992 research outputs found

    A study of the feasibility of using sea and wind information from the ERS-1 satellite. Part 1: Wind scatterometer data

    Get PDF
    The use of scatterometer and altimeter data in wind and wave assimilation, and the benefits this offers for quality assurance and validation of ERS-1 data were examined. Real time use of ERS-1 data was simulated through assimilation of Seasat scatterometer data. The potential for quality assurance and validation is demonstrated by documenting a series of substantial problems with the scatterometer data, which are known but took years to establish, or are new. A data impact study, and an analysis of the performance of ambiguity removal algorithms on real and simulated data were conducted. The impact of the data on analyses and forecasts is large in the Southern Hemisphere, generally small in the Northern Hemisphere, and occasionally large in the Tropics. Tests with simulated data give more optimistic results than tests with real data. Errors in ambiguity removal results occur in clusters. The probabilities which can be calculated for the ambiguous wind directions on ERS-1 contain more information than is given by a simple ranking of the directions

    Observational studies of scatterometer ocean vector winds in the presence of dynamic air-sea interactions

    Get PDF
    Ocean vector wind measurements produced by satellite scatterometers are used in many applications across many disciplines, from forcing ocean circulation models and improving weather forecasts, to aiding in rescue operations and helping marine management services, and even mapping energy resources. However, a scatterometer does not in fact measure wind directly; received radar backscatter is proportional to the roughness of the ocean\u27s surface, which is primarily modified by wind speed and direction. As scatterometry has evolved in recent decades, highly calibrated geophysical model functions have been designed to transform this received backscatter into vector winds. Because these products are used in so many applications, it is crucial to understand any limitations of this process. For instance, a number of assumptions are routinely invoked when interpreting scatterometer retrievals in areas of complex air-sea dynamics without, perhaps, sufficient justification from supporting observations. This dissertation uses satellite data, in situ measurements, and model simulations to evaluate these assumptions. Robustness is assured by using multiple types of satellite scatterometer data from different sensors and of different resolutions, including an experimental ultra-high resolution product that first required validation in the region of study. After this validation survey, a subsequent investigation used the multiple data resolutions to focus on the influence of ocean surface currents on scatterometer retrievals. Collocated scatterometer and buoy wind data along with buoy surface current measurements support the theory that scatterometer winds respond to the relative motion of the ocean surface; in other words, that they can effectively be considered current-relative, as has been generally assumed. Another major control on scatterometer retrievals is atmospheric stability, which affects both surface roughness and wind shear. A study using wind, stress, temperature, and pressure measurements at a mooring in the Gulf Stream as well as collocated scatterometer data proved that the scatterometer responds as expected to changes in stability. Therefore, scatterometer retrievals can effectively be used to evaluate changes in wind due to speed adjustment over temperature fronts. Given the conclusions of these individual studies, this work collectively solidifies decades of theory and validates the use of scatterometer winds in areas of complex air-sea interaction

    Statistical Modeling of Spaceborne Scatterometer Measurements

    Get PDF
    Satellite scatterometers have gained in popularity recentJy due to expanded application of their data. New instruments are being developed which oversample the surface to improve the resolution of data, furthering application development. Such oversampling introduces the possibility of correlation between measurements, an issue which has previously been irrelevant due to the lower sampling rates of past instruments. This paper derives a mathematical expression for correlation between consecutive scatterometer measurements. Since measurement correlation is dependent upon instrument configuration, a general methodology is presented so that the algorithm can be adapted to specific instruments. An analysis of the expressions is provided. An adaptation of correlation effects on NASA\u27s most recent scatterometer, Sea Winds, is provided

