

Real-time databases : an overview

Citation for published version (APA):
Bodlaender, M. P. (1995). Real-time databases : an overview. In P. D. V. Stok, van der, & J. Wal, van der (Eds.),
Proceedings of the Real-Time Database Workshop (Eindhoven, The Netherlands, February 23, 1995) (pp. 47-
99). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1995

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/e5afee07-f584-475e-ac3e-59bca0108ffd

Real-time databases
An overview

M.P. Bodlaender
Department of Computer Science, TUE

The Netherlands

April 7, 1995

47

Contents

1 An introduction to (real-time) distributed databases
1.1 Centralised databases .
1.2 Distributed databases.
1.3 Real-time databases
1.4 Comparing the various database types
1.5 Organization of this paper

2 What can a real-time database do for you?
2.1 Real-time scheduling
2.2 Transaction priorities
2.3 Performance of real-time databases

3 Atomic transactions
3.1 Defining transactions
3.2 Constructing transactions

4 Concurrency control
4.1 Concurrency and consistency.
4.2 The serializability concept
4.3 Weakening serializability . . .
4.4 Restricting transactions
4.5 Handling deadlock and lifelock .

5 Reliability
5.1 Failure models
5.2 Maintaining consistency ..
5.3 Availability of the database

6 Distributed systems
6.1 Atomic commit protocols.
6.2 A vailability of data

48

50
50
51
52
53
53

54
54
55
55

57
57
57

60
60
61
64
66
67

69
69
70
72

73
73
77

•

7 Time management
7.1 Temporal consistency.
7.2 Time critical scheduling
7.3 Priority scheduling ...

8 Integrating operating system & database design
8.1 Data caching ..
8.2 Virtual memory.
8.3 Conclusion....

9 Analysis of database designs
9.1 Existing results
9.2 Comparison problems.
9.3 Conclusion.......

10 Research issues
10.1 From user-interface to implementation
10.2 Transaction scheduling & correctness
10.3 Real-time transaction scheduling.
10.4 Distributed transactions

49

79
79
81
83

85
85
86
87

88
88
88
90

91
91
92
93
94

Chapter 1

An introduction to (real-time)
distributed databases

Real-time distributed databases extend the power of centralised and distributed
databases. Mechanisms are provided to incorporate the notion of time within
the database semantics. Though databases already have a notion of time, since
they try to compute as fast as possible, this is not sufficient in time-critical en
vironments. In this chapter an overview of the differences between centralised,
distributed and real-time databases is provided. Note that it is possible to con
struct a real-time centralised database as well as a real-time distributed database.

1.1 Centralised databases

The theory of centralised databases is well· developed , see for example [Pap79],
[KR81], [YA88], [Vid85], [Vid91]. In general, arbitrary actions on a database
have to satisfy the following two requirements: they must not disturb the logical
consistency of the database and they must be efficient. The primitive actions that
can be applied to the database are read and write actions. These actions access
a single data item to either read or change its value. To be able to reason about
database actions a transaction is defined as a collection of primitive actions (i.e.
Read, Write) that is applied to the database.

Even when each transaction on the database leaves the database in a consis
tent state, a collection of transactions that is executed in an interleaved fashion
can destroy that consistency. The (partial) order in which transactions are exe
cuted is called a schedule. If two transactions are unordered, their basic actions
can be executed in any interleaved fashion. In articles [Pap79], [Vid85], [Vid91]
correct schedulers are defined that order the transactions in such a way that
database consistency is preserved.

The most important notion that has been developed is serializability: if a
partially ordered schedule is serializable (proven equivalent to a totally ordered

50

schedule), database consistency is ensured. Note that articles [GM83] and [GS85]
illustrate that the class of serializable schedules is a strict subset of all consistency
preserving schedules.

Naturally, the transactions on a database must be efficient. Often, large
amounts of data must be manipulated when complex transactions are performed
on the database. The order in which certain basic steps are applied to the
database has a great influence on the execution time of the transaction and a
transaction manager that executes transactions in an efficient way is needed. In
articles [IK94], [SY82] and [JK84] transaction management and queryoptimiza
tion are treated in depth.

1.2 Distributed databases

Recently, the wide-spread availability of computer networks calls for distributed
databases. These databases try to exploit the properties of a computer network
to increase the reliability, concurrency, capacity and speed of databases. A book
that combines most aspects of distributed databases is [OzsuV91].

Why these enhancements can be expected from a distributed database is
shown easily. Reliability can be increased because information can be replicated
over multiple sites, thus lowering the probability that the crashing of a site leads
to loss of information.

Because the database is actually divided into several smaller databases, it is
often possible that small tasks are only performed at one or a few sites, leaving
the other sites available for other tasks. This feature increases the amount of
concurrency in the system, as multiple users can access the database at the same
time.

In the current information age, large databases are needed to store all the
information needed in complex organisations. However, the current state of hard
ware technology limits the size of a database a single computer can handle. The
trend in computer architecture is towards a local area network of computers of
intermediate size. These architectures are more powerful and are able to store un
limited amounts of data, as the size of the database can be expanded by adding
an extra computer to the local area network. Therefore, mechanisms must be
provided to deal with this fundamentally different architecture.

When a database is distributed over more than one computer, the compu
tational power of the individual computers ceases to be the bottleneck of the
architecture. While the maximal speed of a centralised database is dependent
on technology of its CPU, this is not the case for distributed databases. This is
because computations can be divided over the computers in the network. If a
structural overload of the system occurs, it is possible to add more computation
power to the system by adding extra computers to the network.

The bottleneck of the distributed database design is the communication cost.

51

If an information intensive transaction is processed that needs to access large
parts of the network, the costs of communication rise rapidly. Even worse: the
more computers participate in the distributed database, the more communica
tion will be needed. Part of the research in distributed databases is directed at
minimizing the communication cost of transactions that are performed on the
distributed database.

1.3 Real-time databases

Databases have been used in various ways, but most applications of databases
have been administrative. Databases typically try to fulfill two basic require
ments:

• Operations on the database have to preserve the consistency of that database.

• The transaction throughput of the database should be as high as possible.

In real-time systems the computer interacts with an outside world that is
constantly changing. Real-time systems often deal with temporal data, e.g. data
that is only valid for a certain interval in time. This means that old data is as
good as no data (i.e. Take data about the position of a moving object at some
moment t. After several seconds the data will no longer reflect the position of
the object in the real world. The data is no longer valid). Likewise, if a computer
controlling a bridge decides that at time-interval [t, t+d] it must be open because
a ship will then pass, we don't want that bridge to be open long before time t or
after time t + d, for this would hold the traffic longer than necessary. These two
examples illustrate two extra conditions that we impose on real-time databases
to preserve logical consistency:

• Internal data that represents the status of objects in the real world should
accurately reflect the real status of the objects within an acceptable margin.

• Transactions of the database may only be executed in a certain time
interval. Most important, all transactions have a deadline after which the
transaction fails.

In real-time databases schedulers should dispatch transactions such that they
meet their deadlines. Therefore transactions that are nearing their deadline
should be scheduled before other transactions. And in overtaxed systems that
cannot meet all deadlines, we want to ensure that certain important transactions
never fail, thus sacrificing other, less important transactions.

While in classical databases the primary goal is to preserve the database con
sistency, this is not always the case in real-time databases. For some applications
it is more important that a transaction completes before its deadline than it is

52

to preserve the database integrity. Therefore, current research is investigating
the tradeoff between consistency and speed, see [KR92] or [KM93]. In a lot of
applications, inconsistency can be tolerated as long as it is bounded.

1.4 Comparing the various database types

Each database-structure has been designed for a specific environment and with
specific goals in mind. Low-cost centralised databases are very well suited for
administrative purposes. The theory has been well-developed and 2PL (two
phase locking, a scheduling mechanism) is used allover the world.

Distributed databases offer all the services of a centralised database. More
than a centralised database they offer concurrent access by multiple users. Data
replication can make a distributed database more reliable than a centralised
database. Distributed databases can easily be upgraded, as a good database
design will allow for adding computers and storage to the distributed network.

Real-time databases explicitly deal with the notion of time. In applications
where computers are used to control some environment they offer essential ser
vices. The most important service they provide is the meeting of transaction
deadlines. A real-time database guarantees that, if the system is not overloaded,
all transactions will finish execution before their deadline.

A priority mechanism can also be offered by Real-time databases. When the
database cannot complete all transactions in time, it tries to ensure that trans
actions with higher priorities still meet their deadline. Thus real-time databases
are also useful in areas where critical p~ocesses must be monitored along with
less critical activities.

1.5 Organization of this paper

In the next nine chapters the main issues in real-time distributed database design
will be briefly introduced. In no way an attempt is made to give a complete
overview of the field, but hopefully the reader develops some global insight in the
strengths and weaknesses of real-time distributed databases.

Chapter two is the justification of the research area, it provides a high level
description of what services a real-time database offers and the resources that it
needs to do so.

Chapters three to eight give introductions to different issues that relate to
real-time distributed databases. In chapter nine it is observed that testing and
comparison techniques used to date are fairly ad hoc and could use a more sys
tematic approach. Chapter ten concludes with a summary of the issues that still
need development in order to produce efficient real-time databases.

53

Chapter 2

What can a real-time database
do for you?

The database design that has been used in many applications is a centralised,
non-real time database. It provides access to the database to a limited number
of users at the same time. Data-consistency is ensured and the database tries to
execute as efficiently as possible. Distributed databases allow the databases to be
implemented on a more general system architecture. They increase the reliability
and availability of the database.

Real-time databases, centralised or distributed, deal explicitly with the notion
of time. Data items in the database can reflect objects in the real world. These
data items have to be updated by the real-time database, to maintain a correct
view of the real-world. Also, the changing of a data item in the database may
have effects in the real-world, for instance the movement of a robot-arm.

