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Abstract

We study the feasibility of execution autonomy in systems with asynchronous transaction
processing based on epsilon-serializability (ESR). The abstract correctness criteria defined by
ESR are implemented by techniques such as asynchronous divergence control and asynchronous
consistency restoration. Concrete application examples in a distributed environment, such as
banking, are described in order to illustrate the advantages of using ESR to support execution
autonomy.

Index terms: epsilon-serializability, autonomy, asynchronous transaction processing, diver-
gence control, consistency restoration.
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1 Introduction

A key assumption made by techniques that provide global recovery and concurrency atomicity
distributed databases such as R* [19], is that system components want to cooperate in providing
global transaction properties. However, there are many areas (e.g., performance and availability)
where participation in a classic distributed transaction will infringe on a local transaction sys-
tem’s capabilities. Because of this concern, much on-going effort (e.g., [5, 6, 14, 16, 17, 18, 26, 27])
is devoted to providing global transaction capabilities, while at the same time allowing local sys-
tems to maintain individual autonomy. In addition to motivations such as heterogeneity [21],
autonomy per se is increasingly important because of the change in the cost/benefit ratio of
intersite cooperation in large systems. For example, two-phase commit becomes less desirable as
the diameter of the network increases, since both the response time and the probability of fail-
ure become higher [16]. Also, two-phase commit may impose unnecessary synchronization and
prevent independent local commit [21, 14]. Supporting autonomous operations can potentially
improve both performance and availability.

Before discussing the issues posed by “autonomy” we note that the definition itself is in
a state of flux [21]. Some researchers distinguish between “design autonomy” and “execution
autonomy”. Design autonomy involves the question of who controls the design and maintenance
of data schema. Although design autonomy poses many difficult problems, we will not pursue
it here.

The focus of this paper is on execution autonomy because of its dramatic impact on trans-
action processing (TP) systems. In this context, autonomy allows local systems to control local
transaction execution without being forced to accede to a global transaction coordinator in the
scheduling and execution of transactions. Execution autonomy in effect calls the entire notion
of distributed TP into question because participating sites are no longer willing to sacrifice in-
dependence simply in order to implement a globally serializable transaction schedule. Instead
of the many political and administrative issues posed by autonomy, we discuss mechanisms that
support autonomous TP. Furthermore, we are only interested in mechanisms that support a
wide range of autonomy policies. Mechanisms that impose a particular policy are a premature
optimization and too inflexible in a large distributed system. Thus, the issues of administrative
and design autonomy will become relevant after suitable and general mechanisms supporting
autonomy have been developed.

If sites are not willing to surrender control to a global transaction coordinator because of the
performance penalties which arise in large and highly replicated systems, they will not participate
in algorithms that maintain the traditionally synchronous notions of transactions. Sites lose
much availability if they must coordinate updates with many other sites in the system; they
may then be willing to trade reduced consistency for increased availability. We believe that one
direction for the evolution of autonomous TP systems is towards asynchronous TP. Asynchrony
clearly avoids the problems that were just discussed for autonomous systems. On the other
hand, a basic problem in any kind of asynchronous processing is the existence of inconsistency
while components have not synchronized. Since a major reason for using transactions in the
first place is consistency maintenance, we need to be able to specify rigorous consistency criteria
that can be maintained even with asynchronous TP. We discuss such a framework, termed
epsilon-serializability, in Section 3.

In Section 2 we motivate this approach by showing example applications that are limited by
both classic TP methods and some previously proposed asynchronous techniques. Section 3 then
summarizes the properties of and interface to epsilon-serializability. Some practical algorithms
for the implementation of ESR are outlined in Sections 4 and 5. Section 6 revisits the motivating
applications, and uses ESR to solve them. Some related work is summarized in Section 7; some



conclusions are offered in Section 8.

2 Motivating Applications

In this section, we discuss the limitations of classic TP as well as the limitations of some partic-
ular solutions previously proposed for some of these problems. Several shortcomings of classic
TP systems hinder the programmer of distributed and autonomous TP applications due to the
lack of asynchronous TP support to enable a site to execute autonomously. Some limitations of
other proposed solutions are:

o the lack of smooth integration of asynchronous TP execution with classic TP execution,

o the lack of consistency guarantees that a transaction can rely on to maintain the desired
trade-off between consistency and performance,

e the lack of a transparent specification, and treatment, of inconsistency-related uncertainty
so that applications can be written independently of particular implementation techniques.

2.1 Autonomous TP

For historical reasons, and also for high availability of computer hardware, most airline reser-
vation systems are centralized mainframe TP systems. Given that most of flight bookings are
made at the end points of each flight, both performance (e.g., response time) and availability of
network communications (e.g., temporary network partitions) may improve if a distributed TP
system is used instead. For example, a network of smaller and cheaper machines could handle
flights departing from a single city. In such a distributed airline reservation system, autonomous
execution is important: we do not want to sacrifice local performance due to remote requests
(e.g., locking a flight record at the busy check-in time), nor do we want to compromise local
availability due to remote crashes (e.g., being unable to book Chicago because of a hurricane in
Florida). (The issue of replication in asynchronous TP is discussed in [24]).

Normally, when the distributed TP system is running well, no-shows are sufficient protection
for inconsistent data (application semantics exploited by the practice of overbooking). Since the
system does not have to be absolutely consistent, high performance is achieved by free access
to the database. Since most of flights are not full, this strategy optimizes for the normal
case. However, as the flight becomes full, an airline would like to be more careful since the
penalty for passengers with reservation left on the ground is great (monetary compensations
and/or alternative travel arrangements). Avoiding overflows is very important to airlines, both
to reduce liabilities and to improve the company’s image as being responsible and competent.
Therefore, as a particular flight is getting full, the application needs to become conservative in
maintaining database consistency.

