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A Parallel Semantics for Normal Logic Programs
plus Time
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Abstract. It is proposed that Normal Logic Programs with an explicit
time ordering are a suitable basis for a general purpose parallel pro-
gramming language. Examples show that such a language can accept
real-time external inputs and outputs, and mimic assignment, all with-
out departing from its pure logical semantics. This paper describes a fully
incremental bottom-up interpreter that supports a wide range of paral-
lel execution strategies and can extract significant potential parallelism
from programs with complex dependencies.
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1 Introduction

This paper is a first step towards a programming language that combines the best
of logic programming and imperative programming and that addresses the chal-
lenges laid down by the recent switch of performance growth from faster proces-
sors to more parallel processors [ABC+06,Osk08]. Current computer hardware
includes multi-core CPUs, general purpose graphics processing units, cluster
computers, and even heterogeneous hardware that includes circuit based tech-
nologies such as FPGAs and ASICs. Such hardware demands parallel programs.

Imperative programming is currently ubiquitous in general purpose program-
ming. Its perceived strengths are its execution time and memory usage efficiency,
together with an ability to reason informally about these resource requirements,
its ability to interface to real time and hardware systems, and easily interface
with the existing computing milieux (perform I/O, call existing libraries, display
graphics, etc.). A weakness is that the combination of concurrency and mutable
variables makes it difficult to write correct and efficient programs [Lee06].

Logic programming in the broad sense, encompassing relational databases [Cod70]
and their query languages, has been very successful in enterprise computing, but
has not significantly penetrated the practice of general purpose programming.
Its strengths are a strong ability to reason about program correctness and a
programming expressiveness that reduces the size of programs and raises the
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level of abstraction. General purpose logic programming languages such as Pro-
log [Kow79] and dataflow languages [JHM04] have not become mainstream.

We perceive the current attempts to merge logic and programming to be
incomplete. Most logic languages need to move outside their pure logical foun-
dations in order to include facilities such as I/O and to enable efficient execu-
tion [CM03]. Kowalski [Kow01] argues that this is a major reason for the limited
adoption of logic programming. He points out that in a multi-agent reactive
world, pure logic programming is best suited for just the think phase of the
observation-thought-action cycle shown in Fig. 1. It is not good at observing
changes to its input environment, nor at performing update actions that change
the real world.

observe any inputs at time T,
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act,

select and commit to an action to perform,

think,

Fig. 1. The observation-thought-action cycle of multi-agent systems (Adapted from
Kowalski, 2001)

While very successful and widely deployed, relational databases overlap with
logic only for queries. Deductive databases and abductive logic programming [Liu99]
extend this to include the observation and commit-to-an-action phases of Fig. 1,
but it is still difficult to express the effects of the updates [Kow01].

The motivation for this paper is to demonstrate that it is possible to combine
the best features of standard imperative languages with the simple semantics and
conciseness of logic programming.

Over the last decade, we have experimented with a language, called Starlog,
that is a normal logic programming language plus an explicit causality ordering.
The goal is to take advantage of the languages clean declarative semantics and
potential parallelism, and transform programs to run efficiently on various se-
quential and parallel architectures (many-core CPUs, cluster computers, GPUs,
FPGAs, circuits etc.) with good scalability. Starlog is a pure logic language
and thus does not contain any explicit language constructs for locking, syn-
chronisation, delay, communication, shared variables, threads etc. Rather these
constructs are part of the implementation strategy. This paper does not em-
phasise these implementation strategies but does demonstrate that this style of
programming can expose a large amount of potential parallelism even in com-
plex code. We have also developed several compilers, including one that chooses
data structures automatically and generates sequential Java code whose execu-
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tion speed is comparable to hand-coded Java programs [Cla04], and another that
generates parallel fork/join Java code with good speedup for small numbers of
cores [UWC13].

In this paper we describe evaluation strategies that expose as much potential
parallelism in programs as possible, but we do not address the engineering issues
of implementing that parallelism on machines with limited resources – that is
ongoing research [Bea09,Cro12,Bri12].

This paper starts in Section 2 by describing a version of Starlog, which is
based on standard Horn clause logic which includes negation, function symbols,
and a potentially rich set of builtin functions.

Negation is critical as it permits the expression of change and mutation, an
integral part of what we are attempting (see the example program in Section 4.3).

The inclusion of function symbols solves the “gensym” problem of generat-
ing novel names and identifiers during execution (see the example program in
Section A). Unfortunately, the inclusion of function symbols opens the way to a
non-relational programming style where the bulk data in a program is encoded
in large data structures (such as lists or trees). We see this as an infelicitous
programming style a little like writing standard ’C’ or FORTRAN code in an
object oriented language. It obviates many of the advantages that we refer to
here for a relational style of programming where the bulk of a program’s data
is stored in relational tables. The advantages of this relational style are that
it leads to a compact rule based programming style, exposes parallelism, and
permits late commitment to the data structures that implement the relational
tables.

Section 3 makes a link to previous work on dependency graphs and Section 4
discusses some small example programs using the dependency graphs. These
sections emphasize the main novelty of our programming language, that is, the
inclusion of an explicit ordering on the tuples of the program, provided by the
programmer. The use of function symbols coupled with the ordering allows for
richer and more expressive orderings (see Section A, which uses a tree ordering
for a search problem).

The explicit ordering for a program is crucial to the work we present here,
because it contributes to the following features:

– pure logical interfaces for I/O (for example, the program in Section 4.3).
– control over the parallelism and resource usage.
– a direct least fix-point construction of the perfect model of the program.

Section 5 defines a number of terms that are used in Section 6, which contains
one of the major contributions of the paper – a direct (and hence potentially
efficient) least fix-point construction for Horn clause logic including negation.
That is, our semantics agrees with the standard perfect model semantics for
logic programs. The novelty of our development is that we use a direct least
fix-point construction. So far as we are aware this is not possible without having
an explicit ordering available. A substantial proof is provided of this assertion.
We are unaware of any results in the literature that would allow us to go directly
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from an explicit ordering to both a proof of a perfect model semantics and an
explicit least fix-point operator.

One result of this approach is that the least fix-point construction permits
a range of different fix-point parallelism strategies (Section 5.1). This includes
a “most parallel” possible operator (Π in Defn 18). Any non-empty subsets of
this can be safely used to construct the least fix-point. An example in Section 8
shows that Π can deliver significantly more potential parallelism than a simple
event list based on the supplied ordering. Thus it is possible to use a range of
execution strategies that trade off potential parallelism and resource usage both
by varying the parallelism strategy and by varying the programmer supplied
ordering. Importantly, we prove that all parallelism strategies give the same fix-
point model of the program, which means that a Starlog program will produce
the same set of output tuples (though maybe in a different order) no matter
which parallelisation strategy is used. This determinism property is important
and useful [BAAS09], since it means that debugging can be done in a sequential
setting, and no errors can be introduced by parallelisation.

Finally, Section 9 discusses related work and Section 10 gives conclusions and
further work. The website, http://www.cs.waikato.ac.nz/research/jstar,
gives further information about the Starlog languages, including example pro-
grams from this paper and a reference interpreter for executing them using a
variety of parallelism strategies.

2 Syntax and Notation

This section introduces the syntax of the Starlog language and the notation used
throughout the paper. A Starlog program is a logic program P plus a causal pair
(.,<), as defined below.

By a logic program P we mean a finite set of clauses, written as:

A← B̄

where A is referred to as the head of the clause and B̄ as its body. The head A is
an atom, which is a predicate symbol applied to zero or more terms. Terms are
constructed from constant and function symbols, plus variables, as usual. The
body B̄ is a set of literals B1,B2...,Bm. A literal is either a positive literal, which
is just an atom, or a negative literal, which is a negated atom [Llo87,PP90].

A subset of the predicate symbols are identified as built-in predicates and may
not appear in the head or in any negative literals of any program clause. Also,
any variable which appears in a clause must appear in at least one positive literal
(including built-in literals) in the body. Each clause is universally quantified over
all the variables in the clause.

The language L of P consists of all the well-formed formulae of the first order
theory obtained in this way. The Herbrand base BP of P is the set of all ground
atoms of the theory [Llo87]. P∗ denotes the ground instantiation [Llo87] of the
program P. The convention is used that terms which may contain unbound
variables will be written in boldface (for example A ← B̄ ∈ P), whereas terms
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which are ground are written as Roman capitals (for example A ← B̄ ∈ P∗).
By an interpretation I of P we mean a subset of the Herbrand base BP. The
complete semantics of built-in predicates is represented by the interpretation I◦.
For example, 2 < 3 is a member of I◦, while 3 < 2 is not.

Definition 1. (Reduction [PP90]) The reduction of P∗ modulo an interpre-
tation I is the set of (ground) clauses

P∗/I ≡ {A← (B̄ − I) | A← B̄ ∈ P∗ ∧ (I 6|= ¬B̄)}

Informally, P∗/I means that we remove all the true atoms (those in I) from
the bodies of the clauses, and we discard all (ground) clauses whose bodies are
in contradiction with I, that is (I |= ¬B̄). It is written with a double negation to
ensure that we retain not only those clauses whose bodies are true, but also those
clauses with bodies whose truth is unknown given just I, but which may become
true given stronger interpretations than I. We will be particularly interested in
P∗/I◦, the reduction modulo the built-in predicates. Since every ground builtin
can be evaluted to either true or false, this removes all builtin atoms from P∗

and also removes all clauses that have one or more false builtins.
Given the body B̄ of a clause, we distinguish the following four subsets:

– B̄+ the positive literals that are not built-in predicates.
– B̄− the negative literals.
– B̄∼ the negative literals with their negation stripped from them.
– B̄◦ the built-in predicates.

We will require all programs to be written in a causal style, so that there
exists some causality ordering over all the tuples such that rules always add new
tuples in the future, not in the past. We base this notion of causality on the idea
of a well-founded ordering. Our goal is to prevent temporal contradictions, such
as the Grandfather Paradox of time travel [Bar43], where someone travels back in
time and kills his own biological grandfather before the latter met the traveler’s
grandmother, thus making it impossible for the traveler to exist. Informally, we
want to ensure that the output (the head) of each rule is generated after (or at
the same time) as the inputs of the rule, so that the output cannot modify the
inputs and lead to a contradiction. Typically, we do this by mapping each tuple
to a timestamp, which may be one of the integer fields of the tuple, an expression
based on one or more fields, or several fields ordered lexicographically. We shall
see that this causality restriction on the input programs is equivalent to local
stratification from the database and logic programming literature [Prz88].

Definition 2. (Well-founded) A binary relation < over a set X is well-
founded iff it has no infinite descending chains. Equivalently, if every non-empty
subset of X has a minimal element with respect to <.

Definition 3. (Causal pair .,<) Throughout the paper we will be using a
causal pair of orderings, one a well-founded strict partial order (irreflexive or-
dering) < and the other a pre-order (reflexive transitive ordering) . on the
Herbrand base. (In general these depend on the program P.)
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The two orderings are related by:

x < y ⇒ x . y

x < y ∧ y . z ⇒ x < z

x . y ∧ y < z ⇒ x < z

These orderings are extended to negative literals by adding the following ax-
ioms and forming the minimal transitive closure of the relations:

x . y ⇒ x < not(y)

x < y ⇒ not(x) < y

. is also extended to ground clauses by adding (A← B̄) . (C ← D̄) iff A . C
and forming the transitive closure.