2.1 Real-time scheduling

To interact correctly with the environment, the real-time database allows trans
actions on a database to be scheduled according to some time based criterion. For
each transaction t an interval [st, dtl can be specified such that the transaction t
will not be executed before starting-time St, and t will be finished before deadline
dt •

If the information stored in the real-time database is used to derive an action
that should be taken by the database somewhere in the future, it is possible to
schedule this action. At the appropriate time it will be executed. This is best
illustrated by an example. Suppose that inputs from an automated factory have
been used to conclude that between 2am and 3am the workload is low enough
to shut off the machines. With a real-time database it is possible to schedule
two transactions, one at 2am and one at 3am that shut down and restart the
machines, respectively. It can be seen that the real-time database can be used to

54

interact with the environment, controlling parts of it.
It is important to realize that a number of different implementations of real

time systems are possible. These implementations could offer different services
to the users, depending on the application of the real-time database. In the next
sections some properties that a real-time system could provide are investigated.
However, although these properties are often useful, they have their drawbacks.
Therefore, not all real-time databases will offer all these properties. It should be
clear that real-time databases must be tailored to suit each individual application.

2.2 Transaction priorities

In the ideal situation all transactions that are executed by the real-time database
compute correctly and meet their deadlines. Unfortunately this is often not a
very realistic assumption, the database can be confronted with an overload of
transactions that all have to be completed within reasonable time. Even if the
database is very efficient and fast, it could occur that it is unable to meet all
deadlines.

In these situations, a number of transactions have to be cancelled. To provide
the user with some control over the cancelling of transactions, each transac
tion is given a priority by the user. Now transactions with high priorities take
precedence over transactions with low priorities if the database cannot meet all
deadlines.

In general, this leads to an abort of an executing transaction, to allow high
priority transactions to complete in time. The work that was already done by
the aborted transaction is wasted. So a priority based scheduler degrades the
throughput of the system. Although several schemes to reduce this degradation
of throughput have been proposed, none of them do fully solve this problem.
If throughput of the system is more important than the timely execution of
individual transactions, user priorities should not be used.

2.3 Performance of real-time databases

In not-realtime databases the performance of the database is judged by its trans
action throughput. This criterion is not satisfactory for real-time databases, as
it does not take the deadlines of transactions into account. The performance of
a real-time database is expressed in the number of transactions that meet their
deadlines.

There is a sharp distinction between these two notions of performance. Ac
cording to the real-time performance criteria, a database that processes thousand
transactions in one hour, but misses each deadline by a few seconds is less effi
cient than a database that processes only hundred transactions which meet their

55

deadlines. If the classic notion of database performance is used this would not
be the case.

In the next two subsections two interesting techniques that can be used to
increase the performance of the real-time database are mentioned.

2.3.1 Sacrificing correctness for performance

Whereas correctness is the main issue in classical databases, it is often more
desirable to have some (partially) incorrect result on time than a correct result
that arrives too late. Correctness can be traded for an increase in speed, raising
the probability that transactions meet their deadlines. Of course, this is very
application specific, but it is an interesting tradeoff that should not be forgotten.

A number of techniques have been proposed to bound the amount of inconsis
tency that can be allowed without invalidating the database to a point where it
does no longer produce sensible output. for instance, it is not a big problem if a
door-controlling computer opens the door once in a while without anyone present
to enter the door. However, if it remains closed when people are waiting to enter,
it is unacceptable. Another clear example is a climate controlling system. If it
heats the room to 25 degrees, we find it irritating. But when the climate control
decides that the room should be heated to 40 degrees, we shut it down as soon
as possible!

2.3.2 Sacrificing generality for performance

A quite different approach that is used to increase the speed and throughput
of real-time databases, is restricting the generality of the actions that can be
applied to the database. As real-time databases are often applied for very specific
purposes, this does not have to restrict the power of the database too much. If
information about the types of transactions that will be processed by the database
is available in advance, it is often possible to produce more efficient schedulers.
This increases the performance of the database.

As a small example, suppose that it is known in advance that there is only one
(periodic) transaction that writes to a data item. Other transactions only read
the data item. With this information about the access behaviour of transactions,
efficient scheduling of the transactions in question is possible. In fact, if a multi
version database is implemented, no concurrency control is needed at all! The
writing and reading transactions can execute completely concurrent 1.

This technique can not be used in environments where no knowledge is avail
able in advance or in environments where the transactions have no 'nice' prop
erties that can be exploited for this purpose. Notwithstanding these negative
observations, this can be a useful method to improve the database performance.

1 For more information about multi-version databases see for instance [Wei87]

56

Chapter 3

Atomic transactions

One of the most important properties of database management systems is guar
anteed data consistency. There can be various syntactic and semantic constraints
on the information stored in the database. The technique that is generally used
to enforce these constraints is the notion of atomic transactions.

3.1 Defining transactions

A transaction is a set of operations that is applied to the database in a cer
tain order. Programmers of transactions have to ensure that the execution of a
transaction on a consistent database leaves that database in a consistent state.
Transactions are 'atomic', because either all the effects of a transaction are car
ried out, or the transaction doesn't take place at all. Other transactions will
either see all effects of an atomic transaction, or no effects at all. In this way, the
database consistency is preserved if all transactions are executed in a sequential
way.

At some point, a transaction has to decide whether to complete the execution
or to abort. This is called committing the transaction. Once a transaction has
been committed, it is certain that all its effects are visible to other transactions.

3.2 Constructing transactions

It has been observed that information about transactions that is known in advance
sometimes enables more efficient scheduling of transactions. Transactions are
required to leave the database in a consistent state. In this section it is specified
how transactions can be constructed.

57

3.2.1 Linear transaction model

The classic way to represent a transaction is as a list of read and write actions on
data items. These actions are executed in a specified order. It is assumed that
a transaction does some computation depending on the data items it reads and
that some of the results of this computation are written back to data items in the
database. Computations are not explicitly represented in this model. Typically,
a read action or a write action accesses only a single data item in an atomic
way (i.e. if the transaction fails, it does so between two basic actions, not during
a basic action).

Linear transactions as a computation-model

The representation of transactions defined above is very well suited for reasoning
about the scheduling of transactions and about interleaving of executions. This
is because most scheduling is based on the "reads-from" relation. In general,
transactions interact with each other by reading and writing data items. By
representing a transaction as just a sequence of reads and writes the constraints
of this interaction are explicitly captured.

The reads-from and writes-writes relations

The reads-from relation between transactions is defined as follows: a trans
action tl reads from t2 if tt reads a data item X whose actual value has been
written by t 2. Analogously a writes-writes relation exists between it and t2 if
tt overwrites the value of a data item X that has been written by t2 •

3.2.2 Nested transaction model

The transaction model presented in the previous section imposes only a simple
structure on transactions. Worse, it supposes that each transaction is a sequential
execution of basic actions. To express more general (concurrent) transactions
while maintaining a strong grasp on the structure of transactions, the nested
transaction model is introduced. Each transaction is represented as a hierarchy
of transactions nested in transactions. Before, database consistency was required
before and after the execution of a transaction. During the transaction, the
database could be in an inconsistent state.

It is possible to require that each sub-transaction is a complete transaction
itself: if it finds the database in a consistent state, it will leave the database
in a consistent state. If this choice is made, the number of ways in which a
transaction can be fragmented into sub-transactions is reduced. Thus it is harder
to define transactions. On the other hand, it becomes possible to allow parts of
a transaction to be used by the rest of the database while other parts are still in
progress. Each sub-transaction can be regarded as a complete transaction. It can

58

therefore commit without waiting for other transactions, as it leaves the database
in a consistent state. A more fine-grained concurrency control is possible when
sub-transactions are complete transactions themselves.

Nested transactions as a computation-model

In the nested transaction model a transaction is represented by a tree structure,
where the leaves of the tree are the basic read and write events. This is a quite
natural way to represent transactions. A lot of our programming languages are
constructed as trees, where procedures are nodes and function-calls are links
between nodes. Leaves are made up from the language-primitives.

If nodes that sequentially execute their children and nodes that execute their
children in parallel are allowed, a very generic computation model is obtained.
Some additional synchronisation between concurrent computations in different
nodes can be obtained by communication between these computations. Allowing
parallel execution within a transaction increases the amount of concurrency that
the system allows, thus improving the performance of the system.

Use of nested transactions in a distributed network

Another benefit of nested transactions is that it is easy and natural to implement
the distribution of transactions with them. The sub-transactions that have to
execute on other sites than the initial transaction can be represented by sub
trees of the transaction-tree.

By representing the computation of each site by a sub-transaction, the exe
cution of a transaction is defined by the execution of the sub-transactions and
the communication between them. Communication between sites is often a bot
tleneck in distributed systems. By making the distinction between sites explicit
in the model, it is possible to analyse the message complexities of transactions in
terms of communication between sub-transactions.

59

Chapter 4

Concurrency control

Modern system designs have made it possible to execute processes concurrently,
thus increasing the throughput of the systems. By concurrent execution of trans
actions the number of transactions that can be processed in a period of time is
increased.

It is not possible to execute all transactions at the same time. A transaction
that uses the result of another transaction has to wait until that result becomes
available. Also, two transactions that both try to access a critical section (for
example a printer) cannot run concurrently.

If two transactions are executed in parallel we imagine that their basic steps
are executed in an interleaved fashion, not exactly at the same moments. This
eases reasoning about concurrent transactions.

4.1 Concurrency and consistency

There is a strong relation between the amount of concurrency allowed by the
databases and the maintenance of data-consistency. Transactions are designed
in such a way that the execution of a single transaction leaves the database in a
consistent state.

It is much harder to satisfy the consistency requirement if transactions are
processed in an interleaved fashion. Other transactions can interfere with the
execution of a single transaction, thus invalidating its execution. An example of
this is given in figure 4.1. The consistency requirement is that accounts A and
B sum to zero. However, due to the incorrect interleaving of basic actions of two
transactions, this consistency is destroyed.

An explanation of the figure is probably helpful. Normally, a transaction is
modelled as a sequence of read and write actions on data items. To show that
arbitrary interleaving of transactions destroys the consistency of the database
the internal computation of the transactions 1 and 2 is represented by the small
statements. For each data item it accesses, a transaction has an internal vari-

60

Time line ~

Transaction 1 R(A) R(B) switch a,b W(A) W(B)

internal variables a=IOO a=-IOO
b=-IOO b=IOO

Transaction 2 R(B) R(A) ,wi~h ,h W(A) W(B)

internal variables a=-IOO a=-IOO
b=-IOO b=-IOO

A: 100 -100 -100 -100

B: -100 -100 100 -100

Figure 4.1: CONCURRENT TRANSACTIONS DESTROY CONSISTENCY

able representing that data item. If a transaction reads from the database, the
result is stored in the corresponding internal variable. Four different "snapshots"
show what the state of the database is. As would be expected, the database
consistency is disturbed during the execution of the database. The database is
still inconsistent after both transactions have finished execution. Therefore the
schedule is incorrect.

