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3.3.1 Photographs of the stained biological specimens, each of which were chem-
ically fixed and held in individual containers. Sample dimensions are over-
laid. An approximation of the imaged section of each sample is highlighted 
(dashed box). All measurements are in mm. . . . . . . . . . . . . . . . . . 113

3.3.2 (Left) Photograph of the multi-phase powder phantom, with each metal-
based powder labelled. The external metal of the phantom is aluminium. 
(Right) Schematic of the phantom sample, with dimensions included. . . . . 114

3.3.3 Photographs of the chemical phantoms produced for spectral calibration 
using known chemical concentrations. Sample dimensions are overlaid, 
and are measured in mm. (Left) Two images of the iodine-based phantom, 
containing four interchangeable rods of differing concentration of the I3

-

ion (25.3, 50.6, 76.0 and 101.2 mg/ml). The second photograph shows the 
optional connector plate to hold the four containers in position. (Middle) 
The BaSO4 phantom, containing three concentrations (100, 200, and 400 
mg/ml), with corresponding concentration percentages labelled. (Right) 
The PTA phantom, with three concentrations (50, 100, and 200 mg/ml) as 
labelled on the container. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4.1 Implementation of the stripe reduction filter to minimise ring artefacts in 
hyperspectral imaging. (Left) Raw sinogram of the central image pixel, 
shown for a single energy channel, prior to any corrections. Stripes appear 
vertically (red dashed line) due to the same ineffective pixel in each pro-
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tween pixel columns. An example of a clear improvement in stripe reduc-
tion is highlighted (red arrow). Optical density values at the edge appear 
negative due to charge sharing effects. . . . . . . . . . . . . . . . . . . . . 117
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A line signifying the theoretical position of the cerium K-edge is overlaid 
for comparison. (d) Comparison of measured absorption spectra (top) for 
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theoretical values (bottom) over the same spectral range. . . . . . . . . . . 127
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4.2.2 Comparison of reconstruction algorithms. (a) Transverse and frontal 
slices, showing reconstructions for FDK of sample Scan A (left column), 
followed by Scan B reconstructions with FDK (middle column), and TV-
TGV (right column). All reconstructed slices are shown for a single energy 
channel (42.27 keV - channel width 1.2 keV). Dashed lines indicate the po-
sitions from which spatial profiles were measured for each reconstruction. 
White arrows mark examples of streak artefacts due to photon starvation. 
ROIs in the ZnO phase (red - S) and the Al phase (white - Bg) are high-
lighted for use in CNR calculations. (b) Spatial profile across two pow-
der phases for the same energy channel. (c) Absorption spectra for ROI 1 
within the cerium powder region (blue square in (a)). . . . . . . . . . . . . 129

4.2.3 Reconstruction comparison using different image quality metrics. (a)
Channelwise CNR calculations between the ZnO and the Al phase ROIs 
for an image slice in the transverse plane. Average values across the en-
ergy range were 27.44, 7.81 and 38.26 for FDK Scan A, FDK and TV-TGV 
Scan B respectively. (b) Channelwise RMSE values calculated using ROI 
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comparison between Scan A and each respective Scan B reconstruction. . . 130

4.2.4 Biological feature identification via regularised reconstruction. (a) Re-
constructed slices for channel 120 (33.95 keV - channel width 1.2 keV), 
along both the axial and sagittal dimensions, following FDK (left column) 
and TV-TGV (right column) reconstruction. General noise reduction and 
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Absorption spectra measured for a ROI in two sections of the sample (blue 
squares in (a) - lens and jaw). A line signifying the theoretical position of 
the iodine K-edge is overlaid for comparison. (c) Channelwise CNR calcu-
lations of the stained jaw using the signal ROI (red - S) and the background 
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CNR values across the energy range were 8.91 and 35.97 for FDK and TV-
TGV respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.5 Attenuation step size analysis for the iodine K-edge. (a) 3D visualisa-
tions of the step size in the absorption edge, Δ𝜇0, corresponding to relative 
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tion values were measured. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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4.2.6 Lizard head segmentation comparison for hyperspectral and dual-
energy imaging. Sagittal views of the segmented sample, producing maps 
of iodine-stained soft tissue (top row) and remaining hydroxyapatite (bot-
tom row) bone structures. Results following K-edge subtraction for the TV-
TGV reconstructed dataset (middle column) are directly compared to those 
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due to long term sample storage. Included is an example of a bone structure 
(quadrate) unidentified in TV-TGV segmentation. (Right column) Equiv-
alent maps following FDK reconstruction of the hyperspectral dataset are 
also shown, with significant noise hiding a number of key features. . . . . . 134
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spectral detector. For each flatfield, a low-energy tail is observed due to 
the effect of charge sharing. (Left) Single flatfield projection measured 
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exposure time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
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K𝛼,𝛽 fluorescence peaks of Ba (farthest left) to the 241Am 𝛾-ray photopeak 
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(Right) Distribution of FWHM values for the 241Am peak, measured at 59.5 
keV. Dead pixels were not considered. . . . . . . . . . . . . . . . . . . . . 146

S3 (Top) Spatial images of the FDK and TV-TGV reconstructions taken for 
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nels, both before (top left) and after (top right) the Ce K-edge (40.443 keV). 
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planes for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
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S5 Example profile illustrating K-edge subtraction around the iodine absorp-
tion edge for a voxel in the stained lizard head. The theoretical position of 
the edge is marked for comparison (dotted line). The ’separation’ (Sep.) 
determines the distance in energy (channels) away from the edge position, 
while the ’width’ measures the energy (channel) range across which data 
is extracted (yellow bars). Identical values are used either side of the edge. 
Sizes of each parameter are not to scale. . . . . . . . . . . . . . . . . . . . 149

5.1.1 Attenuation variation as a function of energy. Known values of the mass 
attenuation coefficient shown for a number of materials. Across the hard 
X-ray energy range, many elements exhibit sharp rises in attenuation at 
their absorption edge positions (K-edge energies given in legend), providing 
strong contrast relative to soft tissue or calcium (bone) structures. Values 
extracted from the NIST online database [15]. . . . . . . . . . . . . . . . . 154

5.3.1 Voxel spectra analysis for double-stained hindlimb specimen. A) Single 
image slice in the sagittal plane across three monochromatic energy chan-
nels, following iterative reconstruction. A set of three regions-of-interest 
(ROIs) are highlighted for voxel spectra analysis. An enlarged image of a 
section of (A) - red box - is included to highlight ROI2 taken over one of 
the distinct material phases. ROIs1,3 cover a 3×3 voxel region, while a 2×2 
pixel region is used for ROI2, partially overlapping with surrounding ma-
terial outside of the phase. B) Voxel spectra for each ROI, showing clear 
steps in attenuation. Known absorption edge positions (black dotted lines) 
confirm the presence of iodine and barium in the ROIs, while ROI3 shows 
a small iodine signal, having partially diffused into the calcium-containing 
bone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.3.2 Elemental segmentation of hindlimb by K-edge subtraction. A) Elemen-
tal difference maps shown for the hyperspectral image slice shown in the 
sagittal plane (left). Colour bar for elemental difference maps is measured 
in terms of attenuation change, Δ𝜇, as determined by KES of narrow en-
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and calcium-containing regions (top, middle, bottom respectively). C) Vir-
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hindlimb, showing the equivalent image slice following volume registration. 
Labels indicate the three material phases with expected stain uptake regions. 162
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coronal plane (left). Colour bar for elemental difference maps is measured 
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5.3.4 Design and spectral analysis of chemical phantoms. A) Illustration of the 
phantom layout for each contrast agent (left), with chemical concentrations 
labelled in units of mg/ml. The I2KI phantom is labelled as iodine to high-
light that the concentrations represent aqueous I3

-. Reconstructed image 
slices for each of the respective chemical phantoms (right), with orienta-
tion matched to the concentrations labelled. The BaSO4 phantoms appear 
heterogeneous due to partial sinking and separation of the barium sulphate 
crystals from the agarose base. Images are measured in terms of ’standard-
ised intensity’ value, with the same overall scaling range. B) Reconstructed 
slices of each chemical phantom, shown in the axial plane, for two energy 
channels, taken just before (left column) and just after (right column) the 
relevant K-edge position. ROIs covering each chemical phase are high-
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tra showing attenuation as a function of energy for the ROIs highlighted in 
(B). The attenuation values were averaged over the full ROI. Known K-edge 
positions of the phantom’s heavy element are overlaid. D) Fitted relation-
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over six vertical slices through the sample depth. Error bars measure the 
standard deviation across the slices analysed. A line of best fit is applied for 
each phantom following linear interpolation. E) Fitted relationship between 
chemical concentration and ’standardised intensity’ value in each phantom 
phase following conventional XCT imaging. Values were calculated for the 
central slice reconstruction. Phantom datasets were scanned at 80 kV and 
100 𝜇A with a Zeiss Xradia MicroXCT-400. Standardised intensity values 
are based on 2% agarose and air, as the barium phantom uses an agarose base. 167

5.3.5 Distribution and concentration of contrast agents. A) 3D volume maps 
quantifying the stain distribution of iodine (top) and barium (bottom) in the 
soft tissue and blood vessels respectively within the double-stained mouse 
hindlimb. Some low concentrations regions (white arrow) with a system-
atic pattern of voxels are attributed to ring artefacts or general noise. B) 
Histogram detailing the statistical breakdown of concentration distribution 
on a voxel-by-voxel basis for each chemical stain of the sample in (A). C) 
Volume maps for the triple-stained mouse forelimb, showing absolute con-
centration values in each voxel for iodine (top), BaSO4 (middle) and PTA 
(bottom). D) Concentration distribution histogram for each stain within the 
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Abstract

X-ray computed tomography (CT) has become a powerful tool for 3D evaluation of sam-
ples, expanding from healthcare applications to security scanning, archaeology, and non-
destructive testing across a range of industries. To date, the majority of X-ray systems im-
plement ’black and white’ imaging, providing insight into the relative electron density of 
structures, but no further material discrimination is achievable. With the creation of pixe-
lated energy-sensitive X-ray detectors, previously lost energy-based information may now 
be captured, providing both spatial and spectral detail about the sample at every pixel. The 
development of hyperspectral sensors in recent years has enabled this spectral dimension to 
be recorded and visualised with excellent energy resolution. Characteristic features of ele-
ments within a sample, such as absorption edges and fluorescence peaks, may now be used 
as fingerprints for chemical mapping across a full reconstructed volume.

Hyperspectral imaging offers a wide range of imaging modalities, enabling exploration in 
the direct X-ray beam (bright-field) and off-axis (dark-field), for full flexibility in the range 
of chemical and crystallographic properties that may be studied. Bright-field imaging pro-
vides an appealing alternative to conventional X-ray CT given the simple requirement to 
replace the old detector for a hyperspectral one. However, despite the significant potential 
of bright-field hyperspectral CT, the technique is still in its infancy, and requires further ad-
vancement in a number of areas.

This thesis focuses on advancing the field of bright-field imaging in terms of the recon-
struction, analysis, and wider applications of the technique moving forward. Limited stud-
ies to date have explored the reconstruction techniques required to handle hyperspectral 
datasets. With the additional spectral dimension, 4D datasets emerge. The benefit of high 
energy resolution, however, is counteracted by poor signal-to-noise ratio. A novel form 
of regularised iterative reconstruction algorithm is described, and evaluated in a research 
study on both a phantom sample and stained biological specimen. The extent of noise re-
moval is assessed, with a scan time reduction of 36× possible without loss of image quality.

Advancements in the range of bright-field spectral analyses are also explored. The ability to 
extract quantitative information on chemical concentration and distribution is evaluated for 
the field of bioimaging, through a research study on multiple simultaneous contrast agent 
staining. The extraction of absolute chemical concentration values in each voxel are shown 
for double- and triple-stained specimens, performed for the first time in hyperspectral CT 
via absorption edge fitting of a set of calibration phantoms. Finally, potential routes for the 
further development of hyperspectral imaging are discussed.
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Chapter 1

Introduction

The discovery of X-rays by Wilhelm Röntgen in 1895 marked the beginning of a new era 
of imaging, through the use of ionising radiation to determine the structural composition of 
objects by acquiring radiographic images [1]. By evaluating the intensity values recorded 
across a radiographic film, structural properties of materials could begin to be analysed. X-
ray imaging enabled internal features to be identified and distinguished, by virtue of their 
difference in atomic electron density, without the need for destruction of the object. As a 
result, a form of non-invasive imaging was developed.

In the following years, the most significant advancement of X-ray imaging emerged in the 
1970s, as the transition from 2D to 3D X-ray imaging was achieved through the develop-
ment of a clinical X-ray computed tomography (CT) system by Sir Godfrey Hounsfield [2]. 
The fundamental design of any X-ray CT system includes the use of an X-ray source, X-ray 
detector and a sample stage. For clinical imaging of patients or living biological organisms, 
the detector and source rotate around the the region to be imaged, with the ’specimen’ re-
maining fixed in position. In contrast, for benchtop CT systems, which often aim to achieve 
high-resolution studies of various materials and structures, the X-ray source and detector 
are fixed in position, while the sample is rotated on a rotation stage [3]. In each case, mul-
tiple 2D image projections (’radiographs’) are acquired at a range of angles over 360∘, and 
then recombined using a computational reconstruction algorithm to produce a detailed 3D 
map of the internal structure. Originally, acquisition time was slow, as narrow pencil beams 
were used, covering only a small region of the object per image. Therefore, as well as rotat-
ing the full gantry (source plus detector) for each projection of the CT scan, there was often 
a need to translate the system in order to cover a larger imaging field. Nevertheless, the first 
generation CT scanners proved the tremendous potential of X-ray imaging, both for clinical 
and benchtop research.

Nowadays, the technique of X-ray CT has found use in a wide range of research and ap-
plication fields, including: medical imaging [4], metrology [5], industrial failure analysis 
[6], geoscience [7], and security scanning [8]. The transition from 2D to 3D X-ray imag-
ing has undergone a number of technological advancements throughout its evolution, with a 
wide array of scanning configurations depending on application, yet the same basic princi-
ples are adopted. The conventional method of determining internal composition and struc-
ture of objects based purely on X-ray attenuation differences has often been referred to as 
’Black and White’ imaging, referencing the commonly used colour scale observed in clini-
cal radiographic images comparing e.g. bone vs. tissue. This is due to their use of ’energy-
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integrating’ X-ray detectors. Typically, these are scintillation devices, whereby incident 
photons interact with the detector material, generating a set of visible light pulses, which 
are then amplified and converted to an electronic signal which may be measured for a sin-
gle detector pixel [9, 10]. As highlighted in the name, regardless of photon energy, the total 
signal is simply integrated in each pixel, and therefore any energy-based information about 
the incident photons is lost.

In recent years, the development of ’colour’ X-ray CT techniques have emerged, referenc-
ing the ability to extract additional information related to the chemical composition of ob-
jects under investigation. Much like the visible range of the electromagnetic spectrum has 
observable colours, based on their different wavelength (energy), a similar analogy may 
be applied to the X-ray spectrum. An example depiction of this analogy is shown in Fig. 
1.1.1. Commonly in X-ray research, a wide range of energies are utilised as a polychro-
matic beam, and therefore if the precise energy of each incident photon is recorded, a full 
colour ’spectrum’ may be constructed. The result is that direct insight on the distribution 
and range of photon energies is obtained, following interaction with the object being stud-
ied. Figure 1.1.1 also differentiates the two main categories of colour imaging, referred to 
as ’spectral’ (or multispectral) and ’hyperspectral’, based on the number of energy windows 
(channels) the polychromatic photon spectrum can be divided into. By accessing the pre-
viously ’lost’ energy-based information, a wide range of chemical, crystallographic, and 
structural characteristics of an object may be unlocked, in addition to the 3D volumetric 
mapping. With the development of energy-sensitive X-ray detectors, such spectral proper-
ties may be measured, simply by replacing the conventional ’integrating’ X-ray detectors 
used before. This offers a wealth of information, due to the presence of characteristic spec-
tral markers, appearing in the form of edges and peaks on the energy spectrum. The exam-
ple shown in Fig. 1.1.1 shows such markers, in this case due to characteristic fluorescence 
peaks emitted by a tungsten X-ray source target. Markers such as these may be used to di-
rectly evaluate the chemical composition of objects through energy-sensitive imaging.

Despite the introduction of 2D energy-resolved X-ray imaging as early as 1971, analysing 
crystal structure of metal foils [11], and 3D investigations in 1990 using ’energy-dispersive 
tomography’ [12], it is only with the rapid development of pixellated, spectroscopic detec-
tors from the 1990s through the 21st century that has enabled significant advancement in 
spectral studies across many research fields. However, many areas of energy-sensitive re-
search still remain untapped. Much of the research into spectroscopic imaging has focused 
on the ’few-channel’ spectral systems, offering coarse energy resolution. For the high en-
ergy resolution hyperspectral detectors, many gaps in the research applications, data pro-
cessing, reconstruction and analysis of hyperspectral work remain.

The concept of hyperspectral imaging (HSI) was first proposed in the 1980s outside of X-
ray imaging, emerging in the field of remote sensing of the Earth’s surface by aircraft and 
spacecraft. This form of imaging ’spectrometry’ largely utilised the visible, near-infrared, 
or ultraviolet portions of the electromagnetic spectrum, and was capable of analysing the 
chemical composition and structure of the surface materials based on the different propor-
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Figure 1.1.1. Illustration of the concept of ’Black and White’ versus ’Colour’ imaging. (Bottom) Image of a 
typical Bremsstrahlung X-ray spectrum for a tungsten source target. Characteristic peaks due to fluorescence 
of tungsten are labelled. (Top) Distinction between the conventional ’energy-integrating’ detectors, offering 
no energy-based insight, and the energy-sensitive systems. Hyperspectral imaging is capable of dividing the 
incident photon energies into many narrow channels, providing higher energy resolution over the 
’few-channel’ systems.

tions to which objects reflect, absorb, and emit the incident radiation [13]. The original def-
inition of the imaging technique was described as ”the acquisition of data in hundreds of 
spectral bands simultaneously” [14], and it was the ability to capture these distinct spec-
tral signatures which enabled such specific mapping and material identification to be pos-
sible. With this technique, remote mapping of minerals in rocks, soil, and vegetation was 
achievable over vast areas. HSI now finds application in a wide field of study, ranging from 
archaeology and food quality control, to forensic analysis and medical diagnosis [15, 16].

The principle of HSI, much like in hyperspectral X-ray CT, as will be explained in this the-
sis, builds on the concept of accessing an additional dimension of spectral information. As 
such, rather than a standard 2D spatial image, datasets in HSI become a 3D data ’block’, 
sometimes referred to as a ’hypercube’, of size 𝑛1 × 𝑛2 × 𝑑. As shown in Fig. 1.1.2, this 
additional dimension essentially accumulates a set of energy-based layers, correspond-
ing to equally-spaced wavelengths of the electromagnetic spectrum. Hence for an image 
of 𝑛1 × 𝑛2 pixels, each pixel would contain a vector of 𝑑 spectral channels. Therefore, by 
analysing individual voxels, spectral profiles of the imaged region may be evaluated, and in-
sight on chemical composition extracted. In the case of HSI, measurements of reflectance, 
absorbance or fluorescence profiles are obtainable, allowing surface structure, texture and 
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molecular composition to be determined [15, 17, 18].

Figure 1.1.2. Example of a ’hypercube’ data structure in remote surface mapping. (a) A conventional 2D 
greyscale image of a region of the Earth’s surface. (b) The same region acquired as a HSI hypercube, where 
an additional spectral dimension is captured over hundreds of narrow bands. (c) Example of extracting 
spectral information from a pixel in the hypercube, allowing an individual spectral profile to be analysed [18].

One of the key challenges faced in HSI, however, is the trade-off between high spatial and 
high spectral image resolution. While one possible solution is the acquisition of two image 
sets, one at high spatial and one at high spectral resolution, this introduces the complexity 
of image alignment and fusion [19, 20]. Therefore, typically the focus has largely been on 
the development of image enhancement techniques, to extract the maximum information 
from a single data acquisition [21].

Similar issues emerge in the case of hyperspectral imaging for X-ray CT. As will be dis-
cussed in this thesis, despite excellent spectral resolution, poor spatial resolution is a defin-
ing characteristic of hyperspectral X-ray detectors, compared to their energy-integrating 
counterparts. As with HSI, outside of multi-modal acquisitions and image fusion, a crucial 
aspect of advancing the technique is improving the ability to extract more information from 
poorer data quality.

Given the high energy resolution of hyperspectral X-ray detectors, full spectral profiles be-
come accessible, and with it a range of imaging modalities have been developed, focused 
on assessing chemical or crystallographic properties of a sample. The choice of modality 
depends on the type of spectral marker to be identified, but is broadly split into two cate-
gories: ’bright-field’ (absorption edges) and ’dark-field’ (scattered fluorescence/diffraction 
peaks). This PhD research was focused on the bright-field category, and how we can ad-
vance the various aspects of the full hyperspectral imaging process.
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1.1 Aims and Objectives

In the case of a laboratory-based setup, where polychromatic cone beams are used, hyper-
spectral imaging is still in its early stages of development across several steps of the imag-
ing process. One of the main weaknesses of hyperspectral imaging emerges as a result of 
its key strength: the ability to measure the energy of each individual photon requires in-
creased signal processing, limiting the detector count rate to levels significantly below that 
of energy-integrating systems [22]. A logical solution to such an issue is to simply increase 
exposure time, though this is inefficient due to increased scan times, and inapplicable to 
cases where X-ray dose is important, such as clinical studies. An alternative for handling 
noisy data is through improved post-processing and reconstruction routines, in order to ex-
tract the maximum information from the limited existing data. To date, few studies have ex-
plored reconstruction routines for the 4D nature of energy-sensitive imaging, with even less 
so designed specifically for the hyperspectral imaging sensors [23].

This work first aims to address the research gap of hyperspectral reconstruction methods. 
The research focuses on the application of a novel algorithm built to handle the complex 
nature of hyperspectral data, through the method of ’regularisation’. That is, through han-
dling the spatial and spectral components separately, an optimised reconstruction may be 
obtained to compensate for noisy 4D datasets. Previous work in both conventional and mul-
tispectral X-ray CT has shown the capability of regularised algorithms to handle complex 
datasets [24, 25]. Through application to both a phantom sample and a real-world biolog-
ical specimen, this work assesses the capacity for improved elemental mapping following 
the use of the novel algorithm, and how they compare to the existing methods.

Following the construction of a routine capable of improving the data quality of hyper-
spectral acquisitions, the crucial next step of the process is extraction and interpretation of 
all energy-based information in the bright-field regime, available within the spectral pro-
files measured in each pixel. As such, another objective of the research is the evaluation 
and development of both qualitative and quantitative spectral analyses applicable to the 
bright-field modality. Much of the current research in hyperspectral imaging to date has 
been qualitative in its chemical analysis, with quantitative research largely focused on few-
channel multispectral imaging [26, 27]. This work aims to assess the quantitative results 
which may be extracted from the full attenuation profiles of hyperspectral X-ray CT.

Given the infancy of hyperspectral imaging, a wide range of research fields remain un-
tapped, where non-destructive elemental analysis would benefit. In this research, emphasis 
is given on one of the major fields believed to be the first future realm of mainstream colour 
imaging: the life sciences. Both clinical and biological research utilises highly-attenuating 
contrast agents to differentiate soft tissue, and therefore offers a prime case for energy-
sensitive imaging to map such materials. Therefore, an overarching theme of this research 
is a focus on mapping the inhomogeneous distribution of contrast agents utilised in the field 
of bioimaging. In particular, the higher energy resolution of hyperspectral over multispec-
tral imaging enables full flexibility in the imaging of multiple simultaneous chemicals. The 
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work covered in this thesis explores a range of biological specimens, varying in the number 
and type of applied chemical stains. Full evaluation of the stain distribution and interaction 
becomes possible with hyperspectral CT, and is assessed for multiple case studies.

In summary, the objectives within this PhD include:

1. The development of novel spectral, 4D reconstruction routines for bright-field hyper-
spectral CT, and assessment of image quality improvement compared to the conven-
tional algorithms used within X-ray CT.

2. Evaluation of the extent of qualitative and quantitative spectral analyses achievable 
from bright-field spectral profiles.

3. Exploration of the bioimaging applications for bright-field hyperspectral CT in the 
case of multiple inhomogeneous chemical staining.

1.2 Structure of the Thesis

Following the introduction, Chapter 2 provides a detailed literature review describing the 
transition from ’black and white’ to ’colour’ X-ray CT imaging. The chapter covers the key 
technological advancements in X-ray detector systems to enable energy-sensitive acquisi-
tions, as well as a review of existing X-ray CT reconstruction algorithms. Finally, the dif-
ferent modalities of energy-sensitive imaging are explored, along with some of the main 
applications to date. Chapter 3 details the materials, equipment and experimental approach 
for the work conducted within the various research chapters. Chapter 4 provides the first 
research study, on the development of a novel 4D spectral reconstruction algorithm aimed 
at producing hyperspectral volumes with high image quality, enabling improved spectral 
analysis. The study assesses the algorithm through a phantom sample and stained biologi-
cal specimen. Chapter 5 covers a secondary research study, investigating the quantitative 
mapping of chemical concentrations for biological specimens stained with multiple contrast 
agents across a number of soft tissue structures. The work discusses a first instance of di-
rect extraction of chemical concentration of inhomogeneously distributed stains in bioimag-
ing using hyperspectral X-ray CT. Finally, Chapter 6 summarises the results achieved and 
the conclusions drawn, alongside a discussion of potential future work.
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Chapter 2

Literature Review

The following chapter details the relevant theory and literature which form the foundation 
of the research covered in this thesis. The transition from conventional (black and white) 
X-ray CT imaging to the latest developments in spectral (colour) imaging is discussed in 
detail. A journey through the key elements of recording, processing, and analysing data are 
covered. The technical developments in spectroscopic imaging detectors are compared to 
their energy-integrating counterparts, as is also reviewed in the field of spectral image re-
construction. An exploration is made of the various reconstruction algorithms designed to 
overcome the inclusion of an additional, energy-based dimension, and the complexities this 
brings.

Focus is then directed onto the main X-ray imaging modalities that become available with 
the use of an energy-sensitive detector, particularly for hyperspectral imaging. A review 
of the fields of study utilising the bright-field geometry is made, and how the work in this 
thesis aims to fill some of the gaps in the research to date. Alternative modalities, such as 
those in the ’dark-field’ regime, are then briefly discussed to evaluate the versatility of the 
hyperspectral method.

2.1 From black and white to ’colour’ X-ray CT

2.1.1 X-ray CT: basic principles

As mentioned in Chapter 1, the fundamental design of a benchtop X-ray CT system in-
volves the use of an X-ray source, sample stage, and X-ray detector. X-rays are generated 
through the use of an X-ray tube, whereby electrons are accelerated from an electron source 
(cathode) to a target material (anode) via an applied electric field. Electrons ejected from 
the cathode travel through the tube, according to the applied field, and interact with the an-
ode material. The majority of electron interactions with the anode target simply involve the 
absorption of the kinetic energy by the anode, resulting in heating of the target. Where in-
stead the electrons interact with the anode atoms, electromagnetic radiation in the form of 
X-rays may be formed. In cases where electrons are decelerated by the electric fields of 
the anode atoms, kinetic energy is transformed to X-ray radiation of a wide-energy range, 
known as bremsstrahlung radiation [1, 2]. In a perfect interaction, all energy is converted to 
a single photon, defining the maximum X-ray photon energy achievable. However, in most 
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instances, the energy is lost over multiple interactions, and therefore a continuous range of 
X-ray energies form the final bremsstrahlung spectrum produced by the X-ray tube.

For lab-based imaging, the X-ray tube emits photons as a cone beam over a range of en-
ergies up to the accelerating voltage of the electrons within the source. This forms the 
’polychromatic’ X-ray spectrum, sometimes known as a ’white beam’. Most X-ray tubes 
use tungsten as the anode ’target’ material, producing spectra similar to that shown in Fig. 
1.1.1. Alternatively, X-ray sources may be utilised at synchrotron facilities, where several 
experimental CT beamlines are placed tangentially to a central electron storage ring. With 
the X-ray source typically up to hundreds of meters from the object of interest, the incident 
beam is often highly parallel, such that no magnification of the sample takes place, regard-
less of the geometry of the system. Additional flexibility is provided by synchrotrons in 
that monochromatic X-ray beams may be extracted, set to a specifically selected energy. 
Monochromatic systems can offer advantages such as the avoidance of certain artefacts 
present in polychromatic sources [3]. A key advantage to synchrotron facilities is the sig-
nificantly higher flux achievable compared to a lab-based source, which can be highly bene-
ficial in reducing overall scan time to the order of seconds [4].

The most common imaging modality for X-ray CT is absorption X-ray CT (XCT), whereby 
a 3D map is reconstructed with contrast between features based on the different attenua-
tion coefficients of materials within a sample. Therefore, the technique provides a means of 
feature differentiation based on electron density variation of the sample composition. For 
a given object, the transmitted intensity of the X-ray beam decreases exponentially while 
travelling along its ray path. The degree of intensity loss by the incident beam is deter-
mined by the attenuation coefficient, 𝜇 of the object material. For a single, homogeneous 
material, the loss of intensity, I for an X-ray travelling through an object of thickness, x may 
be determined by the Beer-Lambert law

  I(x)=I_{0}e^{-\mu x}    (2.1)

where 𝐼0 defines the unattenuated X-ray beam intensity [2]. In many cases, however, sam-
ples may contain a number of inhomogeneously distributed materials, each with their own 
attenuation coefficient. Therefore, when considering spatial variations in attenuation over 
an X-ray path length, l the Beer-Lambert law becomes

  I(l)=I_{0}e^{-\int _{0}^{l}\mu (x)dx} \label {eq:Mono_Beer_Law}   
  (2.2)

where the attenuation coefficient, 𝜇 now varies as a function of spatial position. The result 
is that XCT produces the conventional ”black and white” X-ray images, where higher elec-
tron density materials (e.g. bone) appear brighter than surrounding, lower density materials 
(e.g. fat, muscle), when measured in terms of absorbance. For cone-beam XCT, the level of 
detail of observed features is directly influenced by the geometrical setup. As shown in Fig. 
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2.1.1, by adjusting the source-sample (d1) and sample-detector (d2) distances, one can al-
ter the geometric magnification (M) of the system, which affects the final spatial resolution. 
An increased magnification results in improved spatial resolution, such that smaller features 
may be distinguished and differentiated from the surrounding phases. The value of M may 
be calculated using the following equation:

  M= \frac {d_{1}+d_{2}}{d_{1}}. \label {eq:Geometric_Mag}   


 (2.3)

An influential factor in the achievable spatial resolution is the pixel size of the X-ray de-
tector. The pixel size, combined with the magnification, directly determine the resulting 
voxel size in 3D following spatial reconstruction. A larger initial pixel size will require an 
increased magnification to achieve the desired spatial resolution [5, 6]. On the other hand, 
increased magnification reduces the detector field of view (FOV), limiting the size of object 
which can be fully captured, therefore a trade-off emerges between resolution and sample 
size.

Figure 2.1.1. Magnification of the projected image using a cone beam X-ray source. By moving the sample 
closer to the source, or the detector further away, the image recorded on the detector is magnified, improving 
spatial resolution. Labels defining the source-sample and sample-detector distances are included as (d1) and 
(d2) respectively.

2.1.2 Limitations of XCT

While the dominant modalities of X-ray CT have been highly successful in providing levels 
of detail and insight never before seen for non-invasive imaging of materials, they have of-
ten solely relied on singular pieces of information for structure determination, such as den-
sity variation. As such, one may be able to distinguish internal structures depending on im-
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age quality and contrast, however material identification is impossible without prior knowl-
edge of composition. As a result, the task of separation (segmentation) of internal features 
based only on changes in greyscale intensity values can be subjective and limited by factors 
such as image noise and reconstruction artefacts.

An additional factor to consider in the case of imaging with a polychromatic source, is the 
emergence of imaging artefacts, particularly those caused by ’beam hardening’, the cause 
and effect of which is described below.

The previously defined Beer-Lambert law shown in Equation 2.2 assumes the X-ray beam 
to be monochromatic, and therefore attenuation is a constant value. In using a polychro-
matic beam, however, attenuation changes as a function of energy, and therefore a more ac-
curate definition of the Beer-Lambert law becomes

  I(l)=\int _{0}^{E_{max}}I_{0}(E)e^{-\int _{0}^{l}\mu (E,x)dx}dE \label {eq:Poly_Beer_Law}  





  (2.4)

where the energy dependence of the attenuation, 𝜇(E) is accounted for, for the full 
bremsstrahlung spectrum up to the maximum photon energy, 𝐸𝑚𝑎𝑥 [2]. By examining the 
attenuation change over the hard X-ray range (>10 keV), the effect of the energy depen-
dence becomes clear. Figure 2.1.2 shows the mass attenuation coefficient values for a num-
ber of elements, as well as soft tissue, for energies up to 100 keV. It should be noted that the 
mass attenuation coefficient is simply a scaling of 𝜇 by the density 𝜌 of the absorbing ma-
terial. It becomes clear that attenuation significantly decreases as energy is increased in all 
materials, and that low-energy X-ray photons are more strongly attenuated than high-energy 
photons. This preferential absorption of low-energy photons leads to a shift in the mean 
X-ray energy towards harder radiation, causing the ’beam hardening’ phenomenon. With-
out correction, the observed result in reconstructed volumes is the presence of ’cupping’ or 
’streaks’ artefacts [7, 8].

2.1.3 Capturing spectral detail

When acquiring XCT data with a polychromatic beam, one of the defining characteris-
tics of the incident X-ray photons are their different energies. Despite the aforementioned 
beam hardening issues of using a polychromatic beam for lab-based X-ray imaging, the 
upside lies in the increased photon flux, such that scan times may be reduced, compared 
to the use of a monochromatic beam. While energy-integrating detectors effectively dis-
regard the photon energy information contained within the incident spectrum, significant 
amounts of information relating to the chemical or crystallographic properties of the sam-
ple under inspection may be obtained by utilising a system capable of measuring photon 
energies. Energy-sensitive detection was first theorised and implemented as early as 1971 
in the field of diffraction imaging [10], enabling crystal structure analysis to be performed 
with the use of a polychromatic source. By processing each detected photon individually, 
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Figure 2.1.2. Attenuation profiles as a function of energy for different chemical elements and materials. The 
mass attenuation values are shown across the hard X-ray range for each material. Sharp discontinuities occur 
at unique energies for each element, corresponding to the absorption edges. The K-edge energies for each 
element shown are quantified in the legend. Attenuation values extracted from the NIST online database [9].

an energy spectrum may be constructed, providing additional information based on X-ray 
interaction with a sample object. The attenuation response observed across the spectral 
range is strongly influenced by the type of X-ray photon interaction with the sample. For 
the hard X-ray range, the predominant interaction is the photoelectric effect, due to a higher 
photoelectric effect cross-section [11]. In this regime, the magnitude of the interaction is 
directly proportional to the 4th power of the atomic number, Z and inversely proportional 
to the 3rd power of the photon energy, E [12]. This relationship is observed in the attenua-
tion profiles for each individual element of the periodic table, whereby the attenuation co-
efficient for each material varies as a function of energy, as shown previously in Fig. 2.1.2. 
These attenuation characteristics are exactly known and well documented, and have also 
been evaluated for several common materials, such as soft tissue and bone, offering useful 
information for clinical CT studies [9].

2.1.4 Spectral markers

A notable feature of the elemental attenuation profiles are the large step rises in attenuation 
at specific energies, due to photoelectric absorption. The phenomena of the photoelectric 
effect is the dominant form of photon interaction with matter, within the hard X-ray range. 
Its principle is shown in Fig. 2.1.3. These ’absorption edges’ occur at unique energies for 
each element, corresponding to the binding energies of the core-electron states, and are typ-
ically referred to as K-, L- and M-edges, relating to the electron shells from which a photo-
electron is ejected [13]. Given that each element has a unique atomic structure, the binding 
energies, and resultant absorption edges, are also unique to each element, therefore each 
edge acts as a ’fingerprint’ specific to the element that produced it. This illustrates the first 
of a type of ’spectral marker’ that may be used as a form of elemental identification. An ad-
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ditional marker also emerges as a secondary effect of photoelectric absorption, due to X-ray 
’fluorescence’ (XRF), whereby secondary, fluorescent X-ray photons are emitted from an 
atom following photoelectric interaction. Following the ejection of the photoelectron, a ’va-
cancy’ remains, and the atom becomes ionised, producing an unstable atomic structure. To 
stabilise the atom, an electron from a higher atomic orbital will transition to the lower or-
bital to fill the vacancy. During transition, an XRF photon is emitted at an energy equal to 
the transition between the two atomic orbitals. As such, the emitted radiation is also charac-
teristic of the interacting element, and appears as a peak at the corresponding XRF energy. 
The characteristic nature of such emissions was discovered by Henry Moseley, in a series of 
experiments which related XRF spectra to the underlying atomic charge of a given element 
[14, 15]. Similar to absorption edges, XRF peaks are labelled according to the orbitals they 
transition from and to. For example, a K𝛼 peak corresponds to a transition of an L-shell 
electron to a K orbital, while a K𝛽 is measured if the transition is from the M-shell to a K 
orbital. With the presence of two distinct types of spectral marker available, any form of 
energy-sensitive detection immediately provides access to these, and therefore offers the 
ability to measure and map them back to the element from which they originated. This in-
troduces the concept of ’colour’ imaging, used as an analogy to help better define the pro-
cess of energy-sensitive imaging. Visible light has a range of wavelengths (energies) that 
we observe as a spectrum of colour, or when combined as a whole is observed as white. We 
can apply the same principle to X-rays. If we can capture and observe the full range of X-
ray wavelengths from a polychromatic beam, these detectors can then effectively capture 
the full X-ray ’colour range’, even if invisible to the naked eye. Add in the ability to mea-
sure and unambiguously identify chemicals based on spectral markers at unique energies, 
and energy-sensitive imaging can help to bring full colour X-ray volume imaging to life. In 
the following sections, the transitional steps taken in the evolution from ’black and white’ to 
’colour’ X-ray imaging are discussed, starting with a modality developed to handle similar 
attenuation in soft tissue structures: the introduction of Dual-Energy CT (DECT).