To understand the ordering of negative literals, note that for any pair of
positive tuples A1, A2 such that A1 < A2, we have A1 < not(A1) < A2. This
shows that not(A1) becomes known immediately after the calculation of A1 has
been completed. If that calculation did produce the tuple A1, then not(A1) is
false, whereas if the calculation failed to produce A1, then not(A1) is true.

Our definition of causal programs makes use of the completion of a program,
comp(P) [ABW88,Llo87]. This allows us to use global invariants of the program
to restrict attention to the instances that can actually occur during execution.
This makes it easier to prove that individual rules are in fact causal. Calculating
the completion of a whole program is inconvenient in practice, so in Section 3
we shall describe more practical ways of proving that a program is causal.

Definition 4. (Causal) A program P is causal iff there is a causal pair (.,<)
such that for every rule instance A← B̄ ∈ P∗ where comp(P), I◦ |= B̄

∀B
(
B ∈ B̄+ ⇒ B . A
B ∈ B̄∼ ⇒ B < A

)
Definition 5. (Strongly Causal) A program P is strongly causal iff there
is a causal pair (.,<) such that for every rule instance A ← B̄ ∈ P∗ where
comp(P), I◦ |= B̄

∀B
(
B ∈ B̄+ ∪ B̄∼ ⇒ B < A

)
Strong causality permits the later interpreters to be simplified and gives

more precise control over execution order. However, it often makes it harder to
actually write programs. The transitive closure example in section 4.4 illustrates
this point.

Next we use our notion of causal programs to show that the input program
is locally stratified [PP90], which means that it has the usual perfect model
semantics [Prz88]. Local stratification requires the Herbrand universe to be par-
titioned into strata, H0, H1, . . . Hβ , where β is a countable ordinal, and for each
instantiation of a rule A ← B, if A ∈ Hi then all the positive literals of B
must be in

⋃
{Hj |j ≤ i} and all the negative literals of B must be in strata⋃

{Hj |j < i} [Prz88, Defn. 5].
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Theorem 6. A causal program P that terminates is locally stratified, so has a
unique perfect model [Prz88], which is also equal to the unique minimal model
defined by Apt et. al. [ABW88].

Proof. Since P is causal, it has a pre-order . that is well-founded. From this pre-
order, we can construct a partial order by taking the equivalence classes induced
by ., that is, two atoms a and b are in the same equivalence class iff a . b . a.
Then we can take a linear extension [DP02] of that partial order, to obtain a
total order H0, H1, . . ., which we use as the stratification order for P. Note that
this total order has a minimum element, since . is well-founded. If P terminates
after a finite number of deductions, then there exists a countable ordinal bound
β such that the last tuple produced is in Hβ , so we have constructed a local
stratification order H0, H1, . . . Hβ .

Thus P is a locally stratified logic program, and by Theorem 4 of Przymusin-
ski [Prz88], P has a unique perfect model that coincides with the unique minimal
model defined by Apt et. al. ut

We have now established the semantics of a terminating causal program P .
However, defining the semantics in this way does not give as much flexibility
for parallel execution as we would like. It evaluates rules in stratification order,
and this is unnecessarily restrictive. In Section 5 we will define more general
evaluation operators that allow more parallelism, and we will prove that they
give the same results as this standard semantics.

3 Dependency Graphs

The definition of the causal orderings .,< given above and their relationship to
a program are abstract and it is not clear how such orderings can be effectively
realized. For example, it will be noted later that computable versions of the
orderings are needed. This is especially so as the most precise version of the
orderings requires knowledge of comp(P), which is effectively what we are trying
to compute.

This section links the definitions above to the idea of dependency graphs
which have often been used to develop semantics for logic programs. It also
shows how the .,< orderings might be specified and used in practice. However,
the material here is used only in the following Section 4, which gives a number
of example programs. The main development from Section 5 onwards relies only
on the abstract notion of a causal pair (.,<), so can be used with dependency
graphs, or with any other technique for finding a causal pair.

The remaining definitions in this section follow the order in which we can
use dependency graphs to analyze and execute a program P:

1. We perform static analysis on P to deduce various facts about it, such as
invariants, types and range information - we call such information a theory
of the program.
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2. We use that theory to calculate a conservative superset of the instances of
the rules that may be true during the execution of the program, and we
calculate a dependency graph from those rule instances. This dependency
graph corresponds to a causality ordering between all the tuples that may
be generated by the program.

3. We then check that the derived dependency graph is well-founded (contains
no cycles through negations). This is not necessarily decidable, but if we
cannot prove that the dependency graph is well-founded, we require the
programmer to strengthen or correct the program.

3.1 Static Analysis Theories

Definition 7. (Theory)
L is a theory of a program P iff comp(P) ∧ I◦ ⇒ L.

An example of a simple theory about a program that calculates primes is

∀N(prime(N)⇒ 2 ≤ N)

A theory L gives us partial information about the behavior of the program. In
particular, it allows us to deduce that some ground atoms L+ will be produced
by the program, while other ground atoms L− will never be produced by the
program. For atoms not in L+ ∪ L−, the theory is incomplete - it does not tell
us whether or not they will be produced.

Definition 8. (L+,L−)

L+ ≡ {A ∈ BP | L |= A}
L− ≡ {A ∈ BP | L |= not(A)}

For example, our simple theory of primes tells us that prime(1) ∈ L−, so 1
cannot be a prime, whereas the status of prime(2) is unknown according to this
theory. We may be able to deduce a stronger theory, which tells us more about
the possible behaviour of the program.

Definition 9. (stronger) A theory L2 is stronger than a theory L1 iff

L+
1 ⊆ L+

2 ∧ L−1 ⊆ L−2

An example of a stronger theory than the one above is

prime(2) ∧ prime(3) ∧ ∀N(prime(N)⇒ (N = 2 ∨N = 3 ∨ 5 ≤ N)

This tells us that prime(2) and prime(3) are in L+ so are definitely primes,
while prime(1) and prime(4) are in L−, so cannot be primes. We can also use
theories to capture information about types, functional dependencies, possible
values of variables, etc. The strongest theory is comp(P) itself.
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Definition 10. (Restriction) The restriction of a program P modulo L is the
set of ground clauses:

P // L ≡ {A← B̄ | A← B̄ ∈ P∗/I◦ ∧ B̄+ ∩ L− = ∅ ∧ B̄∼ ∩ L+ = ∅}

So P // L is the set of rule instantiations that are consistent with L and
whose builtins are all true.

3.2 Dependency Graphs and Causality

We define dependency graphs in the usual way [ABW88,PP90], except that we
define them only over the subset of the program that satisfies a given theory.

Definition 11. (Dependency Graph) The vertices of the dependency graph
GP,L of a program P with respect to L are all the ground atoms appearing in
P // L. The edges of GP,L are defined as follows. For every clause A ← B̄ ∈
P // L, there is a positive directed edge from each B ∈ B̄+ to A and there is a
negative directed edge from each B ∈ B̄∼ to A.

The dependency relations .,< between ground atoms of P are defined by:

– B . A iff there is a directed path from B to A, or if A = B.
– B < A iff there is a directed path from B to A that passes through at least

one negative edge.

Theorem 12. A pair of orderings .,< generated by a dependency graph GP,L

are a causal pair provided < is well founded.

Proof. The elementary properties of the orderings follow directly from the defi-
nition.

Theorem 13. A program P is causal if the orderings generated by GP,L for a
theory L of P are causal, that is, < is well-founded.

If we use a simple (weak) theory about the program, we may derive a depen-
dency graph whose < ordering is not well-founded, perhaps because it contains
loops. In this case we could try a stronger theory about the program, to obtain a
smaller dependency graph that is more likely to have a well-founded < ordering.
If we cannot find any theory that leads to a well-founded < ordering, then we
consider the original program to be erroneous, and require the programmer to
strengthen it so that it is possible to find a well-founded < order.

Typically, a program is non-causal because two or more rules define opposing
causality orderings between tuples. For example, the following program is not
causal, because a(2) . b(2), but b(2) < a(2) is also true (instantiating the
first rule with T=2).

a(T) <-- 0 < T, T < 4, not(b(T)).

b(2) <-- a(2).

This program could be made causal by changing the head of the first rule to
be

a(S) <-- S is T + 1, 0 < T, T < 4, not(b(T)).

which would give an order of a(2) . b(2) < a(3).
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4 Example Programs

This section shows several example Starlog programs. These examples are in-
tended to illustrate the style of the language and a range of different applica-
tions. For each of these programs, we investigate possible theories, their resultant
orderings and proofs that these are well-founded.

4.1 Builtin Predicates

We assume a number of builtin predicates covering input, output, arithmetic
and the generation of ranges of integers.

Input provided externally will appear as tuples input(T, X) where T is an
integer timestamp T ≥ 0 and X is the input itself.

Output is provided by the predicate println(T, X). The programer gener-
ates tuples of this form, which are then output to some suitable external channel.
T is a time stamp with T ≥ 0 and X is the data to be output. To programmers
used to languages such as Prolog this idiom may be somewhat startling, as the
println tuples appear in the head of rules not the bodies. However, this is an
important part of ensuring that the language has a pure semantics.

We assume that five builtin arithmetic predicates are available over the in-
tegers: < and ≤, which provide ordering; addition written as Z is X + Y to
follow standard Prolog practice; subtraction written as Z is X - Y; and multi-
plication written as Z is X * Y. In each case X, Y must be ground integers for
these to be executed. We also use the expression Xn as syntactic shorthand for
n multiplications of X.

The final builtin predicate range(N, Lo, Hi) generates all the integers in
the range Lo...Hi, potentially in parallel. Like the other arithmetic predicates Lo,
Hi must be ground integers for this to be executed. The pragmatic reason for
introducing this predicate is that it enables us to ignore issues around the efficient
parallel generation of ranges of integers for these examples. It is trivial to write
an implementation that is sequential and serializes all parts of the program that
depend on it. It is less easy to write an implementation that generates integers
in a way that does not restrict the available parallelism.

4.2 Finding Prime Numbers

Our first example Starlog program in Fig 2 generates all the prime numbers upto
a given number specified by the predicate max, using the Sieve of Eratosthenes.
It generates all multiples of known primes in mult(N), and uses negation to
find numbers that are not multiples, so must be primes. The different multiples
M are generated in the predicate mult(M, P) for each prime P, by starting at
P * P and adding successive increments of P. When this program is executed
the println predicate generates the following output:

prime(2)

prime(3)
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01: max(5000) <-- true.

02:

03: mult(M, P) <-- mult(N, P), M is N + P, max(Max), M < Max.

04: mult(M, P) <-- prime(P), M is P * P, max(Max), M < Max.

05:

06: mult(M) <-- mult(M, _).

07:

08: prime(N) <-- max(M), range(N, 2, M), not(mult(N)).