The schedule show in 4.1 is incorrect because transaction 2 reads 'part of
its data while transaction 1 is executing. During this execution the database
consistency is not guaranteed, so transaction 2 can read from a (temporarily)
inconsistent database. The correct execution of a transaction is only specified
if a transaction reads a consistent database, no consistency requirements are
placed on a transaction that reads from an inconsistent database. As can be seen
from the example transaction 2 is capable of destroying the database consistency.
Therefore a method to determine whether transactions can execute in parallel is
needed. This is called concurrency control.

4.2 The serializability concept

A sequential execution of transactions always preserves the consistency of the
database. This leads to the notion of serializability. A schedule s is called
serializable if there exists some sequential schedule that has an equivalent effect
on the database and executes the same transactions. In general the reads-from
and writes-writes relationships of s should be preserved, and the final state of the
database should be the same. This is called conflict serializability.

Theorem 4.1 A serializable schedule is a consistency preserving schedule.

61

Only an intuitive proof of the theorem is given. Two unrelated transactions can
be executed concurrently or in a sequential way, without disturbing the database
consistency. Consistency can only be broken by transactions that do have a reads
from or writes-writes relation. If these transactions are executed in an interleaved
fashion the database consistency can be destroyed. Exactly this behaviour is pre
vented by the serializability requirement. Conflicting transactions are scheduled
either before or after each other, but not interleaved.

To be able to maximize the amount of concurrency in the database, as many
as possible schedules should be allowed.

Note however that there exist consistency-preserving schedules that are not
serializable. Therefore, the set of serializable schedules is only a proper sub
set of the set of consistency preserving schedules. Checking that a schedule is
serializable has been proven to be NP-complete.

A schedule is legal for a certain scheduler if it can be generated with that
scheduler. Existing efficient schedulers all restrict the set of legal schedules to a
subset of the serializable schedules, in order to reduce the complexity of generating
legal schedules.

4.2.1 View serializability

It can be argued that the writing of a data item X that is never read before it is
written again is useless. As no one has observed the writing of X, there would be
no difference if the first write of X had never taken place. To represent this, the
notion of view serializability is defined. A certain schedule is view serializable
if it is equivalent to a sequential schedule that executes the same actions and
preserves the reads-from relation between the transactions. Also the final states
of the database should be the same. Note that the writes-writes relation between
transactions is no longer important. Again, proving that a concurrent schedule
is view serializable is NP-complete in the worst case.

It is interesting to note that if some writes are actually useless, the entire
execution of these writes can be skipped. This assumes of course, that the over
writing transactions do no fail to complete their execution and abort.

4.2.2 Final-state serializability

Where view serializability abstracted from useless writes, final state serializabil
ity observes only the final state of a database. Intermediate states during the
execution of a schedule are regarded as temporary states. Only the final result of
the database is important. This assumption will probably not hold in real-time
databases, where transactions can have a visible effect, not only on the database
state but also on the real world.

A schedule is final-state serializable if it is equivalent to a sequential sched
ule that executes the same transactions. Equivalence of the schedules is now

62

defined as equivalence of the final database states that result from executing the
schedules.

4.2.3 Constructing workable schedules

Solving an NP-complete problem every time a set of transactions has to be sched
uled is not a feasible option. Therefore, efficient schedulers that allow only
a subset of the serializable schedules to be generated have been constructed.
These schedulers can be regarded as heuristic methods to solve the NP-complete
scheduling problem. Although they do not provide optimal concurrency, they
introduce an acceptable overhead on the system.

A short description of the widely used two phase locking protocol is given
and the difference between pessimistic and optimistic protocols is examined. Note
that the two phase locking protocol serves as an implementation of the two phase
locking scheduler.

Two Phase Locking

It is assumed that the scheduler is given a set of transactions T and a partial
order -< on T. Transactions t, is ordered before t2 if (wlog. ') t2 reads or writes
a data item X that has been previously written by t , .

Suppose t, -< t2. The two phase locking protocol forces t2 to wait until t, has
finished, by locking data item X. A locked data item cannot be accessed by any
other transaction, and t, does not release the lock until it is about to finish.

For simplicity it is assumed that only one transaction can have a lock on a
data item, although optimizations can be made. So transaction t2 has to wait or
must abort, unless t, releases the lock on X.

Serializability is not yet enforced by this simple locking mechanism, but with
a slight adaptation it will. Two phase locking (2PL) received its name from this
adaptation: the protocol consists of a locking phase and an unlocking phase.

A transaction acquires all the locks it needs to execute in the locking phase.
In the unlocking phase, a transaction releases its locks. Once the transaction
is in the unlocking phase, it cannot obtain locks anymore.

The two phase locking protocol prevents the following, not-serializable be
haviour: transaction t, locks X, writes X, releases X. Transaction t2 locks,
reads, writes and releases X. Transaction t, locks X again and reads it. This
is not serializable: t2 reads X from t , . Therefore, t2 must be executed after t , .
But t, reads X from t2, so it should occur after t2! This is a contradiction, so
the scheduled transactions are not serializable.

The scheduler does not prevent deadlocks. Deadlocks may occur if two trans
actions need data items X and Y. Transaction t, has acquired a lock on X and

1 without los8 of generality

63

needs access to Y, transaction t2 has acquired a lock on Y and needs access to
X. Both must wait for the other transaction.

Optimistic versus pessimistic schedules

Two phase locking is a perfect example of a pessimistic protocol. It assumes
that a lot of conflicts between transactions occur. Therefore, it does not execute
a transaction until it is absolutely sure that it does not conflict with any other
transaction in progress. This is ensured by the locking mechanism.

However, in a large database the chance that a conflict over a piece of infor
mation occurs between two transactions may be very low. If almost no conflicts
occur transactions must unnecessarily wait for the locking of their own data items
before they are allowed to execute. This observation has led to the construction
of optimistic schedulers.

An optimistic scheduler first executes the transactions and then validates
whether the transaction was executed according to a serializable schedule. If
a conflict between two transactions occurs, one of them is aborted just before
commit. It is still a point of study to determine under what conditions optimistic
schedulers out-perform pessimistic schedulers.

Time stamps

Another well known method of scheduling uses time-stamps. Each transaction
receives a unique time-stamp at some point. Now two transactions that both
access the same data item have to be executed in an order that depends on the
value of their time stamps. Time stamp schedulers can either be optimistic or
pessimistic, depending on the moment that transactions receive their time-stamp
and the moment that these time stamps are checked.

4.3 Weakening serializability

Determining if a schedule is a serializable schedule is an NP-complete problem.
Efficient schedulers that produce serializable schedules never provide optimal con
currency because they use only heuristic solutions of the serializability problem.
Also serializability does not completely capture the notion of consistency. To
increase the amount of concurrency that schedulers allow, different approaches
to database-consistency have been explored.

4.3.1 Epsilon Serializability

The first approach to mention is the notion of epsilon serializability. Epsilon
serializability is a generalization of classic serializability. It explicitly allows some
limited amount of inconsistency in transaction processing. This increases the

64

concurrency allowed by the database as some not-serializable schedules are per
mitted. In particular, read-only transactions are allowed to run concurrently with
update transactions. This might result in a inconsistent view of the database,
but the database consistency is not affected. In general, Epsilon serializability
bounds the amount of inconsistency that transactions are allowed to see.

Implementation outline

With each state of the database an amount of inconsistency is associated. This
is defined as the distance of the state to a consistent state. Assume that a func
tion distance(u, v) exists that defines the distance between every pair of states u
and v. The database state space is metric if the distance function is symmet
ric and satisfies triangle inequality (for all states u,v,w holds: distance(u,v) +
distance(v, w) ~ distance(u, w)).

Now an epsilon-serializable schedule allows read-only transactions to run con
currently with update transactions if the amount of inconsistency they introduce
is bounded by some import-limit. Likewise, an update transaction has some
export-limit that specifies the maximum amount of inconsistency that it can ex
port to concurrent, conflicting reading transactions. What limits can be allowed
is dependent on the application that uses the real-time database.

Note that reducing the limits to zero gives us the classic serializable schedule.
Pessimistic approximations of the amount of inconsistency can be computed if
the database state space is metric.

4.3.2 Similarity Serializability

Similarity serializability is based on the observation that in real-time systems
data items will never exactly match the status of objects they are describing.
Similarity is a binary relation on the domain of a data object. Intuitively, two
objects are similar if they are almost the same.

A schedule is view similar to another schedule if it schedules the same trans
actions and if these transactions read similar data. So intuitively, a transaction
would in both schedules receive almost the same input. View similar schedules
are only one version of schedules that are based on similarity. Whether two values
are similar depends on the nature of the application of the real-time database.

Similarity of time

This concept is introduced to real-time database systems for the notion of time.
Two measurements of an object that were taken at approximately the same time
can be regarded as similar. This allows the use of slightly older values for read
actions, even while the new values are being measured. This eases the problem

65

of scheduling transactions in real-time. A discussion is presented in the chapter
about time management.

4.4 Restricting transactions

Advance knowledge about the behaviour of transactions can enable us to do
more efficient scheduling. All previous schedulers used the reads-from relation to
govern the scheduling of conflicting transactions. However, if for example it is
known that all data items are written by only one transaction, all transactions
can execute concurrently if a version management scheme is implemented. In the
next subsection the version management mechanism is explained.

By restricting the types of transactions allowed in the database the NP
complete serializability problem can be circumvented and efficiently produce
highly concurrent schedules. This does of course limit the power of transac
tions. In the next section an example of a scheduler that exploits this property
is provided.

4.4.1 Version management

A common transaction is the read-only transaction. Typically the user re
quires information and is not going to change the state of the database. The
common occurrence of the read-only transaction justifies the separate treatment
that is given here.

In a distributed database several transactions can be issued at roughly the
same time. It is often not very clear in what order transactions should be pro
cessed. Therefore, if both a read-transaction and a write-transaction are issued
and both transactions access the same data item, it does not matter in what
order they are serialized. So for a read-only operation it makes no difference if it
reads the most recent value or a slightly older one! Bearing this in mind, read
only transactions can be optimized by running them concurrently with update
transactions.

