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Abstract-Satellite scatterometers have gained in popular
ity recentJy due to expanded application of their data. New 
instruments are being developed which oversample the sur
face to improve the resolution of data, furthering application 
development. Such oversampling introduces the possibility 
of correlation between measurements, an issue which has 
previously been irrelevant due to the lower sampling rates 
of past instruments. This paper derives a mathematical 
expression for correlation between consecutive scatterometer 
measurements. Since measurement correlation is dependent 
upon instrument configuration, a general methodology is 
presented so that the algorithm can be adapted to specific 
instruments. An analysis of the expressions is provided. An 
adaptation of correlation effects on NASA's most recent 
scatterometer, Sca Winds, is provided. 

I. INTRODUCTION 

SATELLITE scatterometenl have generated increased 
interest in the last few yean; by demonstrating an 

ability to not only estimate ocean wind speed and di
rection, their original motivation, but to also investigate 
iceberg location, snow melt cycles, and tropical deforesta
tion. Emergence of these new application has sparked the 
development of new instruments and new algorithms, both 
seeking to improve the data quality and resolution of the 
measurements. 

In particular, instruments are using larger antennas and 
higher pulse rates to obtain a more dense sampling of the 
surface of interest. The significant increase in sampling 
density has introduced an issue which has not previously 
been explored - that of correlation between measurements. 
This paper addresses the issue of correlation between 
measurements, caused by oversampling of the surface. 
Correlation not only decreases the amount of new infor
mation obtained by a measurement, but also increases the 
variance of the measurement, degrading its accuracy and 
quality. 

This paper presents the mathematical theory related 
to measurement correlation. Since actual values are in
strument specific, we present a general methodology for 
determining their values. The paper is organized as fol
lows. Section II presents theory relevant to the discussion 
of multiple, overlapping measurements by describing the 
statistics of signal scattering. Section ill then presents a 
measurement framework relating to general scatterometer 

measurements. The section analyzes the correlation and 
covariance expressions and their dependence on basic 
scattering principles and the general measurement method
ology. Section IV provides an analysis of the covariance 
expression and how measurement design can be optimized 
to limit measurement correlation. It then applies the the
ory to NASA's most recent scatterometer, SeaWinds on 
QuikSCAT. Finally, Section V summarizes findings and 
concludes. 

II. SURFACE SCATTERING OF DISTRIBUTED TARGETS 

When a microwave signal impacts a conductive surface 
a portion of the signal energy is reflected back towards 
the origin of the incident wave. This reflection is termed 
backscatter. The voltage backscattered by a single object 
can be represented by the complex value Zi, where Zi = 
Ti + jqi. For spacebome instruments, when the transmitted 
signal intersects the earth's surface it is simultaneously 
incident on a large number of scatterenl. The backscatter 
response from a large number of point targets, termed a 
distributed target, is the sum of the response from the 
individual point scatterenl, 

(1) 

Applying the central limit theorem (by assuming that there 
are a large number of scatterenl in the distributed response) 
and assuming that no single scatterer dominates the overall 
return, the real and imaginary parts of the individual 
responses, Ti and qi, may be assumed to be independent, 
normally distributed random variables. In this case, the 
magnitude of the distributed target, Vd , has a Rayleigh 
distribution, and the phase response, 4>d, is uniformly 
random over the interval ([0, 211"]) [1]. 

The expected value of the voltage magnitude, Vd , is 

&[Vdl = Via, (2) 

where & is the expected value operator and a is the 
standard deviation of Ti and qi. The second moment of 
the voltage magnitude is 

&[Vil = 2a2
• (3) 



We assume that Vd and ri>d are independent for each small 
area or resolution element considered. This is reasonable 
considering that most surface features have sub-meter 
correlation lengths and most scatterometer measurements 
encompass several square kilometers. 

We now define the backscattered power of the dis
tributed target, Pd, as the square of the backscattered 
voltage, 

(4) 

so that 
£[Pd] = £[V;] = 20'2 = AdO'd (5) 

where Ad is the area of the distributed target and 0'0 is 
the normalized radar cross section of the area, which is 
proportional to the variance of the individual scatterers. 

The correlation between two separate distributed targets, 
a and b, can then be written as 

£[Zd(a}Z.j(b}] = £[Vd(a)Vd(b}]£[ei[Ma)-<t>d(b)] 

= £[Vd(a)Vd(b}]8(a - b} 

= £ [V; (a}]8(a - b} 
= AdO'd8(a - b}. 

III. INSTRUMENT MEASUREMENT 

A scatterometer transmits a known signal, 

(6) 

(7) 

(8) 

(9) 

~t(t} = y'E;a(t}eiwct (10) 

where t is time, E t is the total transmitted energy for a 
single pulse, We is the angular center frequency, and aCt} 
is the complex modulation function given by 

Tp 

j1a(t}12dt = 1 

o 

(ll) 

with aCt} = 0 for t < 0, aCt} > 0 for 0 ~ t ~ Tp, and 
aCt} = 0 for t > Tp. 