Another classic TP application is banking. Consider a large bank that has been acquiring a
number of smaller banks in different states. Due to differences in legislation, it is advantageous
to maintain the original computing systems of each acquired bank (the “sites”). Each site is
assumed to run a classic TP system. However, the parent bank also wants to offer integrated
TP service in order to to attract corporate customers that do business in several states. In this
example, electronic funds transfer service must maintain serializable consistency so money would
not be lost. However, the parent bank’s investment services may want to obtain an approximate
picture of the entire group’s assets and investments each day. For example, the asset report
may be rounded to the nearest thousand dollars for items less than a million, and rounded to
the nearest million for items above a million. In this case, consistency requirements are relaxed



since only the “big picture” is being sought. For example, for a report in which units are in
millions of dollars, an inconsistency bounded by 100,000 will add only a maximum of 20% to
the expected rounding error.

2.2 Service Guarantees

In time-critical applications such as the stock market, the ability to provide service-level guar-
antees may be important. Current requirements specify that response-time should be as fast
as possible, with little concern for consistency. This works well during normal times, when the
time lag is very short or zero so that results tend to be consistent. However, during a crisis,
when the quality of data becomes important, the no-consistency requirement allows the system
to return essentially arbitrary data.

Although the above example is also valid for a centralized system, consider a distributed
system linking the New York Stock Exchange (NYSE) and the Chicago Stock Exchange. Under
normal conditions, a local broker would have a minimal advantage over a remote competitor,
since the transmission and execution delay between New York and Chicago is measured in
seconds. However, if volume climbs and the system slows down, inconsistency differences can
become quite large. For example, if NYSE slows down, then a Chicago broker may be getting
increasingly less accurate information compared to a New York rival. It would be useful for her
to know the exact “age” of each piece of information in order to make correct buy/sell decisions.

Consistency guarantees are similarly important to other kinds of service contracts between
computer vendors and customers. A guarantee in performance, availability, and in this case,
consistency, typically increases the value of the system because of the added dependability. A
guaranteed service has a competitive advantage over one that does not. However, because such
guarantees involve financial penalty in case of failure, an efficient way to offer such guarantees
is important.

2.3 Integration with Classic TP

Although the airline reservation system may not need rigorous consistency in the sense of serial-
izability (SR), a bank needs it for certain kinds of transactions such as electronic funds transfer.
The same distributed database must then support a spectrum of “degrees of inconsistency”
simultaneously. At one end of the spectrum is rigorous SR consistency. At the other end are
varied trade-offs (for reasons of performance, availability, and autonomy), between consistency
and asynchrony. Indeed, many autonomous TP systems will need to move along the spectrum as
the circumstances change. For example, the airline reservation system and stock market would
emphasize improved response time during normal times when inconsistency is minimal anyway,
but emphasize consistency when few seats are left because the penalty for inconsistency is then
high. Conversely, in banking or military operations, high consistency is maintained during nor-
mal operation, but in a crisis limited inconsistency is permitted so as to achieve operational
availability and autonomy. In such cases, the system must repair inconsistency when the crisis
is over.

Gray’s different degrees of consistency [11], offers an example of such a spectrum. Degree 3
consistency is equivalent to SR, but degree 2 consistency offers higher concurrency for queries—
at the cost of reduced consistency— since updates are allowed to “dirty” data already read by
queries. Degree 2 is reportedly used at many DB2 installations, underscoring the importance
of integrating inconsistency specifications. However, there are two limitations in this approach.
First, degree 2 is peculiar to a particular concurrency control algorithm, namely two-phase
locking. This limits database interoperability, since other concurrency control algorithms cannot



provide the same level of consistency. Second, because no bounds are set on the total amount of
inconsistency, degree 2 queries will become less accurate as a system grows larger . This implies
that service guarantees cannot be offered as a system scales up.

Quasi-serializability (QSR) has been proposed [6] as an abstract correctness criterion for a
multidatabase environment. QSR specifies that local databases and global schedulers should
maintain SR, but isolates a global scheduler from the local schedulers. This way, the local
histories and the global histories considered in isolation are SR, even though their combination
may not be. QSR is well-defined and easy to implement. However, its applicability is limited
in the trade-off between consistency and performance. The number of non-SR histories allowed
by QSR is limited by its global serializability requirement. At the same time, unbounded
inconsistency may be found when we consider the global history and the local histories together.

2.4 Network Partitions

Another important problem in the synchronous execution of distributed TP is that when the
communications network partitions, transactions tend to block; i.e., they have to wait for the
other partition(s) to reconnect. The information required for distributed TP includes the trans-
action outcome decision (commit or abort) as well as the serialization order. Autonomous
execution implies that blocking would be reduced.

Data-value Partitioning [27] has been proposed as a method to for increasing distributed
TP system availability and autonomy by explicitly separating parts of the value of a data item
into different sites. Since the different parts may operate asynchronously even during network
partitions, Data-value Partitioning increases autonomy because of its non-blocking character.
The basic idea is to allow more parallel processing by dividing the data item value. While this
division increases concurrency and avoids blocking, it also introduces some uncertainty to the
value of the data item as a whole. The problem is that if several updates on a data item are
pending, some of them may commit and others abort, so that the definite value of the whole
data item will be known only at the completion time of the updates. This makes reading a data
value non-trivial, since, in principle, the uncertainty can be arbitrarily large. In practice, the
uncertainty is limited by the number of partitions in Data-value Partitioning, assuming that
each update has a ceiling. Leaving the handling of the uncertainty to application programmers
may then be an adequate solution in a system of moderate size. However, as TP systems grow
faster and larger, the uncertainty increases, making uncertainty control more difficult.