2.1.5 Dual-energy CT

The modality of DECT was first conceptualised and explored in the 1970s [16–18], with 
the idea that additional information may be extracted from a sample by scanning at different 
X-ray energies. The key reasoning behind this centres around the attenuation differences as 
a function of energy, as shown in Fig. 2.1.2. By employing a scan approach at two specif-
ically chosen X-ray energies, improved contrast may be achieved by exploiting these at-
tenuation differences. While synchrotron studies are capable of using two monochromatic 
beams, a lab source itself is still typically polychromatic, however it is chosen such that the 
peak (and thus the most photons) has the desired energy of choice. As a result, scan con-
ditions are typically termed based on the incident beam ‘peak kilovoltage’, given as units 
of kVp. A number of experimental geometries and DECT imaging designs have been im-
plemented since the technique was first explored. A summary of these designs are shown 
in Fig. 2.1.4. Each technique offers both benefits and drawbacks, and therefore the choice 
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Figure 2.1.3. Demonstration of the photoelectric effect. The diagram illustrates the different steps involved in 
photoelectric absorption. An incoming photon of sufficient energy is absorbed by an electron, and ejected as a 
photoelectron. The subsequent vacancy is filled by the transition of an electron from a higher atomic orbital, 
emitting an XRF photon of energy equal to the transition between states.

of system may depend on the type of study conducted, or the equipment available. Given 
its simplicity, the use of two sequential scans at differing tube voltages was one of the first 
explored (technique 4). Such a design does not require additional CT hardware, however 
can create issues due to the additional scan time and dose required to effectively collect two 
CT scans. Further, for clinical imaging, motion artefacts due to patient movement may de-
grade image quality for longer scan acquisitions. The same may be said for the technique 
of rapid voltage switching (technique 2), with a slower rotation speed required to capture 
images at both voltages. If feasible, the dual source geometry (technique 1) offers a useful, 
faster imaging solution that may be optimised to improve image contrast based on the pa-
tient or object under investigation. The application of a dual-layer detector (technique 3) is 
a newer DECT design and implements a type of energy-resolving detector system. By us-
ing two detector materials, with different spectral response, high- and low-energy photons 
are selectively absorbed by a single layer, such that the X-ray tube need only scan at a sin-
gle beam voltage. Therefore it offers advantages in terms of overall scan time and patient 
dose. The main complications emerge in the complex detector design, and more sophisti-
cated reconstruction routines required to resolve the spectral information. Several studies 
have conducted thorough reviews of the various DECT modalities available, and how they 
compare in terms of dose, temporal resolution, and image contrast [19–21].

While DECT aims to overcome the issue of similar contrast in soft tissue by exploiting the 
differences in attenuation across the energy range, it is common to further aid the feature 
definition in structures through the application of contrast agents. That is, by administering 
a dense chemical stain into the patient or sample of interest, contrast in a specific region, or 
regions, may be significantly enhanced by the presence of the chemical. This is particularly 
common in the medical and bioimaging field, where a vast range of contrast agents are used 
to provide improved feature definition in specific soft tissue structures. A recent review by 
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Figure 2.1.4. Variations of DECT geometries. 1) Dual-source scanning. 2) Rapid kV switching. 3) Dual-layer 
detector. 4) Sequential scans at two different kVp settings. Adapted from [19].

Koç et al. provided an extensive report of contrast agents used for X-ray tomography, in-
cluding their production, staining protocols, and wide-ranging applications in bioimaging 
[22]. In addition, an evaluation of the use of X-ray CT in the life sciences was conducted 
by Rawson et al., reviewing the latest capabilities in the field of life science imaging. The 
article highlights the accomplishments in extending from 2D through to 3D and 4D tools 
for imaging of biological specimens, including the latest extension into DECT and lab-
based spectral imaging [23]. Below, a brief summary is provided of how contrast agents are 
utilised for improved soft tissue imaging in techniques such as DECT, as well as the wider 
potential following the latest developments of energy-sensitive, spectral X-ray detectors.

By using contrast agents, the attenuation profile of interest during scanning now contains 
a distinct spectral marker, in the form of an absorption edge, within the X-ray diagnostic 
energy range. This creates a sharp difference in attenuation at energies either side of the 
edge. Therefore, the source scan settings may be tailored around these edges, choosing 
kVp values that lie either side of a K-edge, producing a non-negligible difference in atten-
uation. Chemical stains, such as iodine-, tungsten- and barium-based compounds, are all 
commonly used, and the presence of their absorption edges (see Fig. 2.1.2) provide a sig-
nificant boost over the natural attenuation of soft tissue phases. The use of these stains has 
also opened up a wider range of imaging applications for DECT, particularly in the field of 
ex vivo bioimaging. That is, investigations involving an organ or section of tissue extracted 
from the whole organism, and studied externally. The clear benefit to ex vivo studies is that 
X-ray dose is no longer of concern, and therefore the scan settings may be optimised to im-
prove image quality. Further, a wider range of chemical staining procedures may be tested, 
with no risk involved in the use of toxic contrast agents for example. Several studies have 
explored the different material segmentation and soft tissue analysis achievable with DECT. 
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Badea et al. investigated the ability to estimate vascular, tissue and air fractions within ro-
dent lungs, in a three-part study, involving a simulation, followed by ex vivo and in vivo
experiments [24]. By using an iodine-based contrast agent, combined with a fast imaging 
routine utilising a dual-source setup, the work successfully showed potential for volumet-
ric distribution evaluation for future clinical pulmonary studies. The use of an iodinated-
contrast media was also applied in a study characterising coronary atherosclerotic plaque 
[25], and was capable of differentiating calcified from non-calcified plaque. Poor spatial 
resolution, however, limited the technique from identifying the more vulnerable plaque re-
gions. The work by Handschuh et al. [26] evaluated a number of biological specimens us-
ing a range of contrast agents in ex vivo studies, to assess the potential of DECT as a tech-
nique for high resolution material identification in fixed biological samples. One of the key 
elements of the work is that the method was a ’microDECT’ modality, as a commercial, 
lab-based microCT setup was used for the scan acquisitions. This ensured the achievable 
spatial resolution was still on par with conventional XCT, reaching below 10 𝜇m, to provide 
excellent feature definition. The other fundamental component of the DECT workflow, as is 
the case for many spectral studies, was the use of a spectral separation method to segment 
the components due to each material. Here, the method of ’material decomposition’ was 
used, which is common in DECT, and also other forms of spectral analysis, due to its suc-
cess in the separation of individual materials present in the acquired data. Its fundamental 
principle lies in the fact that the attenuation of an X-ray beam, energy E, can be described 
by a linear combination of the attenuation coefficients, 𝜇(E) of the materials through which 
it passes:

  \mu (E)=\sum _{a}f_{a}(E)A_{a}  


 (2.5)

where 𝑓𝑎 is the energy-dependent basis function which describes each material’s attenua-
tion, and 𝐴𝑎 is the line integral over the material a, which act as weightings for each base. 
This is essentially a decomposition of all the individual contributing attenuation coefficients 
into a set of ‘basis pairs’. The contributions to the summation are primarily from the com-
bination of photoelectric and Compton interactions. The concept of ‘photo-Compton’ de-
composition was an approach first theorised in 1976 for X-ray CT [27]. If K-edge disconti-
nuities are present, these must also be taken into account as additional factors. By solving 
for the weights for each individual beam projection, one may decompose the raw data into 
individual basis maps, highlighting contributions of each factor spatially. The steps taken 
from raw data to final material decomposition are shown in Fig. 2.1.5. The two datasets are 
converted to Hounsfield units, a dimensionless unit typically used as the standard for com-
paring CT image intensity values [28]. Image filtering is applied to reduce noise and im-
prove feature definition [24], before ’volume registration’ is performed to align and match 
the orientations of the two DECT reconstructed datasets at high and low energy. Finally, 
decomposition may be performed, producing a segmented image with mapping of the mate-
rials present, such as iodine (contrast agent), hydroxyapatite (bone) and air. The work by 
Handschuh et al. successfully showed the high resolution mapping of several soft tissue 
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structures, reaching voxel sizes down to 2 𝜇m, with DECT highly effective in the differen-
tiation of a single contrast agent within soft tissue regions from the unstained bone struc-
tures. The study also explored the possibility of dual-staining, in this case using iodine and 
tungsten contrast agents for different regions. The work showed for the first time the capa-
bility of dual-stain imaging for a lab-based microDECT setup, with previous studies using 
synchrotron-based monochromatic beams. The dual-staining procedure was successful for 
DECT due to the distinct and clear spectral separation in the K-edges of iodine and tungsten 
(see Fig. 2.1.2), producing significant attenuation differences. More closely-spaced absorp-
tion edges, however, such as that of iodine and barium, would struggle to be separated in 
the DECT regime, due to their spectral similarity.

Figure 2.1.5. Workflow for the imaging of microDECT datasets. The images shown are of a mouse head, 
stained with an iodine-based contrast agent. A set of two scans, at high (80 kVp) and low (40 kVp) energy 
were acquired and reconstructed, before image conversion and filtering to reduce noise. A volume registration 
routine matched the orientation of the two datasets, before material decomposition was applied to separate the 
individual contributions of each material to the reconstructed volume, in this case hydroxyapatite (Material 1), 
iodine-stained soft tissue (Material 2) and the background (Material 3) [26].

As discussed, the ability to utilise a commercial CT system for DECT ensures that high 
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spatial resolution is achievable, and simple elemental segmentation is possible, giving a 
layer of chemical information not possible with conventional XCT. Therefore, DECT of-
fers an excellent entry point for obtaining additional spectral information in addition to the 
spatial reconstructed volume, for a means of non-destructive elemental mapping. However, 
several modalities of DECT require a complex geometry, with additional hardware needed 
to avoid the issue of long scan times using a single X-ray source. For clinical imaging, ra-
diation dose is a crucial factor in determining the optimum acquisition routine, and there-
fore DECT can be limited in its field of application. One of the notable outcomes of DECT 
reviews in recent years has been the agreement that the emerging technology of energy-
sensitive X-ray detectors is a promising move forward in material identification [19, 20]. 
The ability to acquire all spectral information in a single scan offers a potential solution 
for reducing X-ray dose, though the technological limitations are highlighted as the current 
roadblock in the modality. As will be discussed in the following section, the introduction 
of energy-sensitive detectors, capable of resolving the spectral information incident upon 
them, has developed through different routes. A variety of detector systems offering their 
own advantages and disadvantages, compared to the conventional, ’energy-integrating’ de-
tector technology have been produced. The key aim with these new detector designs is the 
ability to resolve the spectral information available with greater precision and higher reso-
lution, to match what is currently achievable in the spatial domain.

2.2 Properties of spectroscopic imaging detectors

In the following section, a breakdown is made of the technological developments that en-
abled a transition to pixelated detector systems, capable of resolving the energy information 
of incident photons. Below, the basic principles of conventional, energy-integrating detec-
tors are discussed, followed by a review of the key changes which enabled energy-sensitive, 
spectral detectors to be created.

2.2.1 Energy-integrating detectors

For conventional XCT systems, which covers most commercial laboratory set-ups, the de-
tector used is an energy-integrating technology. That is, they work by integrating the light 
generated by X-ray interactions within the detector material over a given timeframe (expo-
sure). This produces a resultant image based on variable intensities due to X-rays passing 
through materials of differing properties. The most common style of integrating detector 
is the scintillation detector, which uses a scintillating crystal such as NaI, CsI, LaBr3, etc. 
[29]. These materials are so-called inorganic scintillators, as they are crystals grown for 
such purposes as X-ray imaging. These crystals interact with incident X-rays, resulting in 
the emission of many visible light photons for each interacting X-ray photon. The propor-
tion of X-ray-to-light conversion varies with scintillator material and detector design, and 
can be estimated, as derived elsewhere [30]. The light photons are then amplified and pro-

43



cessed by the detector electronics. The materials are chosen for their high efficiency and 
high conversion rates for photon detection. This form of detection is known as ‘indirect de-
tection’ and is considered to be a two-step process: X-ray to light conversion, followed by 
detection in pixelated photodiodes [31]. As a result, performance with regards to resolution 
and detection efficiency can be limited by one or both stages. The process of indirect de-
tection is shown in Fig. 2.2.1. One such way in which conversion efficiency of indirect sys-
tems may be improved is the addition of an ’activator’ material within the inorganic scintil-
lator crystal. These are small impurities added to the crystal, which adapt the energy struc-
ture. For pure crystals, the size of the ’band gap’ between the crystal material’s electron 
states is often large, such that the emitted photons are few, and do not lie within the visi-
ble light range. The presence of activators create additional energy states within the crys-
tal, such that de-excitation of electrons may take place in smaller steps, emitting a larger 
number of photons at lower energies (longer wavelengths), shifting them towards the visible 
light spectrum. Common activator materials include the use of thallium or sodium, creating 
e.g. NaI(Tl), CsI(Tl) and CsI(Na) doped scintillator crystals [31].

Figure 2.2.1. Layout of a typical indirect scintillation detector. Incident X-ray photons interact with the 
scintillator crystal, with visible light photons emitted upon electron de-excitation in the crystal. Higher energy 
X-rays produce a greater number of visible light photons. The light signal is amplified and converted to an 
electrical output by photodiodes or photo-multiplier tubes (PMTs), where it is finally processed by an 
electronic integrating circuit.

Alternatively, one may switch to a ’direct’ detection method, whereby X-ray signal mea-
surement is a one-step process. This is achievable through the replacement of a scintilla-
tion crystal and light conversion system, with a semiconductor crystal sensor. The resultant 
detector design resembles the layout shown in Fig. 2.2.2, consisting of the semiconductor 
’sensor’ chip, and an electronic readout chip. Here, the interaction of incident X-ray pho-

44



tons with the crystal leads to the generation of electron-hole (e-h) pairs. The interaction 
varies by sensor material, with predominant interactions including Compton scatter and 
photoelectric absorption. The e-h pairs form as a charge cloud, which drift to the nearest 
pixel connection via an externally applied electric field. The direction of the external field 
will determine which charge carrier is processed by the readout chip, and is typically de-
cided based on the charge mobility properties for the given semiconductor. A higher mobil-
ity, corresponding to an increased charge velocity under the applied electric field, is an im-
portant factor when considering the optimum semiconductor material [32, 33]. The readout 
chip is an electronic processing component, most commonly being an application specific 
integrated circuit (ASIC). The ASIC is a 2D matrix matching the pixel design of the sen-
sor chip. Direct detectors have much higher X-ray electron conversion rates and collection 
speeds (count rates) than indirect systems, as has been extensively reviewed elsewhere [31]. 
Other factors including the semiconductor material and thickness also influence the detec-
tor properties, including working energy range, detective quantum efficiency (DQE) - out-
put signal-to-noise ratio (SNR) vs. input SNR - and charge effects. These will be explored 
further when evaluating the transition to semiconductor sensor designs for energy-sensitive 
systems.

Figure 2.2.2. Layout of a typical direct semiconductor detector. Incident X-ray photons interact with the 
semiconductor crystal, producing a charge cloud of electron-hole pairs. The free charges drift according to an 
externally applied electric field (E), creating a measurable current at the nearest pixel electrodes within the 
readout chip. Higher energy X-rays produce a greater number of e-h pairs, proportional to the incident photon 
energy. Electronic processing is then performed by the readout chip.

The use of an integration process has a number of limitations. One such issue is the pres-
ence of ‘dark current’ noise [34]. This is the intrinsic noise due to leakage current de-
tected as signal in the absence of incident radiation. By integrating all signal collectively, 
dark current is often included and can result in poorer signal-to-noise ratio (SNR). Further 
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to this, the signal contributed by each photon is weighted proportional to its energy, thus 
higher energy photons provide a higher contribution than low-energy photons. This leads to 
an inaccurate representation of effects such as beam hardening, due to the uneven weighting 
[35]. Most prominent of all is that, by integrating a number of photons over a given time-
frame, only the total effect is measured. As a result, information regarding each individual 
photon, such as its energy, is lost. Therefore, it is not possible to extract any insight with 
regards to the materials with which the X-rays have interacted. These issues are overcome 
with the use of energy-resolving detection systems.

The creation of energy-resolving systems, also referred to as energy-sensitive, energy-
discriminating, photon-counting, or spectroscopic, builds on direct detection technology, 
with the use of a semiconductor crystal connected to a readout chip to process the elec-
tric current generated. The key step to extracting the additional energy-based information 
is the use of sufficiently fast readout circuits, with very low dead time. In an ideal photon-
counting system, there is zero dead time, defined as the time after a photon event when no 
new signal can be recorded as a separate event. At a minimum, this value must be much 
smaller than the average time between incident photon signals for a given pixel [33]. The 
other condition of an ideal energy-resolving system is that the charge cloud of e-h pairs is 
assigned to a single detector pixel [36]. With the aim of developing systems to meet these 
requirements, two main types of photon-counting detectors (PCDs) were developed, dif-
fering in their hardware, spatial, and spectral characteristics. These are referred to here on-
wards as ’multispectral’ and ’hyperspectral’.

2.2.2 Multispectral vs. Hyperspectral detectors

One of the first developments of a pixelated energy-resolving system came directly as a 
spin-off project from the work at the European Organization for Nuclear Research (CERN): 
the development of the Medipix detector, a form of multispectral detector [37]. A multi-
spectral detector counts every single photon which arrives at a pixel based on its electrical 
output generated when energy is deposited. This works by means of amplifying the charge 
deposited in the detector electrode. Due to the electronic linearity, the initial deposited 
charge produces a signal with a peak amplitude directly proportional to the incident photon 
energy, therefore the incident energy may be determined [38]. In the case of multispectral 
detection, the charge is compared to a set of reference values and each photon is binned into 
a specific energy threshold window, before the detector increments digitally. The threshold 
windows concern a set of pre-defined energy ranges, forming the ’channels’ within which 
X-ray photons are stored depending on their detected charge. Therefore, one may tune such 
a detector to count only photons within a desired range, e.g. 15-20 keV, 20-25 keV, etc. By 
allowing each pixel to contain a number of these windows, it is possible to perform spectro-
scopic imaging, particularly suited for materials of known prior composition. Alternatively, 
these detectors may instead be used as an improved form of dual-energy CT by applying 
low-energy thresholds, whereby all photons of energies equal to and above the threshold are 
stored. Thus, this creates independent projection datasets with increasing lower bounds via 
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individual acquisitions e.g. 10 keV and above, 20 keV and above, etc. This can offer more 
flexibility yet is considerably more time consuming. Some systems also offer a ’Spectro-
scopic’ mode, whereby the detector groups pixels into clusters, reducing the pixel size, but 
enabling additional threshold channels to be set, improving the energy resolution at the cost 
of spatial resolution [39].

Figure 2.2.3. Measured absorption efficiency (DQE) variation for a range of typical detector semiconductor 
materials, as a function of energy. (Left) Multiple semiconductor materials compared for the same sensor 
thickness (curves for Ge and GaAs overlap). (Right) Commonly used thicknesses for commercial X-ray 
detectors [33].

The family of Medipix detectors has evolved over the years, with a recent review by Bal-
labriga summarising the key hardware changes from the first design in 1998, comprising 
a 64×64 pixel array at a pixel size of 170 𝜇m, to the Medipix4 currently under produc-
tion, with a 320×320 matrix and 70 𝜇m pixel size [40]. The latest designs offer up to eight 
threshold windows, with increased thresholds resulting in finer energy ranges. The choice 
of sensor material for the Medipix range has largely involved the use of silicon, with the 
Medipix3 constituting a 300 𝜇m thick layer. The sensors vary in their energy-resolving 
properties, based on crystal material, as well as thickness. One such factor is the DQE (ab-
sorption efficiency), which for some materials, such as silicon, sees a significant decrease 
in the hard X-ray range, as illustrated in Fig. 2.2.3. As efficiency falls, so too does the SNR 
as fewer photons are successfully processed as detected signal. Thus overall image quality 
is reduced. The DQE also directly influences the working energy range of the detector, as 
lower DQE leads to degraded spectroscopic performance, meaning silicon-based detectors 
such as the Medipix is more well-suited to energies of ≤50 keV [41]. In contrast, high-Z
sensor materials, such as CdTe, maintain a very high DQE throughout the hard X-ray range, 
enabling a much greater working energy range up to approximately 200 keV [42].

The use of CdTe has been implemented in the development of hyperspectral detector sys-
tems, named as such due to the significant increase in energy channels within which pho-
tons are binned. Compared to the multispectral detectors, hyperspectral devices enable very 
high energy resolution, such that single photons may be binned into hundreds of narrow en-
ergy channels. As such, the transition from multispectral to hyperspectral moves the spec-
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tral domain from a set of discrete windows, to effectively a continuous energy spectrum, 
as illustrated in Fig. 2.2.4. One such hyperspectral detector which makes use of the CdTe 
semiconductor sensor is the High energy X-ray imaging technology (HEXITEC) detector, 
which was used as the energy-sensitive system within this research project. The current de-
sign of the HEXITEC comprises an 80×80 pixel array, with a pixel pitch of 250 𝜇m (200 
𝜇m pixel size with a 50 𝜇m inter-pixel gap), forming a 2 cm × 2 cm detection area. By us-
ing a 1mm CdTe sensor, the detector has a working energy range of 4-200 keV, ideal for the 
typical beam voltages used for lab-based research [43, 44]. Further details of the detector 
and its operation characteristics are described in Chapter 3.

Figure 2.2.4. Representation of the difference in spectral acquisition for multispectral and hyperspectral 
PCDs. Multispectral imaging detectors (top) record photon energies into one of several discrete energy bands, 
while hyperspectral detectors (bottom) have hundreds of narrow energy channels with much smaller width to 
allow for a continuous energy spectrum [45].

There are several benefits to the creation of PCDs. Firstly, there is the ability to eliminate 
the aforementioned dark current signal, due to the ability to set a ’noise threshold’. That is, 
by setting a threshold above the noise of the detector electronics, no leakage current will be 
recorded as a true event. Therefore, in theory no dark current offset image needs to be ac-
quired and corrected as part of the detector calibration [46]. In addition, the architecture of 
PCDs is such that every photon event is given an equal weighting of one. Combined with 
the availability of multiple energy threshold windows, this enables optimisation of radio-
graphic imaging by applying energy-dependent weighting to improve SNR, boost contrast 
in particular features, or improve X-ray dose efficiency [47, 48]. Further, the detectors al-
low a very high dynamic range, defined as the range of exposures a detector can record be-
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tween minimum detection and complete saturation. PCDs are capable of a dynamic range 
ratio on the order to 106, compared to energy-integrating, flat-panel detectors which offer 
a dynamic range ratio on the order of 103 [38]. Most importantly, however, PCDs offer the 
ability to quantize the signal generated by incident photons, based on the aforementioned 
relationship between photon energy and deposited charge, unlocking a layer of spectral in-
formation. Therefore, identification of spectral markers, such as absorption edges and flu-
orescence peaks, becomes achievable by accessing the spectral dimension. The amount of 
information which may be extracted depends on the characteristics of the detector, as well 
as its spectral type. For example, one of the key differences between these PCD systems is 
the energy resolution. Hyperspectral detectors are designed to achieve a much higher res-
olution in the spectral dimension, with the HEXITEC capable of up to 800 eV at 60 keV 
[44], making the identification of several spectrally similar markers possible within a sin-
gle hyperspectral acquisition. In contrast, many multispectral systems operate at a 5-10 keV 
resolution at a similar X-ray voltage, but can achieve resolution down to ~2 keV for soft X-
rays below 10 keV, particularly through the use of a Si sensor, as is the case for the Medipix 
range [33]. Markers may still be identified by a sudden rise/drop in signal intensity due 
to a K-edge or XRF peak, but precise matching of their energies is not possible. As such, 
the detectors are better suited for studies where prior knowledge of sample composition is 
known. This is further reinforced by the need for pre-defined thresholds to set the energy 
window positions. For multispectral systems however, the reduced energy resolution is of-
ten counterbalanced by an improved spatial resolution, as smaller pixel size and larger pixel 
arrays are possible. Hence, samples with smaller features may be studied without the need 
for significant magnification through the geometrical setup of the X-ray scan.

Despite the significant advantages offered by energy-resolving X-ray detector devices, there 
are several challenges associated with the technology of PCDs, and the resultant spectral 
information they produce.

2.2.3 Challenges with spectroscopic detectors

Two of the most prominent effects related to the electronic processing of incident photon 
events are: pulse pile-up, and charge sharing [46]. Pulse pile-up describes the phenomena 
of multiple photon events being recorded during the same read-out cycle of the electron-
ics. As such, rather than being registered as individual events, the current generated by each 
photon is combined and read out as if it emerged from a single photon. With the energy 
determination based on the proportional relationship between incident photon energy and 
charge pulse amplitude, coincident photon events may lead to spectral distortion as the sin-
gle pulse will record a photon energy equal to the sum of the two incident energies [49]. 
The impact of pulse pile-up is that image quality is deteriorated, as image noise increases 
due to fewer individual photon events contributing to the recorded radiograph. In addition, 
the achievable energy resolution decreases, as an inaccurate spectral photon distribution is 
measured. The effect is particularly an issue in cases of high photon flux, beyond the count 
rate of the detector. Low density samples or instances where no sample is present (e.g. flat-
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field correction acquisitions) are most strongly affected, as little attenuation of the incident 
beam takes place [50]. In PCD devices, pulse pile-up is minimised in designs containing 
smaller pixels, as well as increased readout rates [51]. However, a secondary effect within 
direct conversion detectors, known as charge sharing, can lead to a trade-off between the 
two.

Charge sharing emerges due to the creation of charge clouds following interaction of the 
incident photon with the semiconductor material. As previously discussed, a number of e-
h pairs, with a number proportional to the photon energy, are produced, with the desired 
charge carrier directed towards the nearest pixel element by an external electric field for 
pulse readout. Depending on the choice of sensor materials, the size of the charge cloud 
will vary, but will increase in size as it drifts towards the pixel electrodes. Studies by Seller, 
Veale et al. [43, 44] quote that for the 1 mm CdTe sensor used in the HEXITEC detector, 
the initial cloud starts at approximately 10 𝜇m in size, but can diffuse up to a size of 100-
200 𝜇m when under a typical bias voltage applied to the detector (~500 V).Other factors 
including fluorescence and Compton scattering (partial energy transfer from a photon inter-
action with an electron in an atom) may also have an effect, due to a photon interacting with 
the semiconductor material and depositing energy at several sites [52, 53]. If the charge 
cloud is produced near the edges of multiple detector elements, the signal may be induced 
in several neighbouring pixels, leading to a sharing of the total charge between pixels, as 
shown in Fig. 2.2.5. In the case of the HEXITEC, with a 50 𝜇m inter-pixel gap between 
the 200 𝜇m pixels, the charge cloud is of similar size to the gap, and therefore the chances 
of charge sharing are high. As a result, an example photon event of e.g. 100 keV, may be 
split between four neighbouring pixels, with pixels recording charge equal to 10, 20, 30, 
and 40 keV respectively. The distribution of the charge across pixels is unknown, and there-
fore leads to a random distortion of the spectral profile in each pixel. The effect of the phe-
nomena is typically observed as a low-energy background, with a significant number of in-
correctly registered photon events around the soft X-ray energy range (< 10 keV) [44]. The 
spectral profile can also be further distorted by an additional form of detector ’cross-talk’, 
due to the type of detector interaction with the photons. For silicon detectors, most photons 
interact by Compton scattering, and small portions of the scattered energy can transition to 
a new detector element, measuring as a separate, low-energy event. Similarly, in CdTe de-
tectors, where photoelectric absorption is the dominant interaction, part of the deposited 
photon energy may be released in the form of fluorescence X-rays. If then absorbed by the 
detector elements, signals are registered at the energy of the fluorescence of the detector 
materials, such as cadmium and tellurium [49, 54], as well as their related escape peaks 
(incident photon energy minus the energy of the generated XRF peak) [52]. As such, each 
recorded signal fails to correctly represent the energy of the incident photon. For character-
istic peaks, these may interfere with the ability to identify other spectral markers within the 
same energy region.

A number of routines have been implemented into spectroscopic systems to correct for 
charge sharing. Two of the most common correction routines are illustrated in Fig. 2.2.6. 
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Figure 2.2.5. Illustration of the charge sharing effect encountered in hybrid pixel detectors. While the charge 
cloud of photon A diffuses into only one pixel, photon B has a charge cloud that interacts with a group of 
neighbouring pixels, distributing its charge [55].

First is the use of a ’Charge Summing Mode’ (CSM). Here, pixels are grouped in clusters 
of e.g. 2×2, 3×3, etc. When a charge is deposited within a cluster, the relative signal mea-
sured in each of the neighbouring pixels is evaluated, and the total charge is allocated to 
the pixel with the largest initial charge deposit. This way, all of the charge due to the inci-
dent photon is maintained, and recorded as a single event for a single pixel. However, in 
the case of the Medipix detectors, this comes at the cost of spatial resolution, as the pixel 
cluster signal is combined, summing additional noise in quadrature along with the inci-
dent photon signal [56]. Further, summing over a defined set of pixels cannot guarantee that 
the full charge will be captured, leading to some spectral distortion. An alternative correc-
tion method is the use of a ’Discrimination’ routine. That is, for any photon events which 
span multiple pixels, the signals are deleted and the events are not recorded, removing all 
cases of charge sharing. For the HEXITEC, this is implemented by evaluating each frame 
of data over sets of 3×3 or 5×5 pixel regions, where multiple neighbouring pixels measure 
a charge over the low-energy threshold [44]. The correction may be applied during acquisi-
tion, or performed as a post-processing step to the raw data. An obvious downside to such 
a correction lies in that a proportion of the incident X-ray flux is being thrown away, which 
is particularly significant in cases of high charge sharing occupancy. The work by Veale et 
al. [44] notes that for cases of high X-ray flux, the ability to fully correct for charge shar-
ing may not be possible due to the high occupancy, and it is most effective in cases where 
occupancy does not exceed 11% in a single frame of data. Alternatively, X-ray flux may be 
reduced to limit the effect, however an increase in exposure time may be required as a result 
to achieve the desired levels of SNR for image quality purposes.

Due to the issue of increased signal processing of single photon events, maximum count 
rate is also limited, particularly in the case of the HEXITEC, where a limit of 0.001 
Mcps/pixel is achievable, without degradation in spectroscopic performance [44]. This is 
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Figure 2.2.6. Example case of how charge sharing corrections may be applied in spectroscopic data. (Left) 
An ideal case where a single photon event is fully recorded within a single detector pixel. (Middle) A 
charge-sharing event where a photon is incident between neighbouring elements, and the charge is shared 
unevenly. The event may be corrected using charge summing mode (Upper Right), where all charge is 
grouped and allocated to the highest charge-containing pixel in the cluster, or charge discrimination mode 
(Lower Right), where the entire event and all of its deposited charge is deleted.

significantly below the rates possible with multispectral systems [33], with both far below 
the rates of energy-integrating detectors. This is due to the increased readout requirements 
for binning of photon events into narrow energy channels. The result is that, for example, a 
60s exposure time per projection with the HEXITEC would limit a 200 channel spectrum 
to only a few hundred counts per energy bin [43, 44]. Therefore, when taking statistical 
noise into account, extracting the desirable information from every individual bin can be 
complex. It is possible to improve the channel-by-channel signal by increasing the overall 
exposure, however there are instances (such as medical imaging) whereby there are upper 
limits on X-ray dose. As such, each energy channel can be very noisy, to the point where 
characteristic signals may be hidden beneath the noise, becoming difficult to extract in post-
processing and analysis. It has previously been shown that the SNR for K-edge imaging is 
dependent on the atomic number of the element under observation [50], as well as object 
diameter and X-ray tube voltage. Thus preliminary tests may be taken to optimise the sys-
tem for the sample of interest. Despite this, limitations in SNR still exist, and as such there 
is reliance on the reconstruction and post-processing steps to extract element-specific infor-
mation even in the absence of high SNR data.

2.3 Spectral image reconstruction

While crucial to ensure the correct detector system is chosen and optimised for the materi-
als and research fields of interest, equally important is the ability to efficiently handle and 
analyse the data to extract the desired information. As energy-resolving detectors have been 
developed over time, so too have the methods in which to collect, reconstruct, and max-
imise the usage of this additional, spectral dimension. In the following section, an intro-
duction to reconstruction in the context of X-ray CT imaging is provided, highlighting the 
types of reconstruction algorithm available. The transition to reconstruction algorithms for 
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spectral datasets is then discussed, with an evaluation of existing methods, noting some ex-
ample applications and any limitations.

2.3.1 Intro to X-ray CT reconstruction

The aim of X-ray CT reconstruction is the creation of a representative 3D volume of the 
original object, using the set of 2D projection data taken of the object over a range of rota-
tion angles. As shown in Equation 2.4, the intensity of an X-ray beam may be directly de-
scribed by the Beer-Lambert law, as the X-ray passes through an inhomogeneous material 
of varying attenuation. Therefore, for a tomographic scan, the attenuation as a function of 
position may be determined in theory by measuring a large number of intensity (transmis-
sion) values at each rotation angle, with each 2D image representing a series of line inte-
grals through the 3D volume being scanned.

As mentioned previously in Section 2.1.2, however, an assumption is typically made in that 
the X-ray beam is monochromatic, and therefore commonly Equation 2.2 is used. In the 
case of synchrotron radiation, the use of monochromatic X-rays is easily achievable through 
the use of a monochromator, isolating the beam to the desired single energy, with no con-
cerns of increased scan time due to the significantly higher flux compared to laboratory X-
ray tubes. Outside of synchrotron facilities, polychromatic beams are commonplace, and 
therefore the previously described issues of beam hardening emerge. Given that in most 
cases beam hardening may be corrected for prior to or following image acquisition, this is-
sue is typically ignored and the monochromatic Beer-Lambert law is used. In this scenario, 
a simple rearrangement of Equation 2.2 provides the calculation of the absorption, or pro-
jection, values, via a negative-log transformation,

  -\log \frac {I}{I_{0}}=\int _{0}^{l}\mu (x)dx \label {eq:Neg_Log} 







 (2.6)

where the equation is equivalent to the Radon transform, first introduced in 1917, show-
ing that the image may be defined as a series of line integrals through an object for all 
ray paths, across many acquisition angles [57]. The additional division of 𝐼

𝐼0
represents 

the ’flatfield’ correction of the image, whereby variations in pixel sensitivity and non-
uniformity of the detector are corrected for, eliminating fixed pattern noise from the images 
[58]. The resulting output of the Radon transform over a series of rotation angles produces 
a ’sinogram’, with an example case shown in Fig. 2.3.1, where a Shepp-Logan phantom im-
age is used [59], simulating an X-ray CT acquisition. Therefore, the sinogram provides a 
graphical representation of the Radon transform of the imaged object. In modern CT sys-
tems, the sinogram occupies a 3D space, with one sinogram for each row of detector pixels.

With the Radon transform describing the distribution in attenuation for each angular projec-
tion and detector pixel position, it logically follows that in order to return a 2D image of the 
original object, an inverse of the Radon transform must be performed. This forms the basis 
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Figure 2.3.1. Example of a Radon transform. Using the example of a Shepp-Logan simulated phantom (left), 
a sinogram is formed by acquiring 180 projections over a range of rotation angles. By performing a Radon 
transform, a sinogram is produced (right), displayed in projection space. Created using the skimage package 
in Python [60].

of X-ray CT reconstruction.

The most simplistic case of X-ray CT image reconstruction applies in the case of a 2D par-
allel beam geometry, as was used for many early X-ray CT scanners, and is found in the 
majority of synchrotron radiation sources. Here, each X-ray beam moves linearly, paral-
lel to the X-ray detector, with no geometric effects such as magnification taking place. In 
this scenario, only projections over 180∘ are required, as the X-rays capture all necessary in-
formation to reconstruct the original image, with the following 180∘ only producing exact 
copies of the original projections. Below, a breakdown is made of the types of reconstruc-
tion algorithm available in X-ray CT.

2.3.2 Analytic reconstruction - filtered back-projection

For X-ray CT image reconstruction, there are two main types of reconstruction routine: an-
alytic and iterative. For parallel beam geometries, the most popular reconstruction method 
utilised is the analytic method of Filtered Back-Projection (FBP). For many years, FBP has 
been the standard routine for X-ray CT image reconstruction, largely due to its simplicity 
and low computational intensity. The application of FBP contains two key steps: ’back-
projection’ of data across image space for each rotation angle, and the application of a filter 
to improve reconstructed image sharpness. In the back-projection step, the measured de-
tector values are applied back along the detector ray path, assigning an average attenuation 
value to each pixel on the path [61]. In this case the simplistic case of parallel beam geom-
etry is assumed, such that the back-projected operation takes place over the same ray paths 
as those in the original projection step. By applying the method at each projection angle, 
and summing all allocated attenuation values, a back-projected image may be formed. An 
example of the back-projection process, without the addition of the ’filter’ step, is shown 
in Fig. 2.3.2. As observed in the final image (Fig. 2.3.2f) even after a sufficient number of 
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attenuation profiles (720) are back-projected, the final reconstructed image contains signif-
icant blurring. The reason for this may be explained by the Fourier slice theorem (FST), 
which describes how for a set of projection angles, the distribution of spatial frequencies 
of the object may be fully described in the Fourier domain, through the application of a 
Fourier transform at each angle. Greater detail may be found elsewhere on the concept of 
the FST, and how the method of back-projection may be mathematically derived from it 
[62]. In short, low spatial frequency components of an image, which describe the bulk im-
age and smooth regions, are over-represented, while higher spatial frequencies, which cor-
respond to the details and sharp edges, are under-represented.

