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SYNOPSIS

In recent years, a significant amount of research in the
field of Coding Theory has led to the deveiopment of error-
correcting codes for communication systems. Such codes make
it possible to correct and/or detect a large percentage of
the errors which may occur during the transmission of infor-
mation through alcommunication cihannel. However, in general,
these codes are not used in existing communication systems
due to the inherent complexity of their associated decoders.
The objective of this thesis is to overcome this difficulty
for a ﬁarticular set of codes by developing a simplified de-
coding method which provides error-protect}on in a communica-~
tion system without the associated cost of a complex decoder.
In particular, a simplified decoding method for certain Pro-
Jective Geometry codes is presented. The decoding algorithm,
based on the results of an extensive analysis of the mathema-
tical structure of Projective Geometries, gignificantly de-
creases the complexity of the standard decoder of the Projec-
tive Geometry Codes. Moreover, the decoder can bé implemented
simply and with little additional cost to the system.

The thesis begins with an introduction to basic Coding
Theory and Algebra concepts. This is followed by a detailed
study of Majority Logic Decoding and Projective Geometry (PG)
Codes., The mathematicél structures, or orbits, used for de-
coding are developed and analysed. The simplified decoder is
applied to the (63,41) order-3 PG code and the {(255,218) order-
5 PG code. A comparison betwéen the standard Majority Logic
Decoder and the proposed orbit decoder is made. Modifications
to the orbit decoder for increasing the distance of the codes
are described. The thesis is concluded with a discussion of

further research questions and conclusions drawn from this work.
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E DU

1.1 General Introduction

Data communication systemé are'rapidly becoming more.
and more prevalent as technology provides the increasingly
sophisticated equipment necessary for their existence. The
majority of communication networks rely heavily upon digital
computers and their peripheral devices, which have very low
tolerance to errors in received information. Consequently,
the application of Coding Theory, as a means of guaranteeing
the reliability of transmitted information, independént of
the parameters of the machinery, has become a practical way
of overcoming errors within these systems.

Previously, error-correcting codes were restricted to
~ highly specialized areas such as space communication or re-
mote control of machinery, where the occurrence of an error
could be disasterous. Coding was not introduced into less
specialized systems because of two major factors:
1) the complexity_of existing decoding schemes, and
2) the cost of the assoclated circuitry. 1In the past few
years both of these problems have been reduced significantly.
Much research has gone into both the simplification of
existing codes and the development of new, less complicated
codes. And, of even more conseduence, major technological
-‘advances have decreased dramatically the cost and size of
solid state electronic devices, Together, these have made
coding a feasible solution to errors within a communication-

system.



10

1.2 Communicati hannel and Erro ection
A communication system consists of five major compo---
nents, the source, the encoder, the channel, the decoder and

the destination, as shown in the flow diagram in Figure 1.1.1.

noise

source encoder channel |—jdecoder destination

Figure 1.1.1 Communication System

If no noise were injected into the system, codes would be
unnecessary. However, in all realistic communication chan-
nels, noise, to varying degrees, is a factor.

In most instances, the source consists of binary or
decimal digits grouped in such a way that a source alphabet
can be defined. A message, consisting of letters from the
source alphabet, is forwarded to the encoder, which trans-
forms it into a signal acceptable to the channel. This is
typically in the form of electrical pulses, restricted by
such channel parameters as power, bandwidth and duration.
The message is then input to the éhannel where it is subject
to errors from channel noise, The message, possibly perturbed
by erroré, is received by the decoder. Based on this input,
the decoder ﬁust deci@g what message has been sent. The
‘decoded message is then passed on to the destination.

Shannon has shown that a communication channel, as
depicted above, has a capacity for the transmission of
information.[bj] In fact, if the rate of the source is
less than the capacity of the channel, then a set of signals
can be chosen for the encoder such that the probability of

error by the decoder can be made arbitrarily small. The
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aforementioned rate of the code is defined as the ratio of

the number of information digits transmitted to the total
number of digits transmitted. The ratio of the differnce
between the total number of digits and the number of inforj
mation digits, to the total number of digits,is the redun-
dancy of a code. The Shannon theory states that reliability
in transmission is possible but does not suggest how to
obtain such a system. .Coding Theory shows that through
the addition of non-information or redundant digits to a
message, the theoretical degree of error-protection can be
obtained but only with an associated decrease in the rate
at which information can be transmitted.

The channel depicted in Figure 1.1.1 is a one-way
transmission system. Two-way channels exist also and are
used in situations where error-detection is <cudtple. In
such an instance, a request for retransmission can be sent
to the source and consequently the message retransmitted.
Such systems will not be discussed in the following as
their efficiency, in general, is limited since a short
code is inefficieht in correction of errors and a long code
requires too much retransmission fime. Howe&er, a combinas
tion of error-correction and error-detection holds much
potential as a communication system and will be discussed

later.

1.3 Types of Codes

Codes can be divided into two basic categories, block
and tree codes,

Block codes are so named becausé the encoder accepts
a block of k information digits at a time from the stream

of information digits produced by the source. These digits
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are encoded into a block of n channel symbols, n>k., This
block, called a codeword, is transmitted through the channel
where it may be corrupted by noise. It is then decoded as

a block of n digits by the decoder. The number n is called
the block length.,

The second kind of code, the tree code, does not break
the information sequence into independent blocks, but rather,
operates on the input as a continuous stream. Each semi-
infinite information sequence is associated with a larger
number of digits than were input. Based on each set of kg
information digits, k, small, and all the previous informa-
tion digits, a ny-symbol section of code is emitted, ngy> k,.
The term 'tree' refers to the convenient tree graph descrip-
tion of such codes. The most common and most researched tree
code is the convolution code, which consists of shifts of a
basic string of n, digits.

Both block and tree codes have the same basic error-
correcting properties as well as limitations and restric-
tions imposed by rate and code complexity. Block codes
have, with their hore well defined mathematical structure,

a correspondingly richer research history, This thesis is

concerned with a subset of block codes.

1.4 Thesis Qutlipe

The thesis consists of three distinct parts. The
first of these provides the general Coding Theory'and
Mathematical background required in the rest of the thesis.
Part II deals with Projective Geometry Codes and a new de-
coding method for these codes based_oh the mathematical
structure of the null space. The final part considers

further research questions and the conclusions.



. 13
More explicitly, in pPart I, Chapter 2 presents a

general discussion of Coding Theory, emphasizing good codes
that have been developed, their decodébility and the problems
associated with them., Also, the general oﬁjectives of the
thesis are detailed. Chapter 3 develops a particular sub-
set of block codes, viz. Majority Logic Decodable Codes. A
discussion of these codes, as presented by Reed[bil and
Muller[}5], is given. Also in tnis chapter, an extensive
discussion of the mathematical properties of Projective
Geometries and of their associated Kajority Logic Decodable
codes is presented. Part I is concluded with a discussion
of sevéral methods developed to simplify Majority Logic
Decoding. )

Part II, Chapters 4 through 7, presents a detailed
study of the mathematical structure of the null space of
Projective Geometry Codes, illustrating how knowledge of such
structure can simplify decoding. 1In Chapter 4, a discussion
of a 1966 paper by Yamamoto et a1[58] provides the basis for
the develeopment of the orbit structures used for the proposed
decoding method. Chapter 5 contains an extensive-explanation
of the orbits of, and the associated decoder for, the orﬁer-}
PG(5,2) codes. A comparison is made between this non-ortho-
gonal decoder and the standard Majority Logic Decoder for the
code. The next chapter consists of a similar discussion of
the order-5 PG code ovér PG(7,2) emphasizing that it is a
1ogica1 extension of the PG(5,2) structure presented in
Chapter 5. The seventh chapter considers the feasibility .
of adding error-detection to the orbit decoder to detect
more errors than are correctable by the standard Majority
Logic Decoder and an analysis is made. of the amount of

information obtained from this addition.
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Part III considers the many further research questions
which have arisen as a result of this work. Finally, the

conclusions which are suggested by this study are presented.
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E 2: B 0 D DALY, I

2.1 Introduction

This chapter provides the reader with the basic alge-
braic Coding Theory background necessary for an understand-
ing of the ideas and concepts preéented in the thesis. The
first section is a brief introduction to the algebra used
in developing codes. Next follows a discussion of two sub-
classes of the class of block codes: 1) linear, or group,
codes and 2) cyclic codes. The defining properties .and
outstanﬁing features of these codes are discussed. Several
parameters used in evaluating algebraic codes are examined.
Some of the most common block codes are reQiewed with empha-
sis being placed on error-correcting properties, ease of
decodability and minimum distance of the codes. Finally,
the objectives of the thesis are given.

We note that as most equipment today is binary, non-
binary results are not emphasized and that.in Part II, the

results refer only to the binary case.

2.2 Basic Algebra for Coding Theory

This section is a concise outline of the Algebra
required in the thesis. It consists of a review of Group
Theory, Vector Spaces,. Natrix Theory, Polynomial Rings and
Galois Fields. A more detailed discussion of these topics
is given by Birkhoff and Maclane in A Survey of lModern
Algebra[3] .

2.,2.1 Group Theory
A set of elements a, b, ¢,... .andvan operation * is

a group if it satisfies the following four axioms:



1) Closure: If a ‘and b are elements of the set, then
a*b is an element,
2) Associativity:s For a, b and ¢ in the set,
a*(b*c) = (a*b)*c. |
3) Identity: There is an element e, the identity ele-
ment, such that for all a in the set,
a¥*e = e¥a = a,
4) Inverse: Every element a of the set has an inverse
a~l such that

a*a~l = a71l%a = ¢,

A group is Abelian or commutative if, for all a and b in
the group

a*b = b*a,
In the foliowing, we represent the group operation as mult-
iplication rather than use the operator ¥,

A subset H of eleqents of a group G 1is a subgroup
of ¢ if H satisfies the above axioms under the group oper-
ator. The order of a subgroup (group) is the number of ele-
ments in the subgroup (group).

If g 4is any element in a finite group G, a sequence
g,gz,g3 ... Can be formed. Then, since G is finite, there
exist integers j and i, j>1i, such that
gl = gl = glgd™d,

.This implies that gj"'i = ¢, The order of .g is the least
positive integer m for which g™ = e. The set of elements
g,gz....,gm=e is a subgroup, specifically the cyclic sub-~
group generated by g. |

A right coset (left coset) of a subgroup H of the group
G is the subset of G obtained by taking any fixed element g

of G and multiplying all the elements hy,hs,... of Hby g



17
on the right (left) to form hyg, hpg, ... (ghy, ghp,...).
The number of elements in any coset is simply the order of
the subgroup H. No element of G is in more than one coset
of H.,. Two elements g and g' of'G are in the same right
coset of H if and only if g'gs™l is an element of H, The
number of distinct cosets of G formed from the subgroup H
is the index of G over H. A subgroup H is normal if for
any h in Hand g in G, g-lhg is H. In a normal sub-
group each left coset is a right coset and vice versa. We
deal primarily with Abelian subgroups where a left coset is
always.a right coset and hence each subgoup normal. .The
factor group of the group G over the subgroup H, G/H, is
formed by defining a multiplication operator for cosets.
If {g} represents the coset containing the element g, then,
the factor group has for elements, cosets, and an operator
such that for {g4 , {g,] cosets,

{edfeal = {&182) -

The identity of the factor group G/H is the subgroup H {eﬂ

A transformation 2Z: S 2 T, from a non-empty set S +to

o

a set T is a rule which assigns to each element p in S a
unique image element pZ in T, Thus, a transformation is
merely a_function from S to T.

A permutation is a one to one transformation of a finite
set into itself. Pergutations which give a circular arrange-
ment of the symbols permuted are called cyclic permutations
or cycles. For example if

122,2-3, 324, k-1,
then this can be written as the cycle (1 2 3 4). Any per-
mutation 2 can be written as a pro&uct of cycles acting on
disjoint sets of symbols,

A binary relation R on a set S relates any two elements
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a and b of the séet, Either a is in relation to b, aRb,
or a 1is not in relation to b, agb.. A relation R which has
the reflexive (aRa), symmetric (aRb implies bRa) and transi-
five (aRb, bRa imply aRc) properties for all a, b and ¢ in
the set S is called an equivalence relation. If a is any
element of S, we denote by R(a) the set of all elements b
equivalent to a, that is b 1is in R(a) if and only if bRa.
Two such R-subsets are either identical or have no elements
in common. A partition T of a set S is any collection of
subsets A,B,... of S such that each element of S be;ongs to
one and only one of the subsets of the collection. The col-
lection of all the R-subsets form a partition of S.

If a group G of transformations of a set S exists, then
G defines an equivalence relation and hence a patition on S
by the rule a~gb (a is G equivalent to b) if b = g(a) for
some g in G and a, b in S. The G-equivalence class de-
termined by an element a of S is the set Ga ={g(a)|gec}
and this is called the G-ofbit or orbit of a in S.

We proceed now to discuss a set with two operators. A
ring R is a set of elements a, b, ¢,... with two operations,
addition a+b and multiplication ab, satisfying the
following axioms:

1) R is an Abelian group under addition.

2) Closure: For a, b in R, -ab is in R.

3) Associativity: For a,b,c in R, a(bec) = (ab)ec.

L) Distributivity: For a,b,c in R, a(b+c) = ab+ac

and (b+c)a = ba+tca.
The ring R is communative if ab = ba for any two elements
a and b in R, |
A communative ring with a multiﬁlicative identity and

for which each non-zero element has a multiplicative inverse,
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is called a field., A non-communative ring with an inverse
for each non-zero element is a division ring or skew field.

We return to the discussion of rings and fields later.

2.,2.2 Yector Spaces

A set V of elements is a vector space over a field F
for which the following axioms hold:
1) V is an Abelian group under addition.
2) For any vector v in V and ¢ a field element or scalar,
cy is defined and in V,
3) For y and v in V, ¢ a scalar, c(u+v) = cu + ¢y,
4f For v in V, ¢ and d scalars, (c+d)y = cy * dv.

5) For ¥ in V, ¢ and d scalars, (cd)y = c(dy), 1v = v.

A set A of elements over a field F 1s a linear associa-
tive algebra if:

1) A is a vector space over F.

2) Closure: For u and vy in A, uv is in A.

3) Associativity: For u,v and w in A.'(gz)ﬂ = u(vw).

4) Distributivity: For ¢ and d in F, u,v,w in 4,

u(cy+dw) = cuvy + duw and (cy+dw)u = cyu + dwu.

An n-tuple of n field elements a;,az,...,a, is the

n
ordered set (aj,az,...»2,). Addition of n-tuples is defined
by (21s2psec002) + (bgybayeeesby) = (314Dg,000,a+by).
Multiplication by a scélar is as follows:
| c(ags.essap) = (c21,..450ap).
With these two operations defined, it is easy to show that
the set of all n-tuples over a field is a n-dimensional vector
space. A linear combination of k' vectors or n-tuples vy,
Yoreeos ¥y is.the vector u

W= agVy o ey,

where the aj are scalars. The set of all linear combina-
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tions of a set of vectors Yy o¥osee s ¥y of a vector space

V is a subspace of V., The vectors ¥;,¥5y...,¥; are lin- .
early dependent if and only if there ére scalars 1185 eees
ax for which
a1y + ax¥py * ...t AV = a.

A set of vectors which are not linearly dependent are lin-
early independent. A set of vectors spans a subspace if
every vector in the subspace is a linear combination of this
set. The least number of independent vectors which spans a
space is the dimension of the space. A set of k 1linearly
independent vectors which span a k-dimensional subspace is
a basis 'of the subspace. The inner product of two n—tuplé%
is a scalar as follows:

(21850 0e98y) (D4 D2y0eeyby) = a1by + azby, + o0y +ayd

nn'
If the inner product is zero the two vectors are orthogonal.

2.2.3 Matrix Theory

In the development of several of the codes to follow.
we refer to matrices. Consequently we no% give some basic
results from Matrix Theory. An (nxm) matrix M is an

ordered set of nm field elements expressed as n rows and

m columns:
all 8.12 L) . L] almw
8.21 azz » . [ azm
M= i} [ai.’j]
kanl an2 ¢+ * @nm |

Each column or row can be thought of as a vector. The row
(column) space of M is the set of all linear combinations of
fhe row (column) vectors., They‘form a subspace of all the
possible m (n)-tuples, the dimension of which is called the

row (column) rank of M. A matrix may be Operatéd on by any
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or all of the following elementary row operations or their
inverses:

1) interchange any two rows,

2) multiply any row by a non-zero field element,

3) add any multiple of one row to another.

If a matrix M' is obtained from the matrix [ by elementary
row operations, then M and M' have the same row space.

If, for a square (nxn) matrix, the rows are linearly
independent, then the matrix is non-singular. The identity
matrix has ones along the diagonal and zeros elsewhere. The
transpose of a (nxm) matrix M is a (mxn) matrix, M?, with the
rows and columns of I interchanged. Two matrices [aij] and
@ij] are added element by element as follows:

ad + [oug = [ogy ¢ vy
By defining matrix multiplication of a (nxk) matrix [aij]by
a (kxm) mgtrix [bij] as [cij] where the element cy; of the
matrix is defined by
k
°1j T 2 2isPsj ¢

we can represent the elementary row operations as elémehtary
matrices, With multiplication so defined the inverse of a
matrix can be formed.

| The set of all n-tuples orthogonal to a subspace V. of |
a matrix is a subspace V, and ié called the null space of V4.

" If the dimension of Vi1 is k, then the dimension of the null

space Vz 1is (n-k).

2.2.4% Polynomial Rings

‘We now return to our treatment of rings. An ideal I is
a subset of elements of a ring R such that:

1) I is a subgraup of the additive group of R.
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2) For all a in I, r in R, ar and ra are in I.

The cosets formed relative to the ideal I are called residue
classes. They form a ring called the residue class ring.

The ideals below are from the algebra of all polynom-
ials in one indeterminate over a field F. A monic polynom-
ial has as a coefficient, one, for the highest power of X.

An irreducible polynomial p(X) of degree n is not divisible

by any polynomial of non-zero degree less than n. The great-
est common divisor of two polynomials f(X) and g(X) is defined
as the monic polynomial a(X) with gfeatest degree, such that
a(X) divides f(X) and g(X). If a(X)=1, then f(X) and g(X)

are relafively prime. Degree zero polynomials, or field
elements, have inverses. However, no polynomial of positive
degree has an inverse.

A subset of polynomials is an ideal if and only if
every polynomial in the subset is a multiple of a fixed
polynomial., The residue classes of polynomials modulo a
polynomial f(X) of degree n, form a commufétive linear al-
gebra A, of dimension n over a coefficient field. The alge-
bra A, plays an important role in.the development of the codes'
discussed in Chapter 3. In this algebra, if g(X) is the
monic polynomial of least degree such that the multiples of
g(X) form an.ideal J = {g(x)} and p(X) is a polynomial of
degree less than n and divisible by g(X), then p(X) is in J.
VMoreover, if p(X) is in J, then g(X) divides p(X).

Every monic polynomial g(X) which divides (x™-1) forms
an ideal with generator polynomial g(X). The null space of
the ideal generated by g(X), is the ;deal with generator
polynomial h(X) where g(X)*h(X) = (X-1)., If h(X) has degree
kK then the ideal generated by g(X) mbdulo (x™-1) has dimen-

sion k.



2.2.5 Galois Fields
We conclude this section by dealing briefly with some

properties of Galois Fields.

An extension field of degfee m'over a field F is formed
by taking polynomials over a field F modulo an irreducible
polynomial, p(X), of degree m. F is called the ground field
of the extension field. For any prime number p, the residue
classes of integers modulo p form a field called the Galois
Field GF(p). The field of polynomials over GF(p) modulo a
degree m irreducible polynomial is an extension field called
the Galois Field of p™ elements, GF(pM). |

Any.finite field with q elements is isomorphic to GF(q)
Galois fields represented as residue classes of polynomials
modulo an irreducible polynomial over GF(p) have character-
istic p. If o« 1is an element of the extension field, the
monic polynomial m(X) of least degree over the ground field
F for which m(et) = 0, is the minimal polynomial of o< and is
irreducible., If p(X) is a polynomial with coefficients in
the ground field and p(x)=0, then the minimal polynomial of
oy, m(X), divides p(X). Every element in the extension
field of dimension m has a minimal polynomial of degree m
or less. The polynomial (x471-1) has all (g-1) non-zero
elements of GF(q) as roots. The polynomial (X™-1) divides
(x"-1) if and only if .m divides n. A primitive element of
4GF(q) has order (q-1) and every non-zero element of GF(q)
can be written as a power of «, The multiplicative group
of GF(q), consisting of powers of x, is cyclic. An exten-
sion field of GF(q) contains all the roots of (qu—l-x).
Moreover, these roots form a subfieid. If p(X) is an irre-
ducible polynomial of degree m with coefficients over GF(q)

and 8 is a root of p(X) in the extension field, then
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B ﬁq, ....ﬁqm—l are all roots of p(X) with the same order.
The order of the roots of an irreducible polynomial is the
exponent to which the polynomial belongs. If a polynomial
p(X) belongs to b, then p(X) divides (Xb-l) but no other
polynomial of the form (X¥-1), r<b, An irreducible poly-
nomial of degree m is primitive if it has a primitive ele-
ment as a root. A degree m polynomial is primitive if and
only if it belongs to (9q™-1) or, if and only if it divides
(x¥-1) for no r less than (qM-1), |

2.3 Linear or Group Codes

Ail.the codes, save one, discussed in the thesis are
members of the class of linear codes. In the following we
assume that the code symbols are elements‘of a finite field
and that q is a power of a prime, where for most cases q is
2. An excellent and more detailed treatment of the remaining
topics in this chapter can be found in both Algebraic Coding
Theory by E. R. Berlekamp[l], and in Error-Correcting Codes
by W. W. Peterson and E. J. Weldon [37]. |

A linear block code over GF(q) of block length n and
dimension k is a k-dimensional subspace V of  the n-dimensional
vector space W of all n-tuples over GF(q). This subspace is
called a (n,k) linear block code. These codes are also
called group codes because the k-dimensional subspace V forms
an Abelian subgroup over the prime field., Vector space
theory provides a simple characterization of these codes.
A k-dimensional subspace has a set of k basis vectors. These
can be written as the k rows of a (kxn) matrix G, called the
generator matrix of the (n,k) code, . The set of codewords is
then the rcw space of the matrix G. .Thé number of such 1lin-
ear combinations is qX, which is simply the number of ways

of selecting the q possible coefficients of each of the k
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possible basis vectors.
An alternative description of the (n,k) code is given
by the (n-k)-dimensional null.space_V' of the subspace V.
A matrix H of rank (n-k) with row space V' can be formed.
Then, the (n,k) code is defined as the set of vectors Y
orthogonal to H, which is to say v and any row of H have an
inner product of zero, or in terms of matrices,
vii® = 0.

This equality can be expressed as (n-k) independent equations:

2.Vihis = 0, i=1,2,...,(n-k)
]

where Qj.is the j-th component in the n-tuple y, and hij is
the element from the i-th row and j-th column of H. Since
each of these equations is, in fact, a parity check on the
codeword y, the matrix H is called the parity-check matrix.
V' is a subspace of W and hence is also a linear code, the
(nyn-k) code with null space V. V is the dual code of V*

and vice versa,

Decoding of these codes is accomplished by a rearrange-
ment of the‘vectors of the generating matrix G. Two decoders
based on this process are presenteﬁ here, the second being
an improvement over the first.

If the qX code vectors are ordered as isdinseeasd i

. q
where i; is the all zero n-tuple, a decoding table can be

formed. Row one consists of the qk

codewords, iLv---tiqk-
Next, one of the remaining non-codeword n-tuples, say ny, is
selected, wheré usually mq is one of the most likely vectors
to be received if iy, the identity, were sent. The second
row of the decoding table is then m1+ij, j=i,....qk. This

process is repeated until each possible n-tuple appears in

the table, for a total of q™ ¥ rows. Each row of the table
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is a coset and the first element in each row, the coset
leader. Although the table just formed could be used to
decode, a simplified version requiring less storage is now
defined, The product of the (n-k)xn parity-check matrix H
and a codeword vector ¥ is an (n-k) component vector S = IHT
called the syndrome., A vector is a codeword if and only if
it has a 0 syndrome. To decode in the binary case, a table
is formed consisting only of the coset leader and syndrome
for each of the on=kK sosets. When a vector is received, its
syndrome is calculated and then found in the table. The
coset leader which is associated with it is the most.probable
error. It is subtracted from the received codeword to give
the decoder’'s estimate of the message sent.

A variation of the above gives step-by-step decoding.
For this method, it is necessary to determine for each re-
ceived vector the weight of the minimum weight element in
its coset. This requires a larger table than for the pre-
vious method but can be accomplished without 1listing the
whole table of cosets plus syndromes, The q field elements

q
vectors are ordered lexigraphically in the sense that if

fy0fo0 0000y are listed with zero appearing last. The

(Vl"'°'vn) and (wy,...,W,) are two vectors alike in the
first (j-i) positions, but v follows W in the order of the
field elements, then (yl,...,vn)'follows (w1....,wn). To
‘decode the received vector (vq,...,v), the weight associated
with its coset is determined. The step-by-step process is
then begun. The first element vy of the received vector

is replaced by vi-fy, v4~f5 and so on until the weight of the
coset of the altered vector is less than the original coset

weight. The first element of the received vector is then

replaced by vq-f;, where ¥ corresponds to a coset of lower
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weight. If no smaller coset weight is found v4{ remains the
first element of the received vector.. This procedufe is re-
peated until the weight of the coset is zero, that is the
vectof represents a codeword. 'It ié then assumed tha%t this
vector was the codeword sent. This decoding method decodes
each received vector into the nearest code vector,

The above two methods are indeed valid decoders, how-
ever their drawbacks are significant. With both these decoders
the storage requirements and look~-up times are prohibitive
for any reasonable length code. loreover, step-by-step de-
coding .can become a very lengthy process. .

Although these methods are of interest on their own, we
present them here primarily for the purpose of illustrating
the relative effectiveness of the more sophisticated methods

which are to follow.

2.4 Cyclic Codes

Cyclic codes are a very important cla;s of block codes.
This importance is due mainly to the high degree of mathemat-
ical structure possessed by the codes. We begin this section
with a discussion of the defining properties of these codes.

If V is any subspace of the space of all n-tuples such
that if ¥' = (Vv _q+Vnspeee1Vo) is In V then v' = (vo,Vp-qs.ee,
vy), the vector resulting from cyclically shifting v one unit
to the right, is also in V, then V is called a cyclic sub-
space. The corresponding code is a cyclic code,

The most common cyclic sﬁbSpace considered in coding is
a subsapce of the n-dimensional aléebra A, of polynomials
modulo (X™-1). The elements of this-algebra are residue
classes of polynomials, where the representative polynomials

have degree less than n and each distinct polynomial of
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degree less than n represents a distinect residue class. For

a polynomial v(X) = \rn_lxn-1 +

« « « *viX + v,, the corres-
ponding n-tuple is written (v,_1s...sV{,Vy). Recalling the
definition of an ideal given in Section 2.2, it is apparent
that a subspace is cyclic if and only ‘if it is an ideal. This
is so because multiplication by X of a polynomial modulo
(x™-1) is equivalent to a cyclic shift of the n-tuple repre-
sentation of the polynomial., Every ideal has a generator
polynomial, g(X). Thus a code is specified by giving the
generator polynomial g(X) where g(X) divides (x®-1). The
null space is then given by the parity-check polynomial

h(X) = (X"-1)/g(X). The code generated by h(X) is equivalent
to the dual code of the code generated by g(X). The poly-
nomial {£(X) is a codsvord polynomial if and only if g(X)
divides £(X).

An alternative description of a k-dimensional code is
given by the roots e«4,. « « sy~ of the degree (n-k) gen-
erator polynomial g(X). For this definition, a polyhomial
f(X) is a code polynomial if and only if &;,. . ., Xp-x are
roots of f(X). These roots can be expressed as powers of a

0(51

fixed primitive element o of order e, where o = for

some @B;. If m;(X) is the minimal polynomial of o(j, then

' ; ; 4 A4
all Ehe roots of m;(X) are given in the sequence o™, o~ ,
14 ' . .
ofh yees o Through an analysis of its roots, g(X) is

‘factored into its minimal polynomials and the corresponding
sets of roots are called cycle sets. We refer to this
concept again in Part II.

We note briefly that these codes can easily be put into
matrix form. If g(X) = gn_kx“'k o, .+ g1X + g, is the

generator polynomial of a cyclic codé, then the set of poly-

-1 -
‘nomials, Xk g(Xx), Xk 2g(x), eesy Xg(X), g(X) are all code
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vectors and when expressed as n-tuples, linearly independent.

Thus, the (kxn) matrix .
r . “

8h-x Sn-x-1 * * * & 0 . - . 0

O gn_k e [ a g1 go . * . O
G = . .

0 0 e « « 8n-k « e« £

! °

is the generating matrix of the code and the row space of
G is the code.

One. of the most important features of cyclic codes is
their simple implementation. For this reason we present a
succint exposition of the two methods used for encoding.

For both encoders, a k-symbol block of information
digits forms the input and is sent through the channel. A
delay then occurs as the (n-k) check digits are generated.
The first encoder simply uses a k-stage shift register to
produce the (n-k) check digits. The second method is some-
what more complicated but still not difficult to.implement.
If £(X) is a polynomial with the kX information digits as
coefficients of Xn-i,...,xn'k. then f({X)=g(X)q(X)+r(X),
by the division algorithm, and the degree of r(X) is less
than (n-k) for some q(X). Then, f£(X)-r(X) is a codeword,
and the coefficients ih the low order (n-k) positions are
‘the negative of the check digits. The encoder for this
method is an (n-k)-stage shift register with premultipli-
cation by Xn—k. The negative of the (n~k) digits remaining
in the shift register are sent on to the chaﬁnel.

The decoder for cyclic codes provides a simple method

of error-detection. The received check digits are subtracted
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from the check digits calculated from the received infor-

mation digits, using, as above, an (n-k)-stage shift register.
If the result is 0, then the received.vector is a codeword,
otherwise an error is detected. Such a deéoder is an excel-
lent means of error-detection., However, the alterations fe—
quired to allow for error-correction are complex and hence

the resulting decodefi@gjnot a feasible method of error-
correction,

In this section and in the previous one we presented
two general classes of codes and their associated simplis-
tic decoders. In later sections we introduce specific codes
and their more complicated and hence more powerful decoders.

However, first we disucss certain bounds used for comparison

of codes.

2.5 Exror and Distance Bounds

In this section we deal with several means of evalu-
ating the performance, or describing the capabilities, of a
given code relative to other codes. |

Probably the most common metric used to characterize a
code is the Hamming distance. The Hamming weight of.a code
vector ¥, written w(¥), is the number of non-zero components
in v. The Hamming distance between two vectors ¥y and ¥, is
defined as the number of positions.in which they differ, or
in the notation giver, w(xl-xz). For a linear block code,
(¥4-¥p) is a code vector. Thus, the distance between any
two code words is in fact the weight of some codeword. The
minimum distance of a linear code is the minimum weight of
the non-zero code vectors.

Another distance metrié, the Lee weight, exists but this is

used only infrequently. For'completeness we include its de-
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finition. The Lee Weight of an n-tuple (vn_l,vn,...,vo) the
vi from the set (0,1,...,9-1) is

n-1 v:, 0$v.<q/2
wy, = Z;b‘vl]' where 1"'1' = { 1 1

Q-viy 9/2<vys (g-1).

As for the Hamming distance, the Lee distance between two
n-tuples is defined as the Lee weight of their difference.
We note that for =2 and q=3 the two metrics coincide.

We now examine some of the upper and lower bounds on
the maximum minimum Hamming distance of a linear (n,k) code,
with fixed n and k. We do not give a detailed study of
these bounds but rather present only the results necessary
for comparing codes.

The most general upper bound on the minimum distance d
of an (n,k) linear code is the Plotkin bound of the average
weight nq¥ +(q-1)/(q¥-1). Further, if n 2(qd-1)/(q-1),
the number. of check digits necessary to attain the minimum
weight d is at least ((qd-l)/(q-l))-l-Iqud.

The Hamming upper bound on d2 2t+l is expressed as the
following bound on the number of check symbols:

(n-k) 2 logq(l +(?kq-1) +(2kq-152 + eee +(2Xq-1)t ).

A third upper bound on the minimum distance of a linear
(n,k) code is due to Elias, For large n this bound is tighter

than either of the above bounds. The Elias bound is:

a2 25(1-%) (),

where t is any integer such that

L n-k
J};’o(%)z '

and k is the smallest integer such that
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v—tv -l
j=0

These three bounds are the most common upper bounds on min-

Aimum distancef%'We now give the Varsharmov-Gilbert lower bound

on minimum distance. This bound states that there exists an
(n,k) code with minimum distance at least d provided-
(%: (3) (q-1)1 2 (qn'k)

1= .
As noted earlier, we are primarily interested in binary

codes and hence with binary symmetric channels. We now con-
sider some bounds on probability of error, Pg, for such chan-
nels. .In the following Q is the probability of correct trans-
mission, P the probability of an error, for the best binary
code with given rate and length. Given a minimum distance

of d, we have the rather trivial bound,

d
d) pig(d-i)
Pe 2 i%/z}fl(l) PQ ’

where [x] is the greatest integer in x. The sphere-packing

lower bound on P, is
& ttel it
t the greateét integer such that
ey = 227K -1 -(F)-@)- ... -(})20.

We conclude with the random-coding upper bound on P, which
.applies only to group codes and states

j j+1

( h+i- )‘h-l-a—l) J n-j n JQn J
J% /2] i -,] h; ( ) n-k-1 2:d( F
where d_ is the largest integer such that

g
a.-1
- n
on-k 2 2?%(9.

¥ Hf“"’“’“; ‘H’\(‘ CTETRNER 11““\d ' \L‘\\.}-\L\é\'é(_.\ o c\wir \“w\..\(l
Lt
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2.6 Hamming Codes

The Hamming code, which corrects all single errors, is
a natural extension of the decoding table decoders discussed
in Section 2.3. The basic binary Hamming code has length’
n=2"-1 and m parity check digits. The'decoder for this code
makes use of the fact that there are 2M-1 single error pat-
terns, each of which can be made the coset leader of a dis-
tinct coset. Moreover, since there are m rows in the parity-
check matrix H, its columns can be written as the binary
representations of the digits 1 to ém-l. Then if a codeword
v is tfapsmitted and a single error occurs, giving v'=v+te,
¥ can be correctly decoded by observing the syndrome § = 1'3?
= gﬁ? . This is a consequence of the error vector g being
all zeros except for a single 1 in position i, for 1<is2M-1,

T

Thus, when g is multiplied by H*, the resulting syndrome is
simply the i-th row of HT, that is the binary representation
of the digit i. To correct the single error in v, the i-th
digit is dwverted. |

The code can be modified to any length n. To do so, the
matrix H is constructed as above,- using the smallest m such |
that (2™-1)2 n. Then, any selection of (2™-1-n) columns are
removed, - leaving the required n columns. To decode a single
error, the syndrome is calculated and if it corresponds to
the j-th row of HY, then the j-th digit of the codeword is
in error. | |

Detection as well as correction of errors is possible
with the Hamming decoder if a single parity-check digit is
added to the codeword. This increases to (m+l) the number

of .parity-check digits and increases the length of the code

to 2M, To decode, the syndrome is calculated. If it is 0,
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no errors are detected. If the last syndrome digit is a one,
a single error is assumed to have occurred. The position in
error is determined from the :emaining syndrome digits, using
the above decoder, If the syndrome is not the zero vector
and the last digit is zero, then a non-correctable error pat-
tern of at least two errors is detected. In a similar way,
the modified.Hamming decoder of any length n can be made to
detect errors,

The binary Hamming codes have a fairly simple structure.
All the vectors in the null-space of the single error-correct-

s : . . i thew Baie e
ing code have the same Hamming weight. They are alsoABnero Ty

- B -

the few examples of a perfect codey **». ~# == « 7n |- =
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Overall, these codes are a marked improvement on single
parity-check codes. However, they are still basically high

rate codes unable to correct any pattern of two or more errors.

2.7 BCH Codes

The codes discussed in this section are a generalization
of the Hamming Coaes., They are the best knaqwn of all non-
random cyclic codes and possess pbwerful error-correcting
properties and are relatively simple to decode. The BCH
codes, developed independeﬁtly by Bose and Chaudhuri in 1960
and Hocquenghem in 1959, are probably the single most im-
.portant class of codeé yet developed and have long served
as a standard by which other codes are compared.

