1,306 research outputs found

    Realization of an Inductance Scale Traceable to the Quantum Hall Effect Using an Automated Synchronous Sampling System

    Full text link
    In this paper, the realization of an inductance scale from 1~μ\muH to 10~H for frequencies ranging between 50~Hz to 20~kHz is presented. The scale is realized directly from a series of resistance standards using a fully automated synchronous sampling system. A careful systematic characterization of the system shows that the lowest uncertainties, around 12~μ\muH/H, are obtained for inductances in the range from 10~mH to 100~mH at frequencies in the kHz range. This new measurement system which was successfully evaluated during an international comparison, provides a primary realization of the henry, directly traceable to the quantum Hall effect. An additional key feature of this system is its versatility. In addition to resistance-inductance (R-L) comparison, any kind of impedances can be compared: R-R, R-C, L-L or C-C, giving this sampling system a great potential of use in many laboratories around the world

    Single-electron current sources: towards a refined definition of ampere

    Get PDF
    Controlling electrons at the level of elementary charge ee has been demonstrated experimentally already in the 1980's. Ever since, producing an electrical current efef, or its integer multiple, at a drive frequency ff has been in a focus of research for metrological purposes. In this review we first discuss the generic physical phenomena and technical constraints that influence charge transport. We then present the broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently "just" wild ideas, still often potentially competitive if technical constraints can be lifted. We also discuss the important issues of read-out of single-electron events and potential error correction schemes based on them. Finally, we give an account of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and briefly discuss the applications and uses of single-electron devices outside the metrological context.Comment: 55 pages, 38 figures; (v2) fixed typos and misformatted references, reworded the section on AC pump

    Superconducting Quantum Circuits, Qubits and Computing

    Full text link
    This paper gives an introduction to the physics and principles of operation of quantized superconducting electrical circuits for quantum information processing.Comment: 59 pages 68 figures. Prepared for Handbook of Theoretical and Computational Nanotechnolog

    QND measurement of a superconducting qubit in the weakly projective regime

    Full text link
    Quantum state detectors based on switching of hysteretic Josephson junctions biased close to their critical current are simple to use but have strong back-action. We show that the back-action of a DC-switching detector can be considerably reduced by limiting the switching voltage and using a fast cryogenic amplifier, such that a single readout can be completed within 25 ns at a repetition rate of 1 MHz without loss of contrast. Based on a sequence of two successive readouts we show that the measurement has a clear quantum non-demolition character, with a QND fidelity of 75 %.Comment: submitted to PR

    Topological Superconductivity in a Phase-Controlled Josephson Junction

    Get PDF
    Topological superconductors can support localized Majorana states at their boundaries. These quasi-particle excitations have non-Abelian statistics that can be used to encode and manipulate quantum information in a topologically protected manner. While signatures of Majorana bound states have been observed in one-dimensional systems, there is an ongoing effort to find alternative platforms that do not require fine-tuning of parameters and can be easily scalable to large numbers of states. Here we present a novel experimental approach towards a two-dimensional architecture. Using a Josephson junction made of HgTe quantum well coupled to thin-film aluminum, we are able to tune between a trivial and a topological superconducting state by controlling the phase difference ϕ\phi across the junction and applying an in-plane magnetic field. We determine the topological state of the induced superconductor by measuring the tunneling conductance at the edge of the junction. At low magnetic fields, we observe a minimum in the tunneling spectra near zero bias, consistent with a trivial superconductor. However, as the magnetic field increases, the tunneling conductance develops a zero-bias peak which persists over a range of ϕ\phi that expands systematically with increasing magnetic fields. Our observations are consistent with theoretical predictions for this system and with full quantum mechanical numerical simulations performed on model systems with similar dimensions and parameters. Our work establishes this system as a promising platform for realizing topological superconductivity and for creating and manipulating Majorana modes and will therefore open new avenues for probing topological superconducting phases in two-dimensional systems.Comment: Supplementary contains resized figures. Original files are available upon reques

    Quantum Metrology Triangle Experiments: A Status Review

    Full text link
    Quantum Metrology Triangle experiments combine three quantum electrical effects (the Josephson effect, the quantum Hall effect and the single-electron transport effect) used in metrology. These experiments allow important fundamental consistency tests on the validity of commonly assumed relations between fundamental constants of nature and the quantum electrical effects. This paper reviews the history, results and the present status and perspectives of Quantum Metrology Triangle experiments. It also reflects on the possible implications of results for the knowledge on fundamental constants and the quantum electrical effects.Comment: 36 pages, 8 figure
    corecore