18.2, in order to retrieve this confidential information, the user
re-enters their password. However, this entered password is allowed to contain errors.
For example the password “solver” may be entered and has the corresponding ANSI
number sequence:

115 111 108 118 101 114 . . . 32 32 32

Following input of the password, as shown in Fig. 18.2, the mapping table is used
to map the entered password into the GF(256) sequence

α220 α88 α108 α118 α101 α114 0 . . . 0

The decoder for the RS code, as shown in Fig. 18.2, decodes the sequence of GF(256)
symbols, resulting from the mapping using the mapping table, into a codeword of
the error-correcting code. In order to carry this out, two syndromes, s1 and s2, are
calculated from the two parity-check equations for the extended (256, 254, 3) RS
code:

s1 =
254∑

i=1

xi + p2 + p1 (18.3)

s2 =
254∑

i=1

αi xi + p2 (18.4)

The two syndromes, in this case, are found both to be equal to α43 indicating there is
an error in the second information symbol position of the codeword and this error is
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α43. If the same error had been in the third symbol position, say, the two syndromes
would have been equal to α43 and α44.

Subtracting the error, α43, from the entered symbol (after mapping) of α88 pro-
duces the correct GF(256) symbolα57. The codeword of the RS code is thus corrected
to be

α220 α88 α108 α118 α101 α114 0 . . . 0

Applying the inverse mapping to each GF(256) symbol produces the ANSI number
sequence 115 105 108 118 101 114 32 32 32 32…32

115 105 108 118 101 114 32 32 32 32 . . . 32

This corresponds to “silver”, the corrected entered password.
As shown in Fig. 18.2, the decoded codeword is compared to the list of valid

codewords of the error-correcting code. The codewords of the error-correcting code
are split into two groups, the valid codewords and rest of the codewords, invalid
codewords. The codeword

α220 α88 α108 α118 α101 α114 0 . . . 0

is verified as a valid codeword associatedwith the encrypted confidential information:

AjelMHjq+iw&ndˆfh)y!"16f@h:G#)P7=3Mq|2=0+YX?z/+6sGs+2|Zl-GW

p<)g/,HDZ)H4D7F/j+gFAqYlFcXZPMY6$3"/

As shown in Fig. 18.2, this is decrypted, using the encryption key and the confidential
information is output: “The safe combination is 29 53 77 22”

In a further extension of the system, as shown in Fig. 18.3, the encoded RS code-
word, denoted as cx which results from the mapped, defined password is convolved
with a fixed RS codeword denoted as

yx = αy0 + αy1x + αy2x2 + αy3x3 + · · ·αy255x254

Note that the standard polynomial-based RS codes of length q − 1 are used in this
system variation. The fixed RS codeword is the result of encoding a random set of
GF(256) information symbols. The reason for doing this is to ensure that the resulting
codeword after convolution, rx

rx = cx.yx modulo 1+ x255 (18.5)

does not have a long sequence ofGF(0) symbolswhichmay compromise the security
of the information retrieval system. Correspondingly, it is the codeword rx which is
associated with the encrypted message. As shown in Fig. 18.4, retrieval of encrypted
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information is carried out by entering a password. After the decoding of the sequence
of GF(256) symbols resulting from the mapping of the entered password, using
the mapping table, into a codeword of the error-correcting code, this codeword is
convolved with the fixed codeword as shown in Fig. 18.4. The resulting codeword is
compared to the list of valid codewords of the error-correcting code.

One feature, particularly with long passwords hard to remember, is that a partially
known password may be entered, deliberately using characters known not to be
contained in the mapping table, in order for the system to fill in the missing parts of
the password. Characters may be reserved for this purpose. As a simple example, the
password may be entered “si**er” where it is known that the character * will not be
contained in the mapping table, because the character * had been previously defined
as a reserved character. The corresponding codeword is

α220 α88 erase1 erase2 α101 α114 0 . . . 0

where erase1 and erase2 represent erased (unknown)GF(256) symbols. The decoder
for the RS (256,254,3) error-correcting code may be used to solve straightforwardly
for these erased symbols. The first step is to produce a reduced echelon parity-check
matrixwith zeros in the columns corresponding to the positions of the erased symbols,
bar one. The procedure is described in detail in Chap.11.

For two erasures the procedure is trivial and the reduced echelon parity-check
matrix He is

He =
[

1 1 1 1 . . . 1
α1 (1+ α1) 0 (α2 + α1) . . . (αn−1 + α1)

]

Now, the erased symbol erase2 may be solved directly using the second row of He

α220α1 + α88(1+ α1) + erase2(α
2 + α1) + α101(α3 + α1) + α114(α3 + α1) = 0

and

erase2 = (α2 + α1)q−2α221 + α88 + α89 + α104 + α102 + α117 + α115 = α118

Using the first row of He, erase1 can now be solved

α220 + α88 + α118 + erase1 + α101 + α114 = 0

and

erase1 = α220 + α88 + α118 + α101 + α114 = α108

With the reverse mapping the complete password is reconstituted allowing the
encrypted information to be retrieved as before.

http://dx.doi.org/10.1007/978-3-319-51103-0_11
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The advantage of defining erasures is that each unknown symbol may be solved
for each parity symbol in the RS codeword. Having a relatively large number of parity
symbols allows several parts of the entered password to be filled in automatically.
Obviously security is compromised if this procedure is used to extreme.

18.3 Summary

This chapter has described the use ofReed–Solomon codes to correct usermistakes or
missing parts of long entered passwords. The system is ideally suited to a smartphone-
based encrypted, information retrieval system or a password-based authentication
system. Dynamic, user-specific mapping of Galois field elements is used to ensure
that passwords, arbitrarily chosenby the user, are valid codewords.A typical system is
described based onGF(256) and theANSI character set withworked examples given.
Security is also enhanced by having, user-specific, Galois field symbol mapping
because, with long passwords, this defeats Rainbow tables.
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Chapter 19
Variations on the McEliece Public Key
Cryptoystem

19.1 Introduction and Background

In 1978, the distinguished mathematician Robert McEliece invented a public key
encryption system [8] based upon encoding the plaintext as codewords of an error-
correcting code from the family of Goppa [6] codes. In this system, the ciphertext,
sometimes termed the cryptogram, is formed by adding a randomly chosen error
pattern containing up to t bits to each codeword. One or more such corrupted code-
words make up the ciphertext. On reception, the associated private key is used to
invoke an error-correcting decoder based upon the underlying Goppa code to correct
the errored bits in each codeword, prior to retrieval of the plaintext from all of the
information bits present in the decoded codewords.

Since the original invention there have been a number of proposed improvements.
For example, in US Patent 5054066, Riek and McFarland improved the security of
the system by complementing the error patterns so as to increase the number of errors
contained in the cryptogram [14] and cited other variations of the original system.

This chapter is concerned with a detailed description of the original system plus
some refinementswhich enhance the bandwidth efficiency and security of the original
arrangement. The security strength of the system is discussed and analysed.

19.1.1 Outline of Different Variations of the Encryption
System

In the originally proposed system [8] a codeword is generated from plaintext mes-
sage bits by using a permuted, scrambled generator matrix of a Goppa code [6] of
length n symbols, capable of correcting t errors. This matrix is the public key. The
digital cryptogram is formed from codewords corrupted by exactly t randomly, or
t pseudorandomly, chosen bit errors. The security is provided by the fact that it is
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impossible to remove the unknown bit errors unless the original unpermuted Goppa
code, the private key, is known in which case the errors can be removed by correcting
them and then descrambling the information bits in the codeword to recover the orig-
inal message. Any attempt to descramble the information bits without removing the
errors first just results in a scrambled mess. In the original paper by McEliece [8],
the Goppa codeword length n is 1024 and t is 50. The number of possible error
combinations is 3.19 × 1085 equivalent to a secret key of length 284 bits given a
brute force attack. (There are more sophisticated attacks which reduce the equivalent
secret key length and these are discussed later in this chapter.)

In a variation of the original theme, after first partitioning the message into mes-
sage vectors of length k bits each and encoding thesemessage vectors into codewords,
the codewords are corrupted by a combination of bit errors and bit deletions to form
the cryptogram. The number of bit errors in each corrupted codeword is not fixed,
but is an integer s, which is randomly chosen, with the constraint that, s ≤ t. This
increases the number of possible error combinations, thereby increasing the security
of the system. As a consequence 2(t − s) bits may be deleted from each codeword
in random positions adding to the security of the cryptogram as well as reducing its
size, without shortening the message. In the case of the original example, above, with
t
2 ≤ s ≤ t the number of possible error combinations is increased to 3.36× 1085 and
the average codeword in the cryptogram is reduced to 999 bits from 1024 bits.

Most encryption systems are deterministic in which there is a one-to-one cor-
respondence between the message and the cryptogram with no random variations.
Security can be improved through the use of a truly, random integer generator, not
a pseudorandom generator to form the cryptogram. Consequently, the cryptogram
is not predictable or deterministic. Even with the same message and public key, the
cryptogram produced will be different each time and without knowledge of the ran-
dom errors and bit deletions, which may be determined only by using the structure
of the Goppa code, recovery of the original message is practically impossible.

The basic McEliece encryption system has little resistance to chosen-plaintext
(message) attacks. For example, if the same message is encrypted twice and the two
cryptograms are added modulo 2, the codeword of the permuted Goppa code cancels
out and the result is the sum of the two error patterns. Clearly the encryption method
does not provide indistinguishability under chosen-plaintext attack (IND-CPA), a
quality measure used by the cryptographic community.

However, an additional technique may be used which does provide (IND-CPA)
and results in semantically secure cryptograms. The technique is to scramble the
message twice by using a second scrambler. With scrambling the message using the
fixed non-singular matrix contained in the public key as well, a different scrambler is
used to scramble each message in addition. The scrambling function of this second
scrambler is derived from the random error vector which is added to the codeword
to produce the corrupted codeword after encoding using the permuted, scrambled
generator matrix of a Goppa code. As the constructed digital cryptogram is a function
of truly randomly chosen vectors, not pseudorandomly chosen vectors, or a fixed
vector, the security of this public key encryption system is enhanced compared to
the standard system. Even with an identical message and using exactly the same
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public key, the resulting cryptograms will have no similarity at all to any previously
generated cryptograms. This is not true for the standard McEliece public key system
as each codeword will only differ in a maximum of 2t bit positions. Providing this
semantic security eliminates the risk from known plaintext attacks and is useful in
several applications such as in RFID, and these are discussed later in the chapter.

An alternative to using a second scrambler is to use a cryptographic hash function
such as SHA-256 [11] or SHA-3 [12] to calculate the hash of each t bit error pattern
and add, modulo 2, the first k bits of the hash values to the message prior to encoding.
Effectively the message is encrypted with a stream cipher prior to encoding.

Having provided additional message scrambling, it now becomes safe to represent
the generator matrix in reduced echelon form, i.e. a k × k identity matrix followed
by a (n − k) × k matrix for the parity bits. Consequently, the public key may be
reduced in size from a n × k matrix to a (n − k) × k matrix corresponding typically
to a reduction in size of around 65%. This is useful because one of the criticisms of
the McEliece system is the relatively large size of the public keys.

Most attacks on the McEliece system are blind attacks and rely on the assump-
tion that there are exactly t errors in each corrupted codeword. If there are more
than t errors these attacks fail. Consequently, to enhance the security of the system,
additional errors known only to intended recipients may be inserted into the digital
cryptogram so that each corrupted codeword contains more than t errors. A sophis-
ticated method of introducing the additional errors is not necessary since provided
there are sufficient additional errors to defeat decryption based on guessing the posi-
tions of the additional errors the message is theoretically unrecoverable from the
corrupted digital cryptogram even with knowledge of the private key. This feature
may find applications where a message needs to be distributed to several recipients
using the same or different public/private keys at the same time, possibly in a com-
mercial, competitive environment. The corrupted digital cryptograms may be sent
to each recipient arriving asynchronously, due to variable network delays and only
a relatively short secret key containing information of the additional error positions
needs to be sent at the same time to all recipients.