Figure 2.3.2. Back-projection of a chest phantom object (a). The graphics show back-projection of profiles 
acquired from 1 (b), 2 (c), 4 (d), 8 (e), and 720 (f) angular profiles. The final image shows significant blurring, 
highlighting the need for a filtration step to improve the reconstructed image sharpness [61].

By applying a spatial frequency filter to the projection data, prior to back-projection, the 
blurring effect may be minimised, and an improved reconstructed image quality is achieved. 
A common filter of choice is the ramp filter, aimed at suppressing low spatial frequencies, 
increasing the relative contribution of high spatial frequencies [63]. The result of applying 
a filtration step is shown in Fig. 2.3.3 for the same phantom object as in Fig. 2.3.2, with a 
clear improvement in image sharpness and feature contrast.

As explained previously, FBP describes the ’ideal’ case of parallel-beam geometry. Adapta-
tions of the algorithm have enabled equivalent reconstruction routines to be applied in other 
geometries, including the cone-beam X-ray sources typically found in laboratory set-ups. 
In this case, the Feldkamp-Davis-Kress (FDK) algorithm is the approximate cone-beam 
equivalent to FBP, and is the conventional method used for the majority of X-ray CT recon-
struction [64]. For all forms of FBP reconstruction, the main advantage lies in its simplicity 
[65]. In most cases, no parameters require adjustment or optimisation, requiring a matter of 
minutes to fully reconstruct a 3D volume. Many commercial systems have built the FDK 
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Figure 2.3.3. Filtered back-projection of the same chest phantom object as in Fig. 2.3.2. The graphics show 
filtered back-projection of profiles acquired from 1 (b), 2 (c), 4 (d), 8 (e), and 720 (f) angular profiles. The 
application of a filter removes the blurring, improves image sharpness, and provides a reconstructed image 
much closer to the original object in (a) [61].

method into their software as the default reconstruction tool [66], offering it as an easily ac-
cessible and robust solution which requires very low computing power.

However, analytic routines like FDK are also severely limited in their capacity, and struggle 
outside of ideal imaging conditions. For example, these methods require ’complete’ data, 
with a large number of angular projections, to maintain high image quality following re-
construction. In the case of an undersampled (low projection dataset), ’aliasing’ artefacts 
can emerge, reducing image quality [2]. Further, the full angular range is required, with 
FDK incapable of dealing with limited angle datasets without resulting in severe image dis-
tortion. The application of a filter in FDK also introduces issues particularly in the case of 
noisy data. For clinical systems, where dose considerations or time constraints may require 
faster scans, the SNR may be limited, and while a ramp filter may reduce blur in the recon-
struction process, it is also known to propagate and enhance image noise present in the raw 
data signal, resulting in a ”mottled” appearance in the reconstructed volume [61, 67]. In 
addition, FBP methods are very inflexible in their design, which while adding to their sim-
plicity and convenience, makes them insufficient for more complex imaging geometries or 
scan routines. These algorithms offer no ability to exploit prior knowledge of the imaging, 
which otherwise may be used to reduce image artefacts.

While FBP-based methods have been commonplace in X-ray CT reconstruction through-
out its technological advancement over the decades, so too has the creation of iterative re-
construction algorithms, aimed at providing improved image quality, and the flexibility to 
accommodate complex imaging geometries, limited angular ranges, and more.
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2.3.3 Iterative reconstruction algorithms

Some of the first reconstruction algorithms discussed for X-ray imaging were those imple-
menting iterative routines, emerging even before the development of the first clinical CT 
scanner [68]. Due to their increased computational requirements, they were not applica-
ble to most instances of X-ray imaging at the time, and therefore simpler alternatives, such 
as that of FBP, were introduced and became the standard. Alongside the rapid technologi-
cal advancements in CT imaging over recent years, significant theoretical progress has also 
been made in the field of tomographic reconstruction. A wide range of advanced, flexible 
iterative algorithms are now available, aimed at overcoming the challenges faced by ana-
lytic methods, as well as offering additional advantages, at the cost of increased computa-
tional complexity. In all cases, the algorithms aim to solve the ’inverse problem’.

To understand the iterative approach to X-ray CT reconstruction, the imaging process may 
be viewed as a linear system,

  Ku=b \label {eq:Linear_system}    (2.7)

where the measurements recorded may be defined by the physical conditions of the imag-
ing system, and the given parameters of the system. For X-ray CT, K is the imaging oper-
ator, which can vary with geometry, experimental set-up, modality etc., u contains the im-
age property values, and b provides the projections, or measured data. Therefore, given the 
conditions of the imaging system are known, and a set of recorded projections have been 
acquired, the aim is to solve the inverse problem to recover the parameters of the original 
image, such that

  u=K^{-1}b. \label {eq:Inverse_problem}   (2.8)

In an ideal system, Equation 2.8 may be easily solved and the original image values repro-
duced. However, in a real imaging system, factors such as variable noise in b, assumptions 
within the model, the fact that K is not typically a square matrix, and other errors mean no 
direct inversion is possible. Therefore, given no exact solution, the standard approach is to 
find a solution to u such that Ku gives the closest possible result to b. This is referred to as 
the ’least-squares minimisation’ problem:

  \underset {u}{min}\left \| Ku-b \right \|_{2}^{2}=\sum _{i}^{}\left ((Ku \right )_{i} -b_{i})^{2}. \label {eq:Least_squares_min} 


 
 


   (2.9)

In order to find the best possible value for u, an iterative method may be employed, whereby 
an initial estimate value is chosen, the difference between Ku (computed projection data) 
and b (measured projection data) is determined, and the value of u is then updated, begin-
ning the next iteration. The process is repeated until a convergence is found at the optimum 
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value [2, 69]. Below, a few of the most popular iterative algorithms are described, with 
their basic principles. Greater mathematical background to each algorithm may be found 
elsewhere [70].

One of the earliest iterative reconstruction routines implemented in image reconstruction 
was that of the Algebraic Reconstruction Technique, typically referred to as ART. Though 
the concept has existed in numerical linear algebra since the 1930s [71], its first implemen-
tation in X-ray CT was demonstrated in 1970 [68]. The algorithm aimed to solve the system 
of linear equations for each X-ray image (see Equation 2.7) over the series of angular pro-
jections. With each iteration of ART, an approximate solution of the system was calculated, 
before evaluating the difference between computed and measured terms for each projection, 
and applying this as a correction to the next iteration, until a convergence is met. One key 
advantage of the ART algorithm, and many of the following iterative methods developed 
thereafter, was the ability to incorporate prior knowledge. For example, given the knowl-
edge that any image was non-negative in its solution, ART enabled any calculated solutions 
to immediately set negative values to zero, increasing the speed of convergence to a solu-
tion [65]. For ART, typically a relaxation parameter was applied to the correction, which 
was found to yield improved SNR. However, the parameter also slowed convergence, in-
creasing computation time.

The computational cost of ART was its main disadvantage, due to the application of the 
method on a single projection basis. That is, each correction was applied to a single pro-
jection at a time, therefore iterating on a step-by-step basis. As such, faster algorithms were 
developed which were capable of updating all data across all projections simultaneously, 
such as the Simultaneous Iterative Reconstruction Technique (SIRT), first developed in 
1972 [72]. The method allowed an average correction to be determined for each single 
voxel by evaluating all projections and accumulating the required changes first, before ap-
plying the correction at the end of the iteration. SIRT provided improved reconstructed im-
age quality over ART, though required a long time in order to achieve convergence [70]. 
For both ART and SIRT, the ability of these algorithms to reach an optimised solution is 
also largely set by the user, in the form of the number of iterations. While improved SNR 
may often be achieved over methods like FDK, the solutions are typically found to smooth 
towards an ideal solution, before divergence and poorer image quality beyond a certain 
number of iterations. Given that the optimum number of iterations is often unknown, in-
creased computational time may be required to determine the smoothest image reconstruc-
tion.

One such algorithm aimed at reaching a faster convergence, despite no additional stopping 
criterion, is that of the Conjugate Gradient Least Squares (CGLS) algorithm, which uses 
the results from all previous iterations to aid the next step of the algorithm [73]. CGLS typ-
ically converges to an optimum solution in much fewer iterations than ART or SIRT [74], 
however additional constraints such as non-negativity cannot be included to further improve 
the iterative process [75].
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Both in the case of analytic and iterative algorithms, the application to conventional X-ray 
CT imaging aims to reconstruct a matrix of spatial data built over a series of 2D projec-
tions taken over a given angular range, providing a 3D matrix of raw data profiles. In order 
to expand such methods into spectral reconstruction routines, the additional dimension of 
energy-based information must be taken into account. As will be discussed below, the step 
is not particularly complex, but brings with it issues including computational cost and the 
manner of how to treat a spectral dimension compared to the spatial dimensions.

2.3.4 Extending to spectral reconstruction

For multispectral or hyperspectral imaging, the linear systems in XCT are extended into the 
spectral dimension. As the dataset is split into a number of energy channels (hundreds in 
the case of hyperspectral CT) the inversion problem becomes extended. With multiple (N
> 2) energy channels registering data, one may acquire a very large set (N) of these linear 
equations,

  K_{i}u_{i}=b_{i}, i=1,...,N. \label {eq:Spectral_Linear_system}         (2.10)

In essence, the minimisation problem to be solved is the same, but must now be solved for 
every energy channel, increasing the computational cost. Methods like FDK may simply be 
extended to reconstruct spectral data, by treating each energy channel as a separate dataset, 
and reconstructing on a channel-by-channel basis. However, with the flexibility of iterative 
algorithms, it is possible to exploit the multichannel nature of spectral datasets to improve 
the final reconstruction. Multichannel or multi-modal reconstruction methods provide a 
more connected route for reconstructing images with multiple material phases, due to the 
fact that these algorithms do not treat each channel as an individual, but instead uses them 
as a form of ‘prior knowledge’ or reference. These methods base their principles around 
structural or spectral similarity between the different datasets (whether it be neighbouring 
energy channels or entirely different imaging modalities). Therefore, if one can assume or 
have knowledge on the relation between the 𝑢𝑖, then this may be exploited to help solve 
each individual inversion problem. For example, multi-modality reconstruction methods 
have been utilised for combined positron emission tomography-magnetic resonance imag-
ing (PET-MRI) data acquisitions [76, 77]. In these cases, structural similarities in the func-
tional and anatomical data collected mean that a joint reconstruction may be applied, for 
example based on similar edge positions or orientations.

There are two main methods to approach the joint reconstruction problem. First, one may 
acquire a priori knowledge of some of 𝑢𝑖 to serve as a reference point for the reconstruction 
of the other channels or modalities. In a study of hyperspectral image reconstruction, one 
study adopts a channel-wise iterative method, whereby the reconstructed image produced in 
the previous energy channel is used as the starting (reference) vector for the next [78]. This 
is a deterministic approach, as the reference is automatically known and selected. Fig. 2.3.4
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illustrates an example of applying such an algorithm to spectral data, acquired when imag-
ing a lattice carbon structure containing palladium metal. Included are results from three 
methods of reconstruction. The first uses the conventional method of FDK, while the other 
two methods are based on the SIRT algorithm, described above in Section 2.3.3. On top of 
simply using the standard SIRT routine, the study evaluates a ‘channel-linked’ SIRT algo-
rithm, where neighbouring channels are used to determine the reference estimate. As well 
as the improved spatial smoothing observed for the channel-linked SIRT reconstruction, a 
graph is included to highlight the ‘energy smoothing’ achieved as well. It is clear that the 
spectral noise is significantly reduced across energy channels compared to the conventional 
FDK algorithm. Due to the high degree of spectral similarity from one channel to the next, 
these ‘linked’ reconstruction methods work well for spectral data.

Figure 2.3.4. Test results for various reconstruction algorithms applied to spectral data of a palladium-filled 
carbon lattice. (Top) From left to right, reconstructions using FDK, SIRT and channel-linked SIRT methods. 
The iterative methods show significant spatial smoothing over FDK, with the channel-linked SIRT method the 
best for structural definition. (Bottom) Reconstructed spectra from a voxel where palladium signal was 
captured. The spectral noise is significantly lower for channel-linked SIRT compared to FDK, enabling a 
much clearer identification of the palladium K-edge (channel number 83) [78].

An alternative approach is to reconstruct each energy channel simultaneously, using each 
other to support the reconstruction process. As such, it is possible to produce all image 
property values, 𝑢𝑖 across all channels. One study by Kazantsev et al. generalises this 
method for the case of hyperspectral imaging, where an arbitrarily large number of energy 
channels may be used [79]. Here, an iterative reconstruction algorithm is used, with all 

60



channels reconstructed jointly. A suitable channel is taken from the previous iteration of the 
reconstruction to be used as a reference point for the next. The method aims to obtain ref-
erence channels with preference shown towards those with a high SNR. This condition can 
result in better image quality in the final reconstructions. Further, the work introduces the 
concept of combining the iterative algorithm with a ’regularising’ term to improve overall 
image quality.

2.3.5 Regularisation of iterative algorithms

Due to the higher levels of noise associated with spectral datasets, the majority of 4D re-
construction algorithms involve the use of a ‘regularised’ iterative routine. Regularisation 
refers to an additional parameter which can be used to enforce regularity of the model so-
lutions. For example, a regularising term may be used to force image sparsity (similarity) 
or smoothness, or alternatively as a means to improve image sharpness and edge definition. 
The choice and value of the regularisation parameter often results in a trade-off between 
noise minimisation and optimised data fitting.

One of the most popular and common types of regularisation is based on the Total Varia-
tion (TV) method. TV is a useful technique in image processing due to its noise removal 
and edge-preserving capabilities. TV measures the variation of an image by means of cal-
culating the absolute gradient of the overall image signal [80]. This factor can be used as an 
additional regularising term in a non-linear, least-squares minimisation problem, such that 
the iterative routine becomes

  \underset {u}{min}\left \| Ku-b \right \|_{2}^{2}+\lambda \cdot TV(u) \label {eq:Least_squares_reg} 


 
       (2.11)

where 𝜆 is a weighting parameter acting on the TV applied to u. As explained in Section 
2.3.3, the minimisation problem compares the pixel signal, u with the acquired projection 
data, b once the signal has been forward-projected by operator K. Hence the aim is to min-
imise any variance between the two terms in the least-squares problem in order to best fit 
the data. The regulariser will act to force a given condition on this solution. For any reg-
ularising term, a weighting parameter is included to enable precise control of the regu-
lariser’s impact. The size of 𝜆 has a significant effect on the overall minimisation result. 
The effects of varying the regularisation parameter are illustrated in Fig. 2.3.5 for a sam-
ple photo. By selecting a high value of 𝜆, the influence of the minimisation is small com-
pared to the regulariser, resulting in large amounts of noise removal (spatial smoothing) at 
the cost of correctly modelling the data fit. Conversely a low 𝜆 results in extensive noise 
but maintains edge-preservation.

For the case of multi-channel regularisation, one can use a channel-wise TV, whereby the 
sum of the TV norm is taken for each channel. The use of TV has previously been shown to 
be efficient at image denoising, while also effective at coping with undersampled CT data 
[82]. TV regularisation is most ideally suited to piece-wise structures, where sharp edge 
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Figure 2.3.5. Illustration of the effect of varying the regularisation parameter using TV regularisation. The 
original image (centre) is shown, with a region of interest (dashed box) highlighted for magnified evaluation. 
Effects of a high value (left) and a low value regularisation parameter (right) are shown, illustrating the 
respective spatial smoothing and noise removal of the regularisation. Adapted from [81].

boundaries exist. As a consequence, however, TV is known to introduce ’staircasing’ arte-
facts, such that in the process of denoising images, the resulting reconstruction can appear 
’blocky’, particularly in smooth areas that also contain slanted regions [83]. This introduces 
an issue with hyperspectral reconstructions, where the attenuation profiles of the spectral 
dimension often include slants or discontinuities due to absorption edges. As such, a num-
ber of modified versions of TV have been developed to overcome such deficiencies.

An adaptation to the TV regulariser is the use of Total Nuclear Variation (TNV), which 
promotes reconstructions that contain common structures and similar edge locations, and 
therefore works well for multichannel images, where structural similarity is expected across 
energy channels [84].

In the aforementioned work by Kazantsev, the channel-wise TV and TNV methods are di-
rectly compared for a simulated hyperspectral reconstruction of a multi-phase phantom 
[79]. The results of the reconstructions for the four-phase phantom (containing quartz, 
pyrite, galena and gold) are shown in Fig. 2.3.6. It becomes clear that TNV offers greatly 
improved spatial resolution and noise reduction over the conventional channel-wise TV 
method. Errors are significantly reduced, with much cleaner feature segmentation, though 
some misclassification still occurs. This in part is due to the fact that both TV and TNV 
suffer from a loss of contrast, particularly for small features which the methods struggle 
to preserve [83, 85]. Further, despite its improved performance, TNV only enables a sin-
gle regularisation parameter to be simultaneously applied to both the spatial and spectral 
dimensions.

A novel version of TV which may cope with the spectral profiles observed in hyperspec-
tral X-ray CT is that of the Total Generalised Variation (TGV). As described in its name, 
TGV offers a less restrictive approach to image reconstruction. The use of TGV has been 
shown to be effective in image denoising, while capable of promoting both sharp edge fea-
tures as well as gradual changes in image intensity across smoother regions. The method 
achieves this by taking into account higher order derivatives of the image data [86]. Fur-
ther, TGV avoids the issue of staircasing artefacts compared to TV, as highlighted on a test 
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Figure 2.3.6. (Top) Design of the custom phantom, containing (a) quartz, (b) pyrite (c) galena and (d) gold. 
(Bottom) Columns showing the reconstruction, error and segmentation for a single channel (70) using two 
methods: channel-wise TV (Upper Row) and TNV (Lower Row). Reduced image errors and improved feature 
segmentation are achieved for the TNV method over channel-wise TV, where the pyrite central regions were 
poorly segmented with excessive smoothing. Adapted from [79].

image in Fig. 2.3.7, and has been observed to work well in the case of reconstructing ’natu-
ral’ looking images, such as those found in biology or clinical CT, with a demonstration of 
this shown for Magnetic Resonance Imaging (MRI) [87]. In the case of spectral imaging, 
TGV also offers the flexibility of application to a single dimension, such that regularisation 
may be optimised separately to achieve improved spatial and spectral image quality.

Figure 2.3.7. Comparison of the denoising effects of TV and TGV based on an artificial test image containing 
a ’ramp’ function on greyscale intensity. While both regularisers achieve strong denoising, the presence of 
staircasing artefacts are clear in TV, while such artefacts are eliminated completely using TGV [87].
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For hyperspectral imaging, several factors must be taken into account when trying to 
achieve the optimum reconstruction:

• The aforementioned limits in detector count rate mean noisy datasets are common, 
therefore strong denoising is required for both the spatial and spectral domains.

• Spatial resolution is poor, which can result in some image features spanning only a 
few pixels. Hence the ability to maintain strong image contrast is crucial.

• The high spectral resolution through the availability of hundreds of energy channels 
brings with it large datasets, thus increased complexity in reconstruction algorithms 
also brings about significantly larger computational cost.

• Often the needs of the spatial and spectral dimensions vary in the level of smoothing 
and edge preservation required, so a multi-modal approach may be required to satisfy 
each dimension separately.

Taking into account all requirements above, specific designs of iterative reconstruction al-
gorithm are needed to deal with the issues encountered in hyperspectral CT. To date, very 
few research studies have developed algorithms catered to the needs of hyperspectral imag-
ing, with most studies focused on simulation investigations, or case studies involving mul-
tispectral (few-channel) datasets [79, 84, 88, 89]. Other investigations meanwhile have fo-
cused on alternative imaging modalities, such as Positron Emission Tomography or MRI 
[76, 77, 87]. Some work has explored the application of a multi-regularising approach, to 
tackle the challenge of optimising a combined spatiospectral reconstruction, and demon-
strates its effectiveness over FBP for up to 12 energy channels and low projection datasets 
[90]. However, such studies are still limited to simulated phantoms, while also using a 
simpler parallel beam geometry. The case studies described in this thesis, Chapters 4 and 
5, aim to lay the foundations for advanced hyperspectral cone-beam reconstruction algo-
rithms, through direct testing on physical experimental samples.

2.4 Imaging modalities of energy-sensitive X-ray CT

The development of hybrid pixel detectors over recent years has had dramatic impacts on 
the field of spectroscopic imaging. Due to the chemical and crystallographic insight achiev-
able, wide-ranging applications have become available, across a number of research fields. 
Different imaging modalities have been developed to explore samples of varying feature 
size and composition. As detector design has improved and higher intensity X-ray sources 
have become more readily available, techniques have become more refined, reducing acqui-
sition times, as well as improving resolution in both the spatial and spectral domains.

Imaging modes of energy-sensitive systems are commonly split into two main subsections: 
’bright-field’ and ’dark-field’. As will be discussed below, these modes are split based on 
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their difference in experimental geometries (on-axis vs. off-axis detector), as well as the 
type of characteristic spectral markers they aim to record.

First, a review of bright-field X-ray CT is conducted. Available to both multispectral and 
hyperspectral detector systems, bright-field mode is regarded as the most simple in terms 
of its imaging geometry and the manner in which chemical properties of the sample may be 
extracted. Applications of the technique, across fields including geology, chemical cataly-
sis, and bioimaging are reviewed. The current state of the art is established, in the extent of 
chemical discrimination possible, as well as the various spectral analysis performed with 
the energy-based properties, particularly with hyperspectral sensors.

Finally, a brief exploration is made into the evolution of dark-field techniques, aimed at 
recording characteristic scattered photons, including both diffraction and X-ray fluores-
cence. The main advantages and limitations of the technique are reviewed, and how they 
can complement bright-field imaging.

2.4.1 Bright-field X-ray imaging

By placing the pixelated energy-resolving detector onto the axis of the incident beam, it is 
possible to access the ‘bright-field’ and collect conventional radiographs. This allows for 
the collection of information via bright-field energy-sensitive CT. As discussed in Section 
2.2.2, multispectral and hyperspectral detectors are capable of identifying the energy of in-
cident X-ray photons through the evaluation of the generated charge in the respective de-
tector system. While multispectral detectors typically match the incident charge to one of 
a set of 2-8 pre-defined threshold values to provide broad energy resolution, hyperspectral 
detectors are capable of building an entire X-ray absorption spectrum in each pixel, owing 
to its high energy resolution. Therefore, each pixel of the hyperspectral system enables full 
attenuation profiles to be observed and analysed in each pixel.

By taking radiographs across a full range of projection angles, a reconstructed spectra 
dataset will produce a 4D volume (3D spatial + 1D spectral), where chemical properties of 
the imaged object may be extracted, predominantly through the analysis of spectral mark-
ers, as described in Section 2.1.4. In most cases, it is the identification of absorption edges 
which are the focus of bright-field imaging. As such, bright-field CT is also often referred 
to as ‘K-edge CT’, due to the fact that it is ionisation of electrons from the K-shell which 
are the most commonly observed identifiers of elemental composition. This allows for anal-
ysis which is analogous to X-ray absorption spectroscopy, a technique used in the evalua-
tion of chemical species based on the sharp rise in attenuation close to electronic binding 
energy values [91]. An illustration of the conventional K-edge CT set-up is shown in Fig. 
2.4.1 for a lab-based geometry with a cone-beam source. Here the figure illustrates the typ-
ical pixel-by-pixel output expected for a hyperspectral detector, where continuous attenua-
tion profiles are displayed as a function of energy.

A comparison of typical profiles for both multispectral and hyperspectral data is shown in 
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Figure 2.4.1. A typical geometry for energy-sensitive bright-field CT imaging. The conventional set-up for 
absorption CT is used, whereby a sample is rotated in the presence of an incident X-ray beam, but collected 
by an energy-resolving detector placed on the beam axis. Also shown is a set of three spectra seen from 
various sections of the sample object, with clear absorption edges [92].

Fig. 2.4.2 for known attenuation values of molybdenum, with an absorption K-edge at 20.0 
keV. Multispectral profiles contain few data points, with broad energy windows. As such, 
the presence of K-edges are less clearly defined. This is highlighted by the lack of a sharp 
attenuation rise as the K-edge value is passed. In contrast, the hyperspectral profile pro-
duces a spectrum close to continuous. Hundreds of narrow energy windows allow precise 
matching of the measured K-edge to its known value.

2.4.2 Applications of bright-field imaging

Many of the early lab-based studies using hyperspectral detectors evaluated the range of 
materials that may be identified and segmented based purely on the identification of their 
elemental absorption edge markers. A proof of concept study used a tungsten target tube 
to separate and identify the different materials in a wireless USB dongle [93]. Using the 
80×80 array, 250 𝜇m pixel size, CdTe-based HEXITEC detector, a number of 2D radio-
graphs were acquired, collecting 30s exposures over a range of 400 spectral channels. By 
employing spectral decomposition and ’clustering’ methods, aimed at segmenting energy-
based signals and grouping them by signal similarity [94], it was possible to map out the 
distinct object features based on spectral similarities alone, as shown in Fig. 2.4.3c. In or-
der to then identify elements present in the sample, the absorption edges were isolated and 
mapped to the corresponding elements in the radiographs. Here, the K-edges of both bar-
ium (37.4 keV) and tantalum (67.4 keV) were used to spatially map the elements within the 
printed circuit board of the dongle, as shown in Fig. 2.4.3d.

Further analysis demonstrated how the full attenuation profile enables additional image 
segmentation, outside of the absorption edges present. Fits to the low-energy portion of 
the spectra in Fig. 2.4.3a were performed, extracting additional electronic components in 
the 2D maps. A Gaussian fit to the peak at 9.5 keV and a linear fit in the 20-30 keV region 
highlighted such components, as shown in Fig. 2.4.3e and f. Such analysis demonstrated a 
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Figure 2.4.2. Representation of a typical multispectral (top) and hyperspectral (bottom) attenuation profile for 
molybdenum. The multispectral profile records single attenuation values for broad energy windows, while the 
hyperspectral detector is capable of effectively producing a continuous spectrum. Known positions of the 
K-edge for each element are overlaid as vertical dotted lines. All attenuation values were extracted from the 
NIST database [9].

novel aspect to energy-dispersive imaging, allowing visualisation of previously unseen fea-
tures in conventional radiographs (Fig. 2.4.3b). While lower density materials may still be 
identifiable using the correct analysis techniques, such as the use of spectral clustering to 
separate the plastic casing from the higher density segments, the imaging method is better 
suited to heavy elements. The work defines a lower boundary for the spectral sensitivity of 
the system, through which characteristic edges and fluorescence peaks may be identified, 
as Z ≥ 29. In contrast to the lower density components of such samples, these heavier ele-
ments require no a priori knowledge of the composition to confirm chemical identity.

Two applications of bright-field hyperspectral CT were performed by Egan et al. [92], in-
cluding a study on the distribution of palladium (Pd) in a Pd-loaded catalyst pellet, while 
the research field of geoscience was explored by imaging a mineralised core taken from a 
geothermal vein. The work also presented two forms of spectral analysis, to extract addi-
tional characteristics of the sample, outside of solely confirming an element’s presence.

Chemical catalysis offers an excellent field of research for energy-sensitive imaging, due 
to the presence of high-attenuation metal and metal oxides used for large-scale, industrial 
catalysis. Hyperspectral imaging offers a direct route to mapping the distribution of such 
metals, loaded onto the catalyst body, which can have a significant effect on the efficiency 
of the chemical processes to which they are utilised [95]. In the study by Egan et al., an ab-
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Figure 2.4.3. Hyperspectral analysis of a USB dongle. (a) Set of hyperspectral radiographs with an example 
set of absorption spectra. (b) Conventional radiograph image for comparison. (c) RGB image following 
spectral clustering. (d) K-edge absorption analysis including highlighted barium (blue) and tantalum (red). (e) 
and (f) show images created by applying fits to the absorbance spectra at 9.5 keV and 20-30 keV [93].

sorption step matching the K-edge of Pd (24.350 keV) was clearly identified through analy-
sis of single voxel absorption spectra.

To evaluate the relative distribution of Pd as a function of position, a novel technique was 
used to perform semi-quantitative analysis. As shown in Fig. 2.4.4a, least-squares fitting 
of linear functions either side of the Pd K-edge was performed and extrapolated to the K-
edge position. Subtraction of the two fits at the K-edge energy provided a relative measure 
of absorption step size for every pixel, labelled Δ𝜇0. In addition, the technique decoupled 
any contributions from the catalyst body. This was an important factor, given that the body 
could not be assumed to have homogeneous density. Therefore distribution of the Pd metal 
was more accurately measured by isolating its contribution to the total absorption. Further, 
Δ𝜇0 is stated to be directly proportional to phase concentration, hence through a voxel-by-
voxel fitting, spatial mapping of Pd concentration across the volume was achieved. This 
showed that the Pd had a tendency to build up at the periphery of the pellet, as well as ap-
pearing in ‘hotspots’ around voids (see Fig. 2.4.4b-d). The technique of absorption step 
size fitting demonstrates one form of spectral analysis directly available due to the high en-
ergy resolution in hyperspectral imaging detectors. However, the work also notes that the 
technique in its current form offers a simply qualitative metric, mapping relative differences 
in chemical concentration. Calculation of absolute concentration values as a function of po-
sition would require measurement of various standard samples of known concentration to 
establish a precise relationship. Nevertheless, the study once more demonstrated additional 
characteristics available from the spectral profiles alone.

A secondary, and more commonly utilised, form of spectral analysis was also evaluated in 
the study. That is, the method of ’K-edge subtraction’. The geological core sample was ex-
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Figure 2.4.4. Relative concentration and distribution of Pd metal in a catalyst body. (a) Single voxel spectra 
showing the presence of the Pd absorption edge. Overlaid are linear fits applied to either side of the K-edge to 
measure the size of the step change (Δ𝜇0). (b)-(d) Vertical and horizontal slices of the reconstructed volume 
mapping of Δ𝜇0 values, as well as a 3D visualisation of the exterior. Adapted from [92].

amined with hyperspectral CT to non-invasively map in 3D the range of mineral and ele-
mental phases present. Collected from a gold-rich vein, a deeper understanding of the dis-
tribution of mineral inclusions within such ores can be crucial in developing efficient ex-
traction processes. Heavier elements in the sample were easily identifiable as inclusions 
in the reconstructed images from their greyscale intensity differences alone, relative to the 
surrounding phases. Through analysis of individual voxel spectra, the precise mapping 
of both gold and lead phases was possible through matching of the measured absorption 
edges to the known K-edge values (Au - 80.7 keV, Pb - 88.0 keV), as shown in Fig. 2.4.5a, 
b and d. To directly segment these phases, a ‘K-edge subtraction’ (KES) analysis was em-
ployed, whereby images at energies above and below the edge were subtracted from one an-
other, isolating the individual elemental contributions. The result of mapping the elemental 
phases in 3D is shown in Fig. 2.4.5e. Using standard greyscale contrast, these phases would 
be difficult to segment in XCT due to a high degree of density similarity, but segmentation 
becomes a simple task using methods such as KES. In order to map the remaining low den-
sity material phases present, a combination of prior knowledge on the ores’ composition, as 
well as the availability of full attenuation profiles, was used to fully characterise the sample. 
Phases including quartz (SiO2) and pyrite (FeS2) contain low Z elements from which ab-
sorption edges were below the sensitivity of the detector. However, by evaluating linear fits 
of the optical density gradient for each phase, as shown in Fig. 2.4.5c, a spectral threshold-

69



ing tool was formed. The relative density differences between the phases became visible, 
and enabled a form of 3D mapping even in the absence of characteristic markers.

Figure 2.4.5. Spectral CT 3D distribution of a gold-containing geological sample. (a) Greyscale slice of the 
ore sample acquired by integrating over the full spectral range. (b) Spectra highlighting the K-edges of gold 
and lead within the sample. (c) Spectra for quartz, pyrite and chalcopyrite. (d) Vertical slice with segmented 
gold (blue) and lead (red) voxels. (e) 3D reconstruction highlighting each phase [92].

Aspects of the preprocessing and reconstruction routine highlighted some of the issues 
commonly encountered with hyperspectral, as well as conventional, X-ray CT data. A cor-
rection to align the pixel-by-pixel spectral response was performed, known as Correlation 
Optimised Warping [96]. A further correction to remove ring artefacts was applied to the 
sinograms before reconstruction. Ring artefacts are common in microtomography, and 
are predominantly due to non-functioning or poor pixel response. This may be due to one 
or two defective pixels registering erroneous signal values. These can often be corrected 
via a flat-field correction, however other causes such as variations in scintillator thickness 
for energy-integrating detectors can mean further correction is required [97]. Once recon-
structed, these errors appear as concentric rings around the centre of rotation point, leading 
to reduced image quality. In this paper, a wavelet based Fourier filter was applied to min-
imise the effect, as described elsewhere [98].

The work by Egan et al. was some of the first to demonstrate the potential of hyperspectral 
imaging for multiple simultaneous chemical mapping with hyperspectral X-ray CT. With 
increased energy resolution, the technique stands out over multispectral imaging for its abil-
ity to provide the user with full attenuation profiles of the 3D volume. As such, hyperspec-
tral tomography eliminates the uncertainty associated with fine-tuning the energy thresh-
olds of broader spectral windows, as is required with multispectral systems. Here, markers 
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such as K-edges may unambiguously be distinguished, identified and mapped based on pre-
cise matching of the observed to known edge positions for each element present. In con-
trast, multispectral imaging is limited by the choice of energy windows, and may lead to 
difficulty in segmenting multiple chemicals with narrowly-spaced K-edges, also highlighted 
as a significant barrier to the wider application of DECT, as discussed in Section 2.1.5.

An exploration into the hyperspectral measurement of markers in the softer X-ray regime 
was performed by Boone et al., in the field of bioimaging [99]. The work aimed to spec-
trally segment gold nanoparticles from calcification in a case of atherosclerosis in the aortic 
arch of a mouse specimen. The study used the SLcam, a silicon-based hyperspectral de-
tector designed for high energy resolution in the soft X-ray range. The detector contains 
a 264 × 264 pixel array, with pixel size of 48 × 48 𝜇m, and an achievable energy resolu-
tion of approximately 150 eV at 5 keV [100]. The working energy range is quoted as 5-40 
keV, but falls to below 10% quantum efficiency at the upper boundary. Prior knowledge of 
Ca, Zn and the Au nanoparticles were confirmed via 2D micro-XRF. Here, the L-edges of 
Au, along with the Zn K-edge, were the characteristic markers of interest for the study, all 
falling in the 9.5-15.0 keV range [9].

The SLcam was noted to suffer from severe limits in count rate, below 10 counts s−1

pixel−1, and therefore two methods of SNR improvement were implemented. First, expo-
sure times of 20 minutes were used across the 180 projections, for a total scan time of 60 
hours. Second, from the 1024 total energy bins in each pixel profile, select groups of chan-
nels were combined to total widths of 1.25-2.50 keV to improve image noise, producing a 
quasi-multispectral dataset. The groupings were selected to each contain specific charac-
teristic markers, and enabled a form of KES to be applied. The authors were able to iden-
tify ’hotspots’ of gold accumulation, following subtraction of regions either side of the gold 
L3-edge (Fig. 2.4.6b), despite the complex geometry of the sample, illustrated by the full 
energy-integrated volume (Fig. 2.4.6a). However, the poor SNR, combined with a voxel 
size of 16 𝜇m, meant the authors could not confidently distinguish noise from chemical sig-
nal in the 3D rendering, and were unable to identify Zn or Ca from spectral markers alone. 
Combined with the need to operate at a temperature of -20∘C to maintain the high energy 
resolution, the current technology limits of silicon-based hyperspectral systems were high-
lighted.

In the identification, segmentation and mapping of single or multiple simultaneous high-
density contrast agents, both multispectral and hyperspectral systems have proven compe-
tent in performance. Given the full a priori knowledge of the heavy metal elements con-
tained in such staining agents, multispectral detectors may be finely tuned to set the broad 
threshold energy windows at appropriate points, ensuring no overlap in absorption edge 
markers.

A simulated phantom study by Ghadiri et al. presented a ’K-edge ratio’ tool for multiple 
chemical discrimination [101], aimed towards future applications of targeted staining and 
diagnosis of multiple simultaneous organs. Using the sharp rise in attenuation either side 
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Figure 2.4.6. 3D rendering of a mouse aortic arch, with spectral subtraction. (a) The 3D volume produced 
after integrating over all 1024 energy bins. (b) 3D map following spectral subtraction of energy windows 
either side of the gold L3-edge. Some ’hotspots’ appear to emerge, attributed to the presence of gold. Adapted 
from [99].

of every K-edge, the method calculated ratios of energy bins and used them as a tool for 
thresholding multiple elemental signals. While successful segmentation of several elements 
(such as Gd, Hf and Au) was possible, effects such as photon starvation and beam harden-
ing became prominent with multiple high density materials present. Further, the acquisition 
protocol was found to be case-specific with regards to the positioning of energy thresholds, 
and did not perfectly map physical experimental conditions with regards to noise and detec-
tor efficiency.

Several studies have sought to utilise multispectral CT for the mapping of multiple contrast 
agents in real-world experimental cases, applied to both phantom samples and biological 
specimens. Studies of anthropomorphic phantoms, modelling a colon [102] and abdominal 
aortic aneurysm [103], applied gadolinium- and iodine-based contrast agents to evaluate the 
feasibility of photon-counting detectors in the multiple mapping of targeted stains. Using a 
material decomposition approach, as described in detail in Section 2.1.5, maps of each re-
spective element were successfully established and provided clearly distinguished contrast-
enhanced regions. Such proof-of-concept studies emphasise the potential for such detectors 
to benefit the field of clinical imaging, while they also discussed the established approach 
for quantification of chemical density in such spectral data.

