
1

Formal Vulnerability Analysis of a Security System
for Remote Fieldbus Access

Manuel Cheminod, Alfredo Pironti, and Riccardo Sisto

Abstract—As fieldbus networks are becoming accessible from
the Internet, security mechanisms to grant access only to au-
thorized users and to protect data are becoming essential. This
paper proposes a formally-based approach to the analysis of such
systems, both at the security protocols level, and at the system
architecture level. This multi-level analysis allows the evaluation
of the effects of an attack on the overall system, due to security
problems that affect the underlying security protocols. A case
study on a typical fieldbus security system validates the approach.

Index Terms—Computer security, cryptographic protocols, for-
mal specifications, formal verification, industrial control, SCADA
systems.

I. INTRODUCTION

IN the past, the security of industrial control systems (ICS)
was mainly achieved thanks to their physical isolation.

Nowadays, control systems are often interconnected to form
complex distributed systems, such as for example SCADA
(Supervisory Control and Data Acquisition) systems where a
control centre monitors and controls geographically dispersed
field sites. These systems tend to be no longer isolated, thus
becoming prone to cyber attacks. Because of the serious effects
that these attacks may have on the controlled assets, securing
interconnected control networks against intruders has emerged
as an important research topic [1]–[7] and has given rise to
specific recommendations [8].

Security can be added to such systems by leveraging
security methodologies already adopted in general-purpose
computer networks, but with adaptations to address the special
features of the industrial control networks. As an example, the
limited computational power of network devices and the need
for prompt real-time responses prevent the use of complex and
time-consuming cryptographic primitives.

When developing a new security system, it is important
to accurately verify that it actually achieves the desired
protection, which is hard to do without proper methods and
tools, because of the unconstrained behaviour of attackers and
because of the inherent complexity of interconnected network
systems. When an informal or semi-formal description of the
system is the only available specification, some ambiguities

Authors’ version. Published in: IEEE Transactions on Industrial Informat-
ics, vol. 7, issue 1, pp. 3040, 2011. c© 2011 IEEE. Personal use of this material
is permitted. Permission from IEEE must be obtained for all other users,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

M. Cheminod is with IEIIT, National Research Council, I-10129 Torino,
Italy (e-mail: manuel.cheminod@polito.it).

A. Pironti and R. Sisto are with the Dipartimento di Automatica e Infor-
matica, Politecnico di Torino, I-10129 Torino, Italy (e-mail: {alfredo.pironti,
riccardo.sisto}@polito.it).

about its interpretation may arise. These ambiguities can lead
to different implementations being derived from the same pro-
tocol description, possibly creating flaws that can be exploited
by an attacker. For example, in [9] and [10] two attacks are
reported against implementations of the SSH and SSL/TLS
protocols respectively. Such attacks are possible because in
both cases the standard is not precise enough at specifying
how some checks on received data must be implemented.
Some implementations of such protocols implement the checks
in a way that is not susceptible to attacks, while other
implementations of the same protocols implement the checks
in a different way that is still acceptable with respect to the
protocol specification but makes the protocol implementation
vulnerable.

Formal methods can help in this respect, by providing
rigorous ways for specifying such systems and for systematic
reasoning about their security properties and vulnerabilities.
Recently, formal methods for security assessment have made
much progress, and automated tools that can be used even by
non-experts are available [11], [12]. It is important to note that
automated formal methods need to work on abstractions of the
real systems in order to be successful. Consequently, they are
useful for checking the logical correctness of an abstract model
of a system and they may miss vulnerabilities not captured by
the abstraction being used.

This paper shows how state-of-the-art automated formal
methods can be used to analyse the correctness and effec-
tiveness of a security system for distributed industrial control
systems [13], and highlights the benefits that this kind of
analysis can give. In [13], a security system for remote fieldbus
access is only informally specified. One contribution of this
paper is a formalization of the security-related parts of the
system. This formalization resolves possible ambiguities, and
makes explicit some security-relevant assumptions that were
left implicit in the informal specification. It is also formally
shown that, if not carefully resolved, such possible ambiguities
could lead to the deployment of an insecure system.

Case studies and methodologies about using formal methods
for analysing security protocols and networks, even specifi-
cally in the industrial networks area, have already appeared in
literature (e.g. [12], [14], [15]). The novelty of the approach
described in this paper is mainly in the exploitation of the
positive interactions that arise from the use of two different
modelling and verification techniques, at different abstraction
levels. As a first step, the security protocols used in the
system are modelled and analysed separately, obtaining a
formal statement of the security properties they can guarantee.
Based on such statements, the second step is to build and
analyse a higher level model of the whole networked system,

2

Internet

GW

GW

Fig. 1. Overall system architecture.

GW

Control

Internet

Corporate

fieldbus

Fig. 2. Sample network architecture for single fieldbus.

where protocol details such as exchanged messages are no
longer represented, but the possible attacks on the protocols
are represented abstractly. This model considers not only the
security protocol vulnerabilities which emerged during the
first verification step, but also the vulnerabilities of network
components, thus being able to spot specific network configu-
rations and actions that allow a malicious agent to successfully
perform an attack on the system. The possibility to combine
formal analyses at different levels in this way is important
because it reduces the risk of incorrect modelling, which can
arise if the security properties of a cryptographic protocol are
not properly understood and modelled in the system model.

The rest of the paper is organized as follows. In section II,
the security system to be analysed is presented. Then, sec-
tion III presents the formal specification and analysis of the
security protocol used in the system, while section IV shows
how the results of the analysis of the protocol can be integrated
into the analysis of the vulnerabilities of a specific networked
system where the security system is deployed. Section V
concludes this paper.

II. THE SECURITY SYSTEM

This paper considers a security system for protecting the
access to interconnected fieldbuses [13], which is based on an
architecture shown in figure 1. Each fieldbus can be accessed
through the Internet via a gateway that performs protocol
conversion. Each gateway is also used as an access control
filter and as a means for enforcing data integrity and origin
authentication for transmitted data. This kind of solution has
the interesting feature of not requiring modifications to the
fieldbus, and not burdening fieldbus nodes with cryptography.
When the network is configured for each fieldbus as in
figure 2, the system is also compatible with the recommended
network architectures for industrial control systems [8], where
firewalls are used for controlling the flow between a control
network and a corporate network. The firewall in front of the
control network can be implemented inside an application-
proxy gateway, like the ones in the architecture proposed
in [13].

KDOM

KGUA

KGUE

KUE

KUA

Fig. 3. Key derivation hierarchy.

Other solutions are also possible, such as for example
the ones being proposed by the American Gas Association
(AGA) [16], which has recently started the development of a
suite of standards to protect the data transmitted by SCADA
systems and authenticate the originators of messages. At the
moment, however, only the first part, on Background, Policy
and Test Plan, has been released.

The security system proposed in [13] starts from the
assumption that communication with the fieldbuses can be
initiated by client users and is controlled by access control
lists (ACL) located in the gateways. Special users with admin-
istrative rights can configure gateways and change their ACL.
As in [13], here it is assumed that all system users, gateways
and fieldbuses belong to the same domain. Interconnections
between different domains are not considered.

Privacy, authentication and integrity protection are achieved
by shared key cryptography, using a hierarchical key system,
with keys stored in smartcards (one smartcard for each user
and one for each gateway). According to the nomenclature
given in [13], the KDOM key is the domain root key, from
which all other shared keys are derived. From KDOM , the
Gateway User Authentication key (KGUA) and the Gateway
User Encryption key (KGUE) are derived. From KGUA and
KGUE , it is possible to respectively derive for each user a
User Authentication key (KUA) and a User Encryption key
(KUE). The key derivation tree is depicted in figure 3. Each
user needs to store a local copy of its own KUA and KUE ;
each gateway stores a local copy of KGUA and KGUE , so
that the specific user keys can be generated on the fly, when
a user connects. Note that there exists a different KUA and
KUE for each user of the system, and one user always uses
the same key-pair to contact any gateway.

A similar architecture is adopted for the administrative keys,
each gateway storing its specific administration authentication
and encryption keys, and each administrator storing the ad-
ministration master keys, from which gateway specific keys
are derived.

Note that since all gateways in the same domain share
the same KGUA and KGUE keys, if just one gateway is
compromised, the keys must be changed in the whole system
(including the users, since they have derived keys). This issue
could be avoided by using asymmetric keys, so that each
gateway and user has their own key. However, symmetric keys
are chosen for this system architecture in order to cope with
the limited computational power available at the gateways, and
possibly at the user (mobile) devices.

A custom request/response security protocol controls
communication between a user and a gateway. The re-

3

Client Gateway

UID, MODE, TIME, MAC, LEN, (RID, REQDATA)

UID, MODE, TIME, MAC, LEN, RESPONSE

Encrypted with K
UE

Encrypted with K
UE

H(UID, MODE, TIME, ZEROS, LEN, (RID, REQDATA))

Encrypted with K
UA

Encrypted with K
UE

Fig. 4. Request/response security protocol scenario.

quest/response scenario is depicted in figure 4. The user
initiates a session by sending a request to a gateway. While the
message structure will be detailed in section III-B, it is worth
pointing out now that the content of the request is protected
by a Message Authentication Code (MAC), whose purpose is
to ensure integrity, and the application data are encrypted, in
order to provide privacy. Authentication is implicitly achieved,
because only authorized users and gateways can access the
shared authentication and encryption keys. In particular, the
KUA and KUE (derived from KGUA and KGUE) are respec-
tively used to compute the MAC and encrypt the application
data (details are given in section III-B).

The gateway replies by sending a response to the user, again
protected by a MAC, with encrypted application data.

If the application data contain administrative commands,
then the message payload is further authenticated and en-
crypted by using the administrative keys, so that only the
intended gateway can understand the content (and further
check its integrity).

III. SECURITY PROTOCOL ANALYSIS

A. Formalism and Background

The formal models of protocol agents are specified in
this paper by using the applied pi calculus (a-pi for short)
modelling language [17]. Essentially, a security protocol is
composed of several agents, each implementing one of the pro-
tocol roles. A protocol role can be modelled in a-pi by creating
its corresponding a-pi process. Protocol roles communicate
with each other by communication channels. The statement
out(c, M) means output of message M over channel c; while
in(c, x) represents input from channel c with storing of input
data in variable x. The shorthand in(c,= data) means that
input from channel c is accepted only if it matches the content
of data. That is equivalent to the more verbose

in(c, tmp); if tmp = data then

Comments are enclosed between (∗ and ∗).
In a-pi, cryptographic primitives are symbolically repre-

sented by pairs of constructors and destructors. For example,
symmetric encryption of message M with key k is represented

by the constructor enc(k, M) and a corresponding destructor is
defined to represent decryption by the rewriting rule

dec(k, enc(k, M)) = M

Hashing of message M is represented by the H(M) construc-
tor. The absence of a hash-related destructor represents the
fact that a hash cannot be inverted. This symbolic idealized
view of cryptography (perfect cryptography) is effective in
efficiently spotting logical errors in the use of cryptography
within security protocols. However, by abstracting away all
computational-hardness theories of cryptography, low-level
errors such as bad interactions between specific cryptographic
algorithms cannot be discovered.

The attacker is assumed to have complete control over pub-
lic channels: it can drop, forge, alter and eavesdrop messages.
This abstract way of modelling a security protocol and an
attacker comes from Dolev and Yao [18]. Even if it cannot
represent all the possible weaknesses, it is still considered a
valid means to reason about security protocol logic.

The a-pi language has been chosen over other modelling
languages (e.g. spi calculus, or CSP) because it is easily
extensible, enables precise models to be defined by explicitly
including the checks on received data, and can be analysed
by ProVerif [11], one of the most powerful tools currently
available for security protocol analysis. ProVerif is a security
protocol specific theorem prover that can be used by non-
experts, too: differently from other general purpose theorem
provers, which require manual interaction, it is fully automatic.
Moreover, being a theorem prover, it can prove security prop-
erties for an unbounded number of parallel protocol sessions,
a feature not usually allowed by state exploration tools.

Essentially, in order to verify a security protocol with
ProVerif, an a-pi model of the protocol is enriched by adding
a formal description of the intended security properties (see
section III-C for details). Then, this enriched model is given to
the ProVerif tool, which transforms the a-pi representation of
the protocol into a set of Horn clauses, and then uses a custom
resolution algorithm1 in order to prove the requested security
properties, expressed as logical formulas. When (if) ProVerif
terminates execution, it either gives a proof of correctness of
the protocol with respect to the requested security properties,
or shows an attack breaking them. Since verification of typical
security properties on protocols is undecidable [19], the tool
may also not terminate, or terminate without an answer. This
may happen especially when the extension features of a-pi are
exploited by adding special equational theories. Nevertheless,
ProVerif has been extensively used, even with large protocols
(e.g. [20], [21]), and it has been shown to return an answer in
all the most significant cases and to scale well.

B. Formalizing the Protocol

In the analysed request/response protocol, two roles can be
identified, namely the user (initiator) role and the gateway
(responder) role.

1The standard Prolog resolution algorithm would not terminate.

4

Let UID be the identifier of a user. As specified in [13],
the function that derives each User Authentication key (KUA)
from KGUA can be simply modelled as

KUA = fGUA(UID)
= enc(KGUA, H(UID))

The same reasoning applies for the User Encryption key
(KUE).

In the formal model developed here, only communication
that happens over the Internet or the corporate network is
considered, while communication happening over the fieldbus
is left out. Indeed, fieldbus protocols are susceptible to attacks
[22], and in many cases they even lack security protection
measures, thus being evidently insecure. However, here the
choice has been to focus on the vulnerabilities of the security
protocol between user and gateway, rather than those of the
security protocols in the fieldbus. It should be noted that
neglecting attacks on the fieldbus protocol is safe if the attacker
has no physical access to the fieldbus, e.g. because it is placed
in a safe building, and the only means for an attacker to access
the fieldbus is from the Internet, or the corporate network,
through the gateway.

Referring to figure 4, a user initiates a session by sending
a message with the following format:

UID ,MODE ,TIME ,MAC ,LEN ,REQUEST

where UID is the identifier of the user, MODE is a field
indicating the authentication and encryption algorithms used
in the message, TIME is a timestamp indicating the user’s
notion of the current time at the gateway, MAC is the Message
Authentication Code, LEN is the length of the request data,
and finally REQUEST is the user request data.

