305 research outputs found

    Theory and Practice of Transactional Method Caching

    Get PDF
    Nowadays, tiered architectures are widely accepted for constructing large scale information systems. In this context application servers often form the bottleneck for a system's efficiency. An application server exposes an object oriented interface consisting of set of methods which are accessed by potentially remote clients. The idea of method caching is to store results of read-only method invocations with respect to the application server's interface on the client side. If the client invokes the same method with the same arguments again, the corresponding result can be taken from the cache without contacting the server. It has been shown that this approach can considerably improve a real world system's efficiency. This paper extends the concept of method caching by addressing the case where clients wrap related method invocations in ACID transactions. Demarcating sequences of method calls in this way is supported by many important application server standards. In this context the paper presents an architecture, a theory and an efficient protocol for maintaining full transactional consistency and in particular serializability when using a method cache on the client side. In order to create a protocol for scheduling cached method results, the paper extends a classical transaction formalism. Based on this extension, a recovery protocol and an optimistic serializability protocol are derived. The latter one differs from traditional transactional cache protocols in many essential ways. An efficiency experiment validates the approach: Using the cache a system's performance and scalability are considerably improved

    Multi-threaded Simulation of 4G Cellular Systems within the LTE-Sim Framework

    Get PDF
    Nowadays, an always increasing number of researchers and industries are putting a large effort in the design and the implementation of protocols, algorithms, and network architectures targeted at the the emerging 4G cellular technology. In this context, multi-core/multi-processor simulation tools can accelerate their activities by drastically reducing the time required to simulate complex scenarios. Unfortunately, today's available tools are mostly single-threaded and they cannot exploit the performance gain offered by parallel programming approaches. To bridge this gap, we have significantly upgraded the LTE-Sim framework by implementing a concurrent scheduling algorithm, namely the Multi-Master Scheduler, aimed at efficiently handling events in a parallel manner, while guaranteeing the correct execution of the simulation itself. Experimental results will demonstrate the effectiveness of our proposal and the performance gain that can be achieved with respect to other classical event scheduling algorithms

    Real-time databases : an overview

    Get PDF

    Opacity: A Correctness Condition for Transactional Memory

    Get PDF
    Transactional memory is perceived as an appealing alternative to critical sections for general purpose concurrent programming. Despite the large amount of recent work on transactional memory implementations, however, its actual specification has never been precisely defined. This paper presents \emph{opacity}, a new correctness criterion for transactional memory systems. Opacity extends the notion of strict serializability, itself a strong form of the classical serializability property, with the requirement that even \emph{non-committed} transactions are prevented from accessing inconsistent state. Yet opacity does not preclude versioning, invisible reads and lazy updates, often used by modern TM implementations. In fact, most transactional memory systems we know of ensure opacity. We prove a tight bound on the inherent cost of implementing opacity. The bound highlights a trade-off that explains some of the differences between current transactional memory systems, and also draws a sharp complexity line between opacity on one hand, and the combination of strict serializability and strict recoverability on the other hand

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems
    • …
    corecore