In order to conduct quantitative measurements of the elemental concentrations, a range 
of approaches have been adopted. It has previously been shown in DECT [26] that a lin-
ear relationship may be determined between chemical concentration and CT number (in 
Hounsfield Units), therefore calculation of absolute values is achievable given a preliminary 
scan of a known concentration phantom. Similar work has been performed in a multispec-
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tral setting to confirm the same linear relationships may be established [104]. Studies by 
Muenzel and Dangelmaier correlated the CT values to the relative chemical concentrations 
using lookup tables [102, 103]. An in vivo study by Symons et al. performed the calibra-
tion procedure through the acquisition of phantoms and a stained animal specimen using 
the same X-ray scan settings and chemical concentrations [105]. As shown in Fig. 2.4.7a-b, 
direct conversion from CT number in the greyscale image to a full multi-material map was 
achieved using material decomposition. Using the values recorded in the circular vials of I, 
Gd, Bi (oral agent) and a ferrous solution mimicking soft tissue, quantitative measurements 
of concentration were mapped to the reconstructed image (Fig. 2.4.7c-e). The work showed 
the spectral applicability of studying multiply-stained specimens at sufficiently low dose 
and chemical concentration level for in vivo study. Further multispectral studies, on the in 
vivo contrast-enhancing stain distribution within white rabbits, have further emphasised the 
current state of the art for photon-counting devices [106, 107]. The ability to probe biolog-
ical processes and enhance the identification of specific soft tissue regions, all within a sin-
gle CT scan, confirms the potential for spectral imaging moving forward.

Figure 2.4.7. Multi-material mapping of a canine specimen. (a) Reconstructed greyscale image of the 
specimen, showing the kidney and abdomen, along with the circular calibration vials. (b) Colour map of the 
chemical stain distribution in the same image, with a legend mapping the colours to the element present. The 
unlabelled vial is that of a ferrous solution, matching the spectral properties of soft tissue. (c)-(e) Quantitative 
material maps, measured in terms of millimolar units. [105]

It is important to note that in virtually all multispectral cases of bright-field, K-edge imag-
ing, the contrast agents are selected such that there is large spectral separation between the 
respective K-edges. Such an approach is logical, given the poorer energy resolution com-
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pared to hyperspectral systems. Neighbouring elements become very difficult to separate, 
and therefore can limit the applicability of the technique. One study did seek to test the lim-
its of such spectral segmentation, successfully separating iodine (Z = 53) from barium (Z = 
56) contrast agents, despite only a 4 keV difference in absorption edge position [108].

A particular point of note, and perhaps limitation to the existing technology, is the appli-
cability of bright-field imaging in the absence of absorption edge markers. Such situations 
emerge in two scenarios. First, where the K-edge is outside of the working range of the de-
tector, as discussed is recent studies [92, 93]. It should be noted that while this is predom-
inantly the case for low-density materials, with edges below the sensitivity limit of the de-
tector, the same can also apply for the very high-density elements, where DQE of the sensor 
is too low to obtain significant signal for identification of characteristic signals. Second, in 
the cases where spectral concentration is too low in a single voxel, or ROI, to distinguish 
an absorption edge from the surrounding background noise. For the latter, improved recon-
struction routines, as described in Section 2.3.5, offer one possible solution, but often can-
not extract such signals in the presence of significant noise.

One alternative to direct segmentation through K-edge mapping is through the analysis of 
relative attenuation gradients for hyperspectral absorption profiles, as briefly shown in the 
geological core work [92]. Low-density materials may still be differentiated through their 
rate of change of attenuation as a function of energy, provided a large enough energy range 
is available to measure such changes. If profiles are mapped in terms of attenuation coeffi-
cient, then in theory identification of elements may be achievable through matching of the 
measured values to the theoretical profiles over the same range. However, spectral distor-
tions due to charge sharing and pulse pile up (see Section 2.2.3) are known to alter the pro-
files, such that precise matching is not always achievable.

A study by Yokhana et al. has sought to test the potential for bone densitometry calcula-
tions and soft tissue mapping, in the absence of contrast agents [109]. Using the CdTe-
based, multispectral PiXirad detector [110], two energy ranges were studied (21-40 keV 
and 27-40 keV). By evaluating the two overlapping ranges, a distinct shift in linear attenu-
ation coefficient was observed in each phase of a bone phantom, due to the different aver-
age energy of each range. As a result, a linear relationship was determined between density 
and attenuation coefficient. An automatic segmentation of phases was then performed by 
plotting frequency distributions of attenuation values over the reconstructed image, and per-
forming fits to the peaks corresponding to each phase. As a further proof of concept, the 
same principle was then applied to a mouse embryo, successfully segmenting bone from 
soft tissue in the absence of contrast agent staining, in addition to calculating bone density 
within the specimen. The work further expanded the potential applications for bright-field 
imaging using energy-sensitive detectors.
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Summary of bright-field imaging

In summary, the ease of transition from a conventional, energy-integrating system to an 
energy-sensitive detector becomes trivial when imaging in the bright-field. The geometry 
remains identical, and simply requires replacing one detector for another. Several studies in 
the last decade have demonstrated the potential for both multispectral and hyperspectral de-
tectors to distinguish and map single, or multiple, simultaneous chemical species in a range 
of samples. Geology, catalysis, and biological staining have all been shown as applicable 
fields for elemental study using photon-counting detectors in transmission mode.

The subject of bioimaging, and analysis of multiple staining regimes, has dominated the 
multispectral research field, given the prior knowledge of staining elements and ease in op-
timising the threshold energy window positions. The pros and cons of the two detector for-
mats were highlighted through the review of the above literature. In cases of prior knowl-
edge, multispectral detector systems stand out. Typically offering higher spatial resolution 
and improved SNR owing to their broader energy windows, elemental mapping becomes a 
simple task if thresholds are chosen correctly. The poorer energy resolution only becomes 
an issue in cases where spectrally similar elements are present in a sample, making seg-
mentation difficult. Yet, one study has proven this to still be achievable [108].

In contrast, while lacking in spatial resolution and SNR, hyperspectral imaging sensors of-
fer no such issues in spectral segmentation. In the case of CdTe detectors, such as that of 
the HEXITEC, a large working energy range ensures the majority of high-density elements 
may be simultaneously mapped from their absorption edges alone, with no prior knowledge 
required. Additional spectral analyses become available from the continuous attenuation 
profiles in each voxel, with KES and step size fitting offering unique qualitative insight on 
chemical distribution with high spectral precision. Outside of the HEXITEC studies pre-
viously discussed, little work has been conducted in the bright-field regime for real-world 
investigations using hyperspectral systems. Given the low counts in each energy channel, 
the requirement of increased dose to improve SNR limits the ability to perform in vivo stud-
ies, without the aid of advanced reconstruction routines. Combined with the limited detec-
tor array size, the technology is still in its infancy in terms of hardware development. Nev-
ertheless, there is significant scope for further exploitation of the spectral data offered by 
systems such as the HEXITEC. No studies have previously performed quantitative analysis 
on the absorption edges, as has been investigated in multispectral systems. Given the large 
imaging bandwidth available with the HEXITEC, studies in bioimaging offer an exciting 
opportunity to study a wide range of simultaneous contrast agents in various combinations, 
in order to evaluate stain interaction, binding properties, and concentration distribution.

2.4.3 Evolution of dark-field energy-dispersive imaging

Given its ability to acquire multiple forms of characteristic signal by moving off-axis from 
the incident X-ray beam, a number of hyperspectral studies have instead been conducted in 
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the so-called dark-field regime to exploit such flexibility. The result is the potential to un-
lock additional chemical and crystallographic insight. Below a brief summary of the evolu-
tion of dark-field imaging is provided for energy-sensitive detectors, and some of the work 
conducted to date.

Tomographic energy-dispersive diffraction imaging

As early as 1987, Kosanetzky et al. had proposed the idea of combining X-ray computed 
tomography with diffraction in order to spatially map the crystallographic properties of 
plastics and biological material [111]. Soon after, Harding proposed the novel technique of 
‘energy-dispersive X-ray diffraction tomography’, in which diffraction properties of plastics 
could be obtained directly from X-ray scatter using a polychromatic source [112].

While typical X-ray diffraction is based on the wavelength-dependent Bragg diffraction law, 
Harding’s team utilised the energy-dispersive form of Bragg’s law,

  E \approx \frac {12.398n}{2d\sin \theta } \label {eq:ED_Bragg} 
 

(2.12)

where lattice spacing d and Bragg diffraction angle 𝜃 are measured in Angstroms and de-
grees respectively, and n is the diffraction order, while X-ray energy, E is given in keV and 
relates to the wavelength via the photon energy formula,

  \lambda \approx \frac {12.398n}{E} \label {eq:ADD_EDD} 


(2.13)

Equation 2.13 highlights the transition from angle-dispersive diffraction (ADD), in which 
monochromatic (fixed wavelength) X-rays collect diffraction patterns over a range of Bragg 
angles, to energy-dispersive diffraction (EDD), where irradiation with polychromatic X-rays 
result in a full diffraction spectrum for a fixed angle [113]. Thus, EDD experiments high-
lighted the ability to simply transition from monochromatic imaging, which produced con-
ventional intensity versus angle plots, to a qualitatively equivalent plot of intensity versus 
energy.

The evolution of spectral diffraction geometries is shown in Fig. 2.4.8. The technique is 
based around defining a specific region of the sample from which diffracted photons origi-
nate. Defined as a ‘gauge volume’ (diffraction lozenge), this region size and position is de-
termined by the intersection of the X-ray beam and a collimator between the sample and 
detector (Fig. 2.4.8a) [114, 115]. Diffraction patterns are collected as the sample is trans-
lated in all three spatial dimensions, building a 3D volume without the need for reconstruc-
tion algorithms. As such, equivalent tomographic results are achieved, hence the name ’To-
mographic energy-dispersive diffraction imaging’ (TEDDI) to highlight its similarities, yet 
clear distinction, from conventional X-ray CT. The result is that each voxel contains crystal-
lographic information. The downside is that spatial resolution is limited by the size of the 
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lozenge, while scan times are on the order of several hours, even with synchrotron radia-
tion. Extending to multiple collimator systems, either in 1D or a full 2D array (Fig. 2.4.8b-
d) significantly helps the latter [116–118]. Applications of the technique have included 
studying the chemical processes in cement [119], ferrite micro-structure [120], and analy-
sis of metal alloys [121].

Figure 2.4.8. Illustration of the transformation in the ’TEDDI’ setup. (a) Conventional geometry for a one 
detector, one collimator system, with one diffraction lozenge. (b) Example of a multiple-aligned vertical 
detector array. This produces multiple lozenges at different positions. (c) Multiple-aligned horizontal detector 
array with matched collimators. (d) 2D detector-collimator array, requiring sample motion in the one 
dimension [115].

Dark-field imaging with pixelated spectroscopic sensors

As the development and wider use of pixelated spectroscopic detectors came to the fore, 
so too did adaptations to the geometries and techniques involved with imaging diffraction 
patterns within samples. A simpler geometry avoids the need for collimation through the 
use of a pinhole placed off-axis to act as an aperture [122], projecting the diffracted sig-
nals onto the detector. The novel technique is termed ‘dark-field’ due to its ability to pro-
vide composition insight outside of the conventional ‘bright-field’ orientation. The work by 
Egan et al. described a set-up, as illustrated in Fig. 2.4.9a, whereby the pinhole was placed 
at a low 2𝜃 angle (typically between 1∘ and 5∘), and the detector collected individual EDD 
patterns at each individual pixel, providing information on the physio-chemical structure. In 
this case, the detector was the 80×80 pixel HEXITEC detector.

Upon integrating over specific spectral bands where identifiable diffraction or fluorescence 
peaks are observed, materials in the sample can be spatially mapped and colour-coded 
to highlight elements and phases present (Fig. 2.4.9b). Further, in-detail analysis of the 
diffraction spectra allows refinement and calculation of the crystallographic properties, such 
as lattice parameters, crystallite size, and any preferred orientation. The pinhole aperture 
in this technique offers the additional benefit of geometric magnification (reported here to 
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Figure 2.4.9. Pinhole geometry for ‘dark-field’ hyperspectral imaging. (a) An off-axis pinhole projects 
scattered X-rays towards a spectroscopic detector, collecting diffraction patterns at each pixel. (b) Examples 
of diffraction patterns and a corresponding spatial mapping of the elements identified [122].

be between 0.1-10×), allowing for larger samples, or ’zoomed-in’ region-of-interest (ROI) 
studies to be conducted [122]. The work employed the conventional CT approach of rotat-
ing the sample through a number of projections, using filtered back-projection to build up 
complete, 3D volumes. The effectiveness of the technique was illustrated by imaging an 
aluminium alloy friction stir weld (FSW), commonly used in the aerospace industry [123].

The study, conducted at beamline I12 of Diamond Light Source, UK, demonstrated a sig-
nificant improvement in the acquisition times, producing 6400 pixel images in 2-5 minute 
exposures. With no flux limitations to the technique, this form of dark-field imaging of-
fered an experimental setup applicable to both laboratory and synchrotron sources. This 
was shown by a follow-up lab-based study, where once more an FSW was analysed, collect-
ing a full-field powder diffraction pattern across the sample volume [124]. In this case, the 
laboratory X-ray tube provided a flux of roughly 4×106 photons s-1 mm-2 keV-1, several or-
ders of magnitude weaker than that provided by the synchrotron source. As a result, expo-
sure times were increased to 30 minutes per image to ensure observable signals could still 
be recorded.

Recent pinhole-based, polychromatic diffraction studies using the HEXITEC detector have 
reviewed the benefits of hyperspectral systems for fields where bright-field imaging is not 
possible. A lab-based study on the accumulation of amyloid plaque in mice brains eval-
uated the potential for future in vivo studies, absent of contrast-enhancing stains [125], 
measuring broad diffraction patterns with total scan times on the order of minutes. A syn-
chrotron study by Connolley et al. measured the chemical changes in the charge and dis-
charge of a Zn-MnO2 battery cell [126]. Here, the time resolution remained on the order 
of minutes. An attempt at improving SNR was made through the use of a twin-detector 
regime, placed at equal 2𝜃 angles either side of the bright-field axis. However, challenges 
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in aligning each dataset to the same ROI of the cell prevented an improved signal in the fi-
nal data.

The notable limitations to the latest dark-field methods emerge from the use of pinhole 
apertures. While the use of a pinhole offers greatly enhanced spatial resolution, larger aper-
tures and shorter pinhole-detector distances introduce diffraction peak-width broadening 
[124]. This limits the technique to studying widely spaced Bragg peaks (larger lattice pa-
rameters). The issue of longer exposure times may be simply offset by an increase in X-ray 
flux, with high-powered X-ray tubes (1-2 kW) widely available for lab-based research, with 
no concerns regarding the count rate limit of the HEXITEC while in a dark-field geometry 
[124]. Despite some of the technical limitations in its current development, the ability to di-
rectly image and map crystallographic properties in 2D (and 3D following sample rotation) 
offers significant promise in the field of hyperspectral imaging, particularly when consid-
ered part of a multi-modal approach with bright-field imaging.

Energy-dispersive X-ray fluorescence CT (dark-field)

An alternative, or additional, characteristic marker available is that of X-ray fluorescence 
peaks. Fluorescence signals make for an excellent form of elemental analysis due to the 
fact these secondary X-rays emit isotropically, and thus a detector placed at any angle will 
collect these characteristic peaks, enabling spectral analysis. When collected by an energy-
dispersive detector (EDD), an energy-resolved intensity pattern allows observation of flu-
orescent peaks at specific energies, providing immediate identification of the constituent 
elements within the imaged sample. A typical geometry for energy-dispersive X-ray fluo-
rescence CT (EDXRF-CT) is shown in Fig. 2.4.10, whereby the EDD is placed at a right-
angle to the sample object, parallel to the incident beam. The ability to obtain elemental 
information purely based on an inherent property of matter allows one to effectively elim-
inate the polychromatic bremsstrahlung radiation. As discussed in Section 2.2.3, fluores-
cence peaks often emerge in the bright-field spectra due to secondary interaction of the in-
cident photons with the detector materials. Moving the detector out of the direct beam es-
sentially removes the ‘background’ bremsstrahlung component, leaving only the fluores-
cence signals. In the case of a focused-beam, whereby the sample is much larger than the 
beam itself, one must perform raster scanning by translating the sample to collect signal 
from the full volume. This is then repeated once the sample is rotated by a specific angle, 
building a set of 2D data which can be mathematically reconstructed for 3D volume map-
ping. The set-up may also be accompanied by a secondary detector placed in the conven-
tional bright-field position, collecting additional attenuation data. Fig. 2.4.10 also depicts 
one of the largest limiters of XRF-CT: the effect of self-absorption.

Depending on the sample size and position of the focused, incident beam relative to the 
sample, both incident and fluorescent X-rays may suffer from attenuation from the sam-
ple itself before reaching the detector. That is, while absorption is a fundamental feature 
in non-destructive imaging, this is a disadvantage when one seeks to extract weaker signals 
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Figure 2.4.10. Scanning-probe imaging geometry for X-ray fluorescence measurement. A focused X-ray beam 
illuminates a columnar section of the sample, leading to excitation and emission of fluorescent X-rays, 
collected by the energy-dispersive detector (EDD). In addition is shown a conventional transmission detector 
(TD). The effect of re-absorption of some XRF signals by the black voxel highlighted is also shown [127].

such as elemental fluorescence. One of the early reports concerning attenuation issues in 
fluorescence tomography breaks down the three key stages in fluorescence scanning where 
issues can arise [128]:

1. Incident radiation is absorbed by the medium up to the point in question within the 
sample, based on the absorption coefficients for the given photon energy.

2. A characteristic emission of fluorescent X-rays occurs, via interaction with the ele-
ment present, based on the fluorescence coefficient.

3. Each fluorescent X-ray is subsequently absorbed by the media between the point in 
question and the detector, based on the absorption coefficients at the fluorescent pho-
ton energy.

De Jonge and Vogt conducted a review of hard X-ray fluorescence tomography, highlight-
ing the core areas of limitation for the modality, as well as fields of study in which it can 
excel [127]. One of the key points noted is that “despite the conceptual simplicity, XRF 
tomography has not yet found general application, mostly due to technical challenges and 
analytical complexities.” The key limitation being the aforementioned self-absorption, 
which the authors suggest is prominent for elements lighter than potassium (Z = 19) and 
samples with a size greater than 20 𝜇m. Thicker samples with heavier elements (in the 
range between Fe and As) have however been successfully reconstructed with filtered back-
projection, without the need for self-absorption corrections [129, 130], comfortably recon-
structing samples of diameters into the hundreds of microns.

The other key issue of this dark-field technique, as with the diffraction pinhole modality 
adopted by Egan et al. [122], is the long scan times for lab-based experiments. Most X-
ray sources are limited to lower power, often sacrificing high flux in favour of improved 
focal spot size (and hence spatial resolution) to improve image quality. As such, exposure 
times for energy-dispersive systems extend to several minutes per image to reach sufficient 

80



SNR, such that chemical markers may be identified from the recorded energy spectra mea-
sured. Further to this, some EDXRF systems also employ a pinhole geometry in order to 
improve spatial resolution. Consequently, X-ray flux is reduced further, while FOV is nar-
rowed based on the sample-pinhole-detector distances. While enabling higher resolution 
through geometric magnification of the sample, the limited size of existing spectral detec-
tors typically requires the use of raster scanning to image larger samples or multiple ROIs.

It is these issues of long scan times, as well as the effects of self-absorption, which have 
limited the appeal of EDXRF-CT as a general use imaging modality. However, by limit-
ing the sample size, along with the use of light elements, it is possible to find far-reaching 
applications in multiple research fields.

Monochromatic synchrotron EDXRF investigations into low-energy components of an un-
stained fish specimen revealed Br, Zn and Ca by direct integration of the XRF peaks [131]. 
In the same study up to six low density metals, all with peaks in the 4-14 keV range, were 
successfully discriminated and mapped to electronic components within a SIM card. The 
non-destructive advantages of EDXRF-CT were reviewed for the fields of environmen-
tal and planetary science, and once more highlighted the issues of self-absorption and 
scan time as the main limiters to its wider appeal [132]. A comprehensive review into the 
EDXRF applications within the life sciences reaches the same conclusions, but notes that 
continued improvements in detector technology will enable faster scan times and general 
use in lab-based environments [133]. Such lab studies have been evaluated using a poly-
chromatic source with the HEXITEC detector, with material-specific mapping of spectrally 
similar elements achievable for XRF emission peaks up to 30 keV, including the mapping 
of high density materials such as lead [134].

2.5 Summary

In summary, this chapter has mapped the evolution from conventional black and white X-
ray CT to the world of colour imaging modalities in the 21st century. Through the rapid 
advancement in pixelated, energy-sensitive detector hardware, lost energy-based informa-
tion can now be exploited to extract chemical insight which previously required additional 
characterisation methods on top of X-ray CT.

From the earliest steps into spectral imaging through DECT, the transition to energy-
sensitive techniques now relies only on the replacement of an energy-integrating detec-
tor with that of a multispectral or hyperspectral sensor. The technological differences and 
acquisition routines of dual-energy [20], multispectral, and hyperspectral detectors [33] 
were discussed, along with the common challenges associated with the collection of spec-
troscopic data. In particular, the count rate limits and poor SNR observed in hyperspectral 
imaging provide a stumbling block in its widespread application.

Where compromises in scan time or sample selection cannot overcome the spectral chal-
lenges, developments in 4D reconstruction routines have stepped in. This chapter sum-
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marised the range of analytic and iterative routines commonly implemented in XCT, and 
the required adjustments needed to handle the additional spectral dimension. To date, very 
few studies have built established hyperspectral reconstruction frameworks [78, 79]. The 
work in this thesis aims to fill this research gap through the exploration of regularised re-
construction algorithms in 4D.

The bright-field imaging modality has been reviewed, with several applications across geol-
ogy, catalysis and the life sciences. The field of bioimaging has been shown as of partic-
ular interest, given the prominent use of high contrast stains. While multispectral imag-
ing of stained specimens has proven efficient in multi-stain mapping [106–108], the need 
to define energy thresholds requires prior optimisation and can limit the ideal choice of 
stains to those spectrally distinct from one another. As such, full flexibility in exploring 
new stain combinations becomes restricted. Hyperspectral imaging removes the need for 
prior knowledge and optimisation, offering full attenuation profiles for complete analysis 
of any characteristic markers available, regardless of spectral similarity. Despite this, the 
area of bioimaging in the bright-field hyperspectral regime remains largely untapped, and 
offers a unique opportunity to explore variations in staining procedures, such as the interac-
tion between overlapping contrast agents. Quantitative analysis, as has been performed in 
multispectral studies [105–107], has to date not been investigated with hyperspectral data, 
outside of a single analysis of relative chemical distribution [92]. Full attenuation profiles 
in each voxel enable precise fitting to extract deeper chemical information about the sample 
composition and elemental concentration. Advancements in this area represent an opportu-
nity for further exploration to be conducted as part of the work in this thesis.

Finally, a brief review of the alternative modalities offered by hyperspectral systems was 
conducted. These dark-field modalities provide an additional layer of characteristic signals 
beyond what is possible with conventional X-ray and multispectral CT. Given its infancy, 
these modalities and their widespread application fields constitute entire research projects 
of their own, outside the scope of this thesis.
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Chapter 3

Materials and Methods

This chapter details the equipment used and samples created in order to conduct the X-
ray scanning, reconstruction and analysis for the research conducted in this thesis. Two 
lab-based X-ray scanning systems were utilised throughout the research, both based in the 
Henry Moseley X-ray Imaging Facility (HMXIF) at the University of Manchester. As de-
scribed below, each system required its own level of testing, development, and optimisation 
in order to implement the bright-field imaging modality with the energy-sensitive detector. 
This chapter provides a breakdown of the experimental systems used, and details the work-
flow developed to enable spectral X-ray CT for both a custom-built and commercial X-ray 
system.

For Chapters 4 and 5, the same hyperspectral detector (HEXITEC) was used for all energy-
sensitive studies. This chapter describes in depth a full characterisation of the HEXITEC 
detector used in the experimental work, including all calibration and pre-processing steps 
applied prior to any X-ray scan acquisition. The properties are compared to the ideal work-
ing conditions and parameters of a standard HEXITEC system. Performance of the detector 
is further evaluated through analysing the various forms of detector ’cross-talk’, including 
pulse pile-up and charge sharing, as previously discussed in Section 2.2.3.

Full details are also provided for the samples used in Chapters 4 and 5, including all biolog-
ical specimens and their staining procedures, as well as each custom-made phantom object.

3.1 Laboratory X-ray scanning systems

The first X-ray system used was the custom-built, walk-in “Colour Bay” system, designed 
for different modalities of spectroscopic X-ray imaging and tomography. A photograph of 
the standard set-up is shown in Fig. 3.1.1. A work bench was installed to allow for adjust-
ments of the imaging set-up, depending on the desired imaging mode. The fundamental 
system set-up contained the three key components required for X-ray tomography: an X-ray 
source, a rotation/sample stage, and an X-ray detector. Additional components such as tub-
ing to reduce X-ray scatter, and beam slits for collimation of the incident beam, were also 
available. For the Colour Bay, a GE ISOVOLT Titan E generator was installed. A Comet 
225HP/11 X-ray tube was used, with a Tungsten target for X-ray generation. A spot size of 
1 mm was used, with a maximum achievable power of 1800 W, and a full working energy 
range from 5 – 225 kV. The source was controlled via a control panel, which enabled ad-
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justment of both beam voltage and current, with a lower limit of 5 kV and 0.1 mA, equat-
ing to a power of 0.5 W. The X-ray tube was water-cooled with a heat exchange chiller. Full 
product specifications of both the generator and X-ray tube may be found elsewhere [1, 2]. 
The sample stage consisted of three individual motor stages: a rotation stage to conduct full 
360∘ rotation of a sample for X-ray CT acquisition, and two translation stages for vertical 
and horizontal movement required prior to, or during, scanning. The stages were controlled 
by a programmable ‘Galil Motion Control’ box [3], with custom scripts developed in MAT-
LAB to allow full user control of the sample position. Such scripts were updated by the au-
thor (Ryan Warr) to ensure full working operation.

Figure 3.1.1. Standard experimental set-up of the X-ray system within the ’Colour Bay’ walk-in hutch, 
situated at the HMXIF. Key components (red circles) are the source, rotation/sample stage, and the detector. 
Additional components (blue dashed circles) may be included or varied to fine-tune the imaging procedure. 
These include a tube for reduction of X-ray scatter, and beam slits to colliate the incident beam.

A secondary walk-in bay known as the “High Flux Bay” (HFB) was used, containing a 
conventional flat-panel, energy-integrating detector for XCT. The HFB, also based at the 
HMXIF, was a commercial Nikon 320/225 kV XTEK system, with interchangeable X-ray 
sources to suit the needs of the user. For all work in this thesis, the 225 kV source was used, 
with X-ray current stable down to 10 𝜇A. Full flexibility in X-ray source settings, along 
with sample stage and detector motion control, were enabled by the Nikon Inspect-X soft-
ware. In order to conduct spectroscopic imaging within the Nikon system, the HEXITEC 
detector was installed in a parallel configuration with the source and sample stage, as shown 
in Fig. 3.1.2, such that the source, sample and detector were all aligned along the same 
bright-field imaging plane.
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Figure 3.1.2. Standard experimental set-up of the hyperspectral X-ray system within the ’High Flux Bay’ 
walk-in hutch, situated at the HMXIF. Key components (red circles) are the source, rotation/sample stage, and 
the spectroscopic detector. The built-in energy-integrating detector is out of view, behind the HEXITEC along 
the same imaging plane.

3.2 Hyperspectral (HEXITEC) detector

All experimentation and research concerning energy-sensitive X-ray tomographic imag-
ing was performed using the HEXITEC hyperspectral detector system. The HEXITEC is 
a pixelated, single photon counting (SPC) X-ray detector designed to process and measure 
incident photon energy at a high resolution, as well as the position on a pixel-by-pixel ba-
sis. A photograph of the HEXITEC device is shown in Fig. 3.2.1. The detector sensor chip 
consisted of a 1 mm thick CdTe single-crystal semiconductor, which was bump-bonded to 
an application specific integrated circuit (ASIC), producing a total detection area of 2 cm×2 
cm. The pixel array consisted of 80×80 pixels, with a pixel pitch of 250 𝜇m (200 𝜇m pixel 
pad with a 50 𝜇m inter-pixel gap [4]). An additional 1 mm aluminium plate can also be 
added as a filter over the detector sensor. Table 3.2.1 provides a summary of the main char-
acteristics of the HEXITEC detector, with specifications taken from the HEXITEC specifi-
cation data sheet [5], articles related to the development of the detector system, and a 2016 
review of currently available spectral detector systems [4, 6–8]. The table therefore pro-
vided optimum working parameters for the detector, however some aspects of the detector, 
such as energy resolution, vary over time and thus required testing for the specific device. 
Such investigations are described in greater detail below in Section 3.2.1. The system ran 
off a 12 V power supply, while data transfer was performed using a GigE Ethernet connec-
tion from the device to a control PC, where the HEXITEC software was installed and en-
abled raw spectroscopic images to be viewed.

When an incident X-ray photon reaches the HEXITEC sensor and interacts with the CdTe 
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Figure 3.2.1. Photographs of the HEXITEC hyperspectral detector. (a) Complete HEXITEC unit, with the 
CdTe sensor removed. Measurements of the full detector device are included. (b) Close-up of the CdTe sensor 
with scale included [4].

semiconductor crystal, a number of electron-hole (e-h) pairs are generated, in the form of a 
’charge cloud’. For a CdTe sensor, an e-h pair is produced for every 4.4 eV of the incident 
X-ray photon energy [9]. In the case of the HEXITEC, a ‘bias voltage’ of -500 V is applied 
across the detector to create an external electric field, enabling the charge cloud to drift to-
wards the electrodes. Due to their improved charge mobility, it is the electrons which are 
measured to form the detector signal, as is true for most CdTe-based detectors [9]. In or-
der to extract energy-based information, the key component of the HEXITEC is the ASIC, 
designed to match the layout of the sensor chip (6400 pixellated elements over the 80×80 
array). The CdTe material is bump-bonded to the ASIC using gold stud and silver epoxy 
flip-chip bonding. Each pixel of the ASIC has its own electronics, with a diagram shown 
in Fig. 3.2.2. The circuit uses a charge sensitive pre-amplifier in order to integrate the cur-
rent signal and generate a proportional voltage. The output signal is shaped with a shaping 
amplifier and, following high-frequency noise filtration, the peak signal is held until mea-
sured by the readout circuit. The total peaking time of the signal is approximately 2 𝜇s. As 
the signal in each pixel is processed and measured, a ‘frame’ of data is built across the pixel 
array. The stored analogue signals are then read out for each row of the detector, at a frame 
rate of up to 8.9 kHz, and converted to digitised values [4]. Once transferred to the control 
PC via Ethernet connection, the software represents the data as a histogram in each pixel, 
distributing photon events into narrow energy channels, based on the calculated energies in 
the detector ASIC.

Semiconductor Material Pixel Size (𝜇m2) Pixel Number Detection Efficiency

1 mm CdTe 250×250 80×80 ≈ 100% at 40 keV
≈ 40% at 140 keV

Max Counts (Mcps/Pixel) Energy Channels Working Energy Range (keV) Energy Resolution

0.001 ~200-800 4-200 keV ~800 eV at 59.9 keV
~1.5 keV at 141 keV

Table 3.2.1. Summary of the technical specifications for the HEXITEC detector system. Detector 
specification values obtained from the HEXITEC data sheet [5] and relevant published literature on the device 
development [4, 6–8].

As described above, the HEXITEC was installed in both the Colour Bay and HFB sys-
tems, based on the samples under investigation and X-ray settings required. The HFB X-
ray source offered up to 10× lower beam current, and therefore the system was prefer-
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Figure 3.2.2. Diagram of the circuitry in each pixel of the HEXITEC ASIC. All core components, including 
the pre-amplifier, shaping, and filter electronics, as well as the peak-hold system, are labelled. In addition, the 
bias circuitry enables the detector to be held at a pre-defined voltage. A calibration circuit allows 
characterisation of the pixel electronics [10].

able for the study of biological specimens, given their lower overall attenuation in soft tis-
sue regions, even after chemical staining with contrast enhancers. In order to conduct a 
full CT scan, the HEXITEC required the use of a ’triggering’ system in order to synchro-
nise the start/stop acquisition points for the detector, and the corresponding rotation of the 
sample stage to the next angular position. This is in contrast to most commercial devices, 
whereby the detector is integrated into the experimental system and automatically enables 
synchronicity between all components. Triggering of the HEXITEC was enabled through 
a transistor-logic USB input cable and controller box [11], as shown in Fig. 3.2.3. The ca-
ble was connected between the desired input of the trigger controller, which connects to the 
HEXITEC device, and the sample stage motor control PC by USB connection. By enter-
ing triggering mode through the HEXITEC software, synchronicity between acquisition 
and sample rotation was achieved based on exposure time. For each acquisition, a trigger 
signal was sent to the HEXITEC, informing the device to record an image for a duration 
equal to the selected exposure time (Input 2 mechanism). Following the end of the expo-
sure, the sample stage would rotate the sample to the next position, and a new trigger was 
sent. The process was repeated until a full CT scan was complete. For the Colour Bay sys-
tem, the triggering system was controlled using the same script as the MATLAB-controlled 
sample stages.

For the HFB system, an adapted routine was required given that manipulation of the sample 
rotation/translation stage was controlled by Nikon’s Inspect-X software. Therefore, a link 
between the trigger system and Inspect-X was developed through the use of Nikon’s Inter 
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Figure 3.2.3. Photo of the HEXITEC system with the trigger controller installed. The cable connects directly 
to the HEXITEC, and runs through the trigger controller, before then connecting via USB to the sample stage 
PC. A magnified image of the triggering system (red box) is shown, with variable input based on trigger 
system. For all experiments, Input 2 was used.

Process Communication (IPC) tool. IPC allows users to control the Nikon system through a 
custom-built application. Here, IPC was used to enable the automatic acquisition of energy-
sensitive images for a full CT scan, using the HEXITEC as opposed to the pre-installed flat 
panel detector. The application was developed using the Microsoft .NET platform, with 
software written in the C# programming language. Similar scripts were previously written 
to explore non-standard geometries and imaging routines within Nikon systems, including 
laminography [12] and temporal CT [13]. For the imaging work in this dissertation, the au-
thor adapted these scripts and built a workflow to alter the functionality for hyperspectral 
acquisition using the HEXITEC detector. A graphical user interface (GUI) was built to al-
low full tracking of the X-ray settings (source and sample stage), and set the parameters of 
the CT acquisition. By selecting the desired number of projections and exposure time, the 
triggering system and Inspect-X were synchronised to enable sequential acquisitions for the 
correct angular positions. An output log tracked the progress of each radiograph, and pro-
vided related metadata following scan completion. A representation of the X-ray CT set-up 
using the HEXITEC and the HFB is shown in Fig. 3.2.4, as well as the author’s final design 
of the developed GUI.
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Figure 3.2.4. Design of the experimental set-up for CT imaging using the HEXITEC in the commercial Nikon 
system. (Top) Ethernet connection from the HEXITEC transferred data to a computer, to be stored and 
viewed in the HEXITEC software. The trigger controller cable was connected between the HEXITEC and the 
HFB computer, containing the Inspect-X software (source and motor control) and IPC application linking all 
equipment. (Bottom) Interface developed using IPC, allowing the user to connect directly to Inspect-X and 
control the settings for the CT scan, as well as monitor source and sample settings. The output logged the 
progression of the full CT scan.

3.2.1 HEXITEC calibration

In order to identify spectral distortions, noisy or ineffective pixels within the HEXITEC 
detector, a calibration was performed prior to the collection of new datasets. In addition, 
the calibration enabled the direct relationship between hyperspectral channel number and 
photon energy to be determined, as well as to assess the current energy resolution of the 
system. Calibration was conducted using a sealed radioactive source of 241Am. The source 
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contained an adjustable ‘dial’ of six metal foils, namely: Cu, Rb, Mo, Ag, Ba, and Tb. The 
241Am source emits radiation, which impinged onto a user-selected metal foil, resulting in 
the emittance of characteristic fluorescent X-rays. The source was housed in a brass and 
tungsten enclosure. For each calibration, foils of Ba and Tb were chosen, producing flu-
orescence corresponding to their respective K𝛼 and K𝛽 peaks. Further to this, the 241Am 
source also emitted some gamma radiation which can also be detected and used as a char-
acteristic signal (𝛾 photopeak at 59.54 keV). The detector was placed 2 cm away from the 
source as an optimum position for high count rate and uniform exposure over the full pixel 
array. Prior to exposure, the detector acquired a set of offsets (images acquired with no 
radiation source), used as a form of dark current subtraction for all future data collected. 
Using the HEXITEC GUI, data collection was set for 60 minutes. Each of the two chosen 
metal foils were exposed to the 241Am source for 30 minutes, producing energy spectra in 
each pixel containing characteristic peaks corresponding to each foil. A total of 300 chan-
nels were included in the histogram, with all spectral information up to the highest energy 
peak (241Am𝛾 – 59.54 keV) captured within this channel range. Figure 3.2.5 shows a global 
spectrum for the total acquisition across all pixels, with indicators given for the peaks of: 
241Am𝛾, Tb K𝛼 and K𝛽, and Ba K𝛼 and K𝛽.

Figure 3.2.5. Global spectrum for emissions of 241Am on to the metal foils of Ba and Tb. Peaks are 
highlighted and labelled for the relevant characteristic peaks of Ba and Tb, along with the photopeak from 
241Am.

Measurement of the energy-channel calibration was calculated using a custom MATLAB 
programming script. An interactive GUI enabled the user to select the peaks of interest, and 
match them to the corresponding energies of the known fluorescence peaks. The known 
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values (taken from the NIST database [14]) of the fluorescence peaks are:

• Ba K𝛼 - 32.19 keV, K𝛽 - 36.38 keV

• Tb K𝛼 - 44.48 keV, K𝛽 - 50.39 keV

Combined with the 241Am peak, these spectral markers were plotted as channel number ver-
sus known peak energy, enabling a linear fit to be determined. Fig. 3.2.6 shows an example 
of a fitted relationship based on selected peak positions. The calibration of the HEXITEC 
showed strong alignment, with an R2 value of 0.99 for the linear fit. A linear fitting function 
was then applied to extract the linear equation of the calibration, such that all channel num-
ber values may immediately be transformed into photon energies. For the fit in Fig. 3.2.6, 
the resulting fitting equation was:

  \textrm {Energy (keV)} = 0.278 \times \textrm {Channel Number} + 1.23 \label {eq:Energy_channel_calib}        (3.1)

For each calibration test performed, it was confirmed that the R2 value remained at 0.99 or 
above to ensure a correct linear relationship, otherwise the full calibration was repeated.

Figure 3.2.6. Linear fit calibration between channel number and energy for the identified characteristic peaks. 
In total, 5 data points were fitted with a linear fitting routine.

A further gain calibration procedure was applied to the HEXITEC spectra, in order to ac-
count for general inhomogeneities in individual pixel elements. These differences typically 
lead to variations in spectral performance, and can lead to gain shifts, whereby spectra be-
tween pixels can appear to be offset in energy, or suffer from degraded energy resolution 
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or sensitivity, with broadening in the FWHM of peaks in a global spectrum. To correct 
for this, the method proposed by Egan et al. [15] was implemented, which uses the con-
cept of correlation optimised warping (COW). The principle of COW uses linear stretching 
and compressing of each pixel spectrum to best align with a choice of reference spectrum. 
Further information on the MATLAB toolbox developed for COW can be found elsewhere 
[16]. Here the COW method was applied to the calibration dataset, which works well due 
to its high photon intensity and uniform distribution over all detector pixels. Through prior 
assessment of several pixel spectra, looking for good energy response and little peak broad-
ening, a reference was chosen each time. All pixels were then adjusted on a pixel-by-pixel 
basis aimed at matching the gain of the reference pixel. The result of one such implementa-
tion of COW is shown in Fig. 3.2.7, where two pixel spectra are compared before and after 
the gain correction. The output of the routine produces an 80×80 matrix of ’warping’ val-
ues, indicating the gain shift required for each pixel, which may be applied during process-
ing of any real dataset.

Figure 3.2.7. Effect of the COW method on the calibration dataset, containing spectral signals from Ba, Tb, 
and 241Am. Pixels (60,20) and (20,60) were used to highlight initial differences with regards to spectral gain 
shift (Left), along with the same spectra after application of the COW method, showing better alignment 
(Right).

Finally, a ’bad pixel’ map was assembled, highlighting any pixels showing erroneous values 
due to dead or ineffective pixels. Such pixels typically appear with a ’condensed spectrum’, 
with all photon counts registering at lower energies than surrounding pixels. Similar defects 
can appear due to the absence of a bond between the sensor material and underlying ASIC, 
as described elsewhere [17]. Using a sample flatfield image, each individual pixel was anal-
ysed through a MATLAB script and bad pixels were identified by measuring the propor-
tion of photon counts measured in the low energy channels. The result produced a bad pixel 
map, as shown in Fig. 3.2.8, in the form of a binary 80×80 matrix for ’good’ (value = 0) 
and ’bad’ (value = 1) pixels. Also shown is an example flatfield image both before and af-
ter bad pixel correction, acquired with a X-ray beam voltage of 50 kV. In order to correct 
bad pixels, the method interpolates over all nearest neighbours of the bad pixel (that are 
also ’good’ pixels) and averages their energy spectra, with the bad pixel allocated the new 
mean spectrum values. The routine works well for improving uniformity of the image. It 
should also be noted that typically pixels close to the detector edges are more prone to re-
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duced spectral performance, due to defects or impurities in the CdTe crystal [4, 18]. Finally, 
the figure shows an example of a plot in the case of a good pixel response, and the effect of 
correction on an ineffective pixel with poor spectral response.

Figure 3.2.8. Demonstration of the bad pixel correction routine. Left Column: Top - Example flatfield image 
acquired at 50 kV, shown for a single energy channel (channel 120). Colour bar measures photon counts. Bad 
pixels appear as very low photon numbers for the given channel. Middle - Bad pixel map identifying all 
ineffective pixels that require correction. Bottom - The same flatfield image following correction of bad 
pixels. Right Column: Top - Example of a fully functioning pixel with good spectral response. Middle - 
Example of a poorly responding detector pixel. Bottom - The same ineffective pixel after correction.

3.2.2 Evaluation of HEXITEC characteristics

Using the same calibration dataset described above, an evaluation of the energy resolution 
for each pixel was performed. As performed elsewhere [10], measurement of the full width 
at half maximum (FWHM) of characteristic peaks provides a clear indicator of the spectral 
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resolution in a given pixel. Here, an evaluation of the resolution was made through anal-
ysis of the 241Am peak at 59.54 keV. Identification of all peaks present was performed via 
a peak-search algorithm in MATLAB, with the highest energy peak found corresponding 
referring to 241Am. The FWHM was measured using a standard procedure of parabolic fit-
ting and interpolation [19]. Poorly-functioning or dead pixels were identified by means of 
setting a count threshold, below which pixels were considered non-functioning. Fig. 3.2.9
shows an example distribution of the FWHM values measured for all functioning pixels. 
The distribution is also shown in the form of a pixel map, revealing the locations of any 
pixels with a poorer spectral resolution. All pixels identified as non-functioning were la-
belled as zero in the pixel grid, and were excluded from the final calculations of average 
FWHM for the peak. A number of pixels with poor spectral response, as well as those high-
lighted as ’dead’, were close to the edges of the detector. This was attributed to the effect 
of leakage current, observed most strongly at the detector perimeter. In addition, material 
defects and bonding issues to the underlying ASIC contribute to the presence of erroneous 
pixel response [10]. For the peak evaluated in Fig. 3.2.9, the energy resolution of the sys-
tem, as determined by the mean FWHM value, was 1.27 ± 0.47 keV.

Figure 3.2.9. Spectral resolution statistics based on the 241Am photopeak. (Left) Histogram depicting the 
frequency distribution of FWHM values of the peak, measured for each pixel. Dead pixels were not included. 
(Right) Pixel map distribution of the FWHM values. Dead pixels were labelled as zeros. Many 
non-functioning pixels emerge at the detector edges due to leakage current and poor pixel bonding.

Further investigations were conducted on the difference in spectral resolution, both as a 
function of peak energy, but also as a function of time. Though new calibrations of the 
HEXITEC were performed prior to each experimental acquisition, it was important to con-
sider changes in the resolution of the system in each case also. Therefore, each factor was 
evaluated, with results shown in Fig. 3.2.10. For the analysis of resolution as a function 
of energy, mean FWHM are shown, along with error bars corresponding to one standard 
deviation, based on FWHM values measured over all functioning pixels. The poorer spec-
tral resolution of the Ba 𝐾𝛽 peak was attributed to a failure of the peak search algorithm to 
consistently identify the fluorescence signal. The Ba 𝐾𝛽 peak appears at a much lower in-
tensity than surrounding peaks, as observed in the global spectra in Fig. 3.2.5, and thus at 
a single pixel level the lower intensity peak becomes harder to identify amongst any back-
ground noise fluctuations. The failure of this algorithm for the Ba 𝐾𝛽 peak is highlighted 
by the fact that a total of almost 1900 pixels were identified as dead, around 30% of all pix-
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els. This is in contrast to an average of 83 dead pixels (1.3%) for the other four peaks. As 
such, the resolution determined through the Ba 𝐾𝛽 signal was identified as an outlier. Con-
sidering only the remaining four peaks, the spectral resolution varied by approximately 
40% between the lowest average FWHM (1.27 keV for 241Am) and the highest FWHM 
(1.78 keV for Tb 𝐾𝛼).

When considering the same single peak across multiple calibration datasets, strong con-
sistency was observed over several years of detector resolution measurements. Using the 
241Am photopeak as the reference, as performed elsewhere with similar radioactive samples 
[4, 6, 10], spectral resolution at 59.5 keV differs by just 7% between the lowest and highest 
FWHM values, as detailed in the table included in Fig. 3.2.10. Also included are the num-
ber of dead pixels identified in each case, showing a gradual increase in non-functioning 
pixels between calibrations. This was expected given the significant use of the detector, re-
sulting in increased likelihood of additional issues with pixel bonding or leakage.

Figure 3.2.10. Variation in energy resolution as a function of peak energy and time. (Left) Average FWHM 
values for the five peaks considered in the calibration dataset. Error bars show one standard deviation. The Ba 
𝐾𝛽 peak shows poorer spectral response due to inconsistencies in the peak search algorithm. (Right) Energy 
resolution based on the 241Am photopeak for several calibration datasets acquired over several years. Strong 
consistency in spectral resolution was observed. Full details on peak statistics, including the number of dead 
pixels identified, are included.

Finally, analysis of the degree of detector ’cross-talk’ was evaluated, based on spectral dis-
tortion due to both pulse pile-up and charge-sharing. Each phenomenon was previously de-
tailed in Section 2.2.3.

Due to the large pixel size of the HEXITEC detector, in comparison to other spectral sys-
tems and the majority of energy-integrating detectors, pulse pile-up was a common occur-
rence for the bright-field imaging modality. Beyond improvements in the detector hardware, 
minimisation of the pulse pile-up is achieved through reduced X-ray flux, reducing the like-
lihood of simultaneously recorded photon events, or through an increase in detector frame 
rate to process each single photon more quickly. In reducing X-ray flux, the beam voltage 
or current must be lowered. Beam voltage adjustment for bright-field imaging was limited, 
given that the mean energy of X-ray photons in the polychromatic spectrum must be suffi-
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ciently high to produce visible K-edges of the material phases under investigation. As such, 
where applicable the X-ray current was reduced to minimise photon flux. For the Colour 
Bay system used, as described in Section 3.1, a minimum X-ray current of 0.1 mA resulted 
in limited flexibility in reduced flux, resulting in more prominent cases of pulse pile-up. An 
example single pixel flatfield spectrum is shown in Fig. 3.2.11, taken under the scanning 
conditions of 60 kV and 0.1 mA. The settings described match those used for the investi-
gation of a multi-phase phantom sample studied in Chapter 4, and described further below 
in Section 3.3.2. As stated, the X-ray current was at its lower limit, while beam voltage was 
chosen to ensure capture of known absorption edges present. However, significant pulse 
pile-up occurred, resulting in a significantly distorted spectrum, far from the conventional 
Bremsstrahlung shape expected. The presence of pulse pile-up was clearly identified by two 
key features of the spectrum (as labelled in Fig. 3.2.11):

1. The lack of low photon energy events. Due to the high percentage of co-incident pho-
ton events, the majority of low energy photons were measured simultaneously with 
additional photons, registering each time as a single event of higher energy.

2. Photon events beyond the selected beam voltage. As expected with any polychromatic 
spectrum, the selected beam voltage defines the maximum energy of any incident pho-
ton, therefore no photon energies beyond this limit should be identified. Due to pulse 
pile-up, a number of photon counts were registered at an energy beyond the voltage 
limit.

Figure 3.2.11. Single pixel (40,40) spectrum for a flatfield acquired at the scan settings of 60 kV and 0.1 mA. 
Significant pulse pile-up occurred, with very few low energy photon events recorded, and a number of events 
incorrectly assigned an initial photon energy beyond the maximum of 60 keV. Such effects are labelled and 
highlighted on the spectrum.
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Where flux could not be reduced further, changes in the detector frame rate were inves-
tigated. In the HEXITEC software settings, the frame rate may be manually adjusted for 
faster readout, up to the maximum rate of 8.9 kHz. Due to stability and software limita-
tions, the maximum frame rate was not achievable for the existing experimental set-up. 
Therefore, a set of tests were performed, acquiring flatfield spectra under the same source 
settings, adjusting the frame rate in each case. With reduced pile-up, the total counts mea-
sured in the spectrum would rise, given that more photon events were being measured indi-
vidually, as opposed to simultaneously. However, if the frame rate was too high, a drop in 
counts would be observed as the acquisition PC could not maintain its readout rate. There-
fore, total counts recorded was used as a stopping criteria for identifying the upper frame 
rate limit of the experimental system under given conditions.

Fig. 3.2.12 shows the global spectra (all pixels summed) for a series of flatfields, acquired 
at the same settings (60 kV, 0.1 mA) and geometrical configuration of the source and de-
tector in the Colour Bay system. All spectra were obtained for a total of 180 seconds. The 
frame rates, as labelled, were the only parameter altered. Following acquisition, total counts 
registered in the spectrum were determined by analysis of the raw data, summed over all 
pixels. As observed in each spectrum, the severity of pulse pile-up reduced with increas-
ing frame rate, up to the maximum frame rate achievable in the HEXITEC settings for this 
system at 8.0 kHz. An additional plot was included in the figure to map the rate of change 
of global counts, indicating that detected photon events continued to rise with frame rate. 
The diminishing returns at increasingly higher frame rates suggested that close to all pho-
ton events were being individually recorded. It should be noted however that, even at the 
highest frame rate for the HEXITEC, the scan settings used in this instance still resulted in 
minor pulse pile-up, as highlighted by the presence of some counts beyond the 60 kV upper 
limit. For all biological specimens studied, due to the lower attenuation soft tissue phases 
present, all scans were conducted using the HFB system, where greater flexibility in X-ray 
flux was available. Beam current was set closer to the 10 𝜇A limit, such that higher beam 
voltages could be utilised to capture the absorption edges of higher attenuation chemical 
stains.

Calibration spectra were once more used to evaluate the degree of charge sharing observed 
for the HEXITEC, and assess the degree to which the built-in charge sharing discrimination 
regime counteracts this. Fig. 3.2.13 shows two global calibration spectra acquired over the 
same time period, with 30 minute exposures to the Tb and Ba metal foils from the 241Am 
source. Following the application of charge-sharing discrimination (CSD), global counts 
fell from 3.8 × 107 to 1.8 × 107, equating to approximately 53% of events deleted by the 
CSD correction scheme, due to photons registering in more than one pixel. The effect of 
the CSD method was clear, with the low energy background greatly reduced, with only 8% 
of global counts registered below an energy of 10 keV, compared to 22% of global counts 
prior to application of CSD. Despite the removal of a significant proportion of photon 
events, the counts recorded in the characteristic peaks all increased, respectively by 15%, 
13%, and 44% for the Ba 𝐾𝛼, Tb 𝐾𝛼, and 241Am peaks. As such, the application of CSD, 
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Figure 3.2.12. Reduction in pulse pile-up through changes in frame rate. A series of six flatfield images were 
acquired at 60 kV and 0.1 mA, with the global spectra for each flatfield shown. The frame rate used for each 
dataset is labelled. Also included is a plot comparing the global count rates as a function of frame rate.

where applicable, offered improved spectral resolution. However, as described in Section 
2.2.3 and elsewhere [4], CSD worked effectively only when occupancy did not exceed more 
than a single photon event in a block of 3 × 3 pixels, equivalent to 11%. For the investiga-
tion of bright-field imaging, the high X-ray fluxes utilised prevented the use of CSD from 
offering such benefits to the resulting spectral analysis. The figure shows a number of addi-
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tional peaks, at energies below the characteristic XRF signals from the calibration dataset 
(Ba 𝐾𝛼, 𝐾𝛽, Tb 𝐾𝛼, 𝐾𝛽, 241Am𝛾) and above the low energy background. As labelled in 
Fig. 3.2.13, fluorescent peaks of Cd and Te are identified, owing to interaction of the inci-
dent photons with the detector materials. Origins of the lower energy signals cannot be ab-
solutely confirmed, but a possible cause is the presence of escape peaks due to the gamma 
radiation of the 241Am source producing XRF excitation of the metal foils, as opposed to the 
alpha radiation. Such interactions would produce signals in the range of 9-27 keV (gamma 
photopeak at 59.54 keV minus the energy of the XRF photon) and therefore could produce 
the observed low energy peaks.

Figure 3.2.13. Evaluation of the charge sharing discrimination (CSD) correction on a calibration dataset. 
Significant reduction in the low energy background was observed following CSD correction. Despite a large 
number of deleted events, the characteristic peaks (labelled) all increase in total counts registered. Other 
peaks have been labelled, including characteristic XRF signals from the detector materials (CdTe), as well as 
possible escape peaks due to the gamma emissions from the 241Am source followed by XRF emissions of Tb 
and Ba.
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3.3 Sample preparation

For the studies discussed in Chapters 4 and 5, a number of stained biological specimens 
were created and produced. In Section 3.3.1, a breakdown is provided on the samples pro-
duced, containing images and explanation on the specimens chosen. Full details on the 
staining procedure are provided in the respective Methods sections of each paper in Chap-
ters 4 and 5.

All of the research projects in this thesis also involved the use of multi-phase phantoms. 
In Chapter 4, the phantom offered a simple test case for evaluating the results of novel re-
construction methods, in a situation where full sample composition and dimensions were 
known. In Chapter 5, the phantoms form a crucial part of the quantitative analysis by acting 
as a means of spectral calibration. In Section 3.3.2 details are provided on how each sam-
ple was produced and prepared for imaging, as well as the reasoning behind their creation. 
To avoid excessive repetition, it should be stated that the delivery and storage process for 
all biological and phantom samples was identical. All samples (unless stated otherwise) 
were prepared at the University of Veterinary Medicine in Vienna, and followed animal 
care guidelines approved by the Administrative Panel on Laboratory Animal Care of the 
University of Veterinary Medicine in Vienna. Following preparation, the fixed specimens 
and chemical phantoms were shipped to the University of Manchester, UK, where they 
were then stored in a refrigerator at the HMXIF, at approximately 4∘C. Once experimental 
time was available, samples were removed from refrigeration as needed, and mounted to the 
sample stage in the relevant experimental hutch. Following imaging, each sample was then 
returned to its storage container in the refrigeration unit. In each case, scanning of samples 
was aimed to be completed within 2-3 months of initial arrival at the HMXIF, in order to 
avoid any long-term deterioration of the biological specimens, or spreading of the contrast 
agents outside of the desired soft tissue regions. The exception is the single-stained lizard 
head specimen, which was produced in 2017, as detailed in the section below.

3.3.1 Biological staining procedures

Figure 3.3.1 provides a set of photos of the three biological specimens used across the two 
research studies described in Chapters 4 and 5. For each sample, sample type and size was 
chosen to suit imaging with the small detection area of the HEXITEC. The labels included 
in the figure show the full length of the sample, where it could not be fully captured within 
the detector FOV. The imaged section, which in the case of the lizard head covered the full 
sample, is shown as a dashed region.

In Chapter 4, a single, iodine-stained lizard head specimen was used as a simple biological 
case study to analyse the capability of hyperspectral imaging to identify and map a chem-
ical contrast agent distributed inhomogeneously across multiple soft tissue regions. The 
lizard head sample (a species of the Anolis genus) was purchased as a fully-prepared, fixed 
and preserved specimen from Nasco Education (USA) [20] in January 2017 for previous 
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Figure 3.3.1. Photographs of the stained biological specimens, each of which were chemically fixed and held 
in individual containers. Sample dimensions are overlaid. An approximation of the imaged section of each 
sample is highlighted (dashed box). All measurements are in mm.

experimental work outside of this thesis. As described in the corresponding Methods sec-
tion of Chapter 4, in order to aid long-term stability, the sample was fixed in formalin and 
stored in 70% ethanol, before heavy metal staining took place. The chemical fixation is typ-
ically performed as a first step to minimise sample shrinkage [21].

The mouse hindlimb and forelimb specimens shown were fully prepared at the University 
of Veterinary Medicine, Vienna. Adult mice were euthanized as part of the research, com-
plying with animal care guidelines. The first staining procedure was that of the vasculature, 
whereby staining was achieved by the perfusion of the contrast agent through the blood ves-
sels. This technique has been shown to offer fast staining across the full body of murine 
samples [22]. Upon removal of the desired limbs, staining of the soft tissue was performed. 
For the hindlimb, elemental iodine in absolute ethanol was used, while the forelimb used 
the commonly applied Lugol’s iodine (I2KI), both of which have been shown to provide 
rapid tissue penetration and strong contrast to multiple soft tissue structures. The triple-
stained forelimb was also stained with PTA prior to the Lugol’s solution, given its much 
slower penetration rate [23, 24]. The final samples were stored in polypropylene tubes, 
which provided little attenuation under X-ray imaging and therefore did not affect experi-
mental results. Further, the samples were fixed such that sample movement during scanning 
was not a concern.

3.3.2 Phantom sample preparation

The study in Chapter 4 uses a multi-phase powder phantom, with an aluminium exterior, 
as a test sample for studying the efficacy of novel spectral reconstruction algorithms. De-
sign specifications of the phantom are shown in Fig. 3.3.2, along with a photograph of the 
sample. The phantom was produced at The University of Manchester, UK, with the exter-
nal aluminium matrix formed as an initial step, and then sequentially filled with a single 
metal-based powder in each drilled region by the author. The drilled regions in the phantom 
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reached a 75% depth of the total phantom height, ensuring all powders could be observed 
over several reconstructed vertical slices. The powders were filled sequentially by hand, 
and tapped to improve homogeneity through the sample depth. Finally the top of the sam-
ple was sealed with an epoxy adhesive to prevent loss or cross-contamination of powders.

Figure 3.3.2. (Left) Photograph of the multi-phase powder phantom, with each metal-based powder labelled. 
The external metal of the phantom is aluminium. (Right) Schematic of the phantom sample, with dimensions 
included.

The sample was designed as an ideal case for imaging with each modality of the HEXITEC 
system. The small dimensions of the sample allowed it to easily fit within the detector FOV, 
allowing for increased geometric magnification for improved spatial resolution. Although 
only used as a bright-field sample in this thesis, the use of metal powders was chosen such 
that future dark-field work could be conducted with energy-dispersive diffraction. In this 
case, powders make an ideal choice for a simple, known phantom study for evaluating 
diffraction patterns and extracting crystallographic properties.

The chemical phantoms were formed to provide a baseline calibration for the measurement 
of spectral markers in hyperspectral imaging, namely in the evaluation of absorption K-
edges. Each phantom contained chemicals commonly used as biological staining agents, 
aligning with those chosen for the corresponding biological specimens described in Section 
3.3.1. In order to determine direct relationships between the concentration of the chemi-
cal and the size of the observed spectral marker, a minimum of three concentrations were 
required for each contrast agent. Shown in Fig. 3.3.3 are photographs of the assembled 
phantoms, including all external dimensions of the low-attenuation plastic containers. In 
the case of the BaSO4 and PTA phantoms, the 5 ml containers were held together in an ad-
ditional external tube with the use of agarose, which solidified at room temperature and pre-
vented sample movement during scanning. The iodine phantom had an interchangeable set-
up, with Lego-style connectors allowing the use of less than four concentrations if required 
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(due to its larger sample size and FOV limitations).

Figure 3.3.3. Photographs of the chemical phantoms produced for spectral calibration using known chemical 
concentrations. Sample dimensions are overlaid, and are measured in mm. (Left) Two images of the 
iodine-based phantom, containing four interchangeable rods of differing concentration of the I3

- ion (25.3, 
50.6, 76.0 and 101.2 mg/ml). The second photograph shows the optional connector plate to hold the four 
containers in position. (Middle) The BaSO4 phantom, containing three concentrations (100, 200, and 400 
mg/ml), with corresponding concentration percentages labelled. (Right) The PTA phantom, with three 
concentrations (50, 100, and 200 mg/ml) as labelled on the container.

3.4 Data processing, reconstruction and analysis: Software and Hard-

ware

Below is a summary of the steps taken to transform the raw hyperspectral datasets into the 
final reconstructed 4D volumes, enabling different spectral analyses to then be conducted. 
Included are the main software programs and hardware devices required to achieve this. 
Where necessary, the software developed by the author is stated explicitly, and referenced 
otherwise.

3.4.1 Raw data processing

For all hyperspectral datasets, processing of the raw data, reconstruction of the sino-
grams and final spectral analysis and volumetric mapping was performed on devices at the 
HMXIF. Due to the unique nature of the hyperspectral data files, each raw projection was 
stored initially as a pre-defined ’.hxt’ file, which required conversion to a more useable for-
mat for reconstruction. Correction of the dark current (due to any leakage current in the 
detector) was applied automatically within the HEXITEC software, prior to data transfer. 
Initial processing steps of the raw data were performed locally from a laptop. The work was 
performed using MATLAB scripts adapted from those first built by Egan et al. for previous 
hyperspectral research [15, 25]. Minor adaptations by the author included updates to the 
data reading process, and corrections in the rare instances of erroneous angular projections 
through nearest-neighbour interpolation. In general, all preprocessing followed the same 
step-by-step workflow:
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1. Reading in .hxt projection files

2. Application of corrections for gain shift and bad pixels

3. Flatfield correction and negative-log transforms of projection, building them into a 4D 
sinogram

4. Application of corrections for ring artefacts (and centre-of-rotation if required).

For all datasets, step 2 was necessary due to the aforementioned presence of spectral distor-
tion and defective pixels observed with the HEXITEC detector (see Fig. 3.2.7 and 3.2.8). 
In step 3, rearrangement of the Beer-Lambert law, as described by Equation 2.6, converted 
’transmission’ images into ’projection’ images, such that the sinogram was now described 
in terms of attenuation coefficient values for each pixel. Here, the sinogram values were 
also scaled by the voxel size, creating the dimensionless ’voxel optical density’ values, as 
it has been termed in similar hyperspectral work [25–28]. Therefore, following reconstruc-
tion, the values were evaluated directly in terms of attenuation by removing the voxel size 
scaling. Step 3 also involved the use of flatfield correction, to negate any non-uniformity 
in the detector pixel response or X-ray source inhomogeneity. Typically 4-8 flatfields were 
acquired prior to X-ray scanning of a sample, with another set captured once the scan was 
complete. This was to account for any variations in the source over the total scan time. 
These flatfields were then averaged, and the correction was applied.

Finally, step 4 was necessary for any final corrections needed to minimise potential arte-
facts and improve image contrast, before reconstruction. In the case where the bad pixel 
correction was ineffective or did not sufficiently restore a typical spectrum, a further ring 
artefact correction was applied to the dataset. The method used a combined wavelet and 
Fourier analysis approach, developed by Münch et al. [29], to eliminate stripes in images, 
such as the vertical stripes in a sinogram caused by poorly-performing pixels in an X-ray 
CT scan. The stripes appear due to the same pixel registering an erroneous value for each 
projection, therefore as the sample rotates, the same error is observed at each angle, creat-
ing the vertical stripe which forms a ring artefact after image reconstruction. The effect is 
easily seen as the sinogram looks more ’blocky’ and discontinuous between pixel columns. 
An example hyperspectral sinogram is shown in Fig. 3.4.1, with vertical stripes present. 
Also shown is the same sinogram following the application of the stripe removal filter. The 
images show the effect of the correction in creating a more natural transition in optical den-
sity values between the pixel columns.

Finally the centre-of-rotation correction, written in MATLAB by Egan in 2012 and based 
off the method proposed by Azevedo et al. [30], was an optional correction in MATLAB 
to account for misalignment of the sample on the rotation axis of the sample stage during 
scanning. In most cases, the correction was negligible, with a maximum offset on the order 
of ± 0.2 pixels.
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Figure 3.4.1. Implementation of the stripe reduction filter to minimise ring artefacts in hyperspectral imaging. 
(Left) Raw sinogram of the central image pixel, shown for a single energy channel, prior to any corrections. 
Stripes appear vertically (red dashed line) due to the same ineffective pixel in each projection. (Right) The 
same sinogram following ring artefact correction. A smooth, more natural sinogram is achieved, with less 
sharp changes between pixel columns. An example of a clear improvement in stripe reduction is highlighted 
(red arrow). Optical density values at the edge appear negative due to charge sharing effects.

3.4.2 Image reconstruction: The Core Imaging Library

As described in Chapter 1, one of the key aims for the PhD was the creation, optimisation 
and evaluation of novel hyperspectral reconstruction routines. In particular, this involved 
the implementation of iterative algorithms, offering greater flexibility in design to deal with 
low SNR and common artefacts observed in spectral acquisitions. In Section 2.3.5, a list of 
the considerations required to produce flexible and efficient algorithms for cone-beam hy-
perspectral were discussed. Compared to the simple, industry-standard FDK method found 
in most commercial systems for standard X-ray CT, very few spectral algorithms are readily 
available and easy to implement with lab-based hyperspectral datasets. Therefore, a cru-
cial element of the research conducted in this thesis was a collaboration with the developers 
of the open source, Python-based software framework known as the Core Imaging Library 
(CIL - http://www.ccpi.ac.uk/CIL). The software tool is designed to offer a fully con-
figurable set of modules that aid the workflow from raw data, through image reconstruction, 
to volume visualisation. Crucially, CIL offers a wide range of reconstruction algorithms for 
both standard and non-traditional imaging modalities, such as spectral (4D) datasets. Em-
phasis has been placed on the availability of a number of iterative algorithms, with the ca-
pability to ”plug-and-play” with additional regularising parameters for noise suppression, 
edge preservation, non-negativity constraints, etc. Two articles on the CIL software (co-
authored) have been published providing more detail on what the framework offers, includ-
ing for multi-channel imaging applications [31, 32].

Given the computational cost of iterative algorithms, particularly in the case of spectral 4D 
algorithms, a high performance workstation was used for all hyperspectral reconstructions. 
A remotely-accessed, Linux-based workstation was utilised, with 256 GB of RAM and two 
Nvidia graphics cards, providing the GPU required to run the iterative routines. The full 
CIL framework was installed in a Python environment.
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In this chapter, an investigation was conducted to evaluate the application of a novel, regu-
larised, iterative reconstruction algorithm to improve the image quality of datasets acquired 
using a lab-based, hyperspectral X-ray CT system. We set out to analyse the key advantages 
of this new algorithm, compared to the filtered back-projection (FDK) method that is com-
monly used as a fast reconstruction routine in conventional XCT, and as the standard for 
many commercial XCT systems. Application of the novel routine to both a phantom sam-
ple and real-world, stained biological specimen enabled the clear benefits over FDK to be 
demonstrated for hyperspectral imaging, where noisy data is common. The work offered a 
first step into the ways in which higher quality spectral analysis and chemical mapping may 
be performed with hyperspectral X-ray CT.
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1038/s41598-021-00146-4

Abstract

Here we apply hyperspectral bright field imaging to collect computed tomographic images 
with excellent energy resolution (~1 keV), applying it for the first time to map the distribu-
tion of stain in a fixed biological sample through its characteristic K-edge. Conventionally, 
because the photons detected at each pixel are distributed across as many as 200 energy 
channels, energy-selective images are characterised by low count-rates and poor signal-to-
noise ratio. This means high X-ray exposures, long scan times and high doses are required 
to image unique spectral markers. Here, we achieve high quality energy-dispersive tomo-
grams from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. 
This exploits the spatial smoothness and inter-channel structural correlation in the spec-
tral domain using two carefully chosen regularisation terms. For a multi-phase phantom, 
a reduction in scan time of 36 times is demonstrated. Spectral analysis methods includ-
ing K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single 
(iodine)-stained biological sample, where low chemical concentration and inhomogeneous 
distribution can affect soft tissue segmentation and visualisation. The reconstruction algo-
rithms are available through the open-source Core Imaging Library. Taken together, these 
tools offer new capabilities for visualisation and elemental mapping, with promising appli-
cations for multiply-stained biological specimens.
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4.1 Introduction

With the increasing development in X-ray detector technology, the interest in energy-
selective tomography has grown in recent years, particularly for medical imaging. In con-
ventional X-ray absorption computed tomography (CT), each detector pixel records the to-
tal number of detected photons, irrespective of their energy, building up a single radiograph 
for each projection angle. Contrast is hence solely provided by differences in attenuation 
based on a sample’s local material composition. Issues may then arise in post-processing 
segmentation, particularly for phases or structures of similar electron density, such as differ-
ent types of soft tissue. In addition, due to the use of polychromatic radiation in laboratory 
X-ray imaging, beam-hardening artefacts are common, as the non-linear nature of attenua-
tion as a function of energy is ignored without energy discrimination [4]. The introduction 
of spectroscopic detectors have enabled an additional dimension of information to be ac-
quired, by measuring both the energy and position of each incident photon. Given that ev-
ery element has a unique attenuation profile, these may be used as spectral ‘fingerprints’ in 
energy-sensitive CT imaging, such that full 3D elemental mapping may be performed from 
a single CT scan.

Recent spectral detectors take two main forms, differing mainly in their measurement pro-
cesses, and number of energy ‘channels’ used for photon binning. Multispectral detectors 
use a set of 4-8 threshold (reference) channels, to which each incident photon is allocated 
based on the electrical signal generated upon detection. Such detectors have found use 
in the field of medical imaging for soft tissue differentiation [5–9]. While the low chan-
nel number enables high count-rates similar to conventional CT imaging [10], multispec-
tral imaging provides coarse energy resolution (~5-10 keV), thus for spectrally similar 
species, the threshold positions require specific pre-selection, as well as a priori knowl-
edge of sample composition. In contrast, hyperspectral detectors can achieve very fine 
energy resolution (~1 keV), with the ability to store photons into hundreds of narrow en-
ergy channels. The result is that, for every pixel, we acquire a ’pixel spectrum’, contain-
ing a full absorption profile, for studying changes in attenuation as a function of energy. 
A key factor for chemical fingerprinting is the presence of absorption edges, observed as 
sharp discontinuities at the energies equivalent to the binding energies of the core-electron 
states (e.g. K-edges). Absorption edges act as characteristic markers for chemical identi-
fication, with many of these edges falling within the hard X-ray range (> 10 keV) used for 
imaging. One method that utilises the absorption edges is dual-energy CT (DECT). Fol-
lowing two sequential scans taken at different energies, DECT decomposes materials by 
virtue of their differing attenuation as a function of energy [11]. In biological and medical 
imaging, contrast-enhanced investigations in DECT use highly attenuating chemical trac-
ers which preferentially bind to specific tissue structures. Numerous studies have previously 
reviewed the advantages of various contrast agents (e.g. I2, PMA/PTA) in both DECT and 
conventional CT for in vivo and ex vivo biological imaging [12–16]. A common limitation 
of DECT, however, is its time-consuming nature and the dose considerations required in 
some cases [17, 18]. Further, the technique struggles in the differentiation of materials with 
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spectrally similar characteristics, and therefore cannot unequivocally distinguish all mate-
rials. Hyperspectral imaging has, on the other hand, previously been demonstrated for the 
separation of closely-spaced K-edges, for example in the non-destructive evaluation of min-
eralised ore samples [19].

The capability of identifying spectral markers from the detailed absorption profile of each 
detector pixel comes at the cost of increased signal processing during data acquisition. Be-
cause the detected photons are distributed across hundreds of energy channels, the count-
rate is limited to levels far below that of conventional CT [10]. Any individual energy bin 
is therefore subject to low signal-to-noise ratio (SNR) for each measured pixel spectrum. 
The issue of low SNR can create problems in chemical identification, particularly in the 
case of low concentration, where weaker signals may be hidden amongst the surround-
ing noise. Increased exposure time is one solution for improving SNR, however this is not 
always possible. Alternatively, the choice of reconstruction algorithm may be optimised 
for improved image quality. A conventional cone-beam reconstruction algorithm, such 
as Feldkamp-Davis-Kress (FDK - the 3D form of filtered back-projection for cone-beam 
imaging [20]) often fails to accurately reconstruct features for low count or undersampled 
data [21]. An advantage of hyperspectral imaging is the strong structural correlations be-
tween channels. Due to the fine energy resolution of the detectors, narrow channels result 
in a high degree of similarity between neighbouring energy bins. It is therefore possible 
to exploit the ’channel-wise’ nature of the dataset as part of the reconstruction process, 
by employing dedicated algorithms. In the case of spectral imaging, this correlative na-
ture may be used to, for example, provide both noise suppression and feature preservation 
in the spatial or spectral domains [22]. A number of methods have previously been evalu-
ated for their effectiveness in spectral image reconstruction, including both undersampled 
and noisy datasets [23–25]. However, the availability of advanced, spectral reconstruction 
methods is still currently limited and inconsistent across the field. A set of modules have 
recently been developed in the form of open source software - the Core Imaging Library 
(CIL: http://www.ccpi.ac.uk/CIL) - to aid the complete workflow of CT datasets, in-
cluding for 4D acquisition modalities like spectral imaging. Each method has been opti-
mised for fast, simple use across a range of geometries and techniques. A detailed descrip-
tion of CIL may be found elsewhere, for both the overall software [2] and for its hyperspec-
tral capabilities [3].