As prescribed in [13], the MAC is computed by encrypting
the hash of the whole message with key KUA, where the bytes
reserved for the MAC itself are all set to zero.

The request is composed of two fields, RID containing
the receiver ID, and REQDATA, containing the payload of
the request. In order to ensure confidentiality, the request is
encrypted with key KUE .

The user and gateway roles can be modelled by the a-pi
processes in figures 5 and 6 respectively. The full model that
can be analysed by ProVerif can be found in [23].

In the user model, the request data are prepared at line 3U
and they are encrypted at line 4U. Then the timestamp is
generated at line 5U, and the MAC is computed at lines 6U–
7U. Note that ProVerif does not provide full support for time,
however, the timestamp is modelled as fresh data, since it is
likely to be different at each protocol session execution.2

Line 8U introduces a fictitious event, signalling that the
request is going to be sent by the user. This event is only
needed for security properties verification, and it will be
discussed later. Finally, at lines 9U–10U the request message
is sent over channel c.

At the gateway side, the message is received and parsed;
in the gateway model, this is done at lines 3G–4G. After
a message has been received, even before the MAC can be

2It is different provided an adequately fine time resolution is chosen.

1U: let user =
2U: (* Prepare and send request *)
3U: let request = (RID,REQDATA) in
4U: let encReq = enc(Kue,request) in
5U: new cTime;
6U: let reqMac = enc(Kua,H((UID, RKES_AUTH_ENC_3_DES,
7U: cTime, ZEROS, len(encReq), encReq))) in
8U: event sentReq(RID,REQDATA);
9U: out(c, (UID, RKES_AUTH_ENC_3_DES, cTime, reqMac,

10U: len(encReq), encReq));
11U: (* Receive and parse response *)
12U: in(c, (=UID, =RKES_AUTH_ENC_3_DES, sTime, resMac,
13U: encResLen, encRes));
14U: (* Check MAC *)
15U: if resMac = enc(Kua,H((UID, RKES_AUTH_ENC_3_DES,
16U: sTime, ZEROS, encResLen, encRes))) then
17U: let response = dec(Kue,encRes) in
18U: event receivedRes(response).

Fig. 5. User role model.

1G: let gateway =
2G: (* Receive and parse request *)
3G: in(c, (rUID, =RKES_AUTH_ENC_3_DES, cTime,
4G: reqMac, encReqLen, encReq));
5G: (* Generate the User Keys on the fly *)
6G: let sKua = enc(Kgua,H(rUID)) in
7G: let sKue = enc(Kgue,H(rUID)) in
8G: if reqMac = enc(sKua,H((rUID, RKES_AUTH_ENC_3_DES,
9G: cTime, ZEROS, encReqLen, encReq))) then

10G: (* No actual check on cTime *)
11G: let (rid,reqData) = dec(sKue,encReq) in
12G: event receivedReq(rid,reqData);
13G: (* Prepare and send response *)
14G: let encRes = enc(sKue,res(rid,reqData)) in
15G: new sTime;
16G: let resMac = enc(sKua,H((rUID, RKES_AUTH_ENC_3_DES,
17G: sTime, ZEROS, len(encRes), encRes))) in
18G: out(c, (rUID, RKES_AUTH_ENC_3_DES, sTime, resMac,
19G: len(encRes), encRes)).

Fig. 6. Gateway role model.

verified, the gateway needs to use the received UID (rUID in
the model) in order to derive the appropriate user keys. The
keys are generated at lines 6G–7G.

At line 8G the MAC is checked. If the MAC is correct,
the gateway shall check that the received user time is within
the allowed Time Window (TW), which is ±150s as defined
in [13]. As ProVerif has no notion of quantitative time,
this check is conservatively modelled here by the gateway
always accepting any received timestamp (this corresponds
to having an infinite TW). This behaviour over-approximates
the real one because it includes some protocol executions
that are impossible in reality because the check fails. Over-
approximations preserve soundness because the security of the
over-approximated protocol implies the security of the real
protocol for the most relevant security properties. In practice,
this means that if no attack is found on the over-approximated
protocol, none exists on the real protocol. Instead, if a fresh-
ness attack is found on the model, the attack also exists on
the real protocol but only provided the attacker can conduct it
within the 150s time window.

At line 11G the encrypted request data are decrypted. At
line 12G a fictitious security-related event is emitted (discussed
later in detail); it signals that the gateway has received a
request, and this request is considered valid by the gateway,
because it passed MAC validation and decryption.

5

From line 14G to line 19G the gateway prepares and sends
the response. A response message shares the same format
of a request message, except that the timestamp is newly
generated by the gateway, and the response data do not contain
the receiver ID, because the user is the implicit receiver of
the response message. The response data are modelled as a
function res() of the request data, which enables reasoning
about the relation between each request and its response.

Finally, on the user side, the response is received and parsed
at lines 12U–13U. The MAC is checked at lines 15U–16U, and
the encrypted response data are decrypted at line 17U. Finally,
a security-related event is emitted, signalling that the user has
received a response that is considered to be valid.

The informal protocol description does not specify whether
a new request can or cannot be issued before the previous
request has been received. In order to cope with the most
general case, it is assumed (and thus made explicit) here that
new requests can be emitted before the previous requests have
been received.

As cited above, the protocol also allows administrative
messages to be exchanged, by further applying authentication
and encryption to the request and response data by using the
Gateway Authentication and Gateway Encryption keys. For
brevity, the administrative messages are not considered in the
model shown.

C. Security Considerations

As stated in [13], the protocol should provide the following
security properties: privacy, meaning that no-one except the
sender and the intended recipient should be able to understand
the relevant content of the message; authentication, meaning
that only the enabled users should be able to interact with the
system; integrity, meaning that if sensitive data are altered,
alteration can be recognized and the altered message discarded.

Closely related to authentication, freshness should be
achieved by this protocol too, meaning that an authentic
message is considered authentic by the receiver only once.
If an attacker can re-play a message more than once, so that
the receiver considers it as valid more than once, we consider
this a violation of authentication, because the (non-authorized)
attacker was able to successfully interact with the system.

Another property of interest when analysing this kind of
protocols is non-repudiation, meaning that when a protocol
agent sends (receives) a message, evidence is produced at the
same time, so that the agent cannot deny the message was sent
(received). The custom protocol analysed here is not designed
to fulfil this property: by using symmetric key encryption, both
the initiator and the responder may forge messages intended
to be created by the other agent.

In order to reason about the model, and to get a rigorous
proof of correctness (or in-correctness) of the protocol, the
security properties must be formally defined. In ProVerif,
privacy claims about this protocol can be specified by

query attacker : RID, attacker : REQDATA,
attacker : res(RID, REQDATA).

meaning that neither the receiver ID, nor the request data, nor
the response shall ever be known by the attacker. ProVerif pro-

vides a proof stating that this property is true, thus effectively
stating that the protocol is correct with respect to privacy.

When it comes to authentication, integrity and freshness
(collectively called agreement here, for brevity) it turns out
that their formalization is not trivial: at least some assumptions
that were left implicit in the informal protocol description must
be made explicit.