Ignoring the spreading loss and antenna gain for the 
moment, the echo of the signal from a single point scatterer 
can be written as 

~p(t} = Zi ( #taCt - 2r /c}eiwcte-iWd(Z,1J)tei2wcr/e) , 
(2) 

where r is the range from instrument to the point scatterer, 
and Wd is the Doppler shift of the point. This assumes that 
changes in the spacecraft velocity need not be considered 
in the Doppler shift, which generally holds when pulse 
periods are less than I second and center frequencies are 
greater than 1 GHz [2]. Accounting for antenna gain and 
spreading loss terms, the return signal echo for the ith 
scatterer can be written as 

. (G(i}'\) 
~r(t,~} = Zi (47r}3/2r 2(i) . 

( y'E;a(t - 2r(i}fc)eiwcte-iwd(i)tei2WcT(i)/e) , 

(13) 

Antenna Footprint 

Fig. 1. Basic geometry of a scatterometer footprint. Each Zi represents 
an individual scatterer, while Z represents the tota1 voltage response of 
one resolution element, consisting of multiple individual scatterers. The 
footprint is the 3 dB contour of the illumination pattern. 

where ,\ is the signal's wavelength, and G is the antenna 
gain in the direction of the point scatterer. 

While we might desire to measure the response of 
each individual scatterer, limitations of Doppler and range 
filtering constrain the resolution of actual measurements. 
Without some form of Doppler or range filtering, the 
resolution of a measurement is limited to the size of the 
antenna footprint, typically described using its 3 dB beam 
width. Utilizing Doppler and/or range filtering can improve 
the effective resolution of the instrument by separating the 
antenna footprint into multiple resolution elements. Figure 
1 illustrates the footprint geometry for a scatterometer 
measurement. The large, bold circle represents a generic 
antenna footprint and the lines represent an arbitrary 
resolution grid generated by range and Doppler filtering. 
For spacebome scatterometers, antenna footprint widths 
are on the order of tens of kilometers or more and filtered 
resolution elements are typically several square kilometers. 
In both cases, the large size allows us to assume, as 
previously mentioned, that a large number of scatterers, Zi, 
exist in each resolution element, Z, which is considered 
to be one distributed target (Zd == Z). 

Recognizing these resolution limitations, the measured 
return signal (13) can be defined as the sum of the 
individual point scatterers within each resolution element, 

G(in}a(t - 2r(in}/c}eiwcte-iwd(in)tei2wcT(ift)/e 

r2(in} 
(14) 



where the swn is over the i scatterers in the nth resolution 
element. For a satellite, the range term is very large in 
comparison to the change in range for each resolution 
element, we therefore asswne that the denominator, r2, is 
constant over the swn for each resolution element and use 
the mean value for the measurement, 1'2. For simplicity, we 
also asswne that gain and observed Doppler are constant 
over each resolution element. Using a standard (x, y) 
coordinate system, aligned with the along track and cross 
track directions, along with (1), the return signal can now 
be defined by 

VEt).. 
€r(t,x,y) = (41f)3/2j'2Z(X,y)G(x,y). 

aCt - 2r(x, y)/c)eiwcte-iwd(Z,I/)tei2wcr(z,I/)/c. 
(15) 

Equation (15) defines the generalized return signal for 
a scatterometer. The process which scatterometer instru
ments use to measure this signal varies from instrwnent 
to instrument, depending upon requirements for resolution, 
the instrwnent modulation function, aCt), and the receiver 
hardware available. In general, instrwnents use a form of 
square-law detection which can be written as 

(16) 

where the {l operator is an element of the set 

and swns (either discretely or continuously) over the x-v 
area and time as required by the specific instrwnent. 

For this paper, we will define the measurement of the 
return signal, M", as 

TOlZO I/o 2 

M" = f {I €r(t,x,y)dydx dt, (18) 

where Ta and n span the time limits of pulse integration, 
Xa and Xb delimit the footprint in the range direction, and 
Ya and Yb delimit the footprint in the Doppler direction. We 
choose this form for its correspondence with several past 
scatterometers. We recognize that for many instruments 
the limits of integration for range and Doppler will be 
interdependent; for simplicity we define these limits as 
independent. For later use, let us also define the inner 
portion of (18) as 

:1:60 1/60 

(t) = / / €r(t, x, y) dy dx (19) 

Zo 1/0 

so that 
To 

MB = /I(t)12 dt. (20) 

T. 

We also define the radar calibration parameter, X, as 

X- Et)..2~AE 
- (47r)3 r 4 ' 

(21) 

with Go the peak antenna gain, and AE the effective 
measurement area, 

%60 1/60 

AE = ~! / G2(x,y)Ad(x,y)dydx. (22) 

We can then use (9) and the fact that G is purely real to 
show that the expected value of the measurement is 

(23) 

G2(x, y)la(t - 2r(x, y)/c)12 dy dxdt. 

We can make a further simplifYing asswnption, that (To is 
constant over the measurement area, to obtain 

(24) 

where H is 
To :to I/o 

H = ~~E! / / Ad(x,y)· 
T. z. 1/. 

(25) 

G2(x, y)la(t - 2r(x, y)/cW dy dx dt. 

Using a similar process, we can also find the autocor
relation of the signal from a specific resolution element 

by assuming, as before, that (To is constant over the 
measurement area, and by defining L as 

Zb 1160 

L(t,r) = ~~E / ! Ad(X,y)G2(x,y)a(t - 2r(x,y)/c)· 
%41/0 

a*(r - 2r(x,y)/c)eiwc(t-r)e-iwd(z,l/)(t-r) dy dx 
(27) 

A. Multiple Pulses 

The general statistical properties of scatterometer mea
surements have been calculated for several different in
strwnents [3], [4], [5]. These studies have focused on the 
properties of single, independent measurements and are 
well understood. It is our desire to extend the theory to 
recent designs by considering correlated measurements. 
Using definitions and methods similar to the above deriva
tion, and again assuming for that (To (x, y) is homogeneous 
across the integration area, the correlation of two measure
ments, M: and Mt can be written as 



where W is 

G/c(x', y')G,(x', y')G,(x, y)a/c(t - 2r(x, y)/c)· 

a;(t - 2r(x',y')/c)a,(r - 2r(x',y')/c)· 
aHr - 2r(x,y)/c)e-i (Wd(Z.II)t-Wd(Z'.II')t . 

ei(Wd(Z' ,1I')r-wd(z.lI)r) dy' dx' dy dx dtdr. 
(29) 

The covariance, Cav[M/c M,], of two measurements can be 
shown to be 

Equations (28) and (30) show that the value of the cor
relation and covariance is directly related to W, which is 
the only tenn that is dependent on both measurements, 
M: and Mt- If the measurements are of the same area 
(k = I), the correlation simplifies to the second moment 
of the measurement, 

and the covariance equals the variance of the measurement, 
(0-0 X)2V where V is equivalent to W when reduced to 
the single measurement form [4]. If, on the other hand, the 
measurements M: and Mt are completely independent, 
the W term is zero, the covariance is zero, and the corre
lation is just the square of the expected value, t:2 [M']. 

IV. ANALYSIS OF THE COVARIANCE EXPRESSION 
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The key tenn on which both the correlation and covari-
ance expressions, (28) and (30), depend is the W term. Our Fig. 2. Radar ambiguity function for a general LFM modulated pulse 

interest then is to understand the behavior of W when the (32). 

two measurements have partial overlap, either in the along 
track or cross-track directions. 

In order to gain an understanding of W, we employ a 
few simplifications to provide clarity. First we will assmne 
that Ad is uniform for all differential elements and thus 
becomes a constant. Next, we introduce the generalized 
radar ambiguity function [I] 

+00 

X(t, f) = / a(y)aO(y + t)ei21rfll dy. (32) 
-00 

and use a change of variables substitution, y = t-
2r(x',y')/c in (29). We note that aCt) is zero outside 
the time limits of the pulse and assume that the range 
gates are sufficiently wide to admit all of the echo signal. 
This allows us to extend the time limits of (29) to 

infinity without effecting the total value of the integral. 
Implementing these changes, W can be written as 

, , 
Zb lib Zb lib 

W = / / / / Q(x,y)Q(x',y')· (33) 
ZQ. Ilea. z!a y~ 

X/c(p, k)Xt(P, k) dy' dx' dy dx 

where p = ~[r(x',y') - r] and k = 2~[Wd(X,y)
Wd(X',y')], and Q(x,y) = G/c(x,y)G,(x,y). 

The characteristics of the radar ambiguity function 
are determined by the pulse modulation function, aCt). 
The ambiguity function for a linear frequency modulated 
(LFM) pulse ("chirped") is often referred to as a "razor 
blade" due to its sharp diagonal peak, as shown in Fig-
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Fig. 3. Measurement geometry for SeaWinds [5]. 

ure 2. The width of the peak in the time dimension is 
determined by the duration of the pulse and the width of 
the response in the frequency direction is proportional to 
the reciprocal of the pulse repetition period. The angle 
between time and frequency is detennined by the chirp 
rate. 