09:

10: println(N, prime(N)) <-- prime(N).

Fig. 2. Starlog program to compute primes using the Sieve of Eratosthenes

prime(5)

prime(7)

prime(11)

...

prime(4999)

Table 4.2 shows the details of the execution up to time 12, which is the first
time that there are multiple mult(_,_) tuples at the same time.

mult/2 mult prime println

- - (2) (2,prime(2))
- - (3) (3,prime(3))

(4, 2) (4) - -
- - (5) (5,prime(5))

(6, 2) (6) - -
- - (7) (7,prime(7))

(8, 2) (8) - -
(9, 3) (9) - -

(10, 2) (10) - -
- - (11) (11,prime(11))

(12, 2), (12, 3) (12) - -

Table 1. Details of the execution of the first 12 steps of the primes program.

Theory Fig. 3 shows a simple ’2-up’ theory for the primes program that con-
strains the range of the parameters to be 2 or greater. As well it contains some
simple deductions about integers, which are useful for checking that the rules are
causal under this theory. The ordering from the dependency graph that results
from this theory divides all possible tuples into strata. There is one stratum for
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mult(M, P) ⇒ M ≥ 2, P ≥ 2

mult(M) ⇒ M ≥ 2

prime(N) ⇒ N ≥ 2

println(N, T) ⇒ N ≥ 2, T = prime(N)

M is N+P, N ≥ 2,P ≥ 2 ⇒ M > N

M is P2, P ≥ 2 ⇒ M > P

Fig. 3. A simple ’2-up’ theory for the Primes program.

each integer N ≥ 2, which contains the tuples

{mult(N,_), mult(N), prime(N-1), println(N-1,_)}

Because the only negative edge in the causality graph is from mult(N) to prime(N),
prime(N) and println(N,prime(N)) are ‘pushed up’ to the next stratum.

Execution of the program using this ordering and the Ev parallelism strategy
(see Definition 39) will be sequential, with all processing taking place for stratum
N, followed by all processing for stratum N+1 and so on.

mult(M, P) ⇒ M ≥ 4, P ≥ 2, M ≥ P2

mult(M) ⇒ M ≥ 4

prime(N) ⇒ N ≥ 2

println(N, T) ⇒ N ≥ 2, T = prime(N)

M is N+P, N ≥ 2, P ≥ 2 ⇒ M > N

M is P2, P ≥ 2 ⇒ M > P

Fig. 4. A stronger ’4-up’ theory for the Primes program.

Fig. 4 gives a stronger theory for this program, which we call ’4-up’. This
places tighter constraints on the ranges of the tuples (some start at 4 rather
than 2) and adds the very significant fact that mult(M,P) implies M ≥ P2. As we
will see, this makes a significant difference to the potential parallelism available
in the program.

Fig. 5 shows the the initial part of the .,< ordering that results from this
’4-up’ theory (println and max are omitted for clarity). It is straightforward to
show using the theory that these orderings are well founded and that they are a
causal pair, thus showing that the program itself is causal.

From the figure it can be seen that prime(3) . mult(9) < prime(9),
rather than prime(8) < prime(9), which was true in the earlier ’2-up’ ordering.
Informally prime(

√
N) < prime(N) which allows all the calculations between

prime(
√
N) and prime(N) to occur in parallel (constrained only by data depen-

dencies).
One of the requirements for a practical system (see Section 7.4) is that it be

possible to compute the orderings . and <. That is, given two ground tuples it
must be possible to compute, preferably quickly, whether they are in fact ordered.
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mult(10)

mult(9,2) prime(9)mult(9)

mult(9,3)

mult(12,3)

mult(12,2)
mult(12) prime(12)

prime(11)mult(11)

mult(11,3)

mult(11,2)

prime(10)mult(10,2)

mult(10,3)

prime(2)

prime(3)

mult(7)

mult(8)

mult(6)

mult(5) prime(5)

prime(6)

prime(7)

prime(8)

mult(5,2)

mult(6,2)

mult(7,2)

mult(8,2)

prime(4)mult(4)mult(4,2)

Key: y x . yxy x < yx

Fig. 5. Ordering for Primes using stronger ’4-up’ theory.
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Fig. 6 shows rules for a strengthened ordering (more tuples are ordered), which
also obeys the ’4-up’ theory.

mult(N1) < prime(N2) ⇐⇒ 4 ≤ N1, N1 ≤ N2.
mult(N1,_P) < prime(N2) ⇐⇒ 4 ≤ N1, N1 ≤ N2.
prime(N1) < prime(N2) ⇐⇒ 2 ≤ N1, N12 ≤ N2.

mult(N1) < mult(N2) ⇐⇒ 4 ≤ N1, N12 ≤ N2.
mult(N1,_P) < mult(N2) ⇐⇒ 4 ≤ N1, N12 ≤ N2.
prime(N1) < mult(N2) ⇐⇒ 4 ≤ N1, N14 ≤ N2.

mult(N1) < mult(N2,_P) ⇐⇒ 4 ≤ N1, N12 ≤ N2.
mult(N1,_P) < mult(N2,_P) ⇐⇒ 4 ≤ N1, N12 ≤ N2.
prime(N1) < mult(N2,_P) ⇐⇒ 4 ≤ N1, N14 ≤ N2.

A < B ⇒ A . B.

mult(N1) . mult(N2) ⇐⇒ 4 ≤ N1, N1 ≤ N2.
mult(N1,_P) . mult(N2) ⇐⇒ 4 ≤ N1, N1 ≤ N2.

mult(N1,P) . mult(N2,P) ⇐⇒ 4 ≤ N1, N1 ≤ N2, 2 ≤ P.

Fig. 6. Computable ordering for the Primes program.

As noted above the tuple prime(N) is strictly dependent on prime(
√
N) —

this and similar relationships are reflected in the code above by the appearance of
the terms N12 in the bodies of the rules. In the orderings prime(N1) < mult(N2)

and prime(N1) < mult(N2,P) the even more spectacular term N14 appears. The
following chain when N1 = 2 exemplifies the origins of this fourth power of N1:

prime(2) . mult(4,2) . mult(4) < prime(4) . mult(16,4) . mult(16)

4.3 A Running-Maximum Program

The next example program outputs the maximum of all input numbers seen so
far. It illustrates external input (the input(Time,Number) relation is an input to
this program), negation, assignment and how to make large jumps in time. The
use of assignment here is particularly notable as it is often seen as being difficult
or impossible in pure functional or logic languages. However, because the time
ordering is explicit we are able to directly express the logic of assignment.

Lines 9-21 can be viewed as a library that implements assignment. Sending a
val(T,K) request to the library causes a value(T,K,M) response to be returned,
where M is the value associated with key K at time T. Sending an assign(T,K,M)

tuple to the library sets the current value of K to M.
In practice, we often write negations like lines 14 and 16-19 in a sugared

form,
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01: println(T, max(T, M)) <-- assign(T, max, M).

02:

03: assign(T, max, N) <-- input(T, N), value(T, max, M), M < N.

04: assign(T, max, N) <-- input(T, N), not(value(T, max, _)).

05:

06: val(T, max) <-- input(T, _).

07:

08:

09: % This records the current assignment (when each input arrives).

10: value(T, K, M) <--

11: val(T, K),

12: assign(T0, K, M),

13: T0 < T,

14: not(value_neg(T, K, T0)).

15:

16: value_neg(T, K, T0) <--

17: val(T, K),

18: assign(T0, K, _),

19: T0 < T,

20: assign(U, K, _),

21: T0 < U, U < T.

Fig. 7. Starlog program that computes a running maximum of a sequence of inputs.

not(exists U assign(U, K, _), T0 < U, U < T)

and omit the definition of auxiliary predicates such as value_neg. But to keep
the semantics clear, we shall avoid such syntactic sugar in this paper.

Here is an example execution with four input numbers arriving externally
at various times. For real-time reactive programming, these arrival times might
correspond to seconds or milliseconds. For non real-time programming, they
might correspond to the line numbers of an input file that is read sequentially,
where the missing line numbers correspond to input lines that are empty or do
not contain a valid number. Given the following external inputs:

input(1, 13)

input(4, 11)

input(7, 23)

input(10, 17).

the program generates the following external outputs:

max(1, 13)

max(7, 23)
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The tuples generated during execution are shown in the following table:

input val value value_neg assign println

(1,13) (1, max) - - (1,max,13) (1,max(1,13))
(4,11) (4, max) (4,max,13) - - -
(7,23) (7, max) (7,max,13) - (7,max,23) (7, max(7,23))

(10,17) (10, max) (10,max,17) (10,max,1) - -

Theory and Ordering The only interesting theory for the program asserts that
for each predicate the parameter T ≥ 0 and the key K = max (this parameter
is included to make it clear that this assignment logic is easily extended to
multiple keys). The constraint T ≥ 0 flows from the original constraint in the
input predicate.

The ordering generated by the dependency graph for this theory divides the
tuples into one stratum for each integer from 0 upward. Each such stratum is then
further split into substrata in increasing order {val}, {value_neg}, {value},
and {assign, println, input}. It is straightforward to show that this ordering
is well founded and strongly causal.

4.4 Transitive Closure of a Graph

The third example Starlog program computes the transitive closure t(X,Y) over
a base relation r(X,Y). The first version of this program is simple (and for some
base relations, very inefficient). Termination relies on the fact that if a tuple
is generated more than once then it only triggers further computation the first
time. This program has a trivial ordering where all the tuples are equivalent
to each other, that is, all tuples are grouped into a single stratum. With this
ordering the program is causal but not strongly causal.

01: t(X, Y) <-- r(X, Z), t(Z, Y).

02: t(X, Y) <-- r(X, Y).

Fig. 8. Weakly causal Starlog program to compute transitive closure.

The second version of the program is given as an illustration of how to convert
a weakly causal program to a strongly causal one. To do this a counter I is
added for each iteration of the transitive closure in the tuples tr(I, X, Y)

(which means that a new transitive link from X to Y has been computed during
iteration I). An explicit check that tuples computed in earlier iterations are not
repeated is made on line 05 using the predicate tr_neg. The negation could be
replaced by the syntactically sugared construction not(tr(K,X,Y), K =< I),
which obviates any need to define the predicate tr_neg. The interaction between
tr and tr_neg can be seen as a simpler variant of the assignment pattern used
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in the running-maximum example of the previous section. In this case each value
is assigned only once, and the tr_neg tuples prevent later re-assignments of the
values.

01: t(X, Y) <-- tr(_, X, Y).

02:

03: tr(J, X, Y) <--

04: r(X, Y), tr(I, Z, Y), J is I+1

05: not(tr_neg(I, X, Y)).

06:

07: tr_neg(I, X, Y) <--

08: r(X, Z), tr(I, Z, Y),

09: tr(K, X, Y), K =< I.

10:

11: tr(0, X, Y) <-- r(X, Y).

Fig. 9. Strongly causal Starlog program to compute transitive closure.

