
Theory and Practice of Transactional Method
Caching

Daniel Pfeifer and Peter C. Lockemann

Institute for Program Structures and Data Organisation (IPD)

Universität Karlsruhe, Germany

{pfeifer, lockeman}@ipd.uni-karlsruhe.de

March 9, 2005

Nowadays, tiered architectures are widely accepted for constructing large scale information systems. In this
context application servers often form the bottleneck for a system’s efficiency. An application server exposes an
object oriented interface consisting of set of methods which are accessed by potentially remote clients. The idea of
method cachingis to store results of read-only method invocations with respect to the application server’s interface
on the client side. If the client invokes the same method with the same arguments again, the corresponding result
can be taken from the cache without contacting the server. It has been shown that this approach can considerably
improve a real world system’s efficiency.

This paper extends the concept of method caching by addressing the case where clients wrap related method
invocations in ACID transactions. Demarcating sequences of method calls in this way is supported by many
important application server standards. In this context the paper presents an architecture, a theory and an efficient
protocol for maintaining full transactional consistency and in particular serializability when using a method cache
on the client side. In order to create a protocol for scheduling cached method results, the paper extends a classical
transaction formalism. Based on this extension, a recovery protocol and an optimistic serializability protocol are
derived. The latter one differs from traditional transactional cache protocols in many essential ways. An efficiency
experiment validates the approach: Using the cache a system’s performance and scalability are considerably
improved.

Categories and Subject Descriptors: H.2.4.o [Information Systems]: Database Management—Systems, Trans-
action Processing; H.3.4.b [Information Systems]: Information Storage and Retrieval—System and Software,
Distributed Systems; C.4 [Performance of Systems]: Optimization

General Terms: Client-Server, Architecture, Transaction Management, Object Oriented

Additional Key Words and Phrases: Caching, Application Server, Transaction Theory, Performance, Scalability

1. INTRODUCTION

Modern large-scale client-server-based information systems follow a tiered architecture.
The most common solution is the three-tier architecture consisting of a presentation tier,
an application tier and a data tier. E.g. for a typical web application, a servlet-enabled
web server implements the presentation tier and a (relational) database system implements
the data tier. Application server technologies such as EJB [Sun a] or corresponding parts
of the .NET Framework [Microsoft] are often used to realize the application tier. They
offer an object oriented interface consisting of a set of service methods to their clients, the
so calledservice interface. In order to centralize business logic but also for better system
scalability, the different tiers are usually hosted on separate machines in a local network.
This makes invoking a service method a costly affair, since it requires a remote method call
which passes the application server’s infrastructure and often incurs database accesses.

Consequently, application servers tend to become the bottleneck of an information sys-
tem in respect to its performance and scalability. Many solutions have been proposed to

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages1–??.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197564449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 · Daniel Pfeifer and Peter C. Lockemann

tackle this problem including dynamic web caching [Anton et al. 2002; Challenger et al.
1999; Li et al. 2002], method caching [Pfeifer and Jakschitsch 2003], application data
caching [jcache], database caching [Grembowicz 2000; Luo et al. 2002; The TimesTen
Team 2000] and special design patterns [Marinescu 2002].

We concentrate onmethod cachingwherebyresults of service method calls are cached
on the client side of an application server. E.g. in case of a tiered web application, an appli-
cation server’s client is usually a servlet-enabled web server. Alternatively, an application
server’s client could also be an end-user program with rich a graphical user interface.

If the client code invokes a service method that does not have any side effects, its result
may be cached for later reuse on the client side. If the client code calls the same method
with the same arguments again, the result can be read from the cache without contacting
the application server.

[Pfeifer and Jakschitsch 2003] showed that this approach can be pursued transparently,
so that usually neither the client-side nor the server-side application code has to be aware
of a related cache’s presence. Moreover, it validated that a method cache can considerably
improve performance and scalability of real world applications.

For caching approaches the most challenging part is usually to guarantee cache con-
sistency. [Pfeifer and Jakschitsch 2003] also demonstrates how strong cache consistency
can be asserted for the price of added efforts on the part of an application developer who
has to describe certain interdependencies between methods. However strong cache con-
sistency does not cover the case where service method calls are demarcated by client-side
transactions.

Consequently, this paper extends the idea of method caching by addressing the case
where the client code wraps service method invocations in ACID transactions. This type
of transactions is explicitly supported by popular application server technologies such as
EJB and .NET. This paper presents an architecture and a theory that enablestransactional
caching of method results on the client sidewhile maintaining complete transactional con-
sistency and in particular serializability. Moreover, we discuss how to preserve important
recovery properties when using a transactional method cache.

In this context many important assumptions differ from the ones that govern conven-
tional transactional cache protocols such as presented in [Franklin et al. 1997]. In par-
ticular, we do not assume that a protocol for transactional method caching can be tightly
integrated into the database system that underlies the application server. In practice, such
an expectation would be unrealistic because commercial database systems do not allow a
deep engagement in their internal transaction manager. Instead we propose an independent
component, called them-scheduler, for scheduling cached method results while asserting
full transactional consistency. Them-scheduler is located in between the application server
and the underlying database system, cooperates with a transactional method cache on the
client-side and makes conservative assumptions about the database system’s transaction
management.

The remainder of this paper is organized as follows: First we clarify the scope to which
transactional method caching may be applied and explain how an application server archi-
tecture should be extended to enable this caching approach (Section2). In order to build
anm-scheduler and a related cache protocol, it is useful to extend the conventional notion
of transactions. Section3 develops a theory for transactional method caching on the ba-
sis of the classical 1-version and multiversion transaction formalisms. Using this theory,
Section5 develops a serializability protocol for scheduling cache hits for cached method

Theory and Practice of Transactional Method Caching · 3

Ressourcenverwalter

Client

Application Server

2PC Transaction Monitor Service Method Impl.

Read/Write
Operations

RessourcenverwalterResource Manager (e.g. DBMS)

Service
Method

CallTX
Interface

Service
Interface

2PC Interface
Data Access

Interface

Method
Result

begin(),
commit(),
rollback()

Ack. for
TX End

start(),
prepare(),
commit(),
rollback()

TX Ack.
Data

Elements

Client Code

Fig. 1: Architecture of an Application Server Supporting Client-Side Transactions

results inside transactions. The protocol is optimistic but differs from existing transactional
cache protocols such as OCC [Adya et al. 1995] in many essential ways. Before, Section
4 discusses how conventional recovery qualities can be assured in the presence of a trans-
actional method cache. To demonstrate that the approach pays off, the paper presents an
efficiency experiment for an EJB-based application server system (Section6). Section7
outlines the relationships between our contribution and existing caching approaches for
web applications as well as existing transaction protocols. We conclude with a summary
and prospects to future work.

2. GENERAL ARCHITECTURE

2.1 Client-Side Transactions for Application Servers

This section highlights the general concept of client-side application transactions and the
respective infrastructure. Figure1 illustrates an architecture enabling client-side transac-
tions in conjunction with service interfaces: An application server offers two interfaces,
the service interface and the transaction interface. Both interfaces can be used via remote
method calls from a client. E.g. for EJB, the service interface technically consists of a set
EJB Home and EJB Remote Interfaces (which are Java interfaces) while the transaction
interface adheres to the Java Transaction API [Sun c].1 Using these interfaces, a client can
wrap a sequence of service method invocations in an ACID transaction. The application
server executes the client’s service method invocations and relies on one or more trans-
actional resources (e.g. databases) to enable transactional consistency. To achieve this,
the application server state (as far as relevant to clients) is derived from the state of the
transactional resources. If a transactional resource is a relational database, this is typically
realized by SQL statements inside service method implementations or by object relational
mappings between application server objects and database table rows. As shown in Figure
1 a service method implementation may therefore read and write data elements via the data
access interface of the underlying database system.

1 Note that the term ”service interface” abstracts from the actual number of programming language interfaces for
an application server standard.

4 · Daniel Pfeifer and Peter C. Lockemann

1 ...
2 Context ctx = new InitialContext();
3 // Request an application transaction
4 UserTransaction utx = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
5 utx.begin(); // Begin the transaction
6 Item item = itemSession.findItemById(20); // Invoke service methods as part of the current transaction
7 if (!item.price > 42) {
8 item.price = 42;
9 itemSession.updateItem(item);

10 }
11 utx.commit(); // Commit the transaction
12 ...

Fig. 2: Example Code of a Client-Side Transaction Using EJB

For every transaction that a client begins, the application server starts a transaction on
every registered resource manager (e.g. a database transaction) and keeps it open for as
long as the client transaction is open. All service method invocations inside a client’s
transaction are tied to a respective resource transaction for every participating resource
manager. To realize this, the resource managers are usually expected to provide a trans-
action demarcation interface according to the XA standard [The Open Group]. When
committing a client transaction, the application server acts as a transaction monitor and
commits all respective resource transactions using a two-phase commit protocol. Due to
this mechanism, transactional qualities of resource transactions are more or less inherited
by client-side transactions. E.g., if there is only one participating resource manager and it
guarantees serializability then the client transaction will also be serializable.

Note that typically, application servers do not guaranteeglobal serializability across
multiple resource managers but only ascertain local serializability and atomic commits.
The approach of this paper does not try change this fact but offers the same degree of
consistency in the presence of client-side method caches. Therefore, the actual number of
resource managers is mostly irrelevant to this contribution (given that there is at least one
such entity).

Figure2 presents an example of EJB-related code for a client-side transaction including
service methods calls.

2.2 Integrating a Transactional Method Cache

This section explains how a transactional method cache can be integrated in the above ar-
chitecture. It shows how a service method invocation is generally processed in the presence
of a method cache and describes a base protocol for keeping the cache contents up-to-date.

2.2.1 Base Architecture.Figure 3 extends Figure1 by the components additionally
needed for transactional method caching. As described in Section1 the cache is located at
the client and implements the application server’s transaction interface as well as its service
interface.2

For the client code, the presence of the cache is completely transparent – it performs
its method calls as usual. However, service method invocations and calls to demarcate
transactions are now intercepted by the transactional method cache. For every service
method call the cache checks if a related method result is in its store. If so, it returns

2Technically this can by realized by applying the the design pattern ”dynamic proxy” ([Sun]) or by generating
the respective classes statically [Pfeifer and Jakschitsch 2003].

Theory and Practice of Transactional Method Caching · 5

Ressourcenverwalter

Application Server

start(), prepare(),
commit(), rollback()

Transaction Monitor
Service Method Impl

r[x], w[x]

Ressourcenverwalter
Resource Manager (e.g. DBMS)

(Including rw-Scheduler)

Extended
TX Interface

Extended
Service

Interface

2PC Interface Data Access Interface

Client CodeClient

Transactional Method Cache
(Cache method results,

delegates method calls to application server if necessary)

begin(),
commit(),
rollback()

Service
Method

Call
Repeated
Service
Interface

Repeated
TX Interface

Method
Result

Ack.
TX End

Service
Method
Call +

begin() +,
commit() +,
rollback() +

TX Ack. +
Method Result +

r[x], w[x] x

xTX-Ack.

Additional
Info. for

Scheduling
Method

Operations

Additional
Info. for

Scheduling
Method

Operations

m-Scheduler

Fig. 3: Architecture of an Application Including a Transactional Method Cache and anm-Scheduler

the result to the client right away. Otherwise it delegates the call to the server where it is
(almost) executed as usual. The cache always forwards calls for demarcating client-side
transactions to server.

In order to exchange additional cache consistency information, all remote method invo-
cations might transfer extra data. This is indicated in Figure3 by a plus sign added to a
respective label. (Most modern remote method invocation protocols allow for these kind
of extensions.) When a method call arrives at the server, the additional information from
the method cache is passed on to them-scheduler. As soon as the call’s result is about to
be returned to the client, them-scheduler attaches consistency information which will be
processed by the cache.

The approach leaves the conventional message flow between client and server intact,
since additional data is always piggy-backed to ordinary remote method calls. Only in case
of cache hits, the information flow changes since client server communication is avoided.
This lazy way of exchanging cache consistency information keeps the communication cost
at a minimum but requires transactional method cache protocols that are optimistic.

2.2.2 Base Protocol.The following paragraphs describe thebase protocolfor trans-
actional method caching. Note that this protocol does not yet guarantee serializability.
It merely asserts that cache content is created for read-only method invocations and that
stale cached method-results will be invalidated soon after a respective write operation. In
later sections we will see how the base protocol can be extended to ascertain transactional
consistency.

Also note, that the base protocol as described next refers to just one client cache whereby
the corresponding client might run several concurrent transactions. However, the protocol
can easily be extended to function to with multiple clients. (The details are omitted in
favour of a compact presentation.)

Let m be service method ando.m(a) be a corresponding method invocation comprising

6 · Daniel Pfeifer and Peter C. Lockemann

the this-objecto and the argument lista. Wheno.m(a) reaches the cache it checks if the
result for the cache key(m,o,a) is in its store. For a cache hit, the result is returned to
the client code straight away. Further, for every active local client transactionTi the cache
keeps an initially empty listLi and enters into it all method results that were returned from
the cache on behalf of transactionTi . In order to do so, every cached method result is
assigned a unique identifier which is entered inLi .

If a cache miss occurs inTi or if the client tries to commitTi , the respective method call is
delegated to the application server. The method cache attaches the listLi of the respective
transactionTi to the call and sends it to the server. On the server side, the call is executed
as usual, howeverLi is forwarded to a new component – the so calledm-scheduler. The
m-scheduler is in charge of scheduling the use of cached method results in such a way that
a client transactionTi remains consistent, i. e., serializable. It can do so because it knows
all cache hits ofTi from the respective listLi , and also, it observes all data access operations
that service method implementations perform via resource managers.