In another arrangement designed to enhance the security of the system, additional
errors are inserted into each codeword in positions defined by a position vector,
which is derived from a cryptographic hash of the previous message vector. Standard
hash functions may be used such as SHA-256 [11] or SHA-3 [12]. The first message
vector can use a position vector derived from a hash or message already known by
the recipient of the cryptogram.

These arrangements may be used in a wide number of different applications
such as active and passive RFID, secure barcodes, secure ticketing, magnetic cards,
message services, email applications, digital broadcasting, digital communications,
video communications and digital storage. Encryption and decryption is amenable
to high speed implementation operating at speeds beyond 1Gbit/s.
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19.2 Details of the Encryption System

The security strength of the McEliece public key encryption system stems from the
fact that a truly random binary error pattern is added to the encoded message as part
of the digital cryptogram. Even with the same message and the same public key a
different digital cryptogram is produced each time. Each message is encoded with
a scrambled, binary mapped, permuted, version of a GF(2m) Goppa code. Without
the knowledge of the particular Goppa code that is used, the error pattern cannot be
corrected and the message cannot be recovered. It is not possible to deduce which
particular Goppa code is being used from the public key, which is the matrix used
for encoding, because this matrix is a scrambled, permuted version of the original
encoding matrix of the Goppa code, plus the fact that for a given m there are an
extremely large number of Goppa codes [8].

Themessage information to be sent, if not in digital form, is digitally encoded into
binary form comprising a sequence of information bits. The method of encryption
is shown in Fig. 19.1. The message comprising a sequence of information bits is
formatted by appending dummy bits as necessary into an integral numberm of binary
message vectors of length k bits each. This is carried out by format into message
vectors shown in Fig. 19.1. Each message vector is scrambled and encoded into a
codeword, n bits long, defined by an error-correcting code which is derived from
a binary Goppa code and a scrambling matrix. The binary Goppa code is derived
from a non-binary Goppa code and the procedure is described below for a specific
example.

The encode using public key shown in Fig. 19.1 carries out the scrambling and
codeword encoding for each message vector by selecting rows of the codeword
generator matrix according to the message bits contained in the message vector. This
operation is described in more detail below for a specific example. The codeword
generator matrix to be used for encoding is defined by the public key which is stored
in a buffer memory, public key shown in Fig. 19.1. As shown in Fig. 19.1, a random
number generator generates a number s internally constrained to be less than or equal
to t and this is carried out by generate number of random errors (s). The parameter
t is the number of bit errors that the Goppa code can correct.

message input
format into
message vectors

add

  generate
random errors

position vector

  format
cryptogram

generate number of
random errors (s)

delete
 bits

encode
using
public key

2( t-s) erasures

public key

Fig. 19.1 Public key encryption system with s random bit errors and 2(t − s) bit deletions
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Fig. 19.2 Random integer generator of the number of added, random bit errors, s

The number of random errors s is input to generate random errorswhich for each
codeword, initialises an n bit buffer memory with zeros, and uses a random number
generator to generate s 1’s in s random positions of the buffer memory. The contents
of the n bit buffer are added to the codeword of n bits by add shown in Fig. 19.1.
The 1’s are added modulo 2 which inverts the codeword bits in these positions so
that these bits are in error. In Fig. 19.1, t − s erasures takes the input s, calculates
2(t−s) and outputs this value to position vector which comprises a buffer memory of
n bits containing a sequence of integers corresponding to a position vector described
below. The first 2(t − s) integers are input to delete bits which deletes the bits in
the corresponding positions of the codeword so that 2(t − s) bits of the codeword
are deleted. The procedure is carried out for each codeword so that each codeword
is randomly shortened due to deleted bits and corrupted with a random number of
bit errors in random positions. In Fig. 19.1, format cryptogram has the sequence of
shortened corrupted codewords as input and appends these together, together with
formatting information to produce the cryptogram.

The highest level of security is provided when the block generate number of
random errors (s) of Fig. 19.1 is replaced by a truly random number generator and
not a pseudorandom generator. An example of a random number generator is shown
in Fig. 19.2.

The differential amplifier with high gain amplifies the thermal noise generated by
the resistor terminated inputs. The output of the amplifier is the amplified random
noise which is input to a comparator which carries out binary quantisation. The
comparator output is 1 if the amplifier output is a positive voltage and 0 otherwise.
This produces 1’s and 0’s with equal probability at the output of the comparator.
The output of the comparator is clocked into a shift register having p shift register
stages, each of delay T . The clock rate is 1

T . After p clock cycles, the contents of the
shift register represent a number in binary which is the random number s having a
uniform probability distribution between 0 and 2p − 1.

One or more of the bits output from the shift register may be permanently set to
1 to provide a lower limit to the random number of errors s. As an example, if the
4th bit (counting from the least significant bits) is permanently set to 1 then s has a
uniform probability distribution between 23 = 8 and 2p − 1.

Similarly, the highest level of security is provided if the positions of the errors
generated by generate random errors of Fig. 19.1 is a truly random number generator
and not a pseudorandom generator. An example of an arrangement which generates
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repeats
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Fig. 19.3 Random integer generator of error positions

truly random positions in the range of 0 to 2m − 1 corresponding to the codeword
length is shown in Fig. 19.3.

As shown in Fig. 19.3, the differential amplifier, with high gain amplifies the
thermal noise generated by the resistor terminated inputs. The output of the amplifier
is the amplified random noise which is input to a comparator which outputs a 1 if the
amplifier output is a positive voltage and a 0 otherwise. This produces 1’s and 0’s
with equal probability at the output of the comparator. The output of the comparator
is clocked into a flip-flop clocked at 1

T , with the same clock source as the shift register
shown in Fig. 19.3, shift register. The output of the flip-flop is a clocked output of truly
random 1’s and 0’s which is input to a nonlinear feedback shift register arrangement.

The output of the flip-flop is input to a modulo 2, adder add which is added to
the outputs of a nonlinear mapping of u selected outputs of the shift register. Which
outputs are to be selected correspond to the key which is being used. The parameter
u is a design parameter, typically equal to 8.

The nonlinear mapping nonlinear mapping shown in Fig. 19.3 has a pseudoran-
dom one-to-one correspondence between each of the 2u input states to each of the 2u

output states. An example of such a one to one correspondence, for u = 4 is given
in Table19.1. For example, the first entry, 0000, value 0 is mapped to 0011, value 3.

The shift register typically has a relatively large number of stages, 64 is a typical
number of stages and a number of tapped outputs, typically 8. The relationship
between the input of the shift register ain and the tapped outputs is usually represented
by the delay operator D. Defining the tap positions as wi, for i = 0 to imax, the input
to the nonlinear mapping nonlinear mapping shown in Fig. 19.3, defined as xi for
i = 0 to imax, is

xi = ainD
wi (19.1)

and the output yj after the mapping function, depicted as M is

yj = M[xi] = M[ainDwi ] (19.2)

The input to the shift register is the output of the adder given by the sum of the
random input Rnd and the summed output of the mapped outputs. Accordingly,
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Table 19.1 Example of
nonlinear mapping for u = 4

0000 → 0011

0001 → 1011

0010 → 0111

0011 → 0110

0100 → 1111

0101 → 0001

0110 → 1001

0111 → 1100

1000 → 1010

1001 → 0000

1010 → 1000

1011 → 0010

1100 → 0101

1101 → 1110

1110 → 0100

1111 → 1101

ain = Rnd +
imax∑

j=0

yj = Rnd +
imax∑

j=0

M[xi] = Rnd +
imax∑

j=0

M[ainDwi ] (19.3)

It can be seen that the shift register input ain is a nonlinear function of delayed outputs
of itself added to the random input Rnd , and so will be a random binary function.

The positions of the errors are given by the output ofm-bit input shown inFig. 19.3,
an m bit memory register and defined as epos. Consider that the first m outputs of
the shift register are used as the input to m-bit input. The output of m-bit input is a
binary representation of a number given by

epos =
m−1∑

j=0

2j × ainD
j (19.4)

Since ain is a random binary function, epos will be an integer between 0 and
2m − 1 randomly distributed with a uniform distribution. As shown in Fig. 19.3,
these randomly generated integers are stored in memory in error positions buffer
memory after eliminate repeats has eliminated any repeated numbers, since repeated
integers will occur from time to time in any independently distributed random integer
generator.

The random bit errors and bit deletions can only be corrected with the knowledge
of the particular non-binary Goppa code, the private key, which is used in deriv-
ing the codeword generator matrix. Reviewing the background on Goppa codes:
Goppa defined a family of codes [6] where the coordinates of each codeword
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{c0, c1, c2, . . . c2m−1} with {c0 = x0, c1 = x1, c2 = x2, . . . c2m−1 = x2m−1} satisfy
the congruence p(z) modulo g(z) = 0 where g(z) is now known as the Goppa poly-
nomial and p(z) is the Lagrange interpolation polynomial.

Goppa codes have coefficients fromGF(2m) and provided g(z) has no roots which
are elements of GF(2m) (which is straightforward to achieve) the Goppa codes have
parameters (2m, k, 2m − k + 1). Goppa codes can be converted into binary codes.
Provided that g(z) has no roots which are elements of GF(2m) and has no repeated
roots, the binary code parameters are (2m, 2m − mt, dmin) where dmin ≥ 2t + 1, the
Goppa code bound on minimum Hamming distance. Most binary Goppa codes have
equality for the bound and t is the number of correctable errors.

For a Goppa polynomial of degree r, there are r parity check equations defined
from the congruence. Denoting g(z) by

g(z) = grz
r + gr−1z

r−1 + gr−2z
r−2 + · · · + g1z + g0 (19.5)

2m−1∑

i=0

ci
z − αi

= 0 modulo g(z) (19.6)

Since Eq. (19.6) is modulo g(z) then g(z) is equivalent to 0, and we can add g(z) to
the numerator. Dividing each term z − αi into 1 + g(z) produces the following

g(z) + 1

z − αi
= qi(z) + rm + 1

z − αi
(19.7)

where rm is the remainder, an element of GF(2m) after dividing g(z) by z − αi.
As rm is a scalar, g(z) may simply be pre-multiplied by 1

rm
so that the remainder

cancels with the other numerator term which is 1.

g(z)
rm

+ 1

z − αi
= qi(z)

rm
+

rm
rm

+ 1

z − αi
= q(z)

rm
(19.8)

As
g(z) = (z − αi)qi(z) + rm (19.9)

When z = αi, rm = g(αi).
Substituting for rm in Eq. (19.8) produces

g(z)
g(αi)

+ 1

z − αi
= qi(z)

g(αi)
(19.10)

Since g(z)
g(αi)

modulo g(z) = 0
1

z − αi
= qi(z)

g(αi)
(19.11)
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The quotient polynomial qi(z) is a polynomial of degree r−1with coefficients which
are a function of αi and the Goppa polynomial coefficients. Denoting qi(z) as

qi(z) = qi,0 + qi,1z + qi,2z
2 + qi,3z

3 + · · · + qi,(r−1)z
r−1 (19.12)

Since the coefficients of each power of z sum to zero the r parity check equations
are given by

2m−1∑

i=0

ciqi,j
g(αi)

= 0 for j = 0 to r − 1 (19.13)

If the Goppa polynomial has any roots which are elements of GF(2m), say αj, then
the codeword coordinate cj has to be permanently set to zero in order to satisfy
the parity check equations. Effectively the codelength is shortened by the number
of roots of g(z) which are elements of GF(2m). Usually the Goppa polynomial is
chosen to have distinct roots which are not in GF(2m).

The security depends upon the number of bit errors added and in practical exam-
ples to provide sufficient security, it is necessary to use long Goppa codes of length
2048 bits, 4096 bits or longer. For brevity, the procedure will be described using an
example of a binary Goppa code of length 32 bits capable of correcting 4 bit errors. It
is important to note that all binary Goppa codes are derived from non-binary Goppa
codes which are designed first.