The following table shows the details of the execution of this second version
of the program. Fig. 10 shows a diagram of the base relation r(_,_) used in the
example.

d

c

b

a

Fig. 10. Base relation for Transitive Closure Example

tr tr_neg

(0, a, b) (0, b, c) (0, b, d) (0, c, a) -
(1, c, b) (1, a, c) (1, a, d) (1, b, a) -
(2, b, b) (2, c, c) (2, c, d) (2, a, a) (2, a, b) (2, b, c) (2, b, d) (2, c, a)

Theory and Ordering Like the previous example, the theory for this program
is straightforward, constraining the I of tr(I,_,_) and tr_neg(I,_,_) so that
I ≥ 0.

This leads to the program being split into three strata in the following order:
the input tuples {r(_,_)}, the internal tuples {tr(_,_,_), tr_neg(_,_,_)},
and the final result {t(_,_)}. The {tr(_,_,_), tr_neg(_,_,_)} stratum is then
split into substrata, one for each integer from 0 upward. Fig. 11 illustrates this
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ordering. The program is easily shown to be strongly causal, requiring only use
of the results that I < I+1 for line 03 and the transitivity of integer ≤ on line
07.

..

...

r(_,_)

tr(1,_,_) tr_neg(1,_,_)

tr(0,_,_) tr_neg(0,_,_)

t(_,_)

tr(i,_,_) tr_neg(i,_,_)

tr_neg(i+1,_,_)tr(i+1,_,_)

.

x . y

x y x < y

x y

Fig. 11. Ordering for Transitive Closure Example

A discusses a Starlog program for a more complex search problem - finding
all the solutions for the N-Queens problem for a chess board of any given size
N ×N .

5 Semantic Concepts

This section introduces several operators and relations that are needed to define
the semantics of the language. We will be considering a number of different
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operators on the Herbrand universe V : 2BP → 2BP . Many of them are taken
from the standard literature on the semantics of logic programming languages,
but some, like the parallelism strategies in Section 5.1, are new.

The immediate consequence operator TP performs one bottom-up deductive
step, deducing the heads of all rules whose bodies are true. That is, TP(I) com-
putes all consequences that are true given an interpretation I.

Definition 14. (Immediate consequence operator TP [Llo87, p37])
TP(I) is the set of all atoms A ∈ BP such that there is a clause A ← B̄ ∈ P∗,
where B̄ follows from the interpretation I and the builtins I◦:

TP(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)}

Definition 15. (Monotonic) An operator V is monotonic (with respect to an
ordering ⊆) iff

∀I, J(I ⊆ J ⇒ V (I) ⊆ V (J))

In programs without negation, the immediate consequence operator TP is
monotonic with respect to the subset ordering. However, in the presence of nega-
tion it may not be. The technical work below is mainly concerned with finding
a variant of TP and an ordering on interpretations to restore monotonicity.

We will only ever need to consider one program at a time so we usually omit
the subscript P from the operators in what follows. We also assume that P is at
least causal.

Definition 16. (∆)

∆(I) ≡ T (I)− I

∆ computes all the new consequences that are derivable from I.
We will need to apply operators repetitively to generate a fix point.

Definition 17. (V α) For all ordinals α and operators V we define V α(I) as
follows:

V 0(I) = ∅
V α+1(I) = V (V α(I))

V α(I) =
⋃
β<α

V β(I) where α is a limit ordinal.

For the special case V α(∅), we write V α.

Next, we define an aggressively parallel operator Π, that will allow us to
support a range of alternative parallel evaluation strategies.

Definition 18. (Π)

Π(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄∼ ∧ y . z)}
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Π(I) approximates the largest set of consequences that can be ‘safely’ de-
duced from I, that is, consequences that can not be later contradicted by new
consequences that invalidate the negations in rules. Π includes all the derivations
in T except where the generating rule contains a negation which is foreshadowed
by tuples which are earlier in the ordering and in the newly derived results.

It is possible to directly specify Π only because of the existence of the .
ordering. The major contribution of this part of the paper is to show how Π can
be used both to directly specify a semantics and to effectively compute it.

Π can be somewhat surprising in its effect. For example, it can permit tuples
that are in the future to be used for further computation, that is, it does not
force execution to proceed in a stratified ordering, except where this is forced
by negations. This can be a mixed blessing, on the one hand it gives maximal
parallelism, on the other it does not give precise control over the order of ex-
ecution or of the resource consumption implied by that. The following section
generalizes Π to a set of parallelism strategies, which can give finer control over
execution order.

5.1 Parallelism Strategies

During program execution we want flexibility about what newly deduced facts
trigger further computation. For example, in a sequential execution it may be
more efficient to select one tuple at a time, or in distributed execution the flex-
ibility may help to avoid excessive latency. Parallelism strategies provide room
to do this. They choose a subset of Π(I) (including I itself). Π itself is the most
inclusive parallelism strategy.

Definition 19. (Parallelism Strategy) An operator V is a parallelism strat-
egy iff

Π(I) ∩ I ⊆ V (I) ⊆ Π(I) and
V (I) = I ⇒ Π(I) = I.

The first line of this definition ensures that V (I) contains all safe tuples that
are already in I, and that it does not choose any unsafe facts—that is, it is
bounded above by Π(I), which is the set of all safe consequences. The second
line ensures that V (I) does not stop choosing new facts too early. It will be shown
that any parallelism strategy can be safely used to compute the least fixpoint.
So the choice of parallelism strategy gives implementors of Starlog significant
freedom to choose different parallel evaluation strategies.

Fig. 12 illustrates the relationship between a parallelism strategy V (I) andΠ,
∆ and the minimal model MP defined below. Note that V (I) (the shaded region)
is a strict superset of I, and is bounded above by Π(I), which is the set of safe
consequences of I. Ev(I) is similar to Π(I), but contains just I plus the minimal
tuples within the ∆(I) region. Note also that T (I) (the immediate consequences
of I) includes some ’incorrect’ results that lie outside the final model MP because
it evaluates negations based simply on the current interpretation I, where Π(I)
is more conservative and excludes rules that contain negations of tuples that
may be indirectly derivable from I.
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Key

∅yx

I

Π(I)

x < y

Ev(I)

T (I)

∆(I)
V (I)

x

x

xx

x

MP

Fig. 12. Example relationship between a parallelism strategy V (I) and the other sets
used in the semantics.

6 Semantics

In this section we will demonstrate that any parallelism strategy has a least-
fixpoint which is equal to the perfect model MP, as defined by Przymusin-
ski [Prz88]. We need a couple of definitions before embarking on this.

Definition 20. (Preferable [Prz88]) For two interpretations I, J , we say
that I is preferable to J , written I v J , iff

∀x (x ∈ I − J ⇒ ∃y(y ∈ J − I ∧ y < x))

Definition 21. (Perfect [Prz88]) A model M of the program P is perfect iff
there is no other model K of P where K vM .

Often least fixpoints are constructed by showing that the operator is mono-
tone and then applying the Tarski-Knaster theorem. However as the following
example shows, this approach cannot be naively followed, because Π is not
monotone, neither in the ⊆ ordering nor the v ordering.
Example: Consider the following single clause program:

p← ¬q
together with the ordering p > q.
To check the montonicity of Π consider the following cases:
∅ ⊆ {q}, ∅ v {q} and
Π(∅) = {p}, Π({q}) = ∅ but
{p} 6⊆ ∅ and {p} 6v ∅,

showing that Π is not monotone on either ordering.
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The least-fixpoint semantics will be constructed in three main stages. Given
any parallelism strategy V , we prove that:

1. V has the same fixpoint solutions as T , the immediate consequence operator.
(see Theorem 22);

2. As we iterate using V , we get monotonically increasing interpretations (namely
V α ⊆ V (V α) for all ordinals α), and this V α sequence eventually terminates
at a unique fixpoint model;

3. All iterations of V are bounded above by the usual models of the program
(Lemma 23), so the fixpoint of V is equal to the usual perfect model, MP

(Theorem 24).

Note that these results apply only to the interpretations V α, not to all interpre-
tations. As shown by the example earlier, the conditions do not hold in general,
so we shall require the construction of the least fixpoint to occur in the space
only of the sets V α, not the space of all possible interpretations.

Stage 1 is to show that the fixed points of V and T are the same.

Theorem 22. For a parallelism strategy V , V (I) = I iff T (I) = I.

Proof. Assume T (I) = I. From the definition of ∆,∆(I) = ∅. From the definition
of Π,Π(I) = T (I) = I which in turn implies V (I) = I.

Assume V (I) = I. From the definition of parallelism strategy V (I) ⊆ Π(I)
and from the definition of Π,Π(I) ⊆ T (I), thus I = V (I) ⊆ T (I). Conversely,
V (I) − I = ∅ and from the definition of parallelism strategy ∆(I) = ∅, which
implies T (I) ⊆ I. ut

Stage 2 is to prove the monotonicity of V α, with respect to α, and thus prove
that V α has a least fixpoint. The details of this stage are shown in B.

Stage three is to prove that this fixpoint of V is the same as the usual perfect
model of P . We start by proving that V α is bounded above by all the models of
P .

Lemma 23. Given a parallelism strategy V then for all ordinals α and a model
K of P, V α v K.

Proof. The proof proceeds by trans-finite induction on α, using the induction
hypothesis:

∀x(x ∈ V α ∧ x /∈ K ⇒ ∃y(y < x ∧ y /∈ V α ∧ y ∈ K))

The result holds trivially for α = 0.
For the case when α is a successor ordinal, let α = β + 1. There will be at

least one ground clause x← B̄ ∈ P∗/I◦ where V β |= B̄∧ 6∃ y, z(y ∈ ∆(V β)∧ z ∈
B̄− ∧ y . z and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By Lemma 43 this implies y ∈ V α. So by the induction hypothesis
∃z(z < y ∧ z /∈ V α ∧ z ∈ K), but y . x so z < x and z is a witness for y in the
induction hypothesis.
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Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If Y ∈ V α then
y ∈ ∆(V β), which contradicts the assumption about the rule x← B̄. So y /∈ V α,
and y satisfies the hypothesis.

For the case when α is a limit ordinal then V α =
⋃
β<α V

β . There will be at

least one ground clause x ← B̄ ∈ P∗/I◦ and ordinal β < α where V β |= B̄ ∧
6∃ y, z(y ∈ ∆(V β) ∧ z ∈ B̄− ∧ y . z) and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By Lemma 43 this implies y ∈ V α. So by the induction hypothesis
∃z(z < y ∧ z /∈ V α ∧ z ∈ K), but y . x so z < x and z satisfies the hypothesis.

Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If y ∈ V α then
∃γ(β < γ ∧ γ < α) where y /∈ V γ ∧ y ∈ V (V γ) thus y ∈ ∆(V γ). By Lemma 43
this implies ∃z(z . y ∧ z ∈ ∆(V β)) which contradicts the assumption about the
rule x← B̄, so y /∈ V α and y satisfies the hypothesis. ut

Finally, we can prove our main result, showing that the least fixpoint of V α

is the standard perfect model of P .