    Improved near real time surface wind resolution over the Mediterranean Sea

    No full text
    International audienceSeveral scientific programs, including the Mediterranean Forecasting System Toward Environmental Predictions (MFSTEP project), request high space and time resolutions of surface wind speed and direction. The purpose of this paper is to focus on surface wind improvements over the global Mediterranean Sea, based on the blending near real time remotely sensed wind observations and ECMWF wind analysis. Ocean surface wind observations are retrieved from QuikSCAT scatterometer and from SSM/I radiometers available at near real time at Météo-France. Using synchronous satellite data, the number of remotely sensed data available for each analysis epoch (00:00 h; 06:00 h; 12:00 h; 18:00 h) is not uniformly distributed as a function of space and time. On average two satellite wind observations are available for each analysis time period. The analysis is performed by optimum interpolation (OI) based on the kriging approach. The needed covariance matrixes are estimated from the satellite wind speed, zonal and meridional component observations. The quality of the 6-hourly resulting blended wind fields on 0.25° grid are investigated trough comparisons with the remotely sensed observations as well as with moored buoy wind averaged wind estimates. The blended wind data and remotely wind observations, occurring within 3 h and 0.25° from the analysis estimates, compare well over the global basin as well as over the sub-basins. The correlation coefficients exceed 0.95 while the rms difference values are less than 0.30 m/s. Using measurements from moored buoys, the high-resolution wind fields are found to have similar accuracy as satellite wind retrievals. Blended wind estimates exhibit better comparisons with buoy moored in open sea than near shore

    Extended triple collocation: estimating errors and correlation coefficients with respect to an unknown target

    Get PDF
    Calibration and validation of geophysical measurement systems typically require knowledge of the true value of the target variable. However, the data considered to represent the true values often include their own measurement errors, biasing calibration, and validation results. Triple collocation (TC) can be used to estimate the root-mean-square-error (RMSE), using observations from three mutually independent, error-prone measurement systems. Here, we introduce Extended Triple Collocation (ETC): using exactly the same assumptions as TC, we derive an additional performance metric, the correlation coefficient of the measurement system with respect to the unknown target, rho(t,Xi). We demonstrate that rho(2)(t,Xi) is the scaled, unbiased signal-to-noise ratio and provides a complementary perspective compared to the RMSE. We apply it to three collocated wind data sets. Since ETC is as easy to implement as TC, requires no additional assumptions, and provides an extra performance metric, it may be of interest in a wide range of geophysical disciplines.Peer ReviewedPostprint (published version

    Improved near real time surface wind resolution over the Mediterranean Sea

    Get PDF

    Confidence and sensitivity study of the OAFlux multisensor synthesis of the global ocean surface vector wind from 1987 onward

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 119 (2014): 6842–6862, doi:10.1002/2014JC010194.This study presented an uncertainty assessment of the high-resolution global analysis of daily-mean ocean-surface vector winds (1987 onward) by the Objectively Analyzed air-sea Fluxes (OAFlux) project. The time series was synthesized from multiple satellite sensors using a variational approach to find a best fit to input data in a weighted least-squares cost function. The variational framework requires the a priori specification of the weights, or equivalently, the error covariances of input data, which are seldom known. Two key issues were investigated. The first issue examined the specification of the weights for the OAFlux synthesis. This was achieved by designing a set of weight-varying experiments and applying the criteria requiring that the chosen weights should make the best-fit of the cost function be optimal with regard to both input satellite observations and the independent wind time series measurements at 126 buoy locations. The weights thus determined represent an approximation to the error covariances, which inevitably contain a degree of uncertainty. Hence, the second issue addressed the sensitivity of the OAFlux synthesis to the uncertainty in the weight assignments. Weight perturbation experiments were conducted and ensemble statistics were used to estimate the sensitivity. The study showed that the leading sources of uncertainty for the weight selection are high winds (>15 ms−1) and heavy rain, which are the conditions that cause divergence in wind retrievals from different sensors. Future technical advancement made in wind retrieval algorithms would be key to further improvement of the multisensory synthesis in events of severe storms.The project is sponsored by the NASA Ocean Vector Wind Science Team (OVWST) activities under grant NNA10AO86G. The database of 126 buoys was established during the development of the OAFlux surface turbulent latent and sensible heat fluxes under the auspices of the NOAA grant NA09OAR4320129.2015-04-1

    Validation of coastal forecasts

    Get PDF
    Deliverable D2.3 del Proyecto MyWave: A pan-European concerted and integrated approach to operational wave modelling and forecasting – a complement to GMES MyOcean services. Work programme topic: SPA.2011.1.5.03 – R&D to enhance future GMES applications in the Marine and Atmosphere areas.Funded under: FP7-SPACE-2011-284455
    • …
    corecore