3 Epsilon-Serializability (ESR)

Epsilon-serializability is an abstract framework that offers a solution to the motivating applica-
tions described in Section 2. In the next three sections we first describe the properties of ESR in
a distributed environment, and then discuss implementation techniques. In Section 6 we revisit
the applications and use ESR to solve them.

The general idea of ESR is to preserve consistency, but, at the same time, allow some bounded
slack. When this (in)consistency slack converges to zero, ESR reduces to serializability (SR).
In addition, although ESR allows inconsistent data to be seen, it requires that data eventually
converge to a consistent (SR) state. ESR allows the degree of inconsistency to be controlled
so that the amount of error (departure from consistency) can be reduced to a specified margin.
This control is at a very fine granularity since each transaction may specify its own limit. An
autonomous TP system should tolerate temporary inconsistency during autonomous operation
and repair it later when the system returns to a cooperative mode. ESR-based TP systems



permit limited inconsistency to arise, and repair it through two techniques— asynchronous
divergence control (Section 4) and asynchronous consistency restoration (Section 5).

3.1 Standard SR Model

A database is a set of data items, which support Read and Write operations. Read operations
do not change data and Write operations do. (Section 5.2 will introduce additional semantics
to database operations.) A transaction is a sequence of operations that take a database from
a consistent state to another. Transactions may be updates that contain at least one Write or
queries that are read-only.

Our terminology follows the standard model of conflict-based serializability [2]. Two oper-
ations are said to conflict if at least one of them is a Write, so we have read-write (R/W) and
write-write (W/W) conflicts. Each pair of conflicting operations establishes a dependency. A
history is a sequence of operations such as Reads and Writes. A serial history is a sequence
of operations composed of consecutive transactions. A history of transaction operations is said
to be serializable (SR-history) if it produces results equivalent to some serial history, in which
the same transactions executed sequentially, one at a time. Concurrency control methods that
preserve SR (e.g., two-phase locking) are algorithms that restrict the interleaving of operations
in such a way that only SR-histories are allowed.

Intuitively, in the standard model, a history is shown to be an SR-history by rearranging
its operations according to certain constraints imposed by R/W and W/W dependencies. The
rules of rearrangement are given by concrete concurrency control methods. A more formal way
to specify concurrency control uses a serialization graph (SG), in which each arc represents
the precede relation [2]. Transaction T} precedes Ty when one of T}’s operations precedes and
conflicts (R/W or W/W) with T3’s operations. Since the Serializability Theorem [2] says that
a history H is SR if and only if its serialization graph SG(H) is acyclic, an acyclic SG implies
an SR-history.

3.2 Epsilon-Transaction (ET)

An epsilon-transaction, denoted by ET, is a sequence of operations that maintains database con-
sistency when executed atomically. However, an ET differs from standard transactions (denoted
by T), in that an ET also includes a specification of the amount of inconsistency permitted the
ET. This per-ET limit of allowed inconsistency is called an €-specification, (€-spec for short);
the specification must be met— despite the concurrent execution of other ETs.

Abstractly, an €-spec is divided into two parts: a limit on imported inconsistency and a
limit on exported inconsistency. Of course, many kinds of inconsistency can exist. An €-spec
can therefore take several forms, as long as it is defined using a monotonic distance metric [28].
In the airline example, the number of seats is a linear distance metric (therefore monotonic).
Fach ET includes two parameters: (1) ImpLimit denotes the maximum number of seats in non-
SR conflicts that the ET can import from other ETs, and (2) ExpLimit denotes the maximum
number seats in non-SR conflicts that the ET can export to other ETs. For simplicity of
presentation, our ImpLimit/ExpLimit €-spec lumps together all sources of inconsistency. In this
paper, we use a concrete example for illustration. Our example is the number of seats in an
airline reservation system. This distance metric, as well as other examples such as banking,
is linear. The ADC methods can be generalized to other inconsistency specifications using
techniques described in [28].

One important observation is that when ImpLimit = 0 and ExpLimit = 0, the ET is seri-
alizable, so ETs include the standard Ts as a boundary case. We continue to use T as a short



ImpLimit = 0 | ImpLimit > 0

ExpLimit = 0 | Transaction QFT

ExpLimit > 0 UET GFT

Table 1: Four Kinds of ETs

notation for ETs that are serializable. Usually, when we refer to an ET we mean one of the other
kinds of ETs shown in Table 1: query ETs denoted by QF7, consistent update ETs denoted
by UFT, and general ETs denoted by GFT. Intuitively, when ImpLimit > 0 and ExpLimit = 0,
(the query) ETs may import some inconsistency, up to ImpLimit. When ImpLimit = 0 and
ExpLimit > 0, (the consistent update) ETs may export some inconsistency, up to ExpLimit.
When ImpLimit > 0 and ExpLimit > 0, the G*T may both import and export inconsistency.
In this case the inconsistency in the database may grow unboundedly. This is the problem
addressed by consistency restoration methods.

A history containing query ET and update ET operations is called an €-serial history if the
difference between it and a serial history is less or equal than a specified €-spec. For example, a
0-serial history is a serial history as defined in Section 3.1. But any arbitrary history is an oo-
serial history, since infinite amount of inconsistency is allowed. In our airline example, an €-serial
history for a finite €-spec is a history in which some ETs have their operations interleaved. The
interleaving is such that for every ET, the number of seats involved in the interleaved operations
add up to less than its €-spec.