Theorem 24. For a parallelism strategy V with a least fixpoint V δ

V δ = MP

Proof. From theorem 22 V δ is a model. Also from Lemma 23 V δ v MP, but
MP is a minimal model (wrt v) so V δ = MP. ut

6.1 Strong Causality

The work above has been carried out using only the weak notion of causality.
This permits new literals to be added ‘at the same time’ as other literals which
cause them. Strongly causal programs, however, only permit the conclusions to
be added at a strictly later time. Assuming strong causality has two advantages:
firstly it gives a simpler semantics (shown below) where MP is the unique model
of the programs completion; and secondly it permits a small simplification of
the interpreters described later. This is achieved at some cost when writing
programs, as it may be necessary to add both parameters and rules in order to
achieve strong causality. For example, the strongly causal version of the transitive
closure program in Section 4.4 is significantly more complex and difficult to
understand than the simple causal version.

We now show that strongly causal programs have only a single model. This
provides an exact semantics similar to that for logic programs without negation.
It uses the notion of the completion of a program, comp(P), which is defined in
[ABW88,Llo87].

Theorem 25. If the program P is strongly causal then the perfect model MP is
a model of comp(P) and is the only model of comp(P).

Proof. MP is a model of comp(P) [ABW88,Llo87].
Let M,N be models of comp(P). Assume M 6= N and choose a minimal

A whose membership of M is different from its membership of N . That is,
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A ∈ M ∧ A /∈ N or A /∈ M ∧ A ∈ N . But from the definition of comp(P) there
will be a ground clause A← B̄ ∈ P∗/I◦ where either M, I◦ |= B̄, and N, I◦ 6|= B̄
or M, I◦ 6|= B̄, and N, I◦ |= B̄. But this imples that there is some member B of B̄
where either B ∈M−N or B ∈ N−M . However B < A (from strong causality)
which contradicts the assumption that A is minimal. That is, the assumption
that M and N are different leads to a contradiction. Thus given that MP is a
model of comp(P) it is the only model. ut

7 Interpreters

Having established a semantics we will now define a sequence of algorithms for
generating the least fixpoint. The algorithms are given both a program, P, and
a parallelism strategy V (see Defn. 19). The aim is to produce an efficient algo-
rithm that avoids re-computing earlier results. The parallelism strategy that is
used will determine the resource usage of the algorithm and how much potential
parallelism is available. We give versions of the algorithm that become succes-
sively more explicit and efficient, and we prove their correctness with respect to
the semantics.

Our final interpreter is more efficient than semi-naive evaluation because it
calculates the delta set incrementally, as well as the gamma set, and it general-
izes pseudo-naive evaluation [SU99] by allowing a wide range of parallelization
strategies.

7.1 Simple Least Fixpoint

1. α := 0;
2. Gamma := ∅ ;
3. do
4. assert Gamma = V α;
5. delta := T (Gamma)−Gamma;
6. assert delta = ∆(V α);
7. new := V (Gamma)−Gamma;
8. Gamma := new ∪Gamma;
9. α := α+ 1;
10. until delta = ∅;
11. assert Gamma = MP;

Fig. 13. Simple interpreter.

The first interpreter (see Fig. 13) is a straightforward implementation of the
least-fixpoint procedure that introduces the notation used in the later versions.
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It uses the following variables (we use the convention that variables that are held
over between iterations of the main loop are capitalised (Gamma) and those that
are local to one iteration of the loop are lower case (delta)):

1. Gamma - the set of all computed literals. This becomes the fixpoint model
of the program P when the algorithm terminates.

2. α - the number of iterations (used only to provide a link to the correctness
results).

3. new - a complete recalculation of the current set of results.
4. delta - the computed results that have not been seen before, used to detect

termination.

Theorem 26. The assertions in the program are true.

Proof. See definitions 19(V α), 16(∆) and the theorems in Section 6. ut

7.2 Incremental Gamma

The aim of the following interpreters is to avoid as much re-computation of
results as possible. In the final version we will recompute both the set Gamma
and (a variant of) delta fully incrementally. To do this it is necessary to generalize
some of our earlier definitions to fit in with the new algorithms.

From Defn. 18 the definition of Π is:

Π(I) = {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z)}

This definition references both the set ∆ and the negations B̄∼ that occur
in the rules. We want to make Π computable directly from ∆, but it does not
contain quite enough information as it lacks the information about the negations.
To provide this information we define variants of the operators T and ∆ that
contain both the head of rules and the (ground) negations in the rules. We also
define incremental variants of Π and the parallelism strategy V .

Definition 27. (T ′)

T ′(I) ≡ {A← B̄− | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)

∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z}

Lemma 28.

T (I) = {A | A← B̄ ∈ T ′(I)}

Proof. Directly from the definitions of T ′ and T .

Definition 29. (∆′)

∆′(I) ≡ {A← B̄− | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧A /∈ I}
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Lemma 30.

∆(I) = {A : A← B̄ ∈ ∆′(I)}

Proof. Directly from the definitions of ∆′ and ∆.

Π ′ is defined as an incremental version of Π.

Definition 31. (Π ′)

Π ′(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)

∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z ∧A /∈ I)}

Lemma 32.

Π ′(I) = Π(I)− I, and

T (I) ⊇ I ⇒ Π(I) = Π ′(I) ∪ I

Proof. Directly from the definitions of Π ′ and Π.

Note that T (V α) ⊇ V α, so the above lemma applies to the calculations in
the interpreter.

An important result, which enables incremental calculation, is that Π ′ can
be computed using only ∆′.

Theorem 33.

Π ′(I) = {A | A← B̄ ∈ ∆′(I)

∧ 6∃x, y, z(z ∈ B̄∼ ∧ y ← x ∈ ∆′(I) ∧ y . z)}

Proof. Directly from the definitions of Π ′ (Defn. 31), Π (Defn. 18), ∆ (Defn.
16) and ∆′ (Defn. 29).

Because the theorem above uses only ∆′ in the calculation of Π ′, we define
a version of Π, called Π∆, that requires only the delta tuples as input, rather
than all the delta and gamma tuples.

Definition 34. (Π∆)

Π∆(X) ≡ {A | A← B̄ ∈ X ∧ 6∃x, y, z(z ∈ B̄∼ ∧ y ← x ∈ X ∧ y . z)}

Lemma 35.

Π∆(∆′(I)) = Π ′(I)

Proof. Directly from the definitions of Π ′ and Π∆.

Next we define an incremental form of each parallelism strategy V .

Definition 36. (V ′)
V ′(I) ≡ V (I)− I
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Lemma 37. If V (I) ⊇ I then V (I) = V ′(I) ∪ I.

Proof. Directly from the definitions of V and V ′.

As V (V α) ⊇ V α, this lemma applies to the calculations in the interpreters.
Now we further recast the calculation of V ′ so that it uses ∆′ directly. This

is the efficient incremental form that will eventually be used in the interpreter.

Definition 38. (V ∆(I,∆′)) Given a parallelism strategy V , a function V ∆ :
2BP × 2BP → 2BP is an incremental delta version of V iff:

V ∆(I,∆′(I)) = V ′(I)

= V (I)− I

In general the calculation of V ∆(I,X) can depend on I, although in practice
this seems not to be an interesting or useful thing to do. Usually the calculation
need involve only consideration of the second parameter, X, which is ∆′(I). For
example, when the most general parallelism strategy is used V (I) = Π(I) and
then V ∆(I,∆′(I)) = Π∆(∆′(I)) = Π ′(I).

Combining these definitions and adapting the previous interpreter we arrive
at the interpreter in Fig. 14, which calculates Gamma incrementally.

1. Gamma := ∅ ;
2. α := 0;
3. do
4. assert Gamma = V α;
5a. delta :=
5b. {(E← F̄−)θ |
5c. E← F̄ ∈ P ∧
5d. F̄+θ ⊆ Gamma ∧
5e. F̄◦θ ⊆ I◦ ∧
5f. Gamma ∩ F̄∼θ = ∅∧
5g. Eθ 6∈ Gamma
5h. };
6. assert delta = ∆′(V α);
7. new := V ∆(Gamma, delta);
8. Gamma := new ∪Gamma;
9. α := α+ 1;
10. until delta = ∅;
11. assert Gamma = MP;

Fig. 14. Interpreter that computes Gamma incrementally.

Line 5 of this interpreter uses the definition of ∆′ and expands it to an
explicit calculation on the set Gamma. Note that the expression I, I◦ |= B̄ in
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the definition of T (I) is expanded into explicit conditions on the variable binding
θ applied to the rule selected from P. The process of generating the binding θ
has not yet been made explicit.

In lines 7-8, delta is then used for the incremental calculation of Gamma
using V ∆ (Defn. 38).

Event List There is one parallelism strategy that is of significant interest in
practice. It selects all the minimal elements in ∆. This is similar to what is done
in discrete event simulation where the lowest event(s) on the current event list
are selected next for execution. It is formulated here in its incremental delta
form Ev∆.

Definition 39. (Ev∆)

Ev∆(I,X) ≡ {A | A← B ∈ X ∧ 6∃C,D(C ← D ∈ X ∧ C < A)}

It is easily verified that for any interpretation I

∅ ⊆ Ev∆(I,∆′(I)) ⊆ Π∆(∆′(I)) = Π ′(I)

and hence that the operator Ev(I) ≡ Ev∆(I,∆′(I))∪I is a parallelism strategy.
Ev∆ is interesting for both its simplicity and computational efficiency and its

ability to deliver multiple tuples for execution, thus making it suitable for parallel
and distributed execution. It also provides a tight coupling between the ordering
< and the execution order, which can be useful when resource consumption is
important and it is necessary to restrict the amount of parallel execution.

7.3 Incremental Delta

Although Gamma is now being incrementally calculated, delta is still being re-
computed from the full set Gamma on each iteration. The next version of the
interpreter, shown in Fig. 15, is modified so that delta is recomputed incremen-
tally from the previous value of delta.

The first modification to the previous interpreter maintains Delta (now cap-
italized) between the iterations and computes its initial value on line 2. This
computation is a specialization of line 5 of Fig. 14 and explicitly finds all rules
that have no positive goals (although they may contain builtin calculations and
negations that always succeed because there are no earlier results). This mod-
ification also requires a slight re-adjustment of the loop with the check at the
top of the loop and a resulting re-arrangement of the calculations. The core of
the incremental calculation is the calculation of Delta on lines 10 through 14.
Showing the correctness of these lines requires a non-trivial proof (Theorem 41).