An instructive approach to understanding the expression 
for W is to calculate it as a function of position offset 
between the two pulses, in the x and y directions. We 
define the first pulse to be centered about the origin so 
that for ~x = Xb - x" and ~y = Yb - y" we have x" = 
-~x/2, Xb = ~x/2, y" = -~y/2, and Yb = ~y/2, and 
x~ = X - ~x/2, x~ = X + ~x/2, y~ = y - ~y/2, 
and y~ = y + ~y/2. The figures in the following section 
are plotted using this convention. The level curves of the 
contour plots are placed at 0.1 increments. 

A. Application to Sea Winds 

Relating the effects of correlation to actual instruments 
requires understanding the way the instruments make their 
measurements. For this paper we will consider the recently 
developed pencil-beam scatterometer Sea Winds. Sea Winds 
operates by conically scanning about nadir a pencil beam 
antenna. It operates at an elevation of approximately 800 
Ian, having a ground speed of 7 kmIs. It has two beams, 
an inner and outer, alternating pulses between the beams. 
For our discussion, we will only consider the outer beam, 
which has a footprint of 36 Ian x 26 Ian, an elevation 
angle of 45 degrees and a 3 dB beam width of 1.4°. 
SeaWinds transmits 1.5 ms pulses every 5.4 ms, each 
having a bandwidth of 375 kHz. It's antenna rotates at 
a rate is 18 rpm, thus offsetting each pulse by about 1.17° 
for the same beam. Figure 3 describes the geometry of 
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during a rotation [4J. 
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Fig. 5. Correlation contours for SeaWinds at 0° azimuth. The arrow 
represents the location of the next pulse, (18.25 km • .().19 km). The 
normalized correlation coefficient is 0.19. 

SeaWinds. 
The footprint, or illuminated area of the surface, can be 

segmented, as described previously, into pieces using sev
eral coordinate systems. The most intuitive, a rectangular, 
(x, y) grid, is defined using the nadir track and cross track 
axes defined in figure 3. As the antenna rotates about nadir, 
the illutninated area also moves, changing the orientation 
of the along and cross track grid. Figure 4 illustrates this 
change for three cell locations during the rotation. Using 
Figure 4 the geometry of the footprint can be related to the 
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Fig. 6. Correlation contours for SeaWinds at 45° azimuth. The arrow 
represents the position of the consecutive pulse, (12.78 km, -13.04 km). 
The normalized correlation coefficient is 0.27. 
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Fig. 7. Correlation contours for SeaWinds at 90° azimuth. The arrow 
represents the position of the consecutive pulse, (-0.19 km, -18.25 km). 
The normalized correlation coefficient is 0.02. 

geometry of the expression for Wand offset parameters 
(X, Y). For presentation, we describe the correlation for 
consecutive pulses using the three depicted azimuth angles, 
0°, 45°, and 90°, shown in Figures 5, 6, and 7 respectively. 
Each figure shows the normalized correlation values for 
combination offsets in both along track and cross track 
directions. The figures show that the next pulse will be off
set by (18.25km, -0.19km) at 0°, (12.78km, -13.04km) 
at 45°, and (-0.19km,-18.25km) at 90° . Furthermore, 
they show that the normalized correlation coefficient W 

has a value of 0.19, 0.27, and 0.02 respectively. 
The value of this correlation is significant because it 

reduces the amount of new information present in the 
consecutive pulse and also increased the variance of the 
signal. Signal variance is a factor of the number of 
independent "looks", N/, or samples of the surface and 
is of the form 

(34) 

where u~ is the variance of the multiple look measurement 
and u~ is the variance of the single look measurement. For 
scatterometers, the number of looks can be approximated 
by the time bandwidth product of the measurement, TrBr, 
where Tr = n - T" and Br is the bandwidth of the instru
ment hardware. Multiple measurements provide additional 
looks, with the total number of looks being NpN/ for Np 
independent pulses. However, if the measurements are cor
related, the number of looks is reduced to [Np (1 - p)] N/, 
thus degrading the accuracy of the measurements. 

V. SUMMARY 

Surface oversampling has the possibility of improving 
measurement resolution by providing significantly more 
data than previously available. However, the amount of 
information available is limited by the correlation of the 
measurements. The correlation coefficient of a given mea
surement is determined by the size of the antenna footprint 
and the implementation of pulse modulation ftmction. 

One additional consideration not mentioned in the publi
cation is the presence of random additive noise. This noise, 
which is caused by radiation incident on the instrument 
antenna, as well as internal thermal variation also degrades 
the performance of the instrument. Actual instrument 
designs take this issue into consideration. 

A basic analysis of the cross covariance expression 
was presented for the Sea Winds instrument. More modern 
instruments, still in the design phase, plan on sampling 
significantly more dense than Sea Winds. The likelihood 
of large correlation coefficients is significant and merits 
additional consideration. 
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