In this paper, we examine the capability of advanced spectral reconstruction methods in 
providing high quality results from undersampled, noisy 4D datasets, to enable elemental 
mapping. Using the HEXITEC hyperspectral detector [26] in a lab-based setting, we set out 
two main aims. Firstly, we assess the impact of implementing a dedicated, iterative recon-
struction algorithm, compared to the conventional FDK method, using a physical, multi-
phase phantom. By directly comparing reconstructions following a significant reduction in 
scan time, we evaluate the extent of feature restoration both in the spatial and spectral do-
mains. Secondly, we evaluate reconstruction quality on a biological sample by means of 
different spectral analyses, including segmentation by K-edge subtraction, and measurement 
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of relative chemical concentration. Once more, a correlated reconstruction algorithm is 
applied, and used to highlight the vulnerabilities of the FDK method for noisy datasets. A 
single-stained lizard head was considered for mapping of tissue structures, and compared to 
equivalent results obtained following DECT. The work evaluates the advantages of hyper-
spectral imaging, compared to DECT and multispectral CT, where poorer energy resolution 
limits further analysis. This study also opens the way for further investigations into simulta-
neous staining of multiple contrast agents, where little work has previously been performed 
outside of DECT [13], or phantom studies for multispectral imaging [7, 27, 28].

4.2 Results

Firstly we examine a simple aluminium phantom test sample, measuring 0.5 cm in diam-
eter, and 1 cm in height. Three cylindrical holes (diameter 0.7 mm) were drilled to a sam-
ple depth of 75% (0.75 cm), and filled with a different powder (CeO2, ZnO and Fe). Com-
prising different elements, each powder has different absorption properties for analysis. 
The phantom was imaged using a micro-focus source at 60 kV with beam power 6 W. Two 
scans were acquired using different exposure times, with an effective voxel size of 98 𝜇m. 
The full dimensions of the sample were captured within the 80 × 80 detector field of view 
(FOV). The number of channels used in hyperspectral imaging are determined by two sys-
tem characteristics - the tube voltage and the energy-channel calibration. For the 60 kV 
tube voltage applied, the full spectral profile was segmented across 200 energy channels 
for each pixel, with a measured single energy channel width of 1.2 keV. Given we have a 
priori knowledge of sample composition and, thus, absorption edge position in this case, a 
reduced subset of channels were selected for both datasets (corresponding to channel num-
bers 100 - 200, or energy range 28 - 56 keV), in order to increase the speed of reconstruc-
tion. To evaluate the capabilities of the iterative method in handling low count and under-
sampled datasets, a comparison was made between two acquisition schemes: Scan A was 
taken with 180 projections and 180 s exposure time, and Scan B was taken with 30 projec-
tions and 30 s exposure time. Through prior testing, it was found that the conditions used 
for Scan A produced sufficiently low noise and strong feature definition, such that it may 
be treated as a ’ground truth’, optimum state, when using conventional channel-wise FDK 
reconstruction. All results obtained under the conditions of Scan B were then compared 
directly to this reference case. Given the nature of spectral datasets, each channel may be 
analysed on an individual basis, akin to a set of multiple monochromatic scans. Figure 
4.2.1a illustrates a set of sinograms for Scan A, corresponding to four equally spaced en-
ergy channels, combined with the corresponding central slice FDK reconstructions showing 
changes in attenuation value, 𝜇 as a function of energy. An important factor to note, how-
ever, is that we cannot directly identify chemicals through matching the absolute value of 𝜇
in each voxel to theoretical values for different elements. This is because non-linear effects, 
such as ’charge-sharing’ between pixels, can lead to erroneous photon energies (and num-
ber of events) during scanning. For instances of lower X-ray flux, charge-sharing may be 
corrected for, as detailed elsewhere [19]. In this study, we show that, even without correc-
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tion, we may still perform chemical identification and mapping through the identification of 
absorption edges, which remain clearly visible at their theoretical energy positions.

Figure 4.2.1. Attenuation variation in the spectral dimension for a multi-phase powder phantom. (a) Set 
of four sinograms taken between channels 100-175 at equal spacing of 25 channels (corresponding average 
energies are shown - channel width 1.2 keV) for Scan A. A single discontinuity in the sinograms appears due 
to an interrupted scan. (b) The corresponding FDK reconstructions for each energy channel of the sinograms 
in (a). Three distinct regions are observed, corresponding to the three metal-based powders. The colour scale 
measures the attenuation, and is consistent across both images. Three ROIs are highlighted (white/blue 
squares, marked by numbers for each respective powder phase). (c) Average voxel spectra of powder phase 
ROI 1. A line signifying the theoretical position of the cerium K-edge is overlaid for comparison. (d)
Comparison of measured absorption spectra (top) for ROIs 2 and 3 located in the zinc oxide and iron phases 
respectively, and the theoretical values (bottom) over the same spectral range.

Through examination of the monochromatic reconstructions in Fig. 4.2.1b (covering the 
energy range 28 - 49 keV), we observe a significant rise in attenuation for one such phase, 
indicative of a spectrally significant elemental marker. By analysing voxel absorption spec-
tra, chemical insight on sample composition can be obtained by examining changes in at-
tenuation as a function of energy. Three regions of interest (ROIs) were selected in Fig. 
4.2.1b covering each powder phase. The spectra shown in Fig. 4.2.1c corresponds to phase 
1 where, as expected, an absorption edge is observed at 40.4 keV. Owing to the high energy 
resolution of the system, one may conclusively confirm that such an edge corresponds to 
that of cerium (40.443 keV). For the two remaining material phases in Fig. 4.2.1d, little 
variation in attenuation is observed. In addition, no absorption edges belonging to these 
materials (ZnO, Fe) were seen, as they fall below the sensitivity of the hyperspectral sys-
tem (< 10 keV). Other methods may be employed to segment such materials, for instance 
through measuring the relative change in attenuation as a function of energy, as has been 
shown elsewhere [19]. Here we note that the rate of change of 𝜇 with increasing energy 
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does not precisely match the theoretical predictions. This may be due to effects such as 
pulse pile-up, which can distort the spectral profile due to the miscounting of coincident 
photon events [29]. A full investigation of the detector system electronics and signal acqui-
sition properties, as a function of flux and energy range, is required to identify the precise 
cause. However, such detailed analysis is beyond the scope of this paper, with the obser-
vations not affecting results in terms of K-edge imaging. Unsurprisingly, the conditions of 
Scan A provide high quality reconstructions, with sharp feature definition, and little noise 
fluctuations across the full spectral range. Next we explore differences when reconstructing 
the low count and undersampled dataset of Scan B.

As previously discussed, analytic reconstruction methods, such as FDK, often fail to ade-
quately reconstruct features for low SNR data. Here we explore the extent to which noisy, 
few projection data can be reconstructed, through the use of a spatiospectral reconstruc-
tion algorithm. The reconstruction problem is typically formulated as a combination of a 
data fitting term between measured and reconstructed data, and one or more regularisation 
terms which encode desirable image characteristics. The problem is then solved using an 
iterative optimisation algorithm. CIL provides a number of building blocks to formulate 
the optimisation problems, and solvers to find a numerical solution. In this case we used a 
combination of two regularisation terms, known as the Total Variation (TV) and Total Gen-
eralised Variation (TGV), implemented along the spatial and spectral dimensions respec-
tively. Further details of the regularisation terms, and how they were applied to the dataset, 
can be found in the methods section. The joint regularisation method, referred to here on-
wards as TV-TGV, is a novel method, chosen based on the prior knowledge that we expect 
noisy images, combined with the presence of an absorption edge. The CIL software enables 
such a method to be constructed and applied, and its advantages over other state-of-the-art 
methods has been demonstrated elsewhere in the case of Bragg-edge neutron tomography 
[1].

For the reconstruction of Scan B, TV-TGV was applied simultaneously across the full set of 
energy channels. By doing so, we exploit the correlations between neighbouring channels, 
compared to FDK, which is applied channel-by-channel and therefore cannot make use of 
such structural similarities. As described in Equation 4.1 (see methods section), three reg-
ularisation parameters (𝛼 for TV, 𝛽1,2 for TGV) were optimised. Final parameters were de-
termined to be 0.002, 0.18 and 0.25 for 𝛼, 𝛽1 and 𝛽2 respectively. A range of iteration num-
bers were tested, with no discernible improvements in image quality observed beyond 1000 
iterations. Final reconstruction of the full volume was achieved with a runtime of 25 min-
utes for 1000 iterations of the algorithm.

Figure 4.2.2a shows a comparison of FDK and TV-TGV, through direct comparisons of re-
constructed slices in the transverse and frontal planes. From the FDK reconstruction for 
Scan A, a distinct variation in attenuation is observed across the CeO2 powder region, sug-
gesting inhomogeneity in the powder. The frontal view confirms the non-uniform distribu-
tion, illustrating a consistently higher attenuation in the outer perimeter throughout the full 
depth of the sample. The slight ’cupping’ feature is also reminiscent of beam hardening en-
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countered for white beam imaging, which was not expected because of the high (1.2 keV) 
energy discrimination in this case, and is discussed further in the Supplementary Infor-
mation (Fig. S3). Both reconstructed views illustrate the sufficiently high count and sam-
pling of the dataset, with minimal noise and strong feature edge definition. In contrast, the 
undersampled reconstructions of Scan B highlight the limitations of FDK for low projec-
tion number and exposure time. Significant streak artefacts, projecting outwards from the 
CeO2 powder phase, are observed, attributed to photon starvation due to the reduced pho-
ton counts stored in each energy channel, under the faster scan conditions. These artefacts 
are in addition to any further streaks caused by undersampling, combined with increased 
noise across the reconstructed slices.

Figure 4.2.2. Comparison of reconstruction algorithms. (a) Transverse and frontal slices, showing 
reconstructions for FDK of sample Scan A (left column), followed by Scan B reconstructions with FDK 
(middle column), and TV-TGV (right column). All reconstructed slices are shown for a single energy channel 
(42.27 keV - channel width 1.2 keV). Dashed lines indicate the positions from which spatial profiles were 
measured for each reconstruction. White arrows mark examples of streak artefacts due to photon starvation. 
ROIs in the ZnO phase (red - S) and the Al phase (white - Bg) are highlighted for use in CNR calculations.
(b) Spatial profile across two powder phases for the same energy channel. (c) Absorption spectra for ROI 1 
within the cerium powder region (blue square in (a)).

Upon application of the TV-TGV method for Scan B, however, the data is recovered well, 
with the use of TV in the spatial domain providing enough smoothing to remove all streak 
artefacts, while maintaining edge preservation, restoring an image quality comparable to 
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Figure 4.2.3. Reconstruction comparison using different image quality metrics. (a) Channelwise CNR 
calculations between the ZnO and the Al phase ROIs for an image slice in the transverse plane. Average 
values across the energy range were 27.44, 7.81 and 38.26 for FDK Scan A, FDK and TV-TGV Scan B 
respectively. (b) Channelwise RMSE values calculated using ROI 1 within the cerium phase. Values are 
calculated for all channels through comparison between Scan A and each respective Scan B reconstruction.

that of Scan A. We quantify this noise suppression through calculation of the contrast-to-
noise ratio (CNR). Here, we apply the method employed by Bian et al., where the standard 
deviations of both the signal and background ROIs are taken into account [30]. In addi-
tion, we average out random variations both in the spatial and spectral domains through two 
steps: larger ROIs covering a greater range of pixels (5x5) average out spatial variations, 
while spectral fluctuations are reduced by computing the average standard deviation value 
for each ROI across all channels, and applying this to the CNR calculation for each indi-
vidual channel. We use the ROIs marked in Fig. 4.2.2a (ROI S, ROI Bg) and calculate the 
CNR between the ZnO and Al phases in every channel. The result, shown in Fig. 4.2.3a, 
emphasises the successful feature restoration of the TV-TGV algorithm, with higher CNR 
measured in all channels, compared to both the Scan A and Scan B FDK reconstructions. 
As expected, with increasing energy, CNR gradually declines, with the difference in CNR 
values between TV-TGV and FDK Scan B narrowing, but still maintaining an average im-
provement of approximately 390% over the energy range. Additional quantitative analysis 
is shown in Fig. 4.2.3b in the form of channelwise root-mean-square-error (RMSE) mea-
surements. Calculations are made by quantifying the difference in pixel values between 
ROI 1 of the cerium phase in Scan A, and the same ROI in each respective Scan B recon-
struction. The residuals were then squared, averaged and square-rooted to determine an 
RMSE value for the energy channel. The method was then applied across all channels. The 
significant reduction in image error following TV-TGV reconstruction is highlighted, with 
RMSE values consistently lower than the FDK Scan B equivalent, across the full energy 
range. An additional single channel example of the RMSE calculation is shown in Supple-
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mentary Fig. S4 to map spatial errors across different image planes. The application of TV-
TGV can be analysed further by comparing spatial and spectral profiles for each method, as 
shown in Figures 4.2.2b and 4.2.2c respectively. For the spatial profile, measured across 
two of the powder phases (Fig. 4.2.2b), the advantages of the TV-TGV method for low 
count data are evident. Noise levels are significantly reduced for Scan B, compared to the 
equivalent FDK profile, with the TV-TGV method almost completely replicating the pro-
file acquired for Scan A. For the spectral profile (Fig. 4.2.2c), TGV regularisation improves 
the linearity of the regions either side of the cerium K-edge for Scan B. It should be noted 
that, for such a simple phantom, identification of the absorption edge is not an issue here, 
regardless of reconstruction algorithm. However, the results demonstrate the capability of 
handling noisy, few projection data, and achieving high image quality in fast scan acquisi-
tions. In this case, a reduction in scan time by a factor of 36 has been shown.

We next explore a more realistic sample in the field of biological imaging, where low SNR 
may pose problems in material identification and feature segmentation. An iodine-stained 
lizard head (Anolis sp.), measuring approximately 17 mm in length, and 10 mm in width, 
was scanned at a beam voltage of 50 kV, at a maximum power of 0.7 W, reconstructed with 
a voxel size of 137 𝜇m. A spectral subset of channels from 60-160 (energy range 17.3 - 
45.0 keV) was chosen given the prior knowledge of the single iodine stain, eliminating the 
need to reconstruct the full spectral range for identification of key elemental signals. A re-
duced projection dataset was used, such that only 60 projections (at 120 s exposures) were 
reconstructed over the full 360∘ rotation, to test the capabilities of the reconstruction algo-
rithms. The need to limit X-ray dose is more prevalent in the life sciences field and, as such, 
the ability to extract high quality information from low count and/or undersampled data 
is crucial. Once more, TV-TGV reconstruction was applied, with the results compared to 
the conventional FDK method. Here, initial parameter estimates were based on the optimal 
conditions achieved in the reconstruction of the phantom sample, allowing faster identifi-
cation of the optimal parameters. Final reconstruction was performed with parameters of 
0.002, 0.25 and 0.35 for 𝛼, 𝛽1 and 𝛽2 respectively, with a total runtime of 40 minutes fol-
lowing 1000 iterations. Figure 4.2.4 demonstrates the smoothing effects in both the spatial 
and spectral domains, with the lens and jaw adductor muscles highlighted as key regions of 
interest. For both the axial and sagittal reconstructed slices (Fig. 4.2.4a), spatial smoothing 
provided improved edge definition of the exterior head shape, as well as the outer eye and 
jaw regions. The presence of the iodine contrast agent is easily confirmed with the precise 
matching of the theoretical edge position (33.169 keV) in each spectral profile (Fig. 4.2.4b). 
The benefit of noise suppression in the energy domain is demonstrated, allowing the pres-
ence of absorption edges to be more clearly defined, where they can often be lost within 
noisier reconstructions like FDK. Areas of lower iodine uptake, such as that of the jaw ad-
ductor muscles, may therefore be confidently identified as iodine-containing structures. As 
we have no ground truth reconstruction available for RMSE evaluation, we use only CNR 
calculations for a quantitative image metric, validated by the strong alignment between the 
RMSE and CNR metrics for the powder phantom. Figure 4.2.4c shows the channelwise 
CNR calculation for ROIs marked in Fig. 4.2.4a (ROI S, ROI Bg), which cover the jaw 
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Figure 4.2.4. Biological feature identification via regularised reconstruction. (a) Reconstructed slices for 
channel 120 (33.95 keV - channel width 1.2 keV), along both the axial and sagittal dimensions, following 
FDK (left column) and TV-TGV (right column) reconstruction. General noise reduction and smoothing due to 
TV regularisation is observed over all spatial regions. (b) Absorption spectra measured for a ROI in two 
sections of the sample (blue squares in (a) - lens and jaw). A line signifying the theoretical position of the 
iodine K-edge is overlaid for comparison. (c) Channelwise CNR calculations of the stained jaw using the 
signal ROI (red - S) and the background ROI (white - Bg), for the image slice shown in the sagittal plane. 
Average CNR values across the energy range were 8.91 and 35.97 for FDK and TV-TGV respectively.

muscle and background respectively. Increased contrast using TV-TGV is found in every 
channel over the reconstructed range, compared to FDK. The impact of the iodine K-edge 
is also clear in its ability to sharply improve image contrast, and as such CNR, relative to 
the background material. The impact of TV-TGV is significant, producing an average CNR 
improvement of approximately 300% compared to the standard FDK algorithm.

Given the presence of an absorption edge, spectral analyses may be performed to provide 
information on iodine distribution throughout the biological specimen. Firstly we utilise the 
availability of a spectral profile in each voxel to measure relative iodine concentration, by 
virtue of spectral profile fitting. As shown in Fig. 4.2.5, linear least squares fitting was ap-
plied to regions before and after the absorption edge step for both the FDK and TV-TGV 
reconstructed volumes. By extrapolating and evaluating these fits at the known position of 
the K-edge (33.169 keV), we can precisely measure the size of the step change, Δ𝜇0 [19]. 
Repeating this process at every voxel provides us with a map of Δ𝜇0, which is directly pro-
portional to the concentration of iodine present in the sample. Calculated values of Δ𝜇0

are shown for both reconstructed volumes in Fig. 4.2.5a. Significant noise distortions in the 
FDK spectra lead to erroneous linear fitting, and consequently inaccurate measurements of 
Δ𝜇0, as shown in Fig. 4.2.5b. Spectral smoothing due to TV-TGV, however, ensures im-
proved precision in calculation of relative iodine concentration across the volume. Results 
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Figure 4.2.5. Attenuation step size analysis for the iodine K-edge. (a) 3D visualisations of the step size in 
the absorption edge, Δ𝜇0, corresponding to relative iodine concentration. Images are shown for the lizard 
head sample following both FDK (upper left) and TV-TGV (lower left) reconstruction. (b) Absorption spectra 
acquired within the jaw adductor muscle for the same ROI in each reconstructed volume. Linear fits were 
acquired and extrapolated to the extremities of the absorption edge, where the relative change in attenuation 
values were measured.

indicate the diffusion of iodine fully into the lens, with high concentrations at the interior, 
and slightly lower levels on the exterior surface. Further, the increased reliability of Δ𝜇0

measurements allows us to confidently identify ’hot spots’ of higher iodine uptake, appear-
ing on the brain and sections of the jaw muscles. The results are in good agreement with 
expected uptake regions of iodine contrast agent [14, 15].

Our second analysis uses the absorption edge as a means of segmenting iodine-containing 
material from the remaining structures. For this, we used K-edge subtraction (KES). That 
is, spectral information is extracted from energy channels before the edge of interest, and 
subtracted from an equivalent set after the edge. The result is a dataset containing only the 
contrasting material, eliminating other structures where attenuation is slight across this en-
ergy range. The method of KES has previously been applied for monochromatic imaging 
either side of absorption edges for segmentation [31, 32], as well as in hyperspectral cases, 
highlighting its potential for segmenting materials where more than one K-edge is present 
[19]. A detailed description of the method is provided in Supplementary Information (see 
Fig. S5). Here, KES also offers an opportunity to evaluate reconstruction quality by direct 
comparison of tissue segmentation for both the FDK and TV-TGV methods.

In order to measure the success of correct tissue segmentation, we match our hyperspec-
tral reconstructed volumes against a DECT scan acquired of the same sample, reduced to 
the same spatial resolution (137 𝜇m) as that of the hyperspectral data. DECT has long been 
regarded as the ’gold standard’ of biological stain imaging, and thus works well both as a 
measure of where hyperspectral X-ray CT stands in comparison, as well as an evaluation 
tool for each case of our spectral KES method. Segmented views of the sample are shown 
in Fig. 4.2.6 for both the TV-TGV regularised method, as well as the FDK reconstructed 
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Figure 4.2.6. Lizard head segmentation comparison for hyperspectral and dual-energy imaging. Sagittal 
views of the segmented sample, producing maps of iodine-stained soft tissue (top row) and remaining 
hydroxyapatite (bottom row) bone structures. Results following K-edge subtraction for the TV-TGV 
reconstructed dataset (middle column) are directly compared to those following DECT acquisition of the 
same sample (left column), reduced to the same spatial resolution (137 𝜇m). Labels indicate the successful 
segmentation of several iodine-stained soft tissue regions for the hyperspectral dataset, with similar structures 
identified in the DECT equivalent image. A comparison of HA maps show distinct bone structures observed 
across both datasets, as well as the accumulation of bone mineral in particular regions due to long term 
sample storage. Included is an example of a bone structure (quadrate) unidentified in TV-TGV segmentation. 
(Right column) Equivalent maps following FDK reconstruction of the hyperspectral dataset are also shown, 
with significant noise hiding a number of key features.

volume. The resulting 3D visualisations are shown upon hyperspectral KES around the io-
dine edge. Using the DECT segmentation as reference for identifying key soft tissue fea-
tures, the advantages of TV-TGV over FDK become clear. The increased level of noise due 
to FDK leads to reduced visibility, particularly in regions of lower iodine concentration, 
such as the tongue and jaw adductor muscles. In contrast, following KES of the TV-TGV 
volume, clear separation is observed for regions to which the iodine has diffused. Struc-
tures including the brain, lens, tongue and jaw muscle all show strong X-ray signal en-
hancement due to sufficient staining by elemental iodine. Segmentation of the remaining 
material offers the ability to observe ’non-contrast-enhanced’ structures. In this case, the 
external skull structure, consisting mostly of hydroxyapatite (HA), remains. As confirmed 
by the DECT results, visualisation of certain bone structures, including the skull roof and 
mandible region, are achieved. Full definition of the skull structure is lost however, and this 
is attributed to the long-term storage of the sample prior to imaging. As such, bone min-
eral has accumulated in some regions, while having dissipated in others. Therefore, precise 
segmentation of HA material was not expected. Nevertheless, the advantage of combined 
hyperspectral imaging and advanced reconstruction algorithms is provided through the suc-
cessful segmentation of iodine in the biological structure. Moreover, while 60 projections 
with 120 s exposures were taken, results from our phantom sample suggest a further reduc-
tion in exposure time is possible with minimal loss in reconstruction quality, owing to the 
application of regularised algorithms.

134



4.3 Discussion

The above case studies have highlighted the current state of the art for hyperspectral imag-
ing in a lab-based setting and shown that, given an appropriate reconstruction algorithm, 
comparable levels of feature definition and characterisation of tissues and structures can 
be obtained to those in dual-energy and multispectral CT. However, our work is not with-
out limitations. Spatial resolution is still far behind the standard set in conventional, and 
dual-energy, CT, emphasised by the downsampling of the aforementioned DECT results 
from their initial 9 𝜇m voxel size. While currently limiting in the range of samples and fea-
tures that may be observed, spatial resolution is only expected to improve with new detector 
technology. The use of an iodine contrast agent did not fully test the capability of chem-
ical detection in hyperspectral imaging, given its high affinity for multiple soft tissue re-
gions. A reasonable extension to the experiment is the use of additional chemical tracers, 
which bind to specific biological structures at varying concentrations. Given the high en-
ergy resolution of the hyperspectral (HEXITEC) detector, visualisation and segmentation 
of multiply-stained structures may be easily performed by virtue of measuring several spec-
tral fingerprints. It has also previously been shown that absolute values of concentration 
may be determined in spectral imaging, given the use of an appropriate calibration phan-
tom [33], offering potential diagnostic insight on tracer concentration and distribution as a 
function of time. The use of an ex vivo biological sample here may also be used as a step 
towards in vivo structure analysis in the future. Biological scans performed in vivo are lim-
ited more severely in terms of allowable X-ray dose and chemical concentration, hence the 
analysis performed in this work offers a solution in the form of regularised reconstruction 
for noisy, short exposure cases. Alternatively, there is a case to be made for the applicabil-
ity of hyperspectral imaging in the absence of distinct spectral markers. With the availabil-
ity of full spectral profiles at each pixel, beam-hardening artefacts may be eliminated now 
that changes in attenuation may be discriminated as a function of energy. In addition, while 
methods like K-edge subtraction are no longer applicable, measurement of relative atten-
uation changes over the energy range enables segmentation of poorly contrasting materi-
als, which otherwise cannot be differentiated in conventional X-ray CT [19]. Previous work 
on bone densitometry and soft tissue segmentation has been shown to be possible with few 
channel spectroscopic imaging, without the need for contrast agents [34].

The use of advanced iterative reconstructions, in particular with application of regularisa-
tion terms, is also in its early stage development. The chosen method here of TV-TGV in 
the spatial-spectral domains is applicable given the composite materials producing sharp 
absorption edges, however optimisation of the regularised parameters for each dimension 
can be a slow process, due to the decoupled nature of the reconstruction algorithm. While 
every individual dataset will require specific tuning of each parameter, further develop-
ment in the reconstruction protocols, combined with software packages like CIL to enable 
them, continues to allow these processes to be performed more quickly, while also laying 
a foundation upon which future methods may be based. In addition, the above studies have 
demonstrated the reduction in overall scan time enabled by the algorithms in CIL, offset-
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ting the time taken to optimise reconstructed image quality. We predict that these meth-
ods will continue to allow further reductions in scan time, as well as limiting overall X-ray 
dose, without suffering significant losses in image quality, an advantage that may prove to 
be hugely beneficial to imaging in the biological field.

4.4 Conclusion

This paper has applied hyperspectral imaging to a simple test phantom, as well as, for the 
first time, mapping the location of staining in a biological sample, using as many as two 
hundred energy channels (~1 keV resolution). We have highlighted the vulnerabilities of 
conventional reconstruction methods for lab-based hyperspectral X-ray imaging. Through 
the use of a novel, spatiospectral reconstruction algorithm, we have enabled precise chemi-
cal identification and mapping at the micrometer scale. Examination of a multi-phase phan-
tom emphasised the significant reductions (36 times shorter) in scan time achievable by im-
plementing regularised reconstruction to compensate for noisy datasets. In performing an 
ex vivo spectral CT scan of an iodine-stained lizard head sample, we have shown the capa-
bility of hyperspectral CT to have the elemental sensitivity to compete with existing tech-
niques, such as DECT, in soft tissue segmentation and structural analysis, but with defini-
tive identification of the iodine location through its characteristic K-edge. While here a sin-
gle stain was measured and visualised, the exploration of multi-labelled biological samples 
is possible, given the high spectral resolution of the detector. Further, the weaknesses of 
analytic regimes such as FDK have been highlighted for spectral imaging, particularly for 
short scan acquisitions, reinforcing the need for standardised, iterative algorithms such as 
those provided in CIL. Together with the reduced scan times they enable, the correlated 
reconstruction methods open up the potential for hyperspectral studies in fields including 
non-destructive testing, security scanning and chemical catalysis. With improving detector 
technology and multi-staining methods, we conclude that lab-based hyperspectral CT of-
fers great future prospects for biological research, among a number of other fields, such as 
chemical engineering, geology, materials science and cultural heritage.

4.5 Materials and methods

4.5.1 Phantom sample preparation

An aluminium cylinder was used as the matrix for three internal powders, due to its low at-
tenuation relative to other metals. The choice of CeO2 offered a clear example of a char-
acteristic spectral marker (absorption edge), while the remaining two materials were used 
to evaluate the ability to restore lower attenuating structures following severe noise distor-
tion. In addition, they enable discussion to be made on the identification of phases, absent 
of spectral markers.

136



4.5.2 Biological sample preparation

For this experiment the head of a lizard (Anolis sp.) was scanned and analysed. No live an-
imals were used as part of the study. The sample was purchased as a fixed/preserved speci-
men from Nasco Education (USA). For long-term stability, the sample was fixed in forma-
lin and stored in 70% ethanol, prior to staining. The sample was then dehydrated to 100% 
ethanol, before staining with 1% elemental iodine in absolute ethanol (I2E). It has previ-
ously been shown that I2E offers strong contrast in soft tissue, allowing for discrimination 
from bone and teeth (hydroxyapatite) structures [13, 14]. After staining, the sample was 
washed with 100% ethanol. Finally the biological specimen was mounted in 1.5% Agarose.

4.5.3 X-ray detector

The hyperspectral imaging was performed using an energy-sensitive HEXITEC detector 
[26], consisting of a 1 mm thick CdTe single-crystal semiconductor, bump-bonded to an 
ASIC producing a 2 cm × 2 cm detection area. The system is split into an 80 × 80 pixel 
array, with a 250 𝜇m pitch. The detector offers an energy resolution of up to 800 eV at 59.5 
keV and 1.5 keV at 141 keV. All raw data was acquired on an event-by-event basis using the 
HEXITEC detector software.

4.5.4 Data acquisition routines

For imaging of the phantom sample, a parallel source-sample-detector configuration was 
implemented in the custom-built Colour Bay, part of the Henry Moseley X-ray Imaging Fa-
cility (HMXIF) at The University of Manchester. The walk-in X-ray bay contains a 225 kV 
source, and full manipulator control is available via MATLAB scripts. Two scans of the 
phantom were acquired. Identical scanning conditions were implemented, at a geometri-
cal magnification of 2.54, with the polychromatic X-ray source operating at a tube voltage 
of 60 kV with beam power 6 W. The chosen parameters ensured sufficient counts for ener-
gies close to measured absorption edges, optimised image contrast, while remaining within 
the count-rate limit of the detector. Further, X-ray flux was kept as low as possible to min-
imise the issue of photon saturation for the detector (X-ray source profile shown in Supple-
mentary Information, Fig. S1). Exposure time, however, was varied, from 30 s up to 180 s 
per projection. In total, 180 projections were acquired per scan, with 2∘ step size over a full 
360∘ rotation, resulting in total scan times of 2.5 and 11 hours, accounting for buffer times 
and bias voltage refreshing between projections in single photon detection [26]. Prior to re-
construction, one dataset was downsampled to 30 projections with 30 s exposure time to 
evaluate reconstruction quality on undersampled data.

As a further demonstration of the flexibility in lab-based hyperspectral imaging, the HEX-
ITEC was next combined with the Nikon High Flux Bay system at the HMXIF. Once more 
a 225 kV source was utilised, however improved contrast was possible due to lower flux 
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capabilities, necessary for imaging of soft tissue within the biological sample. Source and 
sample manipulation were controlled by Nikon’s proprietary software Inspect-X. A soft-
ware module was created using the IPC interface to Inspect-X [35, 36], enabling commu-
nication between Nikon software and the spectral detector. The biological sample was se-
cured to the rotation stage, held in place such that the specimen was suspended vertically 
during the acquisition. A geometric magnification of 1.81 was determined to project the 
sample fully in the detection area. The polychromatic X-ray beam was operated at a peak 
voltage of 50 kV, at a maximum power of 0.7 W (X-ray source profile shown in Supplemen-
tary Information, Fig. S1). Projection images were recorded at an angular step size of 2∘

over a full rotation, with exposure times of 120 s for each of the 180 projections, for an 8 
hour total scan time. A reduced subset of the dataset was later taken for reconstruction, as 
described in the main text.

For all scans throughout the study, sets of four flat-field projections were acquired both be-
fore and after scanning for fixed-pattern noise subtraction, while a further dark current cor-
rection was applied during set-up, to minimise reduced spectral response due to increased 
leakage current, typically found at the edges of the detector [37]. Detected events were 
binned into a set of spectral channels, with the number determined by the maximum X-ray 
energy.

Prior to scanning, a preliminary energy calibration procedure was performed through the 
measurement of characteristic fluorescence signals from a series of metals [38]. The cal-
ibration procedure provides a direct transition between energy channels and their corre-
sponding energies. Further, an inter-pixel gain correction was applied through the use of a 
correlative optimised warping algorithm using the same data [39, 40]. A calibration dataset 
was acquired before scanning of each sample, with the energy resolution of the system de-
termined by measuring the distribution of FWHM values for characteristic peaks (see Sup-
plementary Information, Fig. S2). Calibration values were consistent across each sample 
dataset. In each case, the energy resolution of the detector at 59.5 keV was found to be 1.21 
± 0.40 keV.

The accompanying DECT scan was conducted using a Zeiss Xradia XRM-400. The dual-
energy acquisition performed scans at 40 kV and 80 kV, with a 0.17 mm glass filter and 
0.4x optical lens. A total of 1051 projections were acquired over 210∘ rotation, with 15 s 
exposure times. The final reconstructed volume had a voxel size of 9.4 𝜇m.

4.5.5 Spectral CT data reconstruction

Initial processing of the acquired datasets was handled via MATLAB routines. In the case 
of the biological sample, a combined wavelet-based Fourier filter was applied in every 
channel for the removal of ring artefacts across the dataset [41]. For each dataset, the re-
sulting 4D matrix (3 spatial dimensions, 1 spectral dimension) was then reconstructed using 
the CIL software. Full functionality and operation of the Python-based framework has been 
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discussed elsewhere [2, 3]. Given its traditional use in conventional cone-beam reconstruc-
tion, the FDK method formed the baseline from which all other results were compared and 
evaluated. For comparison, an iterative reconstruction algorithm was chosen, combining 
data fitting with spatial and spectral regularisation terms. The iterative algorithm took the 
form: 

  \label {eq:it_recon} \underset {u}{\text {min}} ||Au-b||^{2}_{2} + \alpha \textrm {TV}_{x,y,z}(u) + \beta _{1,2} \textrm {TGV}_{c}(u) 


       (4.1)

where our first term concerns classic least-squares data fitting, with hyperspectral projec-
tion data, 𝑏, related to voxel value, 𝑢 through the operator, 𝐴, based on the system geom-
etry and properties. The latter terms concern the addition of spatial and spectral regulari-
sation. Since 4D datasets exhibit different image properties in the spatial and spectral di-
mensions, two different regularisation terms were applied for their noise reduction capabil-
ities. The result is a ’decoupled’ regularisation algorithm. We define TV𝑥,𝑦,𝑧(𝑢) as the To-
tal Variation (TV), applied across each spatial dimension [42] for a single channel, before 
summing over all channels (channel-wise). TV is one of the most widely used regularisers, 
as it favours piece-wise constant images, with sharp edge boundaries. The application of 
TV therefore allows for noise suppression of flat signal regions, while maintaining the lo-
cal discontinuities at structure edges. The TV model fits well for CT images and has been 
successfully used previously for undersampled CT data [43], as well as noise suppression 
purposes [42, 44]. The use of TV regularisation has also previously demonstrated its bene-
fits in spectral image reconstruction over analytic methods like FDK [24, 25]. However, TV 
is known for introducing ’staircasing’ artefacts for piece-wise affine or smooth signals, for 
example ramp structures, which can result in patchy, unnatural reconstructed images [44]. 
Further, as the aim of TV regularisation is to reduce unwanted signal variations such as 
noise, the final reconstruction can suffer from a loss of contrast due to reductions in inten-
sity [44]. For the spectral domain, we define TGV𝑐(𝑢) as the Total Generalised Variation 
(TGV), based on the method proposed by Bredies et al. [45]. Here we apply TGV regular-
isation along the channel direction, for each individual voxel in the image. TGV becomes 
applicable in the case of K-edge imaging, where we expect a smoothed step shape to our 
energy profiles across the edge position, spanning a few channels. TGV is able to reduce 
noise variations while maintaining the definition of any absorption edges present. Further, 
TGV avoids the staircasing effects experienced with TV. CIL provides a number of iterative 
algorithms to solve Equation 4.1, here we applied the primal dual hybrid gradient (PDHG) 
method [46]. Three regularisation parameters (𝛼 for TV, 𝛽1,2 for TGV) were used to con-
trol the strength of penalisation for each regulariser, and must be optimised for each dataset. 
Therefore parameter values were chosen to suppress noise while preserving edge definition 
of reconstructed images and spectral profiles. In the case of noise suppression, optimal pa-
rameters vary based on the noise level in the dataset. Values of 𝛼 > 1 have previously been 
used images of significantly lower SNR [47], while for TGV regularization, selected val-
ues of the 𝛽1,2 parameters are often based on a ratio between the two, with similar work on 
denoising suggesting this ratio, 𝛽2

𝛽1
be either 

√
2 or 2 [47–49]. These factors were therefore 

used to determine limits for initial parameter estimates. For the phantom sample, optimal 
values were determined based on three factors: visual comparison with reconstructed slices 

139



of Scan A, precision of absorption edge position, and minimum obtained ’primal-dual gap’. 
The latter is a quantitative measure of convergence for the PDHG method, and has previ-
ously been used as a stopping criterion for the iterative method [46, 50].
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4.8 Supplementary Information

4.8.1 X-ray source properties

Figure S1 shows typical incident source spectra measured by a single pixel of the detector, 
taken from flatfield projections acquired prior to scanning the lizard head and powder phan-
tom samples respectively. For the lizard head flatfield, X-ray fluence rate was calculated to 
be 2.1 ×106 photons cm-2 s-1. For the powder phantom flatfield, the X-ray fluence rate was 
6.2 ×106 photons cm-2 s-1. Distinct peaks are observed in the 20 – 30 keV range, due to flu-
orescence of the Cd and Te semiconductor materials within the hyperspectral detector. In 
addition, different levels of scattering directly affect the proportion of fluorescent events, 
altering the expected count distribution in the lower energy regions. These changes to the 
flatfield spectra, compared to those acquired when the samples are in place, directly affect 
the resulting spectrum in each pixel as flatfield correction is applied. The low-energy tails 
for each flatfield spectra in Fig. S1 can be attributed to the charge sharing effect.