The variable new is broken out of the incremental calculation of Gamma.
It holds the items that have been selected from Delta as being safe (members
of Π) and whch trigger the next round of computation. In the assertions we
label the values of the variables by the iteration that they occur in (e.g., newα is
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1. α := 0;
2. Delta := {(E← F̄−)θ : E← F̄ ∈ P, F̄+ = ∅, F̄◦θ ⊆ I◦};
3. Gamma := ∅ ;
4. while Delta 6= ∅ do
5. assert Gamma =

⋃
β<α newβ = V α;

6. assert Delta = ∆′(V α);
7. new := V ∆(Gamma,Delta);
8. assert new = V (V α)− V α = V ′(V α);
9. Gamma := Gamma ∪ new;
10. d0 := {A← B̄ ∈ Delta | A ∈ new};
11. d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
12a. d2 := {(E← F̄−)θ |
12b. E← F̄ ∈ P ∧
12c. ∃F (F ∈ F̄+θ ∩ new ∧ (F̄+θ − {F}) ⊆ Gamma) ∧
12d. F̄◦θ ⊆ I◦ ∧
12e Gamma ∩ F̄∼θ = ∅ ∧
12f. Eθ /∈ Gamma
12g. };
13. α := α+ 1;
14. Delta := (Delta− d0 − d1) ∪ d2;
15. end while;
16. assert Gamma =

⋃
α newα = MP;

Fig. 15. Interpreter that computes Delta incrementally.
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the value assigned to new in iteration α). From V (V α) ⊇ V α and the assertion
new = V (V α)− V α the sequence newα is a disjoint partition of the model MP.
So nothing is ever included in new more than once. From this it can be seen that
a rule E ← F̄ ∈ P will generate a result (E ← F̄−)θ at most once (this follows
from the condition F ∈ F̄+θ ∩ new).

Of course there can be multiple rules that all give the same answer, this is an
efficiency issue for the programmer not the interpreter. Also there can be partial
results placed in Delta that contain a negation, which are later eliminated on
line 11. Again we view this as an issue for the programmer who may be able
to manipulate the rules and the ordering so that the negation is resolved early
enough to eliminate it before it needs to be stored.

Examination of this interpreter can tell us a lot about its potential efficiency
when implemented. Significant experience in implementing versions of this in-
terpreter has been reported [CCPU02,Cla04].

The execution time of line 7 depends on the actual parallelism strategy used.
In practice it requires an ordered event list over the set Delta. At one extreme,
the parallelism strategy can be Ev (or a subset), which requires being able to
find one or more minimal elements in Delta. At the other extreme, when Π is
the parallelism strategy the negations in Delta can be included in the ordering
data structure over Delta, allowing a fast check of whether the negations can
still potentially fail.

Line 9 is the inclusion of new into Gamma. Gamma will in practice require
some form of indexing [Cla04] and this step requires insertion into whatever
indexing has been chosen (the indexes may be highly dependent on the structure
of the program).

Line 10 (and 14) requires the removal of the selected elements in new from
Delta, which necessitates removal of the new items from the event list.

Line 11 (and 14) requires removal of items from Delta whose negations have
been selected. The best way of doing this will depend on which parallelism
strategy is used. If Ev is the parallelism strategy then line 11 can be omitted
and replaced by a check that the negations of elements in new are not currently in
Gamma. It is this variant of the interpreter that has been used elsewhere [Cla04].

The calculation in line 12 requires matching atoms in rules to both new and
Gamma. The first of these is on line 12c. For each item in new it requires finding
a rule that can match that item. This can be done by a static index across the
rules, or in many cases by generating explicit code to trigger the execution of
the matching rules. The fact that such optimization can be done is crucial for
fast execution of Starlog programs. Lines 12e and 12f both require finding items
in Gamma, which are matched against partially instantiated atoms from the
current rule. This can be done by providing suitable indexing on Gamma.

The following theorems establish the correctness of this interpreter. The main
theorem 41 establishes the assertion on line 6, by relating the constructions of
lines 10, 11, 12 and 14 back to V ′.

Definition 40. (Wα)

Wα ≡ V (V α)− V α = V ′(V α)
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Theorem 41.

∆′(V α+1) = ∆′(V α) (1)

− {A← B̄ ∈ ∆′(V α) | A ∈Wα} (2)

− {A← B̄ ∈ ∆′(V α) |Wα ∩ B̄− 6= ∅} (3)

∪ { (E← F̄−)θ | E← F̄ ∈ P ∧
∃F (F ∈ F̄+θ ∩Wα ∧ (F̄+θ − {F}) ⊆ V α+1) ∧
F̄◦θ ⊆ I◦ ∧ V α+1 ∩ F̄∼θ = ∅ ∧Eθ /∈ V α+1 } (4)

Proof. First consider the ground clauses A ← B̄ ∈ P∗ such that A ← B̄− ∈
∆′(V α+1) and show that they are in the RHS of the equation. From the definition
of ∆′ recall that A /∈ V α+1 and I◦, V

α+1 |= B̄. The latter implies that:

B̄+ ⊆ V α+1

and B̄∼ ∩ V α+1 = ∅
and B̄◦ ⊆ I◦.

.
Now consider two cases: (I) B̄+ ⊆ V α; and (II) B̄+ 6⊆ V α
Case (I): From I◦, V

α+1 |= B̄ and B̄+ ⊆ V α we have I◦, V
α |= B̄. Also

A /∈ V α ⊆ V α+1. Combining these results shows that A ← B̄− ∈ ∆′(V α),
term (1) on the RHS. Also A /∈ Wα, excluding A ← B̄ from term (2). Finally,
Wα ⊆ V α+1 and B̄∼ ∩ V α+1 = ∅ so that Wα ∩ B̄∼ = ∅ and thus A← B̄− is not
in term (3).

Case (II): show that A ← B̄ is in term (4) of the RHS. From the premise
for this case there must be some B ∈ B̄+ where B ∈ V α+1 and B /∈ V α.
This implies that B ∈ Wα. Using the notation of the term (4), there will be a
(possibly non-ground) clause E ← F̄ ∈ P, atom F ∈ F̄+, and binding θ such
that A← B̄ = (E← F̄)θ, and B = Fθ and B̄◦ ⊆ I◦. That is, A← B̄ is included
in term (4).

To show the converse we consider all ground clauses A← B̄ ∈ P∗ that occur
in the RHS, and show that they also occur in the LHS. That is we need to show
that a ground clause A← B̄ satisfies A /∈ V α+1 and V α+1 |= B̄.

First, consider the members of the first term on the RHS: ∆′(V α). It is
sufficient to consider just those members not also in terms (2) or (3). From term
(2) A /∈ Wα = V α+1 − V α. Also A ← B̄ ∈ ∆′(V α) implies A /∈ V α. Together
these imply A /∈ V α+1 the first required condition.

A ← B̄ ∈ ∆′(V α) implies V α |= B̄, which implies V α |= B̄+, and because
V α ⊆ V α+1, V α+1 |= B̄+. Also V α |= B̄−, that is V α ∩ B̄∼ = ∅, and I◦ |= B̄◦.
From term (3) Wα ∩ B̄∼ = ∅, that is, (V α+1 − V α) ∩ B̄∼ = ∅. Combined with
V α ∩ B̄∼ = ∅ this implies V α+1 ∩ B̄∼ = ∅, that is V α+1 |= B̄∼. Together these
all imply V α+1 |= B̄, the second required condition.

Second, consider the members of term (4) on the RHS. Using the notation
from that term B = Fθ ∈Wα, that is, B /∈ V α and B ∈ V α+1. Thus V α+1 |= B̄+

and from the definition of the term V α+1∩B̄∼ = ∅ and B̄◦ ⊆ I◦. Combining these
results with V α+1 |= B̄ establishes the second of the two required conditions.
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From the last part of the term, we see that A = Eθ /∈ V α+1, which establishes
the first of the two required conditions. ut

Theorem 42. The assertions in the interpreter hold.

Proof. The assertion new = V (V α) − V α = V ′(V α) follows directly from the
definition of V ′. The two assertions about Gamma and Delta follow from that
and the theorem above. The terminating assertion follows in the event that the
while loop finitely terminates when Gamma is the least fixpoint of V . ut

7.4 Finite Interpreter

The final version of the interpreter in Fig. 16 ensures that all calculations are
finite, and as part of this, makes the calculations of bindings explicit.

Finite Builtin Calls So far all the proofs and interpreters have implicitly
allowed the Delta and Gamma sets to be infinite. Such infinite sets can actually
occur with rules such as:

p(X,Y )← X > Y

where built in calls return an infinite set of answers. Clearly, in practice this is
untenable.

This is dealt with by using a predicate finiteGoal(B), which can be applied
to a (possibly non-ground) builtin goal B. It should return true only if there
are a finite number of possible ground solutions for B. It is free to return false
if it is ever in doubt and a correct (but not very useful) implementation is
to always return false for a non-ground argument. One example technique for
arithmetic is to return true whenever the arguments are suitably ground. Thus
finiteGoal(add(X,Y, Z)) can return true whenever two or more of X,Y, Z are
ground. The result of this is that on line 41 in Fig. 16 it is possible to reach a
position where there are remaining unresolvable built in calls. This constitutes
an error on the programmers part. In many cases it will be possible to statically
check that this cannot happen, but in general this runtime check is needed.

Explicit Bindings The calculation of d2 on line 12 of Fig. 15 is not explicit
about how the bindings are to computed. The final interpreter replaces this
with an explicit sequential calculation. It starts by iterating over all rules in the
program and calling the method trigger. This checks if there are any positive
goals in the rule that match against new. For each such match a lookup is done
to evaluate the remaining goals in the rule. A similar call is used to compute the
initial Delta set on line 2 where the rules with no positive goals are scanned.

lookup is a non-deterministic recursive routine that repeatedly checks the
remaining goals against Gamma and the built in results. It is written using non-
deterministic guards in an if of the form []α→ β. Any one of the guards (α) that
evaluates to true can be selected non-deterministically and the corresponding
body (β) is executed. The full form of the guard syntax []x∈S α → β allows



A Parallel Semantics for Datalog + Time 33

2’. Delta :=
⋃

E←F̄∈P|F̄+=∅

lookup(E, F̄);

12’. d2 :=
⋃

E←F̄∈P

trigger(E, F̄);

20. trigger(E, F̄) :

21. return
⋃

F∈F̄+

 ⋃
θ|Fθ∈new

lookup(Eθ, (F̄− F)θ)

 ;

30. lookup(E, F̄) :
31. if E ∈ Gamma→
32. return ∅
33. []

F∈F̄∼
F ∈ Gamma→

34. return ∅
35. []

F∈F̄◦
finiteGoal(F)→

36. return
⋃

θ|Fθ∈I◦

lookup(Eθ, (F̄− F)θ)

37. []
F∈F̄+

true→

38. return
⋃

θ|Fθ∈Gamma

lookup(Eθ, (F̄− F)θ)

39. else→
40. if F̄◦ = ∅
41. assert ground(F̄) ∧ F̄ = F̄−

42. return {E← F̄}
43. else
44. error floundered
45. fi
46. fi;

Fig. 16. Finite Interpreter (Lines 2’ and 12’ replace lines 2 and 12 of Fig 15), and lines
20 onwards are added.
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choice over the members x of some set S. Any member of the set S can be
selected. This allows flexibility in the order in which goals are checked, matched
and evaluated. For example, an implementation might use a strict left-to-right
order or a more dynamic run-time selection of the next goal. The else guard is
true only when all earlier guards are false.

This version of the interpreter makes it clearer how indexing can be used to
improve performance. The rule selection in line 12 and the triggering on members
of new in line 21 can be done by constructing a static index over the positive
goals in the rules. This means it is not actually necessary to iterate over all the
rules, but rather that a direct selection of both a rule and a suitable positive
goal can be done given some member of new.

An index over Gamma can potentially improve execution speed in the lookup
of positive goals in line 37, and in the checks of the negations in line 33 and of
the newly generated head tuple in line 31.