An ESR-history is a history that produces results equivalent to an €-serial history defined
by the €-spec of the set of ETs in the history. A database that executes ETs and produces an
ESR-history is said to support epsilon-serializability (ESR). Note that the same way several SR-
histories may exist for each serial history we have many ESR-histories for each €-serial history.
In this paper, we are not concerned about the existence of an “optimal” €-serial history for a
given set of I'Ts or a “minimal” ESR-history for a given €-serial history. As long as we can
rearrange the operations in a history to produce an €-serial history, it is an ESR-history.

Consider two ETs in the banking example. An update UFT( ImpLimit= 0 and ExpLimit=
400 ) is defined by the sequence of operations Ri(a) Ri(b) Wi(a) Wi(b), and a query QFT(
ImpLimit= 2000 and ExpLimit= 0 ) defined by the sequence of operations Q3(a) Q2(b). In our
notation, Ry(a) means a Read operation in UFT on a, Wy(a) denotes a Write operation in U}
on a, and Q3(a) means a read operation in @57 on a. We further assume that W, (a) changes a
by 100 and Wi(b) changes b by 200 (this can be calculated by the query compiler, a programmer
declaration, or at the lowest level, the raw amount of update).

A simple example of ESR-history is:

Ri(a)R1(b)W1(a)Q2(a)Q2(b)W1(b). (1)

History (1) is an ESR-history (in fact, an €-serial history). It is easy to see that Q&7 precedes
UET because of a R/W conflict on b and UFT precedes QFT because of another R/W conflict
on a. Thus the sub-history formed by UFT and @Q¥7 is not serializable. However, the non-SR
interleavings result in a difference of 200 from an SR-history, which is within the specified limits
for both UFT and Q¥7, so history (1) qualifies as an ESR-history.



3.3 Distributed ETs

In a traditional TP system such as R* [19], a distributed transaction is subdivided into subtrans-
actions, each executing at one site. We adopt a similar model. When a distributed ET (dET) is
submitted, it is divided into sub-ETs, called asynchronous sub-ETs (asET) for emphasis. Then
the asETs are distributed from the originator site to the execution sites, one asET per site. At
completion of an asET, the executing site returns the results to the originator site for assembly
and delivery to the user.

Our model of a distributed TP system extends classic TP systems. The execution of dETs
is handled by asynchronous divergence control (ADC) and asynchronous consistency restoration
(ACR) methods. These are analogous to distributed concurrency control and crash recovery
methods in classic distributed TP. The role of asynchronous divergence control is to prevent
inconsistency from being introduced into the database; asynchronous consistency restoration re-
pairs the global database once some inconsistency is detected. Our goal is to maximize database
consistency, either through serializable transactions or ETs that limit the amount of inconsis-
tency. This is in contrast to multidatabases [20] in which global inconsistency is tolerated.

Because our focus in this paper is on the interaction between sites, we assume that each site
is capable of handling its own asETs. In fact, to avoid complications unrelated to the autonomy
issue, we assume that each asET is a serializable transaction— i.e., there is no asynchronous
execution within each site. The incorporation of other kinds of ETs as asETs (QET, UET and
GET) is straightforward but non-trivial. Since our focus is on the useful properties of ESR
for autonomous TP systems, we omit implementation and usage issues such as the distribution
and negotiation of €-spec among sites. This simplification brings ESR closer to QSR [6], since
both assume local databases to maintain SR. However, even this simple case of ESR allows more
concurrency than QSR, since QSR insists that global history to be SR when considered by itself.

4 Asynchronous Divergence Control (ADC)

Divergence control methods for ESR have similar goals to those of concurrency control methods
for SR. We want efficient algorithms that guarantee some correctness criteria. One important
observation is that a global property such as serializability will always require some global vali-
dation, since the union of locally serializable asETs do not make a globally serializable dET. In
contrast, local properties such as linearizability [13] do not need global validation.

ESR spans the spectrum between global and local properties. On the one hand, ESR is
compatible with SR, so that ESR is a global property when € = 0. On the other hand, ESR
is a local property when € = oo. (QSR is also a local property.) In other words, as the €-
spec increases, ESR becomes increasingly local. In this paper, we are primarily concerned with
applications that use relatively tight bounds for their €-spec. In the airline example, the bound
is a small number of seats. As a result, the divergence control methods described here have a
strong global flavor; i.e., they resemble classic concurrency control methods.

4.1 Designing ADC Methods

An important property of ESR is that it allows the amount of inconsistency (the €-spec) that
a query ET may see to be bounded rigorously. The type of inconsistency is expressed in a user
specification. For example, in the banking context, an €-spec is formulated in dollars. The job
of an ADC method is to keep the amount of inconsistency in the dE'T calculating total checking
deposits to within the €-spec, despite any number of concurrent updates.



The design of ADC methods follows a two-stage methodology: extension and relaxation.
In the first stage, existing concurrency control methods are extended, by identifying the places
where the CC methods detect non-SR, conflicting operations. In the second stage, the extension
is relaxed to allow for more concurrency. The underlying idea is that (conflict-based) concur-
rency control methods must be able to identify the non-SR conflicts and prevent a cycle from
forming in the Serialization Graph. The extension stage isolates the identification part of con-
currency control and the relaxation stage modifies the cycle prevention part so as to permit
specific inconsistencies. The exact modification varies for each concurrency control method. For
example, in a previous paper [28] we have extended two-phase locking (2PL), timestamp-based,
and optimistic validation methods. For brevity we omit the details here.

