236 research outputs found

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Robust and Flexible Persistent Scatterer Interferometry for Long-Term and Large-Scale Displacement Monitoring

    Get PDF
    Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von Verschiebungen der Erdoberfläche aus dem Weltraum. Sie basiert auf der Identifizierung und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die Anwendung von Ansätzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen. PS Punkte dominieren die Rückstreuung der Auflösungszellen, in denen sie sich befinden, und werden durch geringfügige Dekorrelation charakterisiert. Verschiebungen solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit überwacht werden, wenn Störquellen effektiv minimiert werden. Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen für die Methode. Physische Veränderungen der Landoberfläche und Änderungen in der Aufnahmegeometrie können dazu führen, dass PS Punkte im Laufe der Zeit erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohärenten PS Punkte nimmt mit zunehmender Länge der Zeitreihen ab, während die Anzahl der TPS Punkte zunimmt, die nur während eines oder mehrerer getrennter Segmente der analysierten Zeitreihe kohärent sind. Daher ist es wünschenswert, die Analyse solcher TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln, das in der Lage ist mit dynamischen Veränderungen der Landoberfläche umzugehen und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere Herausforderung der PSI besteht darin, großflächiges Monitoring in Regionen mit komplexen atmosphärischen Bedingungen durchzuführen. Letztere führen zu hoher Unsicherheit in den Verschiebungszeitreihen bei großen Abständen zur räumlichen Referenz. Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen umgehen kann. Als erster Hauptbeitrag wird eine Methode präsentiert, die TPS Punkte vollständig in die PSI integriert. In Evaluierungsstudien mit echten SAR Daten wird gezeigt, dass die Integration von TPS Punkten tatsächlich die Bewältigung dynamischer Veränderungen der Landoberfläche ermöglicht und mit zunehmender Zeitreihenlänge zunehmende Relevanz für PSI-basierte Beobachtungsnetzwerke hat. Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten Referenzintegration in großflächige PSI-Anwendungen zur Schätzung von räumlich korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpolation auf die restlichen PS Pixel unter Berücksichtigung der räumlichen Statistik des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen Daten gezeigt, dass die Methode überlegene Leistung im Vergleich zu alternativen Methoden zur Reduktion von räumlich korreliertem Rauschen in Interferogrammen mittels Referenzintegration zeigt. Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die geschätzten Landsenkungsraten zeigen eine hohe Variabilität auf kurzen sowie großen räumlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten hauptsächlich in städtischen Gebieten auf. Es kann gezeigt werden, dass der größte Teil der Landsenkung ihren Ursprung im oberflächennahen Untergrund hat. Die präsentierte Methode zur Reduzierung von räumlich korreliertem Rauschen verbessert die Ergebnisse signifikant, wenn eine angemessene räumliche Verteilung von Referenzgebieten verfügbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhängige Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufgenommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten führt für die analysierte Zeitreihe von sechs Jahren zu einer deutlich größeren Anzahl an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbessert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch zu identifizieren und ihre anfängliche Bewegungszeitreihen zu analysieren

    High-resolution deformation measurement using "Persistent Scatterer Interferometry"