4.8.2 Spectral detector calibration

For both datasets, a calibration was performed using a ‘dial source’, whereby a 241Am 
sealed source emits radiation which impinges onto various metal foils. This results in the 
emittance of X-ray fluorescence photons, which are characteristic of the metals, measured 
by the detector. Linear fitting of theoretical peak energies to ‘channel number’ can then be 
performed, to produce our calibration values. For this study, calibration was performed us-
ing the 241Am 𝛾-ray photopeak, as well as the K𝛼,𝛽 fluorescence peaks of Tb and Ba. Figure 
S2 (left) shows a typical spectrum measured from a single pixel of the detector, with mark-
ers identifying the peaks used for calibration. Calibration values were calculated prior to 
scanning of each sample, with consistent energy-channel conversions across datasets. In 
addition, the calibration data enables the energy resolution of the detector to be measured, 

145

https://doi.org/10.1137/130948793
https://doi.org/10.1137/130948793
https://doi.org/10.1002/mrm.22595.Second
https://doi.org/10.1007/s10851-016-0662-8
https://doi.org/10.1007/s10851-016-0662-8


Figure S1. Example incident source spectra measured by a single pixel of the hyperspectral detector. For each 
flatfield, a low-energy tail is observed due to the effect of charge sharing. (Left) Single flatfield projection 
measured prior to scanning the lizard head sample (50 kV, 0.7 W, and 120 s exposure time.) Sharp peaks 
appear due to the fluorescence of the Cd and Te materials within the detector. (Right) Single flatfield 
projection measured prior to scanning the long exposure powder phantom (60 kV, 6W, and 180 s exposure 
time).

by measuring the FWHM of the peaks. Here, we measured the FWHM of the 241Am pho-
topeak (59.5 keV), for every pixel on the detector. Figure S2 (right) shows the distribution 
of FWHM values, with the energy resolution at 59.5 keV found to be 1.21±0.40 keV. The 
increased energy resolution, compared to the ideal resolution of 800 eV at 59.5 keV, is at-
tributed to the effect of charge sharing. As seen in Fig. S2 (left), this results in a high num-
ber of measured events in the low energy range, as measured charge is distributed between 
neighbouring pixels, causing a low-energy tail. In addition, the fluorescence of the Cd and 
Te semiconductor materials can result in additional charge sharing effects.

Figure S2. (Left) Example spectrum, measured in a single pixel, from the calibration source. Five arrows 
mark the peaks used for linear fitting, ranging from the K𝛼,𝛽 fluorescence peaks of Ba (farthest left) to the 
241Am 𝛾-ray photopeak (farthest right). A large, low-energy tail is observed due to charge sharing. (Right) 
Distribution of FWHM values for the 241Am peak, measured at 59.5 keV. Dead pixels were not considered.

4.8.3 Powder phantom - phase 1 artefacts

Following reconstruction of each dataset for the metal phantom, it is observed that phase 1 
(the CeO2 powder), produces slightly higher levels of attenuation at the edges of the cylin-
der, with a consistently lower level at the centre extending along the full depth of the cylin-
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Figure S3. (Top) Spatial images of the FDK and TV-TGV reconstructions taken for Scan A and Scan B 
respectively. Images are shown for single energy channels, both before (top left) and after (top right) the Ce 
K-edge (40.443 keV). (Bottom) Line profiles taken across two phases, as marked on the spatial images (blue 
dotted line).

der (see Fig. 4.2.1b, 4.2.2a,b). In conventional white beam CT this ‘cupping’ contrast is 
characteristic of beam hardening, but could have a number of causes, for example, uneven 
filling of the cylinder by the CeO2 powder. To investigate this further we scanned a solid 
tungsten rod and saw the same cupping contrast. This would rule out the effect of uneven 
packing. Regarding beam hardening, the energy resolution of the system is approximately 
1.2 keV, and therefore, while not truly ‘monochromatic’, the width of each energy channel 
is very narrow, and it would be expected that the effect of beam hardening would be negli-
gible for any single channel. Nevertheless, the artefact does appear to be much more promi-
nent after the CeO2 absorption edge than before it (Fig. S3). Consequently, while beam 
hardening seems unlikely it cannot be unequivocally ruled out. Alternative explanations 
may lie in the energy detector response and we will continue to investigate this effect.

4.8.4 Powder phantom - noise suppression

Given the low noise and clear feature definition of the FDK Scan A reconstruction, we 
treat this as a ground truth dataset, and as such we may quantify the improvement in re-
construction quality of Scan B by direct comparison with this data. In addition to the CNR 
values noted in the manuscript, here we also show spatial comparisons of the root-mean-
square-error (RMSE) between our Scan B reconstructions and the Scan A dataset. Figure 
S4 shows RMSE values calculated across two image slices, in the transverse and frontal 
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planes, following FDK and TV-TGV reconstructions of Scan B. RMSE values are shown at 
a channel just beyond the Ce K-edge, where attenuation is at its highest for this phase, and 
as such errors are at their highest. As expected, significant deviations are observed in the 
RMSE values of Scan B following FDK reconstruction, due to the severity of artefacts and 
noise present. Such differences are almost entirely removed following TV-TGV reconstruc-
tion of Scan B, with only small deviations on the boundaries of the cerium phase, as well as 
a few erroneously high pixel values.

Figure S4. RMSE values calculated by comparison of the Scan B reconstructions with the results of Scan A. 
Images shown are taken for single slices in the transverse (left) and frontal (right) planes, at energy 42.27 keV. 
Colour bars quantify the RMSE in each image, with scaling consistent within image planes for comparison.

4.8.5 K-edge subtraction

When the presence of an absorption edge is known, K-edge subtraction (KES) may be used 
to isolate chemical information due to the element corresponding to the edge. In order for 
KES to be performed, the energy position of the edge must be known, either through prior 
knowledge of the sample composition, or visualisation of the acquired spectral profile. Two 
parameters are then required to determine the data extracted for subtraction either side of 
the edge: ’Separation’ and ’Width’, which identify the distance from the edge and the range 
of energy channels integrated respectively. As illustrated in Fig. S5, the values of each pa-
rameter may be adjusted based on the size and shape of the measured absorption step. In 

148



the case of the iodine-stained lizard head, optimum values of 5 and 2 channels were found 
for width and separation respectively.

Figure S5. Example profile illustrating K-edge subtraction around the iodine absorption edge for a voxel in the 
stained lizard head. The theoretical position of the edge is marked for comparison (dotted line). The 
’separation’ (Sep.) determines the distance in energy (channels) away from the edge position, while the 
’width’ measures the energy (channel) range across which data is extracted (yellow bars). Identical values are 
used either side of the edge. Sizes of each parameter are not to scale.
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Chapter 5

Quantifying multiple stain distributions in 

bioimaging by hyperspectral X-ray tomography

1Ryan Warr, 2Stephan Handschuh (S.H.), 2Martin Glösmann (M.G.), 1Robert J. Cernik 
(R.J.C.), 1Philip J. Withers (P.J.W.)

1Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
2VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria

In this chapter, a study was conducted to evaluate the extent of quantitative information that 
could be extracted on the chemical distribution of contrast agents within stained biological 
specimens, through the use of hyperspectral X-ray CT. Typically, the chemical information 
within a sample extracted using spectral imaging can be largely qualitative. For example, 
the use of K-edge subtraction as a segmentation tool simply maps out the separate chemi-
cal regions, but provides no quantitative information on the relative uptake of the chemical 
throughout the sample. However, by using a set of chemical phantoms, of varying concen-
tration, this study performed a first instance of measuring the relationship between chemical 
concentration, and the size of the absorption edge spectral marker identified. In doing so, 
hyperspectral imaging would allow the non-destructive measurement of chemical stain dis-
tribution as a function of position across a full sample volume. The study uses a set of two 
multiply-stained biological specimens to analyse both the energy-discriminating properties 
of hyperspectral X-ray CT, as well as the chemical concentration mapping capabilities.
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Contribution Statement

This research project was conceived between myself and S.H. with the intention to perform 
further work on biological staining, expanding on the initial results obtained in Chapter 4. 
Following further meetings with my supervisors (P.J.W. and R.J.C.), a range of biologi-
cal samples were assessed for their applicability to hyperspectral study and multi-staining 
regimes, with expertise provided by S.H. First experimental tests were conducted by myself 
on several stained biological specimens, with differing double- and triple-staining regimes. 
All samples were provided by S.H. alongside his colleague M.G., given the substantial time 
required to prepare and stain each specimen. I acquired all the data reported in this study, 
processed and reconstructed the data using the same workflow as in Chapter 4, and eval-
uated the results. All X-ray CT scans were conducted by myself using scripts designed in 
the C# programming language. Significant preliminary testing was required to strike a bal-
ance between high image contrast in the soft tissue structures, and using X-ray source set-
tings capable of capturing the spectral signals of each high-attenuation stain in the samples. 
Such tests were conducted by myself over the course of several months, with multiple days 
of X-ray beam time. Upon determining the best biological samples for the research project 
through discussions with all co-authors, further phantom samples were prepared by S.H. 
and M.G. in order to conduct the quantitative measurements shown in the final manuscript.

All data processing, corrections, reconstruction and analysis of the hyperspectral data were 
conducted by myself using both MATLAB and Python. A similar workflow to that used in 
Chapter 4 enabled the same scripts to be adapted for the parameters of the latest datasets 
for faster processing from raw 2D images to reconstructed volumes. Additional scripts were 
written by myself for the novel quantitative calibration of the phantom samples, and the cor-
responding calculations of stain distribution in the biological specimens.

The complementary datasets of the samples, acquired using high-resolution XCT and dual-
energy CT, were conducted, reconstructed and analysed by S.H. to provide direct compar-
isons to the hyperspectral equivalent datasets. S.H. also performed the volume registration 
of the datasets to enable a correlative, multi-modal approach for identifying and mapping 
spectral features in the biological specimens.

I wrote the majority of the manuscript, including several draft versions as comments were 
provided each time by all co-authors. The Methods sections on biological and phantom 
preparation were written by S.H. and M.G. All supplementary information, including all 
figures and videos, were produced by myself. Following submission, I took the lead as the 
corresponding author to handle all reviewer comments and make edits accordingly.
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Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray 
tomography
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Abstract

Chemical staining of biological specimens is commonly utilised to boost contrast in various 
soft tissue structures, but unambiguous identification of staining location and distribution is 
difficult without confirmation of the elemental signature, especially for chemicals of simi-
lar contrast. Hyperspectral X-ray computed tomography (CT) enables the non-destructive 
identification, segmentation and mapping of elemental composition within a sample. With 
the availability of hundreds of narrow, high resolution (~1 keV) energy channels, the tech-
nique allows the simultaneous detection of multiple contrast agents across different tissue 
structures. Here we describe a hyperspectral imaging routine for distinguishing multiple 
chemical agents, regardless of contrast similarity. Using a set of elemental calibration phan-
toms, we perform a first instance of direct stain concentration measurement using spectral 
absorption edge markers. Applied to a set of double- and triple-stained biological speci-
mens, the study analyses the extent of stain overlap and uptake regions for commonly used 
contrast markers. An improved understanding of stain concentration as a function of posi-
tion, and the interaction between multiple stains, would help inform future studies on multi-
staining procedures, as well as enable future exploration of heavy metal uptake across med-
ical, agricultural and ecological fields.
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5.1 Introduction

X-ray computed tomography (XCT) has long been used to analyse the internal structure and 
composition of samples non-invasively across a wide range of fields, including the study of 
biological soft tissue structures. Compared to destructive techniques, such as microscopic 
histology, the use of XCT enables whole samples to be examined in 3D in a single scan, to 
obtain insight on the internal organisation of the full specimen. Achieving strong contrast is 
a key aspect of XCT in order to confidently resolve structures and segment distinct regions. 
Contrast between material phases is dependent on their relative absorption (attenuation) 
of X-rays. Every element and material substance has a unique, energy-dependent attenua-
tion profile, with materials of higher density such as bone (calcium) more readily absorbing 
of X-rays than say, unmineralised (soft) tissue. Some examples of attenuation profiles for 
chemical elements, as well as that of soft tissue, are shown in Fig. 5.1.1. With increased X-
ray energy, differences in attenuation narrow, and therefore contrast is reduced. As such, for 
the hard X-ray energy range (> 20 keV), feature separation can be difficult, particularly for 
soft tissue imaging of biological samples with XCT [1].

One method of improved tissue characterisation is through the addition of contrast agents. 
These chemical stains, composed of highly-attenuating elements such as iodine or tung-
sten, offer a form of localised contrast enhancement, due to their differing affinities to soft 
tissue structures, increasing tissue attenuation. Popular stains include the use of iodine-
based compounds (for deep and rapid staining of multiple tissues [2–5]) as well as phos-
phomolybdic and phosphotungstic acid (PMA, PTA) for their slower, but strong binding to 
proteins and connective tissue [1, 6, 7].

XCT enables the imaging of stained soft tissues at high contrast, however it cannot read-
ily discriminate two or more highly-absorbing materials present in the same sample. Ma-
terial differentiation can instead be accomplished by the evaluation of attenuation values 
at multiple energies. Common X-ray contrast agents display sharp discontinuities in X-ray 
attenuation at specific X-ray energies for chemical elements. The sharp jumps in attenu-
ation, as observed in Fig. 5.1.1, correspond to K-edges, occurring at the binding energy 
of an element’s K-shell electrons. By measuring the attenuation at a number of points, the 
aforementioned differences in absorption for soft tissues may be exploited to discriminate 
between them. Dual-energy CT (DECT) utilises this comparison of relative attenuation by 
exposing the tissues to X-ray spectra at two different energies. Multiple DECT geometries 
have been created, such as rapid voltage-switching, dual source systems or even dual-layer 
detector technologies [8], however the principle is still the same. By evaluating the attenu-
ation response of the sample at two different X-ray energies, any differences in relative at-
tenuation may be exposed and used as a means of material discrimination [9]. If a contrast 
agent is also added, then by selecting X-ray spectra at energies before and after the K-edge 
value, attenuation differences between stained and unstained regions are exaggerated, im-
proving soft tissue identification. Biological applications of DECT have included imaging 
of vasculature [10], gout [11] and atherosclerotic plaque [12, 13]. The method of DECT is 
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Figure 5.1.1. Attenuation variation as a function of energy. Known values of the mass attenuation 
coefficient shown for a number of materials. Across the hard X-ray energy range, many elements exhibit sharp 
rises in attenuation at their absorption edge positions (K-edge energies given in legend), providing strong 
contrast relative to soft tissue or calcium (bone) structures. Values extracted from the NIST online database 
[15].

disadvantaged however by the increased dose required [14], as well as the difficulty in un-
ambiguously differentiating spectrally similar chemicals, such as that of barium and iodine 
contrast agents.

Developments in single photon-counting detector systems have aimed to bridge the gap be-
tween conventional absorption X-ray CT/DECT and full chemical characterisation modali-
ties, by enabling the simultaneous acquisition and measurement of photon energy and posi-
tion at each respective pixel. A key advantage to such systems is the ability to directly cap-
ture spectral markers, such as K-edges and X-ray fluorescence (XRF) peaks. The creation 
of detector systems with high spectral sensitivity over a very narrow bandwidth (≤ 1 keV), 
termed ‘hyperspectral’ detectors, have enabled full access to these markers, with the energy 
precision required to unambiguously match them to their elemental origins. With imaging 
possible over the hard X-ray range, the system is also well-suited for lab-based CT imag-
ing, where a polychromatic spectrum may be captured in full, and recorded over hundreds 
of energy channels. As such, hyperspectral imaging facilitates the simultaneous recording, 
and mapping, of a wide range of chemical elements, to provide complete 4D spatiospectral 
insight. Previous applications of hyperspectral CT have explored elemental segmentation 
with K-edges in geology [16] and single-stain bioimaging [17], XRF imaging of nanoparti-
cles [18] and alloy melting/solidification [19], as well as spectral diffraction studies of brain 
amyloid plaque [20].

As shown elsewhere [16, 17], the size of an absorption edge may be measured to determine 
relative chemical concentration as a function of spatial position in the sample. However, 
with the addition of a suitable calibration phantom, it is possible to precisely extract the di-
rect relationship between absorption step size and chemical concentration, to produce maps 
of absolute concentration. As such, for multiply-stained biological specimens, hyperspec-
tral imaging provides a unique ability to further understand and quantify the interaction and 
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distribution of simultaneous contrast agents over a variety of soft tissue regions.

Testing popular and commonly used contrast agents, here we evaluate the ability to seg-
ment similarly-attenuating chemicals, and measure their concentration distribution across 
skin, muscle, connective tissue and vasculature in murine specimens. In order to inves-
tigate the efficacy of hyperspectral tomography for multi-stain bioimaging we examine a 
mouse hindlimb stained with two contrast agents (barium and iodine) and a mouse forelimb 
stained with three (barium, iodine and tungsten). In addition, we establish a calibration rou-
tine using a set of idealised phantoms of the same chemical stains. The spectroscopic imag-
ing routine, here using the hyperspectral HEXITEC detector system, is verified against re-
sults achieved in conventional XCT and DECT, providing a foundation for automated el-
emental concentration measurement across a range of samples and research fields in the 
future. The unique ability to directly identify, quantify and map heavy elements shown in 
this study demonstrates the powerful potential of hyperspectral X-ray CT as a tool for non-
destructive, 3D chemical analysis, applicable to research including medical biopsies and 
heavy metal poisoning.

5.2 Methods

As detailed below, all methods and procedures are reported in accordance with the AR-
RIVE guidelines, and the relevant legislation.

5.2.1 Biological sample and phantom preparation

All procedures followed animal care guidelines approved by the Administrative Panel on 
Laboratory Animal Care of the University of Veterinary Medicine in Vienna. No experi-
mental procedures were carried out on living animals. Tissues for contrast-staining were 
collected from a single male, adult C57BL/6N mouse. The animal was specific pathogen-
free (SPF) according to FELASA recommendations [21] and maintained in a barrier rodent 
facility. For mice that are not genetically modified (such as C57BL/6N), breeding as well 
as euthanasia for the mere purpose of tissue harvesting is not subject to permission by li-
cense according to national legislation of Austria and EU directive 2010/63/EU. Inhalation 
euthanasia was performed by an overdose of Isoflurane in accordance with international 
standards and recommendations for humane euthanasia [22, 23]. The mouse was placed 
in a closed receptacle containing gauze soaked with 5 ml Isoflurane. Inside the receptacle, 
a barrier of dry paper tissue ensured that the animal was only exposed to anaesthetic vapour 
and did not get in contact with the liquid Isoflurane. The animal was kept in the closed re-
ceptacle for ten minutes. Cessation of heartbeat and breathing occurred within less than 
five minutes. After ten minutes, the mouse was taken out of the receptacle and successful 
euthanasia was verified by the absence of heartbeat, breathing and toe pinch reflex. All per-
fusion and tissue preparation procedures were carried out post-mortem and thus also were 
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not subject to permission by license according to national legislation of Austria and EU di-
rective 2010/63/EU.

Mouse hindlimb containing two high-Z contrast agents (barium, iodine) The mouse 
was perfused into the left ventricle with isotonic saline containing 10 UI/ml Heparin to re-
move blood from the vasculature, followed by perfusion fixation with 4% neutral buffered 
formalin. Subsequently, the vasculature was perfused with 30% Micropaque® barium sul-
phate (w/v) in 3% gelatine in phosphate buffered saline (PBS). After perfusion, the whole 
mouse was immersed in 4% neutral buffered formalin at 4∘C for 72h. After fixation, the 
head, limbs and inner organs were harvested and stored in PBS at 4∘C. A hindlimb was 
dehydrated to absolute ethanol through a graded series of ethanol concentrations (70%, 
85%, 95%, 100%, 1h per step). The dehydrated hindlimb was stained using 1% elemental 
iodine (I2) in absolute ethanol for six days at room temperature (RT) using gentle horizon-
tal shaking. After staining, the hindlimb was washed in absolute ethanol and mounted in a 
polypropylene tube again in absolute ethanol.

Mouse forelimb containing three high-Z contrast agents (barium, iodine, tungsten)
Details on fixation and perfusion have been reported above. A forelimb was transferred 
to 70% ethanol. In the first staining step, the forelimb was immersed in 1% (w/v) phos-
photungstic acid hydrate (PTA) in 70% ethanol for 11 days at RT using gentle horizontal 
shaking. Subsequently, the sample was transferred to an acidic (pH 2.8, pH adapted us-
ing HCl) low concentration I2KI solution containing 0.25% (w/v) I2 and 0.5% (w/v) KI in 
distilled water and stained for six days at RT using gentle horizontal shaking. Finally, the 
forelimb was mounted in the same acidic (pH 2.8) low concentration I2KI solution inside 
a polypropylene tube. Staining times used for the sample enable a complete staining from 
the cut surface to the elbow including all soft tissues of the upper arm, which was the main 
ROI in the present investigation. However, a longer PTA staining time would be required to 
completely stain soft tissues of the lower arm and paw.

BaSO4 phantom Three mixtures of commercial Micropaque® barium sulphate suspension 
(1g BaSO4 / ml) with 2% agarose gel were made. First, the agarose was heated to 70∘C. 
Then, the respective amount of BaSO4 and agarose was mixed with a Vortex Mixer, and 
pipetted into small plastic containers, followed by immediate cooling to avoid sinking of 
the BaSO4 crystals. In total three concentrations of BaSO4 were prepared, equating to 100 
mg/ml, 200 mg/ml, and 400 mg/ml, respectively. The three plastic containers were put into 
a 5 ml polypropylene tube, and the space around the three containers was filled with 2% 
agarose that solidified at RT.

Iodine phantom Four containers of aqueous I2KI were prepared, with concentrations of 
25.3, 50.6, 76.0 and 101.2 mg of I3

- per ml respectively. The containers were held in an 
interchangeable setup to enable the locations of each concentration to be switched as re-
quired.

PTA phantom Three concentrations of aqueous PTA solutions were prepared, containing 
50, 100, and 200 mg of phosphotungstic acid hydrate per ml. The three plastic contain-
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ers were put into a 5 ml polypropylene tube, and the space around the three containers was 
filled with 2% agarose that solidified at RT.

5.2.2 Hyperspectral X-ray microCT imaging

All samples were scanned with a 225 kV Nikon X-ray source, based within the High Flux 
walk-in bay at the Henry Moseley X-ray Imaging Facility (HMXIF), University of Manch-
ester. The experimental set-up for hyperspectral image acquisition follows that of a conven-
tional system. The cone-beam source, sample rotation stage and detector are oriented in a 
parallel configuration along the same imaging plane. The key difference is that here we re-
place the standard energy-integrating detector with an energy-sensitive, hyperspectral imag-
ing detector. In this case we use the high-energy HEXITEC hyperspectral detector [24, 25]. 
The HEXITEC detector is capable of measuring both incident photon position and energy, 
to build an attenuation profile across hundreds of narrow energy channels in each pixel. 
The result is that any single radiograph may be viewed at a single energy channel, directly 
exposing changes in attenuation as a function of energy. The HEXITEC consists of an 80 ×
80 pixel array at a 250 𝜇m pixel pitch, with a 1 mm thick CdTe sensor bump-bonded to an 
ASIC to produce a 2 cm × 2 cm detection area. The detector has an achievable energy res-
olution of 800 eV at 60 kV and < 1.5 keV up to 160 kV. Due to the small FOV, all samples 
investigated in the study were chosen such that all key features could be seen in a single CT 
acquisition. In addition, the samples only contained features with sizes of ≥ 100 𝜇m, given 
the relatively poor spatial resolution of the HEXITEC. Prior to scanning of the samples, 
calibration of the detector was performed by acquiring fluorescent X-ray signals from a se-
ries of metal foils, emitted upon exposure to a radioactive 241Am source. Matching of the 
theoretical X-ray fluorescence peak energies to their measured energy channel position en-
abled a linear fitting to be determined, providing a direct energy-to-channel conversion [26] 
(see Supplementary Fig. S1). The energy resolution of the system was determined based 
on the FWHM of the 241Am photopeak at 59.5 keV, averaged over every pixel [17, 24], with 
resolution measured as 1.27 ± 0.47 keV (see Supplementary Fig. S2). An inter-pixel gain 
correction was also applied to account for differences in spectral response across the pixel 
array [27].

For each sample, the X-ray settings were chosen to strike a balance between measuring the 
spectral signal from each distinct chemical stain, while also ensuring strong image contrast 
was obtained. As such, the mean X-ray energy was increased high enough to capture a sig-
nificant number of photons at each known chemical absorption edge. Table 5.3.1 shows the 
selected scan settings for each of the biological samples, as well as the individual chemical 
phantoms.

Raw data processing: For each sample, additional processing of the raw data was applied 
following creation of the 4D sinogram. A common artefact observed following CT recon-
struction is that of ring artefacts, due to poorly functioning or miscalibrated detector pix-
els. Applying the method developed by Münch et al. [28], which uses a combined wavelet-
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Fourier based approach, reduces the presence of such artefacts in the final reconstructed 
volume. In addition, a centre-of-rotation correction was applied to sample datasets where 
there existed a misalignment from the true centre during scanning. Pre-processing was per-
formed using scripts in MATLAB.

High resolution XCT/DECT Imaging: For the mouse hindlimb and forelimb, respec-
tive XCT and DECT scans were performed to provide high spatial resolution comparative 
datasets to those acquired with hyperspectral imaging. For the hindlimb, the XCT scan used 
a MicroXCT-400 (Carl Zeiss X-Ray Microscopy, Pleasanton, CA, USA), with a 0.4× detec-
tor assembly, at source settings of 80 kVp, 100 𝜇A. The reconstructed voxel size was 13.63 
𝜇m. The forelimb was scanned using the same system and 0.4× detector assembly, but as a 
dual-energy set-up. Two scans were acquired at 40 kVp/200 𝜇A and 80 kVp/100 𝜇A, with a 
reconstructed voxel size of 7.97 𝜇m. Three material fractions were calculated using a post-
reconstruction basis material decomposition approach, as described elsewhere [9]. Joint 
dual energy profiles of bone (hydroxyapatite) and iodine-stained soft tissue were measured 
using ROIs in the registered dual energy data. Using an energy pair of 40kVp/80kVp, bone 
and PTA, as well as iodine and barium, show almost identical dual energy profiles. This 
is because the mean energy of each spectra (~27 keV for 40 kVp and ~42 keV for 80 kVp) 
produce similar attenuation around the K-edges of iodine and barium (33.17 keV and 37.44 
keV, respectively), but are both far from the K-edges of calcium and tungsten (4.04 keV and 
69.53 keV, respectively). The result of the basis material decomposition were three image 
channels (‘materials’): channel 1 = bone + PTA, channel 2 = iodine + barium, channel 3 = 
water).

5.2.3 Reconstruction routine

A regularised iterative approach was adopted, using the Primal-Dual Hybrid Gradient 
(PDHG) algorithm [29], combined with separate regularising parameters applied to the 
spatial and spectral dimensions. In this case, we used a method known as TV-TGV regu-
larisation, based on different forms of the Total (Generalised) Variation regularising rou-
tine. The algorithm has previously been applied successfully to improve reconstructed im-
age quality for hyperspectral X-ray and neutron tomography [17, 30]. Variations of the TV 
method are known to be efficient at suppressing noise [31, 32], and using a split approach 
of applying TV and TGV to spatial and spectral domains respectively enabled optimisation 
for the differing levels of noise in each dimension. Optimisation of weighting parameters 
plays a crucial role in obtaining high signal-to-noise ratio and for performing precise analy-
sis of the spectral attenuation profiles. Under- or over-estimation of the parameters can lead 
to little noise suppression or over-smoothing, affecting the identification of weak spectral 
markers. Therefore, parameters for spatial and spectral regularisation were optimised by 
trialling a range of values for each dataset, until values were selected to obtain a balance be-
tween sufficient noise suppression and strong feature contrast. The reconstruction method 
was implemented using the open-source Core Imaging Library (CIL) software [33, 34], and 
fully programmed through Python. All samples were reconstructed with 1000 iterations of 
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the algorithm, which has proven to be sufficient for noise suppression in previous hyper-
spectral datasets [17].

5.2.4 Volume registration

In order to compare exactly corresponding slices between hyperspectral and XCT/DECT 
datasets, image volumes were imported into the 3D software package Amira 2021.1. (FEI 
Visualization Sciences Group, part of Thermo Fisher Scientific, Mérignac Cédex, FR). 
Co-registration of datasets was performed using the Register Images tool. The respective 
XCT/DECT dataset was registered to one energy channel (38.94 keV for double-stained 
hindlimb, 38.13 keV for triple-stained forelimb) of the hyperspectral data based on nor-
malized mutual information and using a rigid body transformation (six degrees of freedom, 
translation and rotation in X-Y-Z). After co-registration of image volumes, the correspond-
ing slice was generated with the Resample Transformed Image tool using Lanczos interpo-
lation.

5.2.5 Spectral analysis routines

K-edge subtraction: In order to segment and visualise different stained tissue phases, the 
spectral analysis method of K-edge subtraction (KES) was applied. The method used two 
key parameters: width and separation. Width determined how many energy channels were 
integrated either side of the absorption edge, while separation measured the gap between 
the channel of the known edge position, and the regions either side over which channels 
are integrated and subtracted. The separation value was determined based on the mini-
mum number of channels needed to span the full absorption edge for each element. A value 
above zero is often required as experimentally measured absorption edges show a rise in at-
tenuation over a narrow range of channels, compared to the sharp discontinuity observed in 
theoretical data. For the iodine and barium K-edges in the study, optimal width and separa-
tion values of 5 and 2 channels were used, respectively. The separation was increased to 10 
channels for the tungsten K-edge in the triple-stained specimen due to a broader absorption 
edge measured. The method was applied using Python code, producing elemental segmen-
tation maps for each unique K-edge position [16].

Edge height analysis: Following measurement of individual voxel spectra and identifica-
tion of an absorption edge, the relative size of the absorption edge step was calculated in 
Python. Linear fits were applied to the attenuation profile either side of the absorption edge, 
before extrapolating the fits to the known K-edge value. The difference in attenuation value 
(Δ𝜇0) between the upper and lower bounds of the linear fit provide a relative measure of 
the change in phase attenuation.

Absolute concentration calculation: Applying linear fitting to the edge height analysis 
for the chemical phantoms, the relationship between concentration and step size was deter-
mined. The fitted relationship was then used as a baseline for determining absolute concen-
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tration of staining agents in the soft tissue structures of each sample. For each sample, the 
equation corresponding to the linear fit for each contrast agent was used to directly convert 
edge height values to absolute concentration values. The method was applied iteratively in 
Python on a voxel-by-voxel basis to produce a 3D map of concentration values for each ele-
mental stain.

5.3 Results

Elemental segmentation of multi-stain specimens Our first sample examines a case of 
double-staining within a mouse hindlimb. The sample was stained with elemental iodine 
(I2) for general soft tissue contrast enhancement, while barium sulphate (BaSO4) was added 
to improve the visualisation of the blood vessels within the limb [35, 36]. Despite the rel-
atively poor spatial resolution achievable with the HEXITEC detector it is well suited for 
imaging the upper knee region of the hindlimb. Indeed, the larger blood vessels in the 
hindlimb vasculature can reach hundreds of microns in diameter [37]. Here, the use of 
these two stains represents an example of contrast agents difficult to spectrally separate with 
DECT due to their similar attenuation profiles and closely-spaced K-edges. A complete 
breakdown of the scanning parameters, for all biological specimens and phantom samples 
used in this study, is shown in Table 5.3.1. Following scanning, the datasets were recon-
structed using an iterative algorithm catered towards optimising image quality for 4D hy-
perspectral imaging. Given the count-rate limitations of hyperspectral detector systems, 
a conventional CT reconstruction algorithm such as cone-beam filtered back-projection 
(FDK) is not well suited, as this algorithm often results in noisy 4D reconstructed volumes, 
as shown elsewhere [17, 30].

Sample Stains Beam
voltage (kV)

Beam
current (𝜇A)

Exposure
time (s) Projections Voxel

size (𝜇m)
Mouse

Hindlimb I2/BaSO4 60 13 120 180 151

Mouse
Forelimb I2KI/BaSO4/PTA 90 13 120 180 128

Phantom 1 I2KI 60 13 120 180 223
Phantom 2 BaSO4 60 13 120 180 196
Phantom 3 PTA 90 20 120 180 177

Table 5.3.1. Sample preparation and scan settings. A full list of the different contrast agents and scan settings 
for each biological sample and phantom included in this paper.

Figure 5.3.1A presents a set of reconstructed images corresponding to the same CT slice of 
the hindlimb, but recorded for three energy channels. A sharp rise in attenuation between 
the first two energy channels is consistent with the presence of the iodine K-edge (33.17 
keV) between them. With approximately 99% of the soft tissue estimated to be stained by 
iodine, as expected the majority of the reconstructed cross-section shows a consistent atten-
uation increase. An additional benefit of evaluating quasi-monochromatic image slices is to 
qualitatively identify different phases, prior to spectral segmentation. The spectral profiles 
for three regions of interest (ROIs) in Fig. 5.3.1A are shown in Fig. 5.3.1B. The spectra for 
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ROI1 indicates the presence of the iodine contrast agent, with a rise in attenuation at the en-
ergy corresponding to the iodine K-edge. Similarly, ROI2 includes an absorption step at the 
energy corresponding to the K-edge of barium, as well as a small rise around the iodine K-
edge. The magnified image in Fig. 5.3.1A highlights the marginal overlap of ROI2 with ma-
terial outside of the phase, due to the small feature size being analysed, which probably ex-
plains the presence of the iodine absorption step. Analysis of ROI3, within the dense bone 
region, shows a minor increase due to the presence of iodine, which has been observed in 
similar staining studies based on DECT data (SH, personal observation).

Figure 5.3.1. Voxel spectra analysis for double-stained hindlimb specimen. A) Single image slice in the 
sagittal plane across three monochromatic energy channels, following iterative reconstruction. A set of three 
regions-of-interest (ROIs) are highlighted for voxel spectra analysis. An enlarged image of a section of (A) - 
red box - is included to highlight ROI2 taken over one of the distinct material phases. ROIs1,3 cover a 3×3 
voxel region, while a 2×2 pixel region is used for ROI2, partially overlapping with surrounding material 
outside of the phase. B) Voxel spectra for each ROI, showing clear steps in attenuation. Known absorption 
edge positions (black dotted lines) confirm the presence of iodine and barium in the ROIs, while ROI3 shows 
a small iodine signal, having partially diffused into the calcium-containing bone.

In order to precisely map the distribution of chemical stain over soft tissue structures, the 
method of K-edge subtraction (KES) is applied. For each absorption edge, narrow channel 
ranges either side of the edge position were integrated and subtracted from one another. As 
a result, only information corresponding to the chosen element remains, enabling a form 
of elemental segmentation to be performed. Applying the KES method for iodine and bar-
ium produces the results shown in Fig. 5.3.2A, where we achieve clear segmentation of 
the iodine- and barium-stained structures. Included in Fig. 5.3.2B are a set of 3D volume 
renders for the segmented regions, where we also map the remaining material phase, fol-
lowing subtraction of iodine and barium (also see Supplementary Video 1). As expected, 
the structure of this phase over 3D is confirmed as calcium-containing bone. In order to 
reinforce the identification of each phase, an equivalent image slice acquired through con-
ventional XCT for high spatial resolution comparison is shown in Fig. 5.3.2C. The scan 
was reconstructed with a voxel size of approximately 14 𝜇m, providing clear structural in-
sight which may be missing in the hyperspectral images. Exact image slices were identi-
fied and matched using volume registration. As seen in Fig. 5.3.2C, labelled regions for 
each stained structure matches those segmented using the KES method in the hyperspec-
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tral dataset. Based on the XCT image shown, we can identify the soft tissue regions stained 
by iodine, with the barium contrast agent only filling the lumen of blood vessels in the 
mouse hindlimb. Though a small amount of iodine binds to the bone tissue as previously 
discussed, such differences are negligible relative to the soft tissue, and do not emerge in 
the elemental difference maps created.

Figure 5.3.2. Elemental segmentation of hindlimb by K-edge subtraction. A) Elemental difference maps 
shown for the hyperspectral image slice shown in the sagittal plane (left). Colour bar for elemental difference 
maps is measured in terms of attenuation change, Δ𝜇, as determined by KES of narrow energy windows (5 
channels, ~1.1 keV width total) either side of each absorption edge. B) 3D volume mapping for elemental 
maps of iodine-, barium- and calcium-containing regions (top, middle, bottom respectively). C) Virtual 
cross-section from a high spatial resolution XCT scan of the mouse hindlimb, showing the equivalent image 
slice following volume registration. Labels indicate the three material phases with expected stain uptake 
regions.

Our second sample, a triple-stained mouse forelimb, provides an opportunity to observe the 
effect of overlapping contrast agents. Here, we now have additional soft tissue staining pro-
vided through the tungsten-based phosphotungstic acid (PTA). While the use of PTA has 
been shown to provide strong contrast enhancement to regions such as connective tissue, it 
also enhances tissues overlapping with iodine-based agents, including muscles, while dual-
staining in the skin is possible, though sometimes the skin is removed due to acting as a 
barrier for stain penetration [38]. Therefore the sample provides an opportunity to investi-
gate stain interaction, and identify any double-stained regions or potential displacement of 
one chemical by another.
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Figure 5.3.3. Spectral analysis for a triple-stained forelimb specimen. A) Elemental difference maps 
shown for the hyperspectral image slice shown in the coronal plane (left). Colour bar for elemental difference 
maps is measured in terms of attenuation change, Δ𝜇. Arrows are included to highlight distinct soft tissue 
regions stained by each chemical, confirmed as hair (pink), vasculature (blue), skin (green) and muscle 
(white). B) Reconstructed cross-section from a high spatial resolution DECT scan of the mouse forelimb, 
following basis material decomposition. The image slice matches that shown in the hyperspectral dataset, 
following volume registration. Labels indicate regions containing tungsten and calcium (green), as well as 
those containing iodine and barium (magenta). DECT decomposition fails to fully segment all elements into 
distinct phases. The dashed region and asterisk highlight the area below the elbow joint where PTA did not 
fully stain. C) Reconstructed cross-section slice in the coronal plane of the triple-stained mouse forelimb. 
ROIs are shown for five distinct regions of the specimen, to analyse average voxel spectra. All ROIs cover 
3×3 pixels, apart from ROI3, which covers a 2×2 region. D) Voxel spectra for the ROIs selected in (C). 
Known K-edge positions are overlaid, with ROIs 1, 2 and 3 matching the K-edges for iodine, barium and 
tungsten respectively (top). Two ROIs, 4 and 5, show the presence of both iodine and tungsten contrast agents 
(bottom).

Using the same reconstruction and analysis routine as for the double-stained specimen, we 
acquire a full spectral segmentation of the three contrast agents in the triple-stained mouse 
forelimb, as shown in Fig. 5.3.3A. It becomes immediately clear that PTA constitutes the 
dominant stain in the majority of the soft tissue, with significantly reduced iodine uptake 
compared to the double-stained hindlimb sample. Clear elemental segmentation is achieved 
despite the addition of a third elemental stain, owing to the unambiguous identification 
of each absorption edge with hyperspectral imaging, followed by KES for each spectral 
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marker (also see Supplementary Video 2). By analysing an equivalent DECT reconstructed 
dataset of the same sample, we can perform a direct comparison of imaging modalities, 
while using the high spatial resolution nature of the DECT method to identify and match 
soft tissue regions. As with the XCT comparison for the double-stained specimen, we once 
more perform volume registration to directly match the volume orientation. The DECT im-
age slice shown in Fig. 5.3.3B, with a reconstructed voxel size of approximately 8 𝜇m, was 
segmented following basis material decomposition, a method of separating the individual 
contributions of each material to the overall attenuation of the X-ray beam [8], and has reg-
ularly been used as an effective method of chemical segmentation in DECT [9, 39]. The 
decomposition method for DECT is limited in its ability to fully segment each individual 
chemical phase. The higher attenuation tungsten-stained regions, along with the calcium-
based bone can be segmented from the iodine- and barium-stained regions, but no further 
separation is possible. In part, this is due to the aforementioned similar spectral profiles of 
iodine and barium, with very similar attenuation and closely-spaced K-edges. Hyperspec-
tral CT can overcome such issues due to the high energy resolution available, enabling seg-
mentation through KES. We can therefore confirm the identification of iodine staining in 
the hair of the forelimb, as well as the fat tissue, between which a layer of skin is clearly 
stained only by the tungsten-based PTA. The intensity of the PTA staining shows clearly 
in the majority of the musculature, with very low levels of iodine present. This is reversed 
in the lower area below the elbow joint however, as highlighted by the dashed region in Fig. 
5.3.3B, where iodine staining shows an equal, or greater intensity than the tungsten con-
trast agent. This is due to the staining time of the PTA, combined with its slow penetration 
speed, meaning the contrast agent only partially stained to this sample depth. This did how-
ever offer an excellent opportunity to evaluate the balance of stains in the same soft tissue 
structure. Finally, a small section of bone is noted by the DECT results, which appears as 
part of the tungsten segmentation in the hyperspectral KES analysis. As such, no calcium 
map is extracted following KES. The cause of this may be investigated through the anal-
ysis of several ROI voxel spectra, as shown in Fig. 5.3.3C and D. The results confirm the 
presence of iodine, barium and tungsten in the hairs, vessels and skin respectively, based on 
reference regions in the DECT dataset. The spectra of ROI4, at the lower region of the fore-
limb, shows the overlap between I2KI and PTA staining in the muscle tissue. A small step 
change at the K-edge of tungsten is also observed in ROI5, taken over the feature identified 
as bone in the DECT cross-section. Therefore, partial binding of the PTA contrast agent to 
the bone tissue may have occurred, indicating why no calcium segmentation was possible. 
A slight rise in attenuation around the iodine K-edge was also present, though slightly offset 
from the known edge position. Combined with its small step size, the signal is likely due to 
noise, or possibly of sufficiently low concentration to not register as part of the iodine map 
in Fig. 5.3.3A.

Quantifying chemical stain distributions

While the use of KES confirms the presence of each stain, and allows us to build unam-
biguous individual elemental maps, this form of spectral analysis enables elemental seg-
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mentation but provides no quantitative insight into the concentration distribution of the 
staining agents. The analysis may be taken a step further using ’step size’ measurements, 
making use of the spectral markers available. By applying a fitting routine to the spectral 
profiles the height of the K-edge step may be extracted for every voxel. It has previously 
been shown that the height of the absorption edge step (referred to as Δ𝜇0) is directly pro-
portional to the concentration of the corresponding elemental species [16]. Therefore we 
can extract a map of Δ𝜇0 values by performing this linear fitting routine across the entire 
reconstructed volume, as performed previously on a single-stained biological specimen 
[17]. However, on its own the use of this ’edge height’ analysis can only provide relative 
concentration values, rather than absolute values. In order to extract a quantitative map of 
chemical staining, we require the use of calibration samples of known concentrations.

For this study, a set of three calibration phantoms were produced, containing various con-
centrations of the contrast agents used in our biological specimens: I2KI, BaSO4 and PTA. 
Figure 5.3.4A illustrates the layout of each phantom sample, and the chemical concentra-
tions for each container. Also shown in Fig. 5.3.4A are reconstructed image slices for each 
phantom, acquired through conventional XCT. Signal intensity is measured in terms of 
’standardised intensity’, with higher values corresponding to a more strongly-attenuating 
(higher concentration) material. While typically CT number would be used to quantify sig-
nal intensity, we choose a different terminology to account for the fact that calibration was 
performed using a combination of agarose and air, as opposed to the standard water/air. 
The heterogeneous nature of the BaSO4 phantoms are due to partial sinking and separation 
of the barium sulphate crystals from the agarose base during mixing and cooling.

Reconstructed image slices of the chemical phantoms are shown in Fig. 5.3.4A. Image 
slices are evaluated at two different energy channels, taken either side of the K-edge po-
sitions for the heavy elements found in each phantom (iodine - 33.17 keV, barium - 37.44 
keV, tungsten - 69.53 keV). As expected, a rise in attenuation is observed across the appro-
priate energy threshold for the phases. The tungsten-based PTA phantom portrays some 
signal distortion due to minor ring artefacts. Spectral profiles are then extracted by select-
ing ROIs covering each distinct phase, and averaged to cancel out any differences due to 
chemical inhomogeneity. Figure 5.3.4B shows the ROI voxel spectra for each phase of the 
three phantoms. The profiles closely follow the expected trend of a sharp rise in attenuation 
at the K-edge position, with the overlaid edge energies demonstrating the precise match-
ing with the measured experimental data. The step change at the K-edge varies in size for 
each phase, therefore a relationship between chemical concentration and absorption step 
size may be determined.

Using the aforementioned edge height analysis routine, the absorption edge size may be 
measured and plotted against the corresponding phase concentration. Further, by evaluat-
ing these values at a range of vertical heights through the sample depth, any changes due 
to inhomogeneity may be accounted for. For each phantom, a total of six slices through 
their vertical depth were measured and averaged. The fitted relationships are shown in Fig. 
5.3.4C, with strong linear correlation found for each chemical phantom. Similar linear re-
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lationships have previously been identified between concentration and CT number [9]. A 
linear fitting was also confirmed between concentration and standardised intensity for the 
XCT acquisition of the phantoms in this study, and is shown as a direct comparison in Fig. 
5.3.4D.

With a linear relationship determined for each contrast agent, a direct conversion from rel-
ative to absolute concentration may be calculated for every voxel in the biological speci-
mens. As a result, stain distribution as a function of position can be investigated. The re-
sults for both the double- and triple-stained mouse limbs are shown in Fig. 5.3.5A and C, 
which illustrate 3D maps measured in terms of concentration on a voxel-by-voxel basis. 
Analysing the results in 3D provides excellent insight into the level of staining at various 
depths of the tissue (see Supplementary Videos 3-7). In addition, Fig. 5.3.5B and D detail 
the statistics behind the concentration distribution, with histograms showing the concen-
tration frequency across the entire volume. Analysis of the iodine staining in the double-
stained specimen in shows nearly all voxels contain ≤300 mg/ml of iodine, with the highest 
concentrations observed on the exterior skin. For the vasculature, the largest vessels experi-
ence chemical uptake of up to 800 mg/ml of BaSO4. For many smaller vessels, concentra-
tions of below 200 mg/ml were typically observed. However, consideration must be taken 
for the partial volume effect. Given the relatively coarse spatial resolution (151 𝜇m) of 
the reconstructed volume, smaller vessels typically occupied a space below a single voxel. 
Therefore, the edge height analysis cannot precisely estimate the true concentration within 
such vessels. A number of voxels also portray a very low concentration of barium discon-
nected from the main vasculature structure. Some regions are attributed to noise and arte-
facts, though some cannot be ruled out as smaller regions of the vessel structure with suffi-
cient barium signal to register on the chemical map. An improved spatial resolution would 
enable us to unambiguously identify and discriminate noisy regions from stained structures.
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Figure 5.3.4. Design and spectral analysis of chemical phantoms. A) Illustration of the phantom layout for 
each contrast agent (left), with chemical concentrations labelled in units of mg/ml. The I2KI phantom is 
labelled as iodine to highlight that the concentrations represent aqueous I3

-. Reconstructed image slices for 
each of the respective chemical phantoms (right), with orientation matched to the concentrations labelled. The 
BaSO4 phantoms appear heterogeneous due to partial sinking and separation of the barium sulphate crystals 
from the agarose base. Images are measured in terms of ’standardised intensity’ value, with the same overall 
scaling range. B) Reconstructed slices of each chemical phantom, shown in the axial plane, for two energy 
channels, taken just before (left column) and just after (right column) the relevant K-edge position. ROIs 
covering each chemical phase are highlighted and numbered, from which spectral plots were extracted. Minor 
ring artefacts appear on the PTA reconstructed phantom. C) Voxel spectra showing attenuation as a function 
of energy for the ROIs highlighted in (B). The attenuation values were averaged over the full ROI. Known 
K-edge positions of the phantom’s heavy element are overlaid. D) Fitted relationship for each chemical 
phantom, based on the average K-edge step change over six vertical slices through the sample depth. Error 
bars measure the standard deviation across the slices analysed. A line of best fit is applied for each phantom 
following linear interpolation. E) Fitted relationship between chemical concentration and ’standardised 
intensity’ value in each phantom phase following conventional XCT imaging. Values were calculated for the 
central slice reconstruction. Phantom datasets were scanned at 80 kV and 100 𝜇A with a Zeiss Xradia 
MicroXCT-400. Standardised intensity values are based on 2% agarose and air, as the barium phantom uses 
an agarose base.
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The concentration information details for the triple-stained forelimb sample are shown in 
Fig. 5.3.5C and D. These results show the significantly lower concentration of iodine ob-
served throughout the various soft tissue regions. With a maximum recorded concentration 
of approximately 250 mg/ml, the majority of iodine-stained tissue falls below 100 mg/ml. 
Using the images in Fig. 5.3.3 and 5.3.5, we observe that the iodine staining shows clearly 
in regions where there was no tungsten uptake, such as the external hairs, and layers of fat 
within the specimen. As expected, barium was only located within the blood vessels, with 
uptake averaging 100 mg/ml, but reaching as high as 800 mg/ml for very few voxels in the 
largest regions of the vessel. Less of the vasculature was observable for the triple-stained 
specimen, believed to be due to a larger number of vessels below the spatial resolution 
limit. The more highly-attenuating tungsten-based PTA contrast agent dominated the soft 
tissue staining, as seen in the elemental segmentation. Connective tissue and muscle re-
gions are predominantly enhanced by tungsten staining, though some overlap is observed in 
the musculature with both iodine and tungsten. Particularly in the lower section of the fore-
limb, where the muscle tissue was only partially stained by PTA, we see a clear presence of 
both the iodine- and tungsten-based contrast agents.

Figure 5.3.5. Distribution and concentration of contrast agents. A) 3D volume maps quantifying the stain 
distribution of iodine (top) and barium (bottom) in the soft tissue and blood vessels respectively within the 
double-stained mouse hindlimb. Some low concentrations regions (white arrow) with a systematic pattern of 
voxels are attributed to ring artefacts or general noise. B) Histogram detailing the statistical breakdown of 
concentration distribution on a voxel-by-voxel basis for each chemical stain of the sample in (A). C) Volume 
maps for the triple-stained mouse forelimb, showing absolute concentration values in each voxel for iodine 
(top), BaSO4 (middle) and PTA (bottom). D) Concentration distribution histogram for each stain within the 
sample in (C).

The statistical analysis also provides a metric of the detectability of the hyperspectral sys-
tem, with many voxels measured to contain iodine and barium concentrations of approxi-
mately 1% (w/v) for both mouse limb samples (see Supplementary Fig. S3 and S4 for ex-
tended histogram plots). However, caution must be taken in evaluating the low concen-
tration sensitivity, as highlighted by the PTA statistics, where a heavier skew towards the 
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lower concentrations appears due to the presence of some ring artefacts remaining. The re-
sults of the calibration phantoms in Fig. 5.3.4 confirm that for an ideal, homogeneous sam-
ple, detection of K-edge markers is currently achievable down to concentrations of 2.5% 
(w/v), particularly when aided by iterative algorithms aimed at reducing noise fluctuations 
in the spectral domain.

5.4 Discussion

Using a set of chemical calibration phantoms, evaluation of double- and triple-stained bio-
logical specimens was achieved in this study by hyperspectral X-ray tomography. The work 
builds on previous studies involving hyperspectral imaging [16, 17], exploiting the vari-
ety of spectral analyses available to achieve elemental segmentation over a full 3D volume. 
Due to the high energy resolution of the HEXITEC detector, unambiguous chemical iden-
tification is achievable for a range of elements in the hard X-ray range simply by matching 
of the spectral fingerprints (absorption edges) to their unique positions. With the ability to 
identify multiple chemicals simultaneously, and determine the absolute concentration distri-
bution as a function of position, the work offers great potential for investigations involving 
heavy metal uptake, even in cases where we have no a priori knowledge of initial chemi-
cal composition. In the research of ecology and agriculture, heavy metal uptake by soil and 
vegetation is of particular interest. Excessive uptake by soil and plants of heavy metals, in-
cluding molybdenum (Mo), cadmium (Cd), and lead (Pb), can pose a serious threat to an-
imals and humans, due to their toxic nature when consumed in high concentrations [40–
42], on top of the damaging nature of such elements to vegetation yield and quality. Cal-
culating similar calibration metrics for concentration of commonly-occurring elements in 
agriculture using hyperspectral tomography would enable future studies into uptake and 
distribution across soil, plant, animal and human samples to evaluate the level of contam-
ination and poisoning risk. The feasibility of using hyperspectral imaging for such work 
requires further evaluation. X-ray CT as an imaging technique has an inherently low sensi-
tivity, compared to alternative light-optical methods [43]. Therefore, given that biological 
systems typically exhibit heavy metal levels of parts-per-million [41], hardware improve-
ments in spectroscopic systems require continued advancement to become a viable option. 
Nevertheless, this research offers a reference point for a workflow in potential future stud-
ies. In addition, the present study analysing iodine and PTA staining provides a means of 
better understanding tissue morphology following heavy element accumulation. This work 
enables improved interpretation of the tissue layers in which these elements accumulate, 
providing a useful tool for future toxicological research.

This work is the first of its kind to establish a relationship between K-edge height and 
chemical concentration, and in theory is capable of defining a baseline calibration for each 
element, translatable across research studies. Given that each calibration phantom only in-
cludes a single high-attenuation element, and each energy channel is quasi-monochromatic, 
it is believed that the linear relationships between K-edge height and chemical concentra-
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tion are independent of both sample and incident X-ray spectra. Attenuation response, re-
gardless of concentration, is consistent over the same subset of energy channels, and there-
fore alterations to the spectra only correspond to a change in photon statistics. Therefore, 
any changes are proportional, and the same linear relationship will emerge. Future work 
may validate this approach through imaging of the same calibration phantom under differ-
ent beam voltages. Potential sources of error may include differences in spectral responses 
for other hyperspectral detectors, as well as the choice of reconstruction algorithm, given 
that these can directly impact voxel attenuation spectra due to noise or excessive smooth-
ing of the K-edge. A wider discussion on factors affecting the accuracy of the method is 
included in the Supplementary Information.

A feature of spectral analysis covered in this work that could warrant further investigation 
is the concept of ’spectral unmixing’ for multi-element voxels. That is, in instances where 
a single voxel registers multiple absorption edge markers, signifying the presence of more 
than one chemical element. For hyperspectral imaging, this is more likely given the large 
pixel size and coarse spatial resolution of the HEXITEC system. As such, precise quantifi-
cation of the concentration distribution for these ’mixed’ voxels may be affected, particu-
larly in cases where the absorption edges are closely-spaced. While many voxels will likely 
contain a single element, this study has already identified some cases of such mixing, such 
as the overlap of PTA and iodine in the muscle tissue (see Fig. 5.3.3). A range of unmix-
ing methods have previously been explored in other fields of spectral imaging [44], in order 
to better classify material composition and improve spatial resolution. The methods typi-
cally focus around linear unmixing routines, applied to fields such as energy-dispersive X-
ray diffraction [45] and fluorescence microscopy [46], while more recently machine learn-
ing approaches have been studied for ’blind’ spectral unmixing [47]. Such algorithms could 
easily be adapted to improve quantitative measurements in hyperspectral X-ray CT.

This research also highlights some of the existing limitations of hyperspectral imaging and 
the HEXITEC detector, the main aspect being the spatial resolution limits. With a pixel 
size of 250 𝜇m and a 2 cm × 2 cm detection area, magnification of samples is limited, with 
typical spatial resolutions ~100 𝜇m. As such, the current detector technology may require 
a complementary high-resolution technique, followed by volume registration, to achieve 
optimum spatial feature definition and composition mapping in the low-micron range. Sim-
ilarly, sample size is currently limited by the available field of view. It is anticipated that 
this limitation will be overcome as more sensitive and more pixellated detectors emerge. At 
present, the modality is restricted to smaller specimens, or magnified ROI studies.

The sensitivity of the detector is also an area for further investigation. Here, concentration 
levels on the order of 101-103 mg/ml or more were studied. For studies involving trace ele-
ments, detectability levels of 10-100× greater may be required. Further quantitative studies 
could be conducted on the HEXITEC sensitivity limit using a set of heavy metal phantoms, 
decreasing in concentration until spectral markers may no longer be observed. It seems 
likely that future developments in hyperspectral detectors will improve the sensitivity fur-
ther. Alongside this, additional developments in denoising algorithms could extend the 
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detection limit of trace elements yet beyond those currently achievable. It should also be 
noted that hyperspectral imaging offers the potential for trace analysis through other com-
plementary imaging modalities. For example, the use of energy-dispersive X-ray fluores-
cence has been shown to offer successful elemental identification on the trace level, both 
for heavy metal elements, as well as those at the low-energy sensitivity limit of such de-
tectors [48–50]. The effect of self-absorption often confines the XRF modality to studying 
small samples [51], however this limit was already apparent given the HEXITEC pixel size 
and field of view (FOV), and thus the multi-modal approach is achievable for small sam-
ples with large features. Alternatively, a two-step approach may be adopted, whereby hyper-
spectral CT offers non-destructive identification of ROIs, followed by cutting and extraction 
of the ROI, which may then be investigated under high-resolution, high spectral sensitivity 
XRF to overcome self-absorption concerns.

5.5 Conclusion

To conclude, we have evaluated the potential of hyperspectral X-ray tomography for the 
direct segmentation, measurement and mapping of absolute stain concentration. This re-
search demonstrates the first instance of directly extracting elemental concentration from 
multi-stained biological specimens through evaluation of absorption edge height for several 
elemental markers. With an excellent energy resolution (~1 keV), hyperspectral CT over-
comes the issues of spectrally similar attenuation profiles observed in DECT, shown here 
in the unambiguous discrimination between iodine- and barium-staining. Through a set of 
hindlimb and forelimb murine samples, the work has enabled a thorough examination of the 
interaction between multiple simultaneous chemical stains for double- and triple-staining 
procedures, providing insight into the level of stain overlap in the same soft tissue regions, 
and how this affects the overall concentration distribution. Evaluating the results against 
equivalent high-resolution XCT and DECT datasets, the advantages in the spectral domain 
become clear, yet the issues in the spatial domain are also highlighted, particularly with re-
gards to the need for improved spatial resolution. However, through either the improvement 
in spectral detector technology, or the use of multi-modal acquisition for combined high 
spatiospectral resolution, the methodology opens up the possibility of chemical investiga-
tions in a range of fields. Given sufficient sensitivity, exploring heavy metal uptake in eco-
logical or environmental research, as well as contrast agent applications for medical biop-
sies, would be greatly enhanced by the ability to confirm the elements present, and even 
more so by quantifying the concentrations and how they are distributed. As such, the stud-
ies conducted in this work show a further step in the vast potential for hyperspectral imag-
ing moving forward.
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5.8 Supplementary Information

5.8.1 Hyperspectral energy-channel calibration and resolution calculation

By convention, hyperspectral detectors store incident photons into hundreds of narrow en-
ergy ‘bins’ or ‘channels’. Through a calibration using spectral markers of known energy, it 
was possible to calibrate the system, and establish a relationship between channel number, 
and photon energy. The calibration data consisted of a series of fluorescent X-ray peaks, 
emitted from metal foils (Ba and Tb) that were exposed to a radioactive 241Am source. 
Figure S1 shows the calibration dataset for a single pixel, with 5 peaks highlighted, cor-
responding to the K𝛼 and K𝛽 fluorescence peaks of Ba and Tb, as well as the 241Am pho-
topeak. The channel number at which each peak occurred was determined using a peak-
finding algorithm. The energy values of the peaks are known and well-established, and 
therefore by plotting channel number against energy (in keV), a relationship may be deter-
mined. Also shown in Fig. S1 is the linear fitting of the relationship, based on the 5 data 
points collected. An R2 value of 0.99 for the fit confirms a strong linear relationship, with a 
polynomial fitting giving the equation of the fit as:

  \mathrm {Energy (keV)} = 0.278 \times \mathrm {Channel Number} + 1.23        (5.1)
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To determine the energy resolution of the system, the same calibration dataset was used. By 
measuring the FWHM of the 241Am peak for every pixel, the resolution of the system was 
calculated. Figure S2 shows the frequency distribution of FWHM values measured over ev-
ery pixel. Dead pixels identified during pre-processing were not included in the plot. Also 
shown is a pixel map over the full HEXITEC array, showing the distribution of FWHM val-
ues. Here, dead pixels were set to a value of 0. Based on the average value of functioning 
pixels, the resolution of the detector at 59.5 keV was measured to be 1.27 ± 0.47 keV.

5.8.2 Considerations on HEXITEC low concentration sensitivity

In order to better evaluate the voxel frequency of concentrations at the low value range, Fig. 
S3 and S4 show extended histogram statistic plots, with a greater number of bins to reduce 
the average bin size, therefore providing a clearer pattern of concentration distribution. For 
the double-stained specimen (Fig. S3), the iodine bin size was around 4.5, while it was 12.4 
for the BaSO4 histogram.

Two clear trends are observed, with both iodine and BaSO4 distribution gradually descend-
ing in voxel number as concentration is increased. The iodine distribution also exhibits a 
small peak around 180 mg/ml, suggesting a particular region of soft tissue with a consis-
tent concentration of contrast agent. The results indicate that, while noise fluctuations may 
cause some low value voxels, the trends do not indicate any outliers, and therefore we may 
assume that our detectability limit lies in this low concentration range, at approximately 5-
10 mg/ml, equivalent to a concentration of 0.5-1% (w/v).

For the triple-stained specimen (Fig. S4), however, this may be brought into question. 150 
bins were used for the iodine and BaSO4 distributions, reflecting the reduced total range of 
concentrations compared to the hindlimb sample. This gives a bin size of approximately 
3.2 and 8.5 for iodine and BaSO4 respectively. The PTA plot uses 250 bins as it covers a 

Figure S1. Energy calibration using the 241Am radioactive source. (Left) Single pixel (40, 40) plot of the 
calibration spectra, measuring photon counts as a function of channel number. The highest energy peak at 
59.5 keV 241Am photopeak is labelled, as well as the XRF peaks produced from Ba and Tb metal foils upon 
exposure to the 241Am source. (Right) Matching of the channel number for each XRF peak and the 241Am 
photopeak to their known energy values, enabling a linear relationship between channel number and energy to 
be determined.
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Figure S2. Measurement of the resolution statistics using the 241Am photopeak. (Left) Histogram of the 
frequency distribution for FWHM values measured at 59.5 keV based on the 241Am photopeak, over the full 
detector pixel array. Dead pixels were not included. (Right) Pixel map of the FWHM distribution. Dead 
pixels were set to a value of zero.

Figure S3. Extended concentration statistics for double-stained mouse hindlimb specimen. Histogram 
statistics are shown, detailing the concentration distribution of iodine (top) and BaSO4 (bottom) over all 
voxels in the reconstructed volume. A total of 250 histogram bins are used over the full concentration range 
for both plots.

larger range, giving a bin size of roughly 10.2. While sensible trends are observed once 
more for iodine and BaSO4, a very sharp rise is observed for the lowest concentration bin 
for the PTA distribution, covering concentrations up to around 10 mg/ml (around 1% w/v). 
We attribute this to the presence of ring artefacts, distorting the voxel spectra and affecting 
the measured values of concentration. Therefore it is important we do not assume the de-
tectability limit is as low as 1%, and caution must be taken when accounting for the effects 
of noise and artefacts. Given the results in the main manuscript for the calibration phan-
toms, concentrations of 2.5% and above appear much more reasonable as a lower limit esti-
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Figure S4. Extended concentration statistics for triple-stained mouse forelimb specimen. Histogram 
statistics are shown, detailing the concentration distribution of iodine (top), BaSO4 (middle) and PTA 
(bottom) over all voxels in the reconstructed volume. A total of 150 histogram bins are used over the full 
concentration range for iodine and BaSO4, while 250 bins are used for PTA. The sharp increase in voxel 
frequency for the lowest concentration bin in the PTA plot is attributed to the effect of ring artefacts within the 
final reconstructed volume.

mate of sensitivity for the HEXITEC.

5.8.3 Factors affecting the quantification of chemical concentration

In order to evaluate the accuracy of the method for quantifying chemical concentration us-
ing absorption edge height, and to understand the extent to which the method is translat-
able, several factors must be considered for their potential influence. Some are discussed 
below:

Chemical environment/Oxidation state - The chemical environment refers to the local 
arrangement of atoms and molecules around the elemental atom of interest, while the oxi-
dation state measures the charge of an atom were all of its bonds to be ionic. In this study 
the mouse hindlimb was stained with elemental iodine, I2 in ethanol, while the forelimb 
(and phantom) used I2KI solution, therefore differing in the nature of their local chemi-
cal environment. It has previously been shown that higher oxidation states of a compound 
lead to a shift in the absorption edge position to a higher energy, owing to reduced shielding 
of the inner shell electrons by the outer shell electrons [52]. It has also been observed that 
the shape of the absorption edge can vary with the chemical environment, as demonstrated 
with Mn compounds [53, 54], while other studies have directly observed changes in edge 
height as a function of chemical environment [55]. For this study, calculation of chemical 
concentration relies on precise measurement of the absorption edge heights, and therefore 
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will be influenced by such environmental effects. For a calibration phantom with a single 
element/compound in the same oxidation state, a reliable relationship between edge height 
and concentration may be extracted. However, if the equivalent element/compound in the 
sample of interest occupies a different oxidation state, the corresponding K-edge position 
or shape may differ, and therefore an accurate translation from calibration sample to case 
sample cannot be assumed, and would require further investigation.

Matrix effects - The role of the chemical matrix should also be considered in the calibra-
tion and quantification of chemical concentration. In contrast to above, the matrix refers 
to the larger material/medium in which the given element under study is contained, as op-
posed to its local surroundings. For example, in the case of iodine staining, the surround-
ings vary if the contrast agent is intravenously distributed into soft tissue structures, com-
pared to being administered orally. Regardless of the chemical matrix, the K-edge energy 
should not differ if oxidation state is consistent. However, other effects may distort the pre-
cision of K-edge measurement, such as higher attenuation in a particular matrix leading to 
fewer recorded counts in a given detector voxel. Such differences could lead to unreliability 
in obtaining consistent concentration calculation for every voxel for the 3D reconstructed 
volume.

X-ray signal saturation - An additional factor which should be considered is the assump-
tion that the signal around the K-edge position is saturated, such that a full representation 
of the elemental attenuation pattern is captured. Any limitations in the flux would subse-
quently suppress the height of the measured K-edge, potentially affecting the calibration 
procedure if the level of saturation varies across chemical concentrations.

It is clear that a more detailed study of the various factors affecting the measurement of K-
edge position and height is required to establish the reliability of such a protocol for quan-
tifying concentration. Further investigation using a range of calibration phantoms, as rec-
ommended in the Discussion, varying in chemical environment and matrix, would offer a 
logical first step in this process.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Results and Conclusions

In this thesis, two major studies were conducted to advance various aspects of bright-field 
hyperspectral X-ray CT. In Chapter 4, a novel 4D reconstruction algorithm was described, 
and its ability to compensate for fast scan, noisy datasets was evaluated against the conven-
tional reconstruction algorithm used as the standard of 3D datasets. A review of the cur-
rent state of the art for spectroscopic reconstruction algorithms in Section 2.3.4 revealed 
the lack of comprehensive reconstruction algorithms available for hyperspectral CT, with 
no defined standard compared to what is available for XCT. In this thesis, the first steps 
towards filling this research gap were made. By studying both a phantom of known com-
position, as well as a single-stained biological specimen, three goals were achieved. First, 
the extent to which noisy, low SNR data may be overcome using regularised, iterative algo-
rithms was evaluated. With a 36× reduction in scan time, a successful restoration of image 
quality was shown for the multi-phase phantom, quantified using CNR and RMSE image 
metrics. Second, the use of a ’real-world’ biological sample allowed a test of the recon-
struction capabilities in the case of inhomogeneous chemical distribution. Improved ele-
mental distribution mapping was attained over the conventional FDK algorithm, confirmed 
by significantly improved CNR metrics and reduced image noise in the reconstructed 3D 
volume. The work also enabled the two key forms of spectral analysis for bright-field hy-
perspectral imaging to be shown: K-edge subtraction and step size fitting. Finally, the bi-
ological sample offered a first step into the investigations of chemical mapping in stained 
specimens, with confirmation of the ease in which hyperspectral CT can precisely identify 
the elemental contrast agent.

The spectral analyses of stained biological specimens were brought to the fore in Chapter 
5, as a natural extension to the progress made in the study of Chapter 4. While previously 
only the relative chemical distribution of the contrast agent was evaluated, this study per-
formed a first instance of quantitative chemical concentration mapping using calibrations 
based on fitting of the spectral profiles in hyperspectral CT. The spectral separation capabil-
ities of the HEXITEC detector was fully tested, with both double- and triple-stained spec-
imens imaged and analysed. Separation of spectrally similar elements such as barium and 
iodine were achieved, enabling full 3D multi-phase elemental maps to be extracted using 
K-edge subtraction. Further, the measurement of absolute elemental accumulation was per-
formed through calibrations against chemical phantoms of known concentration, enabling 

182



linear fits to be extracted and conversion equations to be determined. As such, analysis of 
the interaction, overlap, and absolute concentration of each stain was assessed for multiple 
soft tissue structures. The work offered a unique insight into multi-staining procedures and 
could provide useful baseline for future research on stain accumulation.

From these studies, the main goals of the thesis have been achieved. The novel reconstruc-
tion algorithm used throughout both research studies moves the reconstruction phase of hy-
perspectral imaging in a positive direction, with the hope that this forms part of future stan-
dardised packages when reconstructing 4D datasets. Bright-field hyperspectral imaging has 
been demonstrated to be competent in the field of bioimaging and multiple elemental dis-
crimination, enabling chemical analyses without the need for additional imaging modalities. 
The spectral analysis method of step size fitting has been expanded upon in hyperspectral 
CT, achieving quantitative metrics for the first time, only previously extracted with multi-
spectral CT.

However, hyperspectral imaging is still in its relative infancy, and therefore significant 
progress can, and will, be made. The notable deficiency in spatial resolution will be aided 
by the rapid advancement of the sensor hardware, while similar improvements in count 
rate limits for devices like the HEXITEC will enable faster scans and higher image quality. 
While the dark-field capabilities of the HEXITEC were not tested in this work, the modali-
ties highlight the flexibility of such systems, and present promising opportunities in further 
chemical and crystallographic analysis both as standalone and multi-modal techniques.

In summary, bright-field hyperspectral imaging has been advanced for lab-based applica-
tions in several phases of the imaging journey, including new applications in multi-stain 
bioimaging, novel reconstruction tools, and enhanced analysis of the spectral markers 
recorded in the bright-field regime.

6.2 Future Directions

This work begins to explore the numerous ways in which hyperspectral imaging can be ad-
vanced as a lab-based tomographic technique, in particular how it may be used in future 
biological applications. With the ever-developing hardware enabling a wider range of re-
search, some areas of future investigation are discussed below.

6.2.1 Optimisation and standardisation of quantitative hyperspectral analyses

The spectral analyses used in the research studies of Chapters 4 and 5 demonstrate the po-
tential of hyperspectral imaging for extracting both qualitative and quantitative chemical 
concentration parameters. However, optimisation of these metrics require further investi-
gation. As discussed in Chapter 5, the absorption step size routine builds a baseline cali-
bration for the contrast agents studied, and it is believed the calibration is both sample and 
spectra independent. Future research into this area offers an obvious extension to this work. 
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As recommended, studies of a series of phantoms under differing settings (X-ray sources, 
voltages, fluxes, etc.) will enable this claim to be tested. Establishing a set of requirements 
for such calibrations to be translatable across research would offer a significant step forward 
in enabling fast chemical concentration analysis of future hyperspectral datasets.

6.2.2 Investigation of beam hardening reduction with hyperspectral CT

As part of an exploration of the additional advantages offered by hyperspectral X-ray CT 
over conventional XCT, the representation of beam hardening artefacts offers a potential 
area for investigation outside of the study of characteristic markers. As described in Sec-
tion 2.2.1, energy-integrating detectors weight each photon proportional to their energy, 
therefore higher energy photons contribute more than low-energy photons. In contrast, 
photon-counting systems weight all photons equally. The consequently better representa-
tion of beam hardening with spectral imaging has been shown previously [1]. Spectral CT 
has also been shown to be competent at reducing the beam hardening effect, through the 
manipulation of energy channel selection. Given that low energy photons cause the ma-
jority of the beam hardening effect, a 2014 study showed the artefacts may be reduced by 
selectively rejecting the lower energy windows using multispectral imaging [2]. In theory, 
hyperspectral CT can take this a step further, by eliminating beam hardening owing to the 
quasi-monochromatic energy channels available. By fine-tuning the acceptance and rejec-
tion of specific energy channels, an optimum balance may be found between improved im-
age contrast and reduced beam hardening.

6.2.3 Expanded hyperspectral applications with multi-detector arrays

In this research, all samples under investigation were restricted in their overall size, and in-
terior feature size, due to the limits of the current HEXITEC array. With an 80×80 pixel 
array and 250 𝜇m pixel pitch, all phantoms and biological specimens selected were effec-
tively restricted to a maximum size of 1-2 cm, and feature sizes on the order of 100s 𝜇m or 
greater, except in the cases of significant magnification for ROI studies. Therefore, a logical 
advancement of the current research is the development of a multi-detector array, producing 
a significant upgrade in the detection area and FOV. The HEXITEC detector offers a 3-side 
buttable design, with the fourth side reserved for wire connections between the ASIC and 
the readout printed circuit board. Therefore the detector system offers a modular design to 
enable scaling up to a much larger detection area. The principle has already been tested us-
ing a 5×5 HEXITEC array (approximately a 10 cm × 10 cm detection area) capable of en-
ergy resolution similar to a single module (1-2 keV), with only minor corrections required 
for the inter-module spacing [3]. Installation of a 6×2 HEXITEC array (480×160 pixels) 
is underway at the X-ray imaging facility in Manchester, and would immediately expand 
the range of research available for lab-based hyperspectral investigations. For bioimaging, 
issues such as the identification of vasculature below 100 𝜇m encountered in Chapter 5
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would be overcome, as the freedom to magnify the sample would be greatly enhanced. Fur-
ther to this, tiling of the sample in one direction could effectively extend the detection area, 
after appropriate stitching methods were implemented.

6.2.4 High spatiospectral resolution through correlative techniques

While the ability to expand to larger detector arrays alleviates the issue of poor spatial res-
olution through offering an increased FOV, an alternative solution is the combination of hy-
perspectral imaging with a high spatial resolution X-ray technique. For example, scanning 
an object with the HEXITEC, followed by a second scan with a large, commercial flat panel 
detector, would provide two scans under the same geometry and sample orientation, each 
providing respectively high spectral and spatial resolution. Through mathematical align-
ment and feature matching, aided by the sequential scans, the resulting correlative approach 
would offer high resolution in both the spatial and spectral domains. Further, the method 
requires no new hardware, as the portable nature of the HEXITEC system means it can sim-
ply replace the existing detector in an X-ray system for a single scan in bright-field mode, 
and then be removed.

Alternatively, the multi-modal nature of the HEXITEC could be utilised to also achieve the 
same goal. Given that hyperspectral imaging offers the ability to examine dark-field charac-
teristics such as fluorescence or diffraction by moving off-axis from the X-ray beam, a syn-
chronous scan could instead be implemented with a high spatial resolution detector in the 
bright-field, and the HEXITEC in the dark-field. Multi-modal approaches have previously 
been shown using XCT + EDXRF [4] and XCT + EDD [5].
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