Take a cache miss so that the method callo.m(a) from above might cause several read
and write operations on a relational database. Them-scheduler observes these operations,
keeps track of them in an operation listl i , and passes the operations on to the database
system. For now we assume thatl i consists of operations of the typer[x] andw[x] with x
representing a data element of the database. However, as it will be discussed later, there
are challenges in identifying data elements such asx.

When the execution ofo.m(a) finishes at the server, them-scheduler checks if there
are any write operations in the operation listl i . If not, the respective method invocation
left the database state unchanged and will become a candidate for caching. In this case
the m-scheduler associates a globally unique identifier(i,k) with o.m(a) where i repre-
sents the transactionTi in which o.m(a) was computed andk identifieso.m(a) insideTi .
Moreover, them-scheduler maintains a global tableV to associate all identifiers of cached
method calls (from all transactions) with all data elements that were read during a respec-
tive method execution. So, foro.m(a) it will enter (i,k) and the respective data elements
(such as known froml i) in V. When the application server sends the resultr from o.m(a)’s
execution to the client, the respective message also contains the tuple(i,k). This tells the
cache thatr should be cached and it saves bothr and(i,k) together with the cache key
(m,o,a) in its store.

If, on the other hand,o.m(a) did cause one or more write operations, the system behaves
differently: Letx be a data element which was written on behalf ofo.m(a). UsingV them-
scheduler determines all identifiers of cached method results at whose computationx was
read and collects them in an invalidation listh. The server attachesh to the result message
which containsr and sends it to the client. When the client receives the message it removes
all method results from the cache which are identified by elements inh. Eventually it
returnsr to the client code.

To sum up, them-scheduler needs identifiers for cached method calls like(i,k), lists like
Li , l i andh as well as the tableV to enable consistent transaction executions and to keep the
cache up-to-date. UsingLi them-scheduler gets to know what cached method calls were
accessed in a transaction. UsingV them-scheduler can tell what data elements were read
to produce cached method results and also it can derive what cached method results must
be invalidated. Using(i,k) them-scheduler can associate cache hits with entries fromV.

Figure4 illustrates the base protocol’s data structures and some of its important imple-

Theory and Practice of Transactional Method Caching · 7

1interface DE {} // Representation of a data element (just a marker interface)
2class MId { int k,l; } // ID of a cached method result
3class Op { boolean read; DE x; } // Representation of a database operationr[x] or w[x]
4class T { // Representation of a transactionTi
5int id; // Transaction ID
6List<Op> l = /0; // Database operations for the current method execution (l i)
7int nextMId = 0; // Counter for new IDs of cached method results
8...
9}
10class Req { // A service method call which is forwarded to the server
11int txId; // ID of the transaction containing the call
12Object o; Method m; Object[] args; // Method call details
13// Recent client-side cache hits for the given transaction (Li)
14List<MId> L;
15}
16class Res { // Response for a service method execution
17Object r; // The execution’s result
18boolean cachable; // Whether the result is cachable or not
19MId m = null; // If result is cachable: the ID of the result
20List<MId> h; // IDs of recently invalidated cached method results
21}
22
23class MScheduler { // Representation of them-scheduler
24Rel<DE,MId> V = /0; // Relatesx with IDs of cached method results
25Map<int,T> txId2T = /0; // Relates a transaction’s ID with its timestamp
26
27void handleRequest(Req req) { // m-scheduler part for handling a request of a service method execution
28for each m ∈ req.L // Iterate over all recent cache hits of the considered transaction and schedule them
29methodOp(m, txId2T(req.txId)); // (for details see later)
30}
31void completeResponse(Res res, T t) { // Complete the response of a service method execution
32res.cachable = true; // At first, assume that the result is cachable
33for each op ∈ t.l
34if (!op.read) { // If the method executed a write operations,. . .
35res.cachable = false; // . . . it is not cachable
36// Updateh to invalidate the respective cache entries at the client
37for each m ∈ V(x) res.h.add(m);
38}
39if (res.cachable) { // If the result will be cached,. . .
40res.m = new MId(t.id, t.nextMId++); // . . . generate its ID and. . .
41for each op ∈ l // . . . register it at the server usingV
42V.put(op.x, res.m);
43}
44l.clear(); // Clear the database operations list for the next method execution
45}
46...
47}

Fig. 4: Java Pseudo Code for the Base Protocol’s Aspects at them-Scheduler

mentation aspects at the server side.3 The classesReq andRes represent the requests and
the responses of service method calls addressing the server. The classes’ field names match
the names used in the protocol description from above.

At the server side, them-scheduler drives the base protocol in respect to handling re-
quests and generating responses. In this context the application server is supposed to call

3 Note that in order to represent data types conveniently, the code applies parametric polymorphism (also known
as ”generics” in the Java world [Gilad Bracha]). E.g., the polymorphic typeRel<A,B> stands for finite relations
R⊆ A×B and the typeMap<A,B> represents finite functionsA→B.

8 · Daniel Pfeifer and Peter C. Lockemann

MScheduler.handleRequest() when it receives a remote service method call. After the
application server has computed the method call’s resultr, it invokescompleteResponse() .
This way them-scheduler can add all missing base protocol information to the response
object. Eventually, the server sends the completed response object to the client.

2.2.3 Integrated Transaction Scheduling.Although method caching happens on the
client side, cache consistency is provided by them-scheduler (on the server side). Without
a transactional method cache in place, client transactions are mainly based on the trans-
action management of resource managers. For this purpose, every resource manager has
its own unit for scheduling transaction operations, the so calledrw-scheduler. E.g. the
rw-scheduler applies a serializability protocol such as two-phase locking [Bernstein et al.
1987], 2-version two-phase locking or FOCC [Härder 1984]. Unfortunately, the use of
cached method results is beyond anrw-scheduler’s control but still affects transactional
consistency. Therefore, them-scheduler and a respectiverw-scheduler must cooperate in
order to provide consistent client transactions.

Since resource manager products such as relational database management systems (RDBMs)
cannot be easily prepared for such an integration, we propose a layered approach for
scheduling transactions in the presence of a method cache. Using this approach the re-
source manager is completely unaware of anm-scheduler and performs its tasks as usual.

Them-scheduler intercepts all transaction operations that address the resource manager
and on top of it, it schedules the use of cached method results. In order to do so, it makes
conservative assumptions about therw-scheduler’s behavior and handles conflicts result-
ing from the use of cached method results and conventional write operations. Using the
data structures from above it has all information at hand to perform this task. The next part
of this paper is devoted to developing a theory for how anm-scheduler can produce seri-
alizable transactions under these conditions. The general idea of separating different parts
of a transaction scheduling process along certain types of data operations can be found in
[Bernstein et al. 1987]. We build on this idea for creating an integrated scheduler consisting
of anm-scheduler and anrw-scheduler.

Note that it is a crucial requirement for them-scheduler to observeall transaction opera-
tions addressing the resource manager. Otherwise, it might miss potential conflicts between
operations and therefore generate non-serializable histories.

As mentioned above, there is an additional challenge when constructing anm-scheduler
because it has to observe access operations in respect to single data elements from a
database. E.g. if them-scheduler should integrate with an RDBMS, database elements
might be table rows. Since them-scheduler acts outside of the RDBMS, it can only ob-
serve database access on the basis of SQL statements. Unfortunately SQL statements spec-
ify data elements only descriptively and so them-scheduler is unable to directly identify
data elements as needed. As a rather pragmatic solution to this problem, we expect an ap-
plication developer to help out by providing the necessary information via some extra code
inside service method implementations. The extra code is inserted after a corresponding
SQL statement and refers to them-scheduler in order to tell it what data elements the SQL
statement accessed. It is up to the application developer to find a useful representation for
identifying data elements. From our experience, key values of table rows are mostly a good
choice.

Theory and Practice of Transactional Method Caching · 9

3. TRANSACTION THEORY FOR METHOD-BASED CACHING

3.1 MC-Transactions and MC-Histories

In order to produce serializable histories in conjunction with method caching, one has to
represent the use of cached method results in transaction histories. This section extends the
notion of conventional transactions and 1-version histories such as presented in [Bernstein
et al. 1987] by introducing a new operation that indicates the use of a cached method result
inside a transaction. As opposed to conventional read and write operations we call such an
operation amethod operation.

A benefit of method operations is that they accurately and naturally represent of the use
of cached method results in a transaction formalism. More importantly, they enable the
development and the verification of non-trivial serialization protocols form-schedulers.
One such protocol will be described in Section5.

For an intuitive understanding of method operations we take a look at a corresponding
history before we come up with a proper definition for it. Consider the following history:

H1 = r4
1[y]r

4
1[x]c1w2[x]c2m1,4

3 r5
3[x]c3.

How does it differ from a conventional 1-version history? First of all, we have read opera-
tions with superscripts such asr4

1[x]. This operation is just like an ordinary 1-version read
operation (e.g. liker1[x]) except that the superscript4 is an identifier for the method call
on whose behalf the read operation was performed. The respective method call is executed
on the server side and so it produces ordinary read operations at the resource manager.
As the method call reads two data elements, there is a series of read operations with the
same superscript, namelyr4

1[y] andr4
1[x]. Since the method call with the ID4 in T1 only

reads data, its result may be cached on the client side. Afterwards it is available for cache
hits (which might occur in other transactions). Note that from a technical point of view,
the superscripts for read operations are created and used by them-scheduler. They are not
visible and not relevant to a resource manager’srw-scheduler.

Secondly,H1 contains the method operationm1,4
3 . It reflects an access to a cached

method resultin transactionT3. The index3 specifies thatm1,4
3 belongs toT3. Furthermore,

the superscript ofm1,4
3 uniquely identifies the cached method result to which it refers: It is

just the result that was produced by the operationsr4
1[y] andr4

1[x] of T1. So the number1 in
the superscript ofm1,4

3 refers toT1 and the number4 identifies the method call with the ID
4.

We have just covered the most relevant aspects of MC-histories and how they extend
conventional 1-version histories. The following definitions implement these ideas.

DEFINITION 1. An MC-transactionTi is a set of operations with a partial ordering
relation<i , where

—Ti ⊆ {wi [x], r
j
i [x],m

k,l
i | x is a data element∧ j,k, l ∈ N\{0}}∪{ai ,ci},

—ai ∈ Ti ⇔ ci /∈ Ti ,

—∀p∈ Ti : p /∈ {ai ,ci}⇒ (p <i ai ∨ p <i ci),

—∀r j
i [x],wi [x] ∈ Ti : r j

i [x] <i wi [x]⇔¬(wi [x] <i r j
i [x]).

10 · Daniel Pfeifer and Peter C. Lockemann

Besides introducing method operations, MC-transactions require every read operation to
have a superscript. Note that a read operation’s superscript is only necessary to ”reference
it” from method operations as explained for the historyH1.4

DEFINITION 2. Let {T1, . . . ,Tn} be a set of MC-transactions. AnMC-historyH is de-
fined asH =

⋃n
i=1Ti with a partial ordering relation<⊇ ⋃n

i=1 <i . Furthermore, the fol-
lowing condition must hold:

∀mk,l
i ∈ H : k∈ {1, . . . ,n}∧∀r l

k[x] ∈ H : r l
k[x] < mk,l

i .

The last condition of Definition2 ensures that everymk,l
j refers to aTk, that exists inH.

However, it is not necessary there exist any read operations of the formr l
k[. . .] in H.

DEFINITION 3. The functiond(p) returns the set of data elements of an operationp in
an MC-historyH as follows:

d(r j
i [x]) = d(wi [x]) = {x},d(mk,l

i) = {x | ∃r l
k[x] ∈ H }.

Further, a(p) shall be the type of an operationp ∈ H, soa(r j
i [x]) = r, a(wi [x]) = w and

a(mk,l
i) = m.

Two operationsui ,v j ∈ H conflict with each other, expressed byui ∦ v j , iff

d(ui)∩d(v j) 6= /0∧
((

Ti 6= Tj ∧ (a(ui) = w∨a(v j) = w)
)∨

(
a(ui) = w∧a(v j) = m

)∨ (
a(ui) = m∧a(v j) = w

))
.

Obviously, the data elements that cause conflicts in respect to a method operationmk,l
i

are just the ones which are read by operations of the formr l
k[. . .]. Consider the MC-history

H1 from above. It holds the following conflicts (and no others):

r4
1[x] ∦ w2[x],w2[x] ∦ r5

3[x],m
1,4
3 ∦ w2[x].

Definition 3 states that conflicts inside a single transactionTi are possible if one of the
conflicting operations is a write operation and the other one is a method operation. To see
why this is useful, consider the history

H2 = r1
1[x]c1w2[x]m

1,1
2 c2.

Here,w2[x] ∦m1,1
2 is reasonable becausem1,1

2 refers to anx-value that was read beforew2[x]
is performed.

As is common for conventional 1-version histories, we want to avoid MC-histories with
unordered but conflicting operations. The next definition limits MC-histories in this re-
spect.

DEFINITION 4. An MC-historyH is well defined, iff

∀p,q∈ HMC : p ∦ q⇒ p < q∨q < p.

4Technically, superscripts for read operations form an extension of conventional 1-version transactions because
a respective transaction may contain several read operations of the same data element whereas this is not the
case for a transaction such as defined in [Bernstein et al. 1987]. However, this detail has no major impact on
transaction theory.

Theory and Practice of Transactional Method Caching · 11

For the rest of this paper we are only interested in well defined MC-histories.So from
now on, whenever we refer to the term ”MC-history” we actually mean ”well defined MC-
history”.

DEFINITION 5. The rw-projectionRW maps an MC-historyH to a historyRW(H)
with all operations fromH but its method operations, soRW(H) = {p∈ H | a(p) 6= m}.
Furthermore, it keeps all ordering relations fromH, but those in which method operations
are involved.