    Get PDF
    Persistent Scatterer Interferometry (PSI) is a group of advanced differential interferometric SAR techniques that are used to measure and monitor terrain deformation. Different PSI techniques have been proposed in the last two decades. In this thesis, the two PSI chains implemented and used at the Geomatics division of CTTC are described: the local area PSI and the PSIG chains. The first part of the thesis is devoted to the local area PSI chain, used to analyse the deformations over small areas. The chain includes a linear deformation model to directly deal with interferometric wrapped phases. Moreover, it does not directly involve the estimation of the APS, thus simplifying the procedure and its computational cost. The chain has been tested using different types of SAR data. The availability of high resolution X-band SAR data has led to an improvement of the PSI results with respect to C-band data. The higher image resolution and phase quality implies an increase of the PS density, an improvement in the estimation precision of the residual topographic error and a higher sensibility to very small deformations, including the displacements caused by thermal dilation. An extension of the classical PSI linear deformation model has been proposed, to account for the thermal dilation effects. This allows obtaining a new PSI outcome, the thermal dilation parameter, which opens new interesting applications since it provides information on the physical properties of single objects, i.e. the coefficient of thermal expansion, and the static structures of the same objects. The second part of the thesis describes the PSIG chain, whose aim was to extend the interferometric processing to wider areas. The ability to cover wide areas is essential to obtain a unique and consistent deformation monitoring for the available SAR image full scenes, i.e. typically 30 by 50 km for TerraSAR-X, 40 by 40 km for CosmoSkyMed and 100 by 100 km for ASAR ENVISAT and ERS. This is particularly important for the forthcoming C-band Sentinel SAR data that will cover 250 by 250 km with a single image scene. The key steps of the PSIG procedure include a new selection of candidate PSs based on a phase similitude criteria and a 2+1D phase unwrapping algorithm. The procedure offers different tools to control the quality of the processing steps. It has been successfully tested over urban, rural and vegetated areas using X-band PSI data. The performance of the PSIG chain is illustrated and discussed in detail, analysing the procedure step by step.Persistent Scatterer Interferometry (PSI) és un grup de tècniques avançades d'interferometria diferencial SAR que s'utilitzen per mesurar i monitoritzar deformacions del terreny. Durant les últimes dues dècades s’han proposat diverses tècniques PSI. En aquesta tesi es descriuen les dues cadenes PSI implementades i utilitzades en la divisió de Geomàtica del CTTC: la cadena PSI d’àrea local i la cadena PSIG. La primera part de la tesi està dedicada a la cadena PSI d’àrea local, que s'utilitza per analitzar deformacions en zones d’extensió limitada. La cadena inclou un model de deformació lineal per tractar directament amb les fases interferomètriques wrapped. En canvi, no estima directament la component atmosfèrica, cosa que simplifica el procediment i el seu cost computacional. La cadena s’ha provat sobre diferents tipus de dades SAR. La disponibilitat de dades SAR d’alta resolució en banda X ha donat lloc a una millora dels resultats del PSI respecte a les dades en banda C. La resolució més gran de la imatge i la qualitat de la fase impliquen un augment de la densitat de PS, una millora en la precisió de l'estimació de l'error topogràfic residual i una sensibilitat més alta a deformacions subtils, incloent-hi els desplaçaments causats per la dilatació tèrmica. Per tenir en compte els efectes de la dilatació tèrmica, s'ha proposat una extensió del model PSI clàssic que ens permet obtenir un nou producte PSI: el paràmetre de dilatació tèrmica. Aquest paràmetre obre noves aplicacions interessants: proporciona informació relacionada amb les propietats físiques dels objectes mesurats –com el coeficient d'expansió tèrmica– i amb la seva pròpia estructura estàtica. La segona part de la tesi descriu la cadena PSIG, l'objectiu de la qual és estendre el processament interferomètric a àrees més extenses. La capacitat de cobrir àrees grans és fonamental per obtenir un únic mapa global de deformacions que sigui consistent i cobreixi l’extensió sencera de les imatges SAR disponibles, de 30 km per 50 km per TerraSAR-X, de 40 km per 40 km per CosmoSkyMed i de 100 km per 100 km per ASAR-ENVISAT i ERS. Això és particularment important tenint en compte la propera disponibilitat de les dades del satèl•lit Sentinel, que opera en banda C i cobrirà 250 km per 250 km amb una sola imatge. Els passos clau del procediment PSIG són una nova selecció de PS candidats en base a un criteri de similitud de fase i un algoritme de 2+1D phase unwrapping. El procediment ofereix diferents eines per controlar la qualitat dels diferents passos del processament. La cadena PSIG s’ha utilitzat amb èxit en àrees urbanes, rurals i amb vegetació utilitzant dades PSI en banda X. El funcionament de la cadena PSIG s'il•lustra i es descriu en detall, analitzant el procediment pas a pas

    Atmospheric artifacts correction for InSAR using empirical model and numerical weather prediction models

    Get PDF
    lnSAR has been proved its unprecedented ability and merits of monitoring ground deformation on large scale with centimeter to millimeter scale accuracy. However, several factors affect the reliability and accuracy of its applications. Among them, atmospheric artifacts due to spatial and temporal variations of atmosphere state often pose noise to interferograms. Therefore, atmospheric artifacts m itigalion remains one of the biggest challenges to be addressed in the In SAR community. State-of-the-art research works have revealed atmospheric artifacts can be partially compensated with empirical models, temporal-spatial filtering approach in lnSAR time series, pointwise GPS zenith path delay and numerical weather prediction models. In this thesis, firstly, we further develop a covariance weighted linear empirical model correction method. Secondly, a realistic LOS direction integration approach based on global reanalysis data is employed and comprehensively compared with the conventional method that integrates along zenith direction. Finally, the realistic integration method is applied to local WRF numerical forecast model data. l'vbreover, detailed comparisons between different global reanalysis data and local WRF model are assessed. In terms of empirical models correcting methods, many publications have studied correcting stratified tropospheric phase delay by assuming a linear model between them and topography. However, most of these studies ha\19 not considered the effect of turbulent atmospheric artefacts when adjusting the linear model to data. In this thesis, an improved technique that minimizes the influence of turbulent atmosphere in the model adjustment has been presented. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its APS covariance estimated from an empirical variogram to reduce in the model adjustment the impact of pixel pairs with significant turbulent atmosphere. The performance of the proposed method has been validated with both simulated and real Sentinel-1 SAR data in Tenerife island, Spain. Considering methods using meteorological observations to mitigate APS, an accurate realistic com puling strategy utilizing global atmospheric reanalysis data has been implemented. With the approach, the realistic LOS path along satellite and the monitored points is considered, rather than converting from zenith path delay. Com pared with zenith delay based method, the biggest advantage is that it can avoid errors caused by anisotropic atmospheric behaviour. The accurate integration method is validated with Sentinel-1 data in three test sites: Tenerife island, Spain, Almeria, Spain and Crete island, Greece. Compared to conventional zenith method, the realistic integration method shows great improvement. A variety of global reanalysis data are available from different weather forecasting organizations, such as ERA-Interim, ERAS, MERRA2. In this study, the realistic integration mitigation method is assessed on these different reanalysis data. The results show that these data are feasible to mitigate APS to some extent in most cases. The assessment also demonstrates that the ERAS performs the best statistically, compared to other global reanalysis data. l'vbreover, as local numerical weather forecast models have the ability to predict high spatial resolution atmospheric parameters, by using which, it has the potential to achieve APS mitigation. In this thesis, the realistic integration method is also employed on the local WRF model data in Tenerife and Almeria test s ites. However, it turns out that the WRF model performs worse than the original global reanalysis data.Las técnicas lnSAR han demostrado su capacidad sin precedentes y méritos para el monitoreo de la deformaci6n del suelo a gran escala con una precisión centimétrica o incluso milimétrica. Sin embargo, varios factores afectan la fiabilidad y precisión de sus aplicaciones. Entre ellos, los artefactos atmosféricos debidos a variaciones espaciales y temporales del estado de la atm6sfera a menudo añaden ruido a los interferogramas. Por lo tanto, la mitigación de los artefactos atmosféricos sigue siendo uno de los mayores desafíos a abordar en la comunidad lnSAR. Los trabajos de investigaci6n de vanguardia han revelado que los artefactos atmosféricos se pueden compensar parcialmente con modelos empíricos, enfoque de filtrado temporal-espacial en series temporales lnSAR, retardo puntual del camino cenital con GPS y modelos numéricos de predicción meteorológica. En esta tesis, en primer lugar, desarrollamos un método de corrección de modelo empírico lineal ponderado por covarianza. En segundo lugar, se emplea un enfoque realista de integracion de dirección LOS basado en datos de reanálisis global y se compara exhaustivamente con el método convencional que se integra a lo largo de la dirección cenital. Finalmente, el método de integraci6n realista se aplica a los datos del modelo de pronóstico numérico WRF local. Ademas, se evalúan las comparaciones detalladas entre diferentes datos de reanálisis global y el modelo WRF local. En términos de métodos de corrección con modelos empíricos, muchas publicaciones han estudiado la corrección del retraso estratificado de la fase troposférica asumiendo un modelo lineal entre ellos y la topografía. Sin embargo, la mayoría de estos estudios no han considerado el efecto de los artefactos atmosféricos turbulentos al ajustar el modelo lineal a los datos. En esta tesis, se ha presentado una técnica mejorada que minimiza la influencia de la atm6sfera turbulenta en el ajuste del modelo. En el algoritmo propuesto, el modelo se ajusta a las diferencias de fase de los pixeles en lugar de utilizar la fase sin desenrollar de cada pixel. Además, las diferentes diferencias de fase se ponderan en función de su covarianza APS estimada a partir de un variograma empírico para reducir en el ajuste del modelo el impacto de los pares de pixeles con una atm6sfera turbulenta significativa. El rendimiento del método propuesto ha sido validado con datos SAR Sentinel-1 simulados y reales en la isla de Tenerife, España. Teniendo en cuenta los métodos que utilizan observaciones meteorológicas para mitigar APS, se ha implementado una estrategia de computación realista y precisa que utiliza datos de reanálisis atmosférico global. Con el enfoque, se considera el camino realista de LOS a lo largo del satélite y los puntos monitoreados, en lugar de convertirlos desde el retardo de la ruta cenital. En comparación con el método basado en la demora cenital, la mayor ventaja es que puede evitar errores causados por el comportamiento atmosférico anisotrópico. El método de integración preciso se valida con los datos de Sentinel-1 en tres sitios de prueba: la isla de Tenerife, España, Almería, España y la isla de Creta, Grecia. En comparación con el método cenital convencional, el método de integración realista muestra una gran mejora.Postprint (published version

    Atmospheric artifacts correction for InSAR using empirical model and numerical weather prediction models

    Get PDF
    lnSAR has been proved its unprecedented ability and merits of monitoring ground deformation on large scale with centimeter to millimeter scale accuracy. However, several factors affect the reliability and accuracy of its applications. Among them, atmospheric artifacts due to spatial and temporal variations of atmosphere state often pose noise to interferograms. Therefore, atmospheric artifacts m itigalion remains one of the biggest challenges to be addressed in the In SAR community. State-of-the-art research works have revealed atmospheric artifacts can be partially compensated with empirical models, temporal-spatial filtering approach in lnSAR time series, pointwise GPS zenith path delay and numerical weather prediction models. In this thesis, firstly, we further develop a covariance weighted linear empirical model correction method. Secondly, a realistic LOS direction integration approach based on global reanalysis data is employed and comprehensively compared with the conventional method that integrates along zenith direction. Finally, the realistic integration method is applied to local WRF numerical forecast model data. l'vbreover, detailed comparisons between different global reanalysis data and local WRF model are assessed. In terms of empirical models correcting methods, many publications have studied correcting stratified tropospheric phase delay by assuming a linear model between them and topography. However, most of these studies ha\19 not considered the effect of turbulent atmospheric artefacts when adjusting the linear model to data. In this thesis, an improved technique that minimizes the influence of turbulent atmosphere in the model adjustment has been presented. In the proposed algorithm, the model is adjusted to the phase differences of pixels instead of using the unwrapped phase of each pixel. In addition, the different phase differences are weighted as a function of its APS covariance estimated from an empirical variogram to reduce in the model adjustment the impact of pixel pairs with significant turbulent atmosphere. The performance of the proposed method has been validated with both simulated and real Sentinel-1 SAR data in Tenerife island, Spain. Considering methods using meteorological observations to mitigate APS, an accurate realistic com puling strategy utilizing global atmospheric reanalysis data has been implemented. With the approach, the realistic LOS path along satellite and the monitored points is considered, rather than converting from zenith path delay. Com pared with zenith delay based method, the biggest advantage is that it can avoid errors caused by anisotropic atmospheric behaviour. The accurate integration method is validated with Sentinel-1 data in three test sites: Tenerife island, Spain, Almeria, Spain and Crete island, Greece. Compared to conventional zenith method, the realistic integration method shows great improvement. A variety of global reanalysis data are available from different weather forecasting organizations, such as ERA-Interim, ERAS, MERRA2. In this study, the realistic integration mitigation method is assessed on these different reanalysis data. The results show that these data are feasible to mitigate APS to some extent in most cases. The assessment also demonstrates that the ERAS performs the best statistically, compared to other global reanalysis data. l'vbreover, as local numerical weather forecast models have the ability to predict high spatial resolution atmospheric parameters, by using which, it has the potential to achieve APS mitigation. In this thesis, the realistic integration method is also employed on the local WRF model data in Tenerife and Almeria test s ites. However, it turns out that the WRF model performs worse than the original global reanalysis data.Las técnicas lnSAR han demostrado su capacidad sin precedentes y méritos para el monitoreo de la deformaci6n del suelo a gran escala con una precisión centimétrica o incluso milimétrica. Sin embargo, varios factores afectan la fiabilidad y precisión de sus aplicaciones. Entre ellos, los artefactos atmosféricos debidos a variaciones espaciales y temporales del estado de la atm6sfera a menudo añaden ruido a los interferogramas. Por lo tanto, la mitigación de los artefactos atmosféricos sigue siendo uno de los mayores desafíos a abordar en la comunidad lnSAR. Los trabajos de investigaci6n de vanguardia han revelado que los artefactos atmosféricos se pueden compensar parcialmente con modelos empíricos, enfoque de filtrado temporal-espacial en series temporales lnSAR, retardo puntual del camino cenital con GPS y modelos numéricos de predicción meteorológica. En esta tesis, en primer lugar, desarrollamos un método de corrección de modelo empírico lineal ponderado por covarianza. En segundo lugar, se emplea un enfoque realista de integracion de dirección LOS basado en datos de reanálisis global y se compara exhaustivamente con el método convencional que se integra a lo largo de la dirección cenital. Finalmente, el método de integraci6n realista se aplica a los datos del modelo de pronóstico numérico WRF local. Ademas, se evalúan las comparaciones detalladas entre diferentes datos de reanálisis global y el modelo WRF local. En términos de métodos de corrección con modelos empíricos, muchas publicaciones han estudiado la corrección del retraso estratificado de la fase troposférica asumiendo un modelo lineal entre ellos y la topografía. Sin embargo, la mayoría de estos estudios no han considerado el efecto de los artefactos atmosféricos turbulentos al ajustar el modelo lineal a los datos. En esta tesis, se ha presentado una técnica mejorada que minimiza la influencia de la atm6sfera turbulenta en el ajuste del modelo. En el algoritmo propuesto, el modelo se ajusta a las diferencias de fase de los pixeles en lugar de utilizar la fase sin desenrollar de cada pixel. Además, las diferentes diferencias de fase se ponderan en función de su covarianza APS estimada a partir de un variograma empírico para reducir en el ajuste del modelo el impacto de los pares de pixeles con una atm6sfera turbulenta significativa. El rendimiento del método propuesto ha sido validado con datos SAR Sentinel-1 simulados y reales en la isla de Tenerife, España. Teniendo en cuenta los métodos que utilizan observaciones meteorológicas para mitigar APS, se ha implementado una estrategia de computación realista y precisa que utiliza datos de reanálisis atmosférico global. Con el enfoque, se considera el camino realista de LOS a lo largo del satélite y los puntos monitoreados, en lugar de convertirlos desde el retardo de la ruta cenital. En comparación con el método basado en la demora cenital, la mayor ventaja es que puede evitar errores causados por el comportamiento atmosférico anisotrópico. El método de integración preciso se valida con los datos de Sentinel-1 en tres sitios de prueba: la isla de Tenerife, España, Almería, España y la isla de Creta, Grecia. En comparación con el método cenital convencional, el método de integración realista muestra una gran mejora

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Data Processing and Modeling on Volcanic and Seismic Areas

    Get PDF
    This special volume aims to collecg new ideas and contributions at the frontier between the fields of data handling, processing and modeling for volcanic and seismic systems. Technological evolution, as well as the increasing availability of new sensors and platforms, and freely available data, pose a new challenge to the scientific community in the development new tools and methods that can integrate and process different information. The recent growth in multi-sensor monitoring networks and satellites, along with the exponential increase in the spatiotemporal data, has revealed an increasingly compelling need to develop data processing, analysis and modeling tools. Data processing, analysis and modeling techniques may allow significant information to be identified and integrated into volcanic/seismological monitoring systems. The newly developed technology is expected to improve operational hazard detection, alerting, and management abilities

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin
    corecore