As a first step, let us concentrate on agreement upon the
request message. Formally, it is required that each time the
gateway believes it has received a valid message from the user,
then the user previously and intentionally sent that message.
This property is also known as injective agreement [24].
In order to prove agreement properties like this, fictitious
security-related events are used. In ProVerif, this agreement
property can be expressed by the query

query evinj : receivedReq(x, y) ==>
evinj : sentReq(x, y).

(1)

referencing the fictitious events receivedReq and sentReq.
Unfortunately, ProVerif can prove that this property is false,
meaning that the modelled protocol does not fulfil the injective
agreement property. Indeed, once a first valid session has been
executed, the attacker can replay the request of the first session
to the gateway, which accepts the message as genuine, without
the user getting involved at all. By taking into account the real
TW, which is smaller than the modelled infinite one, it follows
that the attacker has about 150s after the first valid session, in
which the message can be replayed as many times as possible
and accepted as genuine by the gateway.

However, even if it is true that the attacker can replay
already sent messages, it cannot forge new messages from
scratch. This can be captured by a weaker form of agree-
ment, called non-injective agreement. Non-injective agreement
means in this case that if the gateway believes it has received
a valid message from the user once or more, then the user
previously sent that message intentionally at least once. In
ProVerif, this property is expressed by the query

query ev : receivedReq(x, y) ==>
ev : sentReq(x, y).

which is in fact proved to be true in this protocol model.
Now, let us focus on the response messages. Besides an

agreement property like the one expressed for the request
messages, an additional property of this protocol can be
expressed: the response must be considered valid only if it is a
response to the original request. For example, it should not be
possible that the responses to two different requests with the
same user ID can be swapped, or that a single response can
be used as response to two different requests with the same
user ID. This property can be expressed in ProVerif as

query evinj : receivedRes(z) ==>
(evinj : receivedReq(x, y) &
z = res(x, y)).

(2)

meaning that each time the user accepts a message as a valid
response, the gateway must have received a request, and the
message accepted by the user must be a response to the
original request. Once again Proverif proves this property is

6

false, due to a replay attack similar to the one that affects the
request messages. However, since the protocol prescribes that
the user accepts any timestamp sent by the gateway as valid,
it follows that the TW is in fact infinite, meaning that any
response can be replayed by the attacker at any time.

Surprisingly, even the non-injective version of the above
property is false, meaning that the attacker can somehow even
forge new responses. Suppose the user sends out a request,
and the attacker immediately replays the request back to the
user. Since both request and response messages have the same
format, it is possible that the user mis-interprets a request as
a valid response. The informal protocol specification does not
prescribe any specific way to distinguish request/response data
payloads, so implementations of this protocol may be affected
by this issue.

The above problem can be solved by explicitly tagging
requests and responses with different identifiers, so that they
cannot be confused. Under this assumption, the non-injective
agreement becomes true, while the injective agreement is still
false, because replay attacks are still possible on the user, as
well as on the gateway.

Another security-relevant detail that is made explicit here is
the assumption that the receiver IDs are unique in the whole
domain, so that the same message replayed on any gateway
has the same effect on the fieldbus network. If this assumption
is dropped, then the attacker, by replaying to gateway G a
(non-administrative) message intended for gateway H, can
maliciously alter the state of the system. This is possible for
non-administrative messages, because the same key is used by
the user with all gateways, while administrative messages get
encrypted with gateway specific keys.

Response messages can be replayed to the user they are
intended to, but not to other users, as they already contain the
UID, which is required to be unique in the system.

As ProVerif has no notion of quantitative time, effects due to
jitter or time spent in computation are not taken into account.
Yet, it is considered that the attacker may drop or reorder
messages.

Another class of attacks that would be possible on the
gateway side is the class of denial of service (DoS) attacks.
Since KUA and KUE are computed on the fly, at each session
at least two encryptions and two hashing operations must be
performed by the gateway in order to check the MAC, that
is before the received data are authenticated (KUE can be
in fact computed after MAC checking, but it does not alter
the effectiveness of the attack). Conversely, the attacker can
forge a malicious request with minimal effort, enabling the
DoS attack. There are no trivial ways to mitigate this issue.
User keys are computed on the fly, due to the constraints on
memory, so it is not reasonable to assume that they are all
stored at the gateway. Also, checking the timestamp before
checking the MAC has no positive effect, since the attacker
could easily forge it to make it appear as valid.

In general, DoS attacks can be identified by tracking the
amount of resources used by an attacker and by the attacked
agent before the malicious session gets dropped. A DoS attack
is possible if the attacker uses less resources than the attacked
agent. It is worth pointing out that ProVerif has no support

1Uf: let user =
2Uf: (* Prepare and send request *)
3Uf: let request = (RID,REQDATA) in
4Uf: let encReq = enc(Kue,request) in
5Uf: new cTime;
6Uf: new cNonce;
7Uf: let reqMac = enc(Kua,H((UID, RKES_AUTH_ENC_3_DES,
8Uf: cTime, cNonce, ZEROS, len(encReq), encReq))) in
9Uf: event sentReq(RID,REQDATA);
10Uf: out(c, (UID, RKES_AUTH_ENC_3_DES, cTime, cNonce,
11Uf: reqMac, len(encReq), encReq));
12Uf: (* Receive and parse response *)
13Uf: in(c, (=UID, =RKES_AUTH_ENC_3_DES, sTime, rCNonce,
14Uf: resMac, encResLen, encRes));
15Uf: (* Check MAC *)
16Uf: if resMac = enc(Kua,H((UID, RKES_AUTH_ENC_3_DES,
17Uf: sTime, rCNonce, ZEROS, encResLen, encRes))) then
18Uf: if rCNonce = cNonce then
19Uf: let response = dec(Kue,encRes) in
20Uf: event receivedRes(response).

Fig. 7. Fixed user role model.

for such kind of properties. So, the manual reasoning above
shows the DoS attack, but ProVerif did not give any proof or
hint about it.

Even if the protocol taken in this paper as a case study is
not intended to provide non-repudiation, it may be interesting
to mention how in general Proverif can be used to verify this
kind of properties. ProVerif does not support verification of
non-repudiation properties natively; however, the methodology
proposed in [25], which can be applied in this context too, uses
ProVerif to automate significant parts of the required proofs,
while completing the remaining proof steps manually.

D. Fixing the Protocol

Even if it is assumed that the receiver IDs are unique in
the whole system, and that request and response messages
cannot be confused, the replay issue, both at the user and at
the gateway sides, still remains to be addressed. (The replay
attack on responses also includes matching each response with
its request.)

In order to fix this issue, a possibility is to add a “nonce”
field (a number used only once) after the time field of both
the request and response messages.

On the user side, the nonce is used to match a response
with its request: a response is valid only if the received nonce
value matches the nonce value that was sent in the request.
In order to implement this feature, it is just required that the
nonce value is stored on the user side between the output
of the request and the input of the valid response, which is
acceptable even on a resource constrained device. When this
check is in place, replay attacks on the user side are no longer
possible, because each request uses a different nonce.

The a-pi model of the user can be updated according to
the proposed fix, as shown in figure 7. With respect to the
original model of figure 5, the fixed model differs by the
introduction of the nonce. In particular, the nonce is generated
after the timestamp, at line 6Uf, and it is included in the
MAC (line 8Uf) and in the request (line 10Uf). The response,
received and parsed by the user at lines 13Uf–14Uf, contains
the rCNonce field, that is the nonce sent back by the gateway.
After the MAC of the response is checked (lines 16Uf–17Uf),

7

at line 18Uf it is checked whether the received nonce rCNonce
matches the original nonce of this session, cNonce. If this is
the case, this is the matching response for the request, and the
protocol continues; otherwise, this is a mis-matched response,
and the protocol execution terminates.

Under the assumption that requests and responses are tagged
and therefore cannot be confused, ProVerif can finally prove
that query (2) is true for the model of figure 7, meaning that
replay attacks on the user side are no longer possible.

On the gateway side, in order to check that nonces are not
used twice by the same user, all received nonces and their
associated user IDs should be stored, but this would not be
acceptable due to the device memory constraints. However,
the timestamp mechanism can be exploited in order to limit
the number of nonces to be stored.

In the proposed fix, the timestamp is checked for validity
within the TW as usual. If this first check is successful, a
second check is performed to see whether a message with the
same nonce has already been received from the same user
within the same TW. Older messages with the same nonce
would not pass the timestamp check. This allows the gateway
to store only used nonces associated with their user and with
timestamps in the current TW, while older nonces can be
deleted.

If the check on the nonce is successful, i.e. the user has
not already used the same nonce in the TW, the message is
valid, and the nonce of the current message is added to the list
of “used” nonces for that user along with the corresponding
timestamp. When the timestamp associated with one of the
“used” nonces expires, that is when the message is not in the
TW any more, the entry is deleted.

Unfortunately, there is no straightforward way to describe
such a nonce freshness check mechanism in ProVerif, for an
arbitrary and possibly infinite number of sessions, and in any
case the resulting model would probably be too complex to
be automatically verified by ProVerif.

Nevertheless, a correctness proof about the fixed gateway
version can be obtained in a scenario with a fixed number
of valid sessions and a still unbounded number of sessions
started by the attacker. As an example, here the simplest
scenario is described, where a single valid session is modelled.
In this case, there is a single user instance (described by
the fixed user model of figure 7). On the gateway side,
the model is shown in figure 8. A single instance of the
gatewayFirst process models the first protocol session. At
the end of this session (line 33Gf), the replication of the
gatewayOther process models all possibly infinite subsequent
sessions (initiated by the attacker). Since the gatewayFirst

model handles the first session, any value for the nonce is
accepted as valid, and it is stored in firstNonce. In the
gatewayOther model, the nonce received in the request is
stored in curNonce (line 3Gf), and after checking the MAC of
the request (lines 8Gf–9Gf), at line 11Gf curNonce is checked
against firstNonce, the nonce used in the first session. If
they match, then this session is a replay attack, and it is
correctly recognized and terminated. If instead curNonce is
different from firstNonce, the gateway accepts the request
as valid. However, in this single valid session scenario, this is

1Gf: let gatewayOther =
2Gf: (* Receive and parse request *)
3Gf: in(c,(rUID2, =RKES_AUTH_ENC_3_DES, cTime2, curNonce,
4Gf: reqMac2, encReqLen2, encReq2));
5Gf: (* Generate the User Keys on the fly *)
6Gf: let sKua2 = enc(Kgua,H(rUID2)) in
7Gf: let sKue2 = enc(Kgue,H(rUID2)) in
8Gf: if reqMac2 = enc(sKua2,H((rUID2,RKES_AUTH_ENC_3_DES,
9Gf: cTime2, curNonce, ZEROS, encReqLen2,encReq2))) then
10Gf: (* No actual check on cTime2 *)
11Gf: if curNonce = firstNonce then 0
12Gf: else event failure(). (* should never be emitted *)

13Gf: let gatewayFirst =
14Gf: (* Receive and parse request *)
15Gf: in(c,(rUID, =RKES_AUTH_ENC_3_DES, cTime, firstNonce,
16Gf: reqMac, encReqLen, encReq));
17Gf: (* Generate the User Keys on the fly *)
18Gf: let sKua = enc(Kgua,H(rUID)) in
19Gf: let sKue = enc(Kgue,H(rUID)) in
20Gf: if reqMac = enc(sKua,H((rUID, RKES_AUTH_ENC_3_DES,
21Gf: cTime, firstNonce, ZEROS, encReqLen, encReq))) then
22Gf: (* No actual check on cTime *)
23Gf: (* firstNonce: accepted and stored as ‘‘used’’ *)
24Gf: let (rid,reqData) = dec(sKue,encReq) in
25Gf: event receivedReq(rid,reqData);
26Gf: (* Prepare and send response *)
27Gf: let encRes = enc(sKue,res(rid,reqData)) in
28Gf: new sTime;
29Gf: let resMac = enc(sKua,H((rUID, RKES_AUTH_ENC_3_DES,
30Gf: sTime, firstNonce, ZEROS, len(encRes), encRes))) in
31Gf: out(c,(rUID, RKES_AUTH_ENC_3_DES, sTime, firstNonce,
32Gf: resMac, len(encRes), encRes));
33Gf: !gatewayOther.

Fig. 8. Fixed gateway role model for a single valid session scenario.

something that should never happen, because it would mean
the attacker had succeeded in forging a valid new request. This
is why in the model a failure event is emitted in this case,
representing an unsafe protocol state.

In fact, ProVerif successfully proves that the failure event
can never be emitted (because the attacker cannot forge new
requests from scratch). With this model, ProVerif can also
prove that query (1) is true (in fact it proves the non-injective
version of the property because the injective one is trivially
implied in this particular scenario with a single user instance).
This means that, in the modelled one-session scenario, replay
attacks are not possible at the gateway, while replay attacks on
the user side have already been ruled out for the most general
case with possibly infinite sessions.

This proposed fix requires that the gateway stores, for each
user, the pairs of used nonces-timestamps for the current TW
(and constantly updates this list as new messages arrive and
the TW scrolls). If this overhead is not acceptable due to
the constrained resources of the gateway, sequence numbers
instead of nonces can be used. In this case, the gateway
need only store, for each user, the last seen sequence number.
However, by re-ordering messages, the attacker may invalidate
some valid requests. Suppose user U sends three requests with
sequence numbers 1, 2 and 3; if the attacker delays requests
1 and 2, and immediately forwards request 3, then requests 1
and 2 will not be accepted. They would have been accepted
if nonces were used. Also, sequence numbers can be suitable
when a connected transport layer, such as TCP, is used.

Finally, using the timestamp field of the user directly as a
nonce is not recommended, because the user’s notion of the
gateway time is updated from time to time, making it possible

8

to have two different valid messages with the same timestamp.
The full formal model of the fixed protocol, where the

security properties can be rigorously proved to be true, can
be found in [23].

IV. SYSTEM VULNERABILITY ANALYSIS

In this section the whole system infrastructure is taken into
account, moving the analysis and the model of the system
to a different level of abstraction. The focus here is on
analysing the vulnerabilities of a particular network config-
uration. According to network topology, firewall position and
configuration, weaknesses of protocols or of other software
may or may not be exploitable. This can be formally analysed
by the Prolog-based modelling approach and tool described
in [12]. The core of the analysis mainly involves the potential
actions that an attacker can perform in a system leveraging the
particular configuration of the system itself. From an initial
state of the system, the tool concatenates all the possible
actions that the attacker can perform generating a set of attack
paths which are then combined in an attack graph.

In this paper the analysis presented in [12] is extended and
improved with the adoption of a more rigorous formalization
of states and transitions, which enables the description of parts
of the model as state transition systems.

Indeed, the whole system is modelled as a state transition
system, i.e. as a potentially infinite set of different states
connected through a set of different transitions. The transitions,
in fact, define the possible evolutions of the system from a set
of initial states. In this model a set of properties of interest
related to each state is defined. The objective of the analysis is
then to assess the reachability of particular states that satisfy
or violate some property given the set of initial states and the
set of possible transitions.

This reachability analysis is performed by means of an
exhaustive state generation process. From the initial set of
states the tool generates all possible states into which the
system can evolve by triggering the proper transitions. The
procedure continues by recursively generating all the possible
evolutions starting from the newly generated states. The tool
keeps track of the states and the transitions involved in the
analysis by means of a directed graph whose nodes represent
states and whose edges represent transitions. This structure
allows the tool to look for all the possible paths that lead
from an initial state to a state that violates a property.

Since the model is expressed in the logic programming
language Prolog, the main elements of the language used are
presented here. A formula like L1. represents a fact in Prolog,
that is a predicate asserted to be valid. Instead, a formula
like L0 : −L1, · · · , Ln. defines a rule. The semantics of this
formula is that L0 is true (satisfied) if all the Li predicates
with i > 0 are true (satisfied).

This state transition system analysis approach is applied
to the system described in section II, assuming a network
infrastructure organized according to the schema of figure 2.

A. System Model
The system model is composed of a set of nodes which

are defined by some attributes. For instance, field line is

defined as a node that models a field line and that has an
attribute named status:

node(field line).

attribute(field line, status).

status(field line, normal). (3)

Fact (3) states that the value of the attribute status for the
node field line is normal.

The collection of all the values of all the attributes for all
the nodes defines a system state. Two states are thus equal if
and only if all the nodes are the same and the values of each
attribute are equal for corresponding nodes.

Some attributes are static while other ones are defined as
dynamic since their values can change over time (e.g. the
status attribute).

The interactions among elements of the system define the
transitions of the system model. For instance, a supervisor
in the field network can perform a stop operation on the
field line node in order to enable maintenance or diag-
nostic operations on the machines. This kind of interaction is
modelled in the Prolog model by a rule

trans(S, S′, state change) : −
select(status(field line, Old), S, T), (4)
append([status(field line, stopped)], T, S′). (5)

Predicate trans, in this case, defines how and when a
system state can change into another system state. In particular,
in this case, premises (4) and (5) specify that the new state
represented by variable3 S′ has one single difference with
respect to state S: the value of attribute status for node
field line. Predicate select removes a predicate from the
complete definition of state S obtaining a partial definition
of the state (represented by variable T). Premise (5) injects
the new predicate in the partial definition obtaining a full
definition in S′. In this example the value is changed from
a generic Old value to the stopped value; actual transitions
in the model are defined by means of more complex rules. For
instance the domain of the values of the attributes is checked.
In fact, it is assumed that each variable can be bound to values
belonging to a finite set of possible values. This limits the
complexity of the overall model.

B. User/Gateway Security Protocol Model

The security protocol analysed in section III is now mod-
elled at a more abstract level. In fact, the main focus here is
on the objectives of the protocol, not on the details of its ex-
changed messages. For example, the fact that communication
can start only if the client has the proper KUA and KUE keys,
is modelled by the following rule:

send(U, DP, M) : −
regulated(DP, GW), (6)
hasProperKeys(U, GW). (7)

3In Prolog, capital letters denote variables.

9

Predicate regulated (6) represents the relationship be-
tween a gateway and the datapoints that it exposes. For
instance, the following fact models that the datapoint
field line can be accessed only through the gateway gw:

regulated(field line, gw).

For administrative messages (responsible for modification
in the ACL of gateways) the scenario is similar:

send(U, GW, modify access(U, DP, Permission)) : −
regulated(DP, GW),

hasProperGatewayKeys(U, GW). (8)

Premise (8) checks whether the client U issuing the request
has the proper gateway keys needed to send such kind of
messages. At the head of the rule the source of the message
is U, the destination is GW and the content is a request to
modify the access limitation for the pair (U,DP), enabling a
set of Permission (read,write or create).

The logic introduced by the ACL on the gateways is directly
introduced in the definition of the receive rule. The send

rule by which a client can send a message is defined so that
a message is delivered only if the client has sufficient rights
to access the destination datapoint. For instance, client user
sends a write request to datapoint field line. This message
is delivered by the gateway and received by the datapoint only
if in the ACL matrix of the proper gateway there is a pair
(user,field line) with write operations allowed. In the
Prolog model such a scenario is represented by the rule

receive(DP, write(U, DP, M)) : −
regulated(DP, GW),

allow(GW, U, DP, write). (9)

Predicate allow (9) heavily depends on the ACL definition
and it is worth noting that the ACL matrix can change by
means of particular messages.

In the actual implementation of these rules status has been
added as a key element in the validation of these rules. For
instance, regulated(DP, GW) can depend on the current state
of the system, thus regulated(DP, GW, S) depends on S, where
S is the state of the system.

C. Case Study

A small scenario was defined involving a user and three dif-
ferent elements in the field network: a field line (field line)
representing a production line where several pieces are pro-
cessed by a robotic arm (field roboarm). Defective pieces
on the line cause the line itself to become stuck and this
triggers the intervention of a supervisor that: sets to stopped

the status of field line and field roboarm (by writing
values into the proper datapoints exposed by the gateway),
modifies the configuration of the gateway in order to be
able to trigger a discard operation (by writing a value into
the proper datapoint) which discards the defective piece and
restarts production. The following steps are involved:
• The status of field line suddenly changes from
normal to stuck because of a defective piece;

1T: trans(S,S’,change_acl) :-
2T: send(supervisor,
3T: modify(supervisor,gw,set(supervisor,discard,w)),S),
4T: select(acl(gw,List), S, T1),
5T: select(allow(supervisor,discard,_Perm), List, TList),
6T: sort([allow(supervisor,discard,[w])|TList], List1),
7T: append([acl(gw,List1)],T1,T2),
8T: sort([sent(supervisor,modify(supervisor,gw,
9T: set(supervisor,discard,w)))|T2], S’).

Fig. 9. Change ACL transition.

10T: trans(S,S’,perform_discard) :-
11T: send(supervisor,wr(supervisor,discard,1),S),
12T: receive(discard, wr(supervisor,discard,1), S),
13T: select(status(field_line,LS),S,T1),
14T: select(status(field_roboarm,AS),T1,T2),
15T: append([status(field_line,normal),
16T: status(field_roboarm,normal)],T2,T3),
17T: append([sent(supervisor,
18T: wr(supervisor,discard,1))],T3,T4),
19T: append([performed(discard,[LS,AS])],T4,T5),
20T: sort(T5,S’).

Fig. 10. Perform discard operation.

• The supervisor sets both field line and
field roboarm to stopped;

• The supervisor sends a request to modify the ACL of gw;
• The gateway grants the supervisor’s request;
• The supervisor writes the value 1 on the discard ele-

ment;
• After discard, the elements involved are reset to the
normal status.

It is worth noting that (in this example) the supervisor does
not have complete control over the datapoints exposed by the
gateway. This means that the supervisor cannot write values in
some datapoints (like the datapoint for the discard operation)
unless the gateway explicitly allows such a write operation.
This limitation was introduced as, in some cases, there are
operations that should not be always possible and that should
be enabled only in particular circumstances.

The steps in the modification of the ACL are modelled
by the transition described in figure 9. Lines 2T-3T involve
the rule defined for the send operation. Lines 4T-7T actually
modify the proper ACL list elements building the new state.
Lines 8T-9T store in the new state the fact that a message has
been sent.

The steps in the execution of the discard operation and
in the reset of the status of field line and field roboarm

are modelled by the transition described in figure 10. The reset
of the ACL is omitted for brevity. Lines 11T-12T involve both
the send rule and the receive rule. Lines 13T-16T reset the
status of the involved nodes. Finally, lines 17T-19T store in
the new state the message sent and the information about the
discard operation performed. Lines 13T-14T get the status of
the nodes involved while the discard operation is performed
and store this information in the new state (line 19T).

The scenario defined here involves a change in the ACL
of a gateway. This modification, however, is triggered only if
the status of other two nodes is stopped. In order to model
this “correct” behaviour the rule for the send operation can

10

be modified as follows:

send(U, gw, modify access(U, discard, w), S) : −
regulated(discard, gw),

hasProperGatewayKeys(U, gw),

attr is(field line, [status, stopped], S),

attr is(field roboarm, [status, stopped], S).

The difference with respect to the previous definition is the
presence of the last two lines, which ensures that the involved
nodes have the status attribute set to normal before actually
sending the request.

Once the “correct” behaviour of the agents is defined, the
property that shall be verified is formulated: “a discard

operation has to be performed if and only if the status of
field line and field roboarm is stopped”.

D. Analysis

The analysis does not report any property violation on the
previously described system. This means that in the abstract
model the protocol and the gateway behaviours ensure the
correct evolution of the system.

It is worth noting that this analysis is not meant to verify the
protocol itself, rather it assumes the protocol as correct and
flawless. The model of the gateway and protocol, in fact, is
oversimplified, having assumed as valid the properties of the
protocol described in [13]. In Section III, however, it has been
shown that the protocol may suffer from the so-called “replay
attack”. An attacker with enough control on the network media
can resend messages that have been sent in the recent past. The
attacker cannot forge new messages, though.

To take this into account the model is updated accordingly
by modifying predicate send by adding the following rule:

send(U, D, M, S) : −
member(sent(U, M), S). (10)

meaning that in a given state S it is possible to send a message
M if this has already been sent (a replay). It is worth noting
that the destination D is not relevant in this rule.

The analysis is run again on the updated model in order to
assess the effects of a replay attack (a flaw in the protocol) on
the overall system. Assessing the effects of lower level details
(the protocol) in the higher level system is a benefit of using
this approach.

The analysis reports the violation of the property previously
defined and produces one of the possible counter-examples:
• trans(S, S1, state change), the status of field line

changes from normal to stuck;
• trans(S1, S2, state change), the status of
field line is set to stopped by the supervisor;

• trans(S2, S3, state change), the status of
field roboarm is set to stopped by the supervisor;

• trans(S3, S4, change acl), the supervisor modifies the
ACL of gateway gw;

• trans(S4, S5, perform discard), the supervisor trig-
gers the discard operation;

• trans(S5, S6, change acl), the supervisor resets the
ACL of gateway gw to the old value;

• trans(S6, S7, state change), the status of
field roboarm and field line is set to normal;

• trans(S7, S8, change acl), the attacker replays the
message that modifies the ACL of gateway gw;

• trans(S8, S9, perform discard), the attacker replays
the message that performs the discard operation;

• Property violation, in fact, a discard operation has been
performed while both field line and field roboarm

have their status set to normal (and not to stopped).
Looking into further details of the trace it is obvious that

the replay attack has caused the predicates send in figure 9
and in figure 10 to become valid even if the field line is
not in the stopped status. Considering the specification of the
protocol and assuming that a discard operation is not a slow
operation, this attack is feasible even within the TW of 150s.

Another possible consideration is related to the real possi-
bility for an attacker to be able to actually store and replay
messages directed to the field network. An attacker who is
internal (in the Corporate Network of figure 2) can gain
access to the communication medium very easily. An external
attacker, for instance in the Internet Zone of figure 2, cannot
directly access the Control Network but can nonetheless try to
penetrate the system exploiting flaws in the configuration. As
showed in [12], vulnerabilities and flaws in the configuration
of network elements can become attack vectors that allow the
external attacker to gain access to internal nodes.

E. Scalability considerations
The analysis performed by the tool described in this section

is an exhaustive state exploration which can be affected in
principle by the state explosion problem to the limit of having
an infinite state space. However, the analyser tool has been
designed carefully in order to keep the state space finite (thus
ensuring termination) and to restrict the number of states
generated during the analysis.

The state space is kept finite by having a finite number
of possible transitions and of possible values describing the
attributes of states. This implies that the states to be generated
are finite and the analysis always terminates with a definite
answer telling whether or not there are states that violate some
property. The tool also avoids multiple generations of the same
states by means of a state equivalence check that collapses
equal states. In order to limit the growth of the state space
when the complexity of models increases, several techniques
are used. In typical scenarios a dramatic simplification in the
model can be achieved by collapsing system elements that
share the same configuration, and are therefore equivalent,
into a single model node. Moreover, the notion of “state
equivalence check” itself can be finely tuned in order to ignore
irrelevant details, thus reducing the complexity of the analysis.
Finally, analysis time can be saved by stopping the algorithm
as soon as the first state violating a property is found. Some
preliminary tests show that, in the average case, this greatly
reduces execution time.

Based on these considerations, and on the fact that the tool
took less than 1 second (on a Linux PC with a 3.5 GHz AMD

11

Athlon CPU and 2 GByte of RAM) to analyse the system
presented in the paper, it can be expected that systems which
are more complex in terms of number of different elements
and interactions can be tackled as well.

V. CONCLUSION

This paper proposes a novel, formally-based approach to
multi-level analysis of interconnected fieldbus systems, consid-
ering both low level communication protocols, and the overall
system architecture. Interactions between the security services
offered by the communication protocols and system behaviour
are formally analysed, so that it is possible to observe the
effects of potential inadequacies of the underlying security
protocols on the whole system.

This proposed methodology was applied to a typical ICS
using a security system for remote fieldbus access [13]. As this
system was only informally specified in [13], a formalization
of it has been provided. The formalization work helped to
highlight possible weaknesses or ambiguities of the informal,
descriptive specification, such as replay attacks possible under
some assumptions. A formal model of a fixed version of
the protocol was developed, on which secrecy and injective
authentication can be proved.

Thanks to the multi-level analysis, the consequences of
protocol attacks on the whole system can be inspected au-
tomatically. As an example, a production line where products
can be discarded by an administrator only if such products
are faulty, was considered. The analysis of this scenario
automatically shows that if the underlying protocol is not
fixed, and is therefore subject to the previously detected
replay attack, then after a faulty product has been legitimately
discarded by an administrator, the attacker has a time frame in
which he can discard valid products. To our knowledge, this
is the first work where the effects of attacks on a proprietary
protocol for accessing a fieldbus gateway are formally stated
and propagated to the control system that uses it by a rigorous
and systematic approach.

Future work could apply the approach presented in this
paper to larger systems, such as smart grids or power plants
that, as they become distributed, need to be made secure.
Moreover, the security protocols and the reference industrial
control systems proposed by the IEC 62351 standard (not
fully released yet) may be analysed too. This would also
practically show the scalability of the proposed approach,
because more complex security protocols and larger systems
would be considered. Another extension to this work could
be to go beyond the Dolev-Yao level, taking into account
the computational complexity of the cryptographic operations.
This would lead to a more precise security analysis, and
the specific computational constraints of the network devices
considered could also be taken into account.

REFERENCES

[1] M. S. DePriest, “Network security considerations in TCP/IP-based
manufacturing automation,” ISA Transactions, vol. 36, no. 1, pp. 37–
48, 1997.

[2] R. Zurawski, Ed., The Industrial Information Technology Handbook.
CRC Press, 2005.

[3] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
SCADA networks,” Computers & Security, vol. 25, no. 7, pp. 498–506,
2006.

[4] M. Brändle and M. Naedele, “Security for process control systems: An
overview,” IEEE Security and Privacy, vol. 6, no. 6, pp. 24–29, 2008.

[5] A. Miller, “Trends in process control systems security,” IEEE Security
and Privacy, vol. 3, no. 5, pp. 57–60, 2005.

[6] P. Ralston, J. Graham, and J. Hieb, “Cyber security risk assessment
for SCADA and DCS networks,” ISA Transactions, vol. 46, no. 4, pp.
583–594, 2007.

[7] L. Piètre-Cambacédès and P. Sitbon, “Cryptographic key management
for SCADA systems – issues and perspectives,” in International Con-
ference on Information Security and Assurance, 2008, pp. 156–161.

[8] NIST, “SP 800-82: Guide to industrial control systems (ICS) security,”
September 2008, final Public Draft.

[9] M. R. Albrecht, K. G. Paterson, and G. J. Watson, “Plaintext recovery
attacks against SSH,” in IEEE Symposium on Security and Privacy,
2009, pp. 16–26.

[10] V. Klı́ma, O. Pokorný, and T. Rosa, “Attacking RSA-based sessions in
SSL/TLS,” in Cryptographic Hardware and Embedded Systems, 2003,
pp. 426–440.

[11] B. Blanchet, “An efficient cryptographic protocol verifier based on
Prolog rules,” in Computer Security Foundations Workshop, 2001, pp.
82–96.

[12] M. Cheminod, I. Bertolotti, L. Durante, P. Maggi, D. Pozza, R. Sisto,
and A. Valenzano, “Detecting chains of vulnerabilities in industrial
networks,” IEEE Transactions on Industrial Informatics, vol. 5, no. 2,
pp. 181–193, 2009.

[13] T. Sauter and C. Schwaiger, “Achievement of secure Internet access to
fieldbus systems,” Microprocessors and Microsystems, vol. 26, no. 7,
pp. 331–339, 2002.

[14] J. Edmonds, M. Papa, and S. Shenoi, “Security analysis of multilayer
SCADA protocols,” in Critical Infrastructure Protection, 2007, pp. 205–
221.

[15] B. Dutertre, “Formal modeling and analysis of the Modbus protocol,”
in Critical Infrastructure Protection, 2007, pp. 189–204.

[16] AGA, “Report no.12, part 1: Cryptographic protection of SCADA
communications: Background, policies and test plan,” March 2006.

[17] M. Abadi and C. Fournet, “Mobile values, new names, and secure com-
munication,” ACM Special Interest Group on Programming Languages,
vol. 36, no. 3, pp. 104–115, 2001.

[18] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–207,
1983.

[19] N. A. Durgin, P. Lincoln, and J. C. Mitchell, “Multiset rewriting and
the complexity of bounded security protocols,” Journal of Computer
Security, vol. 12, no. 2, pp. 247–311, 2004.

[20] K. Bhargavan, C. Fournet, and A. D. Gordon, “Verified reference
implementations of WS-security protocols,” in Web Services and Formal
Methods, 2006, pp. 88–106.

[21] M. Abadi, B. Blanchet, and C. Fournet, “Just Fast Keying in the Pi
Calculus,” in European Symposium on Programming, 2004, pp. 340–
354.

[22] A. Treytl, T. Sauter, and C. Schwaiger, “Security measures for industrial
fieldbus systems - state of the art and solutions for IP-based approaches,”
in Internationl Workshop on Factory Communication Systems, 2004, pp.
201–209.

[23] M. Cheminod, A. Pironti, and R. Sisto, “Online resources
about formal analysis of fieldbus systems,” 2010, available at:
http://staff.polito.it/riccardo.sisto/fieldbus/.

[24] G. Lowe, “A hierarchy of authentication specifications,” in Computer
Security Foundations Workshop, 1997, pp. 31–43.

[25] M. Abadi and B. Blanchet, “Computer-Assisted Verification of a Pro-
tocol for Certified Email,” Science of Computer Programming, vol. 58,
no. 1–2, pp. 3–27, 2005.

12

Manuel Cheminod received the M.S. and Ph.D. de-
grees in computer engineering from Politecnico di
Torino, Torino, Italy, in 2005 and 2010 respectively.

He is now working with the Istituto di Elettronica
e di Ingegneria dell’Informazione e delle Teleco-
municazioni (IEIIT). His current research interests
include formal verification of cryptographic proto-
cols and formal methods applied to vulnerability and
dependability analysis in distributed networks.

Alfredo Pironti received the M.S. and Ph.D. degrees
in computer engineering from Politecnico di Torino,
Torino, Italy, in 2006 and 2010 respectively.

He is currently a Post Doctoral Researcher at
Politecnico di Torino, where he is also Teaching As-
sistant for undergraduate courses. His main research
interests are on formal methods applied to security
protocols and security-aware applications, as well as
software engineering and model driven development.
During winter of 2008, he was a visiting Ph.D. stu-
dent at Open University and Microsoft Research in

Cambridge, UK.

Riccardo Sisto received the M.S. degree in elec-
tronic engineering in 1987, and the Ph.D. degree in
computer engineering in 1992, both from Politecnico
di Torino, Torino, Italy.

Since 1991 he has been working at Politecnico di
Torino, in the Computer Engineering Department,
first as a researcher, then as an associate professor
and, since 2004, as a full professor of computer
engineering. He teaches introductory courses on pro-
gramming and undergraduate and graduate courses
on network and distributed programming. Since the

beginning of his scientific activity, his main research interests have been in
the area of formal methods, applied to software engineering, communication
protocol engineering, distributed systems, and computer security. On this and
related topics he has authored and co-authored more than 70 scientific papers.

Dr. Sisto has been a member of the Association for Computing Machinery
(ACM) since 1999.