In our banking example, a general implementation strategy of the relaxation stage for the Im-
pLimit and ExpLimit specifications (Section 3.2) could be based on two inconsistency counters,
associated with each ET: ImpCount and ExpCount. ImpCount records the total amount in dol-
lars of the non-SR conflicts that the ET has imported so far, and ExpCount maintains the total
amount in dollars of the non-SR conflicts that the ET has exported so far. To bound the inconsis-
tency according to the €-spec, the ADC methods ensure for each ET that ImpCount < ImpLimit
and ExpCount < ExpLimit. Since the ADC methods do not allow permanent inconsistency to
be introduced into the database, an ET cannot have both ImpLimit> 0 and ExpLimit> 0. In
other words, only Q7 and UFT can execute under ADC, not GFT.

4.2 Distributed ADC Methods

The first case we consider is a distributed TP system where every site supports strict 2PL,
i.e., they maintain the locks until the dET commits (or aborts). However, strict 2PL is a severe
infringement of execution autonomy, since the release of local locks depends on the dET commit,
which is a global event following a commit protocol. In other words, strict 2PL is a mechanism
that inherently imposes a synchronous policy for concurrency control.

To avoid the problems of strict 2PL, one could adopt general 2PL (the problem of cascaded
aborts is beyond the scope of this paper). In this case, each site may release locks independently,
but the lock points of asETs at different sites may not be synchronized. Consequently, a global
validation is necessary for checking the uniformity in ordering of asETs at each site. This
checking would provide the amount of inconsistency introduced into the execution of a dET.
Section 4.3 describes such a validation mechanism for optimistic validation.

A third alternative is all sites using basic timestamp ordering. We have two choices here.
First, we could impose a global ordering (unique per dET') to the execution of an asET at each
site. If we were to enforce SR (the same ordering at each site), this would be similar to strict
2PL and thus a violation of execution autonomy, since the sites must follow the ordering dictated
by some central authority. Alternatively, if each site is allowed to establish the ordering of its
own asETs, the situation is similar to general 2PL and we also need a validation mechanism
(Section 4.3).

Finally, if all sites use optimistic concurrency control, a global validation phase is needed
at the end of a dET. However, instead of aborting a dET at the detection of its first non-SR
conflict, we relax the validation algorithm. In our banking example, when a non-SR, conflict is
detected, we sum up the update values into the ImpCount and ExpCount of the dETs involved.
A dET is aborted only if one of its counters exceeds its €-spec. Otherwise, it is allowed to
proceed. The following section describes the validation with slightly more detail.



4.3 Heterogeneous ADC Methods

We note that the same motivations for execution autonomy of dI5Ts also encourage the existence
of heterogeneous local concurrency control mechanisms at each site. We consider here the
three most popular concurrency control methods at the sites: 2PL, timestamps, and optimistic
validation.

Each site is allowed to execute its asET independently. Each site is assumed to guarantee SR,
and returns the ordering of each asET in its own context when the asET finishes its execution.
This ordering may be sent back by the local concurrency control in an O-vector [25] or by the
asET itself in a ticket [10]. In addition to the ordering, each update asET also provides the total
value of the update.

When all the askTs of a dET have returned, the validation algorithm checks for non-SR
orderings between different sites. If all the sites have serialized the askETs the same way, then
the dET is SR. However, if the orderings are different, then the validation algorithm accumulates
the update value in the ImpCount and ExpCount of the involved dETs. If the final counters are
below the €-spec value, the dET is allowed to commit. Otherwise it is aborted. Further details
of the validation algorithm and its variants for other kinds of inconsistency specifications are
topics of active research.

5 Asynchronous Consistency Restoration (ACR)

ADC methods preserve database consistency, since the database converges to SR when all the
askETs arrive and are processed. However, the situation becomes more complicated with the
introduction of GFT in which both ImpLimit> 0 and ExpLimit> 0. Inconsistency can now
be introduced permanently, i.e., the database may be inconsistent in the SR sense even when
quiescent. Database values may completely degenerate because of inconsistency if GFT are
executed without control. To restore consistency into the database we use ACR methods. Just
as ADC methods reduce to classic concurrency control when € — 0, ACR methods reduce to
classic crash recovery under certain conditions.

5.1 Limitations of Classic Recovery

In classic TP, the main-memory view of the database always reflects the correct serialization
order. Recovery algorithms are needed because we wish to increase system performance by de-
coupling the main memory processing from slow disk I/O operations. Once information on disk
may differ from the main memory, we need to maintain enough information for resynchroniza-
tion at recovery time. Remember that in classic TP, we have Read/Write operations without
sophisticated semantics.

The model of inconsistency repair based on Read/Write compensations using REDO and
UNDO [12] consists of three steps. First is the inconsistency detection where a specific operation
is found to have introduced inconsistency. Second is the undoing of the effects of the offending
operation. Third is the REDO of the other operations that have been undone as a side-effect
during UNDO. In the worst case, the entire history needs to be undone up to the offending
operation, and then redo everything else on the history. To illustrate the compensation overhead,
consider an inventory item value decremented by $200 (its compensation increments $200).
Suppose that it was an error and we wish to compensate for it after some processing. If another
operation has multiplied the inventory value by a factor of 10 in the mean time, then we must
first divide the value by 10, increment to compensate, and multiply by 10 again. This is necessary



because the Read and Write operations do not commute in general (neither do multiplication
and addition/subtraction).

In this paper, we are concerned only with asETs, which may contain just one operation or
several, so our ACR methods do not distinguish between the two levels. If an ACR method does
not rely on operation semantics such as commutativity and € = 0, then it reduces to applying
all the compensation askETs in the reverse order up to the askET causing inconsistency. After the
offender has been undone, the ACR method replays the history from that point to redo. When
€ > 0, the need for roll back is lessened by an amount roughly proportional to the €-spec. This
is explained in more detail in Section 5.3 using commutativity.