The definition of a BCH code over an extension field
GF(q™) of GF(q) is given in terms of the minimal polynomials
of its roots. For o~ an element of GF(q™) ‘with order e, r
an arbitrary non-negative integer, dfanlinteger such that

2< d4e, and mj(X) the minimal polynomial of «, reisr+d-2,



the generator polynomial of the BCH code with parameters
q,m.r,d and o, is defined as . 4

g(X) = LCM (mn(X), cee s My+g-2(X) ).
The block length n of the code is tﬁe product of the orders
of the roots &, o&*l, ... , of'94"2, "The binary BCH codes
with r=1 and d=2t+1, t an integer and « a primitive ele-
ment of GF(2M), are the most important :subclass of this
class of codes. The roots of the generator polynomial for
this subclass are ol, o2, eoe .¢x?t. Recalling the discus-

sion of minimal polynomials, if I is the root of mi(x).
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then so are a(21,<x9i,... etc. Thus, only the roots with an .

odd powér yield a distinct minimal polynomial in the factor-
jzation of g(X), that is

g(X) = LeM (mq (X), m3(X),..., mZt-l(x))'

As each mi(X) can have degree at most m, g(X) has degree at
most mt,, t, the number of factors in g(X), .which is tanta-
mount to the code having mt, parity-checks.

Binary BCH codes have a lower bound ‘on minimum distance
of (d"). Moreover, for any BCH code with fixed rate, the
ratio of minimum distance to code length n tends to zero as
n becomes large.

The BCH decoding algorithm consists of several steps,
some of which involve terminology that must be defined be-
fore the decoder can -be presenfed.

If the code word sent is given as the polynomial f(X)
and errors occur which are described by the error polynomial
e(X), then the received polynomial is u(X)=f(X)+e(X). 1If
the elements cﬁr,c{r+1,...,o(r+2t-1 are substituted suces-
sively into u(X), the resulting seduence is eex?), cen g
e@xX*2t-1) since oF, +.o , 52l re roots of the code

vector u(X). The sequence listed is the basis of the BCH



decoding algorithm. The parity-check calculations give the

2t eqmations:

j, r$j£2t'1,

. < n-1 N .
e(o(j) = Zeio(g_ = Z;Yixg_ =S
i=0 i=1
where Y; is the magnitude of the error, X; is the error lo-
cation number and v errors have occurred. Decoding is based
on the observation that e; is non-zero in the above sét of
equations for the positions in error in the received vector.
In the binary case, as Y; is one for each error, only the X5
need be found. In the general case, to correct any number
v<t of errors, the pair (Yi.xi) must be obtained for each
error. This is achieved by solving the set of equations:

Sj = ZYiXi’ rsj5r+2i:-1.
i

To facilitate this, the quqntitiés 01102140440y, the element
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ary symmetric functions of the X; are defined by the equation:

v-1

(X+X1)(X+X2)...(X+Xv) = Xv + 0'1X + LI ] GV—IX + O'V.

From this equation the following set of linear equations

relating the Sj and o3 are formed:

SjO‘v + Sj410y-1 t .. Sjw_lo‘l + Sj_,_v = 0, rgjz2t-1-v.

With the above definitions, the decoding can now be describe
as follows:
1) Calculate from the received vector u(X), the parity
checks S, rsjsr+2t-1ﬂ

J
2) The maximum successive number v of these equations

d

that are linearly independent is the number of errors

which occurred.
3) Set g ?* 010 to zero and solve the first v equa-

tions for G1s0%9s4905

4) Substitute each of the non-zero elements of GF(qm) in

1

xv - oixv- + LI + Uv('i)v,

the roots of which are the error location numbers.
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5) In the non-binary case the error location numbers ob-
tained in step #) are substituted into the first v
equations in

e(otd) = zia t3xy = s,

to solve for the Yj.
Mény simplifications of the basic algorithm have been found
which reduce the complexity of the calculations used in the
decoder. For the binary case several simplifications are
possible. First, the binary circuitry is simpler to constructv
for step 1) and step 4). 1In step 3) the calculations them-
selves are simpler and moreover, step 5) is unnecessary as
the magnitude.of each error must be one.

We have discussed the decoder used for BCH codes in some
detail for two reasons. First, as mentioned earlier, BCH
.codes are perhaps the best known and most powerful of all
ccdes. Secondly, the decoder has illustrated what is con-

sidered to be a relatively easily decoded code,

2.8 Arithmetic des

We include these codes in our discussion as they are a
practical method of encoding in a network using a computer.

These codes are unlike most codes in that, as their
name suggests, all operations for encoding and decoding are
arithmetic, Consequently, the standard error and distance
definitions are not applicable,

A number N is represented as a polynomial in a radix-r
system as:

_ n-1
N = NpjqT

* .ee + Nqrl o+ N, O0SN<r™, 02N,<r.
The length n codeword is written as N,-q1N,_o...NyNo. The
minimum number of non-zero terms in the polynomial expression:

n
N=anr * ae +a1r+ao,
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where the aj; can De poéitive or negative but the absolute
value of each aj is less than r, is the minimum weight of N,
The arithmetic distance between two numbers Ny and N, is the
weight of the differnece Nqy-Nz.  If the number N4 is sent and
szNl received and the distance between Ny and N, is d, then
tﬁere is a .d-fold error, or equivalently, a number of weight
d has been added to Ny. If there is an arithmetic distance
of at least d between all coded numbers, then all errors of
magnitude d or 1ess-cah be detected., To correct t or fewer
errors, it is necessary for.the minimum distance to be at
least (2t+1). This definition of distance is especially
applicable to a computer system as it considers each digit
of the radix-r number to be possibly in error.

The actual coded form of the number N is the n-digit
~ radix-r representation of the number AN, where A and r are
relatively prime. With this definition therée is a similarity
between these codes and the class of cyclic codes. If there
is a smallest n such that A divides (r™-1) and n is the
length of a codeword, then every cyclic shift of a codeword
is a codeword, for if

N = an_lr“'1 + oo tayr +oag,

then a cyclic shift gives

an_zrn-1 + an_Brn"2 t .e. tagr ta _4°=1rN - an_l(rn-l)
which is, as required, a multiple of A,

To represent AN in the form described, the smallest
number of digits required is at least

logrAN =N + 1ogrA.

The constant log,A is the redundancy of the code. The AN
code is capable of correcting all combinations of t errors
if and only if all numbers of weight at most t have distinct

residues modulo A,
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To encode the AN code, the number N is multiplied by A.

To decode, the received code snumber is divided by A and if
the remainder is zero, no errors are assumed. Otherwise,
the remainder is taken to be the characéeristic of the error
number, which is the difference between the received number
and the most likely code number transmitted. To determine
this most likely code number, a search is made in a table of
remainders and their corresponding mdst probable error number.
These codes are interesting as a class of codes which
are easily implemented on a computer. However, they are fe-
strictive in the sense that they basically perform a check
on the arithmetic of a computer rather than act as a prac-

tical code for a communication network using a computer,

2.9 Conclusions and Thesis Objectives

In this chapter we have reviewed algebraic topics re-
quired for the development of codes discussed both in this
chapter and in later chapters. Two important classes of codes,
linear codes and cyclic codes, were discussed., Several bounds
on distance were presented as a means of comparing codes,
Hamming Codes, as the forerunner of generalized error-cor-
recting codes, were reviewed. As the most well known and
powerful of all algebraic cédes, BCH Codes received a thor-
ough treatment. The discussion on codes concluded with
Arithmetic Codes. Notably, an important class of codes, the
Majority Logic Decodable Codes, was omitted. The next chap-
ter is devoted to these codes. |

In this chapter we have given the reader the background
necessary to appreciaté the rest of the thesis both in terms
of Mathematics and basic Coding Theory. By presenting

several typical decoding methods, we emphasized the distinct
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need for much simpler decoding algorithms if error-correcting -
codes are to be a feasible addition to communication networks.
We remark thgt computers, now a major constituent of many
netﬁorks, should be considered as a factor when designing,
or simplifying existing, decoders.

 The need for simple decoding algorithms with coﬁéspond-
ingly simple circuitry is the prime requirement for a prac-
ticable error-correcting communication system. It is this
necessity to which ﬁe direct_the thesis, The approach taken
is to study in detail the mathematical structures of the null
space of a class of codes already considered to possess a
relatively simple decoder compared to those discussed in
this chapter. To this end, Projective Geometry Codes, a
subclass of‘the class of all Majority Logié Decodable Codes,
were chosen for the study. .In tﬁe analysis, emphasis is
placed on finding symmetries in the null space which prove
useful in simplifying the standard decoder for this class of
codes.,

Chapter 3 is an extensive review of Majority Logic

Decoding and Projective Geometry Codes.
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CHAPTER 3: MAJORITY LQOGIC DECODABLE CODES

3.1 Introduction

In this chaptef, Majority Logic Decoding and several
related topics are discussed. We first review a class of
binary linear codes, the Reed-Muller codes, and the associated
decoder. The Majority Logic Decoding algorithm, which is
based on the Reed-Muller decodirz method, is considered in
some detail. The best known class of codes which are Major-
ity Logic Decodable are the finite geometry codes. We discuss
a subclass of this class, the Projective Geometry Codes,
givingla detailed mathematical description of Projective
Geometries and the codes formed from them. The decoder used
for this subclass is studied., The chaptef is concluded with
a summary of several modifications which have been made to
the Projective Geometry Code Majority Logic Decoder in order

to improve its performance.

3.2 Reed-Muller Codes
The class of codes discussed in this section are an in-

genious alternative to Hamming Codes and BCH Codes. Unlike
the latter codes, the Reed-Muller (R-M) Codes.f[j5}[&11, can
be decoded without the error digits being located and cor-
rected;hbaﬁ;kaézgger for the R-M Codes depends on the major-
ity testing of redundant digits'within the code. As a result,
the decoder can be very easily implemented., As the mathema-
tical development of the R-M Codes is instructive in under-
standing the basis of the decoding method,  we include a de-
tailed exposition of it.

. We note that Majority Logic Décoding is simply a varia-
tion of the decoding method presented here.

The R-M Codes are binary codes of length n=2" with code-
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words of the form:
f-= (fo'fl""'fn-1)'
£f5 = 0,1, j=0,1,...,n-1, from the space of all n-tuples over |
GF(2)., If © denotes binary addition, then the sum of two
codewords £ = (f,,f1,000yf _1) and g = (go.gl.....gn_l) is:
L0802 = (£fg0eeesfq) & (8gsoeer8n-1)
= (£0880s+ .+ fn-188,-1),
where gjegj is the modulo-2 sum of the binary digits fj and
g3 j=0,1,,..yn-1, DMultiplication by a binary scalar a is
defined as: .
o af = a(fgresesfng) = (af peenrafq),
and multiplication of the vector £ by the vector g as:
| Iz = (fo""’fn-l)(go"'"gn-l)‘
= (£o80rsee1f-18n-1)-
The complement f£' of the vector £ is:
£' =1 8 ¢,
where ¢ is the identity vector (1,1,...,1). The distance
between any two vectors f and g, is the Héhming distance
w(£,8). Any code vector £ can be expressed as:
£=11,06 1511 8 ...06f 41 4,
where lj is the unit vector with a one in the j-th position
and zeros elsewhere, j=0,1,...,n-1., Moreover, each Ij can
be written as a product of m vectors from the set of 2m

vectors Kl.....xm.xi.:.;.X'. where X4 is the vector consisting
4 we ['\
e

of the pair of digits Oﬂq

e Yuﬁif}_z

0011,2 times and so on, as follows:

N 1 times, X5 is the vector of digits

= (010101,..,0101)

ol
oo

= (001100...0011)

(000000...1111),

gqe



k3
and X consists of 2M~1. seros followed by 21 nes. To
simplify the notation, Kik is defined as
Xx if ix=0
Xk = |
L if ip-=1.
Then, using Boolean algebra,
I = 5152 ... &
where the it' t=1,...,m are the binary coefficients of the

radix-2 expansion of j:
n ) .
j = z%.ikzk 1. ik=0|1. k=1|.||,mo
.. Lk; '.
Hence, £ can be expressed as:
2m-1 R . i
i1.1
i = jg fjxllxzz e e mma

with the summation taken modulo-2 and the i, t=1,...,m as
above, This expression can be rewritten using the distrib-
utive law and the identity:
[ ]

Xa =g & Xa.

to give the following polynomial in the xj'Ss
i = goQ glxl Q T 0o Q gmlm -Q glzx,lx,z‘a s s 6 gm_l.lnxm-lx_m
Q s 0 e glz'..mx1X2000Kmo

The coefficients in this polynomial are the multiple partial

differences and are defined as follows:

k .
gk = A f(il.olo.im) = f(;i’""ikel’ik+1""'im)
6 f(il,loo.ik|-lo|im)

P
g = A £(i1ss0esipy)
Ckikzeekp Tk, T
. p-]_ .
s ‘A f(ilpomngik Qi.ik ee e i )
: p+i’ ' m
kloo.kp_l p
. ‘. p-l .
A f(il..nl.ikp,‘l..im).

kloo.kp-l
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where A denotes the pértial‘difference and the i,'s in
£(i1s¢00y1iy) are the coefficients in the radix-2 expansion
of j. _

For the order-r R-M Code, the set of codewords consists

of the set of polynomials of degree r.or less, r<m, of the form:

go Q glxl e seo e Q gmx_me o0 eglz...rxlooox,r Q

cer O Eporet, ..., mlp-r+1e s Xpe

The sum of any two polynomials from this set is another poly-
nomial from the set. It can be shown (351 that the Hamming
weight'of any non-zero vector £ in the set is:

w(gf) > 2™"F, m=0,1,..., r<m,

We introduce the decoding method of the R-M Codes through
and example. For a code with r=1, m=3, any vector from the
code space is given as:

Bo2 ® 8141 8 gpX2 ® g443.
The information digits are (go,gl.gz.gB) and the generating

vectors are:

X, = (01010101)
X; = (00110011)
X3 = (00001111)
e <= (11111111),

Referring to the definition of multiple differences given

above we have:

8o = £(0,0,...,0) = £
81 = A £(0,..0) = £508,
g2 = 4 £(0,400) = £481,
g3 = % £(0,...) = £,08y

and,
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f} £(0y40s) = f?efigfzef3 =0

93 £(0yeus) = f.foéfl’efw% =0 )
gé'f(o....) = £ 81,08f,8f¢ = 0

1%3 £(0,..0) = £,0f; 8£,08£,0f,08f8f¢RL, = O,

The last four equations are all zero as r=1 and hence no term
is of degree two or more. From thesé equations, we have that

g4 satisfies:

g =T, 8 1§y

= f2 ] f3

fzaf30f4Qf56f6@f7.
Substituting the second and third of these equations into the
last relation, we obtain:
g = f6 ) f7

and hence,

gy = f,8fy = f,8f4 = f40f5 = f60f7.
These four relations on g4 are disjoint in the sense that
no two of them have any variables in common. Similarly we

obtain four independent and disjoint relations on g, and gyt

€r F foefz

f,0f5 = £,8f¢ = £40fy

g4 f1®f5 = f,8fg = £30f,.

If, in the received codeword (fo,fl,...,f7), there are no
errors, ali the above relations hold. If there is a single
error, then three of the four relations for each of g1'52'53
hold. And if two errors occur, two of the four relations on
gj,pj=1.23. hold. Consequently, 81185183 can be determined
correctly from a majority of the estimates on these variables

if no more than one error occurs during transmission. More-

over, two errors can always be detected. If the four rela-
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tions on gj' j=1,2,3 are denoted by rjl.rjz,er.rju, then the

arithmetic sum of then, Sj;’ié given by: .

4
Sj = E;; 3o

Then, the majority decision test for g iss

=0 if OSSj<2,

gj is indeterminate if Sj=2,

1 if 2<s <, j=1,2,3.

Assuming less than two errors'occur, g1:82 and g5 can be de-
termined and used to find g,. This is accomplished by adding
81X+ €2%50 83K5 to the received vector to give (mo.....m7).
If no errors have occurred, the resulting vector is g,e, and
if there were one error, (mo.....m7) is a distance of one from

o8+ A second majority test can now be applied to obtain Eo*

7
8o =0 if.£;5m1<l+,
g, = 1 if ;%%mi>l+.
i=
The method used to decode the above example can be
generalized, such that, using the definition of the poly-
nomial coefficients in terms of the multiple differences, all
the information digits can be determined from a series of
majority tests. This is due to the fact that each highest

or r-th degree coefficient of any polynomial in the code

satisfies exactly 2T disjoint relations of the form:

1

2r _ .
23 fir iy from T T T

and the summation taken modulo 2.
The number of information digits for the R-M Codes of

order-r is

0.
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The order-(m-r-1i) éode is the dual of the order-r R-M code.
Although for large n the rateé of R-M Codes are significantly
lower than those of the BCH Codes, the simple decoding method
for the former still make them a competi%ive code. For low
to medium length codes, the rateé of these two classes of
codes are more comparable, but still, in general, lower for
the R-M Codes. However, as we are interested in this thesis
in simple decoding methods, low rate is not considered a de-
trimental code characteristic,

The R-M Codes have a geometric interpretation. We inélude
it here as it established the link between the method of de-
coding discussed above and the Majority Logic Decoding algor-
ithm which is given later. For this description of the code
we consider the space of dimension m over GF(2), consisting of
2™ points. Each of these points corresponds to a digit
position j, j=0,1,...,n=1, in the length n generating vec-
tors Ki given above. A one appears in each position of the
.vector X; for which the corresponding point has its i-th
coordinate ti equal to zero, that is for each point in an
(m=-1)-dimensional hyperplane through the origin. Thus X; is
the incidence vector of the hyperplane through the origin.
defined by t;=0. The vector Kixj has a one in each position
which corresponds to a point with both its i-th and its j=th
coordinates equal to zero. Hence, Kixj is the incidence
vector for an (m-2)-dimensional flat* through the origin.
Similarly, each generating vector represénts an incidence

vector of a flat.

Each of the code symbols can be associated with a point
of the m-dimensional space just deseribed. Then, every
parity-check rule is a check on those symbols associated with

the points of a flat of dimension at least (r+i) through the
¥ o ]1&3@ 59,
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origin. Each such flat describes an independent parity-

r
’

check rule, Ty e .

This interpretation of the code leads to the following
geometric explanation of the decoding méthod. Each of the
vectors used to generate the order-r code consists of a pro-
duct of at most r of the vectors Xy,...,X;. There are 2¥
points in an r-flat and hence a product of r vectors from
the X; has 2T ones. For each of the 2T points, p, in a
generating vector, there exists a perpendicular flat of di-
mension r with 2¥ points which passes through the point p;
These perpendicular flats correspond to the parity-check rules
used above to determine the information symbols. To see this
correspondence we elaborate further. The parity-check flats
intersect the génerating flat whose coefficient is being de-
termined, in one point, but intersects every other flat of
dimension at least r either not at all or in at least a line.
This implies the intersection has an even number of points,
,2t. where t is the dimension of the intersection. Thus, in
the modulo-2 parity-check sum only the coefficient being de-
termined will not cancel out, while all other coefficients will,

The geometrical description of the R-M Codes assists in
the understanding of the associated Majority Logic Decoding
algorithm, which is an extension of the decoding method
given here.

The simplicity and elegance of this decoding method have
made it the most feasible means of decoding a code which
possesses the necessary independent redundancy relations.

The remainder of this chapter deals exclusively with such

codes and the Majority Logic'Decoding of them.
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3.3 Majority Logic Decoding

In this section we discuss Majority Logic Decoding, a
decoding method renowned for its relative simplicity. Major-
ity Logic Decoding (MLD), or Threshold Decoding (TD) in the
binary case, is based on the existence of certain relation-
ships among the parity-check equations of a code in much the
same way as in the R-M Codes.

We introduce MLD by giving an example which illustrates
the basic concept used in this decoding method. The binary
repetition code of length n has two codewords, the all one
n-tuple and the all zero n-tuple. Of the n codeword digits,
the first is the message digit, with the remaining (n-1)
being check digits. To decode, the number of ones and the
number of zeros in the received codeword are counted. If the
majority of the digits are ones, then the all one codeword
is assumed to have been sent, otherwise the all zero code-
word is assumed. If less than [n/2] errors occurred, the
decoder's decision is correct. The majority test used here
is similar to the R-M majority tests, It is this concept of
taking a majority test on which the MLD algorithm is based.

We return to the above exampie after se&eral terms have
been defined.

In the following discussion on MLD, the code to which
we refer is éssumed to the cyclic, linear (n,k) code with k
‘information digits and (n-k) parity digits.

If (cn_i....,cl,co) represents a codeword and (e,_qy+44
el.eo) the corresponding error word, then the received word
(rn_l.....ri,ro) can be written as (cp-1+e _1ss.00Cotey).

If CysesesCpq are the information digits, the (n-k) parity

digits are, in terms of the information digits:



k-1. )
cj = igo pjici, J=k,k+1.....n‘1,

and the pj; are from GF(p®). The syndrome S. is defined as

J
the value of this equation when ry is substituted for Cot .
k-1
S5 = g;% PjiFy = T;
- k=1
= J.Z= Pji®i = €3 j=k,k+l,...,n-1.

Linear combinations of the Sj are used to Majority Logic

Decode,

Wg'say that the sums '1‘1.‘1'2.....’1‘t of error digifs are
orthogonal on an error digit e; if every sum Tg includes ej
and no other error digit occurs in more than one of the Tge
This definition can be extended to sums being orthogonal on
a set of error digits weighted by coefficients from GF(pS).
For example, if v{,...,vg are elements of GF(pS), then the

following sums are orthogonal on vieqp + vgesp:

T2 = v1e1 + Vo€, + v3e3
T3 = viey + vye, + Vu?u +.v6e6
T4 = Vvieq + vze2 + v5e5.

50

If we look again at the binary repetition code of length

n=2M-1 wi{h codeword (°2m-2""'°1'°o) we note that:

o
"

(2]

+

0 = Co . + Com-p

and thus the following sums are orthogonal on eqt
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ro+r1=e +el

ro+r2

n
®
-+
®

N

L §
4

o ¥ Tom-2 = €0 * €om-2-
To decode this code using MLD, the 2™-2 estimates on e, are
input to a threshold unit. If more than (Zm-l-l) of the in-
puts are one, the threshold of (2m'141) is overcome and the
output is a one, otherwise a zero. If less than (2m'1-1)
errors occurred, the decoder correctly decodes the error
digit e The value of e

o 18 added to r, giving the correct

o
value of ¢, . For the repetition codes there is only one in-
formation digit, so the remaining digits need not be decoded.

As a threshold unit is used to decode in the binary case,
the corresponding decoding method is often referred(33], [37]
to as Threshold Decoding rather than MLD.

For non-binary codes, a majority unit is used instead
‘of a threshold unit. For such codes, the majority unit out-
puts the value receiving a clear majority of the sums ortho-
gonal on it. If no value has a clear majority, then the er-
ror digit is assumed to be zero.

In general, once the first error digit is decoded iﬁ a
cyclic code. the codeword is shifted and the next error digit
decoded in the same :manner, This process is repeated until
the whole n-digit codeword is decoded.

Orthogonal estimates of a transmitted digit ¢;» rather
than sums orthogonal on an error digit e; can be used to de-

code. For the binary repetition code discussed above we have

the following orthogonal estimates of Co!
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r, 1f,?2=°’ .
Cy = .
2m-2 ,
r if e2M-2-0,

To decode, using the orthogonal estimates, the received
digits, rather than the syndrome digits, are used as input
to the threshold unit. The output is then the cstimate of
the code digit c,, not the error digit e,.

When there are an even number of parity-check sums which
are orthogonal estimates of a digit c;, a tie can occur. A
more sophisticated decoder can overcome this difficulty. When
one of the estimates is of the form: '

Cy=T, if eo=0,

the other estimates of ¢, each contain two digits and the

0
probability of an error in transmission is p, p<%, then the
modified decoder can decode using error probabilities. If
the probability that e, is zero is:

Pr(e,=0) = (1-p)
and the probability that ej+e; is zero is:

Pr(ej+ej=0) = (1-p)2 + p2< (1-p), i,j#b.
then the estimate cy=r, is more likely to be correct than
any other single estimate, and hence can be given more
weight when input to the majority unit. Thus, psing
probabilities, the tie can be broken.

We present some useful results concerning Majority
Logic Decodable codes. If a linear code has at least (d-1)
check.sums orthogonal on each code digit, then the code has
minimum distance at least d. This is a consequence of the

following. If the i-th digit c; has (d-1) orthogonal check

sums Tq,To,++.,Tg~-1s then each of these sums is zero since
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the word is in the code. Also, because each of these sums
has a non-zero entry by construction, there must be at least
one  other non-zero code digit in each sum, which gives a total
of d digits. Thus, the minimum distance is at least 4.

A linear code with minimum distance d is said to be
c6mplete1y'orthogonalizable if (d-1) parity-checks on each
digit can be determined. Thus, any error pattern guaranteed
correctable by the minimum distance of the code is correct-
able if the code is coﬁpletely orthogonalizable. Further,
if the code is cyclic, then it is completely orthogonalizable
if there are (d-1) parity-checks orthogonal on e,, the error
digit in position zero.

If d is the minimum distance of the dual code of an (n,k)

. - . e Hae L",H)CCAC
linear code, then the number of errors that can be corrected,

-

is tl and

n-1

tl S — .
2(d-1)

To establish this we note that each word in the null space
has weight at least d and thus there must be at least d
digits in each of the orthogonal sums. One of these digits
appears in each sum, while (d-1) appear in only one sum.
There are (n-1) error digits in addition to the one on which
the sums.are orthogonal. Thus, the total number of ortho-
gonal sums which can be constructed is no more than (n-1)/(a-1).
ﬁence, T - s $Trtzan must be less than or equal to
half this number that is

(n-1)-
“2(d-1)
The decoding process discussed thus far has required

only one estimate of the outputs to determine an error or

code digit. Obviously there are linear (n,k) codes for which



it is not possible to construct (d-1) parity-checks ortho-
gonal on each information digit. However, the process dis-
cussed above;can be generalized so that after several steps,
some of these codes can be decoded. Given the original set
of parity-checks defined by the parity-check matrix H, it is
péssible to form sets of at least (d-1) parity-checks ortho-
gonal on certain sums of the information noise bits. .It is
then assumed that these sums are known because threshold
estimates of their values have been obtained. These sums
are now considered as additional parity-checks and added to
the matrix H to give a new matrix H'. The extended parity-
check matrix is a true parity-check matrix if the sums added
were correctly decoded. This process can be repeated L
times until (d-1) parity-checks orthogonal ;n the error
digit e, are obtained. If this égocedure can be carried out
for each of the n error digits, then the code.is said to be
L-step orthogonalizable.

Formally, a t-error-correcting code is said to be L-
step orthogonalizable if and only if the code contains sets
of positions P(1),p(2), .., such that:

1) For all i, the code contains 2t pafity-checks

orthogonal on P(i).

54

2) The subcode of the code that satisfies the additional

parity-checks:

2 .. ¢: =0, for all i,
jep(1) 7J

is (L-1)-step orthogonalizable.
With L-step decoding the bound given above for 1-step de-
coding can be improved. If d again denotes the minimum
distance of the dual code of an (n,k) linear code; then the
number of errors, iy, that can be corrected with L-step MLD

is bounded by:
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_n. _1, d even,

d 2
tL < -
nti _ 1, d odd.
. Gt 2

This is established in much the same manner as the t, bound
for the 1-step decoder. The t errors are corrected if there
afe at least 2ty check sums orthogonal on a set B of digits
common to each sum. Now B is at most [E/z] ’ otherwiée,
when combining two such sets to give a set still in the null
space, the new set would have weight less than d, which is
a contradiction. Consequently,. the ZtL equations have at
most [572] digits in common and at least d digits altogether.
Thus, (E-[E/ZI) digits appear in one sum only and after se-
lecting the [E/Z] digits, there are (n-[E/z]) digits left
from which to choose the sets of (d -[572]).digits. Hence,
there are at most: )

(n -[ar2])

(@ -lasz2])
orthogonal equations, which implies:

2t (a -[a/2)) ¢ (n -[372]).

As an example of a cyclic 2-step MLD code, consider the

binary (7,4) code with _
[1011100} {31
H ={1110010} = R\,
0111001 R3
The received word is premultiplied by X3 before decoding
begins. The check sums corresponding to Ry and Ry 4Ry are
orthogonal on S,=egte,, where (e6,...,eo) denotes the error
word. These two sums are input to a threshold unit whose
output is an estimate of Sq. The sums (R{+R5*R3) and (R1+R;)
are orthogonal on Sp=zeg+ey. These sums are input to a second

threshold unit, whose output is an estimate of S;. Then the
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estimates of Sq and Sz; orthogonal on eg, ére input, at the
second step to the threshold unit which outputs an estimate
of the error digit eg. Thus, the error digit ey can be de-
terﬁined in two steps, since the code is cyclic and hence 2-
step orthogonalizable,

; We remark here that with every added step in the ortho-
gonalizing process, the complexity of the decoder increases.
It is of interest to note though, that in L-step orthogonal-
ization of a code, it is never necessary to make more than k
threshold-decoding decisions. This follows since each deci-
sion is an estimate of a sum of the variables e se.es€p_q,
and, there being only k such variables, there can be at most
k linearly independent sums formed from them.

The Majqrity Logic Decoder is most apﬁlicable to binary
~codes, For non=-binary alphabets”the number of parity-checks
that can be formed is roughly the same as for the binary |
alphabet. Thus, the advantage of a larger alphabet is lost.
The Projective Geometry Codes analysed in Part II of the
thesis are binary codes and hence attain the maximum power
of this decoding method. '

We conclude this section with an interesting example of
the power of a t-error correcting Majority Ldgic Decoder.
Unlike other t-error-correcting decoders, such as the BCH de-
coder, the Majority Logic Decoder corrects many errors of
weight greater than t.

Consider the (1023,10) maximal length code with d=512,
If this is transmitted over a Binary Symmetric Channel with
transmission probability of error pP,=0.25, then the average
number of errors per block is (1023)p, which is approximately
256, Now, [(d-l)/é} is 255, so the probability of error, Pg,

is nearly one half for an algorithm capable of correcting
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only errors of weight [(d-l)/?] or less, However, if MLD is
used to determine each of the ten information digits from the
(d-1)=511 parity-checks orthogonal on each bit, the total
probability of error is épproximately 5%10”7. To see this,
note that if ey=0, then e, is inéorrectly decoded only if -
more than 256 of the 511 parity-checks orthogonal on e, are
one. Since each parity-check includes two other error bits,
the probability that the sum is one is 0.375. The probatility
that more than 256 of the 511 parity-checks are one, is less
.than 3.1x10'8. Similarly, the probability of incorrect de-
coding if-e°=1 is less than 1.0x1077. The average Py in de-
coding e, is then:

(0.750)(3.1x1078) + (0.250)(1077)< 5,0x1077.,

Although certainly all examﬁles comparing MLD to other
methods are not so dramatic, for-high rate codes there are
‘many instances when MLD is the most effective. decoding method.
The main advantage of MLD, and certainly the reason that it
is used in this thesis, is its ease of implementation. It

is this characteristic which we emphasize in the thesis.

3.4 Projective Geometries
Part II of the thesis is devoted to a study of a subset

of Projective Geometry Codes. These codes are based on a
particular class of finite geometry, the finite projective'
geometry.

Formally, a finite geometry of dimensién m is the set
of elements (points) satisfying the following five conditions,
given by Veblen and Bussey [51]:

1) The set contains a finite number of points and one
or more subsets called lines, each of which contains at least

three points.
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II) If A and B are distinct points, there is one and
only one line that contains Yoth A and B. .

III) If A, B and C are non-collinear points, and if a
line 1, contains a point D of the line Aﬁ and a point E of
the line BC but does not contain A or B or C, then the line
1, contains a point F of the line CA,

IV) If r is an integer less than m, not all the points
of the geometry are in the same r-space.

V) If IV is satisfied, there is no (m+l)-space.
We now give the definition of a projective geometry, PG(m,ps),
of dimension m over GF(pS), and later show that it does indeed
satisfy the above postulates. A point is defined as a O-space
and a line as a 1-space and an r-Space*is defined inductively
as follows. Given (r+l) points Py,...,PprsPpr41 not all in
the same (r-1)-space, the set of all points collinear with
Pr+1 and a point of the (r-1)-space (P1,...,Py) is the r-
space (PyyeeesPryq)e

The most common means of representing a PG(m,pS) is by
GF(p(m+1)s). In the following we use this description with-
out exception. We now outline this representation. A point
of an m-dimensional finite PG can be described by a set of
homogeneous coordinates (qo.aq,....dh), the coefficients of
(m+1) linearly independent points which define the GF(p(m+1)S)
m-space. The j are elements of GF(p®), such.that at least
one of them is non-zero. Any point @(oQo....,agxm) is equi-
valent to the point (o(ys+.esXpy) for & one of the non-zero
(pS-1) elements of GF(p®). The coefficients yyeeesclp

(m+1)s

which define a point, can be chosen in (p - 1) ways,

where there are (pS-1) représentafions of any giveq point.
It then follows that there are a total of
(p(m*1)S-1)/(p8-1) = (p1S + ... + pS + 1)
¥ oo cflat
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distinct points in PG(m,pS). Given any two distinct points
oo+ v e1(y) and (BosesesBp)s a line is defined as the set of

points:

=)

Kk o * BByr e+ 1oty */EBm)
where o¢ and /5 are elements of GF(pS) such that both are

not zero. The coefficients c{,/B can be chosen in (pzs—l)
ways, where (pS-1) of the choices give the same line. Thus
a line contains

(p25-1)/(p%-1) = (pS+1)
distinct points. And, in r &imensions, r<m, given the (r+i)
points (34196490 +1%ip)s 1=0,1,...,r, not all in the same

(r-1)-space, the r-space consists of the points
r r

where <o, ®qs¢00y Ky are elements of GF(p®), not all simul-

(r+1)S_1) possible non-

-taneously zero. Since there are (p
zero combindtions of the o{j, where (p®-1) combinations define
the same point, there are

(p(r*1)8-1)/(pS-1) = p¥S + pfS™L + .., +p + 1
points in an r-space.

We now show that this formulation, based on GF(p(™*1)8),
satisfies the above postulates. Each line contains (pS+1)
points, which fulfills the requirements of postulate I. The
definition of a line validates postulate II. If (gyeeercly)s
(Bosreeerfy) and (Fyse00¥p) are any three non-collinear points
A,B and C, and t, a line containing D=®«o+84,s ... ebin*+B4),

a point of AB and E=9@30+Gﬁ;,...nﬁﬁh+dﬁg), a point of BC, and
t, does not contain A,B or C, and <x~670. ¢ different from
zero, then we show that T, consists of the'points

O A LY

such that a and b are elements of GF(p®), not both zero.
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Now it is always possible to find 2 and /é such that
ag + by = 0, |
This gives the point
(axo{, +DO Y o s o .ao(o(m+b0'2$m)
on t, which is also a peint on CA, and postulate III is val-
idated.. This is illustrated for m=2, s=1, p=2 in the fol-

lowing 3-dimensional diagram of PG(2,2).

s = (0,0,0)

= (0,1,0)

= (0,0,1)

= (1,0,1)

(0,1,1)

= (100:0)

Xy = (10111)

QO ®m B Y o W B> O
n

= (1,1,0)
Figure 3.4.1 An Example of PG(2,2)

In Figure 3.4.1, A, B and C are three non-collinear points
and 0 is the origin (which is not allowed as a point). Ob-
viously D is on line AB (i.e. ADB) and E is on BC (BCE) and
D and E are on t,=EFD and F is on CA (CFA).

The last two postulates are satisfied by the following
argument. An r-dimensional geometry may be represented by
(Kgroqresesdlp)s the o (r+1l) linearly independent points.
Then the r-dimensional geometry has the same description as
the m-dimensional geometry containing it. Thus, for r<m,
there are_points not in the r-space and there is no (m+1)-space,

These arguments show that the formﬁlation given for
PG(m,p%) defines a valid finite geometry.

Using this representation, if o( is an element of
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GF(p(m+1)S), then (<),

(%) = &yt Brolf?y e w8P°2,
/3 a primitive element of GF(pS). ?epresents a point of the
projective geometry.