Finite Execution To be sure that each iteration of the interpreter terminates
with a finite execution a number of assumptions need to be true:

1. Gamma and Delta are finite;
2. the program consists of a finite number of rules with a finite number of goals;
3. finitegoal(B) is computable in all cases;
4. the calculation of V ∆(Gamma,Delta) is finite.

Given these assumptions it is elementary to verify that the execution of one
iteration is finite and that if these are true at the start of an iteration then
Gamma and Delta will be finite at the start of the next iteration. A couple of
these do warrant some commentary.

In an actual system it will be necessary to specify (either directly from the
programmer or automatically) an executable version of X < Y or X . Y (de-
pending on the parallelism strategy). It is outside the scope of this paper to
detail how this specification might be done. However, our experiences with vari-
ous implementations show that it is possible to have powerful classes of orderings
that can be efficiently executed [Cla04].

It is possible to concoct a version of V ′ that is not computable. However, it
can be verified from Definitions 18 and 34 that Π∆ is finitely computable (given
that Delta is finite and that . is computable for ground arguments). Also, all the
different possible versions V ′ are subsets of Π∆. The other important parallelism
strategy, Ev∆, (Definition 39), is also finitely computable (given that Delta is
finite and that < is computable for ground arguments).

7.5 Example Execution

The subsidiary information at http://www.cs.waikato.ac.nz/research/jstar
includes a reference interpreter written in Prolog, several example programs, and
traces of their execution. Three versions of the interpreter are used correspond-
ing to those in Figs. 13, 15 and 21. Multiple execution traces are included for
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each program in Section 4. These illustrate the effects of the different ordering
functions given for the programs and the use of different parallelism strategies
including Π, Ev and a subset of Ev that selects one tuple at a time.

8 Potential Parallelism

Fig. 17. Potential parallelism in a JStar program, using the Ev parallelism strategy
(top) and the Π parallelism strategy (bottom).

In this section we examine a case study which illustrates that Starlog can
extract significant potential parallelism from a medium sized Starlog program (a
compiler for a dialect of Starlog). It also shows that the Π parallelism strategy
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can extract significantly more parallelism than the Ev parallelism strategy. The
case study program is the back end of our JStar 1.0 compiler,1 which is written
in JStar 1.0, and has the job of converting flattened abstract syntax trees into
valid Java source code. It comprises 1545 lines of commented JStar source code,
with 30 relations, and 58 JStar rules containing many deeply nested if-else state-
ments, which expand to more than 2300 Starlog rules. We execute this program
using a Prolog version of the incremental delta interpreter algorithm, and record
statistics about the size of the delta and new sets after each step.

Fig. 17 shows the execution profiles of this program, using the Ev parallelism
strategy (top) and Π (bottom). The X-axis is the number of steps taken by
the interpreter, and the Y-axis is the number of tuples in the each of the sets
manipulated by the interpreter. The dashed line shows the size of the delta set,
and the solid line shows how many new tuples were taken out of the delta set and
executed at each step – this is a good approximation of the potential parallelism,
because each tuple typically triggers one rule, so this is roughly equivalent to
the number of rules that are being executed in parallel. With the Ev strategy,
we see a peak of 446 new tuples in one step, two peaks around 170, and several
peaks around 60, but most of the steps have very little parallelism (1-3 tuples),
which is why a total of 127 steps are required to complete the program.

In contrast, the Π parallelism strategy is able to extract much higher sus-
tained levels of potential parallelism (an average of 348 from steps 2-4, and an
average of 144 from steps 0-10), and usually manages to immediately execute
almost all of the tuples added to the delta set, leaving just a few tuples that
have associated negations with non-obvious dependencies. Consequently, it can
execute the whole program in just 17 steps. These graphs illustrate how Starlog
can extract significant potential parallelism from programs with complex data
dependencies, such as a compiler.

9 Related Work

John McCarthy’s unpublished Elephant 2000 language proposal [McC92] had
several similarities to Starlog. Elephant had the ideas of a time-stamped history,
interacting with the real-world via input and output tuples, data-structure-free
programming, and a compiler that chooses data structures. Starlog has a more
general notion of timestamps (any well-founded partial order), but in many other
ways follows a philosophy that is similar to that of Elephant.

An even more similar set of languages is the OverLog, Dedalus and (forth-
coming) Bloom languages from the Declarative Networking group at Berke-
ley [CCHM08,AMC+09]. These are declarative networking languages, intended
for specifying and implementing distributed protocols and algorithms. OverLog
was based loosely on Datalog, but with ad-hoc aspects to its semantics, while
Dedalus is closer to pure Datalog with negation. Dedalus can be viewed as being
a subset of Starlog, where timestamps are restricted to positive integers and rules

1 JStar is a dialect of Starlog with Java-like syntax, but the same semantics as Starlog.
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are restricted so that timestamps can increase only by 0, 1, or an unspecified
amount of time for the case where a tuple moves between two different nodes
on a distributed network. Programs are also written in a style that explicitly
partitions the data tuples across the nodes of a distributed network. Since all
distributed nodes execute in parallel, this results in a parallel (and distributed)
implementation of each program. But the parallelism is explicitly specified by
the programmer (via the distribution of tuples), whereas our approach is to give
the compiler freedom to discover the parallelism automatically.

There has been quite a lot of research on bottom-up evaluation strategies
for Datalog, including naive evaluation, semi-naive evaluation, and pseudo-naive
evaluation [SU99], as well as various kinds of top-down tabled evaluation like
that used in XSB [ZS03]. Our final interpreter in this paper is more efficient
than semi-naive evaluation because it calculates the delta set incrementally, as
well as the gamma set, and it generalizes pseudo-naive evaluation by allowing a
wide range of parallelization strategies.

There has been much research in the past on parallel implementations of logic
programming languages, particularly Prolog [GPA+01]. Most of this work deals
with top-down evaluation strategies rather than bottom-up, but some of the
underlying techniques will nevertheless be relevant for parallel implementations
of Starlog. Zhang et. al. describe a bottom-up evaluation strategy that improves
on semi-naive evaluation by partitioning the data tuples of a Datalog program
rather than the rules [ZWC95]. Partitioning the program in this way is similar
to the parallel evaluation strategy used by the Berkeley languages, and is one of
the parallelization strategies that we plan to use for Starlog.

The most similar implementation approach to ours is the guaranteed-time-
and-space approach of Liu and Stoller [LS09]. They start with a fixed-point
semantics, transform that into a loop that handles a single ’trigger’ tuple on
each iteration, update all sets incrementally, and then design custom data struc-
tures to efficiently support those incremental operations. We follow the same
steps, but our focus is on handling as many trigger tuples as possible within
each iteration of the loop, in order to maximize parallelism. So the goals and
results of our work are complementary to Liu and Stoller’s approach. Other
differences are that they handle only stratified Datalog programs, whereas we
handle locally stratified normal programs, which are more complex and require
explicit orderings, and we do not discuss the third step of designing custom
data structures in this paper – this has been investigated in detail for sequential
implementations of Starlog [Cla04] but requires significant rework for parallel
implementations [Bri12].

The work of Brass et al. [BDFZ01] is focussed on the evaluation of the well-
founded semantics for finite programs without function symbols. They start from
the idea of an alternating fix point and show how they can be refined and made
more efficient. Their results, particularly those on ordering strategies, can be
seen in the context of the work here as algorithms for (dynamically) computing
orderings.
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10 Conclusions

The first accomplishment of this paper has been the specification of a simple least
fixpoint semantics for a pure logic programming language that explicitly incor-
porates a general ordering across the tuples of the language. We have proved that
our fixpoint semantics agrees with the usual perfect model semantics, and have
developed a fully incremental and hence efficient interpreter that implements
the semantics. The real importance of this is that we have also demonstrated
that logic programs with time can directly deal with mutations and updates to
data, as well as interacting with external data streams, without moving outside
its pure logical framework.

The potential efficiency of the language is made plausible by the fully incre-
mental interpreter. Previous work [Cla04] described a scheme to automatically
select data structures for implementing the relational tables. Using the kind of
incremental bottom-up fixpoint evaluation as this paper, that work showed that
a variety of Starlog benchmark programs could be compiled to sequential code
whose execution time was comparable with fully imperative implementations.
This was accomplished by automatic analysis of the usage of each relational
table within each program, then using heuristic algorithms to choose efficient
representations for each table and each index.

The interpreters described in this paper retain all computed tuples in the
Gamma set, so this set grows unboundedly, which is untenable. We are currently
investigating systematic ways of implementing a correct and efficient garbage col-
lector for the Gamma set. We have defined a logical specification of what garbage
collection means in the Starlog context, and described one possible algorithm for
garbage collection. Thus, a major piece of work that remains is to implement
a garbage collector and to demonstrate that it can achieve sufficient memory
compaction sufficiently quickly that practical programs can run to completion.
We expect this to require tradeoffs between execution time, compaction, and
the complexity and sophistication of the techniques used. As an interim mea-
sure, Starlog users can specify simple garbage collection techniques manually,
similar to how programmers can specify the maximum time that tuples should
be retained in the Overlog language [LCH+05].

A second key contribution of this paper is that the incremental fixpoint inter-
preter allows a wide variety of parallel execution strategies (parallelism strate-
gies), ranging from sequential execution to a massively parallel approach (Π)
that executes every rule whose body cannot be falsified by later execution. In
practice, this can generate too much parallelism for current machines and re-
quires quite complex analysis of the dependencies between rules, so there is
much interesting research needed to find good parallelism strategies that pro-
vide sufficient parallelism, but can be implemented with minimum overhead.

The execution order is explicitly determined by the ordering between tu-
ples. Thus the base assumption is that execution is parallel unless explicitly
constrained by the programmer or by the data causality of the algorithm. This
highly parallel basis for execution, together with the ability to retarget the highly
abstract data representations of relational tables, makes the language a plausible
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candidate to address the problems inherent in increasingly diverse and parallel
modern computational hardware. Recently, we have made significant progress
towards efficient implementations of example Starlog programs on cluster com-
puters [Cro12], on GPUs [Bea09], and on multicore CPUs [Bri12], but there
remain many interesting engineering tradeoffs to explore, particularly with re-
gards to choices of concurrent data structures.
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A N-Queens Search

The program in Fig 18 uses a simple search algorithm to find all the solutions for
the N -Queens problem for a specified N . This example can be easily generalized
to other search problems. It also motivates the inclusion of function symbols in
our language by using them to generate labels for the tree of generated search
nodes.

The search is done over a board indexed by values from 0 to N − 1 where N
is specified in the predicate n(N). The allowed range of values from 0 to N−1 is
recorded in the predicate r(I). A table of positions on the board that can attack
one another is built up in the attack(I, J,K,L) predicate.

The remaining predicates are indexed by a label in a search tree. Each label
is a list of integers giving the path from the root label ([]) to the node. These
nodes are generated on line 29 (and checked on line 34) using function symbols to
create the list. These labels form the first argument of the remaining predicates.