If RW(H) = H holds for an MC-historyH, it is called anrw-history. Similarly, if a
transaction does not contain any method operations it is called anrw-transaction.

As an example of anrw-projection consider

RW(H1) = r4
1[y]r

4
1[x]c1w2[x]c2r5

3[x]c3.

Apart from the superscript of read operationsrw-histories represent conventional 1-version
histories. Later,rw-projections will help us to formalize how anm-scheduler andrw-
scheduler split their work for producing an integrated schedule. Note that therw-scheduler
only gets to see therw-projection of an MC-history. This means that formal qualities that
the rw-scheduler should assert, may be associated with anrw-projection but not an entire
MC-history.

3.2 Multiversion Histories

This section briefly defines a slight adaption of conventional multiversion histories and
multiversion serializability graphs. The adaption is necessary for a sound introduction of
serializable MC-histories which follows in Section3.3.

DEFINITION 6. Let {T1, . . . ,Tn} be a set ofrw-transactions. Amultiversion historyH
is defined asH = { h(p) | p∈ ⋃n

i=1Ti) } with a partial ordering relation<. Further, the
functionh must fulfill the following criteria:

—∀ai ,ci ,wi [x] ∈⋃n
k=1Tk : h(ai) = ai ∧h(ci) = ci ∧h(wi [x]) = wi [xi],

—∀r l
j [x] ∈

⋃n
k=1Tk : ∃i ∈ {1, . . . ,n} : h(r l

j [x]) = r l
j [xi],

—∀i ∈ {1, . . . ,n} : ∀p,q∈ Ti : p <i q⇒ h(p) < h(q),
—∀r l

j [x] ∈
⋃n

k=1Tk : h(r l
j [x]) = r l

j [xi]⇒ (i = 0∨∃wi [xi] ∈ H : wi [xi] < r l
j [xi]),

—∀r l
j [x] ∈

⋃n
k=1Tk : (h(r l

j [x]) = r l
j [xi]∧ i 6= j ∧c j ∈ H)⇒ ci ∈ H.

Anxi is called aversionof the data elementx.

The above definition assumes that prior to any write operation, there already exists an
initial versionx0 for every data elementx.

Mainly for consistency reasons, multiversion histories maintain the superscripts of read
operations as introduced by Definition1. Apart from this, the here defined multiversion
histories differ from the ones in [Bernstein et al. 1987] becauseh is not expected to map
transaction operationsr l

i [x] with wi [x] <i r i [x] to r l
i [xi]. The criterion would be too restrictive

for the definition of serializable MC-histories from Section3.3. However, for serializable
multiversion histories, we still accomplish a similar result as in [Bernstein et al. 1987]
because the definition of multiversion serializability graphs from below accounts for this
issue.

12 · Daniel Pfeifer and Peter C. Lockemann

DEFINITION 7. Let D be the set of data elements of all operations of a multiversion
historyH, soD = {x | ∃r i [x j] ∈ H ∨∃wi [xi] ∈H}. A version order¿ establishes for every
data elementx∈ D a total order of its versions, such thatx0 is the smallest version:

∀x∈ D : ∀i, j ∈ N\{0} : x0 ¿ xi ∧ (i 6= j ⇒ xi ¿ x j ∨x j ¿ xi).

A version order that adheres to the following predicate is calledwrite version order:

∀wi [xi],w j [x j] ∈ H : (wi [xi] < w j [x j]∨ i = 0)⇒ xi ¿ x j .

Write version orders are specific version orders. As we will see, it turns out that we have
to rely on write version orders in order to create a serializability theory for MC-histories.

To keeps things short, we omit the definition of serializable (or more specifically 1-
serializable) multiversion histories. Instead, we turn to the definition of multiversion ser-
izalizability graphs straight away and assume that the reader is familiar with the underlying
serializability theorem (see [Bernstein et al. 1987]).

DEFINITION 8. Let H be a multiversion history for therw-transactions{T1, . . . ,Tn}
and¿ be a corresponding version order. Themultiversion serializability graphMVSG⊆
{T1, . . . ,Tn}2 for H and¿ is given be the following predicate:

(Ti ,Tj) ∈MVSG:⇔ ci ∈ Ti ∧c j ∈ Tj ∧∃rh
k[xl],wm[xm] ∈ H :

(i = j = k = m∧ i 6= l ∧wi [xi] < rh
i [xl]) ∨ (i 6= j ∧m= i = l ∧k = j)∨

(i 6= j ∧m= i∧ l = j ∧xm¿ xl)∨ (i 6= j ∧k = i∧m= j ∧xl ¿ xm).

Instead of writing(Ti ,Tj) ∈ MVSGwe simply writeTi → Tj . If one of the last two
disjunctive clauses holds, thenTi → Tj is called aversion order edge.

Since Definition6enables multiversion histories with operationswi [xi] < r l
i [x j] andi 6= j,

the first disjunctive clause in Definition8 introduces graph edges for just this case. In other
words:wi [xi] < r l

i [x j], i 6= j is impossible for committing transactionsTi andTj if MVSGis
acyclic.

3.3 Interpretation of MC-Histories

Intuitively, not all serial MC-histories should be considered serializable. To understand
this, let us reconsiderH1 from above:m1,4

3 accesses a cached method result which is based
on the version ofx such as read byT1. However, in the meantime,T2 wrotex and might
have created a new value for it. Further,r5

3[x] read the value ofx written byT2. This means

thatm1,4
3 refers to another value ofx thanr5

3[x], although this should not be the case. Still

H1 is serial. If the method call that causedm1,4
3 had not been a cache hit but had been

executed normally, it would have readx by some operationrk
3[x]. And this value would

have been the value written byT2.
The conventional definition for serializable 1-version histories is based on the serializ-

ability of serial histories. Unfortunately as just seen, this approach is not applicable to
MC-histories. Then what is a good definition of serializability for MC-histories? As a so-
lution we will interpret MC-histories as multiversion histories by means of an embedding
functionMV. MV maps all operations of an MC-history to one or more multiversion oper-
ations. This wayMV produces a multiversion history thatexactlyreflects all the conflicts
that exist forH.

Theory and Practice of Transactional Method Caching · 13

Let us begin with an example to convey these intentions. AssumeH1 from above is
mapped to the following multiversion history:

MV(H1) = r4
1[y0]r4

1[x0]c1w2[x2]c2r1
3[y0]r1

3[x0]r5
3[x2]c3.

The original operationsr4
1[x]r

4
1[y] are mapped tor4

1[y0]r4
1[x0] wherey0 andx0 state the ver-

sions that these operations read.m1,4
3 is mapped tor1

3[y0]r1
3[x0] since it essentially accesses

the same versions ofx andy as the read operations to which it refers inH1 (namelyr4
1[x]

andr4
1[y]). The superscript forr1

3[y0] andr1
3[x0] has been chosen more or less arbitrarily –

because ofr5
3[x2], it must not equal5. (The superscript is only required for conformance

with Definition 6.) Finally w2[x2] just writes a respective new version ofx and relates to
w2[x] from H1.

In the following, we will generalize the interpretation functionMV. Thus we can define
an MC-historyH to be serializable if and only ifMV(H)’s multiversion serialization graph
is acyclic for a write version order. E.g.MV(H1)’s multiversion serializability graph is
cyclic for the version orderx0 ¿ x2. It contains the version order edgesT1 → T2 (due to
r4
1[x0] andw2[x2]), T3 → T2 (due tor1

3[x0] andw2[x2]) as well as the edgeT2 → T3 (due to
w2[x2] andr5

3[x2]). This suits our intuition not to considerH1 as serializable.
For MV it is crucial that it mapsall conflictsof an MC-historyH to H ’s multiversion

image. Otherwise one might obtain a multiversion historyMV(H) that is 1-serializable
although its originH should not be considered serializable. The resulting formalism for
MC-histories would then lead to serialization protocols that do not create truly serializable
histories. E.g. the history

H3 = r4
1[y]r

4
1[x]c1w2[x]c2m1,4

3 w3[x]c3

should not be considered serializable for similar reasons asH1. However, a naive mapping
of H3 like

r4
1[y0]r4

1[x0]c1w2[x2]c2r1
3[y0]r1

3[x0]w3[x3]c3

is 1-serializable but ignores the conflictw2[x] ∦ w3[x] in H3 because the respective oper-
ationsw2[x2] andw3[x3] do not conflict. SoMV has to be defined in way such that this
conflict is reflected inMV(H3). An appropriate definition ofMV results in:MV(H3) =

r4
1[y0]r4

1[x0]c1w2[x2]c2r1
3[y0]r1

3[x0]
↗ r2

3[x2]↘
↘ w3[x3]↗ c3.

Here, the operationr2
3[x2] has been introduced to ensure that the set of conflicts in respect to

transactions fromH3 andMV(H3) remain identical. The next definition states the general
structure ofMV.

DEFINITION 9. Let H be an MC-history with the transactionsT = {T1, . . . ,Tn}. The
function

V : H →{1, . . . ,n},V(p) 7→ k

shall return the indexk of the last write operationwk[x] ∈ H beforep such thatck ∈ H. If
no suchwk[x] exists,V(p) shall be zero, soV(p) = 0. Further, the function

ss: N×N×T→ N,(i, j,Ti) 7→ h

14 · Daniel Pfeifer and Peter C. Lockemann

shall return a unique number for an argument(i, j,Ti) such thath /∈ {k|rk
i [x] ∈ Ti}.5

The interpretation functionMV is then defined be means of an auxiliary functionmv
with

mv(rk
i [x]) = {rk

i [xV(rk
i [x])

]}, mv(wi [x]) =

{
{wi [xi]} if ∃rk

i [x] ∈ H : rk
i [x] < wi [x]

{wi [xi], rk
i [xV(wi [x])]} otherwise,

mv(mk, j
i) = {rh

i [xV(q)]|q = r j
k[x] ∈ H ∧h = ss(k, j,Ti)} andMV(H) = ∪p∈Hmv(p).

The partial ordering relation<′ for MV(H) is inherited fromH’s partial ordering rela-
tion <, more specifically:p <′ q :⇔

(
mv−1(p) < mv−1(q)∨ ({p,q} ⊆mv(mj,k

i) ∧ p = rk
j [xs]∧q = rk

j [yt]∧ rk
j [x] < rk

j [y])
)
.

The latter part of the definition of<′ deals with ordering read operations that replace
method operations.MV produces a well formed multiversion history according to Defi-
nition 6. The next theorem shows that for anrw-historyH, MV produces a multiversion
history with (practically) the same serialization graph asH.

THEOREM 1. Let H be anrw-history. Further,SG∗(H) shall be the transitive clo-
sure of the 1-version serializability graph ofH (according to [Bernstein et al. 1987])
and MVSG∗(MV(H)) shall be the transitive closure of the multiversion serializability
graph ofMV(H) with some write version order. Then, the two graphs are identical, so
SG∗(H) = MVSG∗(MV(H)).

PROOF. Obviously,∀i ∈ {1, . . . ,n} : ci ∈ Ti ⇔ ci ∈mv(Ti) holds. This means that con-
ditions for graph edges that request participating transactions to be committed do not have
to be considered any further for this proof.

”⊆”: Let Ti → Tj be inSG. Then, there are operationsp∈ Ti , q∈ Tj with p < q, p ∦ q
andi 6= j. Moreover, there is anx with {x}= d(p)∩d(q).

If a(p) = r,a(q) = w one has gotrh
i [xs] <′ w j [x j] in MV(H) (for somes). Thus,ws[x] <

w j [x] must hold and soxs¿ x j . This leads to the version order edgeTi → Tj ∈MVSG. If
a(p) = w,a(q) = r, one has gotwi [xi] <′ rh

j [xs] in MV(H) (for somes) with the following
two options forws[xs]: Either one obtains the trivial casei = sor wi [x] < ws[x]. ws[x] < wi [x]
cannot hold because it would lead towi [xi] <′ ws[xs] and sorh

j [xi] because in Definition9
the indexi is determined byV (contradiction). Sincecs∈H (according to the definition of
V), Ts→ Tj is in MVSG. As one will see as part of the next case,wi [x] < ws[x] implies the
edgeTi → Ts∈MVSG∗ and soTi → Tj ∈MVSG∗.

Finally, considera(p) = w,a(q) = w: Let wi [x] = wk1[x] < .. . < wkn[x] = w j [x] be the
sequence ofall write operations inH in respect tox betweenwi [x] andw j [x] such thatn≥ 2
andcko ∈To for all o∈{1, . . . ,n}. Next we prove that there is a pathTk1 →Tkn ∈MVSG∗ by
induction onn. n = 2: For this casemv(wk2[x]) = {wk2[xk2], rk2[xk1]} due to the definition
of V and alsowk1[xk1] <′ rk2[xk1]. Thus,Tk1 → Tk2 ∈MVSG. n−1y n: The argument is
analogous to the casen = 2. The only difference is to replacek1 by kn−1 andk2 by kn.

”⊇”: Let Ti → Tj be inMVSG. Ti → Tj can be a version order edge or an edge due to
wi [xi] <′ rh

j [xi] with i 6= j. In particular the casewi [xi] <′ rh
i [xl] with i 6= l (from the first

disjunctive clause of Definition8) can be excluded because ofmv’s Definition.

5 The specific structure ofssis not of interest. Below, it is just required to produce unique superscripts for read
operations in respect to a transactionTi .

Theory and Practice of Transactional Method Caching · 15

Consider the casewi [xi] <′ rh
j [xi]: According to the definition ofmvone has gotwi [x] <

rh
j [x] (if mv(r j [x]) = {rh

j [xk]} for somek) or wi [x] < w j [x] (if mv(w j [x]) = {rh
j [xk],w j [x j]}

for somek). SoTi → Tj ∈ SG. rh
j [xi] cannot be in the range of a method operation because

H is anrw-history.
If Ti → Tj ∈MVSGis a version order edge one has got two cases. Case 1:wi [xi], rh

k[x j]∈
MV(H) (for somek) with xi ¿ x j . i 6= 0 holds because ofwi [xi] and because¿ is a version
order. Thus,j > 0, which implies that aw j [x j] exists inMV(H). Since¿ is a write version
order,wi [x] < w j [x] follows and further,Ti → Tj ∈ SGfollows.

Case 2: One has got two operationsrh
i [xk],w j [x j] ∈MV(H) (for somek) with xk ¿ x j .

There two are subordinate cases, namelyrh
i [xk] <′ w j [x j] andw j [x j] <′ rh

i [xk]. (The two
operations can be compared by means of<′, since their preimagesp,q ∈ H in respect
to mv must be conflicting and sop < q or q < p, but this relationship is maintained by
<′.) Considerrh

i [xk] < w j [x j] first. Then,rh
i [xk] ∈ mv(rh

i [x]) or rh
i [xk] ∈ mv(wi [x]) and

rh
i [x] < w j [x] respectivelywi [x] < w j [x] follows. SoTi → Tj ∈ SG. (mv−1(rh

i [xk]) cannot be
a method operation becauseH is anrw-history.) Secondly, considerw j [x j] <′ r i [xk]. Due
to the definition ofV, k cannot be zero and so, withxk ¿ x j one obtainswk[x] < w j [x].
If r i [xk] ∈mv(r i [x]) holds, it follows thatwk[x] < w j [x] < r i [x] which impliesV(rh

i [x]) 6= k.
This is a contradiction tor i [xk]∈mv(r i [x]). Finally, if r i [xk]∈mv(wi [x]) one obtainswk[x] <
w j [x] < wi [x] and thusV(wi [x]) 6= k. However, this also contradictsr i [xk] ∈mv(wi [x]). The
previous considerations have covered all cases for edgesTi → Tj ∈MVSG.

Using Definition9 one can interpret MC-histories as ordinary multi-version histories.
However, an MC-history does not exhibit the same complexity as its underlying multi-
version history. (E.g. MC-histories withoutm-operations may be considered as ordinary
one version-histories.) Therefore the introduction ofm-operations greatly simplifies the
developmentm-scheduler protocols.

Theorem1 stated that the chosen interpretation functionMV is appropriate when applied
to an rw-history H, sinceMV(H) essentially holds the same serializability graph asH.
Moreover,MV interprets anm-operation as a set of read operations accessing just the
versions of data elements which were used when the respective cached method result was
first computed. These facts justify the following definition of serializable MC-histories.

DEFINITION 10. An MC-historyH is MC-serializableiff MVSG(MV(H)) is acyclic in
respect to some write version order.

E.g.H1 andH3 from above are not MC-serializable because the corresponding multiver-
sion serializabilty graph is cyclic (andx0 ¿ x2 matches the write version order predicate).

3.4 Serializability Theorem for MC-Histories

Using Definition10 one can decide whether an MC-historyH is MC-serializable by com-
putingMV(H) and then checking the resulting history’s multiversion serializability graph
for cycles. Clearly, it would be more convenient if we had a serializability theorem which
applies right toH instead ofMV(H). The next definition states how a respective graph
should be constructed forH.

16 · Daniel Pfeifer and Peter C. Lockemann

DEFINITION 11. Let H be an MC-history for the transactions{T1, . . . ,Tn}. TheMC-
serializability graphMCSG⊆ {T1, . . . ,Tn}2 for H is given by the following predicate:

(Ti ,Tj) ∈MCSG:⇔ ci ∈ Ti ∧c j ∈ Tj ∧(
(∃p∈ Ti : ∃q∈ Tj : a(p) 6= m ∧ a(q) 6= m∧ p ∦ q∧ p < q) ∨

(∃mk,l
i ,w j [x], r l

k[x] ∈ H : r l
k[x] < w j [x] ∧ (i 6= j ∨w j [x] < mk,l

i)
) ∨

(i 6= j ∧∃wi [x],m
k,l
j , r l

k[x] ∈ HMC : wi [x] < r l
k[x])

)
.

Instead of(Ti ,Tj) ∈MCSGwe simply writeTi → Tj .

ConsiderH1 from above. Its MC-serializability graph consist ofT1 → T2 (due tor4
1[x] ∦

w2[x]), T2→ T3 (due tow2[x] ∦ r5
3[x]) andT3→ T2 (due tow2[x] ∦m1,4

3). These are the same
edges as inMVSG(MV(H1)) (with x0 ¿ x2). This observation gives rise to proving the
serializability theorem for MC-histories which is stated next.

THEOREM 2. Let H be an MC-history.MCSG∗(H) shall be the transitive closure of
its MC-serializability graph ofH andMVSG∗(MV(H)) shall be the transitive closure of
the multiversion serializability graph ofMVSG(H) in respect to some write version order.
Then, the two graphs are identical, soMCSG∗(H) = MVSG∗(MV(H)).

PROOF. Just as for the proof of Theorem1, conditions for graph edges that request
participating transactions to be committed do not have to be considered any further.

”⊆”: Let Ti → Tj be in MCSG. Due to the first disjunctive clause of Definition11
SG(RW(H)) ⊆ MCSG(H) holds. (Just compare the first disjunctive clause of Definition
11 with the definition of SG from [Bernstein et al. 1987].) So, if Ti → Tj ∈ SG(RW(H))
thenTi → Tj ∈MVSG∗(MV(RW(H)))⊆MVSG∗(MV(H)). (This follows from Theorem
1.)

Now, letTi → Tj be inMCSG(H)\SG(RW(H)). Ti → Tj can only exist because of the
second or the third disjunctive clause of Definition11. This means that there are either
operationsmk,l

i , w j [x], r l
k[x] with r l

k[x] < w j [x] or operationswi [x], mk,l
j , r l

k[x] with wi [x] <

r l
k[x].

For the first case, consider the image in respect tomv: mv(r l
k[x]) = {r l

k[xs]}, w j [x j] ∈
mv′(w j [x]) andrh

i [xs] ∈ mv′(mk,l
i) (for somes). With r l

k[xs] <′ w j [x j] it turns out thats=
0∨ws[xs] <′ w j [x j] and one gets the version orderxs ¿ x j . For this casei 6= j and the
operationsrh

i [xs] and w j [x j] result in the version order edgeTi → Tj ∈ MVSG(see last
disjunctive clause of Definition8). If otherwisei = j holds, it follows thatw j [x j] = wi [xi] <′
r i [xs] for the second disjunctive clause of Definition11. Sincei 6= s, one obtainsTi → Tj =
Ti ∈MVSGbecause of the first disjunctive clause of Definition8.

If there are operationswi [x], mk,l
j , r l

k[x] with wi [x] < r l
k[x] that causeTi → Tj ∈ MCSG,

then their images in respect tomv behave as follows:wi [xi] <′ rk[xs] <′ rh
j [xs] (for some

s). The casei = s is trivial. Otherwise one can conclude by induction as in the proof of
Theorem1 thatTi → Ts∈MVSG∗ with ws[xs] ∈ Ts. ThusTi → Tj is in MVSG∗. (Note that
s> 0 because ofV ’s definition and because ofwi [xi].)

”⊇”: Let Ti → Tj be inMVSG(MV(H)). Theorem1 has already considered all edges
that relate to conflicts between read and write operations but not method operations. There-
fore, it suffices to analyze edges inMVSG that are cause by the additional images of

Theory and Practice of Transactional Method Caching · 17

method operations in respect tomv. So, letrh
n[xs] ∈ mv′(mk,l

n) and wt [xt] be operations
that causes a respective edgeTi → Tj ∈ MVSG. According to Definition8 one has to
distinguish for cases:i = j = n = t, i 6= s,wi [xi] <′ r i [xs] or i 6= j, i = s = t, j = n or
i 6= j, i = t, j = s,xt ¿ xs or i 6= j,n = i, t = j,xs¿ xt .

In the first case, one has got operationsr l
k[x] < wi [x] < mk,l

i orwi [x] < wo[x] < r l
k[x] < mk,l

i ,

since otherwisei = s would hold.r l
k[x] < wi [x] < mk,l

i results in the edgeTi → Ti ∈MCSG

with i = j from the second disjunctive clause of Definition11. wi [x] < wo[x] < r l
k[x] < mk,l

i
results inTi → To → Ti ∈MCSG.

The second case leads towi [xi] <′ rh
j [xi] ∈mv(mk,l

j) with wi [xi] ∈mv(wi [x]). Therefore,

there exists anr l
k[x] with wi [x] < r l

k[x] in H. If r l
k[x] < wi [x] would hold, applyingmvwould

returnmv(r l
k[x]) = {rk[xg]} for someg 6= i. This would lead tor j [xg] ∈mv(mk,l

j) instead of

r j [xi] ∈mv(mk,l
j) (contradiction). Thus,Ti → Tj ∈MCSGfollows from the last disjunctive

clause of Definition11.
Considering the casei 6= j, i = t, j = s,xt ¿ xs: Here,wi [x] < w j [x] follows right away

because¿ is a write version order. (Note thatt = i cannot be zero.)
The last case creates the situationxs ¿ x j , rh

i [xs] ∈ mv(mk,l
i) and w j [x j] ∈ mv(w j [x])

with w j [x] ∈ H. Moreover, due tomk,l
i , there must be ar l

k[x] ∈ H with r l
k[x] < mk,l

i . If
r l
k[x] < w j [x] holds, one obtainsTi → Tj for the second disjunctive clause of Definition

11. Now considerw j [x] < r l
k[x]: If r l

k[x] reads fromTj , applyingmv results inw j [x j] <′

r l
k[x j] <′ rh

i [x j] ∈ mv(mk,l
i) and so j = s but this is a contraction toxs ¿ x j . Otherwise

r l
k[x] readsx from a To 6= Tj and one has gotw j [x] < wo[x] < r l

k[x]. Applying mv results

in w j [x j] <′ wo[xo] <′ r l
k[xo] <′ rh

i [xo] ∈mv(mk,l
i). Thus,s= o and finallyx j ¿ xs follows

(because ofw j [x j] < wo[xo]). However, this contradicts the case’s precondition.

Given an MC-historyH, Theorem2 confirms that the transitive closure ofH ’s MC-
serializability graph is identical to the transitive closure ofMV(H)’s multiversion serializ-
ability graph. Since a transitive closure does neither add nor remove graph cycles, we can
indeed rely on Definition10 to check for MC-serializability.

4. RECOVERY FOR MC-HISTORIES

Before developing a serializability protocol for transactional method caching, we want to
address the simpler task of creating a recovery protocol. In this respect, we are interested
in applying conventional recovery qualities such as ”recoverable” or ”strict”. Again, the
definition of these qualities must be adapted to the structure of MC-histories. This section
defines the corresponding qualities and gives a lemma on which anm-scheduler’s recovery
protocol can be based. The second part of this section discusses the protocol’s implemen-
tation.

4.1 Formalism

DEFINITION 12. Let H be an MC-history with the transactionsT = {T1, . . . ,Tn}. A
transactionTi ∈ T reads (a data element)x from Tj ∈ T via an operationp∈ Tj iff:

∃rk
h[x],w j [x] ∈ H : w j [x] < rk

h[x] ∧ (h = i∨mh,k
i ∈ H)∧¬(a j < rk

h[x]) ∧
∀wo[x] ∈ H : w j [x] < wo[x] < rk

h[x]⇒ ao < rk
h[x].

18 · Daniel Pfeifer and Peter C. Lockemann

We havep = rk
h[x], if h = i holds for the given predicate andp = mh,k

i otherwise. The
relationship betweenTi , x, Tj and p is expressed byreads(Ti ,x,Tj , p). readsforms the so
called reads-from-relation.

For the MC-history

H4 = w2[x]r1
1[y]r

1
1[x]c1c2m1,1

3 w3[x]c3

we havereads= {(T1,x,T2, r1
1[x]),(T3,x,T2,m

1,1
3)}. Using the reads-from-relation, most

conventional recovery qualities can also be applied to MC-histories.

DEFINITION 13. An MC-historyH with the transactionsT= {T1, . . . ,Tn} and the data
elementsD is recoverablerespectivelyACA (avoiding cascading aborts)respectivelystrict,
iff the following qualities hold:

— recoverable:

∀i, j ∈ {1, . . . ,n} : ∀x∈ D : ∀p∈ H :
(
i 6= j ∧ reads(Ti ,x,Tj , p)∧ci ∈ H

)⇒ c j < ci ,

—ACA:

∀i, j ∈ {1, . . . ,n} : ∀x∈ D : ∀p∈ H :
(
i 6= j ∧ reads(Ti ,x,Tj , p)

)⇒ c j < p,

—strict: H is ACA and

∀wi [x],w j [x] ∈ H : (i 6= j ∧w j [x] < wi [x])⇒ (a j < wi [x]∨c j < wi [x]).

Obviously, the standard inclusion statement ”strict⊂ ACA ⊂ recoverable” also is true
for MC-histories. The four MC-historiesH5 to H8, which are presented next, only differ in
respect to the placement ofc1 but: H5 is not recoverable,H6 is recoverable but not ACA,
H7 is ACA but not strict,H8 is strict.

H5 = w1[x]w1[y]w2[y]r1
2[x]m

2,1
3 c3c1c2,

H6 = w1[x]w1[y]w2[y]r1
2[x]m

2,1
3 c1c3c2,

H7 = w1[x]w1[y]w2[y]c1r1
2[x]m

2,1
3 c3c2,

H8 = w1[x]w1[y]c1w2[y]r1
2[x]m

2,1
3 c3c2.

The next lemma states how anm-scheduler can ensure that together with therw-scheduler,
it produces ACA MC-histories. By requesting an MC-history’srw-projection to be ACA
the lemma assumes that therw-scheduler will already provide ACArw-histories. Given
that them-scheduler guarantees an additional predicate, the joint MC-history will be ACA
too.

LEMMA 1. Let H be an MC-history for the transactionsT = {T1, . . . ,Tn} and let the
following predicate hold:

∀Ti ∈ T : ∀x∈ D : reads(Ti ,x,Ti , r
l
i [x])⇒∀mi,l

j ∈ H : i 6= j ⇒ ci < mi,l
j .

Then,H is ACA iffRW(H) is ACA.

PROOF. ”⇒”: Let H be ACA. SinceRW(H) ⊆ H holds, the reads-from-relation of
RW(H) is a subset ofH ’s reads-from-relation. ThereforeRW(H) is also ACA.

”⇐”: Let RW(H) be ACA. Thus, in respect toH only the additional method opera-
tions might violate ACA. Letmk,l

j ∈ H be such a method operation that reads fromTi via

Theory and Practice of Transactional Method Caching · 19

wi [x], soreads(Tj ,x,Ti ,m
k,l
j) holds. Due to Definition12 there must also be anr l

k[x] with

reads(Tk,x,Ti , r l
k[x]). Further,r l

k[x] < mk,l
j must hold because of Definition2. If k 6= i then

ci < r l
k[x] < mk,l

j follows, sinceRW(H) is ACA. Otherwise, one obtainsreads(Ti ,x,Ti , r l
i [x])

and soci < mk,l
j if i 6= j due to the Lemma’s predicate. In either caseH is ACA.

The next MC-history shows that the predicate of Lemma1 is necessary:

H9 = w1[x]r1
1[x]m

1,1
2 c1c2

is not ACA because ofreads(T2,x,T1,m
1,1
2) andm1,1

2 < c1. However,RW(H9) = w1[x]r1
1[x]

c1c2 is ACA.
As the following example shows, Lemma1 cannot be rephrased for MC-histories that

are just recoverable:

H10 = w1[x]r1
2[x]m

2,1
3 c3c1c2

is not recoverable, since the relationreads(T3,x,T1,m
2,1
3) holds andc3 < c1. Still, RW(H10)

is recoverable.
If one wants MC-histories to be strict and not just ACA, it suffices to keep the predicate

from Lemma1 and to expect therw-scheduler to produce strictrw-histories:

LEMMA 2. An MC-historyH is strict iff H is ACA andRW(H) is strict.

PROOF. ”⇒”: Let H be strict. SinceRW does not remove any commit or abort opera-
tionsRW(H) must be strict too.

”⇐”: Let H be ACA andRW(H) be strict. In respect toH only method operations must
be checked. However, additional method operations do not impact the strictness predicate
for write operations from Definition13.

4.2 Implementation

We now describe a simple protocol that produces ACA respectively strictMC-histories
given that therw-scheduler creates ACA respectively strictrw-histories. As stated by
Lemma2 and1 them-scheduler’s job is just to guarantee the predicate of Lemma1. Sur-
prisingly, this can be done entirely on the client side of a related system: For every trans-
actionTi started at the client, the method cache keeps a flag which indicates whether or not
there has already occurred a write method call insideTi . (For a new transaction the flag is
false, meaning no write method call has occurred yet.) After the first write method call of
Ti , every new method call resultr which is computed insideTi and stored in the method
cache, remains locked client untilTi ends. The lock prevents concurrent transactions from
producing a cache hit onr beforeTi ends. AtTi ’s commit, the lock is removed and other
transactions may accessr. However, ifTi aborts, thenr is entirely removed from the cache.

The protocol is correct becausereads(Ti ,x,Ti , r l
i [x]) from the predicate of Lemma1 can

only hold, if some write operation has ever occurred inTi . When this happens, the lock on
new cached method results produced byTi prevents other transactions from reading those
cached method results beforeTi has committed.

5. OPTIMISTIC CACHING TIMESTAMP PROTOCOL

5.1 Formalism

This section presents an optimstic caching timestamp protocol (OCTP) for scheduling
method operations as part ofMC-histories. Anm-scheduler that applies this protocol can

20 · Daniel Pfeifer and Peter C. Lockemann

be integrated with anrw-scheduler that follows a timestamp protocol itself but also with
a strict two-phase lock protocol. An integration with a strict two-phase lock protocol is
possible by interpreting therw-scheduler’s commit order as a timestamp order. ([Bernstein
et al. 1987] showed that this is legitimate.)

Apart from the protocol presented next, we have developed another serialization protocol
for an m-scheduler whose essential idea is related to the one of OCC from [Adya et al.
1995]. For a more compact contribution we do not present this protocol. We prefer to
present OCTP mainly because it is a strong improvement over the OCC-like protocol: It
accepts a superset of histories that the OCC-like protocol accepts6 and it causes much
lower transaction abortion rates. The latter statement is substantiated by the experiments
from Section6.7 As opposed to the OCC-like protocol, the correctness of OCTP is not
straight forward to see. We will have to make good use of the formalism from Section3 to
prove it correct.

The fundamental concept of timestamp protocols are timestamps. For clearity and com-
pleteness we define them next.

DEFINITION 14. Let H be an MC-history with the transactionsT = {T1, . . . ,Tn}. ts :
{T1, . . . ,Tn}→ N is a timestamp functioniff

∀i, j ∈ {1, . . . ,n} : ts(Ti) = ts(Tj)⇒ i = j.

For conventional timestamp protocols conflicting operations should be ordered along the
timestamp order of the transactions to which they belong.

DEFINITION 15. Let H be an MC-history with the transactionsT= {T1, . . . ,Tn}. H is
t-ordered in respect to a timestamp functionts iff

∀p,q∈ H : ∀i, j ∈ {1, . . . ,n} :
(
p∈ Ti ∧q∈ Tj ∧ p ∦ q∧ ts(Ti) < ts(Tj)

)⇒
(ai ∈ H ∨a j ∈ H ∨ p < q).

It is well known and easy to prove thatt-orderedrw-histories are serializable. The
reason for this is that conflicting read and write operations dictate the direction of edges
in a respective serializability graph. However, for a method operation that conflicts with
a write operation the direction of a respective edge in the MC-serializability graph does
not necessarily depend on the two operation’s order. E.g.H1 from above ist-ordered for
the timestamp functionts(Ti) = i but the operationsr4

1[x] < w2[x] < m1,4
3 produce an edge

T3 → T2. Therefore the timestamp rule does not guarantee MC-serializability.
In the following, an edgeTj → Ti is called areverse edge, if and only if it is produced

by two conflicting operationsp∈ Ti andq∈ Tj with ts(Ti) < ts(Tj) . Otherwise we call it
anormal edge.

Interestingly, if an MC-historyH is t-ordered,H ’s reverse edges can only be created by
the condition∃mk,l

i ,w j [x], r l
k[x]∈H : (r l

k[x] < w j [x]∧(i 6= j∨w j [x] < mk,l
i)) from Definition

11. This implies that the read operationr l
k[x] to whichmk,l

i refers must have occurred before
w j [x].

One way to develop a timestamp protocol for MC-histories would be to entirely forbid
reverse edges.8 But we can go a more general way and trade off reverse edges against

6This can be proven.
7The effect can also by explained analytically but this is beyond the scope of this paper.
8 This approach leads to the OCC-like protocol mentioned at the beginning of this section.

Theory and Practice of Transactional Method Caching · 21

2T1T

4T

3T

5T 6T

Fig. 5: An MC-Serializability Graph to Illustrate the Idea behind OCTP

normal graph edges! To illustrate this idea, consider the following prefix ofH1:

r4
1[y]r

4
1[x]c1w2[x]c2m1,4

3 .

Whenm1,4
3 is scheduled it produces the reverse edgeT3→T2. So afterwards the scheduler’s

duty should be to avoid edges fromT2 to T3. At the point of time when them-scheduler
acceptsm1,4

3 , T3 has still a (good) chance to commit. However if we forbade reverse edges

entirely, them-scheduler would have to rejectm1,4
3 and thus abortT3 right away.

In general, the following rule should hold: If them-scheduler accepts a method operation
producing a reverse edgeTi → Tj then it should ensure that there are no edgesTh→ Ti with
ts(Tj)≤ ts(Th). As an example, suppose the graph from Figure5 was an MC-serializability
graph with the timestamp functionts(Ti) = i. The dotted arrows then represent reverse
edges. According to the stated rule, the graph edgeT5 → T6 must be excluded because of
the reverse edgeT6 → T4. Similarly, T3 → T4 contradicts the rule due to the reverse edge
T2 → T3. But how aboutT3 → T6? It adheres to the stated rule and still leads to a graph
cycle. Apparently, it does not suffice to consider single reverse edges. Instead, one has to
considerpaths of reverse edges. In Figure5 a path of reverse edges starting fromT6 leads
back toT2. Therefore, no transactions withts(Ti)≥ ts(T2) should point toT6.

The functiontsf it (Ti) which is defined next, computes the minimum timestamp of all
those transactions that can be reached from transactionTi via paths consisting exclusively
of reverse edges. The computation is based on the operation order of an underlying MC-
history (prefix) and can be performed dynamically by them-scheduler. The function forms
the basis of a respective serializability protocol.

DEFINITION 16. LetH be an MC-history with the transactions{T1, . . . ,Tn} and a time-
stamp functionts. Thefitting timestampfunction

tsf it : {Ti | i ∈ {1, . . . ,n}∧ci ∈ Ti}→ N

is computed as follows:

tsf it (Ti) = min
({ts(Ti)} ∪

{ tsf it (Tj) | ∃w j [x],m
k,l
i , r l

k[x] ∈ H : r l
k[x] < w j [x]∧ ts(Tj) < ts(Ti)∧c j ∈ H }).

LEMMA 3. tsf it is well defined.

PROOF. Considertsf it (Ti) according to Definition16. The argument ofmin(. . .) is a
non-empty set, since it containsts(Ti). Further, everyTj referenced by the set{tsf it (Tj) | . . .}
from above has committed (soc j ∈ Tj) and lies in the domain oftsf it . For everyTj refer-
enced by{tsf it (Tj) | . . .} we havets(Tj) < ts(Ti). Since there are at mostn timestamps in
the range ofts, the computation oftsf it (Ti) terminates.

Using tsf it we can define the quality ”t-fitting” for MC-histories, which formalizes the
generalized rule for reverse edges from above.

22 · Daniel Pfeifer and Peter C. Lockemann

DEFINITION 17. Let H be an MC-history with the transactions{T1, . . . ,Tn}, a time-
stamp functionts and the MC-serialization graphMCSG. H is t-fitting in respect tots
iff

∀i, j ∈ {1, . . . ,n} :
(
Ti → Tj ∈MCSG∧ ts(Ti) < ts(Tj)

)⇒ ts(Ti) < tsf it (Tj).

Unfortunately,t-fitting MC-histories witht-orderedrw-projections don’t have to be MC-
serializable. We need two additional qualities to prove a respective theorem. ”Irreflexive”
avoids edgesTi → Ti in an MC-serializability graph. For an operation sequence of the
kind wi [x] < r l

k[x] < mk,l
j ” rm-ordered” ensures thatts(Ti) < ts(Tj) holds, ifTi andTj com-

mit. Luckily, both qualities are uncritical when realizing a corresponding serializability
protocol.

DEFINITION 18. An MC-historyH is irreflexive iff

∃wi [x],m
k,l
i , r l

k[x] ∈ H : r l
k[x] < wi [x] < mk,l

i ⇒ ai ∈ H.

Consider a client transactionTi which causes a write operationwi [x] at the server. The
base protocol from Section2.2 causes cached method results to be removed from the
client’s cache right before the method invocation causingwi [x] returns control to the client
code. Therefore a cache hit corresponding tomk,l

i with wi [x] < mk,l
i cannot happen and the

base protocol ascertains implicitly ”irreflexive”.

DEFINITION 19. An MC-historyH is rm-orderedin respect to a timestamp functionts
iff

∀i, j ∈ {1, . . . ,n} : (∃wi [x],m
k,l
j , r l

k[x] ∈ H : wi [x] < r l
k[x] < mk,l

j)⇒
(
ai ∈ HMC ∨a j ∈ HMC∨ ts(Ti) < ts(Tj)

)
.

As we will see below, an MC-history is implicitlyrm-ordered if them-scheduler coop-
erates with anrm-scheduler that applies a strict two-phase lock protocol. The next theorem
forms the basis of anm-scheduler’s implementation of OCTP. It expects therw-scheduler
to providet-orderedrw-histories.

THEOREM 3. An irreflexive MC-historyH which ist-fitting andrm-ordered in respect
to a timestamp functionts is MC-serializable ifRW(H) is t-ordered in respect tots.

PROOF. AssumeH ’s MC-serialization graphMCSGwas cyclic. A cycle inMCSGhas
at least a length of 2, because for all disjunctive clauses from Definition11 but the case
r l
k[x] < wi [x] < mk,l

i , i 6= j holds for a corresponding edgeTi → Tj . However, the case

r l
k[x] < wi [x] < mk,l

i is excluded becauseH is irreflexive. A cycle (with two or more nodes)
in MCSGconsists of at least one reverse edge. Otherwise one would obtain a cycleTk →
. . .→ Tk with normal edges only and sots(Tk) < ts(Tk) would hold (contradiction).

The following considerations reveal that for a reverse edgeTi → Tj one has got oper-

ationsr l
k[x] < w j [x] and mk,l

i with ts(Tj) < ts(Ti) from the second disjunctive clause of
Definition 11. Edges from the first disjunctive clause of Definition11 cannot be reverse
edges because the related operations must not be method operations, butRW(H) is ex-
pected to bet-ordered. If an edge from the third disjunctive clause of Definition11 was a
reverse edge, then one would have operationswi [x] < r l

k[x] < mk,l
j with ts(Tj) < ts(Ti). Yet,

this contradictsH ’s quality to berm-ordered.

Theory and Practice of Transactional Method Caching · 23

Now, letC be a cycle inMCSGandTk be the node inC with the smallest timestamp.
There must be a reverse edgeTh → Tk ∈C for someTh because otherwiseTk’s timestamp
would not be minimal in respect toC. Further, letTj → . . .→ Tk be the longest acyclic path
in C consisting entirely of reverse edges. Then, there must be an edgeTi → Tj ∈C which
is a normal edge. OtherwiseC would consist of reverse edgesonly and one would obtain
C = Tk → . . .→ Tk with ts(Tk) < ts(Tk) (contradiction).

SinceTi →Tj is not a reverse edge, one has gotts(Ti) < ts(Tj) and events(Ti) < tsf it (Tj),
due toH beingt-fitting. SinceTj → . . .→ Tk only consists of reverse edges, an inductive
application of Definition16 results intsf it (Tj) ≤ ts(Tk). This leads tots(Ti) < ts(Tk) and
contradicts the assumption thatTk’s timestamp is minimal inC. ThusMCSGmust be
acyclic.

5.2 Implementation

This section characterizes a serializability protocol for anm-scheduler which is derived
from Theorem3. We assume that therw-scheduler applies a strict two-phase lock protocol
since this protocol is common for commercial database management systems.

As mentioned at the beginning Section5, in case of a strict two-phase lock protocol, the
commit order ofrw-transactions may be considered a timestamp order. More specifically,
the timestamp function is implicitly given byts(Ti) < ts(Tj) :⇔ ci < c j . (As we will see,
aborted transactions are not of interest.)

Since the correspondingrw-histories are strict, the situationwi [x] < r l
k[x] < mk,l

j leads

to wi [x] < ci < r l
k[x] < mk,l

j < c j and sots(Ti) < ts(Tj) holds due to the chosen timestamp
function. Hence, the quality ”rm-ordered” is automatically guaranteed. For serializability
them-scheduler only needs to ensure ”t-fitting”.

Figure 6 captures a respective implementation using Java pseudo code and forms an
extension of the base protocol’s pseudo code from Figure4. For simplicity, it assumes
that them-scheduler is notified of transactional operations by calls to the methodsread() ,
write() , commit() andabort() . The methodmethodOp() handlesm-operations and is
called byhandleReqest() from Figure4. Except forabort() , the methods do not impact
the systems’s normal transaction management process but only observe it. However, a
call to abort() is assumed to abort the client-side transaction as well as related resource
manager transactions.

For them-scheduler to work properly, it is required that an underlying resource manager
processes read, write, commit and abort operations in the same order as they are observed
by them-scheduler. Further, all those operations must pass them-scheduler. The imple-
mentation does not yet account for memory management but in fact, all of the code’s data
structures can be handled in a way such that their size remains limited. At the end of this
section we will explain how this can be realized.

Transactions are represented by instances of classT, whereby a transaction’s timestamp
as well as its fitting timestamp are initially unknown. For that reason,T.ts andT.ts f it

obtain the value∞ when a respective transaction begins (Line 7). The listsrl , wl andml
(Lines 9, 10) store transaction operations in order to detect conflicts with other transac-
tions. The lists are used at a transaction’s commit-time in order to find conflicts with active
transactions (Lines 46 to 57).

Let Ti =t be a transaction which is represented by an instance ofT. The fieldt.ts tol

from Line 8 stores the largest timestamp of a committed transaction producing a normal

24 · Daniel Pfeifer and Peter C. Lockemann

1 interface DE {} // Representation of a data element (just a marker interface)
2 class MId { int k,l; } // ID of a stored method result of operationsr l

k[x], r
l
k[y], . . .

3 class Op { boolean read; DE x; }
4 class T { // Representation of a transactionTi

5 int id; // The transaction’s ID
6 List<Op> l i = /0; int nextMId = 0; // From Figure 4
7 int ts = ∞, ts f it = ∞; // Timestamp and fitting timestamp forTi

8 int ts tol = 0; // Maximum timestamp of transactions producing normal edges toTi

9 Set<DE> rl = /0, wl = /0; // For storing data elements which are read respectively written byTi

10 Set<MId> ml = /0; // For storingTi ’s method operations asMId -objects
11 }
12
13 class MScheduler { // Representation of them-scheduler
14 int nextTs = 1; // To create the next timestampts

15 Rel<DE,MId> V = /0; // Relatesx with tuples(k, l) with x∈ d(mk,l
i)

16 Rel<DE,T> rt = /0; // Relatesx with T-objects representingTis such thatrk
i [x] ∈ Ti

17 Rel<DE,T> wt = /0; // Relatesx with T-objects representingTis such thatwi [x] ∈ Ti

18 Rel<MId,DE> mt = /0; // Relates(k, l) with T-objects representingTis such thatmk,l
i ∈ Ti

19 Map<int,int> txId2ts = /0; // Relates a transaction’s ID with its timestamp
20 synchronized void read(T t, DE x, int k) { // Performrk

i [x] with t.id = i
21 for each s ∈ wt(x) if (checkTimestamps(s, t)) { abort(t); return; } // Handlerw-conflicts
22 t.rl.add(x); rt.add(x,t); // Update relations
23 txId2ts.put(t.id, ∞); t.l i .add(new Op(true, x));
24 }
25 synchronized void write(T t, DE x) { // Performwi [x] with t.id = i
26 for each s ∈ wt(x) ∪ rt(x)
27 if (checkTimestamps(s, t)) { abort(t); return; } // Handleww- andwr-conflicts
28 for each m ∈ V(x) // Handlewm-conflicts in respect to ”t-fitting”
29 for each s ∈ mt(m) if (checkTimestamps(s, t)) { abort(t); return; }
30 t.wl.add(x); wt.add(x, t); // Update relations
31 t.l i .add(new Op(true, x));
32 }
33 synchronized void methodOp(T t, MId m) { // Schedulemk,l

i at them-scheduler witht.id = i

34 for each x ∈ V−1(m) // Handlemw-conflicts
35 for each s ∈ wt(x) if (s.ts < ∞) {
36 // Updatet ’s fitting timestamp ifmk,l

i might cause a reverse edge
37 if (s.ts > txId2ts(m.k) && s.ts f it <t.ts f it) t.ts f it = s.ts f it ;
38 // If mk,l

i might cause a normal edge, then check for abort
39 if (s.ts <= txId2ts(m.k) && s.ts > t.ts tol) t.ts tol = s.ts;
40 if (t.ts tol >= t.ts f it) { abort(t); return; } }
41 t.ml.add(m); mt.add(m, t); // Update relations
42 }
43 synchronized commit(T t) { // Handle commit oft
44 t.ts = nextTs++; txId2ts.put(t.id, t.ts); // Create the timestamp
45 if (t.ts f it == ∞) t.ts f it = t.ts; // Adjust tsf it if necessary
46 for each x ∈ t.wl // Update fitting timestamps for active transactions
47 for each m ∈ V(x)
48 for each s ∈ mt(m)
49 if (s.ts == ∞ && t.ts f it < s.ts f it) s.ts f it = t.ts f it ;
50 if (s.ts tol >= s.ts f it) abort(s);
51 for each x ∈ t.rl // rw-conflicts // Abort transactions violating ”t-fitting” due to t ’s timestamp
52 for each s ∈ wt(x) if (checkTimestamps(t, s)) abort(s);
53 for each x ∈ t.wl // ww- andwr-conflicts
54 for each s ∈ wt(x) ∪ rt(x) if (checkTimestamps(t, s)) abort(s);
55 for each m ∈ t.ml // wm-conflicts

56 for each x ∈ V−1(m)
57 for each s ∈ wt(x) if (checkTimestamps(t, s)) abort(s);
58 }
59 boolean checkTimestamps(T a, T b) {
60 if (a.ts < ∞ && b.ts == ∞ && a.ts > b.ts tol) b.ts tol=a.ts;
61 return b.ts == ∞ && b.ts tol >= b.ts f it ;
62 }
63 synchronized void abort(T t) { ... } // Abort t
64 ...
65 }

Fig. 6: Java Pseudo Code for ”t-fitting” at them-Scheduler

Theory and Practice of Transactional Method Caching · 25

edge which points tot . t.ts tol is important to guarantee ”t-fitting” throughoutt ’s life-
time: While normal edges pointing tot may increase the value oft.ts tol , reverse edges
originating fromt may decreaset.ts f it dynamically due to new transactional operations.
Them-scheduler’s main task is to ascertaint.ts tol < t.ts f it until t commits. At a viola-
tion of this invariant it aborts eithert or it aborts the respective conflicting transaction. The
methodcheckTimestamps() from Line 59 assists in updatingt.ts tol accordingly and in
checking the stated invariant after the update. It is used my the methodsread() , write()
andcommit() .

The relationV associates data elements (instances of classDE) with cached method calls
(Line 15). The latter ones are identified byMId -objects according to the read operations
by which the method result was computed. (This coincides with the description ofV from
Section2.2 and Figure4.) The purpose of the relationsrt , wt andmt is to associate data
elements respectively IDs of method results with transactions in which they were accessed
(Lines 16 to 18).

The methodsread() , write() andmethodOp() first check whether the intended oper-
ation might violate the quality ”t-fitting”. At a violation, they abort the current transaction.
(Note that the pseudo code abstracts from the details of the abort process.) Otherwise, they
update them-scheduler’s data structures.

As an example of how the violation check works, consider the Line 21 ofread() : Using
wt the method binds each transaction that wrote the same data element as the current read
operation to the local variables . If the transaction (bound to)s has got a timestamp less
than ∞ it must have committed and so if the current transactiont committed too, the
read operation would result in a normal edges→t ∈ MCSG. So, in order to assert ”t-
fitting” for t the expressions.ts < t.ts f it must hold and this is just checked in Line 21
usingcheckTimestamps() . The arguments behind the checks of the methodwrite() are
similar (Lines 26 to 29).

methodOp() observes a newm-operationmk,l
i of a transactionTi =t and determines if

the operation produces reverse or normal edges in respect to committed transactions. In
order to do so,methodOp() loops over all data elements which are referenced by them-
operationmk,l

i (Line 34). If a committed transactionTj =s has written one of those data
elements, there is a conflict betweenTi andTj . Further, ifTj ’s timestamp is younger than

ts(Tk), one obtains the situationr l
k[x] < ck < w j [x] < c j < mk,l

i which implies a reverse
edge and sot.ts f it must potentially be updated (Line 37). Using the maptxId2ts the

m-scheduler fetches the timestampts(Tk) in respect tomk,l
i . Conversely,ts(Tj) ≤ ts(Tk)

only allows the two optionsw j [x] < r l
k[x] < mk,l

i andr l
k[x] < wk[x] < ck < mk,l

i with k = j.
The former option indeed causes a normal edge. Sot.t tol must be updated and the quality
” t-fitting” must be tested fort (Lines 39, 40). The latter option is impossible since the base
protocol causes the cached result referenced bymk,l

i to be invalidated right after executing
of wk[x].

Finally consider the functioning ofcommit() : At first a timestamp is assigned tot.ts
(Line 44). Sincecommit() is synchronized, all committing transactions are totally ordered
and so is their timestamp. In concordance with Definition16 t ’s fitting timestamp is set to
t.ts if it hasn’t got a lower timestamp yet (Line 45).

Because now,t ’s timestamp is known, all conflict edges betweent and active transac-
tions can be checked to see whether they are reverse or normal edges and if they violate
” t-fitting”. The Lines 46 to 49 determine all related reverse edges and update an active

26 · Daniel Pfeifer and Peter C. Lockemann

transaction’s fitting timestamps.ts f it accordingly. Note that a related conflict is guaran-
teed to cause a reverse edge. To see this, let again beTi =t andTj = s . A normal edge

would lead to the situationwi [x] < r l
k[x] < mk,l

j < ci but this contradicts the assumption that
the resource manager guarantees strictness forrw-histories. Line 50 checks ifs must be
aborted because of a change ofs.ts f it in Line 49.

The Lines 51 to 57 inspect active transactionss for normal edgest →s∈ MCSGand
abort a respective transactions if t-fitting is violated due tot . In analogy to the case from
the Lines 46 to 49, it can be shown that conflicts inspected by the Lines 55 to 57 always
lead to normal edges.

5.3 Memory Management

So far the data structures used in Figure6 would unboundedly grow with the number of
transactions and operations that the system processes. The following paragraphs briefly
describe how to limit the size of these data structures without changing the functioning of
the discussed implementation.

The first question to answer is when entries for a certain transaction may be deleted
because they don’t affect the processing of active transactions anymore. A closer look at
Figure6 leads to two different cases to be considered: Due to the Lines 21, 27, 29, 40,
52, 54, and 57 an (active) transactionTi is aborted if some other transactionTj produces a
normal edgeTj → Ti such thatts(Tj)≥ tsf it (Ti) holds. For this case it suffices to retain the
entries for just those transactions contained in the following set:

M1 =
{

t | t.ts ≥min{ s.ts f it | s is active}}.

The second case covers Line 37 where the fitting timestamp of a committed transaction
is assigned to the fitting timestamp of an active transaction. Therefore, one also needs to
retain the entries of transactionst contained in the following set:

M2 =
{

t | t.ts ≥min{ s.ts f it |∃(x,(k,l)) ∈V: x ∈ s.wl ∧ txId2ts(k) < ts.s)}}.

Finally Line 49 also affects the fitting timestamp of active transactions but since it only
passes on the fitting timestamp of a transaction that is about be committed, the respective
entry is already contained inM1.

The joint setM1∪M2 forms the set of transactions whose entries need to be retained, but
how can its size be controlled? There are two ways to do this: Firstly, one can delete entries
(x,(k,l)) from V which are stale because some transactionTj with a younger timestamp
than Tk has preformed an operationw j [x]. This reduces the size ofM2. Alternatively,
an active transaction can be aborted in order to reduce the size ofM1. Finding the right
candidates to be removed fromM1∪M2 can be done efficiently. (A detailed discussion
of this process is beyond the scope of this paper.) Moreover, practical experience such as
from the experiments of the next section show that the size ofM1∪M2 is not a critical
system factor.

By controlling |M1∪M2|, one can limit the size of the data structuresrt , wt , mt and
txId2ts from Figure6. Still, V may grow unboundedly because it must hold an entry
for every valid cached method result but there may be arbitrary many of those results
(in arbitrary many caches). To tackle this problem,V should be limited by a fixed (but
reasonably high) upper bound. Then, an LRU-strategy can be used to replace respective
entries inV. By extending the base protocol from Section2.2 the client cache that stores

Theory and Practice of Transactional Method Caching · 27

a method result which is associated with a replaced entry ofV can be notified in order to
erase the result.

A last thing to consider is that due to invalidation delays for cached method results,
methodOp() can potentially be called with an argument valuem for which the respective
entry in V has already been replaced (or removed by controllingM2). For this reason
methodOp() must be adjusted to check the validity its argument valuem. To do so, the
following code should be inserted after Line 33 of Figure6:

if (V −1(m) = /0) { abort(t); return; }

6. EVALUATION

In this section we briefly justify the intellectual investment in transactional method caching
by giving evidence that the approach can considerably improve system scalability and per-
formance.

6.1 Experiment

We implemented a prototype of a transactional method cache and anm-scheduler on top
of the EJB application server product JBOSS v3.2.3 [JBoss]. The implementation of the
cache’s base protocol follows the architecture from Section2.2. The relational database
management system MySQL v4.0.18 [MySQL] serves as a resource manager. The client
is a multithreaded Java program performing remote service method invocations. The client,
the application server and the database system are hosted on three separate PCs in a local
network, whereby the PCs’ hardware suits up-to-date desktop standards (including a 1.2
GHz Pentium 4 Processor and 512 MB RAM). The PCs operate under Windows XP. By
observing the related system resources we ensured that neither network bandwidth nor the
load on the client machine represented a potential bottleneck for the experiment.

The experiment’s database consists of a single SQL table with the following structure:

item(id int primary key, name varchar(50), descr varchar(250),
price float, weight float, manuf varchar(50))

Using an auxiliary program the table was filled with 1 million random valued entries. At
the application server, an EJB session bean implemented a service interface according to
Figure7. The methodfindItemById() reads a database entry from theitem -table via
JDBC [Sun b] and returns the contents of a related table row as anItem -object. The
related table row is queried via its key value using the method’sid -argument. Similarly
updateItem() , changes a table row according to theItem -object which is passed in as
an argument. The related table row is accessed via its key value using theItem -object’s
id -field. (If no such row exists, the method throws an exception.) For the database the
SQL isolation level was set to ”SERIALIZABLE”. On this level, MySQL performs a strict
(1-version) two-phase lock protocol with row level locking.

Them-scheduler is implemented as a delegating JDBC driver and incorporates the pro-
tocol from Section5.2. As explained at the end of Section2.2, we had to insert extra code
behind the service methods’ JDBC statements in order to inform them-scheduler about the
accessed table rows. (In this respect, the correspondingid -value was chosen to identify a
data element.)

The client contains a single transactional method cache. The cache applies an LRU
replacement strategy with a limit of 4000 storable method results. A variable number of

28 · Daniel Pfeifer and Peter C. Lockemann

1 public interface ItemSession extends javax.ejb.EJBObject {
2 public Item findItemById(int id) throws RemoteException;
3 public void updateItem(Item item) throws RemoteException;
4 }
5
6 public class Item implements java.io.Serializable {
7 public int id; public String name;
8 public String description; public double price;
9 public double weight; public String manufacturer;

10 }

Fig. 7: Java Pseudo Code of the Experiment’s Service Interface

client threads perform transactions concurrently. Every transaction consists of 10 method
calls addressing the server’s EJB interface.

For every call a client thread chooses randomly whether to callfindItemById() or
updateItem() . findItemById() is invoked with the probabilitypr = 0.8whereasupdateItem()
has the probability1− pr . After finishing the 10 calls successfully, the thread commits (re-
spectively aborts) its transaction with a chance ofpc = 0.95 (respectively1− pc).9 At last
the thread pauses for 1 second before starting a new transaction (no matter if the previous
transaction committed or aborted).

An important parameter that determines the experiment’s cache hit rate as well as the
cache invalidation rate is the value of theid -argument when callingfindItemById() and
the value ofitem.id when callingupdateItem() . The client uses a random distribu-
tion to compute a corresponding value, whereby 1 millionitem -table rows are potentially
referenced.

During a warmup phase the cache fills up to its maximum size of 4000 method results.
After that the probability that a service method call causes a hit is53% (this chance im-
plies the event of invokingfindItemById()). The probability is mainly caused by the
given cache size and the chosen random distribution for generatingid -values which is not
uniform.10 The chance of invalidating a cached method result (due to a respective call of
updateItem()) is about13.25%(= (1− pr)/pr ·53%).

One may ask, why we did not resort to an existing benchmark application instead of de-
signing the experiment from above. Unfortunately there are no useful and realistic bench-
marks for testing client-side transactions in the application server domain. RUBiS [Cecchet
et al. 2002; Cecchet et al. 2001; ObjectWeb] is an EJB-benchmark that comes close to our
needs and models an auction web site which is similar to eBay.com. However, the bench-
mark does not account for client-side transactions and cannot be reasonably adjusted to
make use of this feature.

Still, the main input parameters that govern the experiment from above represent conser-
vative estimates of similar parameters that result from applyingnon-transactional method-
cachingto RUBiS. In particular, [Pfeifer and Jakschitsch 2003] observed cache hit rates
between 53% and 78% when applying non-transactional method caching to RUBiS. [Cec-
chet et al. 2001] considers a fraction of about 85% of read-only method calls as most
representative for an auction web site workload. (In contrast, we are more conservative by
settingpr = 80%.)

9We have also tried other transaction lengths varying between 5 and 25 calls per transaction. The results are very
similar to the chosen value of 10 method calls per transaction.
10 Essentially we employed a log-normal distribution with the standard parametersµ= 7 andσ = 1.6.

Theory and Practice of Transactional Method Caching · 29

No Caching Base Prot. Base Prot., No Hits OCC-Like Prot. OCT Prot.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Number of Clients

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

C
om

m
itt

ed
 T

ra
ns

ac
tio

ns
 p

er
 m

in

Fig. 8: Committed Transactions as a Function of the Number of Concurrent Client Threads (Throughput)

No Caching Base Prot. Base Prot., No Hits OCC-Like Prot. OCT Prot.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Number of Clients

0

1

2

3

4

5

A
ve

ra
ge

 D
ur

at
io

n
fo

r
S

uc
ce

ss
fu

l T
ra

ns
ac

tio
ns

 in
 s

Fig. 9: Average Duration of a Transaction that Executed 10 Service Method Calls (Response Time)

We therefore believe, that transactional method caching can cause similar results as for
the given experiment when it is applied to real world applications. Moreover, due to the
experiment’s simplicity, its input parameters are clear and its results are well traceable.
Beyond these considerations, [Pfeifer and Jakschitsch 2003] has already shown that non-
transactional method caching produces very good efficiency improvements when applied
to RUBiS.

6.2 Results

For the results presented next, every data point corresponds to a two minute measuring
period. The measuring period was preceded by a two minute warmup phase in order to
fill the method cache. By conducting additional test experiments we ensured that both

30 · Daniel Pfeifer and Peter C. Lockemann

No Caching OCC-Like Prot. OCT Prot.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Number of Clients

0

1

2

3

4

5

6

7

8

P
er

ce
nt

ag
e

of
 A

bo
rt

ed
 T

ra
ns

ac
tio

ns

Fig. 10:Percentage of Aborted Transactions in Respect to Started Transactions

the duration of the measuring phase as well as the warmup phase produced representative
values.

Figure8 shows the number of committed transactions per minute for a varying number
of concurrent client threads under five different system configurations. The graph ”No
Caching” represents the respective results for the system without using a method cache.
The graph ”OCT Prot.” depicts the results if transactional method caching is applied using
them-scheduler protocol from Section5 (OCTP). A simpler transactional protocol which
is similar to the classical OCC protocol from [Adya et al. 1995] has also been tested (see
also Section5.1). The fourth graph displays system behavior when a method cache is
used whileonly applying the base protocol from Section2.2.2. This option would hardly
be applied in practice since it does not provide transactional consistency. It was added
to Figure8 because it gives an impression of the overhead of anm-scheduler protocol as
opposed to the pure base protocol. Similarly the graph ”Base Prot., No Hits” shows system
behavior when applying the base protocol but not granting any cache hits. This graph helps
to characterize the overhead of the base protocol versus a system without method caching.

All system variants scale well with an increasing number of concurrent client threads.
However, system variants using method caching attain a considerably higher level of trans-
action throughput. By comparing ”No Caching” and ”Base Prot., No Hits” one can see
that the additional cost for the base protocol remains moderate. Them-scheduler protocols
reduce the transactional throughput in comparison to a ”pure” base protocol, because they
abort a fraction of transactions for consistency reasons.

Figure9 illustrates the average duration of a successful transaction for the same runs
as in Figure8. Here, method caching considerably shortens transaction runtimes and so it
improves system performance. As in Figure8 one can observe the cost of the base protocol
and them-scheduler protocols which are both moderate.

Finally, Figure10shows the transaction abortion rate for those runs from Figure8 which
maintain transactional consistency. Obviously abortions become more likely with an in-
creasing number of concurrent transactions. The worst abortion rate is observed for the
OCC-like protocol – transactions may be aborted by them-scheduler as well as the database

Theory and Practice of Transactional Method Caching · 31

Web Server

Web Client

Application Server

DBMS

App. Data Cache

Web Page Cache

Method Cache

Web Application

Fig. 11:Common Tiers of Web Application Architectures and Related Options for Caching.

system. For the system variant without method caching only the database system aborts
transactions. Surprisingly a system with method caching using OCTP has lower abortion
rates than the variant without method caching! The reason for this is that OCTP allows even
transactions to commit that have caused cache hits on stale cached method results. This
is also the reason why OCTP has a better quality than the OCC-like protocol. The OCC-
like protocol always aborts transactions accessing stale cached method results. OCTP
establishes a kind of a consistent multi-version transaction scheduling policy in respect to
cached method results.

All in all, the experiments give evidence thatusing OCTP, transactional method caching
can improve system throughput, response time as well as transaction abortion rates.

7. RELATED WORK

7.1 Web Application Caching

In the last years, research as well as industry has made various efforts to improve the
performance of web applications by means of caching. Since transactional method caching
can be beneficial in the context of web applications, we briefly compare it against other
caching approaches in this field and discuss the advantages and disadvantages.

Figure11shows the tiers of a typical web application architecture and highlights where
caches potentially come into play:

— Application data caching happens somewhere in between the database and the applica-
tion server tier. If it is done right in front of the database [Grembowicz 2000; Luo et al.
2002; Larson et al. 2003; The TimesTen Team 2000], abstractions of database queries
are associated with query results in the cache. In case of a cache hit, the query result
is immediately returned by the cache as opposed to running the database query engine.
At the server side, application data is cached either programmatically through runtime
objects whose structure has been designed by the application developer [Apache Group;
jcache] or it is controlled by an object-relational mapping framework [Oracle; Software
Tree].

— Web page caching usually occurs in front of a servlet- or script-enabled web server.
Beyond the simple task of caching static pages, there are also many approaches for

32 · Daniel Pfeifer and Peter C. Lockemann

caching dynamically generated web pages [Anton et al. 2002; Challenger et al. 1999; Li
et al. 2002].

— A method cache is inserted at the ”backend” of a servlet- or script-enabled web server
from where application server calls are initiated. While [Pfeifer and Jakschitsch 2003]
discussed non-transactional method caching, this paper is the first one presenting a so-
lution for transactional method caching.

The major problem of application data caches is that they can only save the cost of
database queries but no cost originating at the application server tier. Therefore caching of
service method results has a higher potential for improving system efficiency. In contrast,
the pure cost for executing page generation scripts at the Web server tier is rather low and
so, there is not much gain when caching dynamic Web pages instead of service method
results.

One important question that all dynamic web caching strategies must deal with is when
and how to invalidate cache content. In [Candan et al. 2001; Li et al. 2002] and [Luo
and Naughton 2001] URLs of dynamic pages on the web server side are associated with
dependent SQL queries on the database level. If a database change affects a correspond-
ing query, the related pages in the cache are invalidated. In [Candan et al. 2001; Li et al.
2002] dependencies between queries and URLs are automatically detected through sniff-
ing along the communication paths of a web application’s tiers. Although the approach
observes database changes,it provides only a weak form of update consistency, whereas
our approach ascertains full transactional consistency.

Other strategies for dynamic web page caching require a developer to provide explicit
dependencies between URLs of pages to be cached and URLs of other pages that invalidate
the cached ones [Persistence Software 2001]. Often, server-side page generation scripts or
database systems may also invalidate a cached page by invoking invalidation functions of
the web cache’s API [Anton et al. 2002; Spider Software 2001; XCache Technologies].
Unfortunately these strategies are invasive which means that application code (e.g. page
generation scripts) has to be changed. In contrast,our approach is completely transparent
to the client code and requires only minor changes at the server-side code.Therefore it
can be applied even in late cycles of application development.

An explicit fragmentation of dynamic web pages via annotations in page generation
scripts helps to separate static or less dynamic aspects of a page from parts that change
more frequently [Datta et al. 2001; ESI]. Also, dependencies such as described in the
previous paragraph can then be applied to page fragments instead of entire pages. In this
respect,our approach enables an even more fined grained fragmentation as it treats depen-
dencies on a level where page scripts invoke service methods from the application server.A
great benefit, is that explicit page fragmentation annotations (such as supported by [ESI])
then become obsolete. This also leads to the conclusion thatcaching the results of service
method calls causes cache hit rates which are at least as good as in the case of dynamic
Web caching (or even better).

7.2 Conventional Transaction Protocols

This section highlights the differences between conventional transaction protocols and the
approach described in this paper.

Existing work in the field of transactional caching relates to page server systems, where
a client can download a database page to its local cache, change it and eventually send

Theory and Practice of Transactional Method Caching · 33

those changes back to the server [Franklin et al. 1997]. For these systems the cache proto-
col ensuring transactional consistency forms an integral part of the database system itself.
In contrast, this paper’s approach assumes that a tight integration with a given database
system is not possible. Moreover, the presented approach accounts for the characteris-
tics of an application server that does not enable direct access to data elements such as
pages. Therefore, we described how to extend an application server architecture to enable
consistent client-side method caching. The cache protocol is designed so that is does not
alter the standard communication flow between client and server. Also, the unit for ensur-
ing the transactional consistency – them-scheduler – remains separate from an underlying
resource manager (such as a database system).

In order to develop an efficient protocol for them-scheduler we presented a theory for
reflecting the use of cached method results inside transactions. Without this theory, proving
the correctness of OCTP would have been very difficult. As opposed to that, the correctness
of conventional transactional cache protocols such as OCC [Adya et al. 1995] or CBR
[Franklin et al. 1997] is more obvious and does not demand formal considerations.

An important difference between OCTP and other conventional transactional cache pro-
tocols is that OCTP does neither avoid access to stale cache entries (such as CBR) nor
necessarily abort transactions which have accessed stale cache entries (such as OCC).
Therefore, in spite of being optimistic, OCTP can offer low transaction abortion rates.

With respect to the taxonomy of [Franklin et al. 1997] OCTP is a ”detection based pro-
tocol” whereby a validation may be ”deferred until commit”. Further, OCTP gives invali-
dation hints ”during a transaction” and uses ”invalidation” (as opposed to ”propagation”)
as its ”remote update action”. Propagation as a remote update action is not applicable since
them-scheduler has no access to a method call’s arguments which are needed for recom-
puting the method result that would have to be propagated. According to the taxonomy of
[Gruber 1997] OCTP supports ”early aborts” and may be classified as ”lazy reactive”.

Apart from transactional cache protocols, OCTP has a similarity to the multiversion
timestamp protocol (MVTO) from [Reed 1983]. Let Ti be a transaction with an operation
r i [x] but without a priorwi [x]. At MVTO, r i [x] reads the versionxk that was written by a
committedtransactionTk such that

ts(Tk) = max{ts(Tj) | ts(Tj) < ts(Ti)∧w j [x] ∈ Tj}

holds. Scheduling an operationmk,l
i at OCTP is similar to schedulingr i [x] at MVTO.

However, at OCTP the version of a respective data element is already fixed by the cache hit
itself, namely bymk,l

i . Therefore, them-scheduler cannot choosexk but can only determine
whereTi would best ”fit” in the given timestamp order. In order to do so them-scheduler
computestsf it (Ti).

The fitting timestamptsf it from Definition 16 is also connected to the concept of dy-
namic timestamps from [Bayer et al. 1982]. In [Bayer et al. 1982] a scheduler may delay
the assignment of timestamps to transactions in order to accept a broader range of serial-
izable histories. A respective timestamp is therefore calleddynamic. Although OCTP’s
fitting timestamp may change dynamically, a related transaction’s real timestampts(Ti) is
always dictated by therw-scheduler and therefore it is not dynamic. This is the crucial
difference between OCTP and the proposition from [Bayer et al. 1982].

34 · Daniel Pfeifer and Peter C. Lockemann

8. CONCLUSION

This paper has presented an approach for the transactional caching of method results in
the context of application server systems. A related cache is placed at the system’s client
side. It comes into play when the client performs a sequence of method calls addressing
the server, whereby the calls are demarcated by an ACID transaction. If the client invokes
a read only method with the same arguments for the second time the related result can po-
tentially be taken from the cache which avoids an execution at the server. For a reasonable
hit rate, the approach is inter-transactional meaning that a cached method result can be
used by multiple client transactions.

The paper has adjusted the conventional architecture of an application server in order to
enable transactional method caching. Since the use of cached method results alters the way
a transaction is processed, it must be regarded when ensuring transactional consistency.
Therefore, we introduced an new system component at the server side which maintains
transactional consistency in the presence of cache hits. This so calledm-scheduler observes
cache hit operations as well as normal data access operations ascertains serializability of
client transactions.

To develop a protocol for anm-scheduler, the paper extended the conventional 1-version
transaction theory by an operation which reflects the use of cached method results. We
derived a definition for serializability in respect to the extended transaction histories and
proved a corresponding serializability theorem.

Using these theoretical results, we developed an efficient recovery protocol as well as
an efficient serializability protocol for anm-scheduler and proved their correctness. More-
over, the paper discussed some of the protocols’ implementation aspects. An experimental
evaluation showed that the presented cache can considerably improve system performance
and scalability as well as transaction abortion rates.

A limitation of the approach is that in order to guarantee transactional consistency, the
m-scheduler needs to observeall data access operations addressing an underlying resource
manager. Also, it does have to make some basic assumptions about the resource man-
agers’ transaction management protocols. The stated limitation would be uncritical, if
an m-scheduler was integrated in a resource manager. Note that for this case, the major
contributions of this paper, namely the presented theory, the recovery protocol and the
transactional cache protocol, still apply.

As part of our future work we would like to apply the idea behind OCTP to the domain of
page server systems. In this field many transactional cache protocols have been studied (for
an up-to-date comparison see [Wu et al. 2004]). However, as explained in Section7.2, none
of them allow transactions to commit who have accessed stale cache entries. Currently,
transaction protocols for page servers either enable moderate efficiency combined with
low abortion rates (e.g. CBR) or high efficiency combined with potentially intolerable
abortion rates (e.g. OCC). In contrast, an OCTP-like protocol for page servers could bring
together high efficiency (via optimism) and low abortion rates (by tolerating access to stale
cache entries) while still ensuring serializability.

Acknowledgement

The authors would like to thank Prof. Birgitta König-Ries for thoroughly proof-reading
this paper.

Theory and Practice of Transactional Method Caching · 35

REFERENCES

ADYA , A., GRUBER, R., L ISKOV, B., AND MAHESHWARI, U. 1995. Efficient optimistic concurrency control
using loosely synchronized clocks. InProceedings of the 1995 ACM SIGMOD Conference on Management
of Data. ACM Press.

ANTON, J., JACOBS, L., L IU , Y., PARKER, J., ZENG, Z., AND ZHONG, T. 2002. Web caching for database
applications with oracle Web cache. InProceedings of the 2002 ACM SIGMOD Conference on Management
of Data. ACM Press.

APACHE GROUP. Java Caching System (JCS).http://jakarta.apache.org/turbine/jcs .
BAYER, R., ELHARDT, K., HEIGERT, J., AND REISER, A. 1982. Dynamic timestamp allocation for transactions

in database systems. InDistributed Data Bases. North-Holland Publishing Company, 9–20.
BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N. 1987.Concurrency Control and Recovery in Database

Systems. Addison-Wesley.
CANDAN , K. S., L I , W.-S., LUO, Q., HSIUNG, W.-P., AND AGRAWAL , D. 2001. Enabling dynamic content

caching for database-driven web sites. InProceedings of the 2001 ACM SIGMOD Conference on Management
of Data. ACM Press.

CECCHET, E., CHANDA , A., ELNIKETY, S., MARGUERITE, J., AND ZWAENEPOEL, W. 2001. A comparison
of software architectures for E-business applications. Tech. Rep. TR02-389, Rice University.

CECCHET, E., MARGUERITE, J., AND ZWAENEPOEL, W. 2002. Performance and scalability of EJB applica-
tions. InProceedings of the Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions. ACM Press.

CHALLENGER, J., DANTZIG , P., AND IYENGAR, A. 1999. A scalable system for consistently caching dynamic
Web data. InProceedings of the 18th Conference of the IEEE Communications Society. IEEE.

DATTA , A., DUTTA , K., THOMAS, H., AND VANDERMEER, D. 2001. A comparative study of alternative middle
tier caching solutions to support dynamic Web content acceleration. InProceedings of the 27th Conference
on Very Large Databases. Morgan Kaufmann.

ESI. ESI – Edge Side Includes.http://www.esi.org .
FRANKLIN , M. J., CAREY, M. J., AND L IVNY, M. 1997. Transactional client-server cache consistency: Alter-

natives and performance.ACM Transactions on Database Systems 22,3, 315–363.
GILAD BRACHA. Generics in the Java programming language.http://java.sun.com/j2se/1.5/pdf/

generics-tutorial.pdf .
GREMBOWICZ, H. 2000.Oracle Database Cache – Concepts and Administration Guide. Oracle.
GRUBER, R. 1997. Optimism vs. locking: A study of concurrency control for client-server object-oriented

databases. Tech. Rep. MIT-LCS-TR-708, MIT. Februar.
HÄRDER, T. 1984. Observations on optimistic concurrency control schemes.Information Systems 9,2, 111–120.
JBoss. JBoss.http://www.jboss.org .
jcache. JCache – Java Tempory Caching API.http://jcp.org/en/jsr/detail?id=107 .
LARSON, P.-A., GOLDSTEIN, J., AND ZHOU, J.2003. Transparent mid-tier database caching in SQL Server. In

Proceedings of the 2003 ACM SIGMOD Conference on Management of Data. ACM Press.
L I , W.-S., HSIUNG, W.-P., KALSHNIKOV, D. V., SION, R., PO, O., AGRAWAL , D., AND CANDAN , K. S.

2002. Issues and evaluations of caching solutions for web application acceleration. InProceedings of the 28th
Conference on Very Large Databases. Morgan Kaufmann.

LUO, Q., KRISHNAMURTHY, S., MOHAN, C., PIRAHESH, H., WOO, H., L INDSAY, B. G., AND NAUGHTON,
J. F.2002. Middle tier database caching for E-business. InProceedings of 2002 the ACM SIGMOD Conference
on Management of Data. ACM Press.

LUO, Q. AND NAUGHTON, J. F.2001. Form based proxy caching for database-backed Web sites. InProceedings
of the 27th Conference on Very Large Databases (VLDB). Morgan Kaufmann, Rome, Italy.

MARINESCU, F. 2002.EJB Design Patterns. Wiley, USA.
M ICROSOFT. Microsoft .NET Framework (.NET).http://msdn.microsoft.com/netframework .
MYSQL. The MySQL relational database system.http://www.mysql.com .
OBJECTWEB. The RUBiS project.http://rubis.objectweb.org .
ORACLE. OracleAS TopLink.http://otn.oracle.com/products/ias/toplink/index.html .
PERSISTENCE SOFTWARE. 2001. Dynamai – a technical white paper.http://www.persistence.com/

products .

http://jakarta.apache.org/turbine/jcs�
http://www.esi.org�
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf�
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf�
http://www.jboss.org�
http://jcp.org/en/jsr/detail?id=107�
http://msdn.microsoft.com/netframework�
http://www.mysql.com�
http://rubis.objectweb.org�
http://otn.oracle.com/products/ias/toplink/index.html�
http://www.persistence.com/products�
http://www.persistence.com/products�

36 · Daniel Pfeifer and Peter C. Lockemann

PFEIFER, D. AND JAKSCHITSCH, H. 2003. Method-based caching in multi-tiered server applications. InOn The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE. Springer, 1312–1332.

REED, D. P. 1983. Implementing atomic actions on decentralized data.ACM Transactions on Database Sys-
tems 1,1, 3–23.

SOFTWARE TREE. JDX – object-relational mapping technology.http://www.softwaretree.com/main.htm .
SPIDER SOFTWARE. 2001. Accelerating content delivery: The challenges of dynamic content, white paper.

http://www.spidercache.com .
SUN. Dynamic proxy classes.http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html .
SUN. Enterprise Java Beans (EJB).http://java.sun.com/products/ejb .
SUN. Java Database Connectivity – JDBC.http://java.sun.com/products/jdbc .
SUN. Java Transaction API (JTA), version 1.0.http://java.sun.com/products/jta/ .
THE OPEN GROUP. Distributed transaction processing.http://www.opengroup.org/public/pubs/

catalog/tp.htm .
THE TIMESTEN TEAM. 2000. High performance and scalability through application-tier, in-memory data man-

agement. InProceedings of the 26th Conference on Very Large Databases. Morgan Kaufmann.
WU, K., FEI CHUANG, P., AND L ILJA , D. J.2004. An active data-aware cache consistency protocol for highly-

scalable data-shipping DBMS architectures. InProceedings of the 1st Conference on Computing Frontiers.
ACM Press, 222–234.

XCACHE TECHNOLOGIES. XCache – a dynamic content Web cache.http://www.xcache.com .

http://www.softwaretree.com/main.htm�
http://www.spidercache.com�
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html�
http://java.sun.com/products/ejb�
http://java.sun.com/products/jdbc�
http://java.sun.com/products/jta/�
http://www.opengroup.org/public/pubs/catalog/tp.htm�
http://www.opengroup.org/public/pubs/catalog/tp.htm�
http://www.xcache.com�

