
Execution Autonomy in
Distributed Transaction Processing

Calton Pu and Avraham Le�
Department of Computer Science

Columbia University
New York� NY �����

Technical Report No� CUCS���	�
�

Abstract

We study the feasibility of execution autonomy in systems with asynchronous transaction
processing based on epsilon�serializability �ESR�� The abstract correctness criteria dened by
ESR are implemented by techniques such as asynchronous divergence control and asynchronous
consistency restoration� Concrete application examples in a distributed environment� such as
banking� are described in order to illustrate the advantages of using ESR to support execution
autonomy�

Index terms� epsilon�serializability� autonomy� asynchronous transaction processing� diver�
gence control� consistency restoration�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161440125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

� Introduction �

� Motivating Applications �
��� Autonomous TP �
��� Service Guarantees �
��� Integration with Classic TP �
��	 Network Partitions � 	

� Epsilon�Serializability �ESR� 	
��� Standard SR Model �
��� Epsilon�Transaction �ET� �
��� Distributed ETs �

	 Asynchronous Divergence Control �ADC�

	�� Designing ADC Methods �
	�� Distributed ADC Methods �
	�� Heterogeneous ADC Methods �

� Asynchronous Consistency Restoration �ACR� �
��� Limitations of Classic Recovery �

��� Semantics�Based Compensation ��
��� Designing ACR Methods ��
��	 Independent Updates ��

 Applications Revisited ��
��� Autonomous TP ��
��� Service Guarantees �	
��� Integration with Classic TP �	
��	 Network Partitions �	

 Related Work ��

� Conclusions ��

ii

� Introduction

A key assumption made by techniques that provide global recovery and concurrency atomicity
distributed databases such as R� ��
�� is that system components want to cooperate in providing
global transaction properties� However� there are many areas �e�g�� performance and availability�
where participation in a classic distributed transaction will infringe on a local transaction sys�
tem�s capabilities� Because of this concern� much on�going e�ort �e�g�� ��� �� �	� ��� ��� ��� ��� ����
is devoted to providing global transaction capabilities� while at the same time allowing local sys�
tems to maintain individual autonomy� In addition to motivations such as heterogeneity �����
autonomy per se is increasingly important because of the change in the cost�benet ratio of
intersite cooperation in large systems� For example� two�phase commit becomes less desirable as
the diameter of the network increases� since both the response time and the probability of fail�
ure become higher ����� Also� two�phase commit may impose unnecessary synchronization and
prevent independent local commit ���� �	�� Supporting autonomous operations can potentially
improve both performance and availability�

Before discussing the issues posed by �autonomy� we note that the denition itself is in
a state of �ux ����� Some researchers distinguish between �design autonomy� and �execution
autonomy�� Design autonomy involves the question of who controls the design and maintenance
of data schema� Although design autonomy poses many di�cult problems� we will not pursue
it here�

The focus of this paper is on execution autonomy because of its dramatic impact on trans�
action processing �TP� systems� In this context� autonomy allows local systems to control local
transaction execution without being forced to accede to a global transaction coordinator in the
scheduling and execution of transactions� Execution autonomy in e�ect calls the entire notion
of distributed TP into question because participating sites are no longer willing to sacrice in�
dependence simply in order to implement a globally serializable transaction schedule� Instead
of the many political and administrative issues posed by autonomy� we discuss mechanisms that
support autonomous TP� Furthermore� we are only interested in mechanisms that support a
wide range of autonomy policies � Mechanisms that impose a particular policy are a premature
optimization and too in�exible in a large distributed system� Thus� the issues of administrative
and design autonomy will become relevant after suitable and general mechanisms supporting
autonomy have been developed�

If sites are not willing to surrender control to a global transaction coordinator because of the
performance penalties which arise in large and highly replicated systems� they will not participate
in algorithms that maintain the traditionally synchronous notions of transactions� Sites lose
much availability if they must coordinate updates with many other sites in the system� they
may then be willing to trade reduced consistency for increased availability� We believe that one
direction for the evolution of autonomous TP systems is towards asynchronous TP� Asynchrony
clearly avoids the problems that were just discussed for autonomous systems� On the other
hand� a basic problem in any kind of asynchronous processing is the existence of inconsistency
while components have not synchronized� Since a major reason for using transactions in the
rst place is consistency maintenance� we need to be able to specify rigorous consistency criteria
that can be maintained even with asynchronous TP� We discuss such a framework� termed
epsilon�serializability� in Section ��

In Section � we motivate this approach by showing example applications that are limited by
both classic TP methods and some previously proposed asynchronous techniques� Section � then
summarizes the properties of and interface to epsilon�serializability� Some practical algorithms
for the implementation of ESR are outlined in Sections 	 and �� Section � revisits the motivating
applications� and uses ESR to solve them� Some related work is summarized in Section �� some

�

conclusions are o�ered in Section ��

� Motivating Applications

In this section� we discuss the limitations of classic TP as well as the limitations of some partic�
ular solutions previously proposed for some of these problems� Several shortcomings of classic
TP systems hinder the programmer of distributed and autonomous TP applications due to the
lack of asynchronous TP support to enable a site to execute autonomously� Some limitations of
other proposed solutions are�

� the lack of smooth integration of asynchronous TP execution with classic TP execution�

� the lack of consistency guarantees that a transaction can rely on to maintain the desired
trade�o� between consistency and performance�

� the lack of a transparent specication� and treatment� of inconsistency�related uncertainty
so that applications can be written independently of particular implementation techniques�

��� Autonomous TP

For historical reasons� and also for high availability of computer hardware� most airline reser�
vation systems are centralized mainframe TP systems� Given that most of �ight bookings are
made at the end points of each �ight� both performance �e�g�� response time� and availability of
network communications �e�g�� temporary network partitions� may improve if a distributed TP
system is used instead� For example� a network of smaller and cheaper machines could handle
�ights departing from a single city� In such a distributed airline reservation system� autonomous
execution is important� we do not want to sacrice local performance due to remote requests
�e�g�� locking a �ight record at the busy check�in time�� nor do we want to compromise local
availability due to remote crashes �e�g�� being unable to book Chicago because of a hurricane in
Florida�� �The issue of replication in asynchronous TP is discussed in ��	���

Normally� when the distributed TP system is running well� no�shows are su�cient protection
for inconsistent data �application semantics exploited by the practice of overbooking�� Since the
system does not have to be absolutely consistent� high performance is achieved by free access
to the database� Since most of �ights are not full� this strategy optimizes for the normal
case� However� as the �ight becomes full� an airline would like to be more careful since the
penalty for passengers with reservation left on the ground is great �monetary compensations
and�or alternative travel arrangements�� Avoiding over�ows is very important to airlines� both
to reduce liabilities and to improve the company�s image as being responsible and competent�
Therefore� as a particular �ight is getting full� the application needs to become conservative in
maintaining database consistency�

Another classic TP application is banking� Consider a large bank that has been acquiring a
number of smaller banks in di�erent states� Due to di�erences in legislation� it is advantageous
to maintain the original computing systems of each acquired bank �the �sites��� Each site is
assumed to run a classic TP system� However� the parent bank also wants to o�er integrated
TP service in order to to attract corporate customers that do business in several states� In this
example� electronic funds transfer service must maintain serializable consistency so money would
not be lost� However� the parent bank�s investment services may want to obtain an approximate
picture of the entire group�s assets and investments each day� For example� the asset report
may be rounded to the nearest thousand dollars for items less than a million� and rounded to
the nearest million for items above a million� In this case� consistency requirements are relaxed

�

since only the �big picture� is being sought� For example� for a report in which units are in
millions of dollars� an inconsistency bounded by ������� will add only a maximum of ��� to
the expected rounding error�

��� Service Guarantees

In time�critical applications such as the stock market� the ability to provide service�level guar�
antees may be important� Current requirements specify that response�time should be as fast
as possible� with little concern for consistency� This works well during normal times� when the
time lag is very short or zero so that results tend to be consistent� However� during a crisis�
when the quality of data becomes important� the no�consistency requirement allows the system
to return essentially arbitrary data�

Although the above example is also valid for a centralized system� consider a distributed
system linking the New York Stock Exchange �NYSE� and the Chicago Stock Exchange� Under
normal conditions� a local broker would have a minimal advantage over a remote competitor�
since the transmission and execution delay between New York and Chicago is measured in
seconds� However� if volume climbs and the system slows down� inconsistency di�erences can
become quite large� For example� if NYSE slows down� then a Chicago broker may be getting
increasingly less accurate information compared to a New York rival� It would be useful for her
to know the exact �age� of each piece of information in order to make correct buy�sell decisions�

Consistency guarantees are similarly important to other kinds of service contracts between
computer vendors and customers� A guarantee in performance� availability� and in this case�
consistency� typically increases the value of the system because of the added dependability� A
guaranteed service has a competitive advantage over one that does not� However� because such
guarantees involve nancial penalty in case of failure� an e�cient way to o�er such guarantees
is important�

��� Integration with Classic TP

Although the airline reservation system may not need rigorous consistency in the sense of serial�
izability �SR�� a bank needs it for certain kinds of transactions such as electronic funds transfer�
The same distributed database must then support a spectrum of �degrees of inconsistency�
simultaneously� At one end of the spectrum is rigorous SR consistency� At the other end are
varied trade�o�s �for reasons of performance� availability� and autonomy�� between consistency
and asynchrony� Indeed� many autonomous TP systems will need to move along the spectrum as
the circumstances change� For example� the airline reservation system and stock market would
emphasize improved response time during normal times when inconsistency is minimal anyway�
but emphasize consistency when few seats are left because the penalty for inconsistency is then
high� Conversely� in banking or military operations� high consistency is maintained during nor�
mal operation� but in a crisis limited inconsistency is permitted so as to achieve operational
availability and autonomy� In such cases� the system must repair inconsistency when the crisis
is over�

Gray�s di�erent degrees of consistency ����� o�ers an example of such a spectrum� Degree �
consistency is equivalent to SR� but degree � consistency o�ers higher concurrency for queries�
at the cost of reduced consistency� since updates are allowed to �dirty� data already read by
queries� Degree � is reportedly used at many DB� installations� underscoring the importance
of integrating inconsistency specications� However� there are two limitations in this approach�
First� degree � is peculiar to a particular concurrency control algorithm� namely two�phase
locking� This limits database interoperability� since other concurrency control algorithms cannot

�

provide the same level of consistency� Second� because no bounds are set on the total amount of
inconsistency� degree � queries will become less accurate as a system grows larger � This implies
that service guarantees cannot be o�ered as a system scales up�

Quasi�serializability �QSR� has been proposed ��� as an abstract correctness criterion for a
multidatabase environment� QSR species that local databases and global schedulers should
maintain SR� but isolates a global scheduler from the local schedulers� This way� the local
histories and the global histories considered in isolation are SR� even though their combination
may not be� QSR is well�dened and easy to implement� However� its applicability is limited
in the trade�o� between consistency and performance� The number of non�SR histories allowed
by QSR is limited by its global serializability requirement� At the same time� unbounded
inconsistency may be found when we consider the global history and the local histories together�

��� Network Partitions

Another important problem in the synchronous execution of distributed TP is that when the
communications network partitions� transactions tend to block � i�e�� they have to wait for the
other partition�s� to reconnect� The information required for distributed TP includes the trans�
action outcome decision �commit or abort� as well as the serialization order� Autonomous
execution implies that blocking would be reduced�

Data�value Partitioning ���� has been proposed as a method to for increasing distributed
TP system availability and autonomy by explicitly separating parts of the value of a data item
into di�erent sites� Since the di�erent parts may operate asynchronously even during network
partitions� Data�value Partitioning increases autonomy because of its non�blocking character�
The basic idea is to allow more parallel processing by dividing the data item value� While this
division increases concurrency and avoids blocking� it also introduces some uncertainty to the
value of the data item as a whole� The problem is that if several updates on a data item are
pending� some of them may commit and others abort� so that the denite value of the whole
data item will be known only at the completion time of the updates� This makes reading a data
value non�trivial� since� in principle� the uncertainty can be arbitrarily large� In practice� the
uncertainty is limited by the number of partitions in Data�value Partitioning� assuming that
each update has a ceiling� Leaving the handling of the uncertainty to application programmers
may then be an adequate solution in a system of moderate size� However� as TP systems grow
faster and larger� the uncertainty increases� making uncertainty control more di�cult�

� Epsilon�Serializability �ESR�

Epsilon�serializability is an abstract framework that o�ers a solution to the motivating applica�
tions described in Section �� In the next three sections we rst describe the properties of ESR in
a distributed environment� and then discuss implementation techniques� In Section � we revisit
the applications and use ESR to solve them�

The general idea of ESR is to preserve consistency� but� at the same time� allow some bounded
slack� When this �in�consistency slack converges to zero� ESR reduces to serializability �SR��
In addition� although ESR allows inconsistent data to be seen� it requires that data eventually
converge to a consistent �SR� state� ESR allows the degree of inconsistency to be controlled
so that the amount of error �departure from consistency� can be reduced to a specied margin�
This control is at a very ne granularity since each transaction may specify its own limit� An
autonomous TP system should tolerate temporary inconsistency during autonomous operation
and repair it later when the system returns to a cooperative mode� ESR�based TP systems

	

permit limited inconsistency to arise� and repair it through two techniques� asynchronous
divergence control �Section 	� and asynchronous consistency restoration �Section ���

��� Standard SR Model

A database is a set of data items� which support Read and Write operations� Read operations
do not change data and Write operations do� �Section ��� will introduce additional semantics
to database operations�� A transaction is a sequence of operations that take a database from
a consistent state to another� Transactions may be updates that contain at least one Write or
queries that are read�only�

Our terminology follows the standard model of con�ict�based serializability ���� Two oper�
ations are said to con�ict if at least one of them is a Write� so we have read�write �R�W� and
write�write �W�W� con�icts� Each pair of con�icting operations establishes a dependency� A
history is a sequence of operations such as Reads and Writes� A serial history is a sequence
of operations composed of consecutive transactions� A history of transaction operations is said
to be serializable �SR�history� if it produces results equivalent to some serial history� in which
the same transactions executed sequentially� one at a time� Concurrency control methods that
preserve SR �e�g�� two�phase locking� are algorithms that restrict the interleaving of operations
in such a way that only SR�histories are allowed�

Intuitively� in the standard model� a history is shown to be an SR�history by rearranging
its operations according to certain constraints imposed by R�W and W�W dependencies� The
rules of rearrangement are given by concrete concurrency control methods� A more formal way
to specify concurrency control uses a serialization graph �SG�� in which each arc represents
the precede relation ���� Transaction T� precedes T� when one of T��s operations precedes and
con�icts �R�W or W�W� with T��s operations� Since the Serializability Theorem ��� says that
a history H is SR if and only if its serialization graph SG�H� is acyclic� an acyclic SG implies
an SR�history�

��� Epsilon�Transaction �ET	

An epsilon�transaction� denoted by ET� is a sequence of operations that maintains database con�
sistency when executed atomically� However� an ET di�ers from standard transactions �denoted
by T�� in that an ET also includes a specication of the amount of inconsistency permitted the
ET� This per�ET limit of allowed inconsistency is called an ��specication� ���spec for short��
the specication must be met� despite the concurrent execution of other ETs�

Abstractly� an ��spec is divided into two parts� a limit on imported inconsistency and a
limit on exported inconsistency� Of course� many kinds of inconsistency can exist� An ��spec
can therefore take several forms� as long as it is dened using a monotonic distance metric �����
In the airline example� the number of seats is a linear distance metric �therefore monotonic��
Each ET includes two parameters� ��� ImpLimit denotes the maximum number of seats in non�
SR con�icts that the ET can import from other ETs� and ��� ExpLimit denotes the maximum
number seats in non�SR con�icts that the ET can export to other ETs� For simplicity of
presentation� our ImpLimit�ExpLimit ��spec lumps together all sources of inconsistency� In this
paper� we use a concrete example for illustration� Our example is the number of seats in an
airline reservation system� This distance metric� as well as other examples such as banking�
is linear� The ADC methods can be generalized to other inconsistency specications using
techniques described in �����

One important observation is that when ImpLimit � � and ExpLimit � �� the ET is seri�
alizable� so ETs include the standard Ts as a boundary case� We continue to use T as a short

�

ImpLimit � � ImpLimit � �

ExpLimit � � Transaction QET

ExpLimit � � UET GET

Table �� Four Kinds of ETs

notation for ETs that are serializable� Usually� when we refer to an ET we mean one of the other
kinds of ETs shown in Table �� query ETs denoted by QET � consistent update ETs denoted
by UET � and general ETs denoted by GET � Intuitively� when ImpLimit � � and ExpLimit � ��
�the query� ETs may import some inconsistency� up to ImpLimit� When ImpLimit � � and
ExpLimit � �� �the consistent update� ETs may export some inconsistency� up to ExpLimit�
When ImpLimit � � and ExpLimit � �� the GET may both import and export inconsistency�
In this case the inconsistency in the database may grow unboundedly� This is the problem
addressed by consistency restoration methods�

A history containing query ET and update ET operations is called an ��serial history if the
di�erence between it and a serial history is less or equal than a specied ��spec� For example� a
��serial history is a serial history as dened in Section ���� But any arbitrary history is an ��
serial history� since innite amount of inconsistency is allowed� In our airline example� an ��serial
history for a nite ��spec is a history in which some ETs have their operations interleaved� The
interleaving is such that for every ET� the number of seats involved in the interleaved operations
add up to less than its ��spec�

An ESR�history is a history that produces results equivalent to an ��serial history dened
by the ��spec of the set of ETs in the history� A database that executes ETs and produces an
ESR�history is said to support epsilon�serializability �ESR�� Note that the same way several SR�
histories may exist for each serial history we have many ESR�histories for each ��serial history�
In this paper� we are not concerned about the existence of an �optimal� ��serial history for a
given set of ETs or a �minimal� ESR�history for a given ��serial history� As long as we can
rearrange the operations in a history to produce an ��serial history� it is an ESR�history�

Consider two ETs in the banking example� An update UET
�

� ImpLimit� � and ExpLimit�
	�� � is dened by the sequence of operations R��a� R��b� W��a� W��b�� and a query QET

�
�

ImpLimit� ���� and ExpLimit� � � dened by the sequence of operations Q��a� Q��b�� In our
notation� R��a� means a Read operation in UET

�
on a� W��a� denotes a Write operation in UET

�

on a� and Q��a� means a read operation in QET
�

on a� We further assume that W��a� changes a
by ��� and W��b� changes b by ��� �this can be calculated by the query compiler� a programmer
declaration� or at the lowest level� the raw amount of update��

A simple example of ESR�history is�

R��a�R��b�W��a�Q��a�Q��b�W��b�� ���

History ��� is an ESR�history �in fact� an ��serial history�� It is easy to see that QET
�

precedes
UET
�

because of a R�W con�ict on b and UET
�

precedes QET
�

because of another R�W con�ict
on a� Thus the sub�history formed by UET

�
and QET

�
is not serializable� However� the non�SR

interleavings result in a di�erence of ��� from an SR�history� which is within the specied limits
for both UET

�
and QET

�
� so history ��� qualies as an ESR�history�

�

��� Distributed ETs

In a traditional TP system such as R� ��
�� a distributed transaction is subdivided into subtrans�
actions� each executing at one site� We adopt a similar model� When a distributed ET �dET� is
submitted� it is divided into sub�ETs� called asynchronous sub�ETs �asET� for emphasis� Then
the asETs are distributed from the originator site to the execution sites� one asET per site� At
completion of an asET� the executing site returns the results to the originator site for assembly
and delivery to the user�

Our model of a distributed TP system extends classic TP systems� The execution of dETs
is handled by asynchronous divergence control �ADC� and asynchronous consistency restoration
�ACR� methods� These are analogous to distributed concurrency control and crash recovery
methods in classic distributed TP� The role of asynchronous divergence control is to prevent
inconsistency from being introduced into the database� asynchronous consistency restoration re�
pairs the global database once some inconsistency is detected� Our goal is to maximize database
consistency� either through serializable transactions or ETs that limit the amount of inconsis�
tency� This is in contrast to multidatabases ���� in which global inconsistency is tolerated�

Because our focus in this paper is on the interaction between sites� we assume that each site
is capable of handling its own asETs� In fact� to avoid complications unrelated to the autonomy
issue� we assume that each asET is a serializable transaction� i�e�� there is no asynchronous
execution within each site� The incorporation of other kinds of ETs as asETs �QET � UET � and
GET � is straightforward but non�trivial� Since our focus is on the useful properties of ESR
for autonomous TP systems� we omit implementation and usage issues such as the distribution
and negotiation of ��spec among sites� This simplication brings ESR closer to QSR ���� since
both assume local databases to maintain SR� However� even this simple case of ESR allows more
concurrency than QSR� since QSR insists that global history to be SR when considered by itself�

� Asynchronous Divergence Control �ADC�

Divergence control methods for ESR have similar goals to those of concurrency control methods
for SR� We want e�cient algorithms that guarantee some correctness criteria� One important
observation is that a global property such as serializability will always require some global vali�
dation� since the union of locally serializable asETs do not make a globally serializable dET� In
contrast� local properties such as linearizability ���� do not need global validation�

ESR spans the spectrum between global and local properties� On the one hand� ESR is
compatible with SR� so that ESR is a global property when � � �� On the other hand� ESR
is a local property when � � �� �QSR is also a local property�� In other words� as the ��
spec increases� ESR becomes increasingly local� In this paper� we are primarily concerned with
applications that use relatively tight bounds for their ��spec� In the airline example� the bound
is a small number of seats� As a result� the divergence control methods described here have a
strong global �avor� i�e�� they resemble classic concurrency control methods�

��� Designing ADC Methods

An important property of ESR is that it allows the amount of inconsistency �the ��spec� that
a query ET may see to be bounded rigorously� The type of inconsistency is expressed in a user
specication� For example� in the banking context� an ��spec is formulated in dollars� The job
of an ADC method is to keep the amount of inconsistency in the dET calculating total checking
deposits to within the ��spec� despite any number of concurrent updates�

�

The design of ADC methods follows a two�stage methodology� extension and relaxation�
In the rst stage� existing concurrency control methods are extended� by identifying the places
where the CC methods detect non�SR� con�icting operations� In the second stage� the extension
is relaxed to allow for more concurrency� The underlying idea is that �con�ict�based� concur�
rency control methods must be able to identify the non�SR con�icts and prevent a cycle from
forming in the Serialization Graph� The extension stage isolates the identication part of con�
currency control and the relaxation stage modies the cycle prevention part so as to permit
specic inconsistencies� The exact modication varies for each concurrency control method� For
example� in a previous paper ���� we have extended two�phase locking ��PL�� timestamp�based�
and optimistic validation methods� For brevity we omit the details here�

In our banking example� a general implementation strategy of the relaxation stage for the Im�
pLimit and ExpLimit specications �Section ���� could be based on two inconsistency counters �
associated with each ET� ImpCount and ExpCount� ImpCount records the total amount in dol�
lars of the non�SR con�icts that the ET has imported so far� and ExpCount maintains the total
amount in dollars of the non�SR con�icts that the ET has exported so far� To bound the inconsis�
tency according to the ��spec� the ADC methods ensure for each ET that ImpCount � ImpLimit
and ExpCount � ExpLimit� Since the ADC methods do not allow permanent inconsistency to
be introduced into the database� an ET cannot have both ImpLimit� � and ExpLimit� �� In
other words� only QET and UET can execute under ADC� not GET �

��� Distributed ADC Methods

The rst case we consider is a distributed TP system where every site supports strict �PL�
i�e�� they maintain the locks until the dET commits �or aborts�� However� strict �PL is a severe
infringement of execution autonomy� since the release of local locks depends on the dET commit�
which is a global event following a commit protocol� In other words� strict �PL is a mechanism
that inherently imposes a synchronous policy for concurrency control�

To avoid the problems of strict �PL� one could adopt general �PL �the problem of cascaded
aborts is beyond the scope of this paper�� In this case� each site may release locks independently�
but the lock points of asETs at di�erent sites may not be synchronized� Consequently� a global
validation is necessary for checking the uniformity in ordering of asETs at each site� This
checking would provide the amount of inconsistency introduced into the execution of a dET�
Section 	�� describes such a validation mechanism for optimistic validation�

A third alternative is all sites using basic timestamp ordering� We have two choices here�
First� we could impose a global ordering �unique per dET� to the execution of an asET at each
site� If we were to enforce SR �the same ordering at each site�� this would be similar to strict
�PL and thus a violation of execution autonomy� since the sites must follow the ordering dictated
by some central authority� Alternatively� if each site is allowed to establish the ordering of its
own asETs� the situation is similar to general �PL and we also need a validation mechanism
�Section 	����

Finally� if all sites use optimistic concurrency control� a global validation phase is needed
at the end of a dET� However� instead of aborting a dET at the detection of its rst non�SR
con�ict� we relax the validation algorithm� In our banking example� when a non�SR con�ict is
detected� we sum up the update values into the ImpCount and ExpCount of the dETs involved�
A dET is aborted only if one of its counters exceeds its ��spec� Otherwise� it is allowed to
proceed� The following section describes the validation with slightly more detail�

�

��� Heterogeneous ADC Methods

We note that the same motivations for execution autonomy of dETs also encourage the existence
of heterogeneous local concurrency control mechanisms at each site� We consider here the
three most popular concurrency control methods at the sites� �PL� timestamps� and optimistic
validation�

Each site is allowed to execute its asET independently� Each site is assumed to guarantee SR�
and returns the ordering of each asET in its own context when the asET nishes its execution�
This ordering may be sent back by the local concurrency control in an O�vector ���� or by the
asET itself in a ticket ����� In addition to the ordering� each update asET also provides the total
value of the update�

When all the asETs of a dET have returned� the validation algorithm checks for non�SR
orderings between di�erent sites� If all the sites have serialized the asETs the same way� then
the dET is SR� However� if the orderings are di�erent� then the validation algorithm accumulates
the update value in the ImpCount and ExpCount of the involved dETs� If the nal counters are
below the ��spec value� the dET is allowed to commit� Otherwise it is aborted� Further details
of the validation algorithm and its variants for other kinds of inconsistency specications are
topics of active research�

	 Asynchronous Consistency Restoration �ACR�

ADC methods preserve database consistency� since the database converges to SR when all the
asETs arrive and are processed� However� the situation becomes more complicated with the
introduction of GET � in which both ImpLimit� � and ExpLimit� �� Inconsistency can now
be introduced permanently� i�e�� the database may be inconsistent in the SR sense even when
quiescent� Database values may completely degenerate because of inconsistency if GET are
executed without control� To restore consistency into the database we use ACR methods� Just
as ADC methods reduce to classic concurrency control when � � �� ACR methods reduce to
classic crash recovery under certain conditions�

�� Limitations of Classic Recovery

In classic TP� the main�memory view of the database always re�ects the correct serialization
order� Recovery algorithms are needed because we wish to increase system performance by de�
coupling the main memory processing from slow disk I�O operations� Once information on disk
may di�er from the main memory� we need to maintain enough information for resynchroniza�
tion at recovery time� Remember that in classic TP� we have Read�Write operations without
sophisticated semantics�

The model of inconsistency repair based on Read�Write compensations using REDO and
UNDO ���� consists of three steps� First is the inconsistency detection where a specic operation
is found to have introduced inconsistency� Second is the undoing of the e�ects of the o�ending
operation� Third is the REDO of the other operations that have been undone as a side�e�ect
during UNDO� In the worst case� the entire history needs to be undone up to the o�ending
operation� and then redo everything else on the history� To illustrate the compensation overhead�
consider an inventory item value decremented by ��� �its compensation increments �����
Suppose that it was an error and we wish to compensate for it after some processing� If another
operation has multiplied the inventory value by a factor of �� in the mean time� then we must
rst divide the value by ��� increment to compensate� and multiply by �� again� This is necessary

because the Read and Write operations do not commute in general �neither do multiplication
and addition�subtraction��

In this paper� we are concerned only with asETs� which may contain just one operation or
several� so our ACR methods do not distinguish between the two levels� If an ACR method does
not rely on operation semantics such as commutativity and � � �� then it reduces to applying
all the compensation asETs in the reverse order up to the asET causing inconsistency� After the
o�ender has been undone� the ACR method replays the history from that point to redo� When
� � �� the need for roll back is lessened by an amount roughly proportional to the ��spec� This
is explained in more detail in Section ��� using commutativity�

For operation�level compensation such as Time Warp ���� and classic TP crash recovery� the
overhead of undoing the entire history is accepted as inevitable for the Read�Write model� The
transaction�level equivalent of undoing the entire history is called cascaded aborts � However� if we
take into account higher levels of abstraction for the operations �e�g�� increment and decrement��
compensation actions may be used to roll back sophisticated updates more cheaply� This is
especially relevant at the transaction level� Sagas �
� and Compensating Transactions ���� are
good examples� The most important property in operation semantics to reduce rollback overhead
is commutativity�

�� Semantics�Based Compensation

As mentioned above� Sagas �
� and Compensating Transactions ���� rely on commutativity to
reduce the rollback overhead in compensations� The idea is that if we are applying only com�
mutative transactions then we can shu!e them all the way back to the original transaction
introducing the inconsistency� thus avoiding the rollback� Sagas are composed of steps� each be�
ing an atomic transaction� If some steps need to be rolled back for any reason� a compensation
step is run� They depend on general �application semantics�� which include commutativity� as
the underlying assumptions that allow compensations without rolling back the entire history�

To simplify the presentation we use the notation of Korth et al� ���� in the description
of Compensating Transactions� When the updates of transaction T� are read by some other
transaction T�� T� is said to have been externalized � If we want to undo the e�ects of T��
a Compensating Transaction CT� is run� T� is called a compensated�for transaction and T�
a dependent transaction with respect to T�� The goal of their recovery paradigm is to undo
the compensated�for transaction but leave the e�ects of the dependent transactions intact� An
important denition is that of soundness� �As usual ���� a history is a sequence of database
operations�� If X is the history of transactions T � CT � and their set of dependent transactions
dep�T �� and Y is some history of only the dependent transactions dep�T �� then X is said to be
sound if for the same initial state S� X�S� � Y �S�� In other words� in a sound history� CT
compensates for T cleanly� leaving the e�ects of dep�T � intact� It can be shown that if CT
commutes with every transaction in dep�T � then the history is sound�

They further generalize the above denition to include weak forms of compensation sound�
ness� The history X is sound with respect to a re�exive relation R �in short R�sound�� if there
exists a history Y of dep�T � such that Y �S� R X�S�� For the case of R being equality� the
general denition reduces to the �regular� soundness�

In ESR�based TP systems� the denition of inconsistency specication implies a monotonic
distance metric underlying an ��spec� So our focus is narrower than the predicate�based gen�
erality of Korth�s re�exive relations� We are interested in a relation called �Within Bound��
denoted by W �B�� such that Y �S�W �B� X�S� if the database state Y �S� is within the distance
bound B of state X�S� in the distance metric� If the distance metric is isotropic �as in airline
and bank examples and all real�world applications� then the relation W �B� is re�exive� The

��

result is that W �B��sound histories are ��serial�
In our banking example� consider a transaction T that transfers funds and a query ET

Q�ImpLimit � ��� ���� in dep�T � that produces the summary of total balance� If we need to
compensate for T � the CT must reverse the fund transfer� According to the above denition�
the history X is sound for a bound of ������ if there is a Y �S� in dep�T � that produces a result
within ������ of X�S�� It is immediate that if the amount of T is less than ����� then we
can schedule the execution of Q freely� since it now commutes with T within the ������ bound�
It is the job of the ACR method� however� to accumulate the amount of inconsistency in the
system for any given moment� to make sure the bound for each ET is not exceeded�

�� Designing ACR Methods

An informal description of a generic ACR method is that during the processing of a compensation
ET it goes through the history checking for violations of the commutativity property� Whenever
a violation is spotted� the method accumulates the update amount for all the involved ETs� If
the ��specs are not exceeded� then the compensation remains sound and the algorithm continues�
When one of the bounds is exceeded� the ACR has three choices �to be made by the programmer
or the system on behalf of the programmer�� which we will consider in turn�

��� to stop the compensation ET�

��� to retroactively UNDO the committed ET� potentially starting a cascaded abort although
at a lower intensity� and

��� to mark this con�ict and continue�

We think that alternative ��� is a viable choice� even though most researchers �including
Korth et al ����� dene a Compensating Transaction as non�abortable� The main reason they
do not consider the possibility of aborting a Compensating Transaction is because the abort
would introduce some inconsistency into the database� which is not tractable in the classic TP
theory� Although this alternative is not the focus of this paper� ESR allows some inconsistency
to persist in the database� This is consistent with the real�world databases� where some amount
of residual permanent inconsistency �e�g�� due to data entry errors� is inevitable�

Alternative ��� continues the processing of the compensation ET by UNDOing the con�icting
committed ET� This may be followed by a REDO� depending on the soundness of the resulting
history� Although the phenomenon is the same as cascaded aborts� we believe that the intensity
�number of aborts� is much smaller because only the ETs with exceeded bounds need to be
undone�

In alternative ���� the ACR processes the entire history to the end� nds all the bound
violations and reports the result to the compensation ET� This is useful if the compensation
ET programmer wants to assess the magnitude of the total con�icts before making a decisions
between options ��� and ���� For example� cascaded aborts may be preferable for a small number
of aborts� but if dep�T � is large then a large number of aborts may force the compensation to
stop�

To illustrate this compensation�based ACR design methodology� let us consider an simple
example� Each asET and compensation asET is a single operation and we have an ADC method
derived from two�phase locking� Table � shows the lock compatibility matrix for dirty objects�
ACR uses the usual two�phase locking compatibility table ���� to handle clean objects� The
main di�erence is in squares marked LOK�� �reading uncommitted data�� LOK�� �overwriting
data read by uncommitted query "degree ��� and Commu�� �if operations commute�� In all

��

No Lock RET WET

Read�Write
ImpLimit� � � � �

RET

ImpLimit� � AOK AOK LOK��

WET

ImpLimit� � AOK LOK�� Commu��

Table �� �PL Compatibility for Dirty Objects

three cases �LOK��� LOK��� and Commu���� the lock is granted if the ImpCount and ExpCount
of involved ETs are within their respective ��spec� In Table �� RET includes the read requests
from QET � Note that we have identied the places where potential inconsistency may arise
and made explicit the references to these situations� This type of analysis is facilitated by
ESR because it is semantics�independent� This does not prevent ESR from incorporating the
explicit specication of semantics�dependent inconsistency� In contrast� sagas �
� as proposed
are implicitly dependent on application semantics for the maintenance of database consistency�

�� Independent Updates

Besides compensations� a second method of consistency restoration is independent updates � In
these cases� an independent source of consistent data is available� From time to time the consis�
tent data is used to overwrite potentially inconsistent data� The rst important example of this
method is the propagation of replica updates in primary copy methods� such as Grapevine �	��
Since all the updates are performed rst in the primary copy� the secondary copies may be
allowed to diverge �within bounds specied by each dET�� A similar situation occurs with bank
accounts� The bank database is processed in batch mode at night� at which time the updates
are made� Although� each branch may log some local operations into the local replica �usually
on paper�� the o�cial copy is the central database�

Another class of applications that use independent updates are the signal acquisition systems
that receive fresh data every so often� such as radars or satellite photos� Even if the current
data is inconsistent� a consistent version is expected to arrive at certain time intervals to solve
the problem�

One way to use independent updates is to emulate the bank practice� An update is made
locally and immediately� but the update is sent to the central site in a reliable message ���� The
update in the central site satises the necessary rigor in consistency constraints� for example�
serializability� Periodically the central site propagates the o�cial updates known to be consistent
to the local sites�

The ��spec of the local copy is limited by the amount of updates done locally in the worst
case �when all the updates fail at the central site and are rolled back�� To enforce this limit�
the CR algorithm may need to store the accumulated ��spec with each data item� This can be
done in main memory� if the number of local updates between consecutive update propagations
is relatively small� If it is too much for main memory� it can be stored on disk� Alternatively�

��

the ��spec can be calculated from the site update log when needed� This is a trade�o� between
storage and processing�

 Applications Revisited

Having described ESR and outlined its implementation� we are ready to apply ESR to solve the
problems detailed in Section �� First� because ESR allows asynchronous execution of asETs� it
decreases or eliminates the synchronicity requirement of classic distributed TP� Second� ESR�
based systems o�er dependable consistency levels that can be specied at the granularity of
individual ETs at run�time� Thus� users are given the �exibility to precisely control the trade�o�
between consistency on the one hand and performance� availability� and autonomy on the other
hand� We note that ad hoc solutions may have been previously proposed for each application�
but ESR o�ers a uniform framework for a diverse suite of applications�

��� Autonomous TP

Recall that airline reservation systems run with few consistency checks during normal operation
in order to optimize response�time� However� when a �ight becomes full� it is important to
maintain control consistency for queries and updates� ESR can model both situations� ETs
with a relatively large ��spec runs unimpeded normally� when a �ight becomes full its ETs run
with a tighter ��spec�

To enable autonomous operation when the network is partitioned or a site is down� we can use
either pre�allocation of seats such as the Data�value Partition method �Section ��	�� or a dynamic
allocation using a standard ACR method� Data�value Partitioning o�ers higher autonomy� since
negotiations between sites is necessary only when the seat allocation is exceeded at some site� A
pure dynamic allocation method based on ACR simply processes reservation requests as usual
during the normal execution� During a network partition� the system proceeds using estimates
given by the load management system� Each site is given a quota of seats for the duration of
the network partition� and they obtain reservations by specifying the remaining quota as the
ET�s ��spec� When the network connectivity is restored� the di�erence is reconciled using an
ACR method� For example� if the network link between New York and Chicago is temporarily
broken� New York may be assigned k seats on each �ight from Chicago to New York� even
though the database is inaccessible� When the link is restored� the ACR method �e�g�� based
on compensations� will replay the reservations and make up to k reservations in the Chicago
database�

In the banking example� each component bank �as well as the parent bank� may process
its own asset analysis independently� perhaps seeking slightly di�erent kinds of information to
generate reports of di�erent formats� If the inconsistency is below the tolerance level �which may
be di�erent for each bank�� these reports may be run asynchronously� A more serious situation
is when a network partition or a site crash makes part of the distributed database inaccessible to
the rest of the system� It is desirable that clients be allowed to make withdrawals� for example
from the automatic teller machines� while minimizing the risk to the bank� Current practice
gives a �at limit to all customers � 	�� daily for the New York Cash Exchange�� which bounds
the bank risk� Using a quota system as above� the bank may be able to o�er a signicant part
of a customer�s balance available with less risk� Assuming replication� the bank may allow a
percentage of the last balance to be used� provided that limitations are placed on the other
partition to protect the bank� This way� bank loses less in case the balance is less than the xed
limit and gains customer satisfaction when the balance is signicantly higher than the limit�

��

��� Service Guarantees

One of the strong points of ESR is the ability to o�er service guarantees in terms of consistency�
In the stock market example� the inconsistency is represented by the time lag between the
reported price and the last transaction update� Using ESR with xed time bounds �explained
in ������ the stock exchange can o�er the brokers some rm guarantees of the inconsistency level�
Even if the system breaks down due to overload� it can still return the amount of inconsistency
�in terms of time lag in this case� so brokers may judge the value of its information� For critical
times when the volume threatens to overwhelm the system� as well as the remote connections
to other cities and countries� the guarantee on consistency level is very important�

In general� ESR�based systems can o�er dependable consistency levels� in contrast to degree
� and QSR� for example� Further� the level of consistency can be specied at the granularity
of each ET at run�time� This �exibility gives programmers previously unavailable facilities to
control the trade�o� between consistency on the one hand and performance� availability� and
autonomy on the other hand�

��� Integration with Classic TP

One possible reason why in practice many DB� installations can use degree � consistency is
because current circumstances mitigate the actual amount of inconsistency� Assuming that each
update value has an upper limit� that the query has a bounded duration� and that the number
of update transactions per second is moderate� then the total amount of inconsistency of that
query is bounded by the product of these factors� However� as the system grows� both the
query duration and the update transaction rate increase� If update values also increase then
the fortuitous bound on inconsistency may quickly become meaningless and degree � no longer
useful�

Therefore� for scalability reasons we need a more abstract and precise integration with classic
TP� Another example is using the Escrow Method ���� to improve system performance� The
Escrow Method requires the programmers to accommodate the whole�data�item uncertainty
explicitly� which may interact with degree � �in�consistency in subtle ways� As we move into
more advanced applications ��� and heterogeneous databases ���� the integration of di�erent kinds
of concurrency control becomes increasingly important� In contrast to degree � consistency� ESR
�by denition� provides a smooth integration between SR and any degree of inconsistency�
Furthermore� because ESR guarantees a bound on inconsistency� applications will not produce
increasingly inconsistent results when more processing power or nodes are added to the system�

��� Network Partitions

Another advantage of ESR�based distributed TP is the transparency of the ET interface� For
example� the Escrow Method ���� increases the TP system throughput by implicitly reserving
part of an aggregate eld �e�g�� a numerical value� for processing� The reason the Escrow Method
obtains more concurrency is its ability to release the lock on the data item once the partial value
has been put in �escrow�� More relevant to this paper� the Data�value Partitioning method ����
increases the distributed TP system availability and autonomy by explicitly separating parts of
the value of a data item into di�erent sites� Since the di�erent parts may operate asynchronously
even during network partitions� Data�value Partitioning increases autonomy because of its non�
blocking character� A serious problem with both methods is that they introduce uncertainty
when trying to read the value of the entire data item� For both the Escrow Method and the
Data�value Partitioning� this uncertainty is inevitable�

�	

ESR can capture this uncertainty� For example� instead of having the application program�
mer look at the maximum and minimum possible values �as suggested in ������ an ��spec in a
read ET is enforced by the system� so the ET programmer will not have to deal with the data
value uncertainty explicitly� The same way the transaction interface hides details of concurrency
control and crash recovery� the ET interface hides details of uncertainty� In an ESR�based TP
system� the Escrow Method and Data�value Partitioning may be introduced as optimization
techniques that are transparent to the application programs�

� Related Work

Besides ESR� notions of correctness weaker than SR have been proposed� We have already
discussed QSR ��� and degree � ����� Garcia�Molina et al� �
� proposed sagas that use semantic
atomicity ��� which rely on transaction semantics to dene correctness� Sagas di�er from ESR
because an unlimited amount of inconsistency �revealed before a compensation� may propagate
and persist in the database� Levy et al ���� dened relaxed atomicity to model non�atomic
transactions similar to sagas� Non�atomic transactions are composed of steps� which may be a
forward step or a recovery step� They also describe the Polarized Protocol to implement Relaxed
Atomicity� The main di�erence between ESR and these notions of correctness is that ESR is
independent of application semantics� ESR also allows a larger number of execution histories�
The Polarized Protocol� for example� does not allow global state from an incomplete transaction
to be seen by other transactions�

An implementation issue in asynchronous TP is to guarantee uniform outcome of distributed
transactions running asynchronously� Unilateral Commit ��	� is a protocol that uses reliable
message transmission to guarantee that a uniform decision is correctly carried out� Optimistic
Commit ���� is a protocol that uses Compensating Transactions ���� to undo the e�ects of partial
results to reach a uniform decision� This is but one aspect of the autonomous TP problem�

Sheth et al ���� use the notion of eventual consistency to dene current copy serializability
�CPSR� for replicated data� Each update is done on a current copy and asynchronously propa�
gated to the other replicas� Users have control over when the updates are propagated� and the
scheme reduces to synchronous replication is the propagation delay is set to zero� In contrast�
ESR is useful for general asynchronous TP� not just replication�

� Conclusions

We study the feasibility of execution autonomy in systems with asynchronous transaction pro�
cessing� By maintaining epsilon�serializability �ESR�� autonomous sites can ensure consistency
despite the concurrent and asynchronous execution of distributed transactions� We describe
e�cient implementation techniques for ESR� While allowing bounded inconsistency to be seen
by other queries� asynchronous divergence control methods prevent inconsistency from enter�
ing the database� If limited amounts of inconsistency is found in the database� asynchronous
consistency restoration methods restore database consistency�

To illustrate the benets of ESR in asynchronous transaction processing� we describe several
concrete applications� an airline reservation system� a bank account management system� and a
stock exchange trading system� These examples make use of ESR to achieve autonomous transac�
tion processing� guaranteed consistency levels� and integrated execution with classic transaction
processing�

The work based on ESR is called Generalized Transaction Processing� several aspects of
which are currently under development� One application of ESR is an asynchronous approach

��

for replication ����� An important part of ESR implementation is the divergence control meth�
ods ����� We are now evaluating the performance benets of divergence control methods resulting
from added concurrency and decreased deadlock frequency�

References

��� N� Barghouti and G�E� Kaiser� Concurrency control in advanced database applications�
ACM Computing Surveys� September �

��

��� P�A� Bernstein� V� Hadzilacos� and N� Goodman� Concurrency Control and Recovery in
Database Systems� Addison�Wesley Publishing Company� rst edition� �
���

��� P�A� Bernstein� M� Hsu� and B� Mann� Implementing recoverable requests using queues�
In Proceedings of ���� SIGMOD International Conference on Management of Data� pages
���"���� May �

��

�	� A�D� Birrell� R� Levin� R�M� Needham� and M�D� Schroeder� Grapevine� An exercise in
distributed computing� Communications of ACM� ���	�����"��	� April �
���

��� Y� Breitbart� A� Silberschatz� and G� Thompson� Reliable transaction management in
a multidatabase system� In Proceedings of ���� SIGMOD International Conference on
Management of Data� pages ���"��	� May �

��

��� W� Du and A� Elmagarmid� Quasi serializability� a correctness criterion for global concur�
rency control in InterBase� In Proceedings of the International Conference on Very Large
Data Bases� pages �	�"���� Amsterdam� The Netherlands� August �
�
�

��� A�K� Elmagarmid and C� Pu� editors� Special Issue on Heterogeneous Databases� volume
���� of ACM Computing Surveys� ACM� September �

��

��� H� Garcia�Molina� Using semantic knowledge for transactions processing in a distributed
database� ACM Transactions on Database Systems� ��������"���� June �
���

�
� H� Garcia�Molina and K� Salem� Sagas� In Proceedings of ACM SIGMOD Conference on
Management of Data� pages �	
"��
� May �
���

���� D� Georgakopoulos and M� Rusinkiewicz� On serializability of multidatabase transactions
through forced local con�itcs� In Proceedings of the Seventh International Conference on
Data Engineering� Kobe� Japan� April �

��

���� J�N� Gray� R�A� Lorie� G�R� Putzolu� and I�L� Traiger� Granularity of locks and degrees
of consistency in a shared data base� In Proceedings of the IFIP Working Conference on
Modeling of Data Base Management Systems� pages �"�
� �
�
�

���� T� Haerder and A� Reuter� Principles of transaction�oriented database recovery� ACM
Computing Surveys� ���	�����"���� December �
���

���� P�M� Herlihy and J�M� Wing� Linearizability� A correctness condition for concurrent ob�
jects� ACM Transactions on Programming Languages and Systems� ������	��"	
�� July
�

��

��

��	� M� Hsu and A� Silberschatz� Unilateral commit� A new paradigm for reliable distributed
transaction processing� In Proceedings of the Seventh International Conference on Data
Engineering� Kobe� Japan� February �

��

���� D�R� Je�erson� Virtual time� ACM Transactions on Programming Languages and Systems�
�����	�	"	��� July �
���

���� H� Korth� E� Levy� and A� Silberschatz� A formal approach to recovery by compensating
transactions� In Proceedings of the �	th International Conference on Very Large Data Bases�
Brisbane� Australia� August �

��

���� E� Levy� H� Korth� and A� Silberschatz� An optimistic commit protocol for distributed
transaction management� In Proceedings of the ���� ACM SIGMOD International Confer�
ence on Management of Data� Denver� Colorado� May �

��

���� E� Levy� H� Korth� and A� Silberschatz� A theory of relaxed atomicity� In Proceedings of
the ���� ACM Symposium on Principles of Distributed Computing� August �

��

��
� B� Lindsay� L�M� Haas� C� Mohan� P�F� Wilms� and R�A� Yost� Computation and commu�
nication in R�� a distributed database manager� ACM Transactions on Computer Systems�
������	"��� February �
�	�

���� W� Litwin� L� Mark� and N� Roussopoulos� Interoperability of multiple autonomous data�
bases� ACM Computing Surveys� ���������"�
�� September �

��

���� H� G� Molina and Kogan B� Node autonomy in distributed systems� In International
Symposium on Databases in Parallel and Distributed Systems� pages ���"���� December
�
���

���� P� E� O�Neil� The escrow transactional method� ACM Transactions on Database Systems�
���	��	��"	��� December �
���

���� C� Pu and A� Le�� Replica control in distributed systems� An asynchronous approach� In
Proceedings of the ���� ACM SIGMOD International Conference on Management of Data�
Denver� May �

��

��	� C� Pu� A� Le�� and S�W�F� Chen� Heterogeneous and autonomous transaction processing�
Technical Report CUCS�����
�� Department of Computer Science� Columbia University�
April �

��

���� Calton Pu� Superdatabases for composition of heterogeneous databases� In Amar Gupta�
editor� Integration of Information Systems
 Bridging Heterogeneous Databases� pages ���"
���� IEEE Press� �
�
� Also appeared in Proceedings of Fourth International Conference
on Data Engineering� �
��� Los Angeles�

���� A� Sheth� Yungho Leu� and Ahmed Elmagarmid� Maintaining consistency of interdepen�
dent data in multidatabase systems� Technical Report CSD�TR�
������ Computer Science
Department� Purdue University� March �

��

���� N� Soparkar and A� Silberschatz� Data�value partitioning and virtual messages� In Proceed�
ings of the Ninth ACM Symposium on Principles of Database Systems� Nashville� Tennessee�
April �

��

��

���� K�L� Wu� P� S� Yu� and C� Pu� Divergence control for epsilon�serializability� Technical
Report CUCS�����
�� Department of Computer Science� Columbia University� February
�

�� Also available as IBM Tech Report No� RC���
��

��

