10 research outputs found

    Captura e Reprodução de Expressões Faciais

    Get PDF
    Na dobragem de produções audiovisuais só são traduzidas as falas, existindo uma discrepância entre o áudio e o que a personagem diz (movimentos da face, boca e lábios), que resulta em falhas na compreensão da fala e em dobragens pouco realistas. Nos últimos anos, têm sido desenvolvidos métodos de captura e reprodução de movimentos faciais que capturam os movimentos faciais de um ator de dobragem e reproduzem esses movimentos na face de um ator previamente gravado. Este documento contém a análise e avaliação do estado da arte de métodos de captura e de reprodução de movimentos faciais, e a descrição de uma solução de captura e reprodução em tempo-real, utilizando uma câmara normal, desenvolvida para tentar resolver os problemas existentes com as dobragens tradicionais. A solução implementada foi avaliada através de questionários efetuados, demonstrando qualidade ainda inferior às dobragens tradicionais.In the dubbing of audio-visual productions, only the lines are translated, and there is a discrepancy between the audio and what the character says (movements of the face, mouth, and lips), which results in poor speech comprehension and unrealistic dubs. In recent years, methods of capturing and reproducing facial movements have been developed that capture the facial movements of a dubbing actor and reproduce these movements in the face of a previously recorded actor. This document contains the analysis and evaluation of the state of the art in methods of capture and reproduction of facial movements, and the description of a real-time capture and reproduction solution, using a normal camera, developed to address existing problems with traditional dubbing. The implemented solution was evaluated through questionnaires, showing a quality that is still inferior to traditional dubbing

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications

    3D Face Modelling, Analysis and Synthesis

    Get PDF
    Human faces have always been of a special interest to researchers in the computer vision and graphics areas. There has been an explosion in the number of studies around accurately modelling, analysing and synthesising realistic faces for various applications. The importance of human faces emerges from the fact that they are invaluable means of effective communication, recognition, behaviour analysis, conveying emotions, etc. Therefore, addressing the automatic visual perception of human faces efficiently could open up many influential applications in various domains, e.g. virtual/augmented reality, computer-aided surgeries, security and surveillance, entertainment, and many more. However, the vast variability associated with the geometry and appearance of human faces captured in unconstrained videos and images renders their automatic analysis and understanding very challenging even today. The primary objective of this thesis is to develop novel methodologies of 3D computer vision for human faces that go beyond the state of the art and achieve unprecedented quality and robustness. In more detail, this thesis advances the state of the art in 3D facial shape reconstruction and tracking, fine-grained 3D facial motion estimation, expression recognition and facial synthesis with the aid of 3D face modelling. We give a special attention to the case where the input comes from monocular imagery data captured under uncontrolled settings, a.k.a. \textit{in-the-wild} data. This kind of data are available in abundance nowadays on the internet. Analysing these data pushes the boundaries of currently available computer vision algorithms and opens up many new crucial applications in the industry. We define the four targeted vision problems (3D facial reconstruction &\& tracking, fine-grained 3D facial motion estimation, expression recognition, facial synthesis) in this thesis as the four 3D-based essential systems for the automatic facial behaviour understanding and show how they rely on each other. Finally, to aid the research conducted in this thesis, we collect and annotate a large-scale videos dataset of monocular facial performances. All of our proposed methods demonstarte very promising quantitative and qualitative results when compared to the state-of-the-art methods

    Investigating 3D Visual Speech Animation Using 2D Videos

    Get PDF
    Lip motion accuracy is of paramount importance for speech intelligibility, especially for users who are hard of hearing or foreign language learners. Furthermore, generating a high level of realism in lip movements is required for the game and film production industries. This thesis focuses on the mapping of tracked lip motions of front-view 2D videos of a real speaker to a synthetic 3D head. A data-driven approach is used based on a 3D morphable model (3DMM) built using 3D synthetic head poses. The 3DMMs have been widely used for different tasks such as face recognition, detect facial expressions and lip motions in 2D videos. However, investigating factors such as the required facial landmarks for the mapping process, the amount of data for constructing the 3DMM, and differences in facial features between real faces and 3D faces that may influence the resulting animation have not been considered yet. Therefore, this research centers around investigating the impact of these factors on the final 3D lip motions. The thesis explores how different sets of facial features used in the mapping process influence the resulting 3D motions. Five sets of the facial features are used for mapping the real faces to the corresponding 3D faces. The results show that the inclusion of eyebrows, eyes, nose, and lips improves the 3D lip motions, while face contour features (i.e. the outside boundary of the front view of the face) restrict the face’s mesh, distorting the resulting animation. This thesis investigates how using different amounts of data when constructing the 3DMM affects the 3D lip motions. The results show that using a wider range of synthetic head poses for different phoneme intensities to create a 3DMM, as well as a combination of front- and side-view photographs of real speakers to produce initial neutral 3D synthetic head poses, provides better animation results compared to ground truth data consisting of front- and side-view 2D videos of real speakers. The thesis also investigates the impact of differences and similarities in facial features between real speakers and the 3DMMs on the resulting 3D lip motions by mapping between non-similar faces based on differences and similarities in vertical mouth height and mouth width. The objective and user test results show that mapping 2D videos of real speakers with low vertical mouth heights to 3D heads that correspond to real speakers with high vertical mouth heights, or vice versa, generates less good 3D lip motions. It is thus important that this is considered when using a 2D recording of a real actor’s lip movements to control a 3D synthetic character

    Physics-based Reconstruction and Animation of Humans

    Get PDF
    Creating digital representations of humans is of utmost importance for applications ranging from entertainment (video games, movies) to human-computer interaction and even psychiatrical treatments. What makes building credible digital doubles difficult is the fact that the human vision system is very sensitive to perceiving the complex expressivity and potential anomalies in body structures and motion. This thesis will present several projects that tackle these problems from two different perspectives: lightweight acquisition and physics-based simulation. It starts by describing a complete pipeline that allows users to reconstruct fully rigged 3D facial avatars using video data coming from a handheld device (e.g., smartphone). The avatars use a novel two-scale representation composed of blendshapes and dynamic detail maps. They are constructed through an optimization that integrates feature tracking, optical flow, and shape from shading. Continuing along the lines of accessible acquisition systems, we discuss a framework for simultaneous tracking and modeling of articulated human bodies from RGB-D data. We show how semantic information can be extracted from the scanned body shapes. In the second half of the thesis, we will deviate from using standard linear reconstruction and animation models, and rather focus on exploiting physics-based techniques that are able to incorporate complex phenomena such as dynamics, collision response and incompressibility of the materials. The first approach we propose assumes that each 3D scan of an actor records his body in a physical steady state and uses a process called inverse physics to extract a volumetric physics-ready anatomical model of him. By using biologically-inspired growth models for the bones, muscles and fat, our method can obtain realistic anatomical reconstructions that can be later on animated using external tracking data such as the one resulting from tracking motion capture markers. This is then extended to a novel physics-based approach for facial reconstruction and animation. We propose a facial animation model which simulates biomechanical muscle contractions in a volumetric head model in order to create the facial expressions seen in the input scans. We then show how this approach allows for new avenues of dynamic artistic control, simulation of corrective facial surgery, and interaction with external forces and objects

    Physically-based Animation of ‘Sticky Lips’

    Get PDF
    Producing a realistic animation of the face is challenging due to the familiarity people have with facial expressions and movements. In recent years there has been increased activity in the use of physically-based models to create realistic animations of soft-tissue structures, as well as interest in modelling more subtle effects occurring in the mouth. This thesis presents a physically-based model of the mouth. In particular, the model recreates the effect of saliva on the movement of the lips, a largely unexplored topic. The research is composed of four novel components. The first component is a physically-based model of the mouth featuring a new stickiness model, recreating the effect of the saliva on the movements of the mouth. The model is supported by a novel moisture model which controls the stickiness level over time. The stickiness model itself provides more realistic behaviour than the few other current models and reproduces complex effects which can be seen in real mouths. The second component is a perceptual evaluation of the realism of mouth animations which incorporate stickiness. The evaluation concludes that the inclusion of the stickiness model results in an improvement in perceived realism of animations of the mouth. The third component is a new analysis process for capturing information about mouth movements from video. This analysis process is used to evaluate the developed model by comparing it against videos of real mouths. The analysis demonstrates that the stickiness model provides an improvement in accuracy of animation compared to models that do not incorporate stickiness. The fourth component is a corpus of mouth videos in which utterances and actions are recorded at varying levels of lip stickiness to produce high frame rate close up mouth videos which show stickiness effects in a variety of participants. This corpus is used in the objective evaluation

    High-quality face capture, animation and editing from monocular video

    Get PDF
    Digitization of virtual faces in movies requires complex capture setups and extensive manual work to produce superb animations and video-realistic editing. This thesis pushes the boundaries of the digitization pipeline by proposing automatic algorithms for high-quality 3D face capture and animation, as well as photo-realistic face editing. These algorithms reconstruct and modify faces in 2D videos recorded in uncontrolled scenarios and illumination. In particular, advances in three main areas offer solutions for the lack of depth and overall uncertainty in video recordings. First, contributions in capture include model-based reconstruction of detailed, dynamic 3D geometry that exploits optical and shading cues, multilayer parametric reconstruction of accurate 3D models in unconstrained setups based on inverse rendering, and regression-based 3D lip shape enhancement from high-quality data. Second, advances in animation are video-based face reenactment based on robust appearance metrics and temporal clustering, performance-driven retargeting of detailed facial models in sync with audio, and the automatic creation of personalized controllable 3D rigs. Finally, advances in plausible photo-realistic editing are dense face albedo capture and mouth interior synthesis using image warping and 3D teeth proxies. High-quality results attained on challenging application scenarios confirm the contributions and show great potential for the automatic creation of photo-realistic 3D faces.Die Digitalisierung von Gesichtern zum Einsatz in der Filmindustrie erfordert komplizierte Aufnahmevorrichtungen und die manuelle Nachbearbeitung von Rekonstruktionen, um perfekte Animationen und realistische Videobearbeitung zu erzielen. Diese Dissertation erweitert vorhandene Digitalisierungsverfahren durch die Erforschung von automatischen Verfahren zur qualitativ hochwertigen 3D Rekonstruktion, Animation und Modifikation von Gesichtern. Diese Algorithmen erlauben es, Gesichter in 2D Videos, die unter allgemeinen Bedingungen und unbekannten Beleuchtungsverhältnissen aufgenommen wurden, zu rekonstruieren und zu modifizieren. Vor allem Fortschritte in den folgenden drei Hauptbereichen tragen zur Kompensation von fehlender Tiefeninformation und der allgemeinen Mehrdeutigkeit von 2D Videoaufnahmen bei. Erstens, Beiträge zur modellbasierten Rekonstruktion von detaillierter und dynamischer 3D Geometrie durch optische Merkmale und die Shading-Eigenschaften des Gesichts, mehrschichtige parametrische Rekonstruktion von exakten 3D Modellen mittels inversen Renderings in allgemeinen Szenen und regressionsbasierter 3D Lippenformverfeinerung mittels qualitativ hochwertigen Daten. Zweitens, Fortschritte im Bereich der Computeranimation durch videobasierte Gesichtsausdrucksübertragung und temporaler Clusterbildung, Übertragung von detaillierten Gesichtsmodellen, deren Mundbewegung mit Ton synchronisiert ist, und die automatische Erstellung von personalisierten "3D Face Rigs". Schließlich werden Fortschritte im Bereich der realistischen Videobearbeitung vorgestellt, welche auf der dichten Rekonstruktion von Hautreflektionseigenschaften und der Mundinnenraumsynthese mittels bildbasierten und geometriebasierten Verfahren aufbauen. Qualitativ hochwertige Ergebnisse in anspruchsvollen Anwendungen untermauern die Wichtigkeit der geleisteten Beiträgen und zeigen das große Potential der automatischen Erstellung von realistischen digitalen 3D Gesichtern auf
    corecore