3,491 research outputs found

    Quantitative Analysis of Three-Dimensional Cone-Beam Computed Tomography Using Image Quality Phantoms

    Get PDF
    In the clinical setting, weight-bearing static 2D radiographic imaging and supine 3D radiographic imaging modalities are used to evaluate radiographic changes such as, joint space narrowing, subchondral sclerosis, and osteophyte formation. These respective imaging modalities cannot distinguish between tissues with similar densities (2D imaging), and do not accurately represent functional joint loading (supine 3D imaging). Recent advances in cone-beam CT (CBCT) have allowed for scanner designs that can obtain weight-bearing 3D volumetric scans. The purpose of this thesis was to analyze, design, and implement advanced imaging techniques to quantify image quality parameters of reconstructed image volumes generated by a commercially-available CBCT scanner, and a novel ceiling-mounted CBCT scanner. In addition, imperfections during rotation of the novel ceiling-mounted CBCT scanner were characterized using a 3D printed calibration object with a modification to the single marker bead method, and prospective geometric calibration matrices

    Quality assurance in stereotactic radiosurgery/radiotherapy according to DIN 6875-1

    Get PDF
    The new DIN (' Deutsche Industrie- Norm') 6875- 1, which is currently being finalised, deals with quality assurance ( QA) criteria and tests methods for linear accelerator and Gamma Knife stereotactic radiosurgery/ radiotherapy including treatment planning, stereotactic frame and stereotactic imaging and a system test to check the whole chain of uncertainties. Our existing QA program, based on dedicated phantoms and test procedures, has been refined to fulfill the demands of this new DIN. The radiological and mechanical isocentre corresponded within 0.2 mm and the measured 50% isodose lines were in agreement with the calculated ones within less than 0.5 mm. The measured absorbed dose was within 3%. The resultant output factors measured for the 14-, 8- and 4- mm collimator helmet were 0.9870 +/- 0.0086, 0.9578 +/- 0.0057 and 0.8741 +/- 0.0202, respectively. For 170 consecutive tests, the mean geometrical accuracy was 0.48 +/- 0.23 mm. Besides QA phantoms and analysis software developed in- house, the use of commercially available tools facilitated the QA according to the DIN 6875- 1 with which our results complied. Copyright (C) 2004 S. Karger AG, Basel

    IGRT and motion management during lung SBRT delivery.

    Get PDF
    Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life

    Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy

    Get PDF
    Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems

    Development of a small animal conformal irradiator with dual energy x-ray computed tomography imaging for kilovoltage dosimetry

    Get PDF
    External beam radiotherapy has become technically sophisticated with image guided radiation therapy (IGRT) and intensity modulated radiation therapy (IMRT). These technologies allow for precise delivery of radiation to geometric targets in cancer patients. However, many questions remain on how to best define targets based on biological information, such as functional imaging, and how to combine radiation with other cancer therapies. To help answer these questions, small animal preclinical studies are needed to generate data to inform clinical trials. However, the precise radiation delivery capabilities of IGRT and IMRT have not been available in the preclinical labs. To enable translational experiments and to address the lack of preclinical radiotherapy technology, a commercial micro-CT was first developed into an image-guided conformal radiotherapy system in this thesis. Computerized asymmetric jaws were constructed, implemented and characterized for the system. A Monte Carlo dose calculation package was successfully configured for the system and verified with film measurements. Respiratory gated imaging and radiotherapy was demonstrated with a phantom and in animals. Secondly, accurate radiation dosimetry reduces uncertainties in preclinical experiments. To achieve accurate dose calculations in the kilovoltage x-ray range where photoelectric effects and Compton scattering dominate, knowledge of material composition and density is needed. Dual energy micro-CT was optimized (including choice of x-ray beam peak voltages, filtrations, and duration) and evaluated for the purpose of characterizing materials. Dual energy CT techniques developed for clinical scanners were adapted and examined for micro-CT. A set of micro-CT phantoms consisting of 11 plastic materials and solutions that spanned a relevant range of compositions was designed and constructed. Initial experiments found beam-hardening image artefacts limited accurate measurements. By switching to a more sensitive detector, x-ray spectra with additional beam filtration were possible and resulted in reduced beam-hardening effects. This improved dual energy micro-CT measurement accuracy of material composition and density. In conclusion, a small animal image-guided conformal radiotherapy system was developed and commissioned for preclinical studies. Dual energy micro-CT was demonstrated as a method to characterize materials to improve kilovoltage dose calculation. This integrated micro-CT based small animal image-guided radiation platform has enabled numerous pre-clinical studies

    Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-10-01, epub 2021-10-21Publication status: PublishedHere we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens

    A Method for the Geometric Analysis of Rugose Coral Growth Ridges as Paleoenvironmental Indicators in the Middle Devonian Hungry Hollow Member of Widder Formation, Michigan Basin

    Get PDF
    Skeletons of Devonian rugose corals feature submillimetre-scale growth ridges on their outer surface (epitheca) that record the successive positions of the coral polyp during longitudinal corallite growth. Specimens of rugose corals Eridophyllum and Cystiphylloides from the Hungry Hollow Member of the Middle Devonian Widder Formation were sectioned longitudinally and imaged by SEM, and image processing techniques were applied to extract a line representing the epithecal surface. Local extrema found through peak detection allowed growth ridges to be represented as simplified triangles, so that geometric measurements (area, length) could be related to coral growth and analyzed in reference to possible paleoenvironmental cycles. This research has produced an objective method for the extraction of growth ridge data from a two-dimensional coral slice, although slice location was found to influence results. Results show potential sub-monthly bundles of ~15-17 ridges, not previously observed, which suggest a lunar/tidal influence on coral growth

    DYNAMIC MEASUREMENT OF THREE-DIMENSIONAL MOTION FROM SINGLE-PERSPECTIVE TWO-DIMENSIONAL RADIOGRAPHIC PROJECTIONS

    Get PDF
    The digital evolution of the x-ray imaging modality has spurred the development of numerous clinical and research tools. This work focuses on the design, development, and validation of dynamic radiographic imaging and registration techniques to address two distinct medical applications: tracking during image-guided interventions, and the measurement of musculoskeletal joint kinematics. Fluoroscopy is widely employed to provide intra-procedural image-guidance. However, its planar images provide limited information about the location of surgical tools and targets in three-dimensional space. To address this limitation, registration techniques, which extract three-dimensional tracking and image-guidance information from planar images, were developed and validated in vitro. The ability to accurately measure joint kinematics in vivo is an important tool in studying both normal joint function and pathologies associated with injury and disease, however it still remains a clinical challenge. A technique to measure joint kinematics from single-perspective x-ray projections was developed and validated in vitro, using clinically available radiography equipmen
    corecore