In this example, the non-binaryGoppa code consists of 32 symbols from theGalois
field GF(25) and each symbol takes on 32 possible values with the code capable of
correcting two errors. There are 28 information symbols and 4 parity check symbols.
(It should be noted that when the Goppa code is used with information symbols
restricted to binary values as in a binary Goppa code, twice as many errors can
be corrected). The non-binary Goppa code has parameters of a (32, 28, 5) code.
There are 4 parity check symbols defined by the 4 parity check equations and the
Goppa polynomial has degree 4. Choosing arbitrarily as the Goppa polynomial, the
polynomial 1 + z + z4 which has roots only in GF(16) and none in GF(32), we
determine qi(z) by dividing by z − αi.

qi(z) = z3 + αiz
2 + α2

i z + (1 + α3
i ) (19.14)

The 4 parity check equations are

31∑

i=0

ci
g(αi)

= 0 (19.15)

31∑

i=0

ciαi

g(αi)
= 0 (19.16)
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31∑

i=0

ciα2
i

g(αi)
= 0 (19.17)

31∑

i=0

ci(1 + α3
i )

g(αi)
= 0 (19.18)

Using the GF(25) Table19.2 to evaluate the different terms for GF(25), the parity
check matrix is

H(32, 28, 5) =

⎡

⎢
⎢
⎣

1 1 α14 α28 α20 α25 . . . α10

0 1 α15 α30 α23 α29 . . . α9

0 1 α16 α1 α26 α2 . . . α8

1 0 α12 α24 α5 α17 . . . α5

⎤

⎥
⎥
⎦ (19.19)

To implement the Goppa code as a binary code, the symbols in the parity check
matrix are replaced with their m-bit binary column representations of each respective
GF(2m) symbol. For the (32, 28, 5) Goppa code above, each of the 4 parity symbols
will be represented as a 5-bit symbol from Table19.2. The parity check matrix will
now have 20 rows for the binary code. TheminimumHamming distance of the binary
Goppa code is improved from r + 1 to 2r + 1. Correspondingly, the example binary
Goppa code becomes a (32, 12, 9) code with parity check matrix:

H(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 0 0 1 . . . 1
0 0 0 1 0 0 . . . 0
0 0 1 1 1 0 . . . 0
0 0 1 0 1 1 . . . 0
0 0 1 1 0 1 . . . 1
0 1 1 0 1 1 . . . 0
0 0 1 1 1 0 . . . 1
0 0 1 0 1 0 . . . 0
0 0 1 0 1 1 . . . 1
0 0 1 1 0 0 . . . 1
0 1 1 1 1 0 . . . 1
0 0 1 0 1 0 . . . 0
0 0 0 0 1 1 . . . 1
0 0 1 0 0 0 . . . 1
0 0 1 0 1 0 . . . 0
1 0 0 0 1 1 . . . 1
0 0 1 1 0 1 . . . 0
0 0 1 1 1 0 . . . 1
0 0 1 1 0 0 . . . 0
0 0 0 1 0 1 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.20)
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Table 19.2 GF(32) non-zero
extension field elements
defined by 1 + α2 + α5 = 0

α0 = 1

α1 = α

α2 = α2

α3 = α3

α4 = α4

α5 = 1 + α2

α6 = α + α3

α7 = α2 + α4

α8 = 1 + α2 + α3

α9 = α + α3 + α4

α10 = 1 + α4

α11 = 1 + α + α2

α12 = α + α2 + α3

α13 = α2 + α3 + α4

α14 = 1 + α2 + α3 + α4

α15 = 1 + α + α2 + α3 + α4

α16 = 1 + α + α3 + α4

α17 = 1 + α + α4

α18 = 1 + α

α19 = α + α2

α20 = α2 + α3

α21 = α3 + α4

α22 = 1 + α2 + α4

α23 = 1 + α + α2 + α3

α24 = α + α2 + α3 + α4

α25 = 1 + α3 + α4

α26 = 1 + α + α2 + α4

α27 = 1 + α + α3

α28 = α + α2 + α4

α29 = 1 + α3

α30 = α + α4

The next step is to turn the parity checkmatrix into reduced echelon form by using
elementary matrix row and column operations so that there are 20 rows representing
20 independent parity check equations for each parity bit. From the reduced echelon
parity check matrix, the generator matrix can be obtained straightforwardly as it is
the transpose of the reduced echelon parity check matrix. The resulting generator
matrix is:
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G(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0 1 1 1 0 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 0 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.21)

It will be noticed that the generator matrix is in reduced echelon form and has 12
rows, one row for each information bit. Each row is the codeword resulting from that
information bit equal to a 1, all other information bits equal to 0.

The next step is to scramble the information bits by multiplying by a k × k non-
singular matrix, that is one that is invertible. As a simple example, the following
12 × 12 matrix is invertible.

NS12×12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 1 1 0 1 0 0 1 1 1
1 0 0 1 1 1 0 1 0 0 1 1
1 1 0 0 1 1 1 0 1 0 0 1
1 1 1 0 0 1 1 1 0 1 0 0
0 1 1 1 0 0 1 1 1 0 1 0
0 0 1 1 1 0 0 1 1 1 0 1
1 0 0 1 1 1 0 0 1 1 1 0
0 1 0 0 1 1 1 0 0 1 1 1
1 0 1 0 0 1 1 1 0 0 1 1
1 1 0 1 0 0 1 1 1 0 0 1
1 1 1 0 1 0 0 1 1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.22)

The above is invertible using the following matrix:

NS−1
12×12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0
0 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.23)
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The next step is to scramble the generator matrix with the non-singular matrix to pro-
duce the scrambled generator matrix given below. The code produced with this gen-
erator matrix has the same codewords as the generator matrix given bymatrix (19.21)
and can correct the same number of errors but there is a different mapping to code-
words from a given information bit pattern.

SG(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1
0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1
1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1
1 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0
1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0
0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 1
0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0 0
1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0
0 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 0
1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0
1 1 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.24)

It may be seen that, for example, the first row of this matrix is the modulo 2 sum of
rows 1, 2, 3, 5, 8, 9 and 10 of matrix (19.21) in accordance with the non-singular
matrix (19.22).

The final step in producing the public key generatormatrix for the codewords from
the message vectors is to permute the columns of the matrix above. Any permutation
may be randomly chosen. For example we may use the following permutation:

27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.25)

so that for example column 0 of matrix (19.24) becomes column 24 of the per-
muted generator matrix and column 31 of matrix (19.24) becomes column 29 of the
permuted generator matrix. The resulting, permuted generator matrix is given below.

PSG(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1
0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1
0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0
1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0
1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 1
1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0 1 1
0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1
0 0 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1
0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0
1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.26)

With this particular example of the Goppa code, the message needs to be split into
message vectors of length 12 bits, adding padding bits as necessary so that there is
an integral number of message vectors. As a simple example of a plaintext message,
consider that the message consists of a single message vector with the information
bit pattern:
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{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}

Starting with an all 0’s vector, where the information bit pattern is 1, the correspond-
ing row from the permuted, scrambled matrix, matrix (19.26) with the same position
is added modulo 2 to the result so far to produce the codeword which will form the
digital cryptogram plus added random errors. In this example, this codeword is gen-
erated from adding modulo 2, rows 2, 4, 5, 6 and 12 from the permuted, scrambled
matrix, matrix (19.26) to produce:

0 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 0
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0

(19.27)

The resulting codeword is:

{0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0}

This Goppa code can correct up to 4 errors, (t = 4), so a random number is chosen
for the number of bits to be in error (s) and 2(t−s) bits are deleted from the codeword
in pre-determined positions. The pre-determined positions may be given by a secret
key, a position vector, known only to the originator and intended recipient of the
cryptogram. It may be included as part of the public key, or may be contained in a
previous cryptogram sent to the recipient. An example of a position vector, which
defines the bit positions to be deleted is:

{19, 3, 27, 17, 8, 30, 11, 15, 2, 5, 19, . . . , 25}.

The notation being, for example, that if there are 2 bits to be deleted, the bit positions
to be deleted are the first 2 bit positions in the position vector, 19 and 3. As well as
the secret key, the position vector, the recipient needs to know the number of bits
deleted, preferably with the information provided in a secure way. One method is
for the message vector to contain, as part of the message, a number indicating the
number of errors to be deleted in the next codeword, the following codeword (not
the current codeword); the first codeword having a known, fixed number of deleted
bits.

The number of bit errors and the bit error positions are randomly chosen to be
in error. A truly random source such as a thermal noise source as described above
produces the most secure results, but a pseudorandom generator can be used instead,
particularly, if seeded from the time of day with a fine time resolution such as 1ms. If
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the number of random errors chosen is too few, the security of the digital cryptogram
will be compromised. Correspondingly, the minimum number of errors chosen is a
design parameter depending upon the length of the Goppa code and t, the number
of correctable errors. A suitable choice for the minimum number of errors chosen in
practice lies between t

2 and 3t
4 .

For the example above, consider that the number of bit errors is 2 and these are
randomly chosen to be in positions 7 and 23 (starting the position index from 0). The
bits in these positions in the codeword are inverted to produce the result:

{0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}.

As there are 2 bits in error, 4 bits (2(t − s) = 2(4 − 2)) may be deleted. Using the
position vector example above, the deleted bits are in positions {19, 3, 27 and 17}
resulting in 28 bits,

{0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0}.

This vector forms the digital cryptogram which is transmitted or stored depending
upon the application.

The intended recipient of this cryptogram retrieves themessage in a series of steps.
Figure19.4 shows the decryption system. The retrieved cryptogram is formatted into
corrupted codewords by format into corrupted codewords shown in Fig. 19.4. In the
formatting process, the number of deleted bits in each codeword is determined from
the retrieved length of each codeword. The next step is to insert 0’s in the deleted bit
positions so that each corrupted codeword is of the correct length. This is carried out
using fill erased positionswith 0’s as input, the position vector stored in a buffermem-
ory as position vector in Fig. 19.4 and the number of deleted (erased) bits from for-
mat into corrupted codewords. For the example above, the recipient first receives or
otherwise retrieves the cryptogram {0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0}.
Knowing the number of deleted bits and their positions, the recipient inserts 0’s in
positions {19, 3, 27 and 17} to produce:

{0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}n
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descramble
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   0’s
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Fig. 19.4 Private key decryption system with s random bit errors and 2(t − s) bit deletions
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The private key contains the information of which Goppa code was used, the
inverse of the non-singular matrix used to scramble the data and the permutation
applied to codeword symbols in constructing the public key generator matrix. This
information is stored in private key in Fig. 19.4.

For the example, the private key is used to undo the permutation applied to code-
word symbols by applying the following permutation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10

(19.28)

so that, for example, bit 24 becomes bit 0 after permutation and bit 27 becomes bit
31 after permutation. The resulting, corrupted codeword is:

{0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 1}

The permutation is carried out by permute bits shown in Fig. 19.4.
The next step is to treat the bits in the corrupted codeword asGF(25) symbols and

use the parity check matrix, matrix (19.19), from the private key to calculate the syn-
dromevalue for each rowof the parity checkmatrix to produceα28, α7, α13, andα19.
This is carried out by an errors and erasures decoder as a first step in correcting the
errors and erasures. The errors and erasures are corrected by errors and erasures
correction, which knows the positions of the erased bits from fill erased positions
with 0’s shown in Fig. 19.4.

In the example, the errors and erasures are corrected using the syndrome values
to produce the uncorrupted codeword. There are several published algorithms for
errors and erasures decoding [1, 13, 16]. Using, for example, the method described
by Sugiyama [16], the uncorrupted codeword is obtained:

{1 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 0 0 1 0 1}

The scrambled information data is the first 12 bits of this codeword:

{1 0 0 0 1 0 0 1 1 1 0 0}

The last step is to unscramble the scrambled data using matrix (19.23) to produce
the original message after formatting the unscrambled data:

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}

In Fig. 19.4, descramble message vectors take as input the matrix which is the inverse
of the non-singular matrix stored in private key and output the descramble message
vectors to format message.
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In practice, much longer codes of length n would be used than described above.
Typically n is set equal to 1024, 2048, 4096 bits or longer. Longer codes are more
secure but the public key is larger and encryption and decryption take longer time.

Consider an example with n = 1024, correcting t = 60 bit errors with a randomly
chosen irreducible Goppa polynomial of degree 60, say, g(z) = 1+z+z2+z23+z60.