For operation-level compensation such as Time Warp [15] and classic TP crash recovery, the
overhead of undoing the entire history is accepted as inevitable for the Read/Write model. The
transaction-level equivalent of undoing the entire history is called cascaded aborts. However, if we
take into account higher levels of abstraction for the operations (e.g., increment and decrement),
compensation actions may be used to roll back sophisticated updates more cheaply. This is
especially relevant at the transaction level. Sagas [9] and Compensating Transactions [16] are
good examples. The most important property in operation semantics to reduce rollback overhead
is commutativity.

5.2 Semantics-Based Compensation

As mentioned above, Sagas [9] and Compensating Transactions [16] rely on commutativity to
reduce the rollback overhead in compensations. The idea is that if we are applying only com-
mutative transactions then we can shuffle them all the way back to the original transaction
introducing the inconsistency, thus avoiding the rollback. Sagas are composed of steps, each be-
ing an atomic transaction. If some steps need to be rolled back for any reason, a compensation
step is run. They depend on general “application semantics”, which include commutativity, as
the underlying assumptions that allow compensations without rolling back the entire history.

To simplify the presentation we use the notation of Korth et al. [16] in the description
of Compensating Transactions. When the updates of transaction T; are read by some other
transaction Ty, T is said to have been ezternalized. If we want to undo the effects of 17,
a Compensating Transaction C'Ty is run. T3 is called a compensated-for transaction and T,
a dependent transaction with respect to Ty. The goal of their recovery paradigm is to undo
the compensated-for transaction but leave the effects of the dependent transactions intact. An
important definition is that of soundness. (As usual [2], a history is a sequence of database
operations.) If X is the history of transactions 7', C'T’, and their set of dependent transactions
dep(T), and Y is some history of only the dependent transactions dep(7'), then X is said to be
sound if for the same initial state S, X(9) = Y(5). In other words, in a sound history, CT
compensates for T' cleanly, leaving the effects of dep(T') intact. It can be shown that if C'T
commutes with every transaction in dep(7T') then the history is sound.

They further generalize the above definition to include weak forms of compensation sound-
ness. The history X is sound with respect to a reflexive relation R (in short R-sound), if there
exists a history Y of dep(T) such that Y (5) R X(5). For the case of R being equality, the
general definition reduces to the “regular” soundness.

In ESR-based TP systems, the definition of inconsistency specification implies a monotonic
distance metric underlying an €-spec. So our focus is narrower than the predicate-based gen-
erality of Korth’s reflexive relations. We are interested in a relation called “Within Bound”,
denoted by W(B), such that Y(.5) W(B) X (9) if the database state Y (.9) is within the distance
bound B of state X(.9) in the distance metric. If the distance metric is isotropic (as in airline
and bank examples and all real-world applications) then the relation W(B) is reflexive. The
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result is that W(B)-sound histories are €-serial.

In our banking example, consider a transaction T that transfers funds and a query ET
Q(ImpLimit = $10,000) in dep(T') that produces the summary of total balance. If we need to
compensate for T, the C'T" must reverse the fund transfer. According to the above definition,
the history X is sound for a bound of $10,000 if there is a Y (.9) in dep(T") that produces a result
within $10,000 of X(.9). It is immediate that if the amount of 7' is less than $5,000 then we
can schedule the execution of () freely, since it now commutes with T within the $10,000 bound.
It is the job of the ACR method, however, to accumulate the amount of inconsistency in the
system for any given moment, to make sure the bound for each ET is not exceeded.

5.3 Designing ACR Methods

An informal description of a generic ACR method is that during the processing of a compensation
ET it goes through the history checking for violations of the commutativity property. Whenever
a violation is spotted, the method accumulates the update amount for all the involved ETs. If
the €-specs are not exceeded, then the compensation remains sound and the algorithm continues.
When one of the bounds is exceeded, the ACR has three choices (to be made by the programmer
or the system on behalf of the programmer), which we will consider in turn:

(1) to stop the compensation ET,

(2) to retroactively UNDO the committed ET, potentially starting a cascaded abort although
at a lower intensity, and

(3) to mark this conflict and continue.

We think that alternative (1) is a viable choice, even though most researchers (including
Korth et al [16]) define a Compensating Transaction as non-abortable. The main reason they
do not consider the possibility of aborting a Compensating Transaction is because the abort
would introduce some inconsistency into the database, which is not tractable in the classic TP
theory. Although this alternative is not the focus of this paper, ESR allows some inconsistency
to persist in the database. This is consistent with the real-world databases, where some amount
of residual permanent inconsistency (e.g., due to data entry errors) is inevitable.

Alternative (2) continues the processing of the compensation ET by UNDOing the conflicting
committed ET. This may be followed by a REDO, depending on the soundness of the resulting
history. Although the phenomenon is the same as cascaded aborts, we believe that the intensity
(number of aborts) is much smaller because only the ETs with exceeded bounds need to be
undone.

In alternative (3), the ACR processes the entire history to the end, finds all the bound
violations and reports the result to the compensation ET. This is useful if the compensation
ET programmer wants to assess the magnitude of the total conflicts before making a decisions
between options (1) and (2). For example, cascaded aborts may be preferable for a small number
of aborts, but if dep(T') is large then a large number of aborts may force the compensation to
stop.