Knowledge of the number of r-spaces contained in a given
m-space of the projective geometry is very useful for the
construction of projective geometry codes. Several steps
are required in the calculation of this value. First the
number of ways the (r+l) linearly independent points of the
PG(r,p°) can be chosen, in order, from the points of PG (m, pS)
so that they are not all in the same (r-i)-space is:

(14pS+, .. +p75) (pS+p25+. . +pTS) (p2S4p3S+, . . +p™)

veo(pfS+,.,+pMS),
The first term in this expression is the number of ways of
selecting one point from the PG(m,pS), the second term the
number of ways of choosing the second point distinct from the
first point, the third point so that it is not in the line
defined by the first two points and so on. We now detérmine
the number of these bases which yield the same r-space. The
number of ways the (r+i) base points of the given PG(r,pS)
can be selected so that they do not all lie in the same (r-1)-.
space is, following the derivation above,

(1+ps+...+prS)(ps+...+prS)...(p(r-l)s+pr3)(pr3).
The number of r-Spaceé in the PG(m,p®) is then:

(14pS+. .o +p"0) (pS+. . o +p™S) oo (P S+, , . +pTS)
(1+ps+0 . .+pI‘S) (ps+| . .+prS) s (P(r-l )S+pl‘S)prS

= (1+ps+, . ,+pms)(1+ps+. . ._,_p(m-l)s) ceo(14., .p(m-r)s)
(r-1)s

(1+ps:“...+prs)(1+ps+.o|+p )onn(1+ps).1

= (p{m)S.1) (p™-1),,, (p{MTTH ISy

(p{T*)sg ) (pT8-1). ., (p?5-1)(pS-1)
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Similarly, a given t-space, t<r<m, is contained in
(p(m-t)s_l)(p(m-t-l)s_l).'.(p(m-?+1)s_1) ‘

?\(t:r.m.ps) = :
(plr=t)s-1) ... (p*S-1)(pS-1)

distinct PG(r.ps)'s in a given PG(m,pS).
An alternative description of a projective geometry can
be given in terms of an (m+l)-dimensional vector space and

(m+1)sy, A point is a 1-dimensional,

its subspaces over GF(p
non-affine (not through the origin) subspace of the vector
spacej a line a 2-dimensional subspace etc., A point lies on
a line if it is contained in the 2-dimensional subspace re-
presenting the line. Then, if (X{,..esXp41) is a point in
the (m+l)-space, (€X;,...sCXp4q) defines the same point for
¢ non-zero, ¢ an element of GF(p®), because this is simply
another member of the 1-dimensional subspace representing the
point. In this description, the coordinates |
(Xg9eaesXpyr) = (CXgreeesCXpy ), cFO,

are called the homogeneous coordinates of the point. For-
mally, if the points of a linear subspace are represented as:

ou {Ipk lk 0vlyaee,(pS=2), JEA) ,
with A a subset of the integers (0, 1.....(p(m+1)s-1)/(p -1)),
and 8 a primitive element of GF(pS). then the projective
subspage of the linear subspace is the set:

(o3 | 5€AS

Thus, an r-dimqnsional projective space of PG(m,p®) is
the set of all 1—dimen§ional vector subspaces in some (r+l)-
dimensional vector subspace.

A hyperplane (a subspace of dimension (m-1) in PG(m,pS)),
is the locus of points givgn by:

ayXq * eee *oapXy * ApeqXpeg = 0,

the aj not all simultaneously zero, where the aj are the

homogeneous coordinates of the hyperplanes. From the pro-
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perties of linear Qectér spaces, it is obvious that taking
the hyperplanes of PG(m.pS) as points, the dual projective
space of PG(m,pS) can be formed. In the dual space, any two
points (hyperplanes), intersect to give a line (an (m-2)- |
space). A space of dimension (m-r-ij results from the inter-
séction of (r+1) hyperplanes. The set of points in the
(m-r-1)-space are the solutions to a set of (r+i) linearly
independent equations of the form:

a4Xq * eee *Ang1Xne =‘O.
This corresponds to the definition of an r-space by (r+1)
lineérly independent points in the PG(m,pS). The notion of
duality is of prime importance in defining the finite
geometry codes.

Any non-singular linear transformation T carries a
1-dimensional vector subspace to another 1-dimensional vector
subspace, Thus, T induces a one to one transformation of the
points of the PG(m,p®) and hence projective subspaces are carried
to projective subspaces. The induced tfénsformation is
called the projective transformation. These transformations
are useful in decoding the fini%e geometry. codes. |

We conclude this section by referring again to Figure
3.4.1. Based on this representation of PG(2,2), we list
the projective points and lines in Table 3.4.1, The number
of points in this géometry is

(p{mM*1)8-1)/(pS-1) = 7.
The number of lines is

(p(m+l)s-q1) (pmS-1)

(p{F*L)S-1)(pS-1) .
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Projective Points Projective Lines
OA OBCE
OB . OBFG
oc OBDA
oD OEGA
OE - : OEFD
OF : OAFC
oG . 0DCG

Table 3.4.1 Projective Points and Lines of PG(2,2)

3.5 Projective Geometry Codes

Projective Geometry (PG) Codes are a generalization of
R-M Codes. They are a cyclic, length n=(p(m+1)s-1) code over
GF(p). The PG Codes are so named because each of thé n digit
posifions in a codeword can be associated with a point from
the projective geometry PG(m,pS). If (ogi), i=0,,..,n-1,
repregents a point from the geometry, then it corresponds to
X1 in the polynomial interpretation of the n-tuple. Thus,
an r-flat of the geometry can be associated with an n-tuple
with ones in the positions corresponding to the points in the
flat and zeros elsewhere. The n-tuple then represents a
polynomial in the algebra A, of polynomials modulo (XN-1),

A cyclic shift of the polynomial representationAof an r-flat .
defines another r-flat, If «%9, «%1,..., 3T are the de-
fining points of the original flat, then «80*l,..., er+l
define the new f£lat. Also, since each point of a PG is a
1-dimensional 1inear‘subSpace and an r-flat is a set of these
points, the r-flats ;orreSpond to (r+i)-dimensional linear
subspaces.

We now give the formal definition of the code. A
Projective Geometry cyclic Code of order-r and length n =
pms+p(m'1)s+...+ps+1, over GF(p) is defined to be the largest
cyclic code whose null space contains the polynomials cor-

responding to all r-flats of the PG(m,pS).
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The PG Codes éan élso be characterized in terms of the
roots of the parity-check and generator polynomials of the
code. These roots are now determined. If f(X) is the poly-
nomial.associated with an r-flat of PG(m,pS), o a primitive
root of GF(p(m+1)S), then U is a réot of f(X) provided u
is a multiple of (pS-1). We esfablish this with the fol-
lowing argument. If o is a primitive element of eF(p(m+l)s),

ps(m+1)_1))

then (c(f = 1, Also, in the algebra of poly-

nomials modulo (X™-1),

(o W) = oku(ps(m"l)—l) /(pS-1) = 1,
Thus, u must be a multiple of (pS-1), and so any root of f(X) :
is of the form «5(P3~1), that is )
f(caf(PS'l)) =§}Z(0Qt(PS’1))j = 0,

the summation taken over the set R of the (ps(r+1)-1)/(ps-1)
points of the r-flat. The points in R are of the form:

o= B804 L, + piTr 8T, i =0,...,(p5-1), a=0,...,r
the aLei linearly independent elements.of GF(p(m+1)S),

/3 a primitive element of GF(pS). Furthermore, each point

«_J occurs (pS-1) times in

i .Z gﬂloakeo + see fﬂlroLer)o
illoo. Tr

Consequently, this sum can be written as

(pS-1) 9 = (pS-1) Y243 = (p°-1)f),
2 P A . ;%ﬁoi

JER
which is,
f(x) = 1 D ("gioo(eo + eee +ﬁiro¢er),
(Ps-l) lool-lr
Then, £(t(P%-1)) = 0 if and only if
3 (Brox®o w4 plralr)E(S-l) oo (1)
loccolr

= (pS-1)t¥(pS-1) Jt(pS-1)
BN K
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= (p8-1)t(pS-1) Jt(ps-i)
(p® %(Ro(

Expanding (1) above, we have

57 T3 L@ (gl ) 0 (6T L),

ho- * s Ohr

r
h. = t(pS-1).

This sum. is zero unless h~=kj(ps-1) for 0<£j<r. Hence the

J
equation can be written as:
%: (t(pS-1))! o(eoko(Ps"l)”.o(erkr(Ps'i) _
i (KPP0 e (ke (po-10)E

This sum is zero unless t(pS-1) is the sum of at least (r+1)
multiples of (pS-1). Thus th(Ps'l) is a root of the parity-
check polynomial of the PG code of order-r and length
(ps(m+1)_1)/(p -1) if and only if

wg(t(pS-1)) < r, 40,
where wg(x), the s-weight of x, is the largest number of
multiples of (p®-1) in the radix-p expansion of x. For p=2,
s=1, this is simply the number of ones in the binary expansion
of x. We note that «° is not a root of the parity-check

polynomial for if t=0, then
S- -
£(oP(P51)) = 57 (B PS1)yd

JER
IR
= >,(1) = |r|
i=1
= (pS(f+1)_1)/(pS-1) = 1, mod p,

where |[R| is the cardinality of the set R. Thus, a(o is not
a root of h(X), the parity-check polynomial and so is a root
of g(X), the generator polynomial.

The minimum distance of a PG code is at least the BCH
bound on minimum distance for a code of length n. We now
establish this. Any element of GF(p{m*1)8) of the form
<st(PS'1). with s-weight at least (r+1), and the root 0©,
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is a root of g(X). The number v,
v = (P_l)PS(m+2-r)—1 .. + (p—1)PS(m+1-r)+1 + (P_l)Ps(m-rﬂ)
+ (p—1)pS(m-r+3)-1 oo * (b_l)ps(m-r+2)

+

+

(p-1)pS{M*1)=1 o | 4 (p-1)pSMH 4 (p-1)pSM
(pS-1)pS(mTH)(ps(r-1) + .., +p% + 1)
pS(m-r+1)(psr_1)

ps(m+1) - ps(m-r+1) N

(ps(m+1)_1) - (ps(m-r+1)_1) -

is divisible by (pS-1), has s-weight r and is a root of h(X).
If another multiple of (pS-1) is édded to v, then the s-weight
becomes (r+l), and hence ~V is the largest root of h(X).
So, for V<:i<<ps(m+1), i a multiple of (pS-1), o<i is a root
of g(X). The number of successive roots is:
(pS(m¥1)-1) = ( (pS(mHLl)-1) - (psimor+l)-q) )

= (pS(m-E+l).1),
There are (p®-1) repetitions of each root, so the number of
distinct successive roots is

(pS(mr+1)-1)/(pS-1).

Thus, as «© is also a root of g(X), the minimum distance of

an order-r PG code is at least:
Ps(m-r+1)_.1

+ 1.
(ps-1)

Using r-step MLD it is possible to correct

1 pS{m-r+1)-q
[5 (p5-1)

or fewer errors in an o6rder-r PG Code. This is possible be-

cause the parity-check sums corresponding to the r-flats which

intersect on a given (r-1)-flat, are orthogonal on the parity-
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check sum corréSponding to the (r-1)-flat.

In order to decode, it is necessary to know the number
of r-flats that intersect on a giveni(r—i)-flat L. We récall
from the dicsussion on Projective Geometries in Section 3.4
that this quantity is:

7 = (pS(mTH) 1) /(ps-1).
The decoding process is as follows. Initially all the parity-
check sums corresponding to the r-flats are known to the de-
coder. As every point in the PG(m,pS) is either in L or in
precisely one of the r-flats that- intersect on L, the J r-
flats_which contain L can be used to obtain a set of parity-
checks orthogonal on L. Thus, with one level of majority
logic the parity-check sums corresponding to the (r-1)-flats
are determined, assuming [J/Z] or fewer errors occur. Simi-
larly, the (r-2)-flat parity-check sums are obtained, and,
after r steps, the 0-flats or error digits. The r-th order
PG code is thus r-step orthogonalizable, r-step Majority
Logic Decodable, and has distance J+1.

To illustrate the MLD of a PG code, we take the code with -
m=2,p=é and s=1, This PG code of order r=1 has all the 1-
flats of the projective geometry'PG(z,Z) in its null sSpace.
If o is a root of X34X+1, then the roots of h(X) are those

ot with wg(i) € 1, 140, that is, o1, <2, o*. Thus,

h(X) = (X- o) (x= o) (x- o)
=X3 +X + 1,
and
g(X) = (X=ot®)(X- o) (X= o) (X~ o)

=x* + x2 +x + 1.
The null space has all the 1-flats of PG(2,2). These are
given below in Table 3.5.1. Since the flats 1,2 and 4 are
orthogonal on 0(3, if zero of one e?rors occur, the majority

of the estimates give the correct value of c(3.



69

|_l
\IO\U\-F'\»NHE

POFOOOF o
OFOOOK =)
rooorrolm
QOO KFOFI\W
OOHHOHéF
O FOFOOWn
PO, OO0OOI O

Table 3.5.1 1-flats of PG(2,2)

In general, the EG codes have fewer information symbols
than comparable BCH codes. For instance, in Chapter 5, we
study'the order-3, length 63, PG code over PG(5,2). This .code
has 41 information digits while the BCH code with the same
length and error-correcting ability, has 45 information digits.
" We also discuss the order-5, length 255 PG code over PG(7,2)
with 218 information digits. The correspoﬁding BCH code has
- 231 information digits. Howevef: the much simpler decoding
method of the PG codes seems to outweigh. this loss in infor-
mation rate, which, for short block lengths, is small. Also,
the PG codes do obtain the BCH lower bound on minimum distance.

In Part II of the thesis, these codes are analysed

further‘and a simplification of their decoder found.

3.6 ngoritx Logic Decoder of an (n.k) Code

The most important feature of a Majority Logic Decoder
is the simple circuitry required for its implementation. In
this section, we briefly discuss the decoder in these terms.

Upon receiving a word from the linear (n,k) code, the
Majority Logic Decoder multiplies it by x(n=K) angd then di-
vides the result by the generator polynomial g(X). The re-
mainder, a shifted version of the syndrome, is stored in the
register. This is shown in Figure 3.6.1. The next step in

the decoding process is to form the (d-1) check sums orthogonal
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on the first error digit. This is done by the (d-1) GF(pS)
adders and their scalar multipliers. Finally, the majority
gate, with the (d-1) inputs from the GF(p®) adders, outputs
the value assumed by majoritj of its inputs, or zerc if there

is no clear majority.

received word

l . . .

(n-k)-stage syndrome generator ————

m 2 e O wt .

?tjj ‘ GF(pS)

- me mww e g— w— e -

multipliers
L « T N ‘
|
d-1) input majority

gate |

{

e |

GF(pS) [ -e |

inverter
received information |k-stage information corrected
diglits register +/ Information”
— digits

(:) ¢ add unit

Figure 3.6.1 One-step MLD of Cyclic (n,k) Code

In the binary case, which we study in Part II, the majority
gate can be replaced by the much simpler threshold unit.
Then, if at least half of the inputs are one, a one is out-
put. The value output by the majority unit or threshold
unit, is subtracted from the firsf information digit.

| As the codes considered are cyclic, by shifting both

the information register and the syndrome generator, the
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secoﬁd information digit can be correctéd in the same manner
as the first; This process is repeated until all the digits
are corrected., As the whole codeword can be decoded with
one level of majority testing, the decoder is called a one-
step Majority Logic Decoder.

As was noted earlier, each level of majority logic that
is added to the one~step decoder increases the complexity of

the decoder. We depict, in Figure 3.6.2, a 2-step decoder.

N

(n-k)~-stage syndrome generator < impet

l

GF(p.S) . ﬁj , ]
multipliers [J(] [] qj 0103 Cars |
- e . ol GF(p°)
mulﬁipliers
5
a® e ° Y l
step 1 (d-1) Input (d=1) input !
jority gate jority gat J
' |
step 2 . ‘ (d=1) input l
jority gat !
. !
|
GF(p®) A
inverter
received (k-stage information corrected
digits register Tt )T digits

Figure 3.6.2 Two-step MLD for Cyclic (n,k) Code

For the two-step decoder, the procedure for the first
step is much the same as in the one-step decoder, the dif-
ference being that (d-1) cheék sums are orthogonal on two

digits rather than one. O0f these two digits, the first digit
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in each of the (d;l) digit pairs, is the digit ey, in posi-
tion zero, the second digit is distinct from every other di-
git of the (d-1) pairs. Each set of (d-1) parity-check sums
orthogonal on a digit pair is input to a distinct majorify
unit. On the second step, (d-1) orthogonal estimates of the
(d-1) digit pairs obtained as oﬁtput from the majority units
in step one, are input to a serond level majority gate (or
threshold unit in the binary case). The (d-1) estimates ob-
tained from step one are orthogonql on the digit ey,. Thus,
the output from the second level majority gate is an esti-
mate'of the error digit in position zero. As for the one-
step decoder, the final output is subtracted from the first
information digit. Again, as the codes ére cyclic, the in-
formation register and syndrome generator are shifted and the
second information digit corrected as the first was. By re-
peating this process n times, the whole codeword can be.decoded.
The purpose of including a detailed‘description of the
Majority Logic Decoder is two-fold. Firét. it illustrates
the relative simplicity of this decoding method, both in terms
of its circuitry and as compared to the BCH decoder discussed
in Chapter 2. Secondly, in Chapter b, we develop a simpli-
fied version of this decoder and in evaluating it, compare

it to the standard decoder described here.

3.7 Modifications to the MLD of PG Codes

Since the introduction of MLD in 1954 [35],{41], there
have been many attempts to simplify even further this de-
coding method. 1In this section, we review several of the
most relevant of these. '

The first of the improvements involves the concept of

feed-back. If the basic decoder is t-error-correcting, then
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(t+1) errors can be corrected using the following method.
Suppose there is an error in position e, of the codeword
and that in‘one of the (d-1) check sums orthogonal on e,
fhere are two additional errérs. ihen. e, can be corrected
and through feed-back the correction fed into the received
codeword. Then, the remaining t errors can be corrected
using the t-error-correcting decoder.

Townsend and Weldon[50] suggest using a variable
threshold level to decode binary MLD codes. In the standard
decoder, the output from the threshold unit is a one if

T = [(d+1)/2]
or more of the inputs are one. The modification suggested
in this paper initially sets the threshold to T=(d-1). An
attempt is made to decode all n bits of the codeword. If
the decoder is unsuccessful, the threshold of T is decreased
by one to (T-1). The procedure is repeated and if again no
changes are made, T is lowered by one a second time. However,
if an error is corrected, then T is increased by one. This
whole process is continued until T is set to [(d+1)/2], at
which point decoding ceases. Although this method corrects
many more than Rd-l)/Z] errors, it does require considerably
more time and more complex circuitry than the standard NLD,

Gallager[lé] gives a decoding method applicable to low
density codes, that is, codes with a large number of zero
 entries in the nullspace. The method is particularly suited
to PG codes as it requires a fixed number j, j23, of ones in
each column, and k, k>j, ones in each row, of the parity-
check matrix. The parity-checks are calculated and then any
digit that appears in more than a fixed number of unsatisfied

parity-check equations is changed. ‘The new value of the digit
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is used to recompute the parity-checks. The process is con-
tinued until all the parity-checks are satisfied. If ey is
the error digit to be corrected, then the term first level
tier is used to describe all the parity-checks that include
eo+ A second level tier contains the parity-checks on the
digits involved in the level one tier. The relation to
orthogonal checks is obvious. A variation on this decoder
includes a posteriori probabilities on the channel outputs.

Although this decoder is capable of correcting more‘than
the standard number of errors, its-decoder is more complex
and the time required for decoding is greater than for the
standard MLD.

The MLD algorithm and the above modified decoders all
are based on orthogonal check sums. We now discuss several
variations on the Majority Logic Decoder which depend on non-
orthogonal check sums.

The first of the non-orthogonal decoders of an order-r
PG code requires only one majority gate, .but the gate does
however have a very large number of inputs. For this al-
gorithm, the number

(pSMm + ps(m=1) + ,,, + pS) ... (psm-+ «.. + pST)

N
(pST + pS(r-1) + ,,, pS) ... (pSr+ps(r-1))psr

of r-fléts which pass through a given point, and

(pSM+ ... +pS) ... (PS®4.,,+pST) (pS(T-1)4,,, +pS+1)

v = (pB+pS(r=1)+,,,4pS) .., (pS(r-1) 4psTypsT(pS(m=1) 4 4pS41)

the number of r-flats iassihg through a given liile, aré needed.
For a given point contained in N r-flats, each other digit
in the geometry appears in y of the r=flats. If
(v/2y] = [epSm-1)/2(p5T-1)]
or fewer errors occur, then the error digit contained in all

the r-flats is given correctly by the majority of the r-flats.
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The complexity of the.standard Majority Légic Decoder increases
with the number of decoding sfeps. Although this version of
the decoder requires only one step, it is not feasible to use
it és a decoding method for two reasons. First, N above is
very large for reasonable size codes and hence the single
mhjority gate has a very large number of inputs. Secondly,
this method corrects fewer errors than the standard Majority
Logic Decoder. The latter problem can be overcome by increas-
ing the number of dec&ding steps to two, and correspondingly |
increasing the number of majority gates. For this decoder,
the r-flats are used to determine the (r-i)-flats. Then the
above non-orthogonal procedure can be applied to the (r-1)-
flats, giving a decoder which corrects at least the number
of errors that the standard Majority Logic.Decoder does. :
However, the number of inputs toﬂthe second step remains
large and hence it is questionable whether such a decoder is
less complex than the standard decoder,

A second non-orthogonal decoder was originally presented
by Rudolph[42] and modified by Ng [36]. Given a parity-check
matrix H of the order-r PG Code over PG(m,pS), Hp the row

space of H, C a codeword and R the received vector, set

Be * C = 0.

Then, to decode rj, the i-th digit in R, a matrix
i, i
g = [hpj]

is chosen for which each row has a non-zero element in the
i-th position, to give Ji rows such that there are o(ij non-
zero elements in column j, i#j. From the equation HE-R$=Q,
we obtain the J1 estimates ci of cj, the i-th digit of the

codeword C,

¥ e —(n byt i - i
Ci " (hpi) j;i hpjrj (] pj—].'z’o-.,J ]
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Each r., j#i is inAO(is of the J1 estimates. In the more
powerful version of this decoder, given by Ngi36]. o(%ax is
selected as the maximum of the i, j#i. The o(iax»equations
c; = r, are added to the estimates to give (Ji+°<$ax) estimates
of ¢;. The original decoder by Rudolph #2] added only one
such estimate. Since each error in R can affect at most
c(%ax of the estimates, MLD can be used to correctly decode
the i-th digit if no more than |
[(Jl * d;ax -1)/2°(1Jr‘1ax] .

errors occur, The maximum number of errors is corrected
when (Ji+<(%ax-1) is maximized. The matrix H% is selected
on this basis. The decoding process is repeated for each of
the code digits. The total number of errors that can be
corrected is then

i i o

m:in{{J .’:(mix_ ! ],
X max

which is a constant for PG codes, since they are cyclic.

This algorithm increases the distanée and hence number
of errors correctable by the decoder but with a corresponding
increase in complexity. | |

Perhaps the most important improvement to the MLD algor-
ithm is the one proposed by Chen[6l@]. In developing his
simplification, he shows that the minimum number of steps in
which it is possible to decode an order-r PG code, using
orthogonal MLD, is N=1+{1og2(m/(m-r))]. which is

1 if r=0 '
N =92 ifm/22r >0
i1 if (1-271)m » r > (1-27(171))p,
This is based on the observation that, since all r-flats are
in the null space of the code, all +the (r-1)-flats can be

determined on the first decoding step. Then, if k is the
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least integer such that a set of at least J (r-1)-flats or-
thogonal on a gi&en k—flaﬁ’dén be constructed, J the maximum
number of r-flats orthogonal on any (rjl)—flat, then each of the
k-flats can be determined from the (r-1)-flats orthogonal

on it. This procedure can be repeated until the ndse digits,
or 0-flats, are determined. Further, Chen shows, using flats
parallel to a given flat through the origin, that there exists
a sufficient number of flats of the.given dimension to guar-
antee this decdding method. Moreover, this method obtains

the minimum complexity possible using the standard MLD
algorithm as the basis,

The final modification discussed involves altering the
Majority Logic procedure to obtain a decoding algorithm re-
quiring fewer majority gates but more time and buffer stor-
age. The algorithm makes use of certain relationships among
the syndrome digits. It cyclically shifts these digits,
stores them and then uses them for the next level of decoding.

If ¢ = (co....,cn_1) is the transmitted codeword, and
¢ = (egr+eeren-1) the error vector, then the received vector
is g +e =p = (ro,....rn_l). The following algorithm decodes
ro, correctly if no more than t errors occur. To decode, the
decoder solves for e, in the equation g'ﬂ? =8, for S fhe
syndrome, and H the parity-check matrix. There are 2¥ solu- .
tions to this linear matrix equation. The non-linear con-
straint of w(e) < t, where w(x) is the Hamming weight of x,
reduces the number of solutions to one. The standard Major-
ity iogic Decoder accomplishes this reduction by deriving
new paritchhecks from the old and adding them to the parity-
check matrix H, to increase its rank. In so doing, the

number of solutions to the above equation is reduced. This
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process 1s repeated L times fof a L-step MLD code, at which
point enough new parity—chécks have been added to assure that
all the sclutions give the same value of e,. Then, as the
code is cyclic, the received word is shifted and the process
repeated. This decoder, the sequential code reduction decoder (4l
uses the cyclic property at each step. This reduces the
combinational complexity of the decoder by making it a linear
function rather than exponential function, of the number of
steps needed for decoding. At each level, the many majority
units are replaced by one majority unit and extra storagé
space added. The single majority unit calculates, in the
standard way, an estimate to be used on the next level. This
estimate, and its (n-1) cyclic shifts are stored. On the
next level the estimate, and a linear combination of its cyc-
lic shifts, are used as .input to another majority unit. The
process is repeated until the error digit, ey, is obtained.
When this method is applied to PG codes of length n<2047, it
is possible to decode using, at each stage, 2t orthogonal
parity-checks and one majority gate, and to correct the
gstandard number of errors. This decoder requires that, at
each level of the decoding procedure, there exists a polynom-
ial flat which divides a set of 2t polynomial flats ortﬁogonal
on a fla% of lower dimension at the next level. '

This algorithm has illustrated that the complexity of
the MLD algorithm can be significantly decreased by increas-
ing the time and storage required for decoding.

In the next chapter we suggest a method of simplifying
the MLD algorithm for a subclass of PG codes, based on the
results of an analysis of the matﬁematical structure of the

null space.
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3.8 Conclusions

In this chapter, we havé considered several topics re-
lating to MLD. We began the chapter by discussing R-M Codes,
a class of codes known for its simple decodihg algorithm.

It is this decoding method which forms the basis of the MLD
algorithm. Together with examples, the MLD method was studied
in detail. The mathematical properties of Projective Geome-
tries were dealt with. PG Codes, a éubclass of the class of
all codes which'are Majority Logic Decodable, were discussed.
A subclass of these codes are examined in the next chapter.

We presented a general Majority Logic Decoder for PG Codes,
emphasizing the circuitry required to implement the decoder.
This chapter was concluded with a survey of several modifica- -
tions which can be made to simplify the standard VMajority
Logic Decoder for PG Codes.

Wifh this background, the reader is now in a position
to appreciate the aim of the thesis, the development of a
- simplified version of the Majority Logic Deéoder for PG Codes,

based on mathematical structures of the null space.



80

PART IT
CHAPTER 4: ORBIT STRUCTURE OF PG(5,2)
T ‘/ v

4.1 Introduction .

In this chapter a structural description of the flats
of a finite Projective Geometry is presented. The background
to this interpretation is the work of Rao [39], and Yamamoto,
Fukuda and Hamada[58], concerning the compact representation
of the flats of a projective geometry. The definition of a
cycle of a flat, first introduced by Rao[39], is used to de-
fine another structure, the orbit of a set of flats. The de-
coding method introduced in the thesis is based on these orbits.

We begin the chapter with a review of the material from
Rao B9]and Yamamoto et ai]}S]which is pertinent to our study.
In this and the next chapter we refer exclusively to the
order-3 (63,41) PG code over PG(5,2). The cycles of this
geometfy are analysed using the theorems of Yamamoto et al.
Based on these cycles, the orbit structure is defined. A
detailed investigation is made of this structure and of the
symmetries which it exposes. Finally, it is established that
the orbit structure is independent of the minimal polynomial

used to define the geometry.

4,2 nglé Descrivtion of Finite Geometry Flats

Rao[39]and Yamamob et al[58]present a compact represen-
tation of a finite PG, based on the cycles of the flats. We
review those results of their work which are of use in this
study.‘

The concept of a cycle of a flat was introduced by RaoiBﬂ
to analyse the structure of a famiiy'of flats from a finite
geometry. Yamamoto et a11§8]found that some of Rao's conjec-

tures were true in only certain cases. Consequently, we refer
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to the more generalized results of Yamamoto et al in the

following. ’ v

Recalling the discussion of both Galois Fields and Pro-
jective Geometries, we note the following results which are
useful in establishing certain theorems given below. We
write q for pS; p a prime, in the following. The projective
geometry to which we refer is PG(m,q).

If (m+1)/(i+1) is integral for some non-negative integer
i, then (q(i*1)-1) is the least integer u such that:

(e®" =1,
6 = (q(m+l)-1)/(q(i+1)-1),
Hence, o2 is a primitive element of GF(q(1*1)) and can be
used tc give the following representation of GF(q(i*l))s
aF(q(1*1)) = {0, w®, o, ... . L31H-2)0],
The corresponding Projective Geometry, PG(i,q), is then:

Pa(1,0) = {()s () vvvy ((((@1*1-1)/(a-1))"1)8y

In particular,
GF(q) = {ovciov dyv seey aéq—Z)v}’
and, ‘
PG(ma) = {(®)s (x)s +evs )],
where, v = (q{m*1)-1)/(q-1), the number of points in PG(m,q).
The first (i+l) points, - |
(%)) () v v (&9
of PG(i,q) are linearly independent over GF(q}). The set of
all linear»combinations of these points yields PG(i,q).
If Vd(O) denotes a d-flat in PG(m;q) passing through the
(d+1) linearly. independent points:
(«®9), (®1)y veny (P9,
then vd(o) is the set of points given by:
vq(0) = {(aéxb0+ aqePls o, + adan)},
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and the d-flat Vg(c) is
Vale) = {(agad0™® 4 oy + agedd*e)],

the a; from GF(q). For some positive integer c, V4(c)=v4(0).

i
The integer ¢ iscalled a cycle of the initial d-flat va(0).
This definition was introduced by Rao in[39]. 1In particular,
v, the number of points in the geometry, is a cycle of any
d-flat V4(0) because Vd(O)=Vd(v). The minimum value of the
cycles of a d-flat vd(o) is called the minimum c.ycle (m.c.)
of V3(0). The following are consequences of the definition
of a cycle:

i) If & is the m.c., then it is a factor of any cycle c,
and therefore a factor of v.

ii) A1l the points of a d-flat of m.é. € can be listed
as follows, in terms of powers of o :

Cor Co*By eee co+(r—1)e

Cis €48y et cy+(r-1)e

Cgs Cgt8, ... , cgt(r-1)e,
c;i=C; # 0 mod €, ifj, 1,j=0,1,...,s, r=v/€. This represen-
tation follows if we note that cj can be expressed as cj=cy+kj,
for some kj. If the m.c. is v, then the above representation
reduces to the #(d,0,q) points, CosCprevsrCy(d,0,q)r Where

(qM+1-1)(qM-1)..,(qm"d+1-1)
ﬁ(m|d|Q) = (qd+1'1)0-'(q—1)

the number of d-flats in PG(m,q).

iii) A necessary condition for the existencé of a d-flat
with m.c. €, ©<v, is that v=¢(m,0,q), the number of points
in PG(m.q).iand #(d,0,q), the number of points in a d-flat,
are not relatively prime. This is actually the requirement

that a subgeometry of #(d,0,q) points can be formed.
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iv) 1f 6 is the m.c. of a d-flat, then a d-flat consist-
ing of points obtained PyLaning the integeg_k. k=1,2,40.,
8-1, to all the powers of the o's in the original flat, has
the same m.c. &, Thus, for ease of notation, we assume that
co=0 and that from the initiél d-flat V4(0), the d-flats, V4(1),

¢es,V3(8-1) can be obtained.

We now present six theorems from-Yamamoto et al [58 which
we use in the development of the orﬂit structure and which
are necessary fo obtain the cycles of the flats of PG(5,2)
and PG(7,2). Each theorem is followed by a brief explana-
tion of its derivation.

Theorem 1: If 8; is integral, ©3- = (gM*1-1)/(qi*1-1),. then

Vi(ol = {(ag&q + afkei + .o * aixﬁei)} is an i-flat of

m.c. 3.

Since &; is integral, % is a primitive element of GF(ql*l)
and hence,

PE(1,q) = {(®)y 6®1) s nny (@301), 0., ({21 -1)/(q-1) -1)0)),
The first (i+l) of these points are lineariy independent
over GF(q) and hence the linear combination of these points
can be used to form PG(i,q). Thus,

Vi(0) = {(agx® +a;®L 4 L.l 4 a;ot®1))

is an i-flat. That it has m.c. €1 1is a consequence of'the
fact that any power of X greater than i®¢j is necessarily a

linear combination of the o 's of lower power.

Theorem 2: If a d-flat has cycle less than v, ﬁhen there ex-
ists a positive integer j such that (j+1) divides both
(m+1) and (d+1), and 85(q™!-1)/(qI*1-1) is the m.c. of
V4. Further, V4 is composed of a particular set of
(q@*1-1)/(qI*1-1) j-flats from the set of © j-flats, v;(0),

vj(1),...,vj(e—1) generated from the initial j-flat
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The d-flat V4 with m.c. &, by prOperty ii) of the definition
of a cycle, is written as: |

0, 9, cee JO vee (r-1)6

C11C 1+, . 0e Cy+j0, .., (r-1)e+cl

Cg Cg*t8,... Cgti®, .. (r-l)8+c,, r=v/e,
For some integer j, j < 4, the j points («°), (dg).---.(dje)
are linearly independent and hence ki(j+l)9) is a Iinear

combihation of these points. Then,

& &
+ e e e + ajp(:] ).}

is a j-flat with cycle 8. This implies that if («°) is any

point of Vj(O), then so is (xF+ke

V5(0) = {(age® + ag

) for any integer k. If G(b)
is any point in V4, then so must be pr+c). as the points of
V4 are of the form k@+c;. So if (00), (@), v v vy (39), (P1),
vee, @Pd-J) form a basis for V4, then so also do «®), %9,
e (CFI®), («C1P1), ..., («C*Pd-).  This implies that ¢ is a
cycle of Vg4 since these points generate V4 as wéll. And, as
& is the m.c. of V,, ¢ must be a multiple of €, which implies
the points of Vj(O) can be represented as («°%), (x®),...,
(dﬁe),..}.(oér-l)g). Then, as the number of points in vj(o)
is (qj+1-l)/(q-l), we can substitute this for r and hence
& = v/r = (q"1-1)/(qI*t-1),

which implies (j+1) divides (m+1) since (qm+1_1) is divisible
by (qj+1-1) if and only if (j+1) divides (m+l1). Further,
Vq consists of (s+1) j-flats, vi(0),v5(e1)y ey Vjileg) with
m.c. €, and hence

{s+1) = #(d,0,9)/8(j,0,q) = (q8*1-1)/(qI*1-1)

which proves that (j+1) is a divisor of (d+1).
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A corollary of this theorem requires terminology which
we now define. For (itl):éffactor of both (m+l) and (d+1),
Vi(0) = {(ags® + agei + ... + a;ud®h)]
is an i-flat of m.c. o1=(q™*1-1)/(qi*1-1) from which the 83
i-flats Vv;3(0),V;(1),...,V3(€3-1) having the same m.c. 94
are obtained. From these &; i-flats it is possible to select
(d;+41) = (a+1)/(i+1)
flats for which all the respective basis points are linearly
independent. The linear combinations of these (d+1}=(i+1)(di+1)
points generate a d-flat with cycle €;. Such a flat is called
a "d(i)-flat" generated from (d4+1) linearly independent i-
flats of m.c. 5. When the (dfl) generating flats are in .~
fact (d+1) points, the corresponding flat is a d(0)-flat,
The following corollary is an extension of Theorem 2,
Corollary: A d-flat having m.c. & less than v is a d(j)-flat

for some positive integer j.

Theorem 3: There always exists a d-flat with m.c. v. If
there exists a positive integer j such that (j+1) di-
vides both (m+1) and (d+1), then there exists a d-flat
‘with m.c. &,

j
8. = (qM*l-1)/(qi*t-1) < v,

J
The’first statement follows from the observation that («°),
Gx}),....(aFU are linearly independent points and hence
V4 = {(aouP + ald} + 0. + adxg)} |
is a d-flat with m.c. v. The second part of the theorem is
established in a similar manner. If we set (mj+1)=(m+1)/(j+1)'
and (dj+1)=(d+1)/(j+1). and let « be a primitive element

m+1)' then it is also a primitive element of

of GF(q
GF((qj+1)(mj+1)). Hence, the first (mj+1) points, («°),

@&1),....(dyj) of PG(mj,qj+1) are linearly independent over
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GF(qj+1). By selecting a particular set of (dj+1) flats,
Vj(O),Vj(l),...,Vj(dj). from the Oj j-flats of m.c. €3, it
can be shown that these flats are linearly independent and

generate a d(j)-flat of m.c. Gj.

Theorem 4: For (j+1) a factor of both (m+l) and (d+1), if
there is a d-flat V4 with m.c. Gj=(qm+1-1)/(qj+1—1),
then V4 is considered both a d(j)-flat and a d(i)-flat
for any non-negative integer i such that (i+1) divides
(j+1), or i is 0.

To.establish this theorem, it is only necessary to examine

the répresentation of the points of the d-flat Vgq. A d(j)-

flat V4 is generated from (dj+1) linearly independent j-flats,

Vj(co)-vj(°1)v---'Vj(cdj)' where the points of a component

Vj(cs) flat are given, in terms of powers of o/, as:

Cqr Cg*O3y «vey cs+(r-1)Gj, rj=(qj+1-1)/(q-1).

These points can be expressed in k groups as follows:

c

Sl cs"'eil oo 0y Cs"'(ri-l)‘ei

c.+6.

s J' Cs+ei+ej’ ey CS“‘(Ii"l )ei'{"e‘

J

cgt(k=1)85, cgti+(k=1)84,.uey cut(ny1)ey+(k-1)8y,

where i is given in the theoren, Gi=(qm+1-1)/(qi+1-1)=kej,
k=(qj+1-1)/(qi+1-1), and ri=(qi+1-1)/(q-1). Each of the
above k groups is an i-flat with m.c. €;.

Thus, Vj(cs) is
Vi(cs+(k-1)Gj). And hence, V4 is a d(i)-flat for any i such
that (i+1) divides (j+1), or i is zero.

The avove theorems guarantee that the totality of d4d(i)-

flats not only contains d(i)-flats of m.c. €; but as well,
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d(j)-flats of m.c.-Gj for any integer j such that ej divides
&3. To obtain ni, the number of d(i)-flats of m.c. 9, ng,
the number of d(j)-flats of m.c. ej, must be éubtracted from
njs the number of d(i)-flats. The next theorem gives the

value of nj.

Theorem 5: The number of d(i)-fiats is ni=¢(mi.di,qi+1),
where m;=((m+1)/(i+1))-1, d;=((d+1)/(i+1))-1.

That n, is as given, can be established by an enumeration
argument. The first of the linear independent i-flats can
be chosen in &;=(q™*1-1)/(qi*1-1) ways, the second .in (85-1)
ways, the third in

| (@2(1+1) 4

o - TtgT

ways, and so on, where this selection is simply ensuring the
linear independency of the i-flats. The total number of ways

of choosing the (di+1) linear independent i-flats is

Do) = 03(8371) (03 = (g2UIMIEL)y Lo (9 - (afi 1+1)-1)
e DI ).

Now, as each d(i)-flat is composed of si=(qd+1f1)/(qi*1-1)'

i-flats which can be generated by any one of

T(s;) = s;(s5-1)(s; - (mf;i+11:§)) e (8 - (Tiii%;iiﬂl))

sets of (d;+1) independent i-flats, the number of d(i)-flats

with cycle @&; is _

(@gMi*1-1)(@;M-1). .. (g% o)
(Qfi*l-1)(q;9i-1)...(a3-1)

i

n, = T(e;)/T(s;)

ﬂ(mi’di'Qi)'

where Qi=qi+1.

The above five theorems establish the following theorem

which we use to obtain the cycle structure of flats in PG(5,2)
and PG(7,2).
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Theorem 6; 1) If (m+l) and (d+l) are relatively prime, then
all the d-flats of PG(m,4) have m.c. v and can be gener-
ated from 7 =@(m,d,q)/v initial d-flats.

2) If the Highest Common Factor (HCF) of (m+l) and (d+1) is

A1 p2 A
Py Py +se Pg ¢ 51,

the Py primes such that pj<p;.1» i=l,...,8-1, then the

number of distinet m.c.'s is

. |
(1 +A).
i=1

’

Lef

(qP*1-1)/(qP1¥1p,yX2,, ,Dg%e -~ 1)

((m+1)/(p¥1p,*2. . .p%e))-1)

((d+1)/(py*L...pg €)1
(qPL™ pe*e)

G(Xl,...,xe)

m(jcl' -.-.Xe)

d(xl,....xe)

1]

q(xli""xe) ¢« o0
Then the number of d(plxl...pexe)-flats having the cycle
G(xl,t...xe) and m.c. 9(x1,...,xe) are fespectively

n(x1'-0-axe) = ﬁ(m(xll --vae)t(d(xlv---vxe)IQ(x]_v -xe))

n*(ﬁl,....ﬂe) = n(ﬁl,....ﬁe)

n*(xl.....xe) = n(XgreeerXg) - ZE: N¥(¥1reees¥a)e
x'ﬂjﬁﬂjv
3 ,Xj<yjc

The number of initial d-flats of any m.c.e(xl,....xe)
is 7K(x1,....xe)=n*(x1,...,xe)/é(xl,...,xe) from which
the totality of d-flats having m.c. 9(&1;...,xe) can

be generated.

The theorems of Yamamoto et al{SS]provide a means of parti-
tioning the flats of a finite projective geometry. In the
following, we extend this concept and develop a non-ortho-

gonal decoding method for order-(m-2) PG codes over PG(m,2).
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k.3 Cycle Description o 2 |

We now apply the results obtained in Section 4.2 to the
PG(5,2). We begin by finding the cycles of the 3-flats of
PG(5,2). These flats form tﬁe null space of the order-3.
(63,4%1) PG code over PG(5,2), which, 'in Chapter 5, is decoded
using a decoding algorithm related to the cycles of the flats.
The null space 3-flats are obtained and partitioned using
Yamamoto et al's[58] sixth theorem for m=5, d=3 and ps=q=2. '

The second part of Theorem 6 is applied for the 3-flats
since the highest common factor of (m+1,d+1) is

HCF(6,4) = 2 £ 1.

Using this theorem, we obtain the number of distinet cycles,
the values of the cycles, the number of 3-flats with a given
cycle and the number of initial 3-flats (i3f) of PG(5,2).
Since p,=2 and Ay=1, the number of m.c.'s is (1+1)=2. From
the third theorem above, we know that one of the m.c.'s is

v=63. For x,=1 and x4=0 in Theorem 6 we have:

x1=1 x1=0
8(1) = (26-1)/(2%-1) = 21 8(0) = (26-1) = 63
m(1) = (6/2)-1 = 2 " m(0) = (6-1) =5
a(1) = (4/2)-1 = 1 a(0) = (4-1) = 3
q(1) =22 = b q(0) = 2
n*(1) = n(1) = = #(5,3,2) = 651

g(2,1,4) =21 . n(0)
1 n#*(0) = 651-21 = 630
7(0) = 630/63 = 10.

These calculations show that there are ten i3f's of m.c. 63

n(1) = 21/21

and one i3f of m.c. 21, Each of the ten i3f's of m.c. 63
generates 63 distinct 3-flats. Recalling the discussion on
Projective Geometries, we note that each 3-flat can be repre-

sented by a 63-tuple of zeros and ones, In the 63-tuple,
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each position refers to a point of the geometry. A one ap-
pears in each position which corresponds to a point in the
3-flat. The resulting 63-tuple is an incidence vector of the
3-flat. We let &x?) refer té the foint in position i, i=0,
14004962, o a primitive element of GF(26). In the remainder
of the thesis a point is referrred to as i, rather than &(1).
i=0,1,..,.,62, and a flat as a set of these points listed in
ascending order of magnitude. The incidence vectors of the
63 flats generated by an i3f of m.c. 63 are obtained by cyclic-
ally shifting the i3f incidence vector i positions to the
ieft.for i=0,1,...,62, The point representations 6f the
flats are generated by subtracting i from each i3f mod 63,
i=0,1,...,62. Similarly the 21 3-flats- generated from the
i3f of m.c. 21 are obtained by cyclically shifting the inci-
dence vector of the i3f i positions to the left, or subtract-
ing i, mod 63, from the point representation of the i3f,
i=0,1,...,20,

The PG codes are cyclic and so, when decoding them, it
is only necessary to consider those 3-flats in the null space
which contain the point 0. This reduction_of the null space
is possible because once the digit in position 0 has been
decoded, the codeword can be shifted once and the same pro-
cedure used to decode the next digit. Thus, for each of the
ten i3f's of m.c. 63, we need generate only the fifteen 3~
flats which intersect on 0., That there are fifteen such
flats can be established by the following argument., Each 3-
flat has #(5,0,3)=15 points, which can be represented by the
integers (ig,i4,..4»14y). By successively subtracting ij;,
520,1,...,1%, mod 63, from the point representation of the
flat, fifteen distinct 3-flats through the point 0 are obtained.

Referring to Theorem 2 above, we note that the i3f of
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m.c. 21 is composed of five 1-flats, one of which contains
the point 0. The other four flats are shifted versions of
the first. 1In terms of initial flgts, the first 3-flat
through 0 can be written as V3(0) and hence the others as
Vj(ci) for the four positive integers cyr i=1,...,4. -After
shifting the first five incidence ones to position 0, the
digits in the incidence vector must again be in the same
relative positions because the points not in V3(0) are simply‘
shifted versions of these points. If we continue to shift
the 63-tuple, the same five 3-f1até are generated a second
time.- As a result, the i3f of m.c. 21 generates only five
distinct 3-flats passing through the point O.

In later sections, the cycle description of the 1-flats
of PG(5,2) is required. Thus, we apply Theorem 6 above for
d+1. 1In this case, (d+1)=2, so

HCF(m+1,d+1) = HCF(6,2) = 2
and again there are (1+1)=2 distinct cycles, one of which ..
must be 63, by Theorem 3, Applying Theorem 6 for xy=1 and

x1=0 we have:

x1=1 . x1=0
8(1) = (26-1)/(22-1) = 21 8(0) = (26-1)/(2-1) = 63
m(1) = ((5+1)/2)-1) = 2 m(0) = (6-1) = 5 |
a(1) = (2/2)-1 = 0 ©d(0) = (2-1) =1
q(1) =22 =& ' q(0) = 2 |
n*(1) = n(1) = g(2,0,4) = 21 n(0) = #(5,1,2) = 651
(1) =21/21 =1 n¥(0) = 651-21 = 630

AL0) = 630/63 = 10
Interpreting the above, there are ten ilf's of m.c. 63 and
one i1f of m.c. 21, Again each ilf of m.c. 63 generates 63

1-flats and the ilf of m.c. 21 generates 21 1-flats. If we
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consider the 1-flats as those flats which are obtained after
two levels of majority logic decoding, then, as for the 3-
flats, it is only necessary to know the 1-flats which pass
through O. cAs there are (5,0,1)=3 points in each 1-flat,
we need only consider the three 1-flats generated from each
ilf of m.c. 63 which contain the point 0., From Theorem 2
above, the i1f with m.c. 21 is the flat (a® + a;x?l),

a, and aq from GF(Z). Irrespective of the minimal polynomial
chosen to represent PG(5,2) the points of this flat are O,

21 and 42. That this is sd. is established in Section 4.6.
Thus, as for the 3-flat case, cyclically shifting this flat

21 positions-to obtain a one in position 0 of the incidence
vector, gives the ii1f with which we began. As a result, the
iif of m.c. 21 has only one distinct flat which passes through
the point O, -

In the following section we develop further the ideas

presented here.

b .4 orbits of PG(5.,2)

In this section we introduce the orbits, the structures
which form the basis of the simplified decoder of the Pro-
jective Geometry Codes. First, however, it is necessary to
define the transformation Z. We denote by Z that transforma-
tion which takes the point representation of an i-flat, Vi,
and subtracts 1 from each point, mod (2™*1_1), to give the
i-flat 2(V;) in PG(m,2), where in this chapter m=5, This
corresponds to dividing the polynomial representation Vj(X)
of the i-flat V; by X, mod (x63-1), or, to cyclically shifting
the inciéence vector of V; one position to the left. For Vs
an i-flat, we define ZI' by

Z(vy) = 2(2"N(vy)),  mol.
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The set

(2,22,...,263=20=]
forms a group over the set of all i-flats in PG(5,2). For
i=3 and i=1, this group partitions the i-flats into orbits,
where each orbit corresponds to one Af the iif's and the i-
flats generated from it, Thus,ithere are ten orbits with 63
members each and one orbit with 21 members. For decoding
purposes, we are interested only in those flats ontaining
the point 0. Therefore, we define a O;-orbit to be the sub-
set of an orbit consisting of only those i-flats in which the
point O occurs. The '0;' in the term 'Oj-orbit' refers %o
the fact that the constituent flats are i-flats through the
point O. o

For i=3, each of the 03-orbits of flats with m.c. 63 has
fifteen members. The 03—orbit corresponding to the i3f of
m,c, 21 has five members. The 0i{-orbits with fla%s of m.c.
63 have three members each, the 04-orbit with the flat of
m.c., 21 has one member, These observatiéns follow from the
discussion in Section 4.3 concerning the number of flats
which pass through the point 0. -

Thus, there is a one ‘to one correspondence between the
eleven orbits and the eleven iif's and between the 0;-orbits
and the iif's through the point 0, i=1,3,

To illustrate these concepts, we list the 04-orbits of
PG(5,2) in Table 4.4.1, where the 1-flats are given using the
exponential representation. The three 1i-flats contained in
any given 04-orbit are labelled 'a‘', 'b' and 'c', where the
'a' 1-flat is the iif of the 04-orbit, and the 'b' and 'c’
flats are obtained by applying the"transformation Z succes-

sively to the ilf until two 1-flats through the point O are



ol

obtained. The 014orbits are numbered (11),(21),...,(111),
where the subscript denotes the dimension of the constituent
flats. The 1-flats a, b and ¢ of (tl) are referred to as
tla, t40 and tyc, respectively, t=1,...,10. The single 1-
flat in (11;) is labelled 1lja. The eleven 0,-orbits are
grouped into four distinct classes Ip,IIq,IIIq,IVq, the
subscript denoting the dimension of the flats in the class.

These classes are defined later.

[ (11) (21) . (3;)
Vv o 1 6 Yar 0 212 L%, 0 & 24
b: 0 5 62 b: 0 10 61 b: 0 20 59
{. c: 0 57 58 c: 0 51 53 c1 0 39 43
I .
Y (51 (61)
at 0 8 48 a301623 ai1 0 3 32
b: 0 40 55 b: 0 17 47 " b: 0 31 34
L 1 01523 c: 0 30 46 e: 0 29 60
(7,) (84) (91)
ar 0 7 26 a: 0 14 32 a: 0 28 41
114 .b: 0 19 36 b: 0 38 49 b: 0 13 35
ct 0 37 44 c: 011 25 c:1 0 22 50
(101)
a: 0 9 45 v, {(114)
IT1I4 { b: 0 36 54 a: 0 21 42
c: 018 27

Table 4.4.,1: 0q-orbits of PG(5,2), minimal poly-
nomial (0 1 6)

We note that the minimal polynomial used in the representa-
tion of PG(5,2) given in Table ﬂ.h.l is m(X)=1+X+X6. Through-
out the thesis this minimal polynomial is used to represent
PG(5,2). We show in Section 4.6 that the representation of
PG(5,2) is well-defined, that is independent of the minimal
polynomial chosen to represent it. This implies that the

1
PG(5,2).

0;-orbit structure is identical for each representation of

The 1-flats of Table 4.4.1 are generated by selecting
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fwo independent points, one of which is 0, and forming the
corresponding 1~flat. This flat is then cyclically shifted
to form the 04~orbit. Once an ilf from each of the classes

I,,II, and III4 is found, thé remaining i1f's in each of these -

1
classes are formed by multiplying the exponent set of each of
the iif's by 2, mod 63, successively until all the initial
flats are obtained. Thils process is explained in more detail
below., Computer programs were written to generate the i-flats
in the geometry and to partition them into 0j-orbits, i=1,2,3.

We now exhibit a most interesting and useful correspon-
dence between the 04-orbits and the 03-orbits. |

-Ih any 05-orbit of m.c. 63, the element 0, by construe-
tion,.is present in all fifteen of the 03-orbit~3-flats. In-
spection of the point sets of each of these 03-orbits shows
that a set of six of the 62 non-zerc points of the geometry
occurs seven times and the remaining 56 elements each occur
only three times, DMoreover, the set of six points which
occurs seven times in a given 03-orbit is distinct from the
set which occurs in any other 03-orbit. An analysis shows
that each such set consists of ?he six non-zero points of a
particular 04-orbit. Thus, a one to one correspondence can
be estaplished between the 03-orbits of m.c. 63 and the 01-
orbits of m.c. 63, where an orbit is said to have the m.c.
of its constituent flats. The'03-orbits are therefore num-
bered (13),(23),...,(103) to exhibit this correspondence.
The 03-orbit (t3) contains the six non-zero points of the
01-orbit (%t,) seven times, t=1,...,10. The 03-orbit of m.c.
21 corresponds to the 0y-orbit (11;). It repeats the two
non-zero points of (114) five times each, that is points 21
and 42 appear in each of the five 3-flats which compose (113).

Every other non-zero point of the geometry appears once only,
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0f the fifteen 3;f1ats in any 03-0rbit (t3) of m.c. 63,
there are two 3-flats which do not contain a 1-flat from (t1i),
t=1,44.,9, cFor the purposes of this study we omit these two
3-flats and refer to the 05-orbit (t3) as the thirteen 3-flats
which intersect on 0 and contain at least one 1-flat from (tl)..

We now investigate the structure of the 03-orbits (13)
through (93). The 3-flats of each 03—orbit (t3), t=1,..4,9,
can be ordered so that, representing each 3-flat by‘the 1-
flats a, b and ¢ of (fl) that it contains, the following des-
cription of the 3-flats invterms of the 1-flats is obtained:

a,a,b,b,c,c,ab,ab,ac,ac,be,bec,adbe,
In this representation, a single letter indicates that only
one (tl) 1-flat is present in the (t3) 3-flat, a pair of
letters that two (t;) 1-flats are in the (t5) 3-flat and abe
that all three (t,) 1-flats occur in the (t3) 3-flat. MNore
explicitly, the 1-flat t,;a is the only(ty) 1-flat in two of
the thirteen 3-flats of (t3), appears with the 1-flat t1b
twice and with the 1-flat tyc 'twice. All three 1-flats oc-
cur together in one of the thirteen 3-flats. Observing this,
each 03-orbit (t3) can be divided into three intersecting
subsets, At’ Bt' Ct' where, for example, the set At consists
of the (t3) 3-flats, in the representation above, which con-
tain the (tl) 1-flat a:
a,a,ab,ab,ac,ac,abc.

Thus, Ay is the subset which contains the seven 3-flats
which intersect on tya. Flats tlb and tlc occur three times
each in A;. We refer to the elements which occur seven times
as 7-repé¢ats and those which occur three times as 3-repeats.
The remaining points of a given subset are either 3-repeats
or 1-repeats of points not in (tl).

We note that the subsets At' Bt and Ct are not ortho-
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gonal on t;a since there are three occurrences of the 1-flat
t1b and of the 1-flat tic in the seven 3-flats composing A,.
We illustrate later the advantages of the non-orthogonal or-
bit structure for decoding. | | |

The thirteen 3-flats in (t3) are labelled to reflect
further the correspondence of (t3) with (%1), t=1,...,9.
Each 3-flat in (t3) contains at least one 1-flat from(tq).
We label the 3-flats of (t3) with the label of these contained
(tl) 1-flats. In (t3) there are two 3-flats which contain
each of the 1-flat groups a,b.c.ab,ac,bc from (tl)' These
two 3-flats of (t3) are distinguished by the subscripts ‘'i'
and 'ii'. For example, the 3-flats of (t3) which contain
both tya and t;b are denoted as tjab; and t3abii.

In the discussion of the 03-orbits, we have omitted
(103) and (113). This is due to the unique structures of
both these orbits. These structures allow (103) and (113)
to be used for a special purpose in the decoding algorithm.
We now describe the structures of these two 03-orbits. Al-
though every non-zero point of (101) appears seven times and
the other points of the geometry three times each in (103).
the repeat pattern of the 1-flats a, b and ¢ of (101) is,
using thg representation above:

abe,abe,abec,abe,abe,abe,abe,

that is, all six non-zero elemeﬁts of (101) appear in seven
- of the 3-flats of (103) and do not appear at all in the re-
maining eight 3-flats of (103). We omit those 3-flats in
(103) which do not contain a 1-flat of (101), to yield seven
members only in (103). Consequently, in (103) there is only
one subset, say Aqg, consisting of seven 3-flats, all of

which contain the 1-flats 1042, 1015 and 10qc. The same
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lettering method is used to label the 3-flats of (103) as
was used for the (t3) 05-orbits, t=1,...,9. However, it is
less illustrative in this case since all the seven 3-flats
are labelled 103abc, with subscripts_i,ii.....vii.

In (113) we have the singlg 1-flat 11,a occurring in
each of the five 3-flats. Thus, each of the 3-flats is la-
belled 113a, with subscripts i,ii,iii,iv,v,.

In the next section we analyse the 03-orbits in terms
of the Ol-orbits, illustrating the numerous symﬁetries made

apparent by this arrangement of the 3-flats.

4.5 Symmetries in the PG(5.2) 0;-Orbits

The analysis of PG(5,2), based on the 0j-orbit structure,
is completed below. A second transformation, which operates
on the flats represented as point sets, is introduced, allow-
ing for a further investigation of the symmetrical properties
of the 0;-orbits.

We introduce the analysis of the Oi—orbits with Tables
k,5.1 and 4.5.2 which illustrate several symmetries of the
0;-orbits. The first Table, Table 4.5.1, consists of.the 7-
repeats and 3-repeats of each 03-orbit. In Table 4,5.2, each
03-orbit 3-flat is represented in terms of its constituent

04-orbit 1-flats.

03-orbit 7-repeat 3-repeats
subset (as 1-flats)
(13) Aq 1b 1c 2a 3b 7a 8c
By l1a 1c 2b 3a 7b 8¢
Cyq "1a 1b 2¢ 3b 7b 8a
(23) Ao 2b 2c 3a 4b 8a 9c
B, 2a 2c¢ 3b 4a 8b 9c

Co | 2a 2b 3¢ 4b 8b 9a



(35)
o,
(55)
(65)
(73)
(85)

(95)

(104)

IIIB

(113)
IV3

5-repeat
subset

Aq

Table 4.5.1:

3b 3¢ 4a
3a 3c 4b
3a 3b b¢

4v Lkec 52
ka Le 5D
ha Lo 5¢

5b 5¢ 6a
5a 5b 6¢

6b 6¢c 1a
6a 6¢ 1b
6a 6b 1c

7b 7¢ 8a
7a. 7¢ 8b
72 7b 8¢

8b 8¢ 9a
8a 8c 9b
8a 8b 9¢

9b 9¢ 7b
9a 9¢ 7a
9a 9b 7c

5b 9a
5b 9b
6b 7b
6b 7a
1b 8b
1b 8a

2b 9b
2a 9a

10a 2c¢
10a 2a
10¢c Z2c¢

10c 3¢
10c 3a
10b 3¢

10b 4c¢
10b 4g
10a 4c¢c

1-repeats

2b 5b 1c
3b. 6b .2¢
4Lb 1b 3¢

la La 8a
2a 5a 9a

. 3a 6a 7a

7¢ 8¢ 9c

1c 4c 2a
2c 5¢ 3a
3¢ 6¢ 1la

1b 3b 5b
Ly 6v 2b

Le

5c
be

8b

9b
7o

11a

ba 7c¢
6a 8c
La 9¢

7a 8b
7b 8a

7-repeats and 3-repeats
7-repeats and l-repeats
5-repeats and 1-repeats

Note: The subscript "1" has been omitted on the

10b
10a
10c

9a
Sb

of 13’
of II
of IV3

99

II
3
I3

3/1-repeat

column as all the constituent flats are 1-flats.
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(85)

(15)

(25)

(55)

(65)

(73)

(tq) 3-
flat j

ab
ac
be
abc

ab
ac
- be
abc

ab
ac
be
abe

ab
ac
be.
abce

ab
ac
be
abe

ab
ac
be
abe

ab
ac
be
abe

1-flats in j;

) 5a
6

La
3a
La
2a
2a
2b
lc

5a
Ly
5a
3a
3a
3b
2c

6a

a
La
La
Ly

3¢

la
6a
la
5a
5a
5b
Le
2a
la
2a
6a
6a
6b
5c

3a

, 22

3a
la
la
1b
6c

4p
lc
1v
la
2¢c
2a
7¢

6a
Lo
5b
5b
3b
3a
3b

3¢
2¢

7a 9b
6a 6¢
5¢ 8a
6b 7a
6c 7a
Lby 7b
7b 8¢

8a 7a
la 1c¢
6c 9a
1b 8a
1c 8a
5b 8b
8b 9c

9a 8a
2a 2c
1c.7b
2b 9a
2¢c %a
6b 9b
gb 7c

7b Ga
Ja 3¢
2c 8b
3b 7b
3¢ 7b
1b 7a
7a 8c

8b 7b
ba L¢
3¢ 9b
L4b 8v
Lc 8b
2b 8a
8a 9c¢

9b 8b
5a 5c
Le 7a
5b 9b
5c 9b
3b %a
9a 7c

5a 8a
6b 8b
Ly 8c
8b 9a
6b 8¢
he 5c
5¢ 9c¢

10c
10a
10a

8¢ -

11a
10c¢

Qa

10b
10c
10c
9c

11a
10b

10a
10b
10b
7¢c

11a
10a
8b

10c
10a
10a
8¢

11a
10c
9b

10b
10c
10c
9¢c

11a
10v

7a

10a
10b
10b
7¢c

11a
10a
8a

11a
11a
10c
10a
10c¢
8b

10a

100

3¢
3¢
3¢
ib
1lc
1lc

Lv
La
5a
2b
2¢c
2c

5b
5a
ba
3b
3¢
3¢

7¢c
7¢
6a
3a

3b
70

8c
8¢
La
la
ib
8a

9c
9c
5a
2a
2b

9a

3a
5b
9a
5a
2c
3b

8b
8b

6b
5o
8a

9¢c 10a
10b 11a
7c 8b
5¢ 8c
8a 10b
9b 9¢

7¢c 10c
10a 11a
8c 9b
6c 9c
9a 10a
7a 7c

8¢ 101
10c 11la
9c 7a
1c 7¢
7b 10c
8a 8¢

9c¢ 10a
10b 11a
7¢ 8a
2¢c 8c
8b 10b
9a 9c

7c 10c¢
10a 11a
8¢ 9a
3c 9c
9b 10a
7 7c

8¢ 10b
10c 11a
9¢ 7b
be 7¢
7a 10c
8b 8¢

5b 10b
6c 10b
10b 11a
9b 10a
6c 8a
8c 10c
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(8,) a 8a 4b 5b 5¢c ba 9a 1la 8a 2b 3b 4a 4c 6b 10a
3 b  8b 2b 2¢ 3a 1b 9b 11a 8b 3b 5b 6b 1a lc 10a
c 8c 2a 2b 5a 5b 9¢ 10b 8¢ 3b 6b 7a 7b 10a 1lla
ab 8a 8b 2a 3a 9b 7b 10c 8a 8b 5a 6a 9a 7a 10c
ac 8a 8c 3¢ 1a 1b 9¢ 10b 8a 8c 2¢ 3¢ 6a 1lc 9a
be 8b 8¢ 3a 4c 5S¢ -6c 9b- 8b 8c 4a 4b 6¢c 9c 10D
II3 abc 8a 8b 8c 3¢ 6¢ 7¢ 10c .
(93) a 9a 5b 6b 6¢c 1a 7b 11la '9a 3b 4b 5a 5¢ 1b 10¢
‘ b 9b 3b 3¢ ha 2b 7a 11la 9b 4b 6b 1b 2a 2¢ 10c
c 9¢c 3a 3b 6a 6b 7¢ 10a 9c 4b 1b 8a 8b 10c 11la
ab 9a 9b 3a 4a 7a 8b 10b 9a 9b 6a 1a 7b 8a 10D
ac 9a 9¢ 4¢c 2a 2b 7c 10a 9a 9¢ 3¢ 4c 1a 2¢ 7b
be 9b 9c 4a 5¢ 6¢ 1c 7a  9b 9¢ 5a 5b 1lc 7¢ 10a
abc 9a 9b 9¢ 4¢ 1c 8c 10b

Table 4,5,2; -orbits expressed as 1-flats for

glasses 13 and II3
Before analysing these Tables, we define the transfor-

mation g. We denote by g that transformation which assigns
to any point (d}) of the geometry, the point (u?i). the ex-
ponents mod 63, Using the exponent representation mentioned
earlier, we say that g takes any point i to the point 2i, mod
63, that is

g(i) =

gM(1) = g(e"1 (1)), mot.
The group G of transformations is then

G ={g, g2,...,80=0%=¢},
where gi is 21, We note that g6=26 is the identity because,
for o« a primitive element, o(63=1 and hence df¥+= 1 or
26=1, mod 63. The group G opefates on the 3-flats and 1-
flats by operating on each point of the flat. Thus, we can
write g as a function of a flat. For example,
glg(o 1 6))

g(24a) = (0 & 24) = 34a,

g%(1,a)

g(g(1qa))
g(0 2 12)

We observe that the transformation g is a one to one trans-
formation of the set of all Oimorbithi-flats to itself, that

is g is a permutation. For example, g establishes the
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following mappings:

1,2 — 241, 2ia — 3qa, 32 — 44a,

bkya — 51a, 518 — 613, .61a — 142, | '
which can be written as the cycle (1ja 2qa 3qa lb;a 5ia 64a),
of order six, where the order of a cjcle is the number of el-
ements in the cycle. We note that the term cycle used here
is distinct from the cycle of Yamamoto et a1[58]. The cor-
rect usage is determined by the context. By applying the
transformation g to the 1-flats of each Ol-orbit, the 1-flats
can be divided into the four disjoint cycle classes, Iy,IIy,

III, and IVy, given in Table 4.5.3.

Class 1-flat Cycles ‘Order of e
I, (1a 2a 3a 4a 5a 6a) 6
(1b 2b 3b 4b 5b 6D) 6
(1c 2¢ 3¢ 4e 5¢ 6¢) 6
II1 (7a 8a 9a 7b 8b 9b) 6
(7¢c 8¢ 9c) 3
ITI4 (10a 10b 10c) 3
Ivy (11a) 1

Table 4.5.3: 1-flat.Cycles

Similarly, g can be applied to the 3-flats of each 03-orbit
to give the classes I3, II3, III;, IV5. We note that in Ij,
the subscribts 'i', 'ii' on the 3-flats can be omitted as

. g takes 'i' ('ii‘') 3:flats only to 'i' ('ii') 3-flats. This
is also true in the II3 class for all but the 73abi, 73aci
and 73bci cycles. For the three cycles mentioned, g takes

an 'i; 3-flat to an 'ii*' 3-flat and hence the subscripts must
be included. For example, we have (7jabi'83abi 93abi 73abii
83abii 93abii). The 3-flat cycles are lisﬁed in Table 4,5.4,

The seven 3-flats in (103) are distinguished by the subscripts
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i,ii,...,vii, where, iﬁ Table 4.5.1 they appear in this order.
The five 3-flats of (113a) are subscripted similarly. 1In
Table 4.5.1, the five 3-flats of A,q appear in the order i,

ii,iii,iv,v.

Class 3-flat Cycles Cycle Order

I (1,2 2qa 32a Wbaa 5,8 6aa)

3 (13v 23b B%b u% 5% £ b)
(1 c 2 c 5 6 c)
(1 ab 3 ab 3 ag ha gb 5 adb 3ab)
(13ac 23ac 33ac 4 jac ac 63ac)

3bc 23bc 33be 4 bc 5 bc 6 bc)
(13abc 33abc 33abc 43agc 53abc 63abc)

II (72a 83a 93a 73b 83b 93b)
o E;%cb83§ 9% )93 b 37 i 84absj 94aby;)

a a a a a a

(PR act Pe TR el P

(7§ab<35 8%ab<l: 9%abl) 37F11 T3TR11-73%R1

III4 (105abcy abciy 10qabeygy
(103abclv 183abcv 103abcv1}
(103abc

N PIwWw WO Y ONONONOVNONONON

(1133.1v 1 3@y

Table 4.5.4: 3-flat Cycles

Referring to Table 4.5.3 and Table 4.5.4, we observe

that the cycle structure can be represented at a gross level

T as:
It (1234 506)
IIg: (7 8 9)
IIIgs (10)
Ivg; (11),

where the cycle element t refers to the 0;-orbit (t¢;), 1i=1,3,
t=1,2,...,11, and the subscript g denotes that these cycles
are induced by the transformation g.

The structure of cycles and orbits forms the basis of
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the simplified decoding method presented in the next chapter.
The set of 3-flats, expressed as Ol-prbit 1-flats, that were
selected from the null space and arranged in the 03-orbits.
have many symmetric interprefationé. We now discuss these
symmetries in detail and later show .that a knowledge of them
greatly reduces the cdmplexity of the Majority Logic Decoder
for the PG code based on PG(5,2). Moreover, the 0;-orbits
provide for a mathematically interesting analysis of the
composition and structure of the flats of PG(5,2).

In order to provide a more preecise analysis of the sym-
metrical properties of the 03-orbits, we introduce.more term-
inology. The 0g-orbit (104 ), as we noted earlier, plays an
important role in the decoding process of Chapter 5. Also,
it partitions the 04-orbit 1-flats into distinct blocks of
flats, such that no 1-flat, except from (10,), appears in
more than one block. We refer to these blocks as symmetry
blocks because they are the basis of many of the symmetric
distributions found in the 03-orbits and because sets of er-
rors which have the same symmetric block composition are
treated similarly by the decoder: The symmetric blocks are
the l-repeat 1-flats of (103), plus the 1-flats of (104).

Syt 2b 5b 1lec Le
Sp:  3b 6b 2c¢ 5¢
531 4bvy 1b 3¢ 6¢
Suz la 4a 8a 8b
Sgt 2a 52 9a 9b
Sg: 3a 6a 7a 7b
S7= 7¢ 8¢ 9c¢ 1lla
Sg: 10a 10b 10c

Table 4.5.5: Symmetry Blocks of PG(5,2)
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In the following analyses, the symmetry blocks play an im-
portant role. 1In particular, those pairs of 1-flats in sym-
metry blocks 31 to S¢ from the same cycle of I{ or II4, for
example 1c 4c in S, are syﬁmetrically distributed in the
03-orbits. The members of S, represént the two distinct
cycles, (7q-89 9¢) and (1la). As the symmetry blocks are of
prime importance, both in the analysis of 0;-orbit symmetries
and in the defining of the 0;-orbit decoder, we investigate
them in more detail. The symmetry blocks bring to light the
fact that each element of an order 6 cycle is symmetrically
related to the element in the cycle three cycle poéitions
away. 'If we examine the cycle in 111 of order 6, (7a 8a 9a
7b 8b 9b), we observe that this can be considered to be
composed of an 'a' semi-cycle plus a 'b' semi-cycle, each of
order 3., Here, the element 7a, after 3 cyclic shifts does
not reappear. However the element that does, 7b, is from
'the same Ol-orbit as 7a. We refer to the element t4j' as
the symmetric relative of IEL for +=7,8,9, j=a,b and'j'=a(b)
if j=b(a). To complete the definition for the II; class, we
say that t,c¢ is the symmetric relative of t,¢, t=7,8,9.
Any two symmetric relatives are separated by three cyclic
shifts. The same terminology can be used to describe the Iy
cycles. If we look again at the symmetry blocks, we note the
pairing of cycle members of Il-which are separated by three
cycle shifts, 1,j and byj, 51 and 2y, 34j and 64j, j=a,b,c,
As above, we refer to these pairs, a distance of three cycle
shifts apart, as symmetric relatives. In symmetry blocks .
Sq to Sg, the symmetric relatives, tyj and (t+3)yj, appear
as pairs, j=a,b,c, t=1,2,3, Also; the symmetric relatives

t4a and t4b, t=7,8,9, appear in syﬁmetry blocks 5y, SS' Sge
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For consistenéy, ﬁe consider each orbit (t) of Ig to
possess the symmetric relative (t+3), t=1,2,3. We note that
there are no corresponding symmetry blocks or relatives de-
fined on the 3-flats. In the following, we refer frequently
to both the symmetry blocks and the éymmetric relatives.

If we now examine Table 4.5.1, several examples can be
found of the symmetric distribution of the 1-flats. We inter-
pret these by referring to the symmetry blocks and symmetric
relatives. In Table 4.5.1, the O3forbit (13) and its sym-
metrid relative in I_, (#3), have the 1-flats 7a,7b,7b,8c,

g
8c,8a and 7Yv,7a,7a,8¢,8¢,8b, respectively. Thus, the 0,-

3
orbit (hB) contains the symmetric relatives of the II; 1-flats
which occur in (13). Moreover, the I, class 3-repeats in
(13) and (43) are symmetric relatives as well. For instance,
in (13), 2a,2b,2c and 3L,3a,3b,appear as 1-flats, while in
(#3), we have 5a,5b,5¢ and 6k,6a,6b. In Table 4.5,1, more
examples of the balanced distribution of symmetric relatives
occur, |

It is also possible to analyse Table 4.5.1 by referring
to the transformation g which defines the cycles. The set
of entries from a fixed column and row of each 03-orbit of
one cycle class, shows the effect of the transformation g.
For instancée, if we consider the set of 1-flats from the
first row and column of the 3-repeats of each of the Iy 05-
orbits, we have the cycle generated by 1-flat 15, (1b' 2b 3b
4b 5b 6b)., The set of 1-flats in a fixed column and row of
the 03-orbits of both the I5 and IIj classes exhibits this
same cyclic distribution of the 1-flats,

If we tabulate the number of times each 1-flat appears

as a 3-repeat in Table 4.5.1, we find that each II; 1-flat
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occurs seven times} while each I; 1-flat occurs only five
times. From this observation, should an error occur in a
II; 1-flat, more of the null space 3-flats would be effected
than if the error were in a I; 1-flat. This fact is reflected
in the decoding algorithm given in Cﬁapter 5.