Multi-version databases

To be able to serialize read-only transactions multiple versions of each data item
are kept. Now if a read-only transaction is scheduled, it reads the latest, com
pleted version of the data items it needs that are available at the moment the
read-only transaction is scheduled. Update transactions can write newer versions
of the data items that are being read, but this does not influence the outcome
of the read-only transaction. With this construction it is always possible to seri
alize a read-only transaction. These transactions can always proceed with their
execution.

66

Discarding versions

The existence of more than one version of each data item in the database places
a huge demand on the resources that it can use. If old versions of data items
are not discarded, the amount of data that needs to be stored by the database
will grow out of bounds. A mechanism that discards versions that will not be
necessary anymore is needed to make multi-version databases a viable option.

Depending on the exact scheduling mechanism a number of implementations
is possible. A general solution is to keep the latest version always in the database
and to keep track of the number of transactions that are still using an older
version. If transactions are not allowed to be scheduled late (i.e. if a transaction
arrives late it is aborted) old versions can be discarded as soon as no read-only
transaction uses them anymore.

4.5 Handling deadlock and lifelock

Two important problems that should not be forgotten when designing schedulers
are the problems of deadlock and lifelock. In a distributed database system
these events cannot be locally detected. It is possible that a transaction tl waits
on t2 in site a, while t2 waits on tl in site b. To be able to detect and do something
about deadlock in a distributed system communication between the different sites
of the database is needed.

4.5.1 Deadlock

If the database system makes use of some locking scheme to enforce serializable
behaviour, deadlock may occur if two transactions lock a subset of the data
items that they both need. No transaction acquires all its data items, so no
transaction can proceed. They both wait on each other to release the locks they
need. Deadlock can be prevented by checking that the "waits-for" dependencies
introduced by the locking scheme are partially ordered. This means that no cyclic
waiting may occur. If such a cycle exists, one of the transactions that is part of
the deadlock has to be aborted. This checking is done by maintaining a so-called
dependency graph. Vertices in the dependency graph denote transactions, and
edges between vertices denote "waits-for" relations. An excellent overview of the
theory of deadlock detection can be found in [Kna87].

Distributed deadlock

A deadlock in a distributed database can extend over more than one site. The
information that is known about transactions at a single site is not sufficient to
detect deadlocks. Several methods have been designed to detect deadlocks. A
few methods are named without going into details.

67

• Transaction timeouts. If an upper bound of the transaction execution time
is known, deadlock can be detected with the use of timers. If a transaction
fails to terminate in time, a deadlock has occurred.

• Constructing a global dependency graph. If all sites send their local depen
dency graph to one site, all dependency graphs can be combined to produce
a global global dependency graph.

• Chasing dependencies. If a site notices that a transaction it is processing
is dependent on a transaction that is executing at another site, it sends the
relevant dependency information to that site. If that site concludes that a
cycle occurs (with aid of the received information), the deadlock is detected.

Methods to resolve the deadlock need to follow the detection. The methods are all
based on the aborting of one or more transactions that are part of the deadlock.
A problem in this area are "shadow deadlocks", i.e. the detection mechanism
decides to abort transactions before deadlock has actually occurred.

4.5.2 Lifelock

Deadlock cannot occur in optimistic schedules, as transactions never wait. How
ever, lifelock might occur. Lifelock is the situation that, although the database
keeps processing transactions, a single transaction is never processed. Suppose
that an executing transaction always finds out in the validation phase that it con
flicted with a committed transaction. It has to abort the execution and resched
ule.

Lifelock can be prevented if the scheduler can choose the transaction it aborts.
In general, a transaction has to abort because it conflicts with a set of other
transactions. If it is possible to abort this conflicting set, lifelock can be prevented
by aborting the transactions that have aborted the least. This ensures that the
oldest transaction in the system is not aborted. Eventually each transaction
will be the oldest in the system or it will have committed. So eventually each
commits.

68

Chapter 5

Reliability

Databases are meant to store information over long periods of time. With our
current state of technology it is unrealistic to assume that the database system
will never fail. Hardware errors, communication failures, software errors, almost
anything can happen. It is possible to design hardware that uses redundancy to
decrease the probability of a hardware failure. Likewise, software techniques are
shown that prevent failures of the system to leave the system in an inconsistent
state.

5.1 Failure models

Many different types of failures can occur, as was written in the introduction of
this chapter. Two types of failures are recognised, based on the severity of the
failure:

• Fail-stop failures. If a fail-stop failure occurs in a system, the system
simply halts with its computation. After an unknown period, it restarts or
continues its computation. When a system is able to continue its compu
tation without losing its program state, the failure is called an omission.
Omissions preserve the program state, but some results (messages) may
have been lost. After a fail-stop failures, the program state has been lost
and the system has to reboot. The time that a site needs to recover can be
arbitrarily long .

• Fail-insane failures. When a fail-insane failure occurs in a system, the
system doesn't stop, but it executes in an unpredictable way.

Fail-insane failures are more severe than fail-stop failures. The proof of this is
simple: a fail-insane system can decide to behave like a fail-stop system. But it
can also decide to continue the computation, acting quite normal but twisting its
output. Conclusions based on this output will be incorrect. There is no fool-proof

69

way of telling if a system behaves correctly, as the checking algorithm itself may
produce incorrect output.

5.2 Maintaining consistency

In the previous chapter atomic transactions have been defined. The effects of an
atomic transaction are either implemented entirely, or not at all. This property
is used to maintain the consistency of the database. In this section methods
to implement the behaviour of atomic transactions are examined. Transaction
atomicity is preserved even when the system fails in the middle of a transaction.

5.2.1 Recovery from fail-stop failures

If the system fails in the middle of a transaction, this could lead to an inconsistent
database. This happens for example when the system fails after half of the writes
of a transaction have been carried out.

So the database has to be repaired when the system recovers. In the worst
case, all main memory has been erased by the failure. Stable storage is needed to
reconstruct the previous system state. Stable storage is a storage device (hard
disk, tape, etc.) that is failure-free. This is often implemented in hardware.

The undo/redo mechanism

In order to recover from failures all relevant transaction information is stored
in a sequential file on stable storage. This file is called the log. Now before
the results of a transaction are written, the previous values of the database are
saved in stable storage. Then a "begin transaction" message is written to the
(sequential) stable storage. Next, the updates of the transaction are actually
carried out. When all updates have been applied to the database, "transaction
finished" is written to stable storage.

The claim is that with this extra information, the atomicity of transactions
can be ensured. Suppose the system has failed. Now when the database recovers,
it reads its stable storage until it reaches the last "begin transaction" message. If
an "end transaction" message follows, the system failed after completion of the
transaction. Nothing needs to be corrected, the system is in a consistent state. If
no "end transaction" message has been written to stable storage, the transaction
was still in progress. All its writes are undone, by rewriting the previous state of
the database that was saved on the stable storage.

The writing to permanent storagel may take place after a transaction has
committed. If the system fails after the commit but before the actual write to

1 With permanent storage the normal database storage (hard-disk) is meant. Note that the
writing to stable storage is never delayed.

70

stable storage, it is impossible to undo the transaction. When this happens the
log is used to redo the transaction.

This is the simple, centralised implementation of atomic transactions. Adap
tations have to be made in a distributed environment but they will still be based
on the existence of logs.

5.2.2 Handling fail-insane failures

Fail-insane failures are much harder to handle. The assumption of stable storage
can not be made, as a fail-insane computer can overwrite its own storage. A
solution could be a stable write-once, read-many storage. In this way, all correct
actions of the system are preserved. It would be very hard to analyze this stor
age on recovery, because there will be no sharp boundary between the correct
behaviour and the fail-insane behaviour of the system. I personally know of no
results in this direction.

In a centralized system nothing can be done once a fail-insane failure occurs.
One has to pray that it does not wipe out the entire database. Fail-insane failures
can be handled to some extent in distributed databases. Replication of data
prevents information to be destroyed by one fail-insane site.

5.2.3 Voting on actions

The adverse effects of fail-insane sites can be negated by voting on actions taken
by the distributed database. An action on the database will only be executed by
all sites if at least a majority of the sites concludes that it is a legal action. For
these schemes to be successful, it is necessary that there is a bound on the number
of sites that may fail-insane at the same time. Typically, at least a majority of
the nodes participating in a vote must be correct.

5.2.4 Input certification

A noteworthy technique is that of input certification. An insane site that
participates in a protocol does not need to send the same information to all sites.
This can sometimes result in different conclusions in different correct sites. If the
system tries to come to a global decision, this cannot be tolerated.

To prevent insane sites from sending different messages to different sites when
they should be broadcasting a single message, a broadcast b from a site s that
arrives at site t is not passed on to the controlling system. Rather, site t sends
a message (s, b) to all other sites. This message effectively states "I received
broadcast b from site s". Now if a node receives the same (s, b) message from at
least half of the sites in the network, it accepts this message as a correct message.
In this way, a fail-insane node can only send the same message to all nodes in
the network.

71

5.3 A vailability of the database

Another issue of dependability is the availability of the database. If a centralized
database fails, the information stored is no longer available. But in a distributed
network access to the remaining database sites in the network can still be pro
vided.

5.3.1 Fault tolerance

By introducing redundancy in the database it is possible to make the system more
fault tolerant. A very simple scheme that is used to build reliable computers is
replicating the entire database X times. This X-redundant system can now
handle X-I system crashes. If recovery mechanisms are provided, the system
can handle X-I system crashes at roughly the same time.

5.3.2 Distributing data

There are several ways to store data in a distributed database. If the database is
not redundant, each item is stored at a single site, the crashing of a site will pre
vent access to items stored at that site. In a lock-based system transactions that
accessed data stored in the crashed site have to be aborted. Only transactions
that use data items stored in surviving sites can continue execution.

Replicating data

Instead of the crude mechanism of replicating the entire database, single data
items can be replicated and stored at more than one site. If one site fails, other
sites are still able to provide access to all the information in the database.

There are several problems with this approach. Of course, replication of data
reduces the overall capacity of the database. Algorithms that were simple and
elegant in the not-replicated version become much more involved, if the system
incorporates replicated data.

For instance assume that a transaction running at site t has locked a data item.
Subsequently the site crashes. A mechanism has to be provided that releases all
locks held by transactions on a crashed site. If no such mechanism exists the
failure of a single site will prevent access to large parts of the database and no
performance is gained from the replication of data.