To illustrate this compensation-based ACR design methodology, let us consider an simple
example. Each askET and compensation asET is a single operation and we have an ADC method
derived from two-phase locking. Table 2 shows the lock compatibility matrix for dirty objects.
ACR uses the usual two-phase locking compatibility table [28] to handle clean objects. The
main difference is in squares marked LOK-1 (reading uncommitted data), LOK-2 (overwriting
data read by uncommitted query —degree 2), and Commu-1 (if operations commute). In all
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No Lock RET wET

Read/Write
ImpLimit= 0 — — —
RET

ImpLimit> 0 AOK AOK LOK-1

WET
ImpLimit> 0 AOK LOK-2 | Commu-1

Table 2: 2PL Compatibility for Dirty Objects

three cases (LOK-1, LOK-2, and Commu-1), the lock is granted if the InpCount and ExpCount
of involved ETs are within their respective €-spec. In Table 2, R¥T includes the read requests
from QFT. Note that we have identified the places where potential inconsistency may arise
and made explicit the references to these situations. This type of analysis is facilitated by
ESR because it is semantics-independent. This does not prevent ESR from incorporating the
explicit specification of semantics-dependent inconsistency. In contrast, sagas [9] as proposed
are implicitly dependent on application semantics for the maintenance of database consistency.

5.4 Independent Updates

Besides compensations, a second method of consistency restoration is independent updates. In
these cases, an independent source of consistent data is available. From time to time the consis-
tent data is used to overwrite potentially inconsistent data. The first important example of this
method is the propagation of replica updates in primary copy methods, such as Grapevine [4].
Since all the updates are performed first in the primary copy, the secondary copies may be
allowed to diverge (within bounds specified by each dET). A similar situation occurs with bank
accounts. The bank database is processed in batch mode at night, at which time the updates
are made. Although, each branch may log some local operations into the local replica (usually
on paper), the official copy is the central database.

Another class of applications that use independent updates are the signal acquisition systems
that receive fresh data every so often, such as radars or satellite photos. Even if the current
data is inconsistent, a consistent version is expected to arrive at certain time intervals to solve
the problem.

One way to use independent updates is to emulate the bank practice. An update is made
locally and immediately, but the update is sent to the central site in a reliable message [3]. The
update in the central site satisfies the necessary rigor in consistency constraints, for example,
serializability. Periodically the central site propagates the official updates known to be consistent
to the local sites.

The €-spec of the local copy is limited by the amount of updates done locally in the worst
case (when all the updates fail at the central site and are rolled back). To enforce this limit,
the CR algorithm may need to store the accumulated €-spec with each data item. This can be
done in main memory, if the number of local updates between consecutive update propagations
is relatively small. If it is too much for main memory, it can be stored on disk. Alternatively,
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the €-spec can be calculated from the site update log when needed. This is a trade-off between
storage and processing.

6 Applications Revisited

Having described ESR and outlined its implementation, we are ready to apply ESR to solve the
problems detailed in Section 2. First, because ESR allows asynchronous execution of askTs, it
decreases or eliminates the synchronicity requirement of classic distributed TP. Second, ESR-
based systems offer dependable consistency levels that can be specified at the granularity of
individual ETs at run-time. Thus, users are given the flexibility to precisely control the trade-off
between consistency on the one hand and performance, availability, and autonomy on the other
hand. We note that ad hoc solutions may have been previously proposed for each application,
but ESR offers a uniform framework for a diverse suite of applications.

6.1 Autonomous TP

Recall that airline reservation systems run with few consistency checks during normal operation
in order to optimize response-time. However, when a flight becomes full, it is important to
maintain control consistency for queries and updates. ESR can model both situations. ETs
with a relatively large €-spec runs unimpeded normally; when a flight becomes full its ETs run
with a tighter €-spec.

To enable autonomous operation when the network is partitioned or a site is down, we can use
either pre-allocation of seats such as the Data-value Partition method (Section 2.4), or a dynamic
allocation using a standard ACR method. Data-value Partitioning offers higher autonomy, since
negotiations between sites is necessary only when the seat allocation is exceeded at some site. A
pure dynamic allocation method based on ACR simply processes reservation requests as usual
during the normal execution. During a network partition, the system proceeds using estimates
given by the load management system. Fach site is given a quota of seats for the duration of
the network partition, and they obtain reservations by specifying the remaining quota as the
ET’s €-spec. When the network connectivity is restored, the difference is reconciled using an
ACR method. For example, if the network link between New York and Chicago is temporarily
broken, New York may be assigned & seats on each flight from Chicago to New York, even
though the database is inaccessible. When the link is restored, the ACR method (e.g., based
on compensations) will replay the reservations and make up to k reservations in the Chicago
database.

In the banking example, each component bank (as well as the parent bank) may process
its own asset analysis independently, perhaps seeking slightly different kinds of information to
generate reports of different formats. If the inconsistency is below the tolerance level (which may
be different for each bank), these reports may be run asynchronously. A more serious situation
is when a network partition or a site crash makes part of the distributed database inaccessible to
the rest of the system. It is desirable that clients be allowed to make withdrawals, for example
from the automatic teller machines, while minimizing the risk to the bank. Current practice
gives a flat limit to all customers ($400 daily for the New York Cash Exchange), which bounds
the bank risk. Using a quota system as above, the bank may be able to offer a significant part
of a customer’s balance available with less risk. Assuming replication, the bank may allow a
percentage of the last balance to be used, provided that limitations are placed on the other
partition to protect the bank. This way, bank loses less in case the balance is less than the fixed
limit and gains customer satisfaction when the balance is significantly higher than the limit.
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6.2 Service Guarantees

One of the strong points of ESR is the ability to offer service guarantees in terms of consistency.
In the stock market example, the inconsistency is represented by the time lag between the
reported price and the last transaction update. Using ESR with fixed time bounds (explained
in [28]), the stock exchange can offer the brokers some firm guarantees of the inconsistency level.
Even if the system breaks down due to overload, it can still return the amount of inconsistency
(in terms of time lag in this case) so brokers may judge the value of its information. For critical
times when the volume threatens to overwhelm the system, as well as the remote connections
to other cities and countries, the guarantee on consistency level is very important.

