112 research outputs found

    Uncorrectable Errors of Weight Half the Minimum Distance for Binary Linear Codes

    Full text link
    A lower bound on the number of uncorrectable errors of weight half the minimum distance is derived for binary linear codes satisfying some condition. The condition is satisfied by some primitive BCH codes, extended primitive BCH codes, Reed-Muller codes, and random linear codes. The bound asymptotically coincides with the corresponding upper bound for Reed-Muller codes and random linear codes. By generalizing the idea of the lower bound, a lower bound on the number of uncorrectable errors for weights larger than half the minimum distance is also obtained, but the generalized lower bound is weak for large weights. The monotone error structure and its related notion larger half and trial set, which are introduced by Helleseth, Kl{\o}ve, and Levenshtein, are mainly used to derive the bounds.Comment: 5 pages, to appear in ISIT 200

    Universal fault-tolerant gates on concatenated stabilizer codes

    Get PDF
    It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of non-transversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here we demonstrate precisely the existence of such gates. In particular, we show how the limits of non-transversality can be overcome by performing rounds of intermediate error-correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.Comment: 18 pages + 5 pages appendix, 12 figure

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Mathematical structures for decoding projective geometry codes

    Get PDF
    Imperial Users onl

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Easily decoded error correcting codes

    Get PDF
    This thesis is concerned with the decoding aspect of linear block error-correcting codes. When, as in most practical situations, the decoder cost is limited an optimum code may be inferior in performance to a longer sub-optimum code' of the same rate. This consideration is a central theme of the thesis. The best methods available for decoding short optimum codes and long B.C.H. codes are discussed, in some cases new decoding algorithms for the codes are introduced. Hashim's "Nested" codes are then analysed. The method of nesting codes which was given by Hashim is shown to be optimum - but it is seen that the codes are less easily decoded than was previously thought. "Conjoined" codes are introduced. It is shown how two codes with identical numbers of information bits may be "conjoined" to give a code with length and minimum distance equal to the sum of the respective parameters of the constituent codes but with the same number of information bits. A very simple decoding algorithm is given for the codes whereby each constituent codeword is decoded and then a decision is made as to the correct decoding. A technique is given for adding more codewords to conjoined codes without unduly increasing the decoder complexity. Lastly, "Array" codes are described. They are formed by making parity checks over carefully chosen patterns of information bits arranged in a two-dimensional array. Various methods are given for choosing suitable patterns. Some of the resulting codes are self-orthogonal and certain of these have parameters close to the optimum for such codes. A method is given for adding more codewords to array codes, derived from a process of augmentation known for product codes

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    Performance Analysis of Quantum Error-Correcting Codes via MacWilliams Identities

    Full text link
    One of the main challenges for an efficient implementation of quantum information technologies is how to counteract quantum noise. Quantum error correcting codes are therefore of primary interest for the evolution towards quantum computing and quantum Internet. We analyze the performance of stabilizer codes, one of the most important classes for practical implementations, on both symmetric and asymmetric quantum channels. To this aim, we first derive the weight enumerator (WE) for the undetectable errors of stabilizer codes based on the quantum MacWilliams identities. The WE is then used to evaluate the error rate of quantum codes under maximum likelihood decoding or, in the case of surface codes, under minimum weight perfect matching (MWPM) decoding. Our findings lead to analytical formulas for the performance of generic stabilizer codes, including the Shor code, the Steane code, as well as surface codes. For example, on a depolarizing channel with physical error rate ρ0\rho \to 0 it is found that the logical error rate ρL\rho_\mathrm{L} is asymptotically ρL16.2ρ2\rho_\mathrm{L} \to 16.2 \rho^2 for the [[9,1,3]][[9,1,3]] Shor code, ρL16.38ρ2\rho_\mathrm{L} \to 16.38 \rho^2 for the [[7,1,3]][[7,1,3]] Steane code, ρL18.74ρ2\rho_\mathrm{L} \to 18.74 \rho^2 for the [[13,1,3]][[13,1,3]] surface code, and ρL149.24ρ3\rho_\mathrm{L} \to 149.24 \rho^3 for the [[41,1,5]][[41,1,5]] surface code.Comment: 25 pages, 5 figures, submitted to an IEEE journal. arXiv admin note: substantial text overlap with arXiv:2302.1301
    corecore