Setting the number of inserted bit errors s as a randomly chosen number from 40
to 60, the number of deleted bits correspondingly, is 2(t − s), ranging from 40 to 0
and the average codeword length is 994 bits. There are 9.12×1096 different bit error
combinations providing security, against naive brute force decoding, equivalent to a
random key of length 325 bits. Themessage vector length is 424 bits per codeword of
which 6 bits may be assigned to indicate the number of deleted bits in the following
codeword. It should be noted that there are more effective attacks than brute force
decoding as discussed in Sect. 19.5.

As another example with n = 2048 and correcting t = 80 bit errors with a
randomly chosen irreducible Goppa polynomial of degree 80, an example being
g(z) = 1 + z + z3 + z17 + z80.

Setting the number of inserted bit errors s as a randomly chosen number from 40
to 80, the number of deleted bits correspondingly, is 2(t−s), ranging from 80 to 0 and
the average codeword length is 2008 bits. There are 2.45 × 10144 different bit error
combinations providing security, against naive brute force decoding, equivalent to a
random key of length 482 bits. The message vector length is 1168 bits per codeword
ofwhich 7 bitsmay be assigned to indicate the number of deleted bits in the following
codeword.

In a hybrid arrangement where the sender and recipient share secret information,
additional bits in error may be deliberately added to the cryptogram using a secret
key, the position vector to determine the positions of the additional error bits. The
number of additional bits in error is randomly chosen between 0 and n − 1. The
recipient needs to know the number of additional bits in error (as well as the position
vector), preferably with this information provided in a secure way. One method is for
the message vector to contain, as part of the message, the number of additional bits in
error in the next codeword that is the following codeword (not the current codeword).
It is arranged that the first codeword has a known, fixed number of additional bits in
error.

As each corrupted codeword contains more than t bits in error, it is theoreti-
cally impossible, even with the knowledge of the private key to recover the original
codewords free from errors and to determine the unknown bits in the deleted bit posi-
tions. It should be noted that this arrangement defeats attacks based on information
set decoding, which is discussed later. The system is depicted in Fig. 19.5.

This encryption arrangement is as shown in Fig. 19.1 except that the system
accommodates additional errors added by generate additional errors shown in
Fig. 19.5 using a random integer generator between 0 and n−1 generated by generate
random number of additional errors. Any suitable random integer generator may be
used. For example, the random integer generator design shown in Fig. 19.2 may be
used with the number of shift register stages p now set equal to m, where n = 2m.
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Fig. 19.5 Public key encryption systemwith s random bit errors, 2(t−s) bit deletions and a random
number of additional errors

Additional errors may be added in the same positions as random errors, as this
provides for a simpler implementation or may take account of the positions of the
random errors. However, there is no point in adding additional bit errors to bits which
will be subsequently deleted.

As shown in Fig. 19.5, the number of additional errors is communicated to the
recipient as part of themessage vector in the preceding codewordwith the information
included with the message. This is carried out by format into message vectors shown
in Fig. 19.5. In this case, usually 1 or 2 more message vectors in total will be required
to convey the information regarding numbers of additional errors and the position
vector (if this has not been already communicated to the recipient). Clearly, there
are alternative arrangements to communicate the numbers of additional errors to the
recipient such as using a previously agreed sequence of numbers or substituting a
pseudorandom number generator for the truly random number generator (generate
random number of additional errors shown in Fig. 19.5) with a known seed.

Using the previous example above, with the position vector:

{19, 3, 27, 17, 8, 30, 11, 15, 2, 5, 19, . . . , 25}

The errored bits are in positions 7 and 23 (starting the position index from 0) and
the deleted bits are in positions {19, 3, 27 and 17}. The encoded codeword prior to
corruption is:

{0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0}

The number of additional bits in error is randomly chosen to be 5, say. As the first 4
positions (index 0–3) in the position vector are to be deleted bits, starting from index
4, the bits in codeword positions {8, 30, 11, 15, and 2} are inverted in addition to
the errored bits in positions 7 and 23. The 32 bit corrupted codeword is produced:
{0 1 0 1 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0}.
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The bits in positions {19, 3, 27 and 17} are deleted to produce the 28 bit corrupted
codeword:

{0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0}

The additional bits in error are removed by the recipient of the cryptogram prior to
errors and erasures correction as shown in Fig. 19.6. The number of additional bits in
error in the following codewords is retrieved from the descrambled message vectors
by format message shown in Fig. 19.6 and input to number of additional errorswhich
outputs this number to generate additional errors which is the same as in Fig. 19.5.
The position vector is stored in a buffer memory in position vector and outputs this to
generate additional errors. Each additional error is corrected by the adder add, shown
in Fig. 19.6, which adds, modulo 2, a 1 which is output from generate additional
errors in the same position of each additional error. Retrieval of the message from
this point follows correction of the errors and erasures, descrambling and formatting
as described for Fig. 19.5.

Using the number of deleted bits and the position vector, 0’s are inserted in the
deleted bit positions to form the 32 bit corrupted codeword:

{0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 0}

After the addition of the output from generate additional errors the bits in positions
{8, 30, 11, 15, and 2} are inverted, thereby correcting the 5 additional errors to form
the less corrupted codeword:

{0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 1 0}

As in the first approach, this corrupted codeword is permuted, the syndromes calcu-
lated and the errors plus erasures corrected to retrieve the original message:

{0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1}
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In a further option, the position vector, instead of being a static vector, may
be derived from a cryptographic hash of a previous message vector. Any standard
cryptographic hash function may be used such as SHA-256 [11] or SHA-3 [12] as
shown in Fig. 19.7. The message vector of length k bits is hashed using SHA-256 or
SHA-3 to produce a binary hash vector of length 256 bits.

For example, the binary hash vector may be input to a nonlinear feedback shift
register consisting of shift register having p stages, typically 64 stages with outputs
determined by select taps enabling different scrambling keys to be used by selecting
different outputs. The nonlinear feedback shift register arrangement to produce a
position vector in error positions buffer memory is the same as that of Fig. 19.3
whose operation is described above.

As the hash vector is clocked into the nonlinear feedback shift register of Fig. 19.7,
a derived position vector is stored in error positions buffer memory, and used for
encrypting the message vector as described above. The current message vector is
encrypted using a position vector derived from the hash of the previous message
vector. As the recipient of the cryptogram has decrypted the previous message vec-
tor, the recipient of the cryptogram can use the same hash function and nonlinear
feedback shift register to derive the position vector in order to decrypt the current
corrupted codeword. There are a number of arrangements that may be used for the
first codeword. For example, a static position vector, known only to the sender and
recipient of the cryptogram could be used or alternatively a position vector derived
from a fixed hash vector known only to the sender and recipient of the cryptogram
or the hash of a fixed message known only to the sender and recipient of the cryp-
togram. A simpler arrangement may be used where the shift register has no feedback
so that the position vector is derived directly from the hash vector. In this case the
hash function needs to produce a hash vector ≥n, the length of the codeword.

As discussed earlier, the original McEliece system is vulnerable to chosen-
plaintext attacks. If the same message is encrypted twice, the difference between
the two cryptograms is just 2t bits or less, the sum of the two error patterns. This
vulnerability is completely solved by encrypting or scrambling the plaintext prior to
the McEliece system, using the error pattern as the key. To do this, the random error
pattern needs to be generated first before the codeword is constructed by encoding
with the scrambled generator matrix.
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This scrambler which is derived from the error vector, for each message vector,
may be implemented in a number of ways. The message vector may be scrambled
by multiplying by a k × k non-singular matrix derived from the error vector.

Alternatively, themessage vectormaybe scrambled by treating themessage vector
as a polynomial m1(x) of degree k − 1 and multiplying it by a circulant polynomial
p1(x) modulo 1 + xk which has an inverse [7]. The circulant polynomial p1(x) is
derived from the error vector. Denoting the inverse of the circulant polynomial p1(x)
as q1(x) then

p1(x)q1(x) = 1modulo 1 + xk (19.29)

Accordingly the scrambled message vector is m1(x)p1(x) which is encoded into a
codeword using the scrambled generator matrix. Each message vector is scrambled
in a different way as the error patterns are random and different from corrupted
codeword to corrupted codeword. The corrupted codewords form the cryptogram.

On decoding of each codeword, the corresponding error vector is obtained with
retrieval of the scrambled message vector. Considering the above example, the circu-
lant polynomial p1(x) is derived from the error vector and the inverse q1(x) is calcu-
lated using Euclid’s method [7] from p1(x). The original message vector is obtained
by multiplying the retrieved scrambled message vectorm1(x)p1(x) by p1(x) because

m1(x)p1(x)q1(x) = m1(x)modulo 1 + xk (19.30)

Another method of scrambling each message vector using a scrambler derived
from the error vector is to use two nonlinear feedback shift registers as shown in
Fig. 19.8. The first operation is for the error vector, which is represented as a s-bit
sequence is input to a modulo 2 adder add whose output is input to shift register A as
shown in Fig. 19.8. The nonlinear feedback shift registers are the same as in Fig. 19.3
with operation as described above but select tapswill usually have a different setting
and nonlinear mapping also will usually have a different mapping, but this is not
essential. After clocking the s-bit error sequence into the nonlinear feedback shift
register, shift register A shown in Fig. 19.8 will essentially contain a random binary
vector. This vector is used by define taps to define which outputs of shift register B
are to be input to nonlinear mapping B whose outputs are added modulo 2 to the
message vector input to form the input to shift register B shown in Fig. 19.8. The
scrambling of the message vector is carried out by a nonlinear feedback shift register
whose feedback connections are determined by a random binary vector derived from
the error vector, the s-bit error sequence.

The corresponding descrambler is shown in Fig. 19.9. Following decoding of
each corrupted codeword, having correcting the random errors and bit erasures, the
scrambled message vector is obtained and the error vector is in the form of the s-bit
error sequence. As in the scrambler, the s bit error sequence is input to a modulo
2 adder add whose output is input to shift register A as shown in Fig. 19.9. After
clocking the s-bit error sequence into the nonlinear feedback shift register, shift
register A shown in Fig. 19.9 will contain exactly the same binary vector as shift
register A of Fig. 19.8. Consequently, exactly the same outputs of shift register B to
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be input to non linearmapping Bwill be defined by define taps.Moreover, comparing
the input of shift register B of the scrambler Fig. 19.8 to the input of shift register B
of the descrambler Fig. 19.9 it will be seen that the contents are identical and equal
to the scrambled message vector.
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Consequently, the same selected shift register outputs will be identical and with
the same nonlinear mapping nonlinear mapping B the outputs of nonlinear mapping
B in Fig. 19.9 will be identical to those that were the outputs of nonlinear mapping B
in Fig. 19.8. The result of the addition of these outputs modulo 2 with the scrambled
message vector is to produce the original message vector at the output of add in
Fig. 19.9.

This is carried out for each scrambled message vector and associated error vector
to recover the original message.

In some applications, a reduced size cryptogram is essential perhaps due to limited
communications or storage capacity. For these applications, a simplification may be
used in which the cryptogram consists of only one corrupted codeword containing
random errors, the first codeword. The following codewords are corrupted by only
deleting bits. The number of deleted bits is 2t bits per codeword using a position
vector as described above.

For example, with n = 1024, and the Goppa code correcting t = 60 bit errors,
there are 2t bits deleted per codeword so that apart from the first corrupted codeword,
each corrupted codeword is only 904 bits long and conveys 624 message vector bits
per corrupted codeword.

A similar approach is to hash the error vector of the first corrupted codeword
and use this hash value as the key of a symmetric encryption system such as the
Advanced Encryption Standard (AES) [10] and encrypt any following information
this way. Effectively, this is AES encryption operating with a random session key
since the error pattern is chosen randomly as in the classic, hybrid encryption system.

19.3 Reducing the Public Key Size

In the originalMcEliece system, the public key is the k×n generatormatrixwhich can
be quite large. For example with n = 2048 and k = 1148, the generator matrix needs
to be representedby1148×2048 = 2.35×106 bits.Representing the generatormatrix
in reduced echelon form reduces the generatormatrix to k×(n−k) = 1.14×106 bits.
In the n = 32 example above, the generatormatrix is the 12×32matrix,PSG(32, 12, 9),
given by Eq. (19.26). Rows of this matrix may be added together using modulo 2
arithmetic so as to produce a matrix with k independent columns. This matrix is a
reduced echelon matrix, possibly permuted to obtain k independent columns, and
may be straightforwardly derived by using the Gauss–Jordan variable elimination
procedure. With permutations, there are a large number of possible solutions which
may be derived and candidate column positions may be selected, either initially in
consecutive order to determine a solution, or optionally, selected in random order to
arrive at other solutions.

Consider as an example the first option of selecting candidate column positions
in consecutive order. For the PSG(32, 12, 9) matrix (19.26), the following permuted
reduced echelon generator matrix is produced:
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PSGR(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.31)

The permutation defined by the following input and output bit position sequences is
used to rearrange the columns of the permuted, reduced echelon generator matrix.

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.32)

This permutation produces a classical reduced echelon generator matrix [7], denoted
as Q(32, 12, 9):

Q(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.33)

Codewords generated by this matrix are from a systematic code [7] with the first
12 bits being information bits and the last 20 bits being parity bits. Correspond-
ingly, the matrix above,Q(32, 12, 9) consists of an identity matrix followed by a matrix
denoted as QT(32, 12, 9) which defines the parity bits part of the generator matrix.
The transpose of this matrix is the parity check matrix of the code [7]. As shown in
Fig. 19.10, the public key consists of the parity check matrix, less the identity sub-
matrix, and a sequence of n numbers representing a permutation of the codeword bits
after encoding. By permuting the codewords with the inverse permutation, the result-
ing permuted codewords will be identical to codewords produced by PSG(32, 12, 9),
the public key of the original McEliece public key system [8]. However, whilst the
codewords are identical, the information bits will not correspond.

The permutation is defined by the following input and output bit position
sequences.

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.34)
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Fig. 19.10 Reduced size public key encryption system

As the output bit position sequence is just a sequence of bits in natural order, the
permutation may be defined only by the input bit position sequence.

In this case, the public key consists of an n position permutation sequence and in
this example the sequence chosen is:

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (19.35)

and the k × (n− k) matrix,QT(32, 12, 9), which in this example is the 12× 20 matrix:

QT(32, 12, 9) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 1 1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 0
1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1
0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19.36)

The public key of this system is much smaller than the public key of the original
McEliece public key system, since as discussed below, there is no need to include
the permutation sequence in the public key.
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The message is split into message vectors of length 12 bits adding padding bits
as necessary so that there is an integral number of message vectors. Each message
vector, after scrambling, is encoded as a systematic codeword usingQT(32, 12, 9), part
of the public key. Each systematic codeword that is obtained is permuted using the
permutation (19.35), the other part of the public key. The resulting codewords are
identical to codewords generated using the generator matrixPSG(32, 12, 9) (19.26), the
corresponding public key of the original McEliece public key system, but generated
by different messages.

It should be noted that it is not necessary to use the exact permutation sequence
that produces codewords identical to that produced by the original McEliece public
key system for the same Goppa code and input parameters. As every permutation
sequence has an inverse permutation sequence, any arbitrary permutation sequence,
randomly generated or otherwise, may be used for the permutation sequence part
of the public key. The permutation sequence that is the inverse of this arbitrary
permutation sequence is absorbed into the permutation sequence used in decryption
and forms part of the private key. The security of the system is enhanced by allowing
arbitrary permutation sequences to be used and permutation sequences do not need
to be part of the public key.

The purpose of scrambling each message vector using the fixed scrambler shown
in Fig. 19.10 is to provide a one-to-one mapping between the 2k possible message
vectors and the 2k scrambled message vectors such that the reverse mapping, which
is provided by the descrambler, used in decryption, produces error multiplication if
there are any errors present. For many messages, some information can be gained
even if the message contains errors. The scrambler and corresponding descrambler
prevents information being gained this way from the cryptogram itself or by means
of some error guessing strategy for decryption by an attacker. The descrambler is
designed to have the property that it produces descrambled message vectors that
are likely to have a large Hamming distance between vectors for input scrambled
message vectors which differ in a small number of bit positions.

There are a number of different techniques of realising such a scrambler and
descrambler. One method is to use symmetric key encryption such as the Advanced
Encryption Standard (AES) [10] with a fixed key.

An alternative means is provided by the scrambler arrangement shown in
Fig. 19.11. The same arrangement may be used for descrambling but with differ-
ent shift register taps and is shown in Fig. 19.12. Denoting each k bit message vector
as a polynomial m(x) of degree k − 1:

m(x) = m0 + m1x + m2x
2 + m3x

3 · · · + mk−1x
k−1 (19.37)

and denoting the tap positions determined by define taps of Fig. 19.11 byμ(x)where

μ(x) = μ0 + μ1x + μ2x
2 + μ3x

3 · · · + μk−1x
k−1 (19.38)

where the coefficients μ0 through to μk−1 have binary values of 1 or 0.
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Fig. 19.12 Descrambler arrangement

The output of the scrambler, denoted by the polynomial, scram(x), is the scram-
bled message vector given by the polynomial multiplication

scram(x) = m(x).μ(x) modulo (1 + xk) (19.39)

The scrambled message vector is produced by the arrangement shown in Fig. 19.11
after shift register A with k stages and shift register B with k stages have been clocked
2k times and is present at the input of shift register B with k stages whose last stage
output is connected to the adder, adder input. The input of shift register B with k
stages corresponds to the scrambled message vector for the next additional k clock
cycles, with these bits defining the binary coefficients of scram(x). The descrambler
arrangement is shown in Fig. 19.12 and is an identical circuit to that of the scrambler
but with different tap settings. The descrambler is used in decryption.

For k = 12 an example of a good scrambler polynomial, μ(x) is

μ(x) = 1 + x + x4 + x5 + x8 + x9 + x11 (19.40)

For brevity, the binary coefficients may be represented as a binary vector. In this
example, μ(x) is represented as {1 1 0 0 1 1 0 0 1 1 0 1}. This is a good scrambler
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polynomial because it has a relatively large number of taps (seven taps) and its
inverse, the descrambler polynomial also has a relatively large number of taps (seven
taps). The corresponding descrambler polynomial, θ(x) is

θ(x) = 1 + x + x3 + x4 + x7 + x8 + x11 (19.41)

which may be represented by the binary vector {1 1 0 1 1 0 0 1 1 0 0 1}. It is straight-
forward to verify that

μ(x) × θ(x) = 1 + x2 + x3 + x4 + x5 + x6 + x8 + x10

+ x14 + x15 + x16 + x17 + x18 + x20 + x22

= 1 modulo (1 + xk)
(19.42)

and so
scram(x) × θ(x) = m(x) modulo (1 + xk) (19.43)

As a simple example of a message, consider that the message consists of a single
message vector with the information bit pattern {0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1} and
so:

m(x) = x + x3 + x11 (19.44)

This is input to the scrambling arrangement shown in Fig. 19.11. The scrambled
message output is scram(x) = m(x) × μ(x) given by

scram(x) = (1 + x + x4 + x5 + x8 + x9 + x11).(x + x3 + x5 + x11)
= x + x2 + x5 + x6 + x9 + x10 + x12

+ x3 + x4 + x7 + x8 + x11 + x12 + x14

+ x11 + x12 + x15 + x16 + x19 + x20 + x22

modulo (1 + x12)
= 1 + x + x5 + x6 + x9

(19.45)

and the scrambling arrangement shown in Fig. 19.11 produces the scrambledmessage
bit pattern {1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0}.

Referring to Fig. 19.10, the next stage is to use the parity check matrix part of
the public key to calculate the parity bits from the information bits. Starting with
an all 0’s vector, where the information bit pattern is a 1, the corresponding row
from QT(32, 12, 9) (19.36) with the same position is added modulo 2 to the result so
far to produce the parity bits which with the information bits will form the digital
cryptogram plus added random errors after permuting the order of the bits. In this
example, this codeword is generated from adding modulo 2, rows 1, 2, 6, 7 and 10
of QT(32, 12, 9) to produce:
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0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1
+ + + + + + + + + + + + + + + + + + + +
1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 1 1 1 0
+ + + + + + + + + + + + + + + + + + + +
0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1
+ + + + + + + + + + + + + + + + + + + +
1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 1 0 0 1
+ + + + + + + + + + + + + + + + + + + +
1 0 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 0
� � � � � � � � � � � � � � � � � � � �

1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1

(19.46)

The resulting systematic code, codeword is:

{1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1}

The last step in constructing the final codeword which will be used to construct
the cryptogram is to apply an arbitrary preset permutation sequence. Referring to
Fig. 19.10, the operation assemble n bit codewords from n-k parity bits and kmessage
bits simply takes each codeword encoded as a systematic codeword and applies the
preset permutation sequence.

In this example, the permutation sequence that is used is not chosen arbitrarily
but is the permutation sequence that will produce the same codewords as the original
McEliece public key system for the same Goppa code and input parameters. The
permutation sequence is:

0 1 2 3 4 5 6 7 8 9 12 14 10 11 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 (19.47)

The notation is that the 10th bit should move to the 12th position, the 11th bit
should move to the 14th position, the 12th bit should move to the 10th position,
the 13th bit should move to the 11th position, the 14th bit should move to the 13th
position and all other bits remain in their same positions.

Accordingly, the permuted codeword becomes:

{1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1}

and this will be the input to the adder, add of Fig. 19.1.
The Goppa code used in this example can correct up to 4 errors, (t = 4), and a

random number is chosen for the number of bits to be in error, (s) with s ≤ 4.
A truly random source such as a thermal noise source as described above pro-

duces the most secure results, but a pseudorandom generator can be used instead,
particularly if seeded from the time of day with fine time resolution such as 1mS. If
the number of random errors chosen is too few, the security of the digital cryptogram
will be compromised. Correspondingly, the minimum number of errors chosen is a
design parameter depending upon the length of the Goppa code and t, the number
of correctable errors. A suitable choice for the minimum number of errors chosen in
practice lies between t

2 and t. If the cryptogram is likely to be subject to additional
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errors due to transmission over a noisy or interference prone medium such as wire-
less, or stored and read using an imperfect reader such as in barcode applications,
then these additional errors can be corrected as well as the deliberately introduced
errors provided the total number of errors is no more than t errors.

For such applications typically the number of deliberate errors is constrained to
be between t

3 and 2t
3 .

For the example above, consider that the number of bit errors is 3 and these are
randomly chosen to be in positions 4, 11 and 27 (starting the position index from 0).
The bits in these positions in the codeword are inverted to produce the result

{1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1}

The dcryptogram is this corrupted codeword, which is transmitted or stored depend-
ing upon the application.

The intended recipient of this cryptogram retrieves the message in a series of
steps. Figure19.13 shows the system used for decryption. The retrieved cryptogram
is formatted into corrupted codewords by format into corrupted codewords shown
in Fig. 19.4. For the example above, the recipient first receives or otherwise retrieves
the cryptogram, which may contain additional errors.

{1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1}.

It is assumed in this example that no additional errors have occurred although with
this particular example one additional error can be accommodated.

The private key contains the information of which Goppa code was used and a
first permutation sequence which when applied to the retrieved, corrupted codewords
which make up the cryptogram produces corrupted codewords of the Goppa code
with the bits in the correct order. Usually, the private key also contains a second

 private
  key

error correction
   decoder

    format into
corrupted codewords

  format
message

descramble
information
    bits

permute corrupted
codeword bitscryptogram

  input

    permute
codeword bits

Fig. 19.13 Private key decryption system
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permutation sequence which when applied to the error-corrected Goppa codewords
puts the scrambled information bits in natural order. Sometimes the private key also
contains a third permutation sequence which when applied to the error vectors found
in decoding the corrupted corrected Goppa codewords puts the bit errors in the same
order that theywerewhen inserted during encryption. All of this information is stored
in private key in Fig. 19.13. Other information necessary to decrypt the cryptogram,
such as the descrambler required may also be stored in the private key or be implicit.

There are two permutation sequences stored as part of the private key and the
decryption arrangement is shown in Fig. 19.13. The corrupted codewords retrieved
from the received or read cryptogram are permuted with a first permutation sequence
which will put the bits in each corrupted codeword in the same order as the Goppa
codewords. In this example, the first permutation sequence stored as part of the
private key is:

24 11 3 23 2 17 20 8 13 30 31 14 15 22 7 1 9 6 21 4 10 5 28 26 19 16 25 0 27 12 18 29 (19.48)

This defines the following permutation input and output sequences:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10

(19.49)

so that for example bit 23 becomes bit 3 after permutation and bit 30 becomes bit 9
after permutation. The resulting, permuted corrupted codeword is:

{1 1 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0}

The permutation is carried out by permute corrupted codeword bits shown in
Fig. 19.13 with the first permutation sequence input from private key.

