61 research outputs found

    Chunks hierarchies and retrieval structures: Comments on Saariluoma and Laine

    Get PDF
    The empirical results of Saariluoma and Laine (in press) are discussed and their computer simulations are compared with CHREST, a computational model of perception, memory and learning in chess. Mathematical functions such as power functions and logarithmic functions account for Saariluoma and Laine's (in press) correlation heuristic and for CHREST very well. However, these functions fit human data well only with game positions, not with random positions. As CHREST, which learns using spatial proximity, accounts for the human data as well as Saariluoma and Laine's (in press) correlation heuristic, their conclusion that frequency-based heuristics match the data better than proximity-based heuristics is questioned. The idea of flat chunk organisation and its relation to retrieval structures is discussed. In the conclusion, emphasis is given to the need for detailed empirical data, including information about chunk structure and types of errors, for discriminating between various learning algorithms

    The challenge of complexity for cognitive systems

    Get PDF
    Complex cognition addresses research on (a) high-level cognitive processes – mainly problem solving, reasoning, and decision making – and their interaction with more basic processes such as perception, learning, motivation and emotion and (b) cognitive processes which take place in a complex, typically dynamic, environment. Our focus is on AI systems and cognitive models dealing with complexity and on psychological findings which can inspire or challenge cognitive systems research. In this overview we first motivate why we have to go beyond models for rather simple cognitive processes and reductionist experiments. Afterwards, we give a characterization of complexity from our perspective. We introduce the triad of cognitive science methods – analytical, empirical, and engineering methods – which in our opinion have all to be utilized to tackle complex cognition. Afterwards we highlight three aspects of complex cognition – complex problem solving, dynamic decision making, and learning of concepts, skills and strategies. We conclude with some reflections about and challenges for future research

    Detection of Total Rotations on 2D-Vector Fields with Geometric Correlation

    Full text link
    Correlation is a common technique for the detection of shifts. Its generalization to the multidimensional geometric correlation in Clifford algebras additionally contains information with respect to rotational misalignment. It has been proven a useful tool for the registration of vector fields that differ by an outer rotation. In this paper we proof that applying the geometric correlation iteratively has the potential to detect the total rotational misalignment for linear two-dimensional vector fields. We further analyze its effect on general analytic vector fields and show how the rotation can be calculated from their power series expansions

    A System Dynamics based Perspective to Help to Understand the Managerial Big Picture in Respect of Urban Event Dynamics

    Get PDF
    AbstractIn the PED-community, a lot of conducted work focuses on a detailed aspect of the big picture in respect of pedestrian dynamics and disaster avoidance. Surprisingly, the field of research does not offer a lot of models including a managerial macro perspective to explain – for example – why there are mass gatherings that result in high density pedestrian conditions. To improve the mental models of researchers, managers and policy makers, this paper tries to tackle this research gap, by using the methodology of System Dynamics to explain with causal loop diagrams occurring dynamics of urban events to avoid critical situations beforehand

    Can involving clients in simulation studies help them solve their future problems? A transfer of learning experiment

    Get PDF
    It is often stated that involving the client in operational research studies increases conceptual learning about a system which can then be applied repeatedly to other, similar, systems. Our study provides a novel measurement approach for behavioural OR studies that aim to analyse the impact of modelling in long term problem solving and decision making. In particular, our approach is the first to operationalise the measurement of transfer of learning from modelling using the concepts of close and far transfer, and overconfidence. We investigate learning in discrete-event simulation (DES) projects through an experimental study. Participants were trained to manage queuing problems by varying the degree to which they were involved in building and using a DES model of a hospital emergency department. They were then asked to transfer learning to a set of analogous problems. Findings demonstrate that transfer of learning from a simulation study is difficult, but possible. However, this learning is only accessible when sufficient time is provided for clients to process the structural behaviour of the model. Overconfidence is also an issue when the clients who were involved in model building attempt to transfer their learning without the aid of a new model. Behavioural OR studies that aim to understand learning from modelling can ultimately improve our modelling interactions with clients; helping to ensure the benefits for a longer term; and enabling modelling efforts to become more sustainable

    Use of Mechanical Turk as a MapReduce Framework for Macular OCT Segmentation

    Get PDF
    PURPOSE: To evaluate the feasibility of using Mechanical Turk as a massively parallel platform to perform manual segmentations of macular spectral domain optical coherence tomography (SD-OCT) images using a MapReduce framework. METHODS: A macular SD-OCT volume of 61 slice images was map-distributed to Amazon Mechanical Turk. Each Human Intelligence Task was set to 0.01 and required the user to draw five lines to outline the sublayers of the retinal OCT image after being shown example images. Each image was submitted twice for segmentation, and interrater reliability was calculated. The interface was created using custom HTML5 and JavaScript code, and data analysis was performed using R. An automated pipeline was developed to handle the map and reduce steps of the framework. RESULTS: More than 93,500 data points were collected using this framework for the 61 images submitted. Pearson’s correlation of interrater reliability was 0.995 () and coefficient of determination was 0.991. The cost of segmenting the macular volume was 1.21. A total of 22 individual Mechanical Turk users provided segmentations, each completing an average of 5.5 HITs. Each HIT was completed in an average of 4.43 minutes. CONCLUSIONS: Amazon Mechanical Turk provides a cost-effective, scalable, high-availability infrastructure for manual segmentation of OCT images
    • …
    corecore