A key part of this structure is the predicate child(C,P ) that records the
parent node P and its child nodes C. The predicate node(C) records the existence
of a node, and depth(C,D) its depth in the tree.

fail(X) is true iff the board in node X is inconsistent (see line 23 where
the attack predicate is used to check this). solution(X) is true iff the node X is
consistent and all the rows in the board have been filled in (see line 26).

The positions of the queens are recorded in q(X, I, J) where X is the node
label and I, J are indexes into the board. Line 32 copies the parents board state
into the child and line 34 inserts one new queen into each child.

A.1 Theory

The theory in Fig. 19 for the N-Queens program uses three auxiliary predicates
(these are used only as part of the theory and are not computed as part of
program execution). These are int(I) that is true iff I is an integer, intList(L)
which is true iff L is a list of integers and suffix(A,B) which is true iff A is a
list and a suffix of the list B.

The ordering from the dependency graph that results from this theory divides
the tuples into a stratum for each node. That is, the predicates at each node
are strictly later than those of its parent, and its grandparent back to the root.
Importantly other than these orderings the nodes are not dependent on other
nodes at the same depth nor on other unrelated nodes at earlier depths.

Fig. 20 shows a fragment of the .,< ordering that results from this theory
(n, r and attack are omitted for clarity).

The key result that shows these orderings are well founded is the transitivity
result for suffix in the last line of the theory in 20.
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01: %Allowed row or column values

02: r(I) <-- n(N), range(I, 0, N).

03:

04: %On same row

05: attack(I,J,I,L) <-- r(L), r(J), L \= J, r(I).

06: %On same column

07: attack(I,J,K,J) <-- r(K), r(I), K \= I, r(J).

08: %Positive diagonal

09: attack(I,J,K,L) <-- r(K), r(I), K \= I, r(J), L is J + (K - I), r(L).

10: %Negative diagonal

11: attack(I,J,K,L) <-- r(K), r(I), K \= I, r(J), L is J - (K - I), r(L).

12:

13: %Initiate execution

14: node([]).

15: %Record that a search node exists

16: node(C) <-- child(C, P).

17:

18: %Record depth of search node

19: depth([], 0).

20: depth(C, E) <-- child(C, P), depth(P, D), E is D + 1.

21:

22: %Check for two queens attacking one another

23: fail(X) <-- q(X, I, J), q(X, K, L), attack(I, J, K, L), .

24:

25: %If all rows done then have solution

26: solution(X) <-- n(N), D is N - 1, depth(X, D), not(fail(X)).

27:

28: %If not yet failed and not at end then generate more children

29: child(C, P) <-- node(P), not(fail(P)), not(solution(P)), r(I), C = [I|P].

30:

31: %The old queens

32: q(C, I, J) <-- child(C, P), q(P, I, J).

33: %The new queen

34: q(C, D, I) <-- node(C), depth(C, D), C = [I|_].

Fig. 18. Starlog program for N-Queens search
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n(N) ⇒ N ≥ 0

n(N), r(I) ⇒ 0 ≤ I, I < N

n(N), attack(I, J, K, L) ⇒ 0 ≤ I, I < N,
0 ≤ J, J < N,
0 ≤ K, K < N,
0 ≤ L, L < N

n(N), q(X, I, J) ⇒ intList(X),
0 ≤ I, I < N,
0 ≤ J, J < N

node(X) ⇒ intList(X)

fail(X) ⇒ intList(X)

solution(X) ⇒ intList(X)

n(N), depth(X, D) ⇒ intList(X), 0 ≤ D, D < N

child(C, P) ⇒ intList(C), intList(P), suffix(P, C)

suffix(A, B), suffix(B, C) ⇒ suffix(A, C)

Fig. 19. Ordering theory for the N -Queens program.

solution(C)

fail(C)

q(C, , ) q(C, , ) ...

depth(C,_)node(C)

child(C, P)

......

child([1|C], C)child([0|C], C)

...

Key

x . yx y

x < yx y

Fig. 20. Ordering for N -Queens



A Parallel Semantics for Datalog + Time 45

B Monotonicity Proofs for the Least-Fixpoint Semantics

This appendix gives the details of stage 2 of constructing the least-fixpoint se-
mantics - showing that V α is monotonic and has a least fixpoint.

We start by proving an important monotonicity lemma.

Lemma 43. Given a parallelism strategy V , then for all ordinals α,

V α ⊆ V (V α)

and
x ∈ ∆(V α)⇒ ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x))

Proof. The proof will proceed by a transfinite induction on both hypotheses in
concert. Both hypotheses are trivially true for α = 0.

Consider the case when α is a sucessor ordinal and let α = β + 1. Note that
by the induction hypothesis V β ⊆ V α.

First establish that for x ∈ ∆(V α) there exists y ∈ ∆(V β), y . x. This
establishes the more general condition by recursion on β. From the definition of
∆, x ∈ ∆(V α) implies x /∈ V α and that there is some ground clause x ← B̄ ∈
P∗/I◦ where V α |= B̄. By the induction hypothesis x /∈ V β . We now split into
a number of subcases.

First consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second consider the case when V β 6|= B̄. There are two possible reasons for
this: either y ∈ B̄+ and y /∈ V β , y ∈ V α, that is, y ∈ ∆(V β) but by causality
y ∈ B̄+ implies y . x and thus y satisfies the condition; or y ∈ B̄∼ and y ∈
V β , y /∈ V α which contradicts the induction hypothesis that V β ⊆ V α.

Continuing the successor case consider a counter example x for the subset
condition, a member of V α which satisfies the condition x ∈ V α, x /∈ V (V α).
From the definition of a parallelism strategy this implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α, x /∈ V (V α)) and the constraint Π(V α) ∩ V α ⊆ V (V α) then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider first V α 6|= B̄. There are two possible reasons for this: either ∃y(y ∈
B̄+ ∧ y ∈ V β ∧ y /∈ V α), but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α), which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider second V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using the
first result for the successor case this implies that z ∈ ∆(V β) which implies that
x /∈ Π(V β) and because V β ⊆ V α this contradicts the assumption that x ∈ V α.

This completes the proof of both the induction hypotheses for the successor
case.

Consider the case when α is a limit ordinal, that is, V α =
⋃
β<α V

β(I). First

we will show that given x ∈ ∆(V α) then ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x)).
From the definition of ∆, x ∈ ∆(V α) implies x /∈ V α and that there is some
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ground clause x ← B̄ ∈ P∗/I◦ where V α |= B̄. Consider some β < α and note
that x /∈ V β . We now split into a number of subcases.

First, consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second, consider the case when V β 6|= B̄. There are two possible reasons for
this. The first reason is that y ∈ B̄+ and y /∈ V β , y ∈ V α. These conditions
imply that there is some ordinal γ > β such that y /∈ V γ ∧ y ∈ V γ+1, which
implies y ∈ ∆(V γ). From the induction hypotheses this implies there is some
z ∈ ∆(V β) such that z . y. Thus z . x and this supplies the value of y we are
seeking. The second possible reason is that y ∈ B̄∧y ∈ V β ∧ y /∈ V α but this
contradicts the induction hypothesis that V β ⊆ V α.

Continuing the limit case consider a counter example x for the subset condi-
tion, a member of V α which satisfies the condition x ∈ V α∧x /∈ V (V α). There is
an ordinal β < α where x /∈ V β and x ∈ V β+1. This implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α∧x /∈ V (V α)) and the constraint Π(V α)∩V α ⊆ V (V α), then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider firstly V α 6|= B̄. There are two possible reasons for this: either
∃y(y ∈ B̄+∧y ∈ V β∧y /∈ V α, but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α, which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider secondly V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using
the first result for the limit case this implies that ∃w(w ∈ ∆(V β) ∧ w . y . z),
which implies that x /∈ Π(V β) and because V β ⊆ V β+1 this contradicts the
assumption that x ∈ V β+1.

This completes the proof of both the induction hypotheses for the limit case.
ut

Using this lemma, we can now prove that V α is monotonic with respect to
α.

Lemma 44. Given a parallelism strategy V then for all ordinals α, β, α ≤ β
implies V α ⊆ V β.

Proof. Do a trans-finite induction on all ordinals using the previous theorem and
the definition of V α. ut

With the help of some definitions, we can now prove that V α will eventually
terminate at a fix point.

Definition 45. (Chain) An ordered set C is a chain iff ∀x ∈ C, y ∈ C either
x ≤ y or y ≤ x.

Definition 46. (CPO) A set C is a chain complete partial order over the
ordering ≤ if:

1. C is partially ordered by ≤;
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2. there is a bottom element, ⊥, such that ⊥ ≤ x for all x ∈ C;
3. for all chains (Si)i∈I there is a least upper bound lubi∈I(Si) ∈ C.

Theorem 47. For a parallelism strategy V there is a least ordinal δ where V δ

is a fixpoint.

Proof. Construct a CPO using ⊆ as the ordering. Consider the interpretations
V α for all ordinals α. These form a chain complete partial order (CPO) using the
ordering ⊆ [DP02]. Directly from Lemma 44, V is monotonic on this restricted
set. By the Tarski-Knaster theorem [Tar55], V has a least fixpoint on this CPO
computed by an ordinal δ. ut
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C Complete Interpreter

Fig. 21 shows a complete consolidated version of the interpreter of Fig. 15 in-
cluding the modifications of Fig. 16. This interpreter assumes that the following
methods have been provided:

1. finitegoal(B), which is computable for all (possibly non-ground) goals B;
2. a parallelism strategy V ′(Gamma,Delta), which is computable for all finite
Gamma and Delta (depending on the parallelism strategy, this may require
that one or other of . or < be computable for ground arguments).
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α := 0;

Delta :=
⋃

E←F̄∈P|F̄+=∅

lookup(E, F̄);

Gamma := ∅ ;
while Delta 6= ∅ do

assert Gamma =
⋃
β<α newβ = V α;

assert Delta = ∆′(V α);
new := V ′(Gamma,Delta);
assert new = V (V α)− V α = V ′(V α);
Gamma := keep(Gamma,Delta) ∪ new;
d0 := {A← B̄ ∈ Delta | A ∈ new};
d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
d2 :=

⋃
E←F̄∈P

trigger(E, F̄);

α := α+ 1;
Delta := (Delta− d0 − d1) ∪ d2;

end while;
assert Gamma =

(⋃
α newα

)
= MP;

trigger(E, F̄) :

return
⋃

F∈F̄+

 ⋃
θ|Fθ∈new

lookup(Eθ, (F̄− F)θ)

 ;

lookup(E, F̄) :
if E ∈ Gamma→

return ∅
[]

F∈F̄∼
F ∈ Gamma→

return ∅
[]

F∈F̄◦
finiteGoal(F)→

return
⋃

θ|Fθ∈I◦

lookup(Eθ, (F̄− F)θ)

[]
F∈F̄+

true→

return
⋃

θ|Fθ∈Gamma

lookup(Eθ, (F̄− F)θ)

else→
if F̄◦ = ∅

assert ground(F̄) ∧ F̄ = F̄−

return {E← F̄}
else

error floundered
fi

fi;

Fig. 21. Complete Incremental Interpreter (see Figs. 15 and 16).