So the design of the concurrency control mechanism should explicitly deal
with the distribution of data. In the chapter on distributed systems, protocols
that make use of replicated data to increase availability are discussed.

72

Chapter 6

Distributed systems

Distributed databases are useful because they enhance the reliability and avail
ability of databases. They allow more concurrency than centralised systems and
appeal to object-oriented programming approaches.

However, there is a price to be paid for these extra features. The database
controlling protocols are more complex than in centralized databases and com
munication between sites is often a bottleneck. For instance, implementing a lock
in a centralised database can be realised with simple semaphores. Implementing
a lock in a distributed database requires the exchange of lock information be
tween sites. If information about a lock is distributed over more than one site
(to increase availability), the message cost grows in proportion.

In this chapter a few protocols are presented that are specially designed for
distributed systems. This is meant to provide some insight in the complexities
that arise in distributed systems.

6.1 Atomic commit protocols

One of the first problems that is unique for the distributed environment is the
global commit. In a centralised database a transaction commits by writing
a single message to stable storage. How this could be implemented in dis
tributed databases is not instantly clear. A transaction consists of several sub
transactions. For each site that participates in the transaction a separate sub
transaction is defined. A protocol is needed to ensure that either all sub-transactions
commit or that all sub-transactions abort. This is known as an atomic commit.
All sites should agree on the same decision.

Decisions made by a site are un-reversible, and should be available within
finite time. Finally, a transaction should commit if all of its sub-transactions
commit, and no failure occurs. This property prevents the obvious solution of
always aborting transactions.

73

6.1.1 Blocking

One additional feature that is important fort he functionality of an atomic commit
protocol is the so called non-blocking property. A protocol is blocking if
the failure of a site that participates in the protocol blocks further execution.
In particular: the protocol cannot abort and has to wait for recovery of the
crashed site. The non-blocking property is not easily implemented. Theoretical
results show that it cannot be guaranteed if no time-out mechanism or hardware
detection of site failures exists. Therefore it is assumed in the rest of this chapter
that such a failure-detection mechanism exists.

6.1.2 Two phase commit protocol

This is a simple, blocking protocol that offers just the basic services that we
demand from an atomic commit protocol. It works as follows: The initiating site
sends messages containing the necessary information for the sub-transactions to
all sites. Once a site has finished its local computation it either aborts and sends
"aborting" to the initiating site or it sends "ready". The initiating site receives
all messages. If at least one message is an "aborting" message, the initiating sites
sends "abort" to all participating sites and aborts. Otherwise it sends "commit".
All participating sites receive the message and abort or commit accordingly.

6.1.3 Uncertainty of sub-transactions

Uncertainty is a fundamental property of (sub-)transactions. At the beginning
of an execution the sub-transactions are not certain whether the transaction will
commit or abort. The computation can still go both ways. At some point in
the computation, the decision is made to either abort or commit by each site.
Once it is possible that some site has decided on either of the two, no site may
decide on an action without information about the decision in the other sites, for
otherwise two different decisions could be taken.

With this property in mind, let us analyse the behaviour of the simple two
phase commit protocol. At the beginning, no site is allowed to decide to commit.
All sub-transactions can safely decide to abort. Therefore as soon as some site
fails, the remaining sites abort the transaction.

The analysis becomes interesting once it becomes possible that some site
has decided to commit. In the two phase commit protocol, the first site that
decides to commit is the site where the transaction was initiated. Suppose some
participating site p has sent its "ready" message to the initiating site and the
initiating site fails before p has received the decision. Site p is now uncertain
whether it has to abort or commit. Using some broadcast protocol it can try to
gain certainty from other participating sites.

74

Suppose the initiating site is the sole failing site. The total set of messages
that were sent to the initiating site can be gathered, so the decision that was
taken by the initiating site can be deduced. If at least one other site failed, this
does not apply. The remaining sites miss relevant information so they cannot
infer what the initiating site was about to decide. When all remaining sites are
uncertain, no site can decide whether to abort or to commit. The protocol is
blocked.

It can be seen that the initiating site is never uncertain, so it can always
decide on a course of action. This is because the initiating site is the first site
that is allowed to decide to commit. Therefore, as long as the initiating site has
not failed, the protocol is not blocked. Likewise, the protocol is not blocked if
some remaining site has not yet sent its "ready" message or if some remaining
site has already received the decision. The only scenario in which the two phase
commit protocol becomes blocked is the scenario just described.

6.1.4 Non-blocking commit protocols

It is possible to construct commit protocols that have the non-blocking property.
Instead of showing and analysing an entirely new protocol, it is briefly shown
how improving a basic step of the two phase commit protocol does provide the
non-blocking property.

Recall that the only scenario in which the standard two phase commit pro
tocol is blocking, is when the initiator fails and at least one other site does the
same. These two sites could have committed before they failed, so the remaining
sites cannot abort. This is because they are uncertain about the decision of the
initiator. Implementing an atomic broadcast suffices to realise the non-blocking
property. An atomic broadcast is a broadcast where either all sites receive the
message, or no site receives the message.

Achieving non-blocking with atomic broadcast

Now the initiator does not decide on commit until it has finished its atomic
broadcast. If it crashes before it has broadcast the decision, it has not yet taken
that decision, so the other sites can abort. If it crashes after the broadcast,
all sites will have received the decision. Observe that in the previous protocol,
delaying the decision till after the broadcast was not sufficient to provide the
non-blocking property. This is because a participating site that received the
"commit" message and subsequently failed could be the only site that committed
if the initiator failed in the middle of the broadcast.

The implementation of an atomic broadcast is beyond the scope of this overview.
It suffices to say that it can be achieved at an increased delay in time and with
a higher message cost.

75

Time line

Sub-transaction T ~
I

Sub-transaction T ,

I I

~~
I I

Figure 6.1: NOT-TWO PHASE LOCKING BEHAVIOUR

6.1.5 Global synchronisation

In many distributed algorithms a global synchronisation point is needed. An
example of that is the commit protocol. The initiating site knows that all par
ticipating sites have progressed to a certain point (they have all sent their status
messages), before it broadcasts its decision. So before sites decide to commit, all
sites have at least responded once. Note that reasoning about time in distributed
environment is a little more complex than presented here, as sites have no real
notion of "global time".

Several different algorithms have been constructed that achieve global syn
chronisation. The algorithm described above is dependent on its initiating site.
Other variants have been designed that increase robustness, decrease time com
plexity or decrease message complexity.

Distributed two phase locking

To be able to design a distributed version of the two phase locking protocol a
global synchronisation protocol is needed. Recall that essential for the two phase
locking protocol was the existence of a locking phase and an unlocking phase.

Suppose the two phase locking protocol is used to schedule a distributed
transaction. It is not sufficient to ensure a local two phase behaviour, as the
sites are not synchronised in time. In picture 6.1 an example is given of not
two phase locking behaviour that arises because the sites are not synchronised.
Sub-transactions Tl and Tz execute on different sites that are not synchronised.
Because of communication delays or because of the difference in speed of the two
sites the sub-transactions do no start and stop their locking and unlocking phase
at the same moment. The phases are so far apart that Tz begins its locking phase
after Tl has finished its unlocking phase. Another transaction A could now read

76

the results of Tl and write the data items that T2 is going to use. This not
serializable behaviour exists because transactions have no global synchronisation
point between the locking and unlocking phase.

6.2 A vailability of data

Data that is stored in the database should be accessible at all times. Even if some
of the sites fail, one would like to manipulate data. This is clearly impossible if
data is stored at a single site. However, if data is replicated over multiple sites,
it will be available as long as at least one of the sites remains functional.

Although data replication increases the availability of data, it introduces prob
lems for maintaining correctness. Recovery management is needed to update sites
that recover from crashes, as changes will have been made to data items that are
also stored at the recovering sites. But most important, the concurrency control
algorithms have to deal with the replication of data.

Access to a data item is no longer centralised at a single site, but is distributed
over the network. Producing correctness preserving schedules requires commu
nication between the sites in the network. A number of distributed concurrency
control algorithms are mentioned.

A simple strategy

Each copy of a data item is treated as a separate data item. If a transaction wants
to read or write an item it has to obtain locks on all copies. Obviously this leads
to a high communication and storage cost without an increase in concurrency
or availability. To design an efficient concurrency control algorithm, mechanisms
are needed that increase concurrency and provide access to data even if a few
sites fail.

Single read-lock strategy

A minor adaptation to the previous scheme is that a transaction that just reads
a data item X only locks the local copy of X. In this way, read actions can be
executed concurrently. Write actions still conflict with other writes and reads.
Read actions are not blocked if a site fails, write actions have to lock all copies
and cannot proceed.

Primary copy strategy

This section is concluded with presenting a simple version of the primary copy
protocol. This protocol maintains a high level of availability, even if some sites
fail.

77

For each data item a primary site is defined. The copy of the data item
stored there is the primary copy. All other copies are backup copies. Transactions
request read and write locks only at the primary site. Therefore, actions are not
blocked as long as the primary site remains functional. Other adaptations of the
primary site protocol deal with the crashing of the primary site. Still, the simple
primary copy strategy is an improvement over the single read-lock strategy where
an arbitrary site failure would block the protocol.

6.2.1 Network Partitioning

If the network that is the foundation for a distributed database becomes parti
tioned it would be nice if the two separated parts of the database would remain
functional. Information that has only been stored in one partition is unavailable
for the other partitions of the database. Transactions that act on this information
can only execute if they are issued in the same partition.

So network partitioning cripples the performance of the database in the un
replicated case. But problems are not over if the available data in the database
is replicated. If update transactions are applied to data while the network is
partitioned, it is possible that two different values are assigned to copies of the
same data item. If the network is connected again the database is no longer
consistent. Only read-only transactions are allowed in all partitions while the
network is partitioned. Update transactions can be allowed in one partition.
If updates would be allowed in more than one partition, two or more different
copies of one data item can exist. If updates are only allowed in one partition,
all other partitions can use the old copy of the data item. (As the network is
partitioned, it is certain that transactions running in different partitions can be
serialised by putting all the transactions from the read-only partitions before the
update-partition).

78

Chapter 7

Time management

In conventional databases information is static: as long as no transaction changes
the information, it does not change. This is not the case in real-time databases.
Often, information loses value as it grows older. This is especially the case when
the information in question is a representation of the real world (hence the name
real-time databases), as the real world changes in time. Likewise, if two pieces
of information are gathered at completely different times, they do not relate to
each other.