Also of note is the fact that no (104} 1-flat appears
as a 3-repeat in the I3 03-orbits. Consequently, should er-
rors occur in the II1 or III; 1-flats, the 3-flats in the
null space from II3 would be effected more than the 13 3-
flats. This too will be discussed in more detail when we
present the OiForbit decoder in Chapter 5.

Wé conclude the discussion of Table 4.5.1 by briefly
referring to the III and IV, 03-orbits.' Since each 1-flat
of (10,) appears in each of the (103) 3-flats, a single error
in a 1-flat in (101) would cause all estimates obtained from
the (103) null space 3-flats to be in error. The pairing of
1-flats determined by the symmetry blocks is reflected in

the IV 03-orbit (115).

3
We now discuss Table 4.5.2., This Table provides many
more examples of symmetries. The most obvious of these, as
for Table 4,5.1, is the set of 1-flats which are the entries
for a fixed row and column of each of the 03-orbits of I3 or
IIB' For example, the column two, row c; entry of each 03-
orbit in 13 gives thé cycle generated by the 1-flat 1c, (2c
3c 4¢c 5¢ 6¢c 1c). It is possible to find several.examples of
a set of 1-flats or their g-transformations repeating in dis-~
tinct 3-flats. In each bej; 3-flat of I3, the pair of 1-flats
7a,7c or a g-transformation of the_pair, occurs. In the 3-
flats tia:ij, t3bj; and tgc4;, t=1.i..,6, the same set of
three 1-flats appears, where.one flat is from I3 and two are

from IIB' For example, the 1-flats 3c, 7c¢ and 8b appear in
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each of 13aii' 13bii and 13011. The corresponding g-trans-
formations of this triple of 1-flats appear in the remaining
03-orbits of 13. The same (101) 1-flat appears in t3a;55
t4b;, t3c, t=1,...,6, For example, we have 10ia in each
of 13aii' 13bi' 13°i' 'Again, the g—fransformations of 1042
appear in the corresponding 3-flats of the other 03—orbits,
of 13.
Examples of the symmetric relative pairs are found in
the II5 03-orbits.v Here the ‘'semi-cycle' mentioned earlier
becomes evident. In, for example,-the 3-flat 73b°i' the Iy
1-flats 4¢c and 5¢c occur. In 738c44s the 3-flat symmetric
relative of 73b°i' we have the 1-flats 1c and 2c¢, the sym-
metric relatives of 4c and 5c, respectivély. This pattern
is repeated in the other II3 03-orbit 3-flats. 1In 7323, the
0,-orbit 1-flats 4b and 4c appear. The symmetric relative
of 73ai, 73bi' contains the corresponding symmetric relatives
of 4b and bec, that is 1b and lc, respectively. The g-trans-
formations of these 1-flats appear in the associated 03-
orbit 3-flats.
Many other such symmetries are found in Table 4,5.2,
The few examples given here are sufficient to illustrate the
way in which the 1-flats are distributed symmetrically among
the 3-flats. The more frequent occurrence of the II; 1-flats
in the null space is’an important consideration in the decod-
ing algorithm ihtroducgd below. That in some 03?orbits an
error in a 1-flat may appear as a singleton in one subset,
but as a 3-repeat in another, proves useful for error-correction.
We note here that a single errdr is considered to occur
in a particular 1-flat rather than in a point for the follow-

ing reason. As mentioned above, a 1-flat refers to the non-
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zero points only. " And, as the two non-zero points of a 1-
flat must always occur together in a 3-flat, it is only
nécessary to analyse one of the two possible non-zero errors
in the 1-flat, since it is ifrelevént to the decoder which
of the two points is actually in error.

We now present several Tables which further illustrate
the symmetric distribution of the 1-flats in the 03-orbit 3-
flats. We include them here to demonstrate that the selection
of 3-flats for the null space provides a mathematically in-
teresting distribution of the 0y-orbit 1-flats. Later, it
is shown that these symmetries are the basis of the 0;-orbit
decoder discussed in Chapter 5.

Table 4.,5.,1 and Table 4.5.6 can be combined to form
Table 4.5.2, In Table 4.5.6, the same row and column entry
of the 03-orbits of I3 and II3 reflect the g-transformations.
For example, the 'ii' row of the second column of tqa in I3
is the cycle genefated by the 1-flat la, (4a 5a 6a 1a 2a 3a).
Several symmetries are made more obvious in this Table than
in Table 4.5.2. For instance, in Table 4.5.6, in the tjab
column of the 13 03-orbits, the 'i' and 'ii' rows contain
between them, all the 1-flats from a I, 0q-orbit. For example,
the (33)'03-orbit has the three 1-flats 1la, 1c¢ and 1b. In
IIB' this same column illustrates the symmetric relative of
the Iy 1-flats and of.the II4 'é' and 'b' 1-flats, For ex-
“ample, in the (83) row, we have the 1-flats 2a, 7b and 5a,7a.
This Table also shows that within the 03-orbits a given 1-
flat is paired with several distinct 1-flats, a most useful
property in error-correction.

The many other symmetries are éimply more illustrations
of the interrelations already mentiéned, that is the effect

of the transformation g and the distribution of 1-flats
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t3a

(13)
i16altal0c9b
ii:3clbl0a7c8b9e

(23)
it1a5al0b?a
ii:4c5b10e¢8e9b7¢

33)
i12a6al0a8a
ii:5c6b10b9c7a8c

(43)
113a1a10¢c%a
1i:6cibl0a?c8agc

(53)
114a2a10b7b
1i:1¢c2b10c8c%a7c

(63)
i15a3a10a8b
1ii:2¢3b10b9e?b8c

(73)
i13bdbleclla
1i:1b2b5b3a3¢c10b

(83)
it4bs5sbsclia
ii:2b3bbblaltciOa

(93)
iz5b6b6c11a
ii:3b4blbsas5¢cl0c

symmetry blocks.,

t3b

6abcliclOa
Jelta7c8bl0blla

lalc5cl0c
Lc5aB8c9bl0alla

2a2¢cbcl10b
5cba9c7allclila

3a3clclOa
6cla7c8al0blla

Lalkc2cl0c
1c2a8c9aloalla

5a5¢3¢10b
2¢3a9¢7bl0clla

6bliblciia

_t3c

4a5b5010a

5a6a6b3c7¢8b

5abbbellc
6alalbic8c9b

6alblclOb
1a2a2b5¢9c7a

1a2b2¢10a
2a3a3bbc7c8a

2a3b3cl0c
Jaltaliblc8c9a

Jaliblic10b
Lasasb2c9ec?b

lalblalib

t3ab

110

t3ac t3be t3abc

5a5c
5b6b

6abe
6b1lb

lalce
1b2b

2a2c
2b3b

3ai3e
3bkb

Lhale
4bsb

1a9a 6clec 4c3c 9c

6clla
Lei10b

1clla
5c10a

2clia
6¢c10c

3clia
1lel0Ob

Lella
2¢10a

5clila
3¢10c

Lb10c
9bgc

5b10b
7a7¢

6b10a
8a8¢c

1b10c
9a9¢c

2b10b
7b7¢c

3b10a
8b8¢

2btb5b6a6c10b 2b5b9a9bl0blla 4a9b 6abdb 3a3b

1b2b2clla

2b3b3cila
Lpv6bib2a2¢c10c

:

2a2bb5a5b

a3bbabd

9a

7b

8b

Sb

7a

8a

2a7b 1c2¢ 5cle 7c¢
3bsbbéblalella 3b6b7a?blOalla 5a7a lalb 4alb

3a8b 2c¢3c 6¢5¢ 8¢
bib8aB8blOclla 6aBa 2a2b 5a5b

Table 4.5.6: 1-repeat 1-flats of I3 and Il

The remaining Tables in this section illustrate particular

symmetrical or cyclical properties. Table 4,5.7 indicates

the pairing of the 1-flats of the 04-orbits,

It illustrateé

the symmetries, and the marked differences in the structures

of the I3 and IIj cycle classes. The symmetry and cyclic

nature of this digribution are obvious.,



111

orgit -
(t3) 101a 101b 104c 114a
(13) a,b,c a|bc,x aC,b,X ac,b'x
(23) ac,ng a’b'c agbc,x ac,b,x
(33) a,be,X ac,b,X - a,b,c ac,b,X
I
3 (43) a,b,c a,be,X ac,b,X ac,b,X
(53) ac,b,X a,b,c a,be,X ac,b,X
(63) a,be,X ac,b,X a,b,c ac,b,X
(73) ab,ab,abe a,b,c ac,be,c ac,b,X
113 (83) a,b,c ac, be,c ab,ab,abe be,a,X
(93) ac,be,c ab,ab,abec a,b,c ab,c,X
Table 4.5, 73 Summary of ocecurrence of (10 ), (11,)
1-flats in I II 3-flats; entries 1n row 3)

. column 109 j r 11 a are the (tq) 3-flats con-
taining the 1- fla% 104J or 111a, j=a,b,c; X denotes
that 104j or 111a appears in one of thes two 3-flats
excludeé from (t3)

Table 4.5.8 indicates the pairing of the 1-flats of the
Ol—orbits. It illustrates the symmetries, and fhe marked

differences, in the structures of the 13 and 113 cycle classes.

orgit _ -
(t5)  (11) (21) (31) (¥1) (51) (61)  (71) (81) (91)
((t3) - s S s D D s s Dg
(23) Dy - S S S Dy Dy S S
(33) Dq Do - S S S S Dy, S
I
31(43) $ D Dp - S5 S S S Dy
(53) S S Dq Do - S D5 S S
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0 -
orgit
(t5) (19) (2) (31) (&) (5) (61)  (71) (81) (91)

(73) Dg S D, Dg S Dy - S Dlp
T](83) Dy Dg S Dy Dg S, Dig - S

Dy: a,c; b,c in tBab, t3e (a,v)
Dp: a,b; a,c¢ in t3c, t3b (b,c)
D3: a,b in t3bc (ayc; b,c)
Dy: a,c in tgbe (a,b; b,c)
Dg: b,c in t3bc (a,b; a,c)
Dg: a,b; b,c in t3c, t3b (a,c)
Dp: a,c; a,b in t3a, t3bc (b,c)
Dg: a,b; b,c in t3a. t30 (a,c)
Dg: a,c; a,b in t3b. tjac (b,c)
Table 4.5.8: Occurrence of pairs of 1-flats in 3-flats;
S denotes 04-orbit 1-flats appear as singletons;
'-' denotes that 1-flats are, by definition, in each .
3-flat; Di denotes that 1-flat pairs from the 0q-
orbit of that column appear in the row 0,~ordbit 3-

flats, and the 1-flats in parentheses ocCur in the
3~flats omitted when defining the_03-orbits.

Table 4.5.9 is an extended version of Table 4,5.1 il-
1ustrating'precisely the occurrence of the 3-repeats in the
03-orbits. Many symﬁetries of Table k.5.1 are more clearly
depicted.

We have presented these Tables as a concise means of
describing the symmetric and cyclic properties of the selected

subset of 3-flats of PG(5,2). We refer to these Tables when

discussing the Oi-orbit decoder.
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113

(130 (25 ) (y) (5] ()
Ay . .
a. 2a7a 3a8a Lkaga 5a7b 6a8b 1a9b -
ab 1b2a7a8c 2b3a8a9c 3bkagaTc 4b5a7b8c 5béadb9e 6blagb7e
1b8¢ 2b9c 3b7¢c Lv8ec 5b9¢ 6bv7c
ac 1c2a3b7a 2c3altbB8a 3clasb9a 4c5a6b7b 5¢6alb8b 6c1a2b9db
1c3b 2chb 3c5b Lcéo 5¢lb 6c2b
abc 1blc3b8c 2b2ckb9c 3b3c5b7c Lbl4cbdb8c 5b5clb9c 6bbe2b7e
By |
b .2b3a 3bla Lpsga 5bba, 6bla "1b2a
ab 1a2b3a8c 2a3blta9c 3albsa7c 4asbba8c 5abébladc balba7c
1a8c 2a9c¢ 3a7¢c baBc 5a9¢ 6a7c
bc 1¢2b3a?b 2¢c3b4a8db 304b5a9b Ycs5bba?a 5c6blaBa 6clba9a
1¢c7b 2¢8b 3¢9 be7a 5c8a 6c9a
abc 1lalc7b8c 2a2c8b9c 3a3c9b7c Lalic7a8c 5a5¢8a9c Habc9aTc
Cy
c 2c8a 3c9a Le7b 5¢8b 6¢c9b 1c7a
ac 1a2c3b8a 2a3chb9a 3alic5b7b Bas5cb6b8b 526c¢1bIb 6alc2b7a
1a3b 2altb 3a5b haéb 5alb 6a2b
bc  1b2¢c7b8a 2b3c8b9a 3blc9Ib7b LDb5c7a8b 5b6cBadb 6blc9a7a
1b7b 2b8b 3b9b . bo7a 5b8a 6b9a
abc 1a1b3b7b 2a2b4b8b 3a3b5b9b 4altbbéb7a 5a5b1bBa 6abb2b9a
(79)  (83)  (93)
At
a B8asa 9aba ~ 7bla
ab 7b8a10a5a 8b9all0cba 9b7bioObla
7b10a 8b10c 9b10b
ac 7cBa2c5a 8c9a3cba  9cT7blcla
7c2c 8¢c3c 9clic )
abc 7b7c10a2¢c 8b8cl0c3c 9b9clOble
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3- S
flat (73) (83) (95)

By, .
b 8b2a 9b3a 7akta

ab 7a8b10a2a 8a9bl0c3a 9a7alObla
7al0a 8a10c 9a10b

be 7¢8b2a5¢ 8c9b3abe 9c7altale
7c5¢ 8cbe 9clc

abe 7a7¢10a5¢c 8a8c10cbec 9a9clOble

c 8c10c 9¢c10b 7¢l0a

ac | 7a8c10c2¢c 8a9c10b3c 9a7clOalic -
7a2c 8a3c 9altc

be 7b8c10c5¢c Bb9c10bbe 9b7clOale
7bs5c 8bbée 9blec

adbc 7a7b2c5¢c 8a8b3cbe 9a9bliclc
Table 4.5.9: Expansion of Table 4.5.1
1-flats in column (t4) are 3-repeats in their cor-
responding subset A4iBy or Ci; each entry in a given

column and row must appear 3 times within its subset,
e.g. 2a is in rows a, ab, and ac of Ay, column (13)

4.6 Independence of 04-Orbit Structure on Minimsl Polynomial

In the discussion of the PG(5,2) given in this chapter,
we have defined the geometry using the minimal polynomial
m(x) of the.primitive element oL, where

m(Xx) = 1 + X + x6,

The fact that any primitive element and its associated min-
imal polynomial yields a valid representation of PG(5,2) as-
sures that any such interpretation is structurally equivalent
to any other., That is, the Oi-orbiﬁ structure given in Table
b ,5,2 is independent of the minimal polynomial chosen to re-

- present the geometry where the six possible polynomials for
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this geometry, expfesséd as powers are, (0 1 6), (0 5 6),
(01256), (02356), (01456), (0134 6)., The 1~
flats of the geometries generated from the five miminal polyj
nomials, other than (0 1 6), can be labelled such that the
resulting isomorphic geomey has a Oi-orbit structurebident-
ical to the one given for (0 1 6). In the following, it is
shown how the isomorphic labelling of the 1-flats is accom-
plished.

First, we indicate how the Oi-orbits. given any minimal
polynomial, are constructed., We éhen illustrate the one to
one correspondence between the (0 1 6) labelling of the 1-
flats and the minimal polynomial m*'(X) labelling for m'(X)
not (0 1 6). ‘

Before forming the Oi-orbits we recall that the null
space consists only of those flats which intersect on posi-
tion 0, and hence that when forming a 1-flat, one of the two
linearly independent points required to form a 1-flat, must
be 0. |

As the IV4 Ol-orbit is fixed for any representation, we
obtain it first. It has m.c. 21 and consists of one 1-flat
only, which is (0 21 42). This follows from the second
theorem of Yamamoto et al[58] given above.

We noted earlier that the (10;) 04-orbit was distinct
from the other orbits and because of this unigueness would
play a special role in decoding. Correspondingiy, the struc-
tufe of the III4 Ol-orbit is unlike the structure of the other
04 -orbits. Every non-zero point in the (104) 0q-orbit is a
multiple of 9. Thus, the initial 1-flat of (104) is always
formed by selecting, as the two linearly independent points,
0 and a multiple of 9. The remaining 1-flats in the 0,-orbit

are obtained by subtracting, mod 63, the first non-zero point
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of the initial flat from each of the points in the flat. By
repeating the subtraction a second time, using the third
point, the three 1-flats of (101) are found.

To obtain the I; and IIi 1-flats, two linearly inde-
pendent points, the first of which is 0, are selected. The
second point can not be a multiple of 9 or 21 as these points
are present in the IIIy; and IVqy Oq-orbits. We note that the
totality of the non-zero points of the 04-orbit 1-flats ex-
haust the 62 non-zero points of PG(5,2). Thus, no non-zero
point can appear in more than one 0q-orbit 1-flat.

The process of obtaining the initial 1-flats for Iy and
II; Oq-orbits is simplified by selecting the second linearly
independent point from the set of linearly independent points
{1.2.3,“,5} , although any one of the non-zero points not al-
ready present in a 1-flat can be chosen., A 1-flat is formed
using a point from this set and the point 0 as the two lin-
early independent points. This initial 1-flat is then suc-
cessively multiplied by 2i, i=1,...,5, that is the transfor-
mation g is applied five times. If six distinct 1-flats are
obtained, these are the class Il‘initial 1-flats. If only
three distinct 1-flats are generated, they are the initial
1-flats of II;. The 0y-orbit for each distinet initial 1-
flat is produced by the subtraction algorithm used for the
class III,. |

To obtain the initial 1-flats of the remaining class,
any point not occurring in the 1-flats already generated, is
selected. The corresponding 1-flat is formed. The remaining
initial 1-flats and their corresponding 04-orbit 1-flats are
obtained as for the previous class of 0,-orbits.

This procedure generates the Ol-orbits irrespective of

the minimal polynomial chosen. The 03-orbits are obtained
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by a similar process using four independent points rather
than two.

We now proceed to establish the isomorphism between the
1~-flats of the geometry represented by the minimal polynomial
m(X)=(0 1 6) and the geometry represented by the minimal poly-
nomial m'(X) where m'(X) is one of (0 5 6), (01 2 5 6),
(02356), (01456), (01 346), The set of minimal
polynomialk can be partitioned into two sets according to the
number of points in the minimal polynomial, that is (0 1 6),
(056)and (01256), (02356), (01456), (0134 6),
The procedure for establishing the 1-flat isomorphism is the
same far minimal polynomials within the same set. We denote
the geometry formed with minimal polynomial m(X)=(0 1 6) as
PG(5,2) with Oj-orbits (tj). j=1,3, 1-flats tq, t=1,...,11
and cycle classes Il.Ill.Illl,Ivl. For the geometry formed
by any other minimal polynomial m'(X)#(0 1 6), we refer to
the geometry as . PG'(5,2), with 1-flats tj, t=1,...,11, 03-
orbits (tj), j=1,3, t=1,...,11 and cycle classes I;,II,,IIIy,
IVy. First, the 1-flat isomorphism for m'(X)=(0 5 6) is
established, as the correspondence is quite simple. Each
Oi—orbit (ti) in PG'(5,2) consists of the same point set as
the 0,-orbit (tl) in PG(5,2), but with a different arrange-
ment of the points among the 1-flats, t=1,...,9. Consequently
the labelling of the 1-flats of (ty), t=1,...,9, is immed-
iately obvious. The two non-zero points in each 1-flat cof
(ti) are from two distinct i-flats in (ti)‘ We label a given
1-flat j in (t{) by the 1-flat letter from (t;) not repre-
sented in j. For instance, (1) ip PG(5,2) is:

a: 0 1 6

b: 0 5 62
ct 0 57 58,
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The three 1-flats of (1) ares

as 0 57 62
b: 0 1 58
C: 0 5 60

As the first of these, (0 57 62), has no representative frqm
1,a, it is called 1£a in (1{). By similar reasoning, 1£b ”
and 1{0 are labelled., The III1Aand Ivy 0q-orbits are ident-
ical for the minimal polynomials (0 1 6) and (0 5 6).

Once the 1-flats have been labelled using this algorithm,
the 3-flats can be labelled using the same method given in
Section 4.4 for the geometry with minimal polynomial (0 1 6).

The assignment of labels to form the isomorphism of the
1-flats for the second set of minimal polynomials is slightly
more complicated. To determine the isomérphism, we first de-
fine the set Qi as the set of three 04-orbits of PG(5,2) of
which the non-zero points of the 04-orbit (ti) are members,
t=1,...,9. For example, if m'(X)=(0 1 4 5 6), then a 0{-
orbit (ty) of the I, class is:

0 1 39

0 38 62

0 24 253,
and the Q; subset is formed as follows. Referring to Table
Lk.,4,1, the points 1 and 62 are in (14), the points 24 and 39
are in (3;) and the points 25 and 38 are in (84). Thus the
set Qi is (1),(3),(8). Each Qi consists of two 0q-orbits
from I, and one from IIj, t=1,...,9. If we consult Table
L,5,1, we note that there is one and only one 03;orbit, (t3),
which has 1-flats from each orbit of Q, in every 7-repeat
subset Ay, By, Cy. We use this association to number the
Oi-orbits. Consequently the Oi-orbit of PG'(5,2) listed above
is the O{—orbit (1{). The labelligg of the 1-flats of I; is

‘as follows. The 1-flat consisting of an a and ¢ 1-flat from
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two of the 0, -orbits of Qi, t=1,...,6, is labelled tyc. The
1-flat with its two non-zero points from two b 1-flats of -
the Q. 0y-orbits is tjb. The remaining 1-flat is labelled
t{a. In the above example, the point 1 in the first 1-flat
is from 1,a and the point 39 from 31c. Thus, this 1-flat is
labelled 1{0. The three 1-flats given above are labelled:

a; 0 24 25
b: 0 38 62
C: 0 1 39.

The labelling of the 1-flats of the II, 0j-orbits is
slightly different than the I, case, but the assignment of
the 04-orbit number is as for the Ii class, The tié 1-flat
in (ti).is the 1-flat with both its non-zero points from b
1-flats of the Q. 0,-orbits, t=7,8,9. The tjc flat is the
one which consists of two non-zero points from the ¢ 1-flats
of the I, 04 -orbits in Q¢+ The remaining 1-flat is labelled
tib. The labelling of (?;) is thus:

a: 0 20 L9
b: 0 14 34
c: 0 29 L3,

where the points 20 and 49 are from 34b and 81D, respectively.‘
The points 29 and 43 are from 619 and 3qc¢, respectively. '
Each of the (10{) 1-flats consists of the same points
as the 1-flats of (10y) but 10,j # 10;j, j=a,b,c. These la-
bels can be assigned by referring to the labels given to the
I, and II, classes and the 3-flats of the 04-orbits. In
Table 4.6.1 we list the 1-flats of the 0)-orbits of the
PG'(5,2) with minimal polynomial (0 1 4 5 6).
The Oé-orbits are labelled as they were in Section 4.4
for the case when the minimal polynomial was (0 1 6). Thus,
the results given in the Tables of‘this chapter concerning

the symmetrical properties of the 6i-orbit structure of PG(5,2)
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describe exactly the symmetries of PG'(5,2) with minimal poly-
nomial m'(X)#(0 1 6).

a: 0 24 25 lax 0 48 50 ar 0 33 37

. b: O 38 62 b: 0 13 61 b: 0 26 59
I c: O c: 0 2 15 ' C:t

Qq: (1) (3) (8) Qz:(2),(4),(9) Q3=(3) (5) (7)

(41) (51) (65)

atr 0 3 11 as 0 6 22 a: 0 12 44

bs 0 52 55 b: 0 41 “7 b: 0 19 31

c: 0 8 60 c:t 0 16 5 c: 0 32 51

Qu:(4),(6),(8) Qs:(5), (1) (9) Qg (6) (2) (7)

(71) (81) ©(9y)

. a: 0 20 49 a:r 0 35 40 1a: o 7 17'>
I “bs 0 14 34 b: 0 5 28 b: 0 10 56
c: 0 29 43 ct c: 0 46 5

Q7:(3) (6),(8) ng(l) (4) (9)  Qg:(2), (5) (7)

(10;) (1))
{ "a: 0 36 54 Iv { a: 0 21 42
III b: 0 18 27
ct 0 9 45

Table 4.6.1: ol'-orbits of PG'(5,2)

In this section we have shown that it is possible to
establish an isomorphism between the flats of PG(5,2) and the
flats of PG'(5;2). Consequently, the 0;-orbit structure de-
fined is independent of the minimal polynomial chosen to re-
present ‘the geometry and the results concerning decoding and

error-correction hold for any representation of PG(5,2).

4.7 Basis of the 0;-orbit Symmetry

We conclude this chapter with a brief mathematical ex-

planation of the 0;-orbit structure.
In the previous section, it was shown that the 05 -orbit
structure was independent of the minimal polynomial chosen

to represent PG(5,2), As a consequence, it is possible to
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express the irf's, r=1,2,3, without explicitly referring to
a minimal polynomial, as was necessary in Table 4.4.1 and
Table 4.6,1. In the following, the parameter 4 represents
the non-zero point which, together with 0, generates the first
ilf in Iy. All other irf's, r=1,2,3 ‘can be expressed in terms

of d. This is illustrated in Table 4.7.1.

r=1l r=z r=3
0,d 0,d,2d 0,d,2d,3d
0,2d 0,2d,4d 0,2d,4d,6d
I; O,4d I, 0,4d,8d I 0,4d,84,124
0,8d 0,8d,16d "2 0,8d,16d,244d
0,16d 0,164,324 0,164d,32d,48d -
0,324 0,32d,d 0,32d,d,33d
0,7d 0,7d,144 0,7d,144,214d
I, 0,14d II, 0,144,284 II4 0,1kd,28d,42d
0,28d 0,28d,56d 0,28d,56d,21d
I1140,9d 111, 0,94,184 III4 0,94,184,27d

Table 4,7.1: Initial r-flats, r=1,2,3, in terms of
the parameter d.

We note that for d=1 this reduces to the: representation of
PG(5,2) with minimal polynomial (0 1 6) given in Table 4.4.1
for r=1. For d=25, r=1, this generates Table bL,6.1, the re~
presentation with minimal polynomial (0 1 4 5 6).

Table 4.7.1 is formed by taking the two linearly. inde-
pendent points 0 and d as the defining points of the first
ilf in I,. The first i2f in II; is defined by the three lin-
early independent points 0,d,2d and the first i3f by 0,d,2d,3d.
That these points are in fact linearly independent, is a
consequence of the geometry being defined over GF(2). Thus,
instead of taking the point (X) as a primitive element, the
point (x4) can be used and hence the points given are linearly
independent. Moreover, this justifies the process, given in

previous sections, of multiplying any given set of independent
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points by 2, to obfain.another set of independent points.
The choice of 0 and 74 as the two linearly independent
points for II; iilf, reflects the special structure of this
class. The coefficient 7 is a proper divisor of the number
of points in the geometry. The interrelation of cylce men-
bers of this class is a result 6f this property. Similarly,
the coefficient of d in the IIT and IV classes is a proper
divisor of 63,

By referring to Table 4.,7.1, we can account for the
following:

i) the one to one correspondence between the 03-orbits
and the 04-orbits,

ii) the occurrence of the 1-flat“syﬁmetric relatives
in the 03-orbits, and

iii) the 1-flat t+1 appearing as a 3-repeat in the 03-
orbit (t3), t=1,.4.,9.
The first of these observations is immediately obvious from
an inspection of the linearly'independenf points of the 1-
flats and corresponding 3-flats. To generate the correspond-
ing i3f of a given iif ty» the set X = {0,'kd}-, k>0, is
augmented to the set K* = {0,kd,2kd,3kd}, where these points
represent the geometry based on the primitive element C&kd
rather than «, and hence are linearly independent. The set
of all linear combinations of 0 and kd must be contained in
the set of all linear combinations of K¥*, Hence, the cor-
respondence between the two sets follows. Further, that each
point of the 1-flat appears seven times in the 05-orbit gen-
erated from the 3-flat t3 formed frdm K¥*, can now easily be
established. The points in the 1-flat t, are 0, kd, O+kd,

The points in the 3-flat tg are, in terms of the linearly
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independent points‘of\flo

0,kd, 2kd, 3kd, 0+kd, 0+2kd, 0+3kd, kd+2kd, kd+3kd, 2kd+3kd,
0+kd+2kd, 0+kd+3kd, 0+2kd+3kd, kd+2kd+3kd, O+kd+2kd+3kd.

We say the two points i and j in tj differ by kd if both i
and j, expressed terms of the linearly independent points of
ty1,» have the same number of components, and each component
ig of 1 is jgt+kd for jg a linearly independent point in j.
If there are two points, i and j, i<j, in t3, differing by
kd, subtracting i from the point set representation of t43,
gives a 3-flat in the 03-orbit (t39 containing the points 0
and kd, and hence, the 1-flat ty. The following are all the
possible pairs of points from K* which differ by kd:

0,kd

kd, 2kd

2kd, 3kd

0+kd, kd+2kd

kd+2kd, 2kd+3kd

O0+kd+2kd,kd+2kd+3kd

0+2kd, kd+3kd.
Thus, the ilf t; appearsseven times in the 03—orbit (t3).
Similarly, it can be shown that the other members of the (t{)
04 -orbit appear seven times, as required.

A further examination of the points in t3 shows that
neither of the two points, p1=0+kd+3kd or pé=0+2kd+3kd, dif-
fer by kd from any other point in t3. Thus, subtracting pj,
i=1,2 ffom each point in the point set representation of t3
gives two 3;f1ats thgough the point 0, but, such that they
do not contain any of the points of t;. We recall that the
fifteen 3-flats through 0 are obtained from successively sub-
tracting each point of t3 from the point representation of
t3. Two of these flats are omitted from the 03-orbit of t3.
These two flats correspond to the points py and pp. The

omission of eight of the 3-flats generated from 103 is simi-

larly explained, noting that each linear combination of points



124

in 104a forms a point which is again a multiple of 9d.

The occurrence of symﬁé%ric relatives in the 03-orbit
3-flats is also explained by studying Tgble b,7.1. If we
consider the non-zero point of two symmetric relative 1-flats
in I;, the same pair of points occurs in the corresponding
I3 3-flats separated by 3 cycle positions. For instance, in
Iy, d and 8d are the independent points for the first and
fourth flats, respectively. In the first and fourth flats
of I3, d and 8d, as extensions of the I 1-flats, appear.

But, as well, d and 8d appear in the sixth and third 13 3-flat
point sets, respectively, that is in a second set of 3-flats
separated by 3 cycle positions. Such a separation is simply
the multiplication of the non-zero independent point of the
first 1-flat, by 2, three times, This is half the number of
multiplications required to give the identity 26, Hence, we
have the term ‘'semi-cycle' used above. Thus, if xd is the
non-zero independent point of a i-flat, 23(kd) is the non-
zero independent point in its symmetric relative 1-flat.

We observe that the non-zero independent point of the
i-flat t+1 always appears as a non-zero independent point in
the i3f t3. This occurs because the non-zeroc independent point
in the ilf t+1 is formed by multiplying the independent'point
of ¥+ by 2, while the second non-zero independent point in the.
point set of T3 is twice the first, that is thé same point
as the non;zero independent point of t+1. Thus, the 1-flat
t+1 appears as a 3-repeat in the 03-orbit (t3).'

We have explained here thé major symmetric properties
of the 03-brbits. The many other symmetries which are pre-
sented in Section 4.5 are also explained by further refer-

ence to Table 4,7.1.



125
4.8 conclusions

In this chapter we'hévg introduced a most interesting
mathematical structure, defined on the flats of PG(5,2), by
extending the definitions of Yamamoto et al{58]. This struc-
ture exhibits a well-defined set of symmetrical properties
which are of interest when analysing the geometry mathematical-
ly. Moreover, the structure allows for a simplification of
the standard Majority Logic Decoder.of the PG code defined
on PG(5,2). The details of this decoder afe given in Chapter 5.

In particular, we began this chapter by giving a detailed
description of the results on Finite Geometries as outlined
in the 1966 paper by Yamamoto et a1[58]. Based on these re-
sults, an analysis of the cycles of the PG(5,2) was given.,
The 0;-orbit structure, used as the basis of the decoder
in Chapter 5, was developed. The symmetrical distribution
of fléts in the 04-orbits of PG(5,2) was described, both in
the text and in the extensive set of Tables presented.
Finally, it was shown that the structure introduced was in-
dependent of the minimal polynomial chosen to represent the
geometry. Hence, the decoding method.developed in Chapter 5
does not depend on a particular representation of PG(5,2) by
a minimal polynomial., Several symmetric properties of the
Oi—orbit structure were explained by referring to a repre-
séntation of the flats which is independent of a minimal

polynomial,
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CHAPTER 5: 03;~-ORBIT DECODER OF THE ORDER-3 (63.,41) PG CODE

5.1 Introduction

The decoder bresented here is defined in terms of the
concepts introduced in the previous chapter.

We begin this chapter with a detailed study of the stan-
-dard Majority Logic Decoder of the order-3 (63,41) PG code.
This is followed by the definition of the 0j-o1bit decoder
of the code. Reference is made to the Tables and terminology
of Chapter 4 in the analysis of the decoder. It is shown
that all possible 1,2 and 3-errors are correctable using this
decoder and that certain sets of i-errors are related in such
a way that the decoding algorithm treats them identically,
i=1,2,3. The simplicity of the 0;-orbit decoder, as compared
to the standard kajority Logic Decoder of this code, is empha-
sized with reference to the circuitry and decoding time

required by each.

5.2 Order-3 (63,41) PG Code Standard Majoritx Logic Dgggdgi

Order-r PG Codes are Majority Logic Decodable codes re-
quiring r steps of Majority Logic. Several modifications to
the original decoder have been suggested, several of which
are discussed in Chapter 3. As the original Majority Logic
Decoder is the most common method used to decode PG codes,
we refer to it as the standard PG code decédef and compare
the 0j-orbit decoder with it. In this section we investigate
in detail the Majority Logic Decoder for the order—B PG code
based on PG(5,2).

In Chépter 3 we discussed MID in general. We now make
this specific for the (63,41) order-3 PG code. As mentioned

in the previous chapter, this code is cyclic and hence it is
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only necessary to consider as members of the null space,

rd

those 3-flats which pass'fhfough'zero. There are, referring

to Chapter 3, i
(25-1)(2%-1)(23-1)
A(0,3,5,2) = (23-1)(24-1)(2-1) = 155

such 3-flats. Similarly, there are

(25-1) (2%-1)
A(0,2,5,2) = = 155
(22-1)(2-1) °

2-flats which intersect on 0, and

5.
A(0,1,5,2) = (g——l—l = 31
(2-1)

1-flats which in%ersect on 0, The decoding process is based
on the orthogonality of these flats. The 3-flats through 0
are initially known to the decoder. Those 3-flats which in-
tersect on a given 2-flat through 0 are used to obtain an
estimate of the 2~flat. Similarly, an estimate for each 2-
flat through 0 is determined. These estimates then provide
estimates of the 1-flats, since each 1-flat through 0 has an
associated set of 2-flats which intersect on it. Finally,
using the 1-flats which intersect on 0, an estimate of the
error digit in position 0 is obtained. If no more than three
errors have occurred, this estimate is correct. We now dis-
cuss the.circuitry necessary to implement the decoder.

Before the decoding process can begin, a preliminary step
is necessary in which the received word is multiplied by
xn-k_x63-%1 .22 14 then divided by the generating polynomial

g(X)

(X+1) (X64x5+1 ) (341041 ) (XO4x54x¥ 4x2 41 ) (x64+x54x M 4541 )
x22+x204x194x18.x 1550 sx VxS ax  ax 3o

The remainder, r(X), a shifted version of the syndrome, is
stored in a register. Circulitry is required for the multipli-
cation (simply a shift of the received word) and for the divi-

sion by g(X).



128

On step 1, estimates q;’the 155 2-flats through 0 are
obtained from the 3—fla%§=k£own to the decoder. There are
seven 3-flats which intersect on each 2-flat through 0. The
appropriate bits in the syndrome register are tapped to obtain
the values corresponding to each of these 3-flats. These are
input to GF(2) adders to obtain the binary sum of each 3-flat.
The seven binary sums which correspopd to the seven 3-flats
orthogonal on a given 2-flat, are input to the threshold
unit, with threshold 4, which corresponds to the 2-flat. . The
output is the estimate of the 2-flat on which the seven in-
put 3-flats are orthogonal.

The circuitry required for step 1 can be broken down
into two parts. First, faps on thé syndrome register and
GF(2) adders for these taps, are required for a total of
155x7=1085 binary sums. Secondly, each set of seven sums
which correspond to the 3-flats intersecting on a 2-flat, is
input to a threshold unit, for a total of 155 7-input thres-
hold units,

The second step is somewhat simpler., For each 1-flat
through 0, there are 15 2-flats which intersect on it. The
output from the 15 threshold units in step 1 which corrgspond
to the 15 2-flats which intersect on a given 1-flaf, are in-
put to a threshold unit of threshold eight, The output is
an estimate of the 1-flat through 0. The circuitry for the
second step consists of 31 15-input threshold units, one for
each of the 31 1-flats through O, |

On the third step, the 31 outputs from the second level
threshold ﬁnits, corréSponding to the 31 1-flats which-inter-
sect on 0, are input to a single threshold unit. The output

from this is fhe decoder's estimate of the error digit in
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position O. ]

Therefore, the staﬁdérd/threshold decodér for the order-
3 (63,41) PG code requires:

i) circuitry to multiply the received word by X22 and
divide the result by g(X)=x22+x204x194x18ux15.x 9 sxPuxSux* ax34x 41,

ii) 155x7=1085 sets of taps on the syndrome register and
corresponding sets of GF(2) adders,

iii) 155 7-input threshold unit;,

iv) 31 15-input threshold units,

v) one 3i-input threshold unit.
The circuitry for the standard decoder can be reduced some-
what by the following observation, On step 1, the total
number of errors which can be corrected is determined, that
is [7/2]= 3., Thus, it is only necessary to input seven esti-
mates to each threshold unit at any level, since no more than
three érrors can be corrected. This in turn reduces the num-
ber of 2-flat and 1-flat estimates required on steps 2 and
3, respectively. So, on step 3, only estimates of seven i~
flats are needed as input to the threshold unit. Consequent-
ly in step 2 only seven threshold units are necessary, one
for each of the 1-flats required in step 3. Each of thgse
seven threshold units needs'only seven inputs, instead of the
previous fifteen, for a total of 49 2-flat estimates. Hence, ’
on step 1, 49, rather than 155, threshold units are neces-
sary. Correspondingly, 49x7=343 sets of taps and GF(2) ad-
ders are required to form the inputs to the 49 tﬁreshold units,
As a result, the version of the standard Majority Logic De-
coder used ﬁost commonly to decode. the order-3 (63,41) PG

code requires:

i) circuitry to multiply the received word by X22 and
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divide the result by g(X) = X22+X20+X19+X18+x15+x9+x7+x5+

-

Hex3ax+1, R .
ii) 49x7=343 sets of taps on the syndrome register and
corresponding sets of GF(2) adders;
iii) 49+7+1 = 57 7-input threshold units.
In the next section we present a decoding algorithm for

the order-3 (63,41) PG code which is based on the 0;-orbit

structures introduced in Chapter 4, -

5.3 0;=0rbit Qécoder of the Order-3 (63,41) PG Code

The 0j-orbit non-orthogonal decoder of the order-3
(63,41) PG code is a simplification of the standard NMajority
Logic Decoder of the code, Fewer threshold units, simpler
circuitry and fewer decoding steps are required for this de-
coder,

The first step of the 0;j-orbit decoder involves obtain-
ing noh-orthogonal estimates of the 1-flats of the 0q-orbits
(11) through (91), from the 03-orbit'3-f1ats which are known
to the decoder. Also, dependent on the errors in the (103)
and (113) 3~flats, certain binary flags may be set. The
estimates from the first step are orthogonal on the point O.
'These estimates are input to a counter on the second stgp.
Assuming. no more than three‘errors have occurred, the error
digit in position O is correctly determined by the output of
the counter and, in a small number of cases, by the setting
of the flags. The circuitry for the decoder is now described.

On the first step, for each 03-orbit B-flaf. taps on
the register positions corresponding to the points of a 3-
flat are iﬁput to a binary adder,.the output of which is the
sum known to the decoder for the 3-flat. Associated with

each of the subsets Ay, By and Cy, t=1,...,9, is a 7-input
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threshold unit of threshold 4. The seven inputs are the bin-
ary sums correSponding,to:%Hé seven 3-flats «comprising the
subsets At' Biy» Ci» respectively, The“seven sums correspond-~
ing to the seven 3-flats of (103) are input to a counter unit.
The output of the 27 threshold units are orthogonal estimates
on the point 0, A flag f; is set if one and only one of the
seven inputs to the (103) counter unit is a one, and a flag
fo if five or seven of the inputs are one. A counter deter-
mines the number of the (113) 3-flats, 113aj, 113254, 113aiii'
which have a binary sum of one. A. flag £ is set if either
two or three of these binary sums are one. These three flags
are simply binary flip-flops, set if the output of a counter
is a given value,

The first step of the 0j-orbit decoder requires a total
of (13x9)+7+3=127 sets of calculations on the taps of the
storage register vs. 1085 (343 in the simplified version) for
the standard decoder. Three flags may have to be set, A
total of 27 threshold units with seven inputs each are neces-
sary, plus 2 counters for the flags. The standard decoder
has 155 (49 in the simplified version) 7-input threshold units.

On the second step, the 27 outputs from step 1 are input
to a coupter. These outputs correspond to 27 i-flats ortho-
gonal on the point 0. The decoder's decision as to the
value of the error digit in position O is dependent on the
value ¢ output by the counter and, in some cases, the flags
1 f> and f3. We make this explicit in the following, where
if e, denotes the error digit in position 0, then, if

c<14 or c=15, then e,=0,

c>16, then ey=1 |

c=16, fy or f is set, then e,=1; otherwise e =0

c=14, both fz and f3 are set, then e,=1; otherwise e,=0.
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Thus, on the second étep a simple counfer is required and
logical units to test the‘flégs. It‘is showp in the next
section, that the flags must be checked for less than % of
the possible corréctable error patterns, that is, over 99.75%
of the correctable error sets have a count of 15, or less
than 14, or more than 16.

This decoding method does not require that the received
word be premultiplied by X22 and the result divided by g(X).
The tapped values need only be fed into binary flip-flops
and the output then directly input into a threshold unit..
The 03-orbit decoder circuitry consists of a total of 27 7-
input theshold units, two counters and three binary flags.
The standard Majority Logic Decoder requires circuitry for
premultiplication, division, GF(2) adders, 155 7-input thres-
hold units, 31 15-input threshold units and a 31-input thres-
hold unit, or, in the simplified version, 57 7-input theshold
units. The reduction in circuitry and complexity for the
0;-orbit decoder is significant. Moreover, should the decoder
consist of a front-end mini-computer, the counting and flag

testing of the 0j-orbit decoder becomes even more simple,

5.4 0;-orbit Decoder Error Analysis

An analysis of the correctable error patterns of the 0ji-
orbit decoder reflects the 0;-orbit structures used to define’
the decoder. This section contains an extensive investiga-
tion of these error patterns and the method the décoder uses
to correct them.

The standard Majority Logic Decoder corrects all 1, 2,
3-errors and some err&rs of higher weight. The 0j-orbit de-
coder also corrects all 1, 2 and 3-errors. Some higher weight

errors are corrected, however, we discuss those in Chapter 7.
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A computer simulétion of this decodef was written. All
possible 1, 2 and 3-error patferns were shown to be correct-
able by the 0j-orbit decoder through the use of this model.
The symmetries of the 0i-orbit structure allow for certain
reductions in the space of errors which the decoder model
must analyse. First, every 3-flat in the 0j-orbit null space
consists of the non-zero points of seven 1-flats from the 04-
orbits. Thus, one of the non-zero points of a 04-orbit 1--
flat present in a 3-flat, implies the other non-zero point
is as well. Hence, it is only necessary to consider one of
the two non-zero points in each 1-flat as a possible single
error. Consequently, in this analysis, we refer to a 1-flat
error as an error in one of the non-zero points of the i-flat.
This simplification also applies to the 2 énd 3-error patterns.
If two errors occur in the.non-iéro points of a 1-flat, that
is each ﬁon-zero point is in error, then theée errors, in |
effgct, cancel out., As far as the decoder is concerned, there
are no errors, for these two points always occur together in
each null space 3-flat. Consequently, only non-zero 2-error
patterns such that each single error is in a distinct i-flat
need be considered. For non-zero 3-error patterns, if two
of the errors are in non-zero points of the same 1-flat, then
these two errors, as in the 2-error case, 'cancel out’, ahd
this reduces to a single error. Thus, for the non-zero 3~
error patterns, only error triples such that each point is
from a distinect i1-flat, are analysed. In the following we
refer to a non-zero error as tj, t=1,...,10, j=a,b,c, or 1iila,
that is By the 1=flat label, since it is irrelevant which of
the non-zero points is in error., For instance, we refer to

the non-zero error triple la7a8a and the zero error triple
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Olalla, The former error pattern consists of a single error
in each of the 1-flats la, 7a and 8a. Thus, 1a7a8a refers
to 2x2x2=8 Possible point error triples, all of which are
treated identically by the decoder. Similarly, the error
triple Olal4a consists of an error in 0 and a single error in
one of the non-zero points of both the 1-flat la and the 1-
flat 4a, for a total of 1x2x2=4 possible point error triples.
Again, the decoder treats each of the four error triples
identically. The decfease in the error-space size is quite
considerable, The simulatéd decoder need only test one-
eighth of all possible non-zero 3-error sets, one-quarter of
the non-zero 2-error sets, one-half of the non-zero single
errors, one—quarter of the zero.error 3-error sets and one-
half of the zero 2-error sets,

A second reduction in the Set of error patterns which
must Dbe tegted by the decoder model is possible because of
the 0;-orbit structure and its cycles. Due to the structure
of the cycles of the classes Ij, IIj, III{ and IV4, given in
Table 4.5.3, it is only necessary to test one element of
each cycle as a single error. Thus, the set of single errors
‘0,1a.1b,1c,?a,?c,lOa,lla represents all possible single er-
ror patterns. For instance, 1la represents each of the single
errors in the cycle (la 2a 3a 4a 5a 6a) becéause, as shown in
Table 4,5,2, each of the 1-flats ta, t=2,...,6, has the ex-
act same distribution in the 3-flats as 1a. This is true
for the representatives of the other cycles. This simplifi-
cation can be extended to the 2 and 3-error sets. For in-
stance, the non-zero pair 1a7a represents the pairs of er-
rors, 2a8a, 3a9a, La7b, 5a8b, 6a9b. Similarly, the triple
1a7al0a represents the error triples 2a8a10c, 3a9alOb, 4a7bioa,

5a8b10c, 6a9b10b., Similar representations are used if one
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of the errors is 0. With this second redﬁction of the er-
ror space, we discuss the reéults of the computer simula-
tion of theodecoder.

We begin with the possible single errors. If 0 is in
error, the count is 27, and hence the decoder correctly de-
termines thai ey,» the error digit in position 0, is a 1., If
1a, 1b, 1c, 7a or 7c¢ is in error, then the count is 1 and the
decoder makes the decision that e,=0, that is that the digit
in position 0 is cdrréct. All other errors in the same |
cycle as these, have the same count and hence are correctly
decoded., If 10a or 11a is in error, the count is 0 and the
decoder determines correctly that e =0.

The 2-error patterns with one error in 0 and the other
error any single error except 11a, have a Eount of 26. Con-
sequently, the decoder determinéé correctly that there is an
error in position O and hence that ey=1. For the error ﬁair
011a, the count is 27, and again the decoder decides that e,=l.
Every non-zero pair of errors has a count less than 14 and
hence the decoder decides that e,=0, that is that no error
has occurred in position O.

The sets of error triples can be divided into three dis-
tinct groups. The first group consists of the non-zero er-
ror triples with a count of 15, or less than 14, Each erfor
triple of the second group has a count of at least 17 and
consists of the 0 error plus two non-zero errors. The third
group has both zero and non-zero error triples and a count
of either 14 or 16. We discuss each group separately.

The first group is comprised of all possible non-zero
error triples excepting those given in Table 5.4.1. The

count for these error triples ranges from 1 to 13 or is 15,
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Hence, the decoder decides corfectly that the digit in posi-
tion 0 is correct, and thergfore that e,=0.

The second group consists of ail zero error triples ex-
cept those listed'in Table 5.4.1. Theﬂcount for this group
ranges from 17 to 24 and hence the decoder makes the deci-
sion that the digit in position 0 is in error and ey is set
to 1, _

We note that none of the 1, 2 or 3-errors discussed so
far have required the testing of the flags fy, fp or f3.

It is of interest to note at this point that it is ?os-
sible to obtain from the decoder, information about the com-
position of the error triples. For instance, if the count
is 24, we know from the simulation that the error triple is
one of the six error sets, Ollata, t=1,...,6. If the count
is 23, then the error triple is Otalla or 0Otblla, +=7,8,9.
If the count is 18, then one of the errors is 0 and one is
10a, 10b or 10c. DMore examples are given in Chapter 7 of
the added information concerning the error sets that it is
possible to gain from the decoder.

The third group is the set of 3~-errors which have a
count of either 14 or 16. Ve list these in Table 5.4.1.
’These error triples are broken down into sets such that each
set is fhe cycle associated with the first point error triple.
of the set. Hence, each triple is treated identically by
the decoder. The error triples followed by f;, i=1,2,3,
have the flag fj set. That the decoding algorithm corrects
the digit in position O when the error triples given in
Table 5.4.1 occur, follows from the definition of the decoder
~and Table 4.5.1 (for the setting of the flags)., We note
that each triple in Table 5.4.1 which is followed by a flag

consists of IIl'l—flat errors and/or the zero error only.
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count c¢=16

7¢10b0; £4

1a9a7b 7a7003£2,14 .0 ¢ labib7e 1a8b0; £,
2a7b8b 8a8b0;fp,f3 2a5b8¢ 2a9b0;f7 8c10a0;f]
2a8b9b 9a910; £2, f3 2a6b9c Eagao;fg 9¢l10c0; £
ag9b7a : alb?c aB8al;f
5a7a8a 7a7c0;f2,f3 5a2b8c 5a9a0;f§ 7¢8c0; 5
628a9a 8a8c0:f2,§3 6a3b9c 6a7v0;fs 8c¢9c0;f,
9a9¢c0; £2, 9¢7¢0;f
1ble?b 2:%3 112¢9b 1a9b0; f5 2
2b2c8b 7b7cO;f2,f3 2b3c7a 2a7a0;f2 1c8b0;f,
b3c9b 8b8c0; £2, £3 blie8Ba 2a8a0;f2 2c9b0; £,
blec7a 9b9c0; £2, 13 b5c9a a9a0;f2 3c7a0;f5
5b5c8a 5bb6c?b 5a7b0;f2 4¢8al;fs
6bbc9a 6b1c8b 6a8b0;f2 509a0;f2
6c7b0; fz
1a2cbc 1c¢9b9¢c 1b8b0; £,
2a3c5c 2c?7a7c 2b900; fo
3altcbe 3¢8a8ec 3b7a0; £2
Lascic Lec9age Lv8a0; o
5a6c2c 5¢7b7c 5b9a0; f2
balc3e 6c8b8e 6b7b0; f5
7a7010a; £
8a8bl0c; f2

9a9b10Y; £

Table 5.4,1: Error triples with c=14, 16;
flag f1: 1 input to (1043) counter is 1,
flag fo: 5 or 7 inputs %o (103) counter are 1
- flag f3: 2 or 3 inputs to (113) counter are 1.

It is possible to determine information from the decoder as
to the composition of the error triples. For instance, if
the count is 14 and both flag f3 and f3 are set, then 0 is
in error plﬁs one of the pairs tatb, tate, tbte, +=7,8,9.
If the count is 16 and the f; flag set, then the error triple
is O?cldb, 08¢c10a or 09c¢ciOc. If no flags are set, and the _
count is 14 or 16, then it is known that one of the non-flagged
error triples from Table 5.4.1 is in error. Such knowledge
can be useful if an analysis of the channel errors is being
made. Moreover, the decoding process can be shortened, since
it is unnecessary to -decode the positions known to be cor-
rect, Only those positions'whicﬁ correspond to possible
errors need be decoded.

As was notéd in the definition of the decoder, if there
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is a computer associated with fhe channel, which is frequently
the case, the testing.apdtéamting of the flags is a trivial
task. However, even if this must bé done using circuitry,
the few additional‘flip-f10ps required to implement the flags
is not costly. DMoreover, we now show that the number of er-
ror triples which require the testing of flags, that is the
error triples of Table 5.4.1, is very small., The calcula-
tion of the total number of possible’ correctable errors and
the percentage of these which appear in Table 5.4.1 follows.
The following error sets can be chosen, where each error is
distinct, that is no two non-zero errors occur in the same

1-flat:

3 non-zero errors in 62x60x58 = 215760 ways,

0 + 2 non-zero errors in 1x62x60 3720 ways,

2 non-zero errors in 62x60 = 3720 ways,
0 + a non-zero error in 1x62 = 62 ways,
1 error in 63 = 63 ways,

for a total of 223325 correctable error patterns. Now the

number of these patterns occurring in Table 5.4.1 is as follows:

312,
156,

3 non-zero errors (2x2x2)x39

fn

0-+ 2 non-zero errors (2x2)x39
for a total of 468 error patterns. Thus, the flag checking
is neceséary for only 468/223325 < 0.21% <2% of all possible
correctable error patterns. If a decoder which corrected ..
only 99.75% of all possible correctable error patterns were
acceptable, then the resulting modified 0;-orbit decoder
would be very simple. It would require 27 7-input threshold
units. If a count of 14 or 16 were flagged., then retrans-
mission could be used for the 3% of the error patt?rns that

the decoder could not correct.

The simplidity and power of the defined decoder is obvious.
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5.5 Conclusions

We have defined and andlysed the O3-orbit decoder of the
order-3 (63,41) PG code in this chapteg. The simplicity of
the decodef, requiring only 27 threshold units, two counters
and three flags, was emphasized.

We began the chapter with a detailed discussion of the
standard Majority Logic Decoder of the order-3 (63,41) PG
'code. MLD was discussed in Chapter 3 iﬁ general. In this
chapter the discussion was made specific with a study of
the circuitry required for the decoder of the (63,41) PG'
code. This was followed by the definition of the 0ji-orbit
decoder of the code, comparing it to the standard Majority
Logic Decoder. The reduction in circuitry for the 0;-orbit
decoder vs. the Majority Logic Decoder was significant. The
former, unlike the latter, needs no division or multiplica-~
tion circuitry. Even the simplified version of the Majority
Logic Decoder requires more than twice the number of thres-
hold units necessary for the 0j-orbit decoder, By referring
to the results of a computer simulation of the decoder, the
various i-error sets, i=1,2,3, werec analysed. Finally, it
was shown that the testing of the 0j-orbit decoder flags is
necessary for less than 3% of all possible correctable error
patterns. Moreover, if it is acceptable to correct only
99.75% of all correctable error patterns, the .05 ~orbit de-

coder can be simplified even further.
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CHAPTER 6: 0;=ORE: DER_OF ORDER-5 (255,218 DE

6.1 Introduction
The order-5 (255,218) PG code and-its 0;-orbit decoder

"are studied in this chapter. The analysis is similar to,
but less detailed than, that given +the order-3 (63,41) PG
code. This is due to the fact that the O0j-orbit structures
of PG(7,2) are mérely extensions of.those of PG(5,2). The
objective of this chapter is then not to emphasize the math-
ematical symmetries as in Chapter 4, but to illustrate the
dramatic decrease in the circuitry requirements if the 0;-
orbit decoder is used to decode the order-5 (255,218) PG

code instead. of the Majority Logic Decoder.

6.2 Standard Vajority Logic Decoder o der-5 (255,218 ode

As the order of a Majority Logic Decodable code increases,
so does the complexity of the decoder. With each added level
of Majority Logic, more circuitry is required. 1In this sec-
tion we discuss the circuitry for MLD an order-5, rather
than order-3, code, in particular, the order-5 (255,218) PG
code. As the theory of the decoder was given in Chapter 5,
we simply present the details of the circuitry here.

In_order to calculate the number of threshold units
necessary to decode using MLD, the following information is
required. Referring the Chapter 3, the number of 5-flats
orthogonal on the position 0 is:

(27-1)(26-1)(25-1)(2%-1)(23-1)

= 2667,
(25-1) (2%-1)(23-1)(22-1)

}\(0?557n2) =

the number of 4-flats orthogonal on the position 0 is:

(27-1) (26-1) (25-1) (2%-1)
A(0,l,7,2) = 2 = 11811,
(2%-1)(23-1)(2%-1)

the number of 3-flats orthogonal on the position 0 is:
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(27-1) (26-1) (25-1)
> = 11811,
(23-1)¢2%-1) | ’

A(0130712) =

the number of 2-flats orthogonal on position 0 is:

(27-1)(26-1)
A(002v7|2) = = 26671
(22-1)

and the number of 1-flats orthogonal on the position 0 is:
x(0,1,7,2)
Also, the number of 5-flats orthogoﬁal on a given 4-flat is:
Ak,5,7,2) = (23-1) = 7,
the number of 4-flats orthogonal on a given 3-flat is:
A(3,4,7,2) = (2%-1) = 15,
the number of 3-flats orthogonal on a given 2-flat is:
A(2,3,7,2) = (25-1) = 31,

the number of 2-flats orthogonal on a given 1-flat is:

(27-1) = 127,

A(1,2,7,2) = (26-1) = 63,
and the number of 1-flats orthogonal on a point is:
A(0,1,7,2) = (27-1) = 127,
Given these quantities, it is now possible to describe the
circuitry required to Majority Logic Decode the order-5
(255,218) PG code.

The process begins  with a prelimiﬁary step of multi-
plying the received word by X2557218=¢37 and dividing the re-
sult by the generating polynomial g(X). The remainder after .
division is stored in the syndrome register. -On the first
step, as there are seven 5-flats orthogonal on each 4-flat,
11811x7=82677 sets of taps and GF(2) adders are necessary to
obtain the inputs to the 11811 7-input threshold units. On
the second step, there are 11811 15-input threshold units
which output estimates of the 3~-flats. These estimates are
input to the 2667 31-input threshold units of step 3. The

outputs, estimates of the 2-flats, are input to the 127 63-
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input threshold units of step 4. On the final step, these
estimates are input to a’siﬁéle 127-input threshold unit whose
output is the estimate of the error digit in position 0.

Thus, the circuitry required for MLD the order-5 (255,
218) PG code involves:

i) circuitry for the premultiplication of the received
word by X37 and division of the result by the generating
polynomial g(X), ]

ii) 11811x7=82677 sets of taps on the-syndrome register
and corresponding GF(2) adders,

iii) 11811 7-input threshold units,

iv) 11811 15-input threshold units,

v) 2667 31-input threshold units,

vi) 127 63-input threshold units,

vii) one 127-input theshold unit.,

A simplification similar to that made for the liajority Logic
Decoder of the (63,41) PG code can be made to the (255,218)

PG code Majority Logic Decoder. Since, on the first step,

the total number of errors correctable, [?/2]= 3, is determined,
no more than 3 errors can be corrected on any step. Thus

three errors are corrected if only seven éstimates are input

to the threshold units at each level.. As a result, the'fol~
lowing circuitry will also decode the order-5 (255,218) PG code:

i) circuitry for the premultiplication of-the received
word by %37 and division of the result by the generating
polynomial g(X); the remainder is stored in a register,

ii) 2401x7=16807 sets of taps on the syndrome register
and corresponding GF(2) adders

iii) 2801+343+49+7+1 2801 7= 1nput threshold units.

We refer to both the standard and simplified versions of the

Majority Logic Décoder for the order-5 (255,218) PG code
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when we discuss the 0j-orbit decoder of the code.
o d v

6.3 PG(7.2) 0;-orbit Structure

0; -orbits can be defined on PG(?,é). To do so, we be-
gin by applying Yamamoto et al's[58]sixth theorem to the flats
of dimension (m-2)=(7-2)=5, and of dimension 1 in PG(7,2).
First, however, we calculate the total number of 5-flats and
the total number of 1-flats in PG(7,2). From Cuapter 3,
there are:

(28-1)(27-1)(26-1) (25-1) (2%-1)(23-1)

(7; '2) = = 10
#L7.5 (26-1) (25-1) (2%-1) (23-1)(22-1) 795

5=flats in PG(7,2) and

(28-1)(27-1)

#(7,1,2) = > = 10795
(24-1)

1-flats in PG(7,2). We,recall_that the number of (m-2)=3-
flats is the same as the number of 1-flats of PG(5,2). Sim-
ilarly, the number of (m-2)=5-flats is the same as the number
of 1-flats in PG(7,2). We now apply Theorem 6 for d=5,1.

The highest common factor of (m+1,d+1l) is HCF(8,2)=21.
Thus the number of cycles is (1+1)=2, one of which, from
Theorem 3, is v=255, the number of points in the geometry.

From Theorem 6, we have:

xi=1 X1 =0
e(1) = (28-1)/(22-1) = 85 8(0) = (28-1)/(2-1) = 255
m(1) = (8/2)-1 = 3 m(0) = (8/2°)-1 = 7
a(1) = (6/2)-1 = 2 4(0) = (6/29)-1 =
a(1) = 2% = 4 q(0) = 22° = 2
n(1) = #(3,2,4) = 85 n(0) = #(7,5,2) = 10795
n(1) = 85/85 = 1 ~ n%(0) = 10795 ~ 85 = 10710

7(0) = 10710/255 = 42,

These calculations show that there are 42 i5f's of m.c. 255
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and one i5f of .m.c. 85, Each of the 42 i5f's of m.c. 255
generates 255 distinct=54fiéts. The point representations
of these flats are obtained by subiracting j mod 255 from the
point set of each i5f, j=0,l,...,25%. Similarly, the 85 5-
flats generated from the i5f of m.c. 85 are obtained by sub-
tracting j, mod 255, from the point representation of the
i5f, 3=0,1,...,84,

The order-5 (255,218) PG code has all the 5-flats of
PG(7,2) in its null space. This code is c&clic, so when de-
coding, it is only necessary to consider those 5-flats in
the null space which contain the point 0. Thus, only the 5-
flats in PG(7,2) which contain the point 0 are considered as
null space 5-flats, Using the arguments of Section 4.3, we
need generate for each i5f of m,c. 255, only the 63 5-flats
which contain the point 0.

From Theorem 2 above and the discussion in Section b.3,
the is5f of m.c. 85 is composed of 21 1-flats, one of which
is (0 85 170). The other 20 1-flats are (0+cj B5+cy 170+ci),
addition mod 255, for positive integers C5, 1=1,...,20, As
a result, the i5f of m.c. 85 generates only 21 distinct 5-
flats through the point 0, |

As in Chapter 4, we now apply Theorem 6 to the d=1;flats;
In this case (d+1)=2, so HCF(m+1,d+1)=HCF(8,2)=2!, and hence
there are (1+1)=2 distinct cycles, one of which must be 255,
by Theorem'B. Applying Theorem 6, we have that there are L2
i1f's of m.c. 255 and one ilf of m.c, 85, Each ilf of m.c.
255 generates 255 1-flats and the ilf of m.c. 85 generates
85 1-flats. As in Chapter 4, it is only necessary to know
the 1-flats which pass through 0. As there are #(7,0,1)=3
points in each 1-flat, there are 3 1-flats generated from

each i1f of m.c., 255 which contain the point 0., From Theorem
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2 above, the iif with m.c. 85 is the flat (aqu + a1a§5),

ags 2y from GF(2), and thus, the poinis of the flat are

(0 85 170), irrespective of the polynomial chosen to represent
the geometry. As for the 114a 1-flat (b 21 42) of PG(5,2),
the iif of m.c. 85 of PG(7,2) generates only one distinct

flat which contains the point 0., The calculations for Theorem

6 are given below.

xq =1 , x1=0
e(1) = (28-1)/(22-1) = 85 8(0) = (28-1)/(2-1) = 255
m(1) = (8/21)-1 = 3 m(0) = (8/2°)-1 = 7
a(1) = (2/2)-1 = 0 da(o) = (2/2°9)-1 =1
q(1) =22 = 4 (o) =21 =2
n(1) = #(3,0,4) = 85 n(0) = #(7,1,2) = 10795
(1) =

85/85 =1 n*(0) = 10795 - 85 = 10710
| | 7(0) = 10710/255 = L2,

As in the PG(5,2) case, the 1-flats and the (m-2)-flats
have the same distinct cycles and number of initial flats of
these minimal cycles. Consequently we are able to define the
orbits and 0j-orbits, and hence a simplified decoder.

The transformation Z was defined in Chapter 4 as the
transformation which takes the point j to the point (j-1)
mod (2T+1—1)=255. The tranéformations {z,zz,...,zz55=z°aﬁ
form a group over the set of all i-flats in PG(7,2). For
i=5 and i=1, this group partitions the i-flats into orbvits,
where each orbit corresponds to one of the iif's and i-flats
generated from it. Thus, there are 42 orbits with 255 members
each and one orbit with 85 members. As we are interested
only in those flats coﬁtaining the point 0, we use the term
0;-orbit, introduced in Chapter 4, to refer to the ‘subset of

i
an orbit consisting of only those i-flats in which the point
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0 occurs, For i=5, each 05-orbit with flats of m.c. 255,

has 63 members. The 05ror5i% corresponding %o the i5f of

m.c. 85 has 21 members. The 04 -orbits yith flats of m.c. 255
have three members each and the 04-orbit with the flat of |
m.c. 85 has one member. We say that the O;-orbit has the

m.¢c. of its constituent i-flats.

There is a one to one correspondence between the 43
orbits and the 43 iif's, and between <the 0;-orbits and the
iif's through 0, i=1,5. We recall a similaf correspondence
in PG(5,2). We list the 0q-orbits of PG(7,2) in Table 6.3.1,

using the point representation,

(14) (21) : (31) (&)
a: O 1 25 a: 0 2 50 a: 0 4 100 a: 0 8 200
b: 0 24 254 b: O 4B 253 Db: 0 96 251 b: 0 192 247
c: 0 230 231 c¢: 0205207 «c¢: 0155159 ¢: O 55 63
_ _ | 1,
(54) (64) (74) (84)
110 16145 5:0 32 35 h:i 0 64 70  a: 0 128 140
b: 0129239 b: 0 3223 Db: 0 6191 b: 0 12 127
cs 0 110 126 c¢: 0 220 252 ¢; 0 185 249 ¢: 0 115 243
(91) (104) (1) (124)
a:0 5138 a: 0 10 21 43 0 20 42 a: 0 4O 84
b:0:133 250 b: 0 11 245 b: 0 22 235 b: 0 44 215
c:0 117 122  e: 0 234 244  ¢: 0 213 233 ¢35 0 171 211
- Iy
(13;) (14,) (154) (164)
a0 80 168 at 0 160 81 at 0 65 162 a:t 0 130 69
b:0 88 175 b: 0176 95 b: 0 190 97 Db: 0 125 194
c:0 87 167 c¢: O 174 79 ¢: 0158 93 ¢: 0 61 186
(171) (184) (194) (20,)
a:0 13 99 a:0 26 198 as0 52 141 2:0 104 27
b:0 86 242 b0 172 229 b:0 80 203 b:0 178 151
c:0 156 169 c:0 57 83 c:0 114 166 c:0 228 77
- III
(21,) (22, ) (23,) (24) !
a:0 208 5k as0 161 108 at0 67 216 a0 134 177
b:0 101 47 b:0 202 94 b:0 149 188 bi0 43 121
¢:0 201 154 c:0 147 53 c:0 39 106 c:0 78 212
(254) (264) (27,) (284) .
a0 19 92  at0 38 184  al0 76 113 a0 152 226
b:0 73 236 b:0 146 217 b:0 37 179 b:0 74 103 vy
c10 163 182 ¢:0 71 109 c¢:0 142 218 ¢:0 29 181
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(29,) (30,) (311)
at0 49 197 a:0 8 139 a:0 196 23 at0 137 L6
b:0 148 206 b:0 41 157 b:0 82 59 b:0 164 118 IVl
c:0 58 107 c:0 116 214 c:0 232 173 c:0 209 91 ’

(35,)

(331) (344) (364)

210 7 112 a:0 14 224 at0 28 193 atd 56 131

b:0 105 248 1:0 210 241  b:0 165 227 b:0 75 199 Y V4

ci0 143 150 c:0 31 45 ci0 62 90 c:0 12k 180
(37,) (38,) (39;) (0,)

a}0 111 246 ~ai0 222 237 ai0 189 219  at0 123 183

Ds0 9 120 Db:0 18 280 ©b:0 36 225 1b:0 72 195 VI4

c:10 135 144 c:0 15 33 c:0 30 66 ci0 60 132
(#14) (524) (434) :

at0 17 68 a0 34 136 at0 85 170}' VIII,

b:0° 51 238  b:0 102 221 | VII,

c:0 187 204 10 119 153

Table 6.3.1: 0;-orbits of PG(7,2), minimal poly-
nomizl (0 2 3 4 8)

The labelling of the flats is as in Chapter 4. The 0q-orbits
are numbered (11), (29)y +eey (#31), with constituent 1-flats
ta, tb, tec, t=1,...,42. The subscript 1 on t is used only

if it is not obvious that 1-flats are beiﬁg discussed. The
single 1-flat of (431) is labelled 43&' The 0q-orbits are
divided into the eight classes Iy, IIysesey VIII4, defined
later. )

The 1-flats of Table 6.3.1 are formed as the 1-flats of
Table 4.k.1 were, taking two linearly independent points, one
of which is O,

The correspondence exhibited between the Ol?orbits and
the 04-orbits of PG(5,2) has a counterpart in PG(7,2). Here,
there is a one to one correspondence between the 04-orbits
and the O5~orbits which is merely aﬁ extension of the PG(5.2)
case. Each 05-orbit contains the gix non-zero points of one
and only one 0;-orbit (11).;..,(U21), 31 times, and the re-

maining non-zero points 15 times each. Consequently, the
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05-orbits are numbered (15)....,(425), to reflect this,
where the 0g-orbit (tg) contains the non-zero points of (tq)
31 times. The 05-orbit of m.c. 85 corresponds to the 0q-
orbit (434) and is numbered (435). We note that the number
of times the non-zero points of the bl—orbit 1-flats repeat

in a (m-2)-flat is equivalent to the number of points in a
(m=-3)-flat.

0f the 63 5-flats in any 05-orbit (t5) of m.c. 255,
there are eight 5-flats which do not contain a 1-flat from
(t,), t=1,2,...,40. For this study, we omit these eight 5-
flats and refer to the 05-orbit (t5) as the 55 5-flats which
intersect on O and contain at least one 1-flat from (t1).

The three subsets Ay, By, Oy, t=1,2,...,40, are formed
to correspond to the similar subsets in PG(5,2). 1In each
(t5) 05-orbit, t=1,2,...340, there are eight 5-flats contain-
ing only the 1-flat tla from (tl)' These are labelled t5ai.
veey trayigge Similarly, there are eight 5-flats which con-
tain tb, eight containing t,c, eight containing both t;a
and tyb, eight containing tia and t,c, eight containing tb
and tqc, and seven containing all three 1-flats ti12a, tib, tqc.
The labelling of these is consistent with the labelling of
the 5-flats containing tia only. The subset Ay is defined
as the subset of 5-flats from (t5) which contains the 1-flat
t1a, that is the 31 5-flats, t5aj, t5abj, t5acj, t5abcs, j=i,
eoeyViii, S=i,...,vii. By and Cy are defined similarly.
As in the PG(5,2) case, the subsets Ags» By and Ct are non-
orthogonal on their defining 1-flats a, b, c, respectively,
These non-orthogonal subsets are the'basis of the Oi-orbit
decoder.

In the PG(7,2) there are certain 05—orbits which have
unique structures. These 05-orbits. (415), (425), (435),
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are now described. They play a special role in the decoding
process, just as (103) and (113) did in PG(5,2).

In (415) and (425), fifteen qf the 5-flats contain all |
three 1-flats 41a, 41b, 41c¢, and 42a, 42b, 42c, respectively.
The (415) 5-flats which do not contain all three of Lia, 410,
bic, are omitted, leaving the 15 5-flats, 415abci....,415abcxv.
The (425) O5-orbit is defined similarly. The subsets Ayq and
Ay, are defined as the whole 05-orbit (t5). t=41,42, respec-
tively. It is interesting to note that 41a, 41b, 41c, 43a
appear in each of the 15 5-flats of (425) and that_42a, 420,
b2c, 43a appear in each of the 15 5-flats of (415). These
thirty.5-flats play an important role in decoding. Some of
the 48 5-flats omitted from (415) and thé 48 omitted from
(425) have a special use in decoding.

In (435), the single 1-flat 43a occurs in each of the
21 5-flats. These flats are labelled 435ai""'435axxi'

This 05-orbit also has a special role in the decoding algor-
ithm. The 5-flats of these two classes appear in Appendix A.
The transformation g, introduced in Chapter 4, which
takes the point J to the point 2j, mod 255, establishes sym-.
metries in the PG(7,2) 0;j-orbits similar to the ones in the
PG(5,2) 0;-orbits. The cycles of the 04-orbits, defined by
g are given in Table 6.3.2., Similarly, g can be applied to

the 5-flats of each 05-orbit to give the classes I5....,
VIIIS. We do not include them here as they follow directly
from the 1-flat cycles and are similar to the 3-flat cycles
of Table 4.,5.4, The cycles at a gross level of 0,-orbits
are more illustrative and are listed in Table 6.3.3. The
subscript g on each cycle class denotes that the cycles are

induced by the transformation g.
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Class 1-flat Cxéleg le der

Iq (1la 2a 3a b4a 5a=éd‘7a 8a) . 8
(1b 2b 3b 4b 5b 6b 7b 8b) 8
(1e 2¢ 3c he 5¢ 6¢c 7¢ 8e) ) 8
IIl (9a 10a 11a 12a 13a 14a 15a 16a) 8
(9b 10b 11b 12b 13b 14b 15b 16Db) 8
(9¢c 10c 11c 12¢ 13c 14c 15¢ 16¢) + 8
II14 (17a 18a 19a 20a 21a 22a 23a 24a) 8
(17b 18b 19b 20b 21b 22b 23b 24b) 8
(17c 18c 19¢c 20c¢c 21c¢c 22¢ 23c 24c) 8
Ivy (25a 26a 27a 28a 29a 30a 3la 32a) 8
(25b 26b 27b 28b 29b 30b 31b 32b) 8
(25¢ 26¢c 27c¢ 28c 29¢ 30c 31c 32c¢) 8
vy (33a 34a 35a 36a) L
(33b 34b 35b 36b 33c¢c 3b4c 35c¢ 36¢) 8
VI, (37a 38a 39a 40a) L
(37b 38b 39b 40b 37c¢ 38¢c 39c¢ Loc) 8
VII4 (b1a b42a) : 2
(41b 42b Lic 42c) L

[SN

VIII4 (43a)

Table 6.3.2: J1-flat Cycles

Class Qi-gpbix Cycle Order
Ig (1t234 567 8) 8
IIg (9 10 11 12 13 14 15 16) 8
IIIg (17 18 19 20 21 22 23 24) 8
IVg (25 26 27 28 29 30 31 32) 8
Vg (33 34 35 36) b
VI, (37 38 39 40) b
VIIE (41 b42) 2
VIII (43) 1

- Table 6.3.3: Cycles of the Oj-orbits

The Os-orbits (415) and (425) partition the 04-orbit 1-
flats, excepting the (414) and (42¢) 1-flats, into distinct
blocks, such that no 1;flat appears in more than one block.
This partition defines the symmetry blocks of PG(7,2). These

blocks are the basis of many of the symmetric distributions
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of 1-flats in the 05-orbit§f' Moreover, sets of errors which
have the same symmetry Ulbbkfcomposition arevtreated similarly
by the decoder. The 18 symmetry blocks are listed in Table
6.3.4, where, from symmetry block Sj(O), the remaining h sym-
metry blocks generated from it, are obtained by applying the

transformation g, a total of h times.

Symmetry Block

S1(0): 1a 2b 5a 6b 26b 30b 35b 35¢ : u
S1(1): 2a 3b 6a 7b 27b 31b 36b 36¢c
S1(2): 3a 4b 7a 8b 28b 32b 33c 33D
S1(3): ka 5b 8a 1b 29b 25b 3hc 34p

O
5
D
)

32(0)1 1c 5¢ 9b 13b 17b 18c 21b 22c¢ L
S2(1): 2c 6c 10b 14b 18b 19c 22b 23c
S2(2): 3c 7c 11b 15b 19b 20c 23b 2kc
32(3): be 8c 12b 16b 20b 21c 24b 17¢

S3(0): 9a 12c¢ 13a 16¢ 27c 31c 40b 40c L
83(1): 10a 13¢c 1%a 9c 28c 32¢ 37¢c 37b
83(2): 11a 14¢c 15a 10c 29¢ 25c¢ 38c 38b
83(3): 12a 15c¢ 16a 11c 30c 26c 39c 39b

Sy(0): 17a 19a 21a 23a 25a 27a 29a 3la 2
Sp(1): 18a 20a 22a 24a 26a 28a 30a 32a

55(0)3 33a 34a 35a 36a 37a 38a 39a 40a ) 1
Sg(0): 4la h2a Lib 42b blc b2c 43a 1

Table 6.3.4: Symmetry Blocks of PG(7,2)

A given member of a symmetry block appears in a 5-fla£ of
(415) or (425) if and only if all other members of that sym-.
metry bloqk also appear in the 5-flat. A concise represen-
tation of (415) and (425) is given ianable 6.3.5, where Sj(h)
represents the symmetry block obtained from h applications

of g on S3(0), that is, S;{h)=gN(5;(0)). We note that

there is é one to oné corpeSpondence between the 5-flats of
(b15) and (425). For V; a 5-flat of (h15), g(Vy) is a 5-
flat of (M25){

The symmetry blocks are of prime importance in defining
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the 0i-orbit decoder of the PG code over PG(7,2), just as
the symmetry blocks of PG(5.2) were in the 0;-orbit decoder
of the PG code over PG(5,2). |

(B815) Og=orbit (k25) Os-orbit
S2(0).S3(3) Su(1) s¢(0) S2(1) 53(0) s4(0) s¢(0)
S5(1) S3(2) 5£(0) 5¢(0) 55(2) 53(3) 55(0) 52(0)
S2(2) 85011 5i(1) S6(0) S5(3) S3(2) S1(0) S¢(0)
S3(3) 53(0) S5(0) S6(0) S5(0) 53(1) $5(0) Sg(0)
S£(0) S7(3) Sp(0) S4(0) S1(1) S1(0) SE(1) SE(0)
S1(1) S1(2) s4(0) S¢(0) 51(2) S1(3) (1) Se(0)
$5(1) 53(3) 54(0) 5¢(0) 55(2) 53(0) Su(1) S¢(0)
31(0) 33(2) 33(3) Sg(0) S1(1) 33(3) 33(0) Sg(0)
st(2) 53(0) $3(1) 5e(0) 51(3) 53(1) 53(2) 56(0)
S5(1) S5(3) Sp(1) Sg(0) S2(2) S2(0) SL(0) sg(0)
52(3) 52(1) 54(0) 5¢(0) 55(0) S5(2) S£(0) Se(0)
S1(3) S3(2) 53(0) S&(0) 51(0) 53(3) 53(1) 52(0)
51(1) 55(0) 53(2) 52(0) siz) 55010 53053 selo)
53(0) 55(2) 52(1) 56(0) S;(1) S5(3) 53(2) 5¢(0)
S1(2) S2(0) 55(3) 52(0) s1(3) sa(1) 55(0) s2(0)

Table 6.3.5: 5-flats of (415), (425) in terms of
Symmetry Blocks

The detailed study of the 0j-orbit sitructure of PG(5,2)
emphasized the mathematical symmetries of the structure. The
size of PG(7,2) makes a comparable representation unwieldy.
Consequently, we stress only the dramatic reduction in the
amount of circuitry required to decode the order-5 (255,213)
PG code when the 0;-orbit decoder is used to decode rather

than the Majority Logic Decoder,

6.4 0;-orbit Decoder of Order=-5 (255,218) PG Code

The 0;-orbit non-orthogonal decoder of the (255,218) PG
code is a logical extension. of the Oi-Orbit decoder of the
(63,41) PG code. Much less circuitry and fewer decoding
steps are required for, this decoder than for the Majority
Logic Decoder of the code. The description of the 0;-orbit
follows directly from the discussion of the 0;-orbit decoder

of the order-3 (63,41) PG code., There are, just as for the
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PG(5,2) decoder, two decoding steps. Ve now discuss these.

On the first step;‘ﬁbgiorthogonal estimates of the 1-
flats of the 0q-orbits (1) through (405) are obtained from
the 05-orbit 5-flats which are initially known to the decoder.
Also, dependent on the errors associated with the (415) and
(425) 5-flats, certain binary flags may be set. The.esti-
mates obtained from the first step correspond to 1-flats
orthogonal on the point 0. These eétimates are input to a
counter on the second step. Assuming no more than three er-
rors have occurred, the error digit in position 0 is correctly
determined by the output of the counter. 1In a few cases, the
flags set in step 1 must also be consulted and sums obtained
corresponding to certain 5-flats not used previously. The
circuitry for the decoder is now described,

The received word is stored in a register. On the
first étep, for each 05—orbit 5-flat, taps on the register
positions corresponding to the points of thé 5-flat are in-
put to a binary adder, the output of which'is the sum known
to the decoder for the 5-flat. Associated with each of the
subsets Ay, By, Cy, t=1,..,.,40, is a 31-input threshold unit
with threshold 16. The 31 inputs are the binary sums cor-
responding to the 31 5-flats comprising the subsets At,'Bt,
Cys respectively. The 15 sums corresponding to the 15 5—
flats of (415) and the 15 sums corresponding to the 15 5-
flats of (UZS) are input to two 15-input counter units, res-
pectively. The output of the 120 threshold units are ortho-
gonal estimates of the point 0. A flag f{ is set if the num-
ber of ones input to the (4;5) and'(U25) counters is 11,9 or
9,9 or 9,11 or 3,3, respectively. A second flag, f,, is set
if the inputs are 9,7 or 7,9 or 9,5, respectively. A third

flag, f3, is set if all 30 inputs to the two counters are
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ones, The three flags are simély binary flip-flops, set if
the number of inputs to.a :colnter is a given, value,

The circuitry required for this step involves a total
of (55x40)+15+15=2230 sets of calculatisns oh the taps of the
storage. register vs. 82677 (or 16807 in the simplified version)
for the standard Majority Logic Decoder. The (55x40) in the
above equation refers to the 55 5-flats in each of the 40
05~orbits. Three flags may have to be set. A total of 120
31-input threshold units and two counters for the flags, are
necessary. The standard decoder requires on the first stép,
11811 (2401 in the simplified version) 7-input threshold units.

On the second step the 120 outputs from step 1 are in-
put to a counter, These-outputs correspond to 120 1-flats
orthogonal on the point 0., The decoder's decision as to the
value of the error digit in position 0 is dependent on the
value ¢ output by the counter, and in some cases, the flags
£ fz, f3. In the less than 0.02% of cases that f3 is set,
certain 5-flats not previously used in decoding, must be
examined, If e, denotes the error digit in position 0, then
the decoder is defined by:

if ¢<100, then e,=C,
c >108, then e =1,
c=108, f3 set, then e, =0; f3 not set, then e =1,
100Lexk107, fl set, then e0=1,
' f, set, then e =0,
f5 set, c=101, then ey=0,
fy set, c#101, then consult decoding table.
We note that in the last case, that is when the count is in
the range 100 to 107 and fj is set, ¢#101, that the error
triples consist of either the O error or one of the members

of 56(0) and two non-zero errors from the same symmetry block,
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In the next section it is shown that the flag f3 is set for
less than 0.02% of all the correctable 1, 2, and 3-error
patterns, ;f the f3 flag is set and ¢#101, sums correspond-
ing to certain 5-flats not previously used must be obtained.
We discuss these seven cases where the f3 flag is set and the
count ¢ is in the range 100 to 107, c#101, in the next section.

Thus, on the second step, a simple counter, logical
units to test the flags and seven further sets of 5-flat
sums and logical uﬁité are required.

This decoding method does not require that the received
word be premultiplied by %37 and the result divided by the
generating polynomial g(X). The tapped values need only be
fed into binary flip-flops and the output then directly in-
put into a threshold unit. The 0;-orbit circuitry consists
of a total of 120 31-input threshold units, three counters,
three binary flags, logical units to test the flags and a
small decoding table of 35 entries. The standard Majority
Logic Decoder requires circuitry for multiplication, divi-
sion, GF(2) adders, 11811 7-input threshold units, 11811 15-
input threshold units, 2667 31-input theshold units, 127 63-
input threshold units and one 127-input threshold unit, or,
in the simplified version 2801 7-input threshold units. The
savings in circuitry achieved by the use of the 0;-orbit de-
coder are significant. If, as suggested for the PG(5,2)
case, a mini-computer is associated with the channel, the
flag setting and testing step of the Oi-orbit decoder, be-
comes trivial, Specific 1, 2 and 3-error sets afe discussed

in the next section.

6.5 Error Analysis of the Decoder

In this section, it is shown that the 0j-orbit decoder
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of the order-5 (255,218) PG qode is capable of correcting
all 1, 2 and 3-errors. Hence, the Oi-orbit decoder possesses
the same error-correcting capablilities as the Majority Logic
Decoder but requires only a fraction of the circuitry. In
Chapter 7, the decoder's ability to correct some errors of
ﬁigher weight is illustrated.

A computer simulation of the Oi—orbit decoder was used
to test all possible 1, 2 and 3-errors of the order-5 (255,
218) PG code. Reductions to the size of the error space
were made using the same techniques as were used to decrease
the size of the order-3 (63,41) PG code error space.

We begiﬁ the analysis by examining all possible single
errors, We observe that it is only necessary to test the 0
error and one member of each cycle of Table 6,3.2., If O is
in error, the output from the counter in step 2 is 120 and
hence the decoder correctly determines that éo’ the error
digit in position 0, is a one. If one of 1la, 1b, 1lc, éa, ob,
9¢, 17a, 17b, 17¢, 25a, 25b, 25¢, 33a, 33b, 37a or 37b is in
error, then the count is 1 and the decoder makes the decision
that e4,=0, that is that the digit in position 0 is correct.,
If one of 41a, 41b or 43a is in error, the count is 0, and
the decoder determines correctly that e,=0. All other single
errors in the same cycle as one of the aboée errors have‘the
same count and hence are correctly decoded.

The 2-error patterns consisting of the 0 error and any
non-zero error, have a count of 119. Thus, the decoder de-
termines correctly that there is an error in position 0 and
hence thét e,=1. Every non-zer§ pair of errors has a count
between 4 and 20 and hence the decoder decides that e, =0,
that is no error has occurred in position 0.

The sets of error triples can be divided into four
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distinct groups. The'first group consisté of the non-zero
error triples with a count 1eés than 100, Each error triple
of -the secoqd group has a count of at least 108 and consists
of the 0 error - plus two non-zero errors. We also include
the non-zero triples 4laliblic, 42al2blib, 41lalticl2b and
b2alb2ckib, with count 108, in the second group. Error triples
with a count between 100 and 107 such that one error is either
0 or a member of Sg(0) and the other two are non-zero errors
from two distinct‘symﬁetry blocks, are in the third group.

The fourth group has both zero and non;zero error triples -
and a count between 100 and 107. Each triple in this group
consists of those. error triples such that two of the errors,
eq1 and ep, are from the same symmetry block and the other
error is either 0 or the member of Sg(0) iﬁ which ey and ep
appear together in Table 6.5.1. “The three triples of 1-flats
.from Sg(0) listed in the Sg section of Table.6.5.1 are also

in this group.

S1 pairs

L1a:

Lib:

hic:

L2as

L2b:

hoc:

L3a:

1a26b 2b35¢c 5a30b 6b35b
3a28b 4b33b 7a32b 8b33c

1a26b 2b5a 26b35b 30b35¢
3a33b 4b28b 7a33c 8b32b

1a35c 5a35b 2b26b 6b30b
3a8b 7altb 28033¢c 32b33Db

1a5a 2b6b 26b30b 35b35¢
3a7a Lb8b 28b32b 33b33¢c

1a2b 5a6b 26b35¢c 30b35bL
3a33c 4b32b 7a33b 8b28b

1a35b 5a35¢c 2b30b 6b26b
3altb 7a8b 28b33b 32b33c

1230b 2b35b 5a26b 6b35¢c
3a32b 4b33c 7228b 8b33b

2aba 3b7b 27b31b 36b36c
ltaB8a 5blb 29b25b 34c34b

2a36b 3b31b 6a36c 7b27b
La5b 8alb 25b34c 29b34Db

2a3b 6a7b 27h36c 31b36b
ha3lc 8a34b 1b29b 5b25b

2a27b 3b36c¢ 6a31b 7b36Db
La29b 5b34b 8a25b 1b3ke

2a7b 3bba 27b36b 31b3be
La3lb 5b29b 8a3ltc 1b25b

2a36¢c 3b27b 7b31b 6a36b
Lalb 8a5b 29b34c 25b34b

2a31b 3b36b 6a27b 7b36c
ha25b 5b34c 8a29b 1b34b
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.41c:
422,
L2v:
b2ec:

L3a:

1c9b 5c¢13b 17b22c 21bl8c 2¢19c 6b23¢c 10b22b 14b18b
3c1lb 7¢cl5b 19b24c 23b20c 4c2lc 8cl7c 12b24b 16b20b

: 1c13b 5c9b 17b18c 21b22c 2céc 10blsb 18b22b 19c23c

3c2lc 7c20c 11b19b 15b23b 4c20b 9¢léb 12bl7c 16b21c

1c22c 5c¢18c 9b17b 13b21b 2¢18b 6c22b 10b23¢c 14b19c
3¢15b 7¢11b 19b20c 23b24c 4c8c 12b16b 20b24Db 17c2ic

1c18c 5c¢22c 9b21b 13b17b 2¢10b 6cil4b 18b23c 22bigc
3c20c 7c24c 11b23b 15b19b 4ei2b 8cléb 20bi7c 24b2ic

1c17b 5c21b 9b22¢ 13bi8c 2¢c14b 6c10b 18bl9c 22b23¢
3c7c 11b15b 19b23b 20c2h4c 4el7c 8c2lc 12b20b 16b24Db

1c5¢c 9b13b 17b21b 18c22¢ 2¢23c 6ci9c 10b18b 14b22b
3c19b 7c¢23b 11b24c 15b20c 4cléb 8cl2b 20b2ic 24bi7e

1c21b 5¢17b 9bl8c 13b22¢ 2c22b 6¢18b 10bl9c 14Db23c
3¢23b . 7¢19b 11b20c 15b24c 4c24b 8c20b 12b21ic 16bl7c

§3 pairs

bia:
b1b:
bhic:
L2a;
42bs
UZC;

L3as

9alt0c 13alt0b 12c¢27c 16c31c 10a9c 14al3c 28c37¢c 32¢37b
11a38b 15a38c 10c25c 14¢29c 12allc 16als5c 26¢39b 30c39¢

9a27c 13a31lc 12cl40c 16cl0b 10al3c 14a9%9c 28c37b 32c¢37c
11al5a 10cldéc 25c29c 38b38c 12a39c 16a39b 11¢30c 15c26¢

9a13a 12cl6c 27c31lc 40b40c 10a37c 14a37b 9c28c 13e32c
11a29c 15a25c 10c¢38c 14¢38b 12al5¢c 16allc 26c¢39c 30¢39b

9a16c 13al2c 27c¢40b 31clOc 10a37b 14a37c 13¢28c 17c¢32c
11a10c¢ 15allic 29c¢38c 25¢38b 12a39b 16a39c 1ic26c 15¢30c

9alt0b 13alt0c 12c¢31lc 16c27c 10a28c 14a32c 13c¢c37b 17¢37¢c
11allc 15a10c 29¢38b 25¢38c 12alba 11cisSc 26¢30¢c 39b39¢

9a12c 13albc 27c40c 31cl0b 10alla 13c9c 28c32¢c 37b37c
11a38c 15a38b 10c29c 14c25¢c 12aBQc 16a26c 11c¢39c 15¢390

9a31c 12c¢c40b 13a27c 16c40c 10a32c 135370 14228c 9¢37b
11a25c 14c¢38c 15a29c 10¢38b 12a26c 15¢39c 16a30c 11¢39b

Sl pairs

b1a:
4ib:
bhic:
L2a:
L2Db:

L2c:
L3a;

17a27a 19a29a 21a3la 23a25a 18a32a 20a26a 22a28av24a30a
17a29a 19a27a 21a25a 23a3la 18a32a 20a26a 27228a 24a30a
1?a25a 19a31ia 21a2§a 23a27a 18a2la 20a22a 26a28a 30a32a
17a31la 19a25a 21al7a 23a29a 18a28a 20a30a 22a32a 2Bal6a
17a23a 19a2la 25a27a 29a3la 18a30a 20a28a 22a26a 24a32a

17a19a 21a23a 25a31la 27a29a 18a26a 20a32a 22a30a 34228a
17a2la 19a23a 25a29a 27a3la 18a22a 20a2ia 26a30a 28a32a
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Sz palrs

hla: 33a35a 37a39a 34a38a 36alt0a

k1b: 33a38a 34a35a 36a39a 37ali0a

bics: 33a36a 34a37a 38a39a 35al40a

k2a: 33a37a 34a36a 35a39a 38alt0a

42b: 33al0a 3Ha39a 35a36a 37a38a

L2c: 33a34a 35a38a 36a37a 39alt0a

k3a: 33a39a 34all0a 35a37a 36a38a

26 triples
41a42a43a L1iph2b43a bick2clia

Table 6.5.1: Pairs and Triples of E

The pairs in Table 6.5.1 are thoée which always occur together
in 415a, 415b, 415c. 425a, 425b,.U25c and 435a 5~-flats given
- in Appendix A. The fourthlgroup is referred to as the set
E. An example of an error triple in E is 42clc5c. The two
errors 1c and 5¢, both from the symmetry block SZ(O), occur
together in the S, pairs 42c set in Table 6.5.1. We note
that associated with each error triple in E is a cycle of
errors in E such that each error in the cycle is treated
identically by the decoder. For instance, the cycle set
associated with 42clc5c, that is (H1b2c6be, 52b3c7c, 4icke8e),
are all in E and treated identically by the decoder. The er-
ror triple Olc5c is in E., The (b15) and-(425) f3 flag is set
for this triple and the triple 42clc5c, since 15 inputs to the
(415), and the 15 to the (425), counters are all ones for
both these triples.

The first group of error itriples islcomprised of all
possible non-zero error triples excepting those in the set

E. The count for these triples ranges from 0 to 99. Hence,
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the decoder decides correctly that the digit in position O
is correct, and therefore that eo=0{

When discussing the remaining groups we refer to the
nuﬁber of ones input to the (415) and (425) counter units of
step 1 as i/j, where a total of i of the inputs to (415) are
dhes, and j of the inputs to (425) are ones. If the input
is 11/9, 9/9 or 3/3 the f; flag is set, if the input.is 9/7, .
7/9 or 9/5 the f, flag is set and if the input .is 15/15 the
f3 flag is set.

The - second group consists of all 0 error triples except
those in E (see Table 6.5.2). The count for this group ranges
from 108 to 116, If the count is 108 and the f4 flag set,

then e. is 0, otherwise the decoder makes the decision that

0
the digit in position 0 is in error and e, is set to 1.

Just as in the PG(5,2) case, information can be obtained
from the decoder concerning the composition éf the error
triples. For instance, if the count is 116, the error triple is
in one of the cycles generated from 09a43a, 09b43a, 09ck3a,
O4blal3a, Ok1bl43a, More examples are given in Chapter 7 of
the added information concerning the error sets which it is
possible to gain from the decoder, |

For the third group, either f1 or fz is set. By refer-
'ring to Table 6.3.5 or Appendix A, the decoding rule that if
fy is set, 0 is in error and that if f; is set, 0 is not in
error, is verified. We note that the input to (b15) and (425)
is 3/3 if and only if one error is 0, one error is from S¢(0)
and the third error is from any syﬁmetry block excepting Sg(0).
In this case the 0 and Sg(0) errors appear together in each
5-flat in (415) and (425) and hence cancel with each other,

The remaining error gives a count of 3 in each of (415) and

(425) since each point not in (411) or (424) appears three
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times in (41.) and (#2z). The other counts for which f1 or
5 5 1

fo 1s set are explained similarly.

The error triples of E, the fourth group, are given

below in Table 6.5.2,

count=100

1a30bt43a
2a31b43a
3a32b43a
ha25b43a
5a26b43a
6a27b43a
722843,
8a29bl3a

33a35a0
34a36a0

count=101

9al2chze

10a13ck1Db
11lallch2o
12a15chk1c

13al6cli2c

1hageclld
15a10ck2b
16allclic

33b33ck2a
34b3lkella
35b35ck2a
36b36clkla

ount=102

1a26bl1a
2a27vk2a
3a28blk1a
ha29vl2a
5a30b41a
6a31vk2a
7a32b41a
B8a25bl2a

17b22ch1a
18b23cl2a
19p2iclitla
20b17ck2a
21b18cl1a
22b19ch2a
23b20ck1a
2L b21cli2a

1c18cli2a
2c19clila
3c20ck2a
4e21ella
5¢c22ch2a
6c23clla
7c2icli2a
8cl7chla

25b3hvh2e
26b35b41b
270360421
28b32cu1c
29h34cliz2e
30b35ck1b
31b36ck2b
32b33bk1c

25b3lkch1p
26b35ch2b
27b36ckic
28b33blk2c
293441
30b35bl42b
31b36blic
32b33ck2c

1b34bl3a
2b3543a
3b36bl3a
Lv33ch3a
5b3%cli3a
6b35ck3a
7b36ck3a
8b33bl3a

33a3lali2c
3Ma35ak1b
35a36ali2b
36a33altic

37ali0ali 1p
38a3?a42b
39a38ali1c
L0a39ali2e

9b21bk2a
10b22blt1a
11b23vk2a
12b2bblt1a
13b17vk2a
141H18b41a
15b19vk2,
16b20b41a

113410
2b35b0
33610
4b33c0
5b34c0
6b35¢0
7b36¢0
8b33b0

37a3%alla
38ali0ali2a

33alt0alt2b
34a37ali1c
35a38ali2¢c
36a39alk1b

17a25ak1c
18a26al2c
19a27241b
20228al2b
21a29%al1e
22a30alk2c
23a31al1b
22322l 2D



count=103

1b29bli1c
2b30b42c
3b31b41b
Lb32vh2b
sb25bl1c
6b26blt2c
7b27b41b
_ 8b28b42D

count=104

1ecScl2e
2¢cbelid
3e7ck2b
heo8cltic

L1ak2al3a
L1vh2bl3a
hich2chia

count=105

37b37ck2¢c
38b38ch1db
39b39ck2b
Lov4ochic

count=106

33a37alt2a
34a38ali1a
35a39ali2a
36alt0alilia

9c37ck2b
10c38clic
11c¢39ck2c

‘12cl0ck1d

13¢37b42b
14¢c38bk1c
15¢39bl42¢
16ch0bl1D

“9a27chidb
10a28ck?2b
11a29clic
12a30clk2c
13a31lckidb
14a32ck2b
15a25¢ck1c

25b29bl1a
26b30tk2a

27b31bk1a

28b32b4 23,

17a27alt1a
18a28al2a
19a29%ak1a
20a30al2a
21a31laltla
22a32al2a

.16a260420

122610
2227100
3a28b0
4a29b0

5a30nh0 |

623110
7a32b0
8a25b0

23a25al1a
22a26a42a

25a29a0
26230a0
27a31a0
28a32a0

25¢29c0
26¢30c0
27¢31c0
28¢32¢c0

1a35b0
2a36b0
3a33c0
Lha34co
5a35¢c0
6a36¢0
7a33b0
8a341b0

1a5a0
2a6a0
3a7a0
Lba8a0

1b5b0
2b6b0
3b7b0
L b8b0

25b34b0
26b35H0
27p36b0
28b33¢c0
29b3%c0
30b35¢0
31b36¢c0
32b33b0

33a34a0
3423520
35236a0
36a33a0

33b33c0
34b34¢c0
35b35¢0
36b36¢0

153010
2231b0
3a32b0
4a25b0
5a26b0
6227b0
7a28b0
822910

33a39a0
3424 0a0
35a37a0
3623820

. 33al40a0

34a37a0
35a38a0
36a39a0
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1a35¢0
2a36¢0
3a33b0
La3i4bo
5a35b0
6a36b0
7a33c0
8a3lcO

1a2b0
223b0
3altbo
la 5H0
5a6b0
6a7b0
7a8b0
82110

1¢18c0
2¢19c0
3¢c20c0
he21cO
5¢22c¢0
6¢23c0
7¢c2lc0
8¢c17c0

25a27a0
26a28a0
27a29a0
28a30a0

1a6b0
2a7b0
3a8b0
ba1bo
5a2b0
6a3b0
7altbo
8a5b0

1b
2b
3b
Lo
5b
6o
7b
8b

1¢c21b0
2¢22b0
3¢23b0
Leo2lbo
5¢c17b0
6c18b0
7¢19b0
8c20b0

26c¢39
27cl0
28c37

25¢38c0

2500
2610
2710
28b0
29b0
3010
31b0
3210

1b34c0
2b35c0
3b36¢0
4v3310
5H34Db0
613500
7b36b0
8b33¢0

25
26
27
28

cO
cO
bo

25¢38c0
26¢39c0
27c¢h0c0
28¢37b0
29¢38b0
30¢39b0
31cl0bo
32¢37¢0

17a25a0
18a26a0
1G8a27a0
20228a0
21a29a0
22a30a0
23a31a0
24a32a0

c38b0
¢39b0
cl0b0o
c37c0

17a31a0
1€a32a0
19a25a0
20a26a0
21a27a0
22a28a0
23a29a0
2423020

33a37a0 33a38a0
3423820 3423940
3523920 35al0a0 -
36al0a0 36a37a0 -

29a31a0
30a32a0
31a25a0
32a26a0

29c38b0
30c39b0
31ck0obo

32¢37¢0

29¢38c0
30¢39c0
3ich0cO
32¢37b0



count=107

1a3542¢ 1b29b0 1c¢13b0 1c¢22¢c0 17227a0 17a29a0
2a36b41b 2b30b0 2c¢cildb0 2¢23¢0 18a28a0 18230a0
3a33ck2b 3b31b0 3ci5b0 3c24c0 19229a0 19a31a0
Lashichic 4b32b0 4¢c16b0 ULel7c0 2023020 20a32a0
5a35ck2c 5b25b0 5¢.9b0 5¢18c0 21a31a0 21a25a0
6a36ckid 6b26b0 6c10b0 6¢c19cO0 22a3220 22a26a0
7a3342b 70270 7¢l11b0  7¢20¢c0 23225a0 23a27a0
8a3jlvlic 8b28b0 8c¢12b0 8c2icO0 2472620 2422820

25¢38b0 1c¢c5¢c0 25b29b0

26¢39b0 2¢6Hc0  26b30b0

27¢40b0  3c7c0  27b31b0

28c37¢cC L4cB8cO 28b32b0

29¢c38¢0

30¢39c0

31cl0co

32¢37b0
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Table 6.5.2: Set E Error Triples, f4 set for each triple

The fourth group, E, requires the extra calculations
mentioned in the last section., For these ‘error triples, .
since the non-zero (or non-Sg(0)) errors are in the same sym-
metry block, a 5-flat of (415) or (425) either contains all
three of tﬁe errors or only the one error, 0 or a 56(0) er-
ror; Thus the corresponding binary sum for each 5-flat is
one and the input to (415) and (h25) is thence 15/15. We
recall that it was necessary to refer to certain (113) 03-
orbit 3-flats to determine e, when all inputs to (103) were
ones in the PG(5,2) case. Similérly, certain of the unused
5-flats must be consulted to determine whether 0 is in error
for the error triples from E when all inputs to the compar-
able (h15) and (hZS) 05-orbits of PG(7,2) are ones. The 5~
flats which are used to defermine the value of e, are from
(h35) or from the 5-flats of 415a, h15b, u15c, h25a, h25b,
425c, given in Appendix A. Corresponding to each of the
counts 100, 102,103,...,107, is a set of one or more 5 to

16 bit storage words. For a count ¢ in this range, the value

of the error digit in position 0 is determined by whether or
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not the pattern of binary sums of the 5-flats associated

with the count ¢ matches the stored word or words for c¢. For

example, if the count is 102, the stored word is the 8 bit

word consisting of all ones,

If the 5-flat sums of 435ai.

cesy u35aviii are also all ones, then ey is 1, otherwise it

is 0.
consisting of all ones to determine the value of e,

maining three have 8,

Four of the counts require only the one pattern word

. The re-

15 and 8 pattern words, respectively.

A simple binary compare is all that is required to test the

matching. of the calculated pattern with these,

The complete

set of decoding patterns for the fourth group, in the form

of a decoding table, is given in Table 6.5.3.

Count

100

102

103

104

105

Associated 5-flats
ulsaviii,h’ljbxii ,’+15cxv,
le5bxv'425avlu25cxv
B35ai,s «ovy H#35aviii

41 gbxs 415y 1441 5Cxy s
Blge,yi #2505y 1 H25Dyyis
”25°xv'425°xvi
B1gbys gy ss e, o,
bLgCyy s o h2sbyy o b2sbyyi s
425°xv'425°xvi'435ai'""

H3sayi14

Blgbsyablseyisir2gbyiss

] . v s s
F250yiva 2500151

-if all 1's,

Decoding Patterns.and Rule

-if all 1's, then eg=1s

otherwise €4 =Q

-if all 1's, e,=1; else e, =0

otherwise

if less than 8 1 S, e4=0;

if 6 1's and pattern 1is
11101011,11011101,01111110,
10111011,11010111,11101110,
10111101, 01110111, eq=1lj
else eqy=0

-if last 8 bits all 1's, e°~0

if first 8 bits all 1's,e =0,

else if pattern one of
01111111,10111111,11011111,
11101111,11110000,00001111,
00000000 then ey=1;

if 6 1's in patterns of
11100111,11111100,
00111111,11001111, e -1;
else e —0~

if & 1's%nd pattern
00111100,00110011,11000011,
11001100. eo=1l; if in last
8 bits there are 4 1's,
e,=0; else ep=1

-if all 1's, e,=0, else
=1
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Count sociated 5-f1 Decoding Patterns and Rule
106 b15a11,415avi,415a§iii, -if all 1°'s, e,=0; else e =1
h25a5,h2585 51042521y |
107 ghys Mlghui 0¥ 50y -ifoggfgfi?lf?goggo,ooo11101.'
st bisber s SSRGS 00
4250xv,4250xvi else e =1

Table 6.5.3: Decoding Table for Error Triples
o in E

The addition of a decoding table for the E error triples '
adds decoding time rather than complexity to the decoder,
for simple binary comparisons are all that are necessary to
correctly determine e, for these cases. However, for most
of the correctable error patteras, the decoding table is not
needed and hence no extra fime added to the decoding process.
In the foliowing we show, assuming all errors equally pro-
bable, that the decoding table is consulted for less than
0.02% of the possible correctable error patterns.

We first calculate the number of error triples in E,.
The number of 0 error triples, from Table 6.5.2, is 250.
Each of these triples represents four error triples, for a
total of 250x4=1000 0 error triples. For the non-zero case,
we have 154 triples, each of which represents eight point er-
ror triples for a total of 154x8=1232 error triples. Thus,
there are 1000+1232=2232 error triples in E. We now obtain
the total number of correctable error patterns, The total
number of l~errors is 255, zero 2~errors is 1x254=254, non-
zero 2-errors is 254x252=64008, zero 3-errors is 1x254x252=
64008, and non-zero 3-errors is 25&x252x250=16002000, for a
total of 16,130,525 correctable error patterns. Thus, the

the. error triples of E comprise only
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2232/16130525 < 0.02%

of all possible correctable error patterns. If a decoder
correcting ?9.98% of all correctable error patterns were ac-
_ce?table, then the resulting O;-orbit decoder is extremely
simple compared to the Majority Logic Decoder. It would re-
quire 120 31-input threshold units, three counters, and.three
flags. If retransmission were possible, then if the count
were in the range 100 to 108, the 0.02% of the uncorrectable

errors could be corrected using retransmission.

6.6 Conclusions
In this chapter the 0;-orbit decoder of the order-5

(255,218) PG code has been defined and analysed. The object-
ive of the discussion presented'was to emphasize the enormous.
difference in the circuitry required for the 0;-orbit decoder
- and the Majority Logic Decoder of the code. .The standard
Majority Logic Decoder requires circuitry for premultipli-
cation and division, GF(2) adders and 26479 threshold units
(2801 in the simplified version). The 0;-orbit decoder does
not require division or multiplication circuitry and only a
total of 120 threshold units, three counters,.three.flags
and a 35 entry decoding table and associated logical units.
The chapter began with a summary of the circuitry used
in MLD the order-5 (255,218) PG code. The 0;-0rbit structure
of PG(?,Z).Was presented. Based on these structures, the Oi-
orbit decoder was defined, That all 1, 2, 3-error patterns
are correctable using the defined decoder was established by
referring to the results of a simulation model of the decoder.
Finally, it was shown that the error pattefns for which the
decoding table must be consulted comprise less than 0.02% of

all correctable error patterns,
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CHAPTER 7: LODIFICATIONS TO THE 0;-ORBIT DECODER

7.; Introduction

In this chapter we analyse further and make modifications
to, the 0;-orbit decoders introduced previously. The 0;-
orbit structure provides an interpretation of the Projective
Geometries which yields considerable information concerning
the distribution and composition of the correctable error
patterns. .Investigation of the errors of higher weight in-
dicates that the decoder can be modified to detect some such
errors.. '

For both the 0j-orbit decoders studied, we discuss in-
formation which can be obtained concerning the composition
of the 1, 2 and 3-errors. Also, several modifications to
the two decoders are suggested which allow for the detection
of some 4. and 5-errors. l

First, the 0;-orbit decoder of the order-3 (63,41) PG
code is considered. Then a similar discussion of the order-

5 (255,218) PG code is given.

7.2 Order-3 (63,41) PG Code

7.2.1 Composition of Errors from Knowledge of Decoder's Quiput

If the composition of the error pattern-which has occurred

is known, it is possible to shorten the dedbding process;

As it is only necessary to correct those positions in the
received word which can have been in error, only a fraction

of the (2M*1-1) digit positions need to be decoded. In this
section we show that it is possible, for some error sets, to
determiné the subset of error sets in which the given error
pattern occurs. This requireé that the decoder know. the

count ¢ output from the counter of step 2, the value of the
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flags fy, f5, f3, and whet?er the number of inputs to (103)
is odd or even. In the'fblfowing we assume "that no more
than three errors have occurred.

We begin by discussing the single errors. If the count
¢ is 27, then it is immediately known that 0 is in error.

If the f5 flag is set, no other error has occurred and thus,
decoding may cease. If the count ¢ is 0, then there is one
error in one of the non-zero points.of the 1-flat 1la. Hence,
the decoder neéds to decode only the two positions 21 and 42,
as these are the only digits possibly in error. No 2 or 3-
error pattern has a count of 0, If the count is one and the

f3 flag not set, the decoder knows that a single non-zero er- -
ror has occurred in a 1-flat other than 11la.

Similar information is available when two errors have
occurred, If the count is 27 and the f3 flag is not set,
then fhe two errors are 0 and one of the non-zeroc points of
11a. Consequently only the digit in position 0 and the 11a
digits need he decoded. Thus, at most three positions need
to be decoded. If the count is 26, the decoder knows that
two errors have occurred, one of which is 0. Once the 0 er-
ror and the second error have been corrected, decoding may
cease, . If the two errors are non-zero, then the decodér is
able to determine, for some pairs, the error subsets in
which the errors occurred. For instance, if the count is 13
and the number of ones input to (103) is even, then the two
errors are in the cycles generated by 7a7b or 7a7c. If the
count is three and the input to (103) even, then the error
pair is a member of the cycle generated by lalla. If the
count is four and the input to (103) even, then the error

pair is a member of the cycle of 1blla, For these cases
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only the positions cofresponding to possible errors need be
decoded,'rather than all 63 positions.

The composition of some error triples can be ascertained
from knowle&ge of the count ¢ associated with the error triple.
If the count is 24, then the three errors are from the cycle
generated by 0lalla or 010alla. The error triple is a member
of the cycle of 0lblla, 01al0Ob, 01c¢10b or 07al0c, if the
count is 23. If the cuunt is 22, one of the cycles generated
from Olchc or Olclla éontains the triple of errors. If the
count is 13 and the input té (103) odd, then the non-zero .
error triple is a member of one of the cycles generated from
1a8b10a, lalb8c, 1a2b5c or 7c¢8clOc. If the flag f3 is not
set and the count is 1, the non-zero error triple is from
the cycle generated by laSblla. We recall that if the f3
flag is set, only one error has ‘occurred.

These 1, 2 and 3-error examples have shown how informé-
tion as to %he composition of the errors can be obtained from
the'decoder. For certain counts only those positions that
may be in error need to be decoded. Decoding time can be
shortened if a table is added to the decoder which, for a
set of counts, contains the possible digits in error if one
of the counts occurs. Only those counts with a predetermined
number of associated error positions are in¢luded to make
storage requirements economical. If the count obtained is
in the table, the corresponding positions are decoded. If
the count is not in the table, normal decoding is continued
until a count in the table appears. Once the positions given

in the table for the count have been decoded, decoding

terminates.
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7.2.2 Errors_of Weight Four

Applying the techniques of the previous sub-section,
the 0;-orbit decoder can be modified to detect many errors
of weight f;ur. We note that already many erroré of weight
four are corrected by the decodgp dgfined. For instance, all
k-errors containing aA@€¥ﬁr£‘%%&£%“§?EAter than 16 are auto-
matically corrected, as are all non-zero k-errors with a count
less than 14, We let w represent the number of ones input
to (103). In this chapter we denote as Sé, the symmetry
block Sg augmented by the element 0, that is Sg§ = 10al0b10coO.

Thé results presented in this sub-section are based on
the following observations. First, if a non—Sé error triple
occurs, the number w, of ones input to (103) must be 1 or 3.
This follows if we consider the three possible distributions
of the error triples in symmetry blocks. If all three errors
are in the same symmetry biock, then the sum in (103) corres=
ponding to'that symmetry block is one and all other (103)
sums are 0. If the three errors occur in three distinct sym=
metry blocks, then the three corresponding sums in (103)
each are one and the remaining four are zero., If two errors
occur in the same symmetry block, their binary sum is zero,
The fhird error, in a distinct symmetry block, gives a sum
of one. All other sums are zero and hence only one of the
inputs to (103) has a non-gero valus,

If the error triple contains one member of S8, the num-
ber of ones input to (103) is 5 or 7. We determine this as
for the non-Sé case, If the two non*Sé errors are in the
same symmetry block, the associated binary sum is zero. The
Sé error occurs in each 3-flat of (103) and hence each has
an associated binary sum of one, for a total of w=7 ones in-

put to (103). If the two non*Sé errors are in distinct
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symmetry blocks, each sums to zero with the Sé error. The
remaining five inputs correspond to the 3~flats which contain
only the Sé error, Thus there are a total of w=5 inputs to
(103) whichoare ones. If two errors are in Sé, w=1l and if
all three are in Sé, w=7.

If there are four non-Sé errors, then w is 0, 2 or 4.

If all four errors are in the same symmetry block, or if two
errors are in one symmotry block and two in another, then w=0.
If two errors are in the same symmetry block and the remain-
ing two_in two distinct syhmetry blocks, then w=2, If all
four errors are in four distinct symmetry blocks, then w=4,

If one error is in Sé. then w can be 4 or 6, depending
on the arrangement of errors in symmetry blocks. If each
non-Sé error is in a distinct symmetry block, w=4. If either’
two or three of the non-Sé errors are in the same symmetry
block, then w=6,.

If tw6 of the errorsAare from Sé. w is 0 or 2 depending
on'whether the non-Sé errors are in the same or distinct sym-
metry blocks, respectively. If there are three Sé errors,
w=6, If there are four Sé errors, then w=0,

Consequently, if there are three errors, w is odd and
if there are four errors, w is even.

The following observations form the basis of the state-
ments concerning 4-error patierns. First, we recall that if
two errors bccur, one of which is 0, then the count is 26 or
27. Secondly, if two non-zero errors occur, then the count
is at most 13, If the count is 13, then the errors are either
from the. cycle of 7a7b or 7a7c, w equal to 0 or 2 respective-
ly. If the count is 12; the error is in the cycle of 7c¢cl0b
and w=6, If the count is 11, the error pair is from the cycle

of 1a8b or 7c¢8c, with w=0, or from the cycle of 1a9b, 1b8b
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or 1¢8b, with w=2., Finally, from the above discussion on
h-errors, we recall that w is 0, 2, 4 or 6 if there are four
errprs. And, from the simulation, if one of the errors is
0, the count is at least 12. We now suggest modifications to
the 0;-orbit decoder to allow for the consideration of 4-errors.
; If the count is at least 14, but no more than 26 and w

is even, then a 4-error is detected. From the discuséion on
the assignment of w, if w is 0, 2 or 6, then one of the errors
is in Sé. If the count is 13 and w is 4 or 6, or if w is O |
and fs is set, then the decoder detects a 4-error. If the
count is 12 and w is even, then there are four errors, Final-
1y, if the count is at most 11 and w is even, then 0 is not
in error and there are either two or four errors.

Information concerning the compositioﬁ of the four er-
“ror sets can be obtained. For i;stance, if 0 is in error and
the other three errors are in three distinct'symmetry blocks,
then the count is unusually low, between 12 and 16. Tybical-
ly a 0 error 4-tuple has a count of at least 18. Similarly,
if there is a non-zero 4-error with two errors from Iy and
two from IIy, then for a count of at least 18, the two II4
errors and one of the I, are in distinct symmetry blocks.
For example, 1b5b7ax has a high count for x ﬁot the 0 error.
The three 1-flats 1b, 5b and 7a are in distinct symmetry |
blocks.

These few examples are included to illustrate the type

of information which can be obtained concerning the 4-error

patterns.

7.2.3 Exrors of Weight Five

We briefly discuss the analysis possible whén five er-

rors have occurred. The situation becomes very complex, so
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only a few cases are presented. In the following we assume
that at most five errors have occurred.,

. We begin by listing in Table ?7.2.1, the value of w, the
weight associated with the (103) inputs, for each possible
qistributionrof the givenerrofs among the symmetry blocks.

In Table 7.2.1, each error 5-tuple is described by a sum of
digits. Each digit represents the number of errors appear-
ing in a single symmetry block. The digit O denotes an error
from Sé. For instance, 3+1+1 denotes that three of the er-
rors are in the same symmetry block and the two remaining er-
rors are in two distinct symmetry blocks.

non §8 -erro W "S“8 S-error W
b+ 1 4+0 7
342 1 3+1+40 5
3+1+1 3 24240 7
2+42+1 1 ' 2414140 5
2+1+1 41 3 1+41+1+140 3
141414141 5

Table 7.2.1: Weight w of (103) Inputs

From Table 7.2.1 and the discussion in the previous sub-
section, we know that if w=7, then a member of Sé is in error.
If w=1 and the count is at least 17, then no member of Sé is
in error and hence e,=0. This follows from Table 7.2.1 and
the discussion of 1 and 3-errors given earlier.

Certain information concerning the distribution of the
errors is available. For instance, if all five non~Sé exr-
rors are from five distinct symmetry blocks, then an unusual-
ly high count results. For example, the 5-error set ic3c5c2alia
has a count of 25, while most non*Sé S5=-errors have a count |
of at most 15. However, if two of the errors are in the
same symmetry block, then the count is as expected, less than

15. Similar problem cases arise if one of the errors is 0,
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If three of the four femaining errors are'in three distinct
symmetry blocks and are in cléss II44 then the aésociated
count is unysually low.. For example, the error 5-tuple
7a8a9a8b0 has a count of 3.

When 1, 2 or 3=-errors occur, distinct numerical boundar-
iés between the non-zero and zero error counts occurred.
However, in the case of 4 and 5-errors, the boundaries are
no longer distinct. It is possible to-detect many 4 and 5-
errors, however, oﬁly the h'and 5-errors for which the count
falls into the defined ranges of the 0j-orbit decoder of

Chapter 5, are corrected,

7.3 Order-5 (255,218) PG Code
7.3.1 Composition of Errors from Knowledgg.oﬁ Decoder's Output

The analysis below follows closely to that given in

Section 7.2.1 for the order-3 code. Again we assume that ﬁo
more than three errors have occurred. The analysis is based
on the count ¢ output by the counter of step 2, the number,
wy, of ones input to the counter associated with (415). the
number, w,, of ones input to the counter for (425), and the
binary sums associated with certain 5-flats of u15a, 415b,
4150, 425a, 425b, 4250 and (M35). given in Appendix A.

We begin by discussing #he single errors. If the count
is 120 and wy and wp both 15, then 0 is in error and no other
error has occurred. Thus, the decoding may cease after pos-
ition 0 is corrected since no other digit position is in er-
ror. If the count is one and if exactly three of the sums
associatéd with the 5~flats 435ai, 435aii’ eeos 435axvi are
one, then a single non-zero error has occurred in one of the

1-flat classes I through VI . If the count is 0 and if zero
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or one of the sums associated with 415ai,'415bi, 415ci, ”2531-
425bi, 425ci is one, then there is a single non-zero error
from (bll),o(bzi) or (#3;). 1In this case, only the 14 posi-
tions corresponding to the points of these 04-orbits need to
be decoded as the error cannot occur in any of the other 241
positions. For all three cases of a single error, once the
error has been corrected, decoding can cease, as the received
word is then correct. <This can result in considerable
savings in decoding‘time.

Similar information is.available for the two errors. .
If the count is 119, then 0 and a single non-zero point from
one of the classes I; through VI; are in error. If the count
is 120 and wy and wp both 0, then 0 and one of the non-zero
points of (413), (42;) or (43;) are in error. Once 0 and
one of the positions associated with the points of (l414),
(424), (431) have been corrected; decoding may cease. At |
most 15 digit positions need-to be corrected, rather than the
stahdard 255, If the two errors are non-zero, the ccunt is
at most 20, If the count is 20, then the error pair is a
member of the cycle of 33a35a. We note that the two errors
are from the same gymmetry block. Only the positions cor-
responding to the 1-flats of the symmetry block
85(0) need to be decoded, as the error pair is amongst these
positions. If the count is % and wy and wo both 0, or both
12, then the error pair is from the cycle of 41al3a or 41ib43a.
Only the positions corresponding to these error pairs need
to be decoded. If the count is 5 and wq and wp both even,
then the ‘error pair is from one of the cycles generated by
9a9b, 9a9c, 9alla, 9aléa, 9b9c, 9b10b, 9blbb, 9clOc, 9cibe,
If the count is 6 and wy and wp both 12, then the error pair
is from one of the cycles of 9alt2b, 17al43a, 17b43a, 17ck3a,
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37alt3a, 37b42c, 37bu3é.

The 3-errors can also be analysed and information ob-
tained concerning the composition of certain error triples.
Fof example, if the count is 101, and both wy and w, 15,
then the error triple is from the cycle of 33b33clk2a., If
w; and w, are 15, and the count 100, 102,..., 107, the er-
ror triples are as given in Table 6.5.2., If the count is 1
and wq and wo, both 15, then the error triple is one of the
members of the cycles of 33b330410, 33a33b33¢c or 37b37ckic.
If the count is 0 and w; and w, both 15, then the errors
are from the cycles generated by 41ak2aliib, 41akibh2b,
I11alt2bl3a, 4ID42b41c or 41b42v43a., If the count is 116,
then the error triples are from the cyclé generéted'from
9alt3a0, 9b43a0, 9ck3a0 or 41b43a0. If the count is 114, then
, the érror triple is from the cyéie generated from 9al2bvo,
37b42c0, 37b43a0, 17ak3a0, 17b43a0 or 17ck3a0. If the count
is }08 and wq and w, are both 15, then the error triple is
from the cycle of 41albivk2c. Finally, if the count is 104
and wy and w, both 15} then the error triple is one of the
members of the cycle of 4lali2ali3a,

Nany more such examples can be found for the 1, 2 and
3-errors. For these, only the positions corresponding to
possible errors need to be decoded rather than all 255 poéi-
tiong. A table consisting of the positions possibly in er-
ror for certain counts could be added to the decoder., Given
the count output on the second step of decoding, a simple
look up would determine the positions to be decoded. Only
those counts with an associated number of possible error
positioﬁs less than a given value would be stored, in order

to keep the storage requirements reasonable. For counts not
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in the table, decoding would continue as ﬁormal until a
count was obtained which was in the table. Then, only the
positions in the table associated with the count would be de-
coded. Once these positions were decoded, the decoding pro-
cess would cease, It is obvious from the examples given,
that this modification would greatly reduce the required

decoding time,

7.3.2 Errors of Weight Four

An analysis of the count output on step 2 of the decod-
ing process and the inputs wqy and w, to the (&15) and (425)
counters, regpectively, provides information concerning the
b-errors, As a result, some U-errors can be detected. Those
zero W4-errors with a count greatér than 108 and the non-zero
b-errors with a count less than 100 are corrected by the de-
- coder defined in Chapter 6. 1In the foilowing ve assume that
no more than four errors occurred. We write sé(o) to denote
the set Sg(0) augmented by the point 0.

If two or four errors occur, then the values of wq and
W, are always even. This follows from an analysis of the
distribution of the 2 and 4-errors among the symmetry blocks.
If three errors occur, the values of wq aﬁd W, are both odd.
Using these two facts and the results of the simulation of
the decoder when four errors have occurred, we are able to
make the following statements.

If the count is in the range 60 to 80 and wq and wjp
even, then e,=0. If the count is high (at least 80), and
wq and Wo are rnot 8,6 or 6,8, and the four non-zero errors
are from distinct symmetry blocks, then three of the four
errors are in the same 5-flat of (415) or (425).' If wy, wp

are 8,6 or 6,8 and the count is high, then one of the errors
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is from Sé(O) and the'remaining three frém the same flat of
(415) or (M25). If the counf is high, tﬁen the values of wy,
w, are 8,6 or 12,12 or 6,6 or 8,8 or 10,6 or 10,8, If two
oflthe errors are from the same symmetry block and two are
from sé(o), then both wy and w, are 0. If the count is less
than 30, then wq and wy are: éither both 0, both 6 or one is
6 and one is 8, |

As for the b-errors in the order-3 (63,41) PG code, the
h-errors for this éode do not have well-defined boundaries .
between the 0 and non-zero error sets. The comments given
indicate some of the information which it is possible to

obtain concerning the &k-errors.

7.3.3 Errors of YWeight Five

We now discuss briefly the.5-errors and the way in
which the 0,-orbit decoder treats them. Even less informa-
tion is available than was for the 4-error sets. We assume
that no more than five errors have occurred.

As for the b-error case, all zero 5-errors with a count
greater than 108 or non-zero 5-errors with a count less than
100 are corrected by the 0;3-orbit decoder defined in Chapter
6. As for the 3-errors, the values of vy and wp are odd for
all 5-error sets. In the following analysis, we say that the
count is ordinary (vs. high or low) if for the non-zero 5-
errors the value is between 20 and 40, and for the zero
error sets between 40 and 60,

If the count is very high for a non—zero_5—errqr, or -
very low for a zero 5-error, then two non-distinct sets of
single errors, each consisting of three érrors, can be se-
lected such that the three errors of each set appear in a

distinct 5-flat of (415) or (425). If two such sets can not
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be formed, then the céunt is ordinary. If all 5-errors are
from the same symmetry block; but not from sé(o), then the
count is very low and Wy and wp are both 3. If the five er-
rofs are all from Sg(0), then the count is very high and wq
and v, are both 15. If one of the errors is 0 and the rest
from 86(0), then the count is very low and both wq and LN
are 15, Also, if four errors are from the same symmetry
block, other than 86(0), and 0 is in error, then the count
is very high and both wy and W, are 15. If the five errors
occur in two distinct symmetry blocks, neither of which is
86(0), in the ratio 3 to 2, or 4 to 1, then the count is
ordinary unless the two symmetry blocks appear together in
Table 6.3.5.

The information available concerning.the S5-errors is of
interest primarily as an analys{s of the distribution of the
counts. The distinct boundary between the counts associafed
with zero and non-zero error sets that result when 1, 2 or
3 errors occur, is not present for the 5-errors. Consequent-~
ly, detection of the higher weight errors, rather than

correction is more feasible.

7.4 Qonglusions

The results of this chapter indicate that it is pos-
sible to modify the decoder to allow for significant savings
in the time required for decoding, and for the detection of
sorie errors of higher weights, The symmetry blocks are of
prime importance in the analysis presented.

The chapter began with a discussion of the information
which it is possible to obtain from the &ecoder concerning
the composition of the 1, 2 and 3-errors of the order-3

(63,41) PG code. It was suggested that significant decreases
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in the time required for decoding can be.obtained by decoding
only those ccdeword positioné which, from knowledge of the
composition of the errors, can possibly be in error. A

short analy;is of the distribution of the 4-errors and 5-
errors in. terms of the count obtained from step 2 of the
decoding process was presented,

The second part of the chapter contained corresponding
results for the order-5 (255,218) FG code. As the code
length was much longef for this code, the decrease in de-
coding time was even more significant. The 4 and 5-error.
analysis gave an indication of the symmetries present in .the
distribution-of these errors. As the demarcation between
the counts of the zero and non-zero error sets was not well

defined, the information was of use primarily for detection

of errors rather than correction.
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PART IIT : :

CHAFTER 8: SUMVARY OF RESULTS, CONCLUSIONS_ AND FURTHER
RESEARCH TOPICS

8.1 ngmgry°o£ Results and Conclusions

In this thesis a mathematical analysis of the two Pro-
jective Geometries, PG(5,2) and PG(7,2), led to the develop-
ment of a decoding algorithm for the order-3 PG code over
PG(5,2) and the order-5 PG code over PG(7,2) which required
only a small fraction of the circuitry used to Majority
Logic Decode the codes. |

Thé first three chapters of the thesis were devoted fo
a concise presentation of the basic algebra and fundamental
Coding Theory necessary to the understanding of the ideas
and concepts presented in the thesis, In-particular, Najor-
ity Logic Decoding and Projective Geometries were discussed.
The fourth chapter introduced the work of Yamamoto et al[5€¢]
concerning'the cycles of a Finite Geometry. The results
from this were used to define the 0;-orbits. An extensive
analysis of the PG(5,2) 3-flats and 1-flats was presented
based on the 0;-orbits. The numerous symmetric properties
of this structure provided an important mathematical inter-
pretation of PG(5,2)., After further investigation of this
structure, the 0;-orbit decoder was defined in Chapter 5.

It was shown that this decoder corrected the same number of
errors as the Majority Logic Decoder of the code but required
only a fraction of the circuitry. While the Majority Logic
Decoder consisted of 187 threshold units (57 in the simpli-
fied version) and circuitry for multiplication and division,
the Oi—orbit decoder had onl& 27 threshoid units, 2 counters
and no division or multiplication circuitry. In Chapter 6,

the results of Yamamoto et a1[58] were used to define the
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0;-orbits of PG(7,2). Owing to the size of the geometry, the
analysis of the 0;-orbit structure was not as detailed as for
PGKS,Z). A.decoder of the order-5 PG code over PG(7,2),
based on the 0;-orbits, was defined and shown to correct the
same number of errors as the Majority Logic Decoder of the
éode. The decrease in_the circuitry required for the 0;-
orbit decoder from that required for the Najority Logic De-
coder, was far more significant for this case. The Majority
Logic Decoder required division and multiplication circuitry
and 26,479 threshold units (2,801 in the simplified version),
while the O;-orbit decoder required only 120 threshold units,
three counters and a 35 entry decoding table and associated
logical decision units. In Chapter 7 it was shown that sig-
nificant decreases in decoding ?}me for both decoders could

~ be obtained as a result of-a further analysis of the decoder.,
For certain outputs of the decoder's step 2 counter, it was
possible to determine the subset of positions in which the
errors occurred., Thus, it was only necessary to correct
those positions, as all other digits in the received word
were known to be correct and hence it was unnecessary to de-
code them. For both decoders, some 4 and 5-errors were
correctable and many others detectable.

In this thesis we have shown that by aﬁalysing the math-
ematical structure of the null space of the order-3 PG code
over PG(5,2) and the order-5 PG code over PG(7,2), a simpli-
fied decoder can be defined. The decoder presented requires
only a fraction of the circuitry needed for MLD the code.
Thus, we have significantly simplified a decoding algorithm
which is already considered relatively simple. Moreover, if

a small computer is associated with a communication channel,
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as is frequently the case, the implementétion of the Oi-orbit
decoder is trivial. |

We have shown in this thesis that it is possible for a
particular set of codes, to overcome the problem of a decoder

being too complex to warrent its implementation.

8.2 Further Research Topics

We discuss in this section several topics related to
the work in the thesis, ‘First we consider the feasiblity of.
generalizing the Oi-orbit decoding method so that any order
PG codeiover PG(m,2) can be decoded. To this end, we invest-
igate the structure of the 2-flats of PG(5,2), that is the
null space flats of the order-2=(m-3) PG code over PG(5,2).
We recall that only order—(m-z).codes were studied in pre-
vious chapters. Secondly, we suggest further study of the
structure of the null SPaée with the goal of increasing the
power of the 0;-orbit decoder. The section is concluded with
several questions concerning the algebraic interpretation
of the results presented in the thesis,

In the folleowing, we present several interesting results
concerning the structure of the 2-flats of PG(5,2) which sug-
gesf that a generalization of the 0j-orbit decoder is pos-
sible. To begin the analysis of the order-2 PG code we ap-
ply Yamamoto et al's (58] sixth theorem to PG(5,2) for d=2,

This provides the following information:

A=l _ X120
B(1) = (26-1)/(23-1) = 9 8(0) = (26-1)/(2-1) = 63
m(l) = (6/3)-1 =1 m(0) = (6/1)~1 = 5 :
d(1) =.(3 3)-1 = 0 a(0) = (3/1)-1 = 2
q(l) = q(0) = 2
n*(1) = n(l) = 7f y 0 = 9 n(0) = yf(s.z,z) = 1395
(1) = n%(1)/8(1) = n*(0) = 1395-9 = 1386

7A(0) = 1386/63 = 22,
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Thus we have that there are 22 i2f's of m.c. 63 and one i2f
of m.c. 9. Each of the 22 i2f's of m.c. 63 generates 65 2=
flats and the i2f of m.c. 9 generates 9 2-flats. The trans-
formation Zi introduced in Chapter 4, can be applied to the
2-flats, with the result that the 2-flats can be partitioned
into orbits such that each orbit corresponds to one of the
i2f's and the 2-flats generated from it, The Oy~orbits are
the subsets of the orbits consisting of only those 2-flats
in which the point 0 occurs. Thus, each O,-orbit of m.c.
.63 has seven members and tﬁe Oz-orbit of m.c. 9 has one mem-
ber. We recall the one to one correspondence between the
03-orbits and the Ol-orbits in Chapter 4, There, the six
non-zero points of the 01-orbit .(ty) were repeated seven
times in the 03-orbit (t3). Certain points were repeated
three times each and the rgmainfng points once each. The
number of times a point repeats, 7,3 or 1, corresponds to
the number.of points in a 2, 1 or 0~flat, respectively. We
seiect the nine O,-orbits of m.c. 63, each of which repeats
the six non-zero points of one and only one of the 04-orbits
three times. These O,-orbits are numbered as the 03-orbits
were'td reflect the correspondence. The 2-flats of each 0,-
- orbit (t,), t=1,...,9, can be ordered so that, representing
each 2-flat by the 1-flats a, b and ¢ of (t;) that it con-
" tains, the following description is obtained, a, b, ¢, ab,
ac, bé. One of the seven 2-flats does not contain a 1-flat
from (t1). This 2-flat is omitted and the Ox-orbit (t3) is
said to consist of the six 2-flats listed above., As for the
3~-flats, -three intersecting subsets Agys Bgy Ct can be formed,
where, for example, the set A, consists of the three (t3)

2-flats, in the representation above, which contain the (tl)
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1-flat a, that is a, éb, ac. The 1-flat§ t1b and tyc occur
once each in Ag. The 2-flaté are labelled as the 3-flats
were, to sh9w the correspondence with the 1-flats. For ex-
ample, the 2-flat containing both the 1-flats tia and t;b is
labelled toab. The 2-flat which consists of the six non-
Zero points of (104) is labelled (105,). Corresponding to
(114), there are five O,-orbits which repeat three times on
the non-zero points of (111). As for the order-3 code, we
propose that these flats be used strictly for setting flags.

We note that the number of times a point repeats in a
O0,-orbit is 3, 1 or 0, that is the number of points in a 1-
flat, 0-flat, or, for continuity, a null flat, This is
exactly 1 dimension less than the order-3 code.

We 1ist in Table 8.1.1 the 2-flats of the Op-orbits (1)

through (10,), in terms of their constituent 1-flats.

(1) (2) (35)
as 1la 2a 7a a: 2a 3a 8a a: 3a ba 9a
b: 1b 3a 2b b: 2b ha 3b b: 3b Ea Ly
ct 1c 2¢ 8a b: 2¢ 3¢ %9a ¢c: 3¢ 4¢ 7b
ab: 1a 1b 8¢ ab: 2a 2b Qe ab: 3a 3b 7c¢
ac: 1a 1c¢c 3b act 2a 2c bb ac: 3a 3¢ 5b
121 be: 1b 1c¢c 70 bc: 2b 2¢ 8b bect: 3b 3¢ 9b
(k2), (52) (62)
~at ba 52 7b a: 5a 6a 8b at 6a 1a 9b
b: 4b ba 5b b: 5b 1a 6b b: - 6b 2a 1b
¢c: ke 5¢ Bb c: 5¢ 6¢ 9b c: 6¢c 1c 7a
ab: la Lb 8¢ ab: 5a 5b 9¢ ab; 6a 6b 7¢
acs ba 4ec 6b ac: 5a 5¢ 1b ac: 6ba 6¢ 2b
\\ be: 4b be 7a be: 5b 5¢ 8a be: 6b bc 9a
(75) (82) (95)
a: 7a 5a 8a 2a: 8a 6a 9a za: 9a 1la 7b
II2 b: 7b 2a 8b b: 8b 3a 9b b: 9b lta 7a
c: 7¢ 10c¢ 8¢ ¢c: 8¢ 10b 9¢ ¢t 9¢ 10a 7c
ab: 7a 7b 10a ab: 8a 8b 10c¢ ab: 9a 9b 10bd
ac: 7a 7¢c 2¢ ac: 8a 8¢ 3¢ ac: 9a 9c¢ be¢
be: 7b 7¢ 5S¢ be: 8b 8¢ 6¢ be: 9b 9¢ 1c
(102)

1112{ abc: 10a 10b 10¢

Table 8.1.1: 2-flats of (1,) = (10,)
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We see from Table 8.1.1 that the cycles induced by the trans-
formation g and given in Table 4.5.3 are present in the 2-
flats. Morgover, if we were to form a Table of the subsets
At; Bty Cy listing the 1-repeats, rather than the 3-repeats,
the results would be identical to Table 4.5.1, with the title
i3-repeat' replaced by 'l-repeat’'. All the cycle and repeat
properties would simply be reduced by one dimension, For ex-
ample, the II4 1-flats appear as 3-repeats seven times and
the Iy 1-flats five times each in Table h,5,1. 1In the cor-
responding Table of 02~orbits, the 1-flats of II4 would ap-
pear as singletons seven times and the I; 1-flats as single-
tons five times each,

Based on these observations, we prOposé that the decod-
ing method used above can be adapted to the order-2 code to
correct any number of errors less than 8, that is the number
of errors gorrectable with MLD. Assuming that the order-2
coqe can be decoded as suggested, we propose further that
this decoding method can be generalized to higher dimension
PG codes. The fact that Yamamoto et al's (58] sixth theorem
is applicable to any PG over GF(2) strongly supports such a
generaiization. As only two decoding steps and an associated
decoding table, would be reguired, the savings over the NID
method would increase with an increase in the dimension of
the code.

Before leaving the 2-flats of PG(5,2), we remark on
another interesting property which may lead to an alterna-
tive decoding method for codes of order other than (m=2) .

We discussed above the nine Oz-orbits of m,c. 63 that corres-'
pond to the 04-orbits (1y),...,(91), and mentioned the five
0,-orbits which repeated three times on the 0q-orbit (1i4).

The remaining eight Os-orbits are listed in terms of 1~flats
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in Table 8.1.2. These Op-orbits are non;perfect difference
sets, that is every point that appears, does so once only,
except of course the point O which is in each 2-flat. Also,
twenty of tﬁe points of PG(5,2). do not appear in each of the
On,-orbits of Table 8.1.2., The 20 points for the Os-orbits
in the first three columns are the non-zero points of two
symmetric relative 0q-orbits from Ij, of a 0y-orbit from II;
and of (111). The remaining two 0,-orbits in column four have
the non-zero points of (71) (81)y (91) and (114) as omitted |
points. In Table 8.1.2 the.oz-orbits are given in four col-
unns, where the two Op,-orbits in each column have the same
set of omitted points. The omitted points, listed as 04~

orbits, are given at the top of each column,

(31)0(6,)y  (L1)s(B)y (2000510, (71)4(8),
Gruatd ol ehialil o ehiald

1a 8a 10D 2a 9a 10a 3a 7b 10c¢ 2a 3b 6¢
1% 2¢ 9b . 2b 3¢ 7a 3b 4e Ba Lg 5b 2¢
1c ba 5c¢ 2¢c 5a 6¢ 3¢ 6a 1c €a 1b Le
Ly 8b 9c¢ 5b 9b 7c 6b 7a 8¢ 1c 2b 10c
5a 9a 10c 6a 7b 10b ia 8b 10a 3¢ Lb 10a}
2a 5b 8c¢ 3a 6b 9c¢ ba 1b 7c 5¢ 6b 10b
2b 4ec 10a 3b 5¢ 10c¢ b 6c 10b la 3a 5a)
Ly 8b 10b 5a 9b 107 6a 7a 10c 3a 4b 1c
Lt 5¢ 9a 5b 6¢ 7b 6b 1c 8b 5a 6b 3c}
Le 1a 2¢ 5¢ 2a 3c 6c 32 Le la 2b 5¢
1b 8a 9c¢ - 2b 9a 7c 3b 7b 8¢ 2c 3b 10b
2a 9b 10c¢ 3a 7a 10D bz 8a 10a e 5b 10c
5a 2b 8¢ a 3b 9c¢ 1a 4b 7¢ 6c 1b 10a
5b 1c 10a 6b 2¢ 10c 1b 3c 10b Za La Ga}

Table 8,1,2; 2-flats of m.c. 63 in terms of 1-flats

For the O,-orbits of the first three columns, if V; is any

2-flat in one of the O,-orbits of a given column, then g3(Vi)
is the‘corresponding 2-flat in the other Op-orbit of the col-
um. In the fourth column, if V; is any 2-flat in one of the

O0,~-orbits, then g(Vi) is the corresponding 2-flat in the other
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0,-orbit., Each of the 0,-orbits in column b can be divided
into the three subsets indicated in Table 8.1.2.

The st;ucture of these eight O,-orbits assures that
within a given column, no two 1-flats that appear in the same
2-flat in one of the 0,-orbits, appear together in the second
O,-orbit. It is interesting to note that, within the eight
O,-orbits, the IIy 1-flats appear less frequently than the
I, 1-flats, four timesvs, six times each. Ve recall that
the II, 1-flats apﬁeaf more frequently in the 0,-orbits (12);
«ess (92). The following four facts concerning the 0,-orbits
of Table 8.1.2 may prove useful in designhing a decoder
based on these Oy-orbits:

i) (114) does not appear in any of the Op-orbits,

ii) three other Ol—orbits are missing in'each Oz—orbit;
in particular, the points of a é&mmetric relative pair of
04 -orbits are missing for each of the Og-orbits in the first
three columns,

iii) the two Op-orbits in a given column are such that any
two 1-flats which appear together in one of the Op-orbits do
not appear together in the other,

iv) no point, other than 0, is repeated more than once in
any of the 0Os-orbits, that is the 2-flats are orthogonal on O,

We now present several other topics which require in-
vestigation. A further study of the structure of PG(m,2)
is necessary in order to determine if the null space flats
can give enough additional information to the decoder for
errors of weight greater than kzm*r+1—1)/2] to be corrected
in the.order—r PG code over PG(m,2). We recall that ce;tain
of the 0,-orbit r~flats were omitted in defining the 0;-orbit

decoders. The use of some of these flats as checks may
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provide enough informétion to the decodef for errors of
higher weighi to be corrected.

The pr?sentation of the codes that we have given does
not refer to the algebraic interpretation of the PG codes.
.To relate the two descriptions could be quite complex, but
would prove interesting. If such a study were done, the
following points should be considered:

i) How are the Oi-orbits related algebraically?

ii) Is there a pértitioning of the roots of the parity
check polynomial induced byvthe 0;~orbit structure.

iii) Does a knowledge of the algebraic representation as-
sist in obtaining the roots necessary to generate the indi-
vidual classes Iy pTIpeees ?

iv) How are the polynomiaIS'correspondiné to the 1-flats
in the 0q-orbit (t1) related to those of the r-flats in the

0y,-orbit (t,)?

v) The distinct iif's of a class are obtained by successive-
ly multiplying the point representation of a given iif by 2
until all iif's are obtained. What is the comparable alge-
braic operation?

vi) Within a given 0q-orbit, there are 6 non-zero points.
These can be considered as 3 non-zero points and their mod
(2*1.1) inverses. Is there an algebraic interpretation of
this?

viij What is the algebraic explanation of the many sym-
metries present in the 0;-orbit structures?

Tt is hoped that the investigation of the questions
presented’ in this section will provide a generalized Oi-orbit
decoder for the order-r PG code over PG(m,2) requiring only
a fraction of the circuitry needed to Majority Logic Decode

the code,
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A.2  Qg-orbit (42¢) 5-flats
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10c1lal2c¢l3aliecl5a16c9a 18a20a22a24a 26a27¢28a29c30a31c32a25¢ 38b38040b400 Liat1bllch2ali2bl2eliza
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