In general, ESR-based systems can offer dependable consistency levels, in contrast to degree
2 and QSR, for example. Further, the level of consistency can be specified at the granularity
of each ET at run-time. This flexibility gives programmers previously unavailable facilities to
control the trade-off between consistency on the one hand and performance, availability, and
autonomy on the other hand.

6.3 Integration with Classic TP

One possible reason why in practice many DB2 installations can use degree 2 consistency is
because current circumstances mitigate the actual amount of inconsistency. Assuming that each
update value has an upper limit, that the query has a bounded duration, and that the number
of update transactions per second is moderate, then the total amount of inconsistency of that
query is bounded by the product of these factors. However, as the system grows, both the
query duration and the update transaction rate increase. If update values also increase then
the fortuitous bound on inconsistency may quickly become meaningless and degree 2 no longer
useful.

Therefore, for scalability reasons we need a more abstract and precise integration with classic
TP. Another example is using the Escrow Method [22] to improve system performance. The
Escrow Method requires the programmers to accommodate the whole-data-item uncertainty
explicitly, which may interact with degree 2 (in)consistency in subtle ways. As we move into
more advanced applications [1] and heterogeneous databases [7], the integration of different kinds
of concurrency control becomes increasingly important. In contrast to degree 2 consistency, ESR
—by definition— provides a smooth integration between SR and any degree of inconsistency.
Furthermore, because ESR guarantees a bound on inconsistency, applications will not produce
increasingly inconsistent results when more processing power or nodes are added to the system.

6.4 Network Partitions

Another advantage of ESR-based distributed TP is the transparency of the ET interface. For
example, the Escrow Method [22] increases the TP system throughput by implicitly reserving
part of an aggregate field (e.g., a numerical value) for processing. The reason the Escrow Method
obtains more concurrency is its ability to release the lock on the data item once the partial value
has been put in “escrow”. More relevant to this paper, the Data-value Partitioning method [27]
increases the distributed TP system availability and autonomy by explicitly separating parts of
the value of a data item into different sites. Since the different parts may operate asynchronously
even during network partitions, Data-value Partitioning increases autonomy because of its non-
blocking character. A serious problem with both methods is that they introduce uncertainty
when trying to read the value of the entire data item. For both the Escrow Method and the
Data-value Partitioning, this uncertainty is inevitable.
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ESR can capture this uncertainty. For example, instead of having the application program-
mer look at the maximum and minimum possible values (as suggested in [22]), an €-spec in a
read ET is enforced by the system, so the ET programmer will not have to deal with the data
value uncertainty explicitly. The same way the transaction interface hides details of concurrency
control and crash recovery, the ET interface hides details of uncertainty. In an ESR-based TP
system, the Escrow Method and Data-value Partitioning may be introduced as optimization
techniques that are transparent to the application programs.

7 Related Work

Besides ESR, notions of correctness weaker than SR have been proposed. We have already
discussed QSR [6] and degree 2 [11]. Garcia-Molina et al. [9] proposed sagas that use semantic
atomicity [8] which rely on transaction semantics to define correctness. Sagas differ from ESR
because an unlimited amount of inconsistency (revealed before a compensation) may propagate
and persist in the database. Levy et al [18] defined relazed atomicity to model non-atomic
transactions similar to sagas. Non-atomic transactions are composed of steps, which may be a
forward step or a recovery step. They also describe the Polarized Protocol to implement Relaxed
Atomicity. The main difference between ESR and these notions of correctness is that ESR is
independent of application semantics. ESR also allows a larger number of execution histories.
The Polarized Protocol, for example, does not allow global state from an incomplete transaction
to be seen by other transactions.

An implementation issue in asynchronous TP is to guarantee uniform outcome of distributed
transactions running asynchronously. Unilateral Commit [14] is a protocol that uses reliable
message transmission to guarantee that a uniform decision is correctly carried out. Optimistic
Commit [17] is a protocol that uses Compensating Transactions [16] to undo the effects of partial
results to reach a uniform decision. This is but one aspect of the autonomous TP problem.

Sheth et al [26] use the notion of eventual consistency to define current copy serializability
(CPSR) for replicated data. Each update is done on a current copy and asynchronously propa-
gated to the other replicas. Users have control over when the updates are propagated, and the
scheme reduces to synchronous replication is the propagation delay is set to zero. In contrast,
ESR is useful for general asynchronous TP, not just replication.

8 Conclusions

We study the feasibility of execution autonomy in systems with asynchronous transaction pro-
cessing. By maintaining epsilon-serializability (ESR), autonomous sites can ensure consistency
despite the concurrent and asynchronous execution of distributed transactions. We describe
efficient implementation techniques for ESR. While allowing bounded inconsistency to be seen
by other queries, asynchronous divergence control methods prevent inconsistency from enter-
ing the database. If limited amounts of inconsistency is found in the database, asynchronous
consistency restoration methods restore database consistency.

To illustrate the benefits of ESR, in asynchronous transaction processing, we describe several
concrete applications: an airline reservation system, a bank account management system, and a
stock exchange trading system. These examples make use of ESR to achieve autonomous transac-
tion processing, guaranteed consistency levels, and integrated execution with classic transaction
processing.

The work based on ESR is called Generalized Transaction Processing, several aspects of
which are currently under development. One application of ESR is an asynchronous approach
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for replication [23]. An important part of ESR implementation is the divergence control meth-
ods [28]. We are now evaluating the performance benefits of divergence control methods resulting
from added concurrency and decreased deadlock frequency.
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