Following the permutation of each corrupted codeword, the codeword bits are
in the correct order to satisfy the parity check matrix, matrix (19.19) if there were
no codeword bit errors. (In this case all of the syndrome values would be equal
to 0). The next step is to treat each bit in each permuted corrupted codeword as a
GF(25) symbolwith a 1 equal toα0 and a 0 equal to 0 and use the parity checkmatrix,
matrix (19.19), stored as part of private key to calculate the syndrome values for each
row of the parity check matrix. The syndrome values produced in this example, are
respectively α30, α27, α4, andα2. In Fig. 19.13 error-correction decoder calculates
the syndromes as a first step in correcting the bit errors.

The bit errors are corrected using the syndrome values to produce an error free
codeword from the Goppa code for each permuted corrupted codeword. There
are many published algorithms for correcting bit errors for Goppa codes, but the
most straightforward is to use a BCH decoder as described by Retter [13] because
Berlekamp–Massey may then be used to solve the key equation. After decoding, the
error free permuted codeword is obtained:
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{1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0}

and the error pattern, defined as a 1 in each error position is

{0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0}.

As shown in Fig. 19.13 permute codeword bits takes the output of error-correction
decoder and applies the second permutation sequence stored as part of the private
key to each corrected codeword.

Working through the example, consider that the following permutation input and
output sequences is applied to the error free permuted codeword (the decoded code-
word of the Goppa code).

27 15 4 2 19 21 17 14 7 16 20 1 29 8 11 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.50)

The result is that the scrambled message bits correspond to bit positions:

{0 1 2 3 4 5 6 7 8 9 12 14}

from the encryption procedure described above. The scrambled message bits may be
repositioned in bit positions:

{0 1 2 3 4 5 6 7 8 9 10 11}

by absorbing the required additional permutations into a permutation sequence
defined by the following permutation input and output sequences:

27 15 4 2 19 21 17 14 7 16 29 11 20 8 1 12 25 5 30 24 6 18 13 3 0 26 23 28 22 31 9 10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(19.51)

The second permutation sequence which corresponds to this net permutation and
which is stored as part of the private key, private key shown in Fig. 19.13 is:

24 14 3 23 2 17 20 8 13 30 31 11 15 22 7 1 9 6 21 4 12 5 28 26 19 16 25 0 27 10 18 29 (19.52)

The second permutation sequence is applied by permute codeword bits. Since
the encryption and decryption permutation sequences are all derived at the same
time in forming the public key and private key from the chosen Goppa code, it is
straightforward to calculate and store the net relevant permutation sequences as part
of the private key.
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Continuing working through the example, applying the second permutation
sequence to the error free permuted codeword produces the output of permute code-
word bits. The first 12 bits of the resultwill be the binary vector, {1 1 0 0 0 1 1 0 0 1 0 0}
and it can be seen that this is identical to the scrambled message vector produced
from the encryption operation. Represented as a polynomial the binary vector is
1 + x + x5 + x6 + x9.

As shown in Fig. 19.13, the next step is for the k information bits of each per-
muted error free codeword to be descrambled by descramble information bits.
In this example, descramble information bits is carried out by the descrambler
arrangement shown in Fig. 19.12 with define taps corresponding to polynomial
1 + x + x3 + x4 + x7 + x8 + x11.

The output of the descrambler in polynomial form is (1+ x + x5 + x6 + x9).(1+
x + x3 + x4 + x7 + x8 + x11) modulo 1 + x12. After polynomial multiplication, the
result is (x + x3 + x11) corresponding to the message

{0 1 0 1 0 0 0 0 0 0 0 1}

It is apparent that this is the same as the original plaintextmessage prior to encryption.
With each cryptogram restricted to contain s errors, the cryptosystem as well

as providing security, is able automatically to correct t − s errors occurring in the
communication of the cryptogram as shown in Fig. 19.14. It makes no difference
to the decryption arrangement of Fig. 19.13, whether the bit errors were introduced
deliberately during encryption or were introduced due to errors in transmitting the
cryptogram. A correct message is output after decryption provided the total number
of bit errors is less than or equal to t, the error-correcting capability of the Goppa
code used to construct the public and private keys.

As an illustration, a (512, 287, 51) Goppa code of length 512 bits with message
vectors of length 287 bits can correct up to 25 bit errors, (t = 25). With s = 15,
15 bit errors are added to each codeword during encryption. Up to 10 additional bit
errors can occur in transmission of each corrupted codeword and the message will
be still recovered correctly from the received cryptogram.

message input

encrypt with
 s < t errors

communications
medium with 
transmission errors

public key

decrypt correcting
  t errors

private key

message output

Fig. 19.14 Public key encryption system correcting communication transmission errors
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The system will also correct errors in the reading of cryptograms stored in data
media. As an example a medium to long range ISO 18000 6BRFID system operating
in the 860–930MHzwith 2048 bits of user data can be read back from a tag. A (2048,
1388, 121) Goppa code of length 2048 bits with message vectors of length 1388 bits
can correct 60 errors, (t = 60). With s = 25, 25 bit errors are added to the codeword
during encryption and this is written to each passive tag as a cryptogram, stored in
non-volatile memory. As well as providing confidentiality of the tag contents, up to
35 additional bit errors can be tolerated in reading each passive tag, thereby extending
the operational range. The plaintext message, the encrypted tag payload information
of 1388 bits will be recovered more reliably with each scanning of the tag.

19.4 Reducing the Cryptogram Length Without
Loss of Security

In many applications a key encapsulation system is used. This is a hybrid encryption
system in which a public key cryptosystem is used to send a random session key to
the recipient and a symmetric key encryption system, such as AES [10] is used to
encrypt the following data. Typically a session key is 256 bits long. To provide the
same 256 bit security level a code length of 8192 bits needs to be used, with a code
rate of 0.86. Security analysis of the McEliece system is provided in Sect. 19.5. The
Goppa code is the (8192, 7048, 177) code. There are 7048 information bits available
in each codeword, but only 256 bits are needed to communicate the session key. The
code could be shortened in the traditional manner by truncating the generator matrix
but this will leave less room to insert the t errors thereby reducing the security. The
obvious question is can the codeword be shortened without reducing the security?

Niederreiter [9] solved this problem by transmitting only the n−k bits of the syn-
drome calculated from the error pattern. Niederreiter originally proposed in his paper
a system using Generalised Reed–Solomon codes but this scheme was subsequently
broken with an attack by Sidelnikov and Shestakov [15]. However their attack fails
if binary Goppa codes are used instead of Generalised Reed–Solomon codes and the
Niederreiter system is now associated with the transmission of the n − k parity bits
as syndromes of the McEliece system.

It is unfortunate that only a tiny fraction of the 2n−k syndromes correspond to
correctable error patterns. For the (8192, 7048, 177)Goppa code, it turns out that there
are 2697 correctable syndromes out of the total of 21144 syndromes. The probability
of an arbitrary syndrome being decoded is 2−447, around 3 × 10−135. This is the
limitation of the Niederreiter system. The plaintext message has to bemapped into an
error pattern consisting of t bits uniformly distributed over n bits. Any deterministic
method of doing this will be vulnerable to a chosen-plaintext attack. Of course
the Niederreiter system can be used to send random messages, first generated as a
random error pattern, as in a random session key. However, additional information
really needs to be sent aswell, such as aMAC, timestamp, sender ID, digital signature
or other supplementary information.
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Fig. 19.15 Public key encryption system with shortened codewords

One solution is to use the system shown in Fig. 19.15. The plaintext message, M,
consisting of a 256 bit random session key concatenated with 512 bits of supple-
mentary information such as a MAC, time stamp and sender ID is encrypted in the
encryption module with a key that is a cryptographic hash, such as SHA-3 [12], of
the error pattern. The encrypted message is Me. The error pattern consists of t bit
errors randomly distributed over n bits. This bit pattern is partitioned into three parts,
A, B and C as shown in Fig. 19.16. Using the (8192, 7048, 177) Goppa code, part A
covers the first 6280 bits, part B covers the next 768 bits and part C covers the last
1144 bits, the parity bits.

The public key encoder consists of the public key generator matrix in reduced
echelon form which is used to encode information bits consisting of part A, con-
catenated with Me as shown in Fig. 19.15. After encoding, the n − k parity bits of
the codeword are P(A) + P(Me). The codeword is then shortened by removing the
first 6280 bits of the codeword. The error pattern parts B and C are added to the
shortened codeword of length 1912 bits to form the ciphertext of length 1912 bits.
The format of the various parts of the error pattern, the hash derivation, encryption
and codeword are shown in Fig. 19.16.

The principle that this system uses, is that the syndrome of any codeword is zero
and that the cryptosystem is linear. The codeword resulting from the encoding of A
is {A 0 . . . 0 P(A)}, where P(A) are the parity bits. The sum of syndromes from
sections, of this codeword must be zero. Hence:

Syndrome(A) + 0 . . . 0 + P(A) = 0
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As the base field is 2,

Syndrome(A) = P(A)

Consequently, by including P(A) instead of the error bits, part A in the ciphertext
results in the same syndrome being calculated in the decoder, namely P(A)+P(B)+
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Fig. 19.17 Decryption method for the shortened ciphertext
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P(C). Removing error pattern, part A shortens the ciphertext whilst including P(A)

instead requires no additional bits in the ciphertext. Since it is necessary to derive
the complete error pattern of length n bits in order to decrypt the ciphertext, there is
no loss of security from shortening the ciphertext.

The method used to decrypt the ciphertext by using the private key is shown in
Fig. 19.17. The received ciphertext is padded with leading zeros to restore its length
to 8192 bits. This is then permuted to be in the same order as the Goppa code and the
parity check matrix of the Goppa code is used to calculate the syndrome. A Goppa
code error-correcting decoder is then used to find the permuted error pattern A, B
and C from this syndrome. The most straightforward error-correcting decoder to use
is based on Retter’s decoding method [13]. This involves calculating a syndrome
having 2(n − k) parity bits from the parity check matrix of g2(z) where g(z) is the
Goppa polynomial of the code, then using the Berlekamp–Massey method to solve
the key equation as in a standard BCH decoder to find the error bit positions. It is
because the codewords are binary codewords and the base field is 2, that the Goppa
code codewords satisfy the parity checks of g2(z) as well as the parity checks of
g(z), since 12 = 1.

As shown in Fig. 19.17, once the error pattern is determined, it is inverse permuted
to produce A, B and C which is hashed to produce the decryption key needed to
decrypt Me back into the plaintext message M. Part B of the derived error pattern is
added to theMe + B contained in the received ciphertext to produceMe as shown in
Fig. 19.17.

19.5 Security of the Cryptosystem

If we consider the parameters that Professor McEliece originally chose, a code of
length 1024 bits correcting 50 errors and 524 information bits, then a brute force
attack may be based on guessing the error pattern, adding this to the cryptogram and
checking if the result is a valid codeword. Checking if the result is a codeword is
easy. By using elementary matrix operations on the public key, the generator matrix,
we can turn it into a reduced echelon matrix whose transpose is the parity check
matrix. We simply use this parity check matrix to calculate the syndrome of the n bit
input vector. If the syndrome is equal to zero then the input vector is a codeword.

The maximum number of syndromes that need to be calculated is equal to the
number of different error patterns which is

(n
t

) = (1024
50

) = 3.1985 ≈ 2284. This may
be described as being equivalent to a symmetric key encryption system with a key
length of 284 bits.

However, there are much more efficient ways of determining the error pattern
in the cryptogram. An attack called information set decoding [2] as described by
Professor McEliece in his original paper [8], may be used. For any (n, k, d) code, k
columns of the generator matrix may be randomly selected and using Gauss–Jordan
elimination of the rows, there is a probability that a permuted, reduced echelon
generator matrix will be obtained which generates the same codeword as the original
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code. The k × k sub-matrix resulting from the k selected columns needs to be full
rank and the probability of this depends on the particular code. For Goppa codes
the probability turns out to be the same as the probability of a randomly chosen
k × k binary matrix being full rank. This probability is 0.2887 as described below
in Sect. 19.5.1.