7.1 Temporal consistency

From the observations just made temporal consistency can be formulated in
two components:

• Absolute consistency. A direct relation must exist between the state of
the environment and its representation in the database. If the system has
an incorrect view of the environment its actions will be nonsensical.

• Relative consistency. Data derived from the environment must be tem
porally consistent with the other data that has been derived.

Examples of both absolute and relative temporal consistency are given. Sup
pose a computer is used to monitor the amount of people in a room. If it counts
the number of people every five seconds, it will always have a good approximation
of the number of people in the room. If it counts once every hour and everybody
leaves after thirty minutes, the representation in the computer would no longer
reflect the real world, it would be inconsistent.

Now suppose the computer monitors two rooms. First it counts all people
in room one in five seconds, then all people in room two. However, while the
computer was counting, people were switching rooms. If both counts were ten,
can it be concluded there were twenty different people in the rooms? If the rooms

79

are adjacent about five people could have switched, so only fifteen different people
are needed to arrive at our result. The two counts would not be temporally
consistent.

But when the rooms are fifty meters apart, almost no one could have crossed
that distance in five seconds, so there are indeed twenty different people. The
results of the two counts are then indeed temporally consistent, i.e. the fact that
in the real world people cannot be in two rooms at the same time combined with
the data allows the computer to conclude that there are at least twenty different
people present.

7.1.1 Absolute consistency

Information that reflects the real world is only valid for a certain interval in
time. The length of this interval is dependent on the nature of the object that is
represented and the amount of inconsistency that is allowed by the system.

If an object is changing rapidly, the interval during which information is valid
will be short. If the database requires that information about an object may only
deviate five percent from the real status of the object, the information may have
to be refreshed more often than when it is allowed to deviate ten percent.

So far, it has implicitly been assumed that the behaviour of objects is pre
dictable. If an object can suddenly change its entire state, it is impossible to
prevent inconsistencies to exist in the database. Likewise, linear behaviour of
the information about objects has been assumed. When a small change in data
reflects a major change in the state of the object, even small inconsistencies in
data can lead to totally wrong conclusions. For example, if a five degree error
is allowed in the temperature of water, the difference between ice and water if it
is just below freezing point cannot be specified. While for normal temperatures
a deviation of five degrees might be acceptable, it is not acceptable around the
freezing point of water.

If it is impossible to refresh the information stored in the database often
enough to maintain an acceptable representation of the real world, one can use
the predictable behaviour of objects to extrapolate the history of an object. If
bounds on the speed with which an object can change its status are known,
numerical methods can be used to bound the error that is made in the prediction.

7.1.2 Relative consistency

Related data about objects in the real world is only consistent with each other
if the data was gathered at approximately the same time. This is called the
relative consistency of data. As with absolute consistency, relative consistency is
dependent on the speed with which the represented objects are changing and the
amount of error that is permitted.

80

But where absolute consistency is only preserved for a small interval in time,
relative consistency is a permanent property of a pair of data items. Data items
are consistent if they have been gathered within a specific period of time from
each other.

Relative temporal consistency is not a transitive relation, if A and Bare
temporally consistent, and Band C are temporally consistent, it is not necessary
that A and C are temporally consistent.

This is easily illustrated. Suppose data items are temporally consistent if their
age does not differ by more than five seconds. Now A is gathered at time 10. B
has been gathered at time 14. Clearly, A and B differ only 4 seconds and they
are temporally consistent with each other. Now C has been gathered at time
17. Band C differ only 3 seconds, so they are consistent. But A and C differ 7
seconds, and they are not relatively consistent.

7.2 Time critical scheduling

In a real time environment transactions will have a time-interval associated with
them. The real-time database must ensure that each transaction is executed
within its own time-interval.

7.2.1 Time based scheduling

The problem of scheduling a set of transactions that all have time-intervals in
which they have to be processed on a database with limited computation power
is NP-complete. This does not even take into account that the transactions also
have to be executed in such a way that the database consistency is preserved.
Finding a serializable schedule, the most common notion of database consistency,
is in itself an NP-complete problem. It is therefore unrealistic to assume that the
optimal solution to the time based scheduling problem can be found.

Behaviour under overload

If too many transactions have to be processed in a time interval, there will be no
solution of the scheduling problem. The database is unable to process all trans
actions in time. We would like a scheduler that even under these circumstances
processes as many transactions within their intervals as possible.

Transaction execution length

To do any intelligent scheduling, information about the execution length of trans
actions is needed. If no such knowledge is present the optimal strategy is to sched
ule transactions as early as possible. The notion of slack time is important. The
amount of slack time that a transaction has is the length of the interval in which

81

it is allowed to execute minus the amount of time that it needs to execute. A
correct schedule is easier to find if transactions have a lot of slack time.

7.2.2 Missing deadlines

In an overloaded system, the scheduler will not be able to execute all transactions
within their associated time-intervals. Where in normal databases it is possible
(though not desirable) to queue incoming transaction until workload decreases
and the system catches up, in real-time databases the value of a transaction
will dwindle away once its deadline has been missed. Dependent on the type of
transaction three types of deadlines are recognised: soft, firm and hard deadlines.

Soft deadlines

Transactions with soft deadlines do not lose their complete value once they
have passed the deadline. Instead, the value of a transaction that has passed its
soft deadline slowly dwindles away. The most famous example of this is the large
project (be it bridge-building, software construction, whatever). The number of
times that projects do not make their deadlines is staggering. However, most of
them are still completed. It is often better to have finished a project too late,
than not to have finished it at all. Clearly, a project cannot go on forever. If
no goal is within sight, eventually funding will be stopped, the project will be
cancelled, its value is decreased to zero.

Firm deadlines

Transactions with firm deadlines do lose all their value once the deadline has
passed. There is no use in continuing the transaction. Examples of this are
all around us. Think of going to the supermarket. If you are half-way to the
supermarket and it is closing time, there is absolutely no sense in continuing
your trip.

Hard deadlines

The last type of deadline that is recognised is the hard deadline. If a database
fails to execute a transaction with a hard deadline in time, not only does the
transaction lose all value, but this failure imposes a heavy negative value on the
system. Examples of this lie for instance in computer-controlled security systems.
A crude example is the computer monitoring a nuclear power plant. Once the
reactor temperature rises above a certain limit, the computer must activate the
emergency cooling system. If the computer fails to react in time, a major disaster
might occur.

82

7.3 Priority scheduling

The existence of different types of transactions that each have a different impact
on the system, should their deadline be missed, leads to the introduction of
transaction priorities. Clearly the priority of the emergency cooling system is
higher than the priority of the daily memo delivery program. The mechanism of
priorities can be provided as a service to the users of the real-time database or
it can be an implementation of the different types of deadlines that transactions
have. On the other hand, priorities can also be used as part of the implementation
of a scheduling protocol. For instance in the "Earliest Deadline First" protocol,
transaction priorities are defined as the inverse of their deadlines.

7.3.1 Defining priorities

Before priorities for all transactions are defined, it must be defined what these
priorities exactly mean. In most literature, if transaction t} has a higher prior
ity than t 2 , t} will always have precedence over t}. It is also possible that the
scheduler tries to maximize the total sum of priorities of transactions that are
executed. That would mean that a transaction of priority five could be aborted
by five transactions of priority one.

Imagine a vending machine. Its goal is to earn as much money as possible.
Now if it spends too much time with a customer that is about to buy a very
expensive article, it can better spend that time selling cheap articles to multiple
customers.

The normal priority scheme, where transactions of higher priority always take
precedence is more suited to implement critical 'processes, so in the remainder of
this chapter such a priority scheme is used.

7.3.2 Handling priorities

Suppose that in a very general scheduler a high priority transaction has a conflict
over a data item with a low priority transaction. One transaction has to wait or
abort. Suppose too that the low priority transaction is already being executed.
Two options are clear: aborting the low priority transaction, or letting the high
priority transaction wait. .

Aborting low priority transactions

A transaction with a high priority takes precedence over transactions with low
priorities. A simple implementation to enforce this rule is to abort all low prior
ity transactions that conflict with a high priority transaction. This mechanism
ensures that the transaction with the highest priority will always be allowed to

83

execute. There are several drawbacks to this scheme. First of all, even transac
tions that were very near commit point are aborted. This results in a large waste
of database resources and reduces the overall throughput of the system. Several
schemes have been designed to remedy this problem to some extent. In general,
they abort transactions that are in early stages of their computation and allow
transactions to finish if they are nearly done.

The second problem is that low priority transactions can be life-locked by this
mechanism, if there are a lot of high priority transactions. Often if a transaction
with a low priority is aborted several times, its priority will rise. Take for example
maintenance: missing one maintenance checkup is not very important. However,
regular maintenance is essential for a system to keep functioning in a reliable
way. Maintenance cannot be postponed indefinitely. This results in a "race for
priority" that can disrupt the entire priority scheme.

Priority inversion

If a high priority transaction that is not yet nearing its deadline has a conflict
with a low priority transaction, is does not need to abort that transaction.

Instead of aborting the low priority transaction, it runs to conclusion. But
as the high priority transaction is now waiting on a low-priority transaction, it
is effectively blocked as the low priority transaction will have to wait on higher
priority transactions.

To remedy this problem it has been suggested that the low priority transaction
inherits the high priority of transactions that are waiting for it to finish. However,
this means that a (once) low priority transaction is now allowed to abort medium
priority transactions. This is called the problem of priority inversion.

84

Chapter 8

Integrating operating system &
database design

Normally when researchers start investigating a subject, an abstract representa
tion of a real problem is formulated. The research focuses on one aspect, instead
of looking at the big picture. Once a solution to such an abstract problem is
found, this solution is translated back to the real environment and implemented.

Most of the time it is assumed that real-time databases are built on some
operating system that offers storage services. The properties of these operating
systems are only roughly defined. If the analysis of the database is combined
with the analysis of the operating system, more realistic assumptions about the
reaction time of the operating system can be made. This enhances the time
control and the precision in which the length of transactions can be predicted.

Operating systems offer file storage services, much in the same way that
databases offer more fine-grained storage services. By combining the database
with the operating system this replication of services can be avoided, thus reduc
ing the overhead imposed by the system.

These two observations justify the combining of database design and operating
system design. In this chapter it will be investigated what can be gained from
this combination.

