Topological superconductors can support localized Majorana states at their
boundaries. These quasi-particle excitations have non-Abelian statistics that
can be used to encode and manipulate quantum information in a topologically
protected manner. While signatures of Majorana bound states have been observed
in one-dimensional systems, there is an ongoing effort to find alternative
platforms that do not require fine-tuning of parameters and can be easily
scalable to large numbers of states. Here we present a novel experimental
approach towards a two-dimensional architecture. Using a Josephson junction
made of HgTe quantum well coupled to thin-film aluminum, we are able to tune
between a trivial and a topological superconducting state by controlling the
phase difference ϕ across the junction and applying an in-plane magnetic
field. We determine the topological state of the induced superconductor by
measuring the tunneling conductance at the edge of the junction. At low
magnetic fields, we observe a minimum in the tunneling spectra near zero bias,
consistent with a trivial superconductor. However, as the magnetic field
increases, the tunneling conductance develops a zero-bias peak which persists
over a range of ϕ that expands systematically with increasing magnetic
fields. Our observations are consistent with theoretical predictions for this
system and with full quantum mechanical numerical simulations performed on
model systems with similar dimensions and parameters. Our work establishes this
system as a promising platform for realizing topological superconductivity and
for creating and manipulating Majorana modes and will therefore open new
avenues for probing topological superconducting phases in two-dimensional
systems.Comment: Supplementary contains resized figures. Original files are available
upon reques