Given a cryptogram containing t errors an attacker can select k bits randomly, con-
struct the corresponding permuted, reduced echelon generator matrix with a chance
of 0.29. The attacker then uses the matrix to generate a codeword and finds the
Hamming distance between this codeword and the cryptogram. If the Hamming
distance is exactly t then the cryptogram has been cracked.

For this to happen all of the k selected bits from the cryptogram need to be error
free. The probability of this is:

k−1∏

i=0

n − t − i

n − i
= (n − t)!(n − k)!

(n − t − k)!n!

Including the chance of 0.29 that the selected matrix has rank k, the average number
of selections of k bits from the cryptogram before the cryptogram is cracked, Nck is
given by

Nck = (n − t − k)!n!
0.29(n − t)!(n − k)! (19.53)

For the original code parameters (1024, 524, 101), Nck = 4.78 × 1016 ≈ 255.
This is equivalent to a symmetric key encryption system with a key length of 55

bits, a lot less than 284 bits, the base 2 logarithm of the number of error combinations.
Using a longer codeoffersmuchmore security. For example using codeparameters

(2048, 1300, 137), Nck = 1.45× 1031 ≈ 2103, equivalent to a symmetric key length
of 103 bits.

For code parameters (8192, 5124, 473), with a Goppa code which corrects 236
errors, it turns out that Nck = 5.60 × 10103 ≈ 2344, equivalent to a symmetric key
length of 344 bits.

The success of this attack depends upon the code rate. The effect of the code rate,
R and the security as expressed in the equivalent symmetric key length in bits is
shown in Fig. 19.18 for a code length of 2048 bits. The code rate, R that maximises
Nck for a given n is tabulated in Table19.3, together with t the number of correctable
errors and the equivalent symmetric key length in bits.

19.5.1 Probability of a k× k Random Matrix Being Full
Rank

The probability of a randomly chosen k×k binarymatrix being full rank is a classical
problem related to the erasure correcting capability of random binary codes [4, 5].
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Fig. 19.18 Effect of code rate on security for a code length of 2048 bits

Table 19.3 Optimum code
rate giving maximum security
as a function of code length

n R t Security (bits)

512 0.6309 21 33.0

1024 0.6289 38 57.9

2048 0.6294 69 103.5

4096 0.6279 127 187.9

8192 0.6287 234 344.6

16384 0.6292 434 637.4

For the binary case it is straightforward to derive the probability, Pk of a k × k
randomly chosen matrix being full rank by considering the process of Gauss–Jordan
elimination. Starting with the first column of the matrix, the probability of finding a
1 in at least one of the rows is (1 − 1

2 )
k .

Selecting one of these non-zero bit rows, the bit in the second column will be
arbitrary and considering the first two bits there are 21 linear combinations. As there
are 22 combinations of two bits, the chances of not finding an independent 2-bit
combination in the remaining k − 1 rows are 1

2k−1 . Assuming an independent row
is found, we next consider the third column and the first three bits. There are 22

linear combinations of 3 bits from the two previously found independent rows and
there are a total possible 23 combinations of 3 bits. The probability of not finding an
independent 3-bit pattern in any of the remaining k − 2 rows is ( 2

2

23 )
k−2 = 1

2k−2 .
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Table 19.4 Probability of a
random binary k × k matrix
having full rank

k Pk

5 0.298004

10 0.289070

15 0.288797

20 0.288788

50 0.288788

Proceeding in this way to k rows, it is apparent that Pk is given by

Pk =
k−1∏

i=0

1 −
(
1 − 1

2

)k−i

=
k−1∏

i=0

1 − 1

2k−i
(19.54)

The probability of Pk as a function of k is tabulated in Table19.4. The asymptote of
0.288788 is reached for k exceeding 18.

19.5.2 Practical Attack Algorithms

Practical attack algorithms of course need to factor in the processing cost of Gauss–
Jordan elimination compared to the problem of constructing different generator
matrices. A completely different set of k coordinates does not need to be selected
each time to generate a different generator matrix as discussed in [2]. Also, even if the
k selected columns of the generator matrix do not have full rank, usually discarding
and adding one or two columns will produce a full rank matrix. It can be shown that
on average only 1.6 additional columns are necessary to achieve full rank. Canteaut
and Chabaud [3] showed that by including the cryptogram as an additional row in
the generator matrix of the (n, k, 2t + 1) code, a code is produced with parameters
(n, k+1, t) for which there is only a single codeword with weight t, the original error
pattern in the cryptogram. In this case algorithms for finding low-weight codewords
may be deployed to break the cryptogram. However these low-weight codeword
search algorithms are all very similar to the original algorithm aimed at searching for
a codeword of the (n, k, 2t+1) code with Hamming distance t from the cryptogram.
The conclusions of the literature are that information set decoding is an efficient
method of attacking the McEliece system but that from a practical viewpoint the
system is unbreakable provided the code is long enough. Bernstein et al. [2] give rec-
ommended code lengths and their corresponding security, providing similar results
to that of Table19.3.

The standard McEliece system is vulnerable to chosen-plaintext attacks. The
encoder is the public key, usually publically available, and the attacker can simply
guess the plaintext, construct the corresponding ciphertext and compare this to the
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target ciphertext. In addition, if the same plaintext message is encrypted twice the
sum of the two ciphertexts is a n bit vector of 2t bits or less.

The standard McEliece system is also vulnerable to chosen-ciphertext attack.
Assuming a decryption oracle is available, the attacker inverts two bits randomly in
the ciphertext and sends the result to the decryption oracle. With probability t(n−t)

n(n−1) ,
a different ciphertext will be produced containing exactly t errors and the decryption
oracle will output the plaintext, breaking the system.

Encrypting the plaintext using a key derived from the error pattern, as described
above, defeats all of these attacks.

19.6 Applications

Public key encryption is attractive in a wide range of different applications, partic-
ularly those involving communications because the public keys may be exchanged
initially using clear textmessages followed by information encrypted using the public
keys. The private keys remain private because they do not need to be communicated
and the public keys are of no help to an eavesdropper.

An example of an application for the iPhone and iPad using the McEliece public
key encryption system is the S2S app pictured in Fig. 19.19. In this app, files are
encrypted with users’ public keys and stored in the cloud so that they may be shared.
Sharing is by means of links that index the encrypted files on the cloud and each user
uses their private key to decrypt the shared files.

If the same type of application was implemented using symmetric key encryp-
tion, it would be necessary for users to share passwords with all of the associated
risks that entails. Using public key encryption avoids these risks. Another applica-
tion example is the secure Instant Messaging (IM) system, PQChat for the iPhone,
iPad and Android devices. There is an option button which shows messages in their
received encrypted format, as shown in Fig. 19.20. The application is called PQChat
and the name stands for Post-Quantum Chat as the McEliece cryptosystem is rela-
tively immune to attack by a quantum computer, unlike the public key encryption
systems in common use today, such as Rivest Shamir Adleman, (RSA) and Elgamal.

As with other public key methods, the system may be used for mutual authentica-
tion. Party X sends a randomly chosen nonce x1, together with a timestamp to Party
Y using Party Y’s public key. Party Y returns a randomly chosen nonce y1, timestamp
and hash(hash(x1, y1)) to Party X using Party X’s public key. Party X replies with
an encrypted timestamp and acknowlegement, using symmetric key cryptography
with encryption key hash(x1, y1), the preimage of hash(hash(x1, y1)), to Party Y.
The session key hash(x1, y1) is used for further exchanges of information, for the
duration of the session. A cryptographic hash function is used such as SHA-3 [12]
which also has good, second preimage resistance.

It is assumed that the private keys have been kept secret and the association of IDs
with public keys has been independently verified. In this case, Party X knows Party Y
holds the private key of Y and is the only one able to learn x1. Party Y knows Party
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Fig. 19.19 S2S application
for sharing encrypted files

X holds the private key of X and is the only one able to learn y1. Consequently Party
X and Party Y are the only ones with knowledge of x1 and y1. Using the preimage
of hash(hash(x1, y1)) as the session key provides added assurance as both x1 and y1
need to be known in order to generate the key, hash(x1, y1). The timestamps prevent
replay attacks being used.
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Fig. 19.20 PQChat secure
instant messaging app
featuring McEliece
cryptosystem (with view as
received, enabled)

19.7 Summary

A completely novel type of public key cryptosystem was invented by Professor
Robert McEliece in 1978 and this is based on error-correcting codes using Goppa
codes. Other well established public key cryptosystems are based on the difficulty
of determining logarithms in finite fields which, in theory, can be broken by quan-
tum computers. Despite numerous attempts by the crypto community, the McEliece
system remains unbroken to this day and is one of the few systems predicted to
survive attacks by powerful computers in the future. In this chapter, some variations
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to the McEliece system have been described including a method which destroys the
deterministic link between plaintext messages and ciphertexts, thereby providing
semantic security. Consequently, this method nullifies the chosen-plaintext attack,
of which the classic McEliece is vulnerable. It is shown that the public key size can
be reduced and by encrypting the plaintext with a key derived from the ciphertext
random error pattern, the security of the system is improved since an attacker has to
determine the exact same error pattern used to produce the ciphertext. This defeats a
chosen-ciphertext attack in which two random bits of the ciphertext are inverted. The
standard McEliece system is vulnerable to this attack. The security of the McEliece
systemhas been analysed and a shortened ciphertext systemhas been proposedwhich
does not suffer from any consequent loss of security due to shortening. This is impor-
tant because to achieve 256 bits of security, the security analysis has shown that the
system needs to be based on Goppa codes of length 8192 bits. Key encapsulation and
short plaintext applications need short ciphertexts in order to be efficient. It is shown
that the ciphertext may be shortened to 1912 bits, provide 256 bits of security and
an information payload of 768 bits. Some examples of interesting applications that
have been implemented on a smartphone in commercial products, such as a secure
messaging app and secure cloud storage app, have been described in this chapter.
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Chapter 20
Error-Correcting Codes and Dirty Paper
Coding

20.1 Introduction and Background

In the following we are concerned with impressing information on an independent
signal, such as an image or an audio stream with the aim of the additional energy
used consistent with reliable detection of the information. Information can even be
impressed on background noise with no apparent signal present. A secondary aim is
that in impressing the information, the independent signal should suffer a minimal
amount of degradation or distortion to the point that in some circumstances the
difference is virtually undetectable.

20.2 Description of the System

The following, for simplicity, is first described in terms of using binary codes and
binary information. It is shown later that themethodmay be generalised to non-binary
codes and non-binary information. The independent signal or noise is denoted by the
waveform v(t) and the information carrying signal to be impressed on the waveform
v(t) is denoted by s(t). The resulting waveform w(t) is simply given by the sum:

w(t) = v(t) + s(t) (20.1)

The decoder which is used to determine s(t) from the received waveform will
usually be faced with additional noise, interference and sometimes distortion due
to the receiving equipment or the transmission. With no distortion, the input to the
decoder is denoted by r(t) and given by:

r(t) = v(t) + s(t) + n(t) (20.2)

© The Author(s) 2017
M. Tomlinson et al., Error-Correction Coding and Decoding,
Signals and Communication Technology,
DOI 10.1007/978-3-319-51103-0_20
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In its simplest form s(t) carries only one bit of information and

s(t) = k0s0(t) − k1s1(t) (20.3)

to convey data 0, and

s(t) = k0s1(t) − k1s0(t) (20.4)

to convey data 1.
The multiplicative constants, k0 and k1 are chosen to adjust the energy of the

information carrying signal and k1 is used to reduce the correlation of the alternative
information carrying signal that could cause an error in the decoder. The multi-
plicative constants, k0 and k1 are normally chosen as a function of v(t), the main
component of interference in the decoder, which is attempting to decode r(t).

In conventional communications, s0(t) (or s1(t)) is transmitted or stored and s0(t)
(or s1(t)) is decoded despite the presence of interference or noise. s(t) is added to
v(t) and s0(t) (or s1(t)) is decoded from the composite waveform v(t)+ s(t) despite
the presence of additional interference or noise.

Noting that the transmitter has no control over the independent signal or noise v(t),
a good strategy is to choose s0(t) and s1(t) from a large number of possiblewaveforms
in order to produce waveforms which have a large correlation with respect to v(t).
Each possible waveform is constrained to be a codeword from an (n, k, dmin) error-
correcting code. In one approach using binary codes, the 2k codewords are partitioned
into two disjoint classes, codewords having even parity and codewords having odd
parity. The codeword s0(t) is the even parity codeword with highest correlation out
of all even parity codewords and the codeword s1(t) is the odd parity codeword with
highest correlation out of all odd parity codewords. The idea is that w(t) should have
maximum correlation with s0(t) if the information data is 0 compared to any of the
other 2k − 1 codewords. Conversely if the information data is 1, w(t) should have
maximum correlation with s1(t) compared to any of the other 2k − 1 codewords. As
there is a minimum Hamming distance of dmin, between codewords, this prevents
small levels of additional noise or interference causing an error in detecting the data
in the decoder.

As an example, consider a typical sequence of 47 Gaussian noise samples v(t)
as shown in Fig. 20.1. A binary quadratic residue [4] code, described in Chap.4, the
(47, 24, 11) code is used and the highest correlation codeword having even parity is
determined using a near maximum likelihood decoder, the modified Dorsch decoder
described in Chap.15. The waveform of Fig. 20.1 is input to the decoder. The highest
correlation codeword, which has a correlation value of 20.96 is the codeword:

{010010011001100100100001000010000100 10000000000}

The highest correlation, odd parity codeword, is then determined. This codeword,
which has a correlation value of 22.65, is the codeword:

{ 111010010110000110011001000100000100 00100000000 }

http://dx.doi.org/10.1007/978-3-319-51103-0_4
http://dx.doi.org/10.1007/978-3-319-51103-0_15
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Fig. 20.1 Noise waveform to be impressed with data

It should be noted that in carrying out the correlations, codeword 1’s are mapped to
−1’s and codeword 0’s are mapped to +1’s.

The information bit to be impressed on the noise waveform is say, data 0, in which
case the watermarked waveform w(t) needs to produce a maximum correlation with
an even parity codeword. Correspondingly, the value given to k0 is 0.156 and to
k1 is 0.02 in order to make sure that the codeword which produces the maximum
correlation with the marked waveform is the previously found even parity codeword:

{0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0}

The marked waveform w(t) is as shown in Fig. 20.2. It may be observed that the
difference between the marked wavefordm and the original waveform is small. In
the decoder it is found that the codeword with highest correlation with the marked
waveform w(t) is indeed the even parity codeword:

{01001001100110010010000100001000010010000000000 }

and this codeword has a correlation of 28.31.
One advantage of this watermarking system over conventional communications

is that the watermarked waveform may be tested using the decoder. If there is insuf-
ficient margin, adjustments may be made to the variables k0 and k1 and a new
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Fig. 20.2 Noise waveform impressed with data 0

watermarkedwaveform produced. Conversely, if there is more than adequatemargin,
adjustments may be made to the variables k0 and k1, so that there is less degradation
to the original waveform v(t).

The highest correlation, odd parity codeword with correlation 25.31 is the code-
word:

{ 111010010110000110011001000100000100 00100000000 }

It should be noted that this odd parity codeword is the same odd parity codeword as
determined in the encoder, but this is not always the case depending upon the choice
of values for k0 and k1.

For the case where the information bit is a 1, the marked waveform w(t) needs to
produce a maximum correlation with an odd parity codeword. In this case, the value
of k0 is 0.043 and the value of k1 is 0.02 and s(t) = k0s1(t) − k1s0(t). The marked
waveform w(t) is as shown in Fig. 20.3. This time in the decoder it is found that the
codeword with highest correlation with w(t) is indeed the odd parity codeword:

{ 111,01001011000011001100100010000010000100000000 }

and this codeword has a correlation of 24.70. The highest correlation,even parity,
codeword has a correlation of 22.02.

In the encoding and decoding procedure above, the maximum correlation code-
word needs to be determined. For short codes a maximum likelihood decoder [6]
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may be used. For medium length codes, up to 200 bits long, the near maximum
likelihood decoder, the modified Dorsch decoder of Chap. 15 is the best choice. For
longer codes, decoders such as an LDPC decoder [3], turbo code decoder [1], or turbo
product code decoder [7] may be used in conjunction with the appropriate iterative
decoder. An example of a decoder for LDPC codes is given in by Chen [2].

Once the maximum correlation codeword has been found, codewords with sim-
ilar, high correlation values, may be found from the set of codewords having small
Hamming distance from the highest correlation codeword. Linear codes are the most
useful codes because the codewords with high correlations with the target waveform
are given by the sum of the highest correlation codeword and the low-weight code-
words of the code, modulo q, (where GF(q) is the base field [4] of the code). The
low-weight codewords of the code are fixed and may be derived directly as described
in Chaps. 9 and 13, or determined from the weight distribution of the dual code [4].

For practical implementations, the most straightforward approach is to restrict
the codes to binary codes less than 200 bits long and determine the high correlation
codewords by means of the modified Dorsch decoder. This conveniently, can output
a ranked list of the high cross correlation codewords is together with their correla-
tion values. It is straightforward to modify the decoder so as to provide the output
codewords in odd and even parity classes, with the maximum correlation codeword
for each class. The results for the example above were determined in this way.

http://dx.doi.org/10.1007/978-3-319-51103-0_15
http://dx.doi.org/10.1007/978-3-319-51103-0_9
http://dx.doi.org/10.1007/978-3-319-51103-0_13
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Additional information may be impressed upon the independent signal or noise
by partitioning the 2k codewords into more disjoint classes (other than binary). For
example four disjoint classes may be obtained by partitioning the codewords accord-
ing to odd and even parity for the odd numbered codeword bits and odd and even
parity for the even numbered codeword bits.Namely, if the codewords are represented
as:

c(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4 + · · · + ck−1x

k−1 (20.5)

then the codewords are partitioned according to the values of p0 and p1 given by

p0 = c0 + c2 + c4 + c6 · · · + ck−1 modulo 2 = 0

p1 = c1 + c3 + c5 + c7 · · · + ck−2 modulo 2 = 0

or with the result

p0 = c0 + c2 + c4 + c6 · · · + ck−1 modulo 2 = 1

p1 = c1 + c3 + c5 + c7 · · · + ck−2 modulo 2 = 1

Clearly the proceduremay be extended tom parity bits by partitioning the 2k code-
words into 2m disjoint classes. In this case, following encoding,m bits of information
will be conveyed by the marked waveform and determined from the codeword which
has the highest correlation with the marked waveform. This is by virtue of which of
the 2m classes this codeword resides.

An alternative to this procedure is to use non-binary codes [5] with a base field of
GF(q) as described in Chap.7. For convenience a base field of GF(2m) may be used
so that each symbol of a codeword is represented by m bits. In this case codewords
are partitioned into 2m classes according to the value of the overall parity sum:

p0 = c0 + c1 + c2 + c3 + c4 + · · · + ck−1 modulo 2m (20.6)

The n non-binary symbols of each codeword may be mapped into n Pulse Ampli-
tude Modulation (PAM) symbols [6] or into n.m binary symbols or a similar hybrid
combination before correlation with v(t).

Rather than maximum correlation with the waveform to be marked, codewords
may be chosen that have near zero correlation with the waveform to be marked.
Information is conveyed by the watermarked marked waveform by the addition of a
codeword to v(t), which is orthogonal or near orthogonal to the codeword which has
maximum correlation to the independent signal or noise waveform v(t). In this case,
the codeword with maximum correlation to v(t) is denoted as smax(t). Codewords
that are orthogonal or near orthogonal to smax(t) are denoted as smax,i(t) for i = 1 to
2m. The signal impressed upon v(t) is:

s(t) = k0smax(t) + k1smax,η(t) (20.7)

http://dx.doi.org/10.1007/978-3-319-51103-0_7
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where η determines which one of the 2m orthogonal codewords is impressed on the
waveform to convey the m bits of information data. The addition of the maximum
correlation codeword k0smax(t) to v(t) is tomake sure that smax(t) is still the codeword
with maximum correlation after the waveform has been marked. Although the code-
words smax,i(t) for i = 1 to 2m are orthogonal to k0smax(t) they are not necessarily
orthogonal to v(t). In this case, the signal impressed upon v(t) needs to be:

s(t) = k0smax(t) +
2m∑

i=1

kismax,i(t) (20.8)

The coefficients ki will usually be small in order to produce near zero correlation
of the codewords smax,i with w(t) except for the coefficient kj in order to produce a
strong correlation with the codeword smax,j.

The choice of themultiplicative constants, k0 and k1 or themultiplicative constants
ki for the general case (these adjust the energy of the components of the information
signal), depends upon the expected levels of additional noise or interference and
acceptable levels of decoder error probability. If the marked signal to noise ratio is
represented as SNRz, the marked signal energy as Ez, and the difference in highest
correlation to next highest correlation of the codewords is Δc, then the probability
of decoder error p(e) is lower bounded by:

p(e) � 1

2
erfc

(Δ2
c .SNRz

8.Ez

)0.5
(20.9)

This is under the assumption that there is only one codeword close in Euclidean
distance to the maximum correlation codeword.

The multiplicative constants may be selected “open loop” or “closed loop”. In
“closed loop”,which is a further variation of the system, the encoding is followed by a
testing phase. After encoding, the information is decoded from themarkedwaveform
and the margin for error determined. Different levels of noise or interference may
be artificially added to the marked waveform, prior to decoding, in order to assist in
determining the margin for error. If the margin for error is found to be insufficient,
then the multiplicative constants may be adjusted and a new marked waveform w(t)
produced and tested.

In the decoder, once the maximum correlation codeword has been detected from
themarked signal or noise waveform, candidate orthogonal, or near orthogonal code-
words, are generated from the maximum correlation codeword and these codewords
are cross correlated with the marked signal or noise waveform in order to determine
which weighted orthogonal, or near orthogonal, codewords have been added to the
marked signal or noisewaveform. In turn the detected orthogonal, or near orthogonal,
codewords from the cross correlation coefficients are used to determine the additional
information which was impressed on the marked signal or noise waveform.

In order to clarify the description, Fig. 20.4 shows a block diagram of the encoder
for the example of a system conveying two information bits. The independent signal
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marked waveform
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Fig. 20.4 Encoder for two information bits using near orthogonal codewords

marked
waveform

marked waveform buffer
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find partitioned class of codeword and output data output data

Fig. 20.5 Decoder for marked waveform containing orthogonal codewords

or noise is input to a buffer memory which feeds a maximum correlation decoder,
which usually will be a modified Dorsch decoder. The maximum correlation decoder
has as input the error-correcting code parameters (n, k, dmin) and the code partition
information. In this case the partition information is used to partition the codewords
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into four classes. The codewords, in each class, having highest correlation, and their
correlation values are output as shown in Fig. 20.4. From the input data and these
correlation values, the multiplicative constants are determined. The coefficients of
each codeword are weighted by these constants, and added to the stored independent
signal or noise to produce the marked waveform, which is output from the encoder.

Figure20.5 shows a block diagram of the corresponding decoder. The marked
waveform is input to the buffer memorywhich feeds amaximum correlation decoder.
The error-correcting code parameters of the same (n, k, dmin) code and the code par-
tition information are also input to the maximum correlation decoder. The codeword
with the highest correlation is determined. The class in which the codeword resides
is found and the two bits of data identifying this class are output from the decoder.

In a further approach, additional informationmaybe conveyed by addingweighted
codewords to the marked signal or noise waveform such that these codewords are
orthogonal, or near orthogonal, to the codeword having maximum correlation with
the marked signal or noise waveform.

20.3 Summary

This chapter has described how error-correcting codes can be used to impress addi-
tional information onto waveforms with a minimal level of distortion. Applications
include watermarking and steganography. A method has been described in which
the modified Dorsch decoder of Chap. 15 is used to find codewords from partitioned
classes of codewords, whose waveformsmay be used as a watermark which is almost
invisible, and still be reliably detected.
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