8.1 Data caching

To increase the efficiency of the hard-disk it is useful to keep some of the infor
mation on the hard-disk stored in main memory. Even if the same information
is accessed multiple times, only two disk accesses are needed. One to get the
information from the hard disk and one to update the hard disk before the main
memory is erased. This technique is called data caching.

In large database systems, the cache cannot hold all information that is re
trieved from the hard-disk. At some moment, information stored needs to be

85

erased to make room for new data items that are not yet in the cache. The
efficiency of the caching-mechanism depends on the selection of data items that
are removed from main memory and stored back to disk.

It is important to take the disk cache explicitly into account during real-time
database design. There are two major drawbacks that have to be considered:

• System crashes. If at some moment the system crashes and the main mem
ory is wiped, all changes to data items that were cached are lost. If the
disk is cached, it is not certain that a write to the disk is instantly carried
out. The recovery mechanism has to be adapted to cope with this extra
complication. In general all transactions will be redone whose results might
have been lost in the crash .

• Transaction time bounds. In a real-time system tight bounds on the ex
ecution time of transactions are necessary to do intelligent scheduling of
transactions. If the behaviour of the caching mechanism is not analysed
only the worst case scenario can be assumed: the cache is full, data has
to be written back to the disk before the new data is retrieved and stored
in the cache. So although caching does increase the performance of the
hard-disk, it degrades the worst-case analysis as for a single read operation
at least two disk-accesses will be needed instead of one.

8.2 Virtual memory

Another technique that is frequently used in operating system design is virtual
memory. The actual main memory of a computer is often not large enough to
completely hold very large programs. The CPU can only access a very small por
tion of that memory at the same time (typically one or two locations). Therefore
large parts of the main memory will not be accessed for some time.

The technique called virtual memory makes use of this property by allowing
programs to use more main memory than what is actually available. If a program
accesses memory that does not exist, the (virtual) memory manager stores a
currently unused part of main memory on hard-disk and offers the now free
memory to the program. If main memory that is stored on hard disk is accessed
by a program, the memory is retrieved and some other part of main memory is
swapped to the hard-disk.

The virtual memory mechanism actually uses the hard disk as slow main
memory. To make optimal use of the available (fast) main memory several swap
ping algorithms are possible. Nevertheless, virtual memory degrades the speed
of main memory access.

A tradeoff between available memory and memory speed might be envisaged,
if the degradation of speed would be a gradual process. But this is not the
case. Memory access is a fast as normal until a program (or transaction) accesses

86

memory that is stored on hard disk. That memory access initiates the swapping
of memory to and from the hard disk. This is disastrous for a worst case analysis
of the execution time of transactions.

8.3 Conclusion

As illustrated by the examples above, a lot of practical problems surface if the
solutions to database problems are exported from an experimental environment
to a real environment. Especially, the worst-case execution time of a transaction
is affected by disk-IO. Without previous knowledge about transactions, cache hits
and page swapping cannot be predicted. As in real-time databases timeliness is
often more desirable than fault tolerance, a main-memory system with delayed
writes to disk may be more effective.

87

Chapter 9

Analysis of database designs

In real-time database management systems, it is not so important that the
database has a high transaction throughput, but rather that each individual
transaction has a high chance of completing before its deadline. Although these
two notions overlap, they are not the same, as has been illustrated in an earlier
chapter.

9.1 Existing results

The analysis of the efficiency of real-time database designs has been rather rudi
mentary. Almost all articles that deal with efficiency give simulation results. Al
though simulations can be very useful for comparisons between schedulers they
lack the thoroughness of the analytical approach. Relative few articles have been
written that analyse not-realtime database efficiency instead of using simulations.

In article [YDL93] both two phase locking and pure optimistic concurrency
control are analysed using Poisson processes. This paper presented an analyti
cal approximation of the average transaction length, given that the transactions
arrive at the scheduler as a Poisson process. Unfortunately the analysis of the
two schedulers is mixed, which muddles the article. This distracts from some
important assumptions that where made to arrive at the result.

To be able to say anything about the probability that a transaction will finish
before its deadline, the average execution time is insufficient. The analysis of
the complete probability distribution instead of the average execution time is in
general much more involved.

9.2 Comparison problems

An analysis of a scheduler should result in a set of success probabilities for an
arbitrary transaction under a given workload. This probability will depend also
on the transaction length and the size of the database. Even if a distribution

88

can be specified, it is not easy to compare the efficiency of different real-time
schedulers. This is because the efficiency of a scheduler depends on a number of
parameters:

1. Centralised versus distributed environment. The communication de
lay introduces problems that are very specific for distributed systems. At
the same time, distributed systems offer more computation power. It is
clear that distributed systems are unsurpassed if availability is the crite
non.

2. Read-only queries versus updates. More efficient scheduling is possible
if read-only queries are treated as a special type of transaction. Dependent
on the application of the database (mostly the percentage of transactions
that are read-only transactions) this optimization will be more or less useful.

3. Real-time scheduling versus normal scheduling. The performance
criteria for real-time databases and normal databases differ. A comparison
between a real-time database and a normal database is therefore complex,
but it might be useful to analyse the behaviour of a real-time schedule in a
non-realtime environment and vice versa.

4. Priority based or not. A real-time scheduler can offer a priority mech
anism to the users, to give them some influence over the behaviour of the
scheduler under a high system load. Of course, this affects the efficiency of
the scheduler.

5. Conflict-rate. Schedulers behave differently under different system loads.
A scheduler can be very efficient under a low system load, but lose perfor
mance as soon as the system load increases. Another scheduler can have a
rather constant performance, not perfect under relatively low system loads,
but handling well under high loads.

6. Amount of possible deadlocks. Some schedulers do not prevent the
possibility of deadlock. While this permits them to execute more efficiently,
deadlocks have to be detected and resolved. Dependent on the nature of
the transaction system, deadlocks can be allowed to exist for some time
before they are resolved. Especially in a distributed system this reduces
the message cost that is associated with deadlock detection.

7. Variance of transaction lengths. Several schedulers perform well as long
as all transactions are of the same execution length, while degrading when
lengths of transactions vary. For instance, pure optimistic concurrency
control can lifelock long transactions if a steady stream of short transactions
enters the system. Two phase locking would not suffer from this problem.

89

8. The level of reliability and availability that is required. Reliability
and availability of the database are desirable properties, but they come at
a cost. A distributed scheduler that implements no global commit protocol
is unreliable in case of site failures, but is very efficient. A distributed
scheduler that uses the two phase commit is less efficient but reliable, but
suffers from blocking, thus reducing availability. A scheduler that uses
the three phase commit protocol is both reliable and does not suffer from
blocking, but the three phase commit protocol introduces more overhead
than the other two approaches.

9. Required advance knowledge about transactions. Schedulers that
rely on access invariance1can overcome the problems of lifelock and deadlock
easily. Consequently a more constant response time can be guaranteed. The
rate-monotonic scheduler is a perfect example. This scheduler knows that
all transactions are periodic, with deadlines equal to the beginning of the
next period. All transactions can be preempted and continued later. The
last assumption distinguishes the allowed transactions of the rate monotonic
scheduler from transactions that are normally allowed by databases.

9.3 Conclusion

Very few articles deal with the efficiency of transaction schedulers in an analytical
way. In the field of real-time systems, where transactions lose their value once
their deadline has passed, guarantees about transaction execution times are even
more important than in normal databases.

In normal databases, the throughput of the system is of primary concern.
Such throughput can be easily measured in a testing environment. In real-time
systems, the execution time of each individual transaction is important and more
elaborate testing techniques are necessary. At the same time, the analysis of the
transaction execution time becomes more involved, as the average execution time
no longer suffices.

It will probably be hard to give sharp analytical results, as the problem has
remained almost without results for so many years. Research should start with
analysing simple schedulers with certain restrictions on the transaction types and
frequencies. Nevertheless, the field of real-time schedulers does need a fundamen
tal basis, that cannot be completely provided by test-results.

IThe data items needed by a transaction are known in advance.

90

Chapter 10

Research issues

After presenting this overview of the field of real-time distributed databases it is
time for some reflection. Although a lot of good results are already available in
the separate subfields it is not instantly clear that we are now able to build the
optimal real-time database with these mechanisms. In this chapter the overview
is completed by pointing out the areas where further research is still needed. This
will be contrasted by a short summary of results that are already known.

10.1 From user-interface to implementation

The real-time distributed database stores information that corresponds to the real
world and offers various services to its users. Instead of restricting the notion of
users to humans, users can range from other computers to air passing a pressure
valve. This wide range of users has no knowledge of the database structure and
high level services have to be provided.

These services are typically provided by transactions that have been pro
grammed in advance. Transaction programmers deal with input/output devices
and prefer to represent actions in an abstract language, independent from the
underlying implementation of real-time databases. Algebraic or relational lan
guages exist that allow arbitrary complex database transactions (for example
SQL). Classic languages do not deal with real-time aspects and languages that
do take real-time into account are just beginning to emerge.

The translation from algebraic (or relational) operators on an abstract rep
resentation of the database to actual dis'tributed transactions is the domain of
transaction managers. Different translations of an algebraic expression can differ
exponentially in execution time and message costs of the resulting transactions
(in a distributed environment). Finding the optimal transaction corresponding
to an algebraic expression is NP-hard. Several heuristic Transaction Managers
have been developed that offer good approximations.

91

10.2 Transaction scheduling & correctness

To increase the efficiency of transactions it is beneficiary to execute transactions
in parallel. However, the database consistency is defined only between transac
tions. During a transaction, a temporary database inconsistency is allowed to
enable efficient execution. If transactions are allowed to execute concurrently,
transactions might read data that are temporally inconsistent and act as if the
data are consistent. Permanent inconsistencies can occur. To determine whether
two transactions can execute concurrently the database system provides a trans
action scheduler.

The transaction scheduler tries to maximize the amount of concurrency (exe
cuting transactions in parallel) while it preserves the database consistency. Again,
finding the optimal schedule is NP-complete. Existing transaction schedulers
preserve consistency at the cost of reduced concurrency. As these schedulers are
simple approximations of the optimal schedule, they can be improved.

10.2.1 Transaction classes

It has been observed that for several classes of transactions the scheduling prob
lem is not NP-complete at all. A taxonomy of transaction classes that have nice
properties that allow the scheduler to generate optimal schedules efficiently can
be very useful but does not (completely) exist. A well-known class consists of
read-only transactions. All read-only transactions can execute concurrently.

10.2.2 Periodic transactions

A lot of scheduling research has gone into the the scheduling of transactions with
hard-realtime constraints. These transactions are not allowed to fail, they have to
run to completion within their execution interval or otherwise the entire schedule
is incorrect. A lot of these schedules were constructed at pre-runtime. Therefore
the complete set of transactions that was to be scheduled was known in advance.
Often the scheduled transactions are periodic, i.e. a transaction is at regular
intervals or sporadic, i.e. a transaction is run at regular intervals, but may skip
some of these runs.

The periodic nature of transactions can probably be exploited as well in soft
real-time scheduling systems. In soft real-time, the number of successful trans
actions is optimized. It is permitted that some transactions fail to meet their
deadlines, as long as it is a small percentage of the total number of transac
tions. An optimal soft-realtime schedule can always be found, opposed to a hard
real-time schedule that may not exist. An optimal real-time schedule of periodic
transactions should probably guard against life-lock.

92

10.2.3 Allowing inconsistencies

Other research tries to increase the amount of concurrency allowed at the cost of
introducing inconsistency in the database. Such a scheduler can be useful if the
amount of inconsistency introduced is somehow bounded. Especially in real-time
databases it cannot be avoided that inconsistency in data gathered from the real
world occurs. Therefore this seems a natural way to increase concurrency.

10.3 Real-time transaction scheduling

In a real-time database, transactions are only allowed to execute within certain
time intervals. A scheduler that not only preserves data consistency but also
ensures that all transactions are executed in their interval has to be provided.
The problem of generating a schedule that executes all transactions within their
intervals in an environment with limited resources is NP-complete.

Ordinary schedulers can be slightly modified to incorporate deadlines. Un
fortunately most schedulers behave badly under high system loads. An ordinary
scheduler will try to execute all transactions. If the system load is high, this will
mean that all transactions run to completion, but also that almost all transac
tions will have missed their deadlines. A real-time scheduler must decide to abort
transactions that miss their deadlines in order to complete a (constant) number
of transactions in time.

A lot of research has been directed at hard real-time scheduling. In hard real
time, not even a single transaction is allowed to fail. This is a very restrictive
constraint, that often cannot be realised. Also a common assumption is that
transactions can be pre-empted, that is put on hold and resumed later. This is
quite contrary to the correctness constraints of databases, where the database
consistency is temporarily disturbed during a transaction. It therefore seems
more logical to use the existing correctness preserving algorithms as a starting
point instead of using the real-time scheduling algorithms as a starting point for
real-time database schedulers.

10.3.1 How many resources are required?

Surprisingly little analytical studies have been published about transaction ex
ecution times, and I know no analytical results in real-time scheduling. The
performance of a soft-realtime transaction scheduling mechanism can be defined
by the probability that a transaction executes within its time interval. Several
simulation studies have been made to determine these probabilities, but no an
alytical analysis of transaction schedulers are available. An analytical analysis
would present us with a set of hardware requirements, as well as clear assumptions
on the behaviour of the users of the real-time database.

93

Associated with this probability it is interesting to specify the relation between
the performance of the real-time database and the hardware that supports the
database. If for a given real-time scheduler this relation can be specified an
estimate of required resources can be given analytically for a given problem.

10.3.2 Disk-based systems

As mentioned in the previous chapter, a lot of timing problems arise when the
underlying operating system optimizes disk access by buffering, or when virtual
memory is implemented. Periodic cache-flushes could be scheduled when no
transactions are in progress. This would prevent unreliable reaction times of the
operating system, at the cost of an extra transaction (the flushing of the cache)
that has to be scheduled.

10.3.3 Combining correctness and timeliness

Scheduling transactions in such a way that consistency of the database is pre
served while offering optimal concurrency and scheduling transactions within
their execution intervals are related. As these problems are tough to solve on
their own, they are often treated separately. In real-time databases, a scheduler
has to be provided that takes both requirements, correctness and timeliness into
account. The current approach is to use existing, correctness preserving sched
ulers and prove that under a restricted workload sufficient transactions meet their
deadlines.

10.4 Distributed transactions

The distribution of a database can increase the availability, reliability and ca
pacity of the database. This does come at a cost. First of all, communication
between the different sites of the database becomes an important factor of time
delay. Secondly, scheduling of distributed transactions becomes more involved
because of distributed deadlocks, global correctness and routing problems.

10.4.1 Communication delay

As mentioned, communication delay is an important factor in distributed databases.
Therefore algorithms that were fairly trivial in a centralised database have to be
optimized in the distributed environment. A way to reduce message costs is to
replicate data over the different sites, but this introduces new consistency prob
lems. Several solutions have been proposed and exist, but the field is still under
development.

94

10.4.2 Query optimization

The transaction manager that optimizes transactions to reduce the number of
execution steps of a transaction has to be adapted. The size and the number of
messages between sites is more important. A simple optimization is to compute
selections on tables at the local sites.

10.4.3 Fragmentation of the database

Important design choices are made when the database is distributed over the
available sites. To what extent should the information in the database be repli
cated? What is a good fragmentation of the information in the database? The
answer to these choices depends on the topology and capacity of the sites that
are cooperating to form the distributed database.

The problem to fragment a database in such a way that with a uniform access
distribution the workload is optimally divided over the sites is NP-complete.
It is therefore interesting to investigate what extra knowledge about the access
behaviour of the database is needed to come up with good distributions of the
database. An interesting starting points is for example knowledge about the
access points of data items. If a data item is only accessed by users from one or
two sites, it is natural to store the requested item on at least one of these sites.

The relation between fragmentation and replication can be studied. Of course,
access times are optimal in the fully replicated case. However, if a lot of updates
take place in the database, the replication of data introduces extra overhead
to maintain correctness instead of speeding up transactions. To what extent a
database should be replicated to provide the optimal access behaviour is an open
question.

10.4.4 Synchronising sites

The scheduler can receive new transactions at more than one site. Existing
(centralised) schedulers that make use of unique time-stamps have to ensure that
time-stamps issued at different sites are unique and somehow related (thus time
stamps issued at roughly the same time should have roughly the same value).

In general, important execution steps of transactions should be synchronised
over all sites. This means that algorithms have to make sure that all sites have
finished such an important step before they proceed to the next step of the
transaction. Examples are synchronisation between the locking and unlocking
phase in two phase locking, and the commitment of transactions. Unpredictable
results will follow if a transaction commits on one site and aborts at another site.

Adapted algorithms for distributed databases have been provided for most
existing (centralised) database mechanisms. It is hard to provide algorithms that·
are efficient, reliable and offer graceful degradation of the database in case of

95

failures, but there is already a large library of generic algorithms that provide
good communication protocols between sites in a distributed network.

96

Bibliography

[GM83] Hector Garcia-Molina. Using semantic knowledge for transaction pro
cessing in a distributed database. ACM TODS vol. 8 pp 186,213,
1983.

[GS85] N. Goodman and D. Shasha. Semantically-based concurrency control
for search structures. Proceedings of the ACM pag 8-19, 1985.

[IK94] T. Ibaraki and T. Kameda. On the optimal nesting order for com
puting n-relation joins. ACM transactions on database systems pp
482-502, 1994.

[JK84] M. Jarke and J. Koch. Query optimization in database systems. ACM
computing survey pp 111-152,1984.

[KM93] Tei-Wei Kuo and Aloysius Mok. Ssp: a semantics-based protocol for
real-time data access. Proceedings 14th real-time systems symposium,
1993.

[Kna87] Edgar Knapp. Deadlock detection in distributed databases. ACM
Computing Surveys 19(4) p. 303, 1987.

[KR81] H.T. Kung and John T. Robinson. On optimistic methods for con
currency control. ACM 0362-5915/81/0600-0213, 1981.

[KR92] Mohan Kamath and Krithi Ramamritham. Performance characteris
tics of epsilon serializability with hierarchical inconsistency bounds.
Technical report, University of Massachusetts, 1992.

[OzsuV91] M. Ozsu and P. Valduriez. Principles of distributed database systems.
Prentice-Hall International Editions, 1991.

[Pap79] Christos H. Papadimitriou. The serializability of concurrent database
updates. Journal of the association for computing machinery, Okto
ber1979.

[SY82] M. Saccoo and S. Yao. Query optimization in distributed database
systems. Advances in computers, volume 21 pp 225-273, 1982.

97

[Vid85] K. Vidiasankar. A simple characterization of database serializabil
ity. 5th conf. on foundations of software technology and theoretical
computer sciency, LNCS 206, 1985.

[Vid91] K. Vidiasankar. Unified theory of database serializability. Funda
menta Informaticae XIV, 1991.

[Wei87] William E. Weihl. Distributed version management for read-only ac
tions. IEEE transactions on software engineering No.1, 1987.

[YA88] Shyan-Ming Yuan and Ashok. K. Agrawala. A class of optimal de
centralized commit protocols. IEEE?, 1988.

[YDL93] P. Yu, D. Dias, and S. Lavenberg. On the analytical modeling of
database concurrency control. Journal of the ACM p. 831-872, 1993.

98

Index

Absolute consistency, 79
atomic broadcast, 75
atomic commit, 73
atomic transactions, 57
availability, 72

centralised databases, 50
committing, 57
concurrency control, 61
conflict serializability, 61

data caching, 85
deadlock, 67
distributed databases, 51

epsilon serializabili ty, 64

Fail-insane failures, 69
Fail-stop failures, 69
fault tolerance, 72
final-state serializable, 62
firm deadlines, 82

hard deadline, 82

input certification, 71

legal,62
lifelock, 67
locking phase, 63
log, 70

metric, 65
Multi-version databases, 66

nested transaction model, 58
non-blocking property, 74

omission, 69

99

optimistic schedulers, 64

pessimistic protocol, 64
primary site, 78
priority, 55
priority inversion, 84

read action, 58
read-only transaction, 66
reads-from relation, 58
real-time databases, 52
recovery, 70
Relative consistency, 79

schedule, 50
serializability, 50, 61
Similarity serializability, 65
slack time, 81
soft deadlines, 82
Stable storage, 70

temporal consistency, 79
time-stamps, 64
transaction, 50, 57
transaction priorities, 83
two phase locking, 63

unlocking phase, 63

view serializable, 62

write action, 58
writes-writes, 58

