
1

MATHEMATICAL STRUCTURES FOR DECODING

PROJECTIVE GEOMETRY CODES

by

LOIS ELLEN WRIGHT

A thesis submitted for the Degree of Doctor

of Philosophy in the Faculty of Engineering

University of London

DEPARTMENT OF ELECTRICAL ENGINEERING,

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY,

UNIVERSITY OF LONDON

May, 1977.

2

SYNOPSIS

In recent years, a significant amount of research in the

field of Coding Theory has led to the development of error-

correcting codes for communication systems. Such codes make

it possible to correct and/or detect a large percentage of

the errors which may occur during the transmission of infor-

mation through a communication channel. However, in general,

these codes are not used in existing communication systems

due to the inherent complexity of their associated decoders.

The objective of this thesis is to overcome this difficulty

for a particular set of codes by developing a simplified de-

coding method which provides error-protection in a communica-

tion system without the associated cost of a complex decoder.

In particular, a simplified decoding method for certain Pro-

jective Geometry codes is presented. The decoding algorithm,

based on the results of an extensive analysis of the mathema-

tical structure of Projective Geometries, significantly de-

creases the complexity of the standard decoder of the Projec-

tive Geometry Codes. Moreover, the decoder can be implemented

simply and with little additional 'cost to the system.

The thesis begins with an introduction to basic Coding

Theory and Algebra concepts. This is followed by a detailed

study of Majority Logic Decoding and Projective Geometry (PG)

Codes. The mathematical structures, or orbits, used for de-

coding are developed and analysed. The simplified decoder is

applied to the (63,41) order-3 PG code and the (-255;218) order-

5 PG code. A comparison between the standard Majority Logic

Decoder and the proposed orbit decoder is made. Modifications

to the orbit decoder for increasing the distance of the codes

are described. The thesis is concluded with a discussion of

further research questions and conclusions drawn from this work.

3

ACNNOWLEDGEMNTS

I wish to express my appreciation to my supervisor,

Dr. Laurie Turner, for the discussions of, and the

• excellent suggestions to, the content'of my research

work.

Financial assistance was received from both the

National Research Council of Canada and Imperial Oil

Limited.

4
TA131341....fa=

Part

Cla12tu---11--.12210thr---Ig i ts • • 	 • 9
1.1 General Introduction 	. 	• 	 9

	

1.2 Communication Channel and Error Correction . 	10

1.3 Types of Codes . 	. 	• 	• .. 	• 	• 	. 	• 	. 	11

1.4 Thesis Outline . 	. • . 	• . . • • 	12

Chapter 2: Basic Theory and _Fundamental Codes 	• 	• 	15

2.1 Introduction . . • . 	• • 	• 	• • 	• 	15

2.2 Basic Algebra for Coding Theory 	• . • 	• 	15

2.2.1 Group Theory . 	• • • 	• 	15

2.2.2 Vector Spaces 	• • 	• • 	• 	• • 	• 	19

2.2.3 Matrix Theory 	. • 	• • 	 • • 	• 	 20

2.2.4 Polynomial Rings 	• • . 	• • • 	• 	21

2.2.5 Galois Fields 	. • • . • 	• 	• • 	• 	23

2.3 Linear or Group Codes . 	• • 	• • • 	• 	24

2.4 Cyclic Codes . 	• 	• 	• 	• 	• 	• 	• 	• 	• 	27

2.5 Error and Distance Bounds 	. • 	• . 	• 	30

2.6 Hamming Codes 	. • • • • • 	• 	• • 	. 	33

2.7 BCH Codes . 	• 	. 	• 	. 	• 	• 	• 	• 	34

2.8 Arithmetic Codes 	• . . 	• 	37

	

2.9 Conclusions and Thesis Objectives . • • . 	• 	39

	

i21Er23MajorityL,1.. • • • 	41

3.1 Introduction . . 	• • • • . • 	41

	

3.2 Reed-Muller Codes . • • • • 	• . • 	. 	41

	

3.3 Majority Logic Decoding . . • 	. • • 	• 	49

	

3.4 Projective Geometries . • 4 4 	 • • • 	• 	 57

3.5 Projective Geometry Codes 	. • 	• • • 	• 	 64

	

3.6 Majority Logic Decoder of an (n,k) code . • 	• 	69

	

3.7 Modifications of the MLD of PG Codes . • • 	72

3.8 Conclusions . 	. 	• 	• 	 . 	79

Decoder's Output . • • • .

7.2.2 Errors of Weight Four . • •

• • 167

•

• 	

• 	170

5 part II

	

chexter 4: Orbit Structure of PG(5,2) . • • 	. 	80

4.1 Introduction . . 	• • 	• 	80

4.2 Cycle Description of Finite Geometry Flats . 	• 	80

4.3 Cycle Description of PG-(5,2) 	. • • 	• 	• 	89

4.4 Orbits of PG(5,2) 	. 	• 	• 	. 	. 	• • 	• 	92

4.5 Symmetries in the PG(5,2) 0i-orbits . 	. 	• 	98

4.6 Independence of Oi-oribt Structure on

Minimal Polynomia? 	. • • • • • • 	• 	114

4.7 Basis of the Oi-orbit Symmetry . . • • . 	. 	120

4.8 Conclusions . . 	• 	• • 	• • • 	• 	. 	125

Chapter 5: Oi-orbit Decoder of Order-3 (61.41) PG Code 126

5.1 Introduction . ' . 	. 	• • 	• • 	• 	• 	. 	126

5.2 Order-3 (63,41) PG Code Standard Majority Logic

Decoder . 	. • • . • 	• 126

5.3 01-orbit Decoder of Order-3-(63,41) PG Code 	. 	130

5.4 Oi-orbit Decoder Error Analysis 	• • • 	• 	132

5.5 Conclusions 	. 	• • • • • 	• 	• 	• 	139

Chapter 6A 01-orbit Decoder of Order-5 (255,2181 PG Code 140

6.1 Introduction . . • • • • • • 	• 140

6.2 Standard Majority Logic Decoder of Order-5

	

(255,218) PG Code 	• 	. 	140

6.3 PG(7,2) 01-orbit Structure . • 	• • • 	. 	143

6.4 01-orbit Decoder of Order-5 (255,218) PG Code . 	152

6.5 Error Analysis of Decoder 	. • 	• • . 	. 	155

6.6 Conclusions . 	• 	• 	• 	 . 	. 	. 	• 	. 	0 	. 	166

Chapter 7: Modifications to the 0i-orbit Decoder 	167

7.1 Introduction . . . • 	• • 	167

7.2 Order-3 (63,41) PG Code 	. . • 	• • 	167

7.2.1 Composition of Errors from Knowledge of

6

7.2.3 Errors of Weight Five . 	. 	. 	• 	•

7.3 Order-5 (255,218) PG Code 	. 	. 	• 	•

7.3.1 Composition of Errors From Knowlege of

•

•

172

174

Decoder's Output 	. 	• 	• • • • • 174

7.3.2 Errors of Weight Four 177

7.3.3 Errors of Weight Five . 	• 	. 	. • • . 178

7.4 Conclusions
part III

. . . 179

Chapter 8: Summary of Results. Conclusions and

Further Research Topics . 	. • . . • 181

8.1 Summary of Results and Conclusions • • • • 181

8.2 Further Research Topics • • • • 183

Appendix• A 	. 	. 	. 	• 	• 	• 	• 	• • • • • 190

A.1 05-orbit (415) 5-flats • . • 190

A.2 05-orbit (425) 5-flats 	. 	. • • • • 191

A.3 415a,415b,415c 	5-flats 	. 	. 	. • • • 192

A.4 425a,425b,425c 	5-flats 194

A.5 05-orbit 	(435) 	5-flats 196

References • • • 198

7

Table

14IST CF TABLES

Projective Points and Lines of PG(2,2) .

Page

. 	64 3.4.1

3.5.1 1-flats of PG(2,2) 	. 	. 	• • • • • . 	69

4.4.1 01-orbits of PG(5,2) • • . . 	94

4.5.1 7-, 3-, 1-repeats of 03-orbits 	98

4.5.2' 03-orbits 	(13) 	- 	(93) 	. 	. 	• 	• 	. 	. . 100

4.5.3 1-flat Cycles 	. 	. 	• 	• 	. 	• 	• 	. . 102

4.5.4 3-flat Cycles 	. 	. 	• 	• 	• 	• 	. . 103

4.5.5 Symmetry Blocks of PG(5,2) 104

4.5.6, 1-repeat 1-flats of (13) 	- (93) 110

4.5.7 Summary of (101), 	(111) 1-flats in (13)-(93) . 111

4.5.8 1-flat Pairs in (13)-(93) 	. 	. . 111

4.5.9 3-, 	1-repeats of 	(13)-(93) 	. 	• 	• 	• 	. . 113

4.6.1 01-orbits of PG'(5,2) 	. 	. 	• 	• 	• 	e . 120

4.7.1 Initial r-flats, r=1,2,3 , 121

5.4.1 Error Triples with c=14, 	16 	. 	. 	. 	II 	. 0 137

6.3.1 01-orbits of PG(7,2) 	. 	. 	i 146

6.3.2 1-flat Cycles 	• 	. 	• 	• 	• 	• 150

6.3.3 Cycles of 0i-orbits 	II 	• 	. 	. 0 150

6.3.4 Symmetry Blocks of PG(7,2) 151

6.3.5 (415) and (425) in Terms of Symmetry Blocks . 152

6.5.1 Pairs and Triples of E 	. 	. 	. 	• 	• . 157

6.5.2 Error Triples An E 	. 	• 	• 	. 	. 161

6.5.3 Decoding Table for Error Triples in E 	. . 164

7.2.1 Weight w of (103) Inputs 	. 	. 	• 	• . 173

8.1.1 2-flats 	(12)-(102) 	. 	. 	• 	 • 	• 0 185

8.1.2 2-flats of rase. 63 in Terms of 1-flats . 187

8
LIST OF FIGURES

	

Figure 	 Page

	

1.1.1 	Communication System . • 	. • • 	• • 	10

	

3.4.1 	Example of PG(2,2). . • 	• • 	• • • 	60

	

3.6.1 	One-step Majority Logic Decoder of a.

(n,k) cycle Code 	• 	70

3.6.2 Two-step Majority Logic Decoder of a

(n,k) Cyclic Code 	. 	. 	. 	i 	e 	 • 	• 	• 	71

FART I.
	 9

1.1 General Introduction

Data communication systems are rapidly becoming more

and more prevalent as technology provides the increasingly

sophisticated equipment necessary for their existence. The

majority of communication networks rely heavily upon digital

computers and their peripheral devices, which have very low

tolerance to errors in received information. Consequently,

the application of Coding Theory, as a means of guaranteeing

the reliability of transmitted information, independent of

the parameters of the machinery, has become a practical way

of overcoming errors within these systems:

Previously, error-correcting codes were restricted to

highly specialized areas such as space communication or re-

mote control of machinery, where the occurrence of an error

could be disasterous. Coding was not introduced into less

specialized systems because of two major factors:

1) the complexity of existing decoding schemes, and

2) the cost of the associated circuitry. In the past few

years both of these problems have been reduced significantly.

Much research has gone into both the simplification of

existing codes and the development of new, less complicated

codes. And, of even more consequence, major technological

advances have decreased dramatically the cost and size of

solid state electronic devices. Together, these have made

coding a feasible solution to errors within a communication

system.

10

1.2 Communication Channel and Error Correction

A communication system consists of five major compo-

nents, the source, the encoder, the channel, the decoder and

the destination, as shown in the flow diagram in Figure 1.1.1.

noise

destination] source

Figure 1.1.1 Communication System

If no noise were injected into the system, codes would be

unnecessary. However, in all realistic communication chan-

nels, noise, to varying degrees, is a factor.

In most instances, the source consists of binary or

decimal digits grouped in such a way that a source alphabet

can be defined. A message, consisting of letters from the

source alphabet, is forwarded to the encoder, which trans-

forms it into a signal acceptable to the channel. This is

typically in the form of electrical pulses, restricted by

such channel parameters as power, bandwidth and duration.

The message is then input to the channel where it is subject

to errors from channel noise. The message, possibly perturbed

by errors, is received by the decoder. Based on this input,

the decoder must decide what message has been sent. The

decoded message is then passed on to the destination.

Shannon has shown that a communication channel, as

depicted above, has a capacity for the transmission of

information.[451 In fact, if the rate of the source is

less than the capacity of the channel, then a set of signals

can be chosen for the encoder such that the probability of

error by the decoder can be made arbitrarily small. The

11
aforementioned rate of the code is defined as the ratio of

the number of information digits transmitted to the total

number of digits transmitted. The ratio of the differnce

between the total number of digits and the number of infor-

mation digits, to the total number of digits, is the redun-

dancy of a code. The Shannon theory states that reliability

in transmission is possible but does not suggest how to

obtain such a system. ,Cading Theory shows that through

the addition of non-information or redundant digits to a

message, the theoretical degree of error-protection can be

obtained but only with an associated decrease in the rate

at which'information can be transmitted.

The channel depicted in Figure 1.1.1 is a one-way

transmission system. Two-way channels exist also and are

used in situations where error-detection is ct;:v-chc17.1i. In

such an instance, a request for retransmission can be sent

to the source and consequently the message retransmitted.

Such systems will not be discussed in the.following as

their efficiency, in general, is limited since a short

code is inefficient in correction of errors and a long code

requires too much retransmission time. However, a combina7,

tion of error-correction and error-detection holds much

potential as a communication system and will be discussed

later.

1.3 Types of Codes

Codes can be divided into two basic categories, block

and tree codes.

Block codes are so named because the encoder accepts

a block of k information digits at a time from the stream

of information digits produced by the source. These digits

12

are encoded into a block of n channel symbols, 11)1. This

block, called a codeword, is transmitted through the channel

where it may be corrupted by noise. It is then decoded as

a block of n digits by the decoder. The number n is called

the block length.

The second kind of code, the tree code, does not break

the information sequence into independent blocks, but rather,

operates on the input as a continuous stream. Each semi-

infinite information sequence is associated with a larger

number of digits than were input. Based on each set of ko

information digits, ko small, and all the previous informa-

tion digits, a no-symbol section of code is emitted, no> ko.

The term 'tree' refers to the convenient tree graph descrip-

tion of such codes. The most common and most researched tree

code is the convolution code, which consists of shifts of a

basic string of no digits.

Both block and tree codes have the same basic error-

correcting properties as well as limitations and restric-

tions imposed by rate and code complexity. Block codes

have, with their more well defined mathematical structure,

a correspondingly richer research history. This thesis is

concerned with a subset of block codes.

1.4 Thesis Outline

The thesis consists of three distinct parts. The

first of these provides the general Coding Theory and

Mathematical background required in the rest of the thesis.

Part II deals with Projective Geometry Codes and a new de-

coding method for these codes based on the mathematical

structure of the null space. The final part considers

further research questions and the conclusions.

13
More explicitly, in Part I, Chapter 2 presents a

general discussion of Coding Theory, emphasizing good codes

that have been developed, their decodability and the problems

associated with them. Also, the general objectives of the

thesis are detailed. Chapter 3 develops a particular sub-

set of block codes, viz. Majority Logic Decodable Codes. A

discussion of these codes, as presented by Reed[44 and

Muller[35], is given. Also in this chapter, an extensive

discussion of the mathematical properties of Projective

Geometries and of their associated Majority Logic Decodable

codes is presented. Part I is concluded with a discussion

of several methods developed to simplify Majority Logic

Decoding.

Part II, Chapters 4 through 7, presents a detailed

study of the mathematical structure of the null space of

Projective Geometry Codes, illustrating how knowledge of such

structure can simplify decoding. In Chapter 4, a discussion

of a 1966 paper by Yamamoto et al[581 provides the basis for

the development of the orbit structures used for the proposed

decoding method. Chapter 5 contains an extensive explanation

of the orbits of, and the associated decoder for, the order-3

PG(5,2) codes. A comparison is made between this non-ortho-

gonal decoder and the standard Majority Logic Decoder for the

code. The next chapter consists of a similar discussion of

the order-5 PG code over PG(7,2) emphasizing that it is a

logical extension of the PG(5,2) structure presented in

Chapter 5. The seventh chapter considers the feasibility

of adding error-detection to the orbit decoder to detect

more errors than are correctable by the standard Majority

Logic Decoder and an analysis is made. of the amount of

information obtained from this addition.

Part III considers the many further research questions

which have arisen as a result of this work. Finally, the

conclusions which are suggested by this study are presented.

15

CHATTER 2: BASIC THEORY AND FUNDAMENTAL CODES

2.1 Introduction

This chapter provides the reader with the basic alge-

braic Coding Theory background necessary for an understand-

ing of the ideas and concepts presented in the thesis. The

first section is a brief introduction to the algebra used

in developing codes. Next follows a discussion of two sub-

classes of the class of block codes: 1) linear, or group,

codes and 2) cyclic codes. The defining properties and

outstanding features of these codes are discussed. Several

parameters used in evaluating algebraic codes are examined.

Some of the most common block codes are reviewed with empha-

sis being placed on error-correcting properties, ease of

decodability and minimum distance of the codes. Finally,

the objectives of the thesis are given.

We note that as most equipment today is binary, non-

binary results are not emphasized and that in Part II, the

results refer only to the binary case.

•

2.2 Basic Algebra for Coding Theory

This section is a concise outline of the Algebra

required in the thesis. It consists of a review of Group

Theory, Vector Spaces,. Matrix Theory, Polynomial Rings and

Galois Fields. A more detailed discussion of these topics

is given by Birkhoff and MacLane in A Survey of Modern

Algebra[3].

2.2.1 Group Theory

A set of elements a, b, c,... and an operation * is

a group if it satisfies the following four axioms:

16

1) Closure: If a and b are elements of the set, then

a*b is an element.

2) Associativity: For a, b and c in the set,

a*(b*c) = (a*b)*c.

3) Identity: There is an element' e, the identity ele-

ment, such that for all a in the set,

a*e = e*a = a.

4) Inverse: Every element a of the set has an inverse

a-1 such that

a*a-1 = a-1 *a = e.

A group is Abelian or commutative if, for all a and b in

the group

a*b = b*a.

In the following, we represent the group operation as mult-

iplication rather than use the operator *.

A subset H of elements of a group G is a subgroup

of G if H satisfies the above axioms under the group oper-

ator. The order of a subgroup (group) is the number of ele-

ments in the subgroup (group).

If g is any element in a finite group' G, a sequence

g,g2,g3 ... can be formed. Then, since G is finite, there
exist integers j and i, j >i, such that

gi = gj = gigj i.

This implies that gj-1 = e. The order of g is the least

positive integer m for which gm = e. The set of elements

g,g2,...,gm=e is a subgroup, specifically the cyclic sub-

group generated by g.

A right coset (left coset) of a subgroup H of the group

G is the subset of G obtained by taking any fixed element g

of G and multiplying all the elements hi,h2,... of H by g

17

on the right (left) to form h1g, h2g, 	(gh1, gh2,...).

The number of elements in any coset is simply the order of

the subgroup H. No element of G is in more than one coset

of H. Two elements g and g' of G are in the same right

coset of H if and only if g'g-1 is an element of H. The

number of distinct cosets of G formed from the subgroup H

is the index of G over H. A subgroup H is normal if for

any h in H and g in G, g-lhg is H. In a normal sub-

group each left coset is a right coset and vice versa. We

deal primarily with Abelian subgroups where a left coset is

always.a right coset and hence each subsopup normal. The

factor iroup of the group G over the subgroup H, G/H, is

formed by defining a multiplication operator for cosets.

If fg1 represents the coset containing the element g, then,

the factor group has for elements, cosets, and an operator

such that for (gl} 	fg21 cosets,

fg21 = 1g1g2i •

The identity of the factor group G/H is the subgroup H =

A transformation Z: S T, from a non-empty set S to

a set T is a rule which assigns to each element p in S a

unique image element pZ in T. Thus, a transformation is

merely a function from S to T.

A permutation is a one to one transformation of a finite

set into itself. Permutations which give a circular arrange-

ment of the symbols permuted are called cyclic permutations

or cycles. For example if

1 	2, 2 -43, 3 -04, 4 -) 1,

then this can be written as the cycle (1 2 3 4). Any per-

mutation Z can be written as a product of cycles acting on

disjoint sets of symbols.

A binary relation R on a set S relates any two elements

18

a and b of the set. 'Either a is in relation to b, aRb,

or a is not in relation to b, agb. A relation R which has

the reflexive (aRa), symmetric (aRb implies bRa) and transi-

tive (aRb, bRa imply aRc) properties for all a, b and c in

the set S is called an equivalence relation. If a is any

element of S, we denote by R(a) the set of all elements b

equivalent to a, that is b is in R(a) if and only if bRa.

Two such R-subsets are either identical or have no elements

in common. A partition IT of a set S is any collection of

subsets A,B,... of S such that each element of S belongs to

one and only one of the subsets of the collection. The col-

lection of all the R-subsets form a partition of S.

If a group G of transformations of a 'set S exists, then

G defines an equivalence relation and hence a partition on S

by the rule a-,, Gb (a is G equivalent to b) if b = g(a) for

some g in G and a, b in S. The G-equivalence class de-

termined by an element a of S is the set Ga =tg(a)IgEG)

and this is called the G-orbit or orbit of a in S.

We proceed now to discuss a set with two operators. A

ring R is a set of elements a, 	c,... with two operations,•

addition a+b and multiplication ab, satisfying the

following. axioms:

1) R is an Abelian group under addition.

2) Closure: For a., b in R, ab is in R.

3) Associativity: For a,b,c in R, a(bc) = (ab)c.

4.) Distributivity: For a,b,c in R, a(b+c) = ab+ac

and (b+c)a = ba+ca.

The ring R is communative if ab = ba for any two elements

a and b in R.

A communative ring with a multiplicative identity and

for which each non-zero element has a multiplicative inverse,

19

is called a field. A non-communative ring with an inverse

for each non-zero element is a division ring or skew field.

We return to the discussion of rings and fields later.

2.2.2 Vector Spaces,

A set V of elements is a vector space over a field F

for which the following axioms hold:

1) V is an Abelian group under addition.

2) For any vector y in V and c a field element or scalar,

cy is defined and in V.

3) For 2 and y in V, c a scalar, c(u+v) = cu + cv.

4) For y in V, c and d scalars, (c+d)y = civ+ dy.

5) For y in V, c and d scalars, (cd)v_ = c(dy), iv = y.

A set A of elements over a field F is a linear associa-

tive algebra if:

1) A is a vector space over F.

2) Closure: For u and y in A, my is in A.

3) Associativity: For u,v and 3/ in A, (2.y)w = 2(vw).

4) Distributivity: For c and d in F, 2,v,w in A,

11(cy+dw) = cgy + dgm and .(cv+dA)2 = cy2 + dyai.

An n-tuple of n field elements al,a2,...,an is the

ordered set (a10.2,...,an). Addition of n-tuples is defined

by (al,a2,...,an) + (b1,b2,...,bn) = (al+bi,...,an+bn).

Multiplication by a scalar is as follows:

c(al,...,an) = (cal,...,can).

With these two operations defined, it is easy to show that

the set of all n-tuples over a field is a n-dimensional vector

space. A linear combination of k vectors or n-tuples vi,

Y21...,xk •is the vector 2

= 	+ 	+ akyk,

where the a- are scalars. The set of all linear combina-

20
tions of a set of vectors y1,12,...,yk of a vector space

V is a subspace of V. The vectors v1,v2,...,vk are lin-

early dependent if and only if there are scalars a1,a2,...,

ak for which

aiyi + a2m2 + 	+ akmk = 2.

A set of vectors which are not linearly dependent are lin-

early independent. A set of vectors spans a subspace if

every vector in the subspace is a linear combination of this

set. The least number of independent vectors which spans a

space is the dimension of the space, A set of k linearly

independent vectors which span a k-dimensional subspace is

: a basis -of the subspace. The inner product of two n-tuples

is a scalar as follows:

(al,a2,...,an)*(b1,b2,...,bn) = alb]. + a2b2 + 000 	anbn.

If the inner product is zero the two vectors are orthogonal.

2.2.3 Natrix Theory

In the development of several of the codes to follow

we refer to matrices. Consequently we now give some basic

results from Matrix Theory. An (nxm) matrix j is an

ordered set of nm field elements expressed as n rows and

m columns:

all a12 •

a21 a22 •

. . aim

. a2m

an ant • 0 • anm

Each column or row can be thought of as a vector. The row

(column) space of E is the set of all linear combinations of

the row (column) vectors. They form a subspace of all the

possible m (n)-tuples, the dimension of which is called the

row (column) rank of M. A matrix may be operated on by any

21

or all of the following elementary row operations or their

inverses:

1) interchange any two rows,

2) multiply any row by a non-zero field element,

3) add any multiple of one row to another.

If a matrix I' is obtained from the matrix E by elementary

row operations, then y and w have the same row space.

If, for a square (nxn) matrix, the rows are linearly

independent, then the matrix is non-singular. The identity

matrix has ones along the diagonal and zeros elsewhere. The

transpose of a (nxm) matrix E is a (mxn) matrix, le, with the

rows and columns of E interchanged. Two matrices laiil and

[bij are added element by element as follows:

Laij + [bi,d = [aii +

By defining matrix multiplication of a (nxk) matrix [aiilby

a (kxM) mattrix [bid as [cij] where the element cij of the

matrix is defined by

Clj.. =

ai b s sj P

we can represent the elementary row operations as elementary

matrices. With multiplication so defined the inverse of a

matrix can be formed.

The set of all n-tuples orthogonal to a subspace V1 of

a matrix is a subspace V2 and is called the null space of V1.

If the dimension of V1 is k, then the dimension of the null

space V2 is (n-k).

2.2.4 p__yiliolorr

We now return to our treatment - of rings. An ideal I is

a subset of elements of a ring R such that:

1) I is a subgroup of the additive group of R.

22

2) For all a in I, r in R, ar and ra are in I.

The cosets formed relative to the ideal I are called residue

classes. They form a ring called the residue class ring.

The ideals below are from the algebra of all polynom-

ials in one indeterminate over a field F. A monic polynom-

ial has as a coefficient, one, for the highest power of X.

An irreducible polynomial p(X) of degree n is not divisible

by any polynomial of non-zero degree less than n. The great-

est common divisor of two polynomials f(X) and g(X) is defined
•

as the monic polynomial a(X) with greatest degree, such that

a(X) divides f(X) and g(X). If a(X)=1, then f(X) and g(X)

are relatively prime. Degree zero polynomials, or field

elements, have inverses. However, no polynomial of positive

degree has an inverse.

A subset of polynomials is an ideal if and only if

every polynomial in the subset is a multiple of a fixed

polynomial. The residue classes of polynomials modulo a

polynomial f(X) of degree n, form a commutative linear al-

gebra An of dimension n over a coefficient field. The alge-

bra An plays an important role in.the development of the codes

discussed in Chapter 3. In this algebra, if g(X) is the

monic polynomial of least degree such that the multiples of

g(X) form an ideal J = (g(X)) and p(X) is a polynomial of

degree less than n and divisible by g(X), then p(X) is in J.

Moreover, if p(X) is in J, then g(X) divides p(X).

Every monic polynomial g(X) which divides (Xn-1) forms

an ideal with generator polynomial g(X). The null space of

the ideal generated by g(X), is the ideal with generator

polynomial h(X) where g(X)•h(X) = (Xn-1). If h(X) has degree

k then the ideal generated by g(X) modulo (Xn-1) has dimen-

sion k.

23

2.2.5 Galois Fields

We conclude this section by dealing briefly with some

properties of Galois Fields.

An extension field of degree m over a field F is formed

by taking polynomials over a field F modulo an irreducible

polynomial, p(X), of degree m. F is called the ground field

of the extension field. For any prime number p, the residue

classes of integers modulo p form a field called the Galois

Field GF(p). The field of polynomials over GF(p) modulo a:

degree m irreducible polynomial is an extension field called

the Galois Field of pm elements, GF(pm).

Any finite field with q elements is isomorphic to GF(q).

Galois fields represented as residue class-es of polynomials

modulo an irreducible polynomial over GF(p) have character-

istic p. If pc is an element of the extension field, the

monic polynomial m(X) of least degree over the ground field

F for which m(o) = 0, is the minimal polynomial of 04 and is

irreducible. If p(X) is a polynomial with coefficients in

the ground field and p(00=0, then the minimal polynomial of

m(X), divides p(X). Every element in the extension

field of dimension m has a minimal polynomial of degree m

or less. The polynomial (Xcl-1-1) has all (q-1) non-zero

elements of GF(q) as roots. The polynomial (Xm-1) divides

(Xn-1) if and only if•m divides n. A primitive element of

GF(q) has order (q-1) and every non-zero element of GF(q)

can be written as a power of 04. The multiplicative group

of GF(q), consisting of powers of 0c, is cyclic. An exten-

sion field of GF(q) contains all the roots of (Xqm-i-X).

Moreover, these roots form a subfield. If p(X) is an irre-

ducible polynomial of degree m with coefficients over GF(q)

and /5 is a root of p(X) in the extension field, then

24
qm-1

Acl, • • • 1,3 	are all roots of p(X) with the same order.

The order of the roots of an irreducible polynomial is the

exponent to which the polynomial belongs. If a polynomial

p(X) belongs to b, then p(X) divides (Xb-1) but no other

polynomial of the form (Xr-1), r<b. An irreducible poly-

nomial of degree m is primitive if it has a primitive ele-

ment as a root. A degree m polynomial is primitive if and

only if it belongs to (qm-1) or, if and only if it divides

(Xr-1) for no r less than (qm-1).

2.3 'Amax or Group Codes

All the codes, save one, discussed in the thesis are

members of the class of linear codes. In the following we

assume that the code symbols are elements of a finite field

and that q is a power of a prime, where for most cases q is

2. An excellent and more detailed treatment of the remaining

topics in this chapter can be found in both1A._,gLl_._Draicfnodig

Theory by E. R. Berlekamp[13, and in Error-Correcting Codes

by W. W. Peterson and E. J. Weldon[371.

A linear block code over GF(q) of block length n and

dimension k is a k-dimensional subspace V of the n-dimensional

vector space W of all n-tuples over GF(q). This subspace is

called a (n,k) linear block code. These codes are also

called group codes because the k-dimensional subspace V forms

an Abelian subgroup over the prime field. Vector space

theory provides a simple characterization of these codes.

A k-dimensional subspace has a set of k basis vectors. These

can be written as the k rows of a (kxn) matrix a, called the

generator matrix of the (n,k) code. The set of codewords is

then the rcw space of the matrix C. The number of such lin-

ear combinations is qk, which is simply the number of ways

of selecting the q possible coefficients of each of the k

25

possible basis vectors.

An alternative description of the (n,k) code is given

by the (n-k)-dimensional null space V' of the subspace V.

A matrix H of rank (n-k) with row space V' can be formed.

Then, the (n,k) code is defined as the set of vectors y,

orthogonal to H, which is to say y and any row of H have an

inner product of zero, or in terms of matrices,

=O.

This equality can be expressed as (n-k) independent equations:

vjhij = 0, 	i=1,2,...,(n-k)

where vj is the j-th component in the n-tuple y, and hij is

the element from the i-th row and j-th column of H. Since

each of these equations is, in fact, a parity check on the

codeword y4 the matrix 11, is called the parity-check matrix.

V' is a subspace of W and hence is also a linear code, the

(n,n-k) code with null space V. V is the dual code of V'

and vice versa.

Decoding of these codes is accomplished by a rearrange-

ment of the vectors of the generating matrix a. Two decoders

based on this process are presented here, the second being

an improvement over the first.

If the qk code vectors are ordered as 	k,

where i1 is the all zero n-tuple a decoding table can be

formed. Row one consists of the qk codewords, it,...,iqk.

Next, one of the remaining non-codeword n-tuples, say mi, is

selected, where usually ml is one of the most likely vectors

to be received if ii, the identity, were sent. The second

row of the decoding table is then mi+ii, j=1,...,qk. This

process is repeated until each possible n-tuple appears in

the table, for a total of qn-k rows. Each row of the table

26

is a coset and the first element in each row, the coset

leader. Although the table just formed could be used to

decode, a simplified version requiring less storage is now

defined. The product of the (n-k)xn parity-check matrix H

and a codeword vector y is an (n-k) component vector a
called the syndrome. A vector is a codeword if and only if

it has a 0 syndrome. To decode in the binary case, a table

is formed consisting only of the coset leader and syndrome

for each of the 2n-k cosets. When a vector is received, its

syndrome is calculated and then found in the table. The

coset leader which is associated with it is the most probable

error. It is subtracted from the received codeword to give

the decoder's estimate of the message sent..

A variation of the above gives step-by-step decoding.

For this method, it is necessary to determine for each re-

ceived vector the weight of the minimum weight element in

its coset. This requires a larger table than for the pre-

vious method but can be accomplished without listing the

whole table of cosets plus syndromes. The q field elements

fl,f2,...,fq are listed with zero appearing last. The

vectors are ordered lexigraphically in the sense that if

(vi,...,vn) and (wi,...,wn) are two vectors alike in the

first (j-1) positions, but vj follows wj in the order of the

field elements, then (vi,...,vn) follows (wi,...,wn). To

decode the received vector (vi,...,vn), the weight associated

with its coset is determined. The step-by-step process is

then begun. The first element vl of the received vector

is replaced by vl-fl, v1-f2 and so on until the weight of the

coset of the altered vector is less than the original coset

weight. The first element of the received vector is then

replaced by vl-fi, where fi corresponds to a coset of lower

27

weight. If no smaller coset weight is found vi remains the

first element of the received vector.. This procedure is re-

peated until the weight of the coset is zero, that is the

vector represents a codeword. It is then assumed that this

vector was the codeword sent. This ddcoding method decodes

each received vector into the nearest code vector.

The above two methods are indeed valid decoders, how-

ever their drawbacks are significant. With both these decoders

the storage requirements and look-up times are prohibitive

for any reasonable length code. Moieover, step-by-step de-

coding.can become a very lengthy process.

Although these methods are of interest on their own, we

present them here primarily for the purpose of illustrating

the relative effectiveness of the more sophisticated methods

which are to follow.

2.4 Cyclic Codes

Cyclic codes are a very important class of block codes.

This importance is due mainly to the high degree of mathemat-

ical structure possessed by the codes. We begin this section

with a discussion of the defining 'properties of these codes.

If V is any subspace of the space of all n-tuples such

that if y:= (v 	v 	v) is in V then 	= (v v n-1' 	o 	 -oo

vi), the vector resulting from cyclically shifting v one unit

to the right, is also in V, then V is called a cyclic sub-

space. The corresponding code is a cyclic code.

The most common cyclic subspace considered in coding is

a subsapce of the n-dimensional algebra An of polynomials

modulo (Xn-1). The elements of this algebra are residue

classes of polynomials, where the representative polynomials

have degree less than n and each distinct polynomial of

28

degree less than n represents a distinct residue class. For

a polynomial v(X) = 	1-1 + . . . + viX + vo, the corres-

ponding n-tuple is written (vn.q,...,v1,v0). Recalling the

definition of an ideal given in Section 2.2, it is apparent

that a subspace is cyclic if and only lf it is an ideal. This

is so because multiplication by X of a polynomial modulo

(Xn-1) is equivalent to a cyclic shift of the n-tuple repre-

sentation of the polynomial. Every ideal has a generator

polynomial, g(X). Thus a code is specified by giving the

generator polynomial g(X) where g(X) divides (X11.-1). The

null space is then given by the parity-check polynomial

h(X) = (Xn-1)/g(X). The code generated by h(X) is equivalent

to the dual code of the code generated by g(X). The poly-

nomial e(x) is a codword polynomial if and only if g(X)

divides f(X).

An alternative description of a k-dimensional code is

given by the roots o1,. . . .c<n-k of the degree (n-k) gen-

erator polynomial g(X). For this definition, a polynomial

f(X) is a code polynomial if and only if 0<1, . 	0.(1.1_k are

roots of f(X). These roots can be expressed as powers of a

fixed primitive element o‹. of order e, where 0(i = 0(
41
 for

some 41i. If mi(X) is the minimal polynomial of a.j, then

alltherootsof-(X) are given in the sequence o.

0(:4
4.(12 	

. Through an analysis of its roots, g(X) is

factored into its minimal polynomials and the corresponding

sets of roots are called cycle sets. We refer to this

concept again in Part II.

We note briefly that these codes can easily be put into

. . . matrix form. If g(X) = gn-kXn-k + 	+ giX + go is the

generator polynomial of a cyclic code, then the set of poly-

nomials, X
k-1

g(X), Xk-2g(X), 	Xg(X), g(X) are all code

29

vectors and when expressed as n-tuples, linearly independent.

Thus, the (kxn) matrix

gn-k gn-k-1 	• . go 0 . • . • 0

0g 	 • 0 n-k 	• ▪ • gl go •

• •

• 	 • Q.

•

0 	0 	• • • gn-k

is the generating matrix of the code and the row space of

G is the code.

One.of the most important features of cyclic codes is

their simple implementation. For this reason we present a

succint exposition of the two methods used for encoding.

For both encoders, a k-symbol block of information

digits forms the input and is sent through the channel. A

delay then occurs as the (n-k) check digits are generated.

The first encoder simply uses a k-stage shift register to

produce the (n-k) check digits. The second method is some-

what more complicated but still not difficult to implement.

If f(X) is a polynomial with the k information digits as

coefficients of Xn-1,...,xn-k,then f(X)=g(X)q(X)+r(X),

by the dlirision algorithm, and the degree of r(X) is less

than (n-k) for some q(X). Then, f(X)-r(X) is a codeword,

and the coefficients in the low order (n-k) positions are

the negative of the check digits. The encoder for this

method is an (n-k)-stage shift register with premultipli-

cation by X
n-k. The negative of the (n-k) digits remaining

in the shift register are sent on to the channel.

The decoder for cyclic codes provides a simple method

of error-detection. The received check digits are subtracted

30
from the check digits calculated from the received infor-

mation digits, using, as above, an (n-k)-stage shift register.

If the result is 0, then the received vector is a codeword,

otherwise an error is detected. Subh a decoder is an excel-

lent means of error-detection. However, the alterations re-

quired to allow for error-correction are complex and hence
awA

the resulting decoderAis not a feasible method of error-

correction.

In this section and in the previous one we presented

two general classes of codes and their associated simplis-

tic decoders. In later sections we introduce specific codes

and their more complicated and hence more powerful decoders.

However, first we disucss certain bounds used for comparison

of codes.

2.5 error and Distance Bounds

In this section we deal with several means of evalu-

ating the performance, or describing the capabilities, of a

given code relative to other codes.

Probably the most common metric used to characterize a

code is the Hamming distance. The Hamming weight of a code

vector y, written w(v), is the number of non-zero components

in v. The Hamming distance between two vectors yl and v2 is

defined as the number of positions in which they differ, or

in the notation giveri, w(y1-y2). For a linear block code,

(yl-v2) is a code vector. Thus, the distance between any

two code words is in fact the weight of some codeword. The

minimum distance of a linear code is the minimum weight of

the non-zero code vectors.

Another distance metric, the Lee weight, exists but this is

used only infrequently. For completeness we include its de-

31

finition. The Lee weight of an n-tuple (vn_1orn,...,v0) the

vi from the set

wL

As for the Hamming

n-1

(0,1,...,q-1)

vil, 	where

distance, the

is

=

Lee

/vi , Os 	<q 2 vi

q-vp q/2 < vi s (q-1).

distance between two

n-tuples is defined as the Lee weight of their difference.

We note that for q=2 and q=3 the two metrics coincide.

We now examine some of the upper and lower bounds on

the maximum minimum Hamming distance of a linear (n,k) code,

with fixed n and k. We do not give a detailed study of

these bounds but rather present only the results necessary

for comparing codes.

The most general upper bound on the minimum distance d

of an (n,k) linear code is the Plotkin bound of the average

weight nqk-1(q-1)/(qic-1). Further, if n ?..(qd-1)/(q-1),

the number of check digits necessary to attain the minimum

weight d is at least ((qd-1)/(q-1))-1-logqd.

The Hamming upper bound on dz 2t+1 is expressed as the

following bound on the number of check symbols:

(n-k)?. logq(1 +(ikq-1) +(2)(q-1)2 + 	+(.7)(q-1
)t

).

A third upper bound on the minimum distance of a linear

(n,k) code is due to Elias. For large n this bound is tighter

than either of the above bounds. The Elias bound is:

d<2t(1-4)(
k

where t is any integer such that

77 (1J) 2n-k ,

and k is the smallest integer such that

32
t 1- 2_, (3)/ (2n ").

j=0

These three bounds are the most common upper bounds on min-

imum distance. We now give the Varsharmov-Gilbert lower bound

on minimum distance. This bound states that there exists an

(n,k) code with minimum distance at least d provided

(d-2)
	 (y)(q-1)i a (qn-k).
i=o

As noted earlier, we are primarily interested in binary

codes and hence with binary symmetric channels. We now con-

sider some bounds on probability of error, Pe, for such chan-

nels. In the following Q is the probability of correct trans-

mission, P the probability of an error, for the best binary

code with given rate and length. Given a. minimum distance

of d, we have the rather trivial bound,

Pe
	d 	

(d)picl(d-i),

/**1

where [x] is the greatest integer in x. The sphere-packing

lower bound on Pe is

nl i n-i
Pe 4j) 0<t4.1) P(t+1)Q(n-t-1)

	
i=
	(*)PQ 1.

t the greatest integer such that

	

e<t +1 = 2n -k - 	(ril) - 	- • • • - (1) > 0.

We conclude with the random-coding upper bound on Pe which

applies only to group codes and states

Pe 	dg-1

	

=S-7 	

j +1 j 	(hn+11)(h+i-1)(n) 	ni 	n_i

A 2 	j 2n- -1 +j=d j g/2) idg-j h 	2

where dg is the largest integer such that

2n -k > 2 d 1 (21.
CA'eOutl2i 	 ,

33

2.6 Eamming Codes

The Hamming code, which corrects all single errors, is

a natural extension of the decoding table decoders discussed

in Section 2.3. The basic binary Hamming code has length

n=2m-1 and m parity check digits. The decoder for this code

makes use of the fact that there are 2m-1 single error pat-

terns, each of which can be made the coset leader of a dis-

tinct coset. Moreover, since there are m rows in the parity-

check matrix Ho its columns can be written as the binary

representations of the digits 1 to 2m-1. Then if a codeword

v is transmitted and a single error occurs, giving v'=v+e,

can be correctly decoded by observing the syndrome a
= eI . This is a consequence of the error vector e being

all zeros except for a single 1 in position i, for 1z_.i52m-1.

Thus, when e is multiplied by H, the resulting syndrome is

simply the i-th row of ET, that is the binary representation

of the digit i. To correct the single error in v, the i-th

digit is -ivl osr-k-ej,.

The code can be modified to any length n. To do so, the

matrix HI is constructed as above,• using the smallest m such

that (2m-1)> n. Then, any selection of (2m-1-n) columns are

removed, leaving the required n columns. To decode a single

error, the syndrome is calculated and if it corresponds to

the j-th row of Lg, then the j-th digit of the codeword is

in error.

Detection as well as correction of errors is possible

with the Hamming decoder if a single parity-check digit is

added to the codeword. This increases to (m+1) the number

of,parity-check digits and increases the length of the code

to 2m. To decode, the syndrome is calculated. If it is 0,

'4

no errors are detected. If the last syndrome digit is a one,

a single error is assumed to have occurred. The position in

error is determined from the remaining syndrome digits, using

the above decoder. If the syndrome is not the zero vector

and the last digit is zero, then a non-correctable error pat-

tern of at least two errors is detected. In a similar way,

the modified Hamming decoder of any length n can be made to

detect errors.

The binary Hamming codes have a fairly simple structure.

All the vectors in the null-space of the single error-correct-
tr, ^!'r 	 ;-st-rhq

ing code have the same Hamming weight. They are also,one of

the few examples of a perfect code©

Overall, these codes are a marked improvement on single

parity-check codes. However, they are still basically high

rate codes unable to correct any pattern of two or more errors.

2.7 PCH Codes

The codes discussed in this section are a generalization

of the Hamming Cosies. They are the best known of all non-

random cyclic codes and possess powerful error-correcting

properties and are relatively simple to decode. The BCH

codes, developed independently by Bose and Chaudhuri in 1960

and Hocquenghem in 1959, are probably the single most im-

portant class of codes yet developed and have long served

as a standard by which other codes are compared.

The definition of a BCH code over an extension field

GF(qm) of GF(q) is given in terms of the minimal polynomials

of its roots. For oc. an element of GF(qmrwith order e, r

an arbitrary non-negative integer, ean integer such that

2...4.te, and mi(X) the minimal polynomial of ex, r.4i.4r+d-2,

35

the generator polynomial of the BCH code with parameters

q,m,r,d and c<, is defined as

g(X) = LCM (mr(X), 	, mr+d-200).

The block length n of the code is the product of the orders

of the rootso<F,4F+1, 	tord-2. 'The binary BCH codes

with r=1 and d=2t+1, t an integer and oc a primitive ele-

ment of GF(2m), are the most important :subclass of this

class of codes. The roots of the generator polynomial for

this subclass are 0.4,(0(.2, 	,oet. Recalling the discus-

sion of minimal polynomials, if oci is the root of mi(X),

then so are 	etc. Thus, only the roots with an

odd power yield a distinct minimal polynomial in the factor-

ization of g(X), that is

g(X) = LCM (mi(X), m3(X),..., m2t-i(x)).
As eachmi .(X) can have degree at most m, g(X) has degree at

most mto, to the number of factors in g(X), which is tanta-

mount to the code having mto parity-checks.

Binary BCH codes have a lower bound on minimum distance

of (d''). Moreover, for any BCH code with fixed rate, the

ratio of minimum distance to code length n tends to zero as

n becomes large.

The BCH decoding algorithm consists of several steps,

some of which involve terminology that must be defined be-

fore the decoder can.be presented.

If the code word sent is given as the polynomial f(X)

and errors occur which are described by the error polynomial

e(X), then the received polynomial is u(X)=f(X)+e(X). If

the elements cj,ce41, ...pcK
r+2t-1

are substituted suces-

sively into u(X), the resulting sequence is e(ocr),

e r+2t-1) since 	ce+2t-t
cj, 	

, 	are roots of the code

vector u(X). The sequence listed is the basis of the BCH

36

decoding algorithm. The parity-check calculations give the

2t ectiations:

n-1 ; v
e(c(i) =

i=0 	
= E:Y.)j = S., rsj2t -1,

 i=1

where Yi is the magnitude of the error, Xi is the error lo-

cation number and v errors have occurred. Decoding is based

ontheobservationthate.is non-zero in the above set of

equations for the positions in error in the received vector.

In the binary case, as Yi is one for each error, only the X i

need be found. In the general case, to correct any number.

ve;t of errors, the pair (Yi,Xi) must be obtained for each

error. This is achieved by solving the set of equations:

Si = EYiXi, r<j...sr+2:t-1.

To facilitate this, the quantities a100-2,...1 61,0 the element-

ary symmetric functions of the Xi are defined by the equation:

(X+X1)(X+X2)...(X+Xv) = Xv + 61Xv-1 	'" 6v-1X 	°-vg
From this equation the following set of linear equations

relating the S i and a) are formed:

Sj6v + 	 + Siinr _161 +S j+v = 0, r.c.j2t-1-v.

With the above definitions, the decoding can now be described

as follows:

1) Calculate from the received vector -u(X), the parity

checks S i , r...c.j.sr+2t-1.

2) The maximum successive number v of these equations

that are linearly independent is the number of errors

which occurred.

3) Set 6+1,...,6t to zero and solve the first v equa-

tions for 01,0-2,...pay,

4) Substitute each of the non-zero elements of GF(qm) in

Xv - v°IAv-1 	+ crir(-0 v

the roots of which are the error location numbers.

37

5) In the non-binary case the error location numbers ob-

tained in step 4) are substituted into the first v

equations in

e(0.)) = 	Y.X = S. j' 1=1
to solve for the Yi.

Many simplifications of the basic algorithm have been found

which reduce the complexity of the calculations used in the

decoder. For the binary case several simplifications are

possible. First, the binary circuitry is simpler to construct

for step 1) and step 4). In step 3) the calculations them-

selves are simpler and moreover, step 5) is unnecessary as

the magnitude of each error must be one.

We have discussed the decoder used for BCH codes in some

detail for two reasons. First, as mentioned earlier, BCH

codes are perhaps the best known and most powerful of all

codes. Secondly, the decoder has illustrated what is con-

sidered to be a relatively easily decoded code.

2.8 Arithmejic Codes

We include these codes in our discussion as they are a

practical method of encoding in a network using a computer.

These codes are unlike most codes in that, as their

name suggests, all operations for encoding and decoding are

arithmetic. Consequently, the standard error and distance

definitions are not applicable.

A number N is represented as a polynomial in a radix-r

system as:

N = Nn-tr + 	+ N1r1 	No, 05.N4rn,

The length n codeword is written as Nn_iNn_2...N1No. The

minimum number of non-zero terms in the polynomial expression:

N = anrn + 	+ air + ao,

38

where the ai can be positive or negative but the absolute

value of each ai is less than r, is the minimum weight of N.

The arithmetic distance between two numbers N1 and N2 is the

weight of the differnece N1-N2. If the number N1 is sent and

N2/4141 received and the distance between N1 and N2 is d, then

there is a .d-fold error, or equivalently, a number of weight

d has been added to N1. If there is an arithmetic distance

of at least d between all coded numbers, then all errors of

magnitude d or less can be detected. To correct t or fewer

errors, it is necessary for the minimum distance to be at

least (2t+1). This definition of distance is especially

applicable to a computer system as it considers each digit

of the radix-r number to be possibly in error.

The actual coded form of the number Nis the n-digit

radix-r representation of the ntii-riber AN, where A and r are

relatively. prime. With this definition there is a similarity

between these codes and the class of cyclic codes. If there

is a smallest n such that A divides (rn-1) and n is the

length of a codeword, then every cyclic shift of a codeword

is a codeword, for if

N = an-1rn-1 + 	+ a1r + a0,

then a cyclic shift gives

an-2 r
n-1 	+ 	+ aor + an-1-= rN - an-1(rn-1)

which is, as required, a multiple of A.

To represent AN in the form described, the smallest

number of digits required is at least

log
r
AN = N + logrA.

The constant logrA is the redundancy of the code. The AN

code is capable of correcting all combinations of t errors

if and only if all numbers of weight at most t have distinct

residues modulo A.

39

To encode the AN code, the number N is multiplied by A.

To decode, the received code4number is divide,A by A and if

the remainder is zero, no errors are assumed. Otherwise,

the remainder is taken to be the characteristic of the error

number, which is the difference between the received number

and the most likely code number transmitted. To determine

this most likely code number, a search is made in a table of

remainders and their corresponding most probable error number.

These codes are interesting as a class of codes which

are easily implemented on a computer. However, they are re-

strictive in the sense that they basically perform a check

on the arithmetic of a computer rather than act as a prac-

tical code for a communication network using a computer.

2.9 Conclusions and Thesis Objectives

In this chapter we have reviewed algebraic topics re-

quired for the development of codes discussed both in this

chapter and in later chapters. Two important classes of codes,

linear codes and cyclic codes, were discussed. Several bounds

on distance were presented as a means of comparing codes.

Hamming Codes, as the forerunner of generalized error-cor-

recting codes, were reviewed. As the most well known and

powerful'of all algebraic codes, BCH Codes received a thor-

ough treatment. The discussion on codes concluded with

Arithmetic Codes. Notably, an important class of codes, the

Majority Logic Decodable Codes, was omitted. The next chap-

ter is devoted to these codes.

In this chapter we have given the reader the background

necessary to appreciate the rest of the thesis both in terms

of Mathematics and basic Coding Theory. By presenting

several typical decoding methods, we emphasized the distinct

40

need for much simpler decoding algorithms if error-correcting

codes are to be a feasible addition to communication networks.

We remark that computers, now a major constituent of many

networks, should be considered as a factor when designing,

or simplifying existing, decoders.

The need for simple decoding algorithms with coiespond-

ingly simple circuitry is the prime requirement for a prac-

ticable error-correcting communication system. It is this

necessity to which we direct the thesis. The approach taken

is to study in detail the mathematical structures of the null

space of a class of codes already considered to possess a

relatively simple decoder compared to those discussed in

this chapter. To this end, Projective Geometry Codes, a

subclass of the class of all Majority Logic Decodable Codes,

were chosen for the study. In the analysis, emphasis is

placed on finding symmetries in the null space which prove

useful in simplifying the standard decoder for this class of

codes.

Chapter 3 is an extensive review of Majority Logic

Decoding and Projective Geometry Codes.

41

CHAPTER 1: DIAJORITY'LOGIC DECODABIE CODES

3.1 ntad=1194

In this chapter, Majority Logic Decoding and several

related topics are discussed. We first review a class of

binary linear codes, the Reed-Muller codes, and the associated

decoder. The Majority Logic Decoding algorithm, which is

based on the Reed-Muller decoding method, is considered in

some detail. The best known class of codes which are Major-

ity Logic Decodable are the finite geometry codes. We discuss

a subclass of this class, the Projective Geometry Codes,

giving a detailed mathematical description of Projective

Geometries and the codes formed from them. The decoder used

for this subclass is studied. The chapter is concluded with

a summary of several modifications which have been made to

the Projective Geometry Code Majority Logic Decoder in order

to improve its performance.

3.2 Reed-Muller Codes

The class of codes discussed in this section are an in-

genious alternative to Hamming Codes and BCH Codes. Unlike

the latter codes, the Reed-Muller (R-M) Codes, [351[411, can

be decoded without the error digits being located and cor-
)tTf.s. 	y

rected A The decoder for the R-M Codes depends on the major-

ity testing of redundant digits within the code. As a result,

the decoder can be very easily implemented. As the mathema-

tical development of the R-M Codes is instructive in under-

standing the basis of the decoding method,- we include a de-

tailed exposition of it.

We note that Majority Logic Decoding is simply a varia-

tion of the decoding method presented here.

The R-M Codes are binary codes of length n=2m with code-

42

words of the form:

I = (fo,f1t—Pfn-1)'

fj = 0,1, j=0,1,...,n-1, from the space of all n-tuples over

GF(2). If 9 denotes binary addition, then the sum of two

codewords 	= (fo,f1,...,fn_1) and g = (go,g1,...,gn_1) is:

= (fot—Pfn-1) $ (gol...Pgn-1)

= (fo@g0,"*Pfn-legn-1)*

where xjegj is the modulo-2 sum of the binary digits fj and

gj, j=0,1,...,n-1. Multiplication by a binary scalar a is

defined as:

al = a(f0,..., fn-1) = (afo'""afn-1)t

and multiplication of the vector by the vector g as:

le = (for.e.tfn-1)(go,...tgn-1)

= (fogow s P fn-1gn-1)6

The complement 11 of the vector I is:

I' = 	® .t•

where a is the identity vector (1,1,...,1). The distance

between any two vectors and g, is the Hamming distance

w(f,g). Any code vector can be expressed as:

= foI 9 fill 9 ". $ fn-1111-lt

where ij is the unit vector with a one in the j-th position

and zeros elsewhere, j=0,1,...,n-1. Moreover, each 	cann

be written as a product of m vectors from the set of 2m

vectors 	where Xi is the vector consisting

of the pair of digits 002 	times, X2 is the vector of digits
fe ricAth-L2

00114\ 2 	times and so .on, as follows:

$1 = (010101...0101)
X2 = (001100...0011) .

Lin = (000000...1111),

Hence, 	can be expressed as:

2m-1
i2

• =

	

	
=

fLi x2 e" iv '
jd j

and 	consists of 2m-1 zeros followed by 2m-1 ones. To

simplify the notation i
k
k is defined as

(Lk if ik=0

Lk
k
 =

Jk if ie."

Then, using Boolean algebra,

2 2i Ij = X 1X1 	Xi ••• mm 0

where the it, t=1,...,m are the binary coefficients of the

radix-2 expansion of j:

.
k
 k-1 	.

" 1 2 	1k=0 1 	k=1,...tm.

with the summation taken modulo-2 and the it, t=1, ...,m as

above. This expression can be rewritten using the distrib-

utive law and the identity:

• = 1 $ L.

to give the following polynomial in the Li's:

• = g 	$ ••• gmk .$ g12L1L2 $ *** $ gm-1,m41-14

... 0 g12...mxix2..46.
The coefficients in this polynomial are the multiple partial

differences and are defined as follows:

k
gk = A 	• =

p
gk1k2...kp = k1k26..kp f(119""im)

• P-1

ki...kp_i

▪ p-1
,

44

where A denotes the partial difference and the it's in

f(il,...,im) are the coefficients in the radix-2 expansion

of j.

For the order-r R-M Code, the set of codewords consists

of the set of polynomials of degree r or less, rim, of the form:

go ° glxi ° 	grAm 9 	0 g12...rx1...4

"" gm-r+1,...,m4m-r+1"°Xma

The sum of any two polynomials from this set is another poly-

nomial from the set. It can be shown [351 that the Hamming

weight of any non-zero vector in the set is:

w.(() 2m-r, m=0,1, 	r<m.

We introduce the decoding method of the R-M Codes through

and example. For a code with r=1, m=3, any vector from the

code space is given as:

gol 3 g1X1 g2X2 0 g3L3.

The information digits are (golgi,g2,g3) and the generating

vectors are:

X1 = (01010101)

= (00110011) .

X3 = (00001111)

.= (11111111).

Referring to the definition of multiple differences given

• above we have:

go = f(0,0,...,0) = fo

gl = Q f(0,...) = fogifi

g2 =Z f(0,...) = foef2

g3 = A f(0,...) = foef4 3

and,

11-5 	.

2 f(0,...) = f olifi@f2ef3 = 0
1

4

• f(0,...) = f oelfi@f4efs = 0
13

• f(0,...) = fo ef.-.01f0f6 = 0
; 	23

123• f(0,...) = foOfie,f2ef3ef4ef5f0f60f7 = 0.

The last four equations are all zero as r=1 and hence no term

is of degree two or more. From these equations, we have that

' 	gl satisfies:

gl = f o 9 fl
= f2 • f3

f4 f5
= f20f 30f0f5E0feltf 7.

Substituting the second and third of these equations into the

last relation, we obtain:

gi = f6 17
and hence,

gl = foef l = f2@f3 = f0f5 = fefr
These four relations on gl are disjoint in the sense that

no two of them have any variables in common. Similarly we

obtain four independent and disjoint relations on g2 and g3:

g2 = fo(U2 = f0f3 = f0f6 = f5t"7

g3 = foGf4 = fl @f5 = fef6 = f3a)f7'
If, in the received codeword (fo,f 1 ,...,f 7), there are no

errors, all the above relations hold. If there is a single

error, then three of the four relations for each of gi ,g2,g3

hold. And if two errors occur, two of the four relations on

gi,, j=1,23, hold. Consequently, gi,g2,g3 can be determined

correctly from a majority of the estimates on these variables

if no more than one error occurs during transmission. More-

over, two errors can always be detected. If the four rela-

46
tions on gj, j=1,2,3 are denoted by rjlorj2,ri3pri4, then the

arithmetic sum of them, Sji Is given by:

4
Sj = i>i rji.

Then, the majority decision test for gj is:

= 0 if O<Sj<2,

gj .1 is indeterminate if Sj=2,

■.= 1 if 2<S.<4,

Assuming less than two errors occur, gi,g2 and g3 can be de-

termined and used to find go. This is accomplished by adding

g212, g3X3 to the received vector to give (mo,...,m7).

If no errors have occurred, the resulting vector is gog, and

if there were one error, (mo,...,m7) is a distance of one from

got. A second majority test can now be applied to obtain go:
7

go = 0 if &mi.< 40

7
go = 1 if ,7 m > 4 .

1770 '
The method used to decode the above example can be

generalized, such that, using the definition of the poly-

nomial coefficients in terms of the multiple differences, all

the information digits can be determined from a series of

majority tests. This is due to the fact that each highest

or r-th degree coefficient of any polynomial in the code

satisfies exactly 2
m-r
 disjoint relations of the form:

2r
57 f4 , 	from Q,...,2

m-1
, k=1,...,2r

1E74 'k

and the summation taken modulo 2.

The number of information digits for the R-M Codes of

order-r is
r
0(i) •

1+7

The order-(m-r-1) code is the dual of the order-r R-M code.

Although for large n the, rates of R-M Codes are significantly

lower than those of the BCH Codes, the simple decoding method

for the former still make them a competitive code. For low

to medium length codes, the rates of these two classes of

codes are more comparable, but still, in general, lower for

the R-M Codes. However, as we are interested in this thesis

in simple decoding methods, low rate is not considered a de-

trimental code characteristic.

The R-M Codes have a geometric interpretation. We include

it here as it established the link between the method of de-

coding discussed above and the Majority Logic Decoding algor-

ithm which is given later. For this description of the code

we consider the space of dimension m over GF(2), consisting of

2m points. Each of these points corresponds to a digit

position j, j=0,1,...,n-1, in the length n generating vec-

tors Xi given above. A one appears in each position of the

vector Xi for which the corresponding point has its i-th

coordinatet.equal to zero, that is for each point in an

(m-1)-dimensional hyperplane through the origin. Thus Xi is

the incidence vector of the hyperplane through the origin.

defined by ti=0. The vector XiXj has a one in each position

which corresponds to a point with both its i-th and its j-th

coordinates equal to zero. Hence, XiXj is the incidence

vector for an (m-2)-dimensional flats through the origin.

Similarly, each generating vector represents an incidence

vector of a flat.

Each of the code symbols can be associated with a point

of the m-dimensional space just described. Then, every

parity-check rule is a check on those symbols associated with

the points of a flat of dimension at least (r+1) through the

I ',Ojt

14-8

origin. Each such flat describes an independent parity-

check rule. •
This interpretation of the code leads to the following

geometric explanation of the decoding method. Each of the

vectors used to generate the order-r code consists of a pro-

duct of at most r of the vectors Xl,n..141. There are 2r

points in an r-flat and hence a product of r vectors from

the Xi has 2m-r ones. For each of tlie 2m-r points, p, in a

generating vector, there exists a perpendicular flat of di-

mension r with 2r points which passes through the point p.

These perpendicular flats correspond to the parity-check rules

used above to determine the information symbols. To see this

Correspondence we elaborate further. The parity-check flats

intersect the generating flat whose coefficient is being de-

termined, in one point, but intersects every other flat of

dimension at least r either not at all or in at least a line.

This implies the intersection has an even number of points,

2t, where t is the dimension of the intersection. Thus, in

the modulo-2 parity-check sum only the coefficient being de-

termined will not cancel out, while all other coefficients will.

The geometrical description of the R-M Codes assists in

the understanding of the associated Majority Logic Decoding

algorithm, which is an extension of the decoding method

given here.

The simplicity and elegance of this decoding method have

made it the most feasible means of decoding a code which

possesses the necessary independent redundancy relations.

The remainder of this chapter deals exclusively with such

codes and the Majority Logic Decoding of them.

49
3.3 MiligrktYLI2girke....Q4ging

In this section we discuss Majority Logic Decoding, a

decoding method renowned for its relative simplicity. Major-

ity Logic Decoding (MLD), or Threshold Decoding (TD) in the

binary case, is based on the existence of certain relation-

ships among the parity-check equations of a code in muCh the

same way as in the R-M Codes.

We introduce MLD by giving an example which illustrates

the basic concept used in this decoding method. The binary

repetition code of length n has two'codewords, the all one

n-tuple and the all zero n-tuple. Of the n codeword digits,

the first is the message digit, with the remaining (n-1)

being check digits. To decode, the number of ones and the

number of zeros in the received codeword are counted. If the

majority of the digits are ones, then the all one codeword

is assumed to have been sent, otherwise the all zero code-

