1,823 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    TWAM: A Certifying Abstract Machine for Logic Programs

    Full text link
    Type-preserving (or typed) compilation uses typing derivations to certify correctness properties of compilation. We have designed and implemented a type-preserving compiler for a simply-typed dialect of Prolog we call T-Prolog. The crux of our approach is a new certifying abstract machine which we call the Typed Warren Abstract Machine (TWAM). The TWAM has a dependent type system strong enough to specify the semantics of a logic program in the logical framework LF. We present a soundness metatheorem which constitutes a partial correctness guarantee: well-typed programs implement the logic program specified by their type. This metatheorem justifies our design and implementation of a certifying compiler from T-Prolog to TWAM.Comment: 41 pages, under submission to ACM Transactions on Computational Logi

    SAGA: A project to automate the management of software production systems

    Get PDF
    The Software Automation, Generation and Administration (SAGA) project is investigating the design and construction of practical software engineering environments for developing and maintaining aerospace systems and applications software. The research includes the practical organization of the software lifecycle, configuration management, software requirements specifications, executable specifications, design methodologies, programming, verification, validation and testing, version control, maintenance, the reuse of software, software libraries, documentation, and automated management

    The role of computational logic as a hinge paradigm among deduction, problem solving, programming, and parallelism

    Get PDF
    This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming

    Perpetual requirements engineering

    Get PDF
    This dissertation attempts to make a contribution within the fields of distributed systems, security, and formal verification. We provide a way to formally assess the impact of a given change in three different contexts. We have developed a logic based on Lewis’s Counterfactual Logic. First we show how our approach is applied to a standard sequential programming setting. Then, we show how a modified version of the logic can be used in the context of reactive systems and sensor networks. Last but not least we show how this logic can be used in the context of security systems. Traditionally, change impact analysis has been viewed as an area in traditional software engineering. Software artifacts (source code, usually) are modified in response to a change in user requirements. Aside from making sure that the changes are inherently correct (testing and verification), programmers (software engineers) need to make sure that the introduced changes are coherent with those parts of the systems that were not affected by the artifact modification. The latter is generally achieved by establishing a dependency relation between software artifacts. In rough lines, the process of change management consists of projecting the transitive closure of the this dependency relation based on the set of artifacts that have actually changed and assessing how the related artifacts changed. The latter description of the traditional change management process generally occurs after the affected artifacts are changed. Undesired secondary effects are usually found during the testing phase after the changes have been incorporated. In cases when there is certain level of criticality, there is always a division between production and development environments. Change management (either automatic, tool driven, or completely manually done) can introduce extraneous defects into any of the changed software life-cycle artifacts. The testing phase tries to eradicate a relatively large portion of the undesired defects introduced by change. However, traditional testing techniques are limited by their coverage strength. Therefore, even when maximum coverage is guaranteed there is always the non-zero probability of having secondary effects prior to a change

    A Parallel semantics for normal logic programs plus time

    Get PDF
    It is proposed that Normal Logic Programs with an explicit time ordering are a suitable basis for a general purpose parallel programming language. Examples show that such a language can accept real-time external inputs and outputs, and mimic assignment, all without departing from its pure logical semantics. This paper describes a fully incremental bottom-up interpreter that supports a wide range of parallel execution strategies and can extract significant potential parallelism from programs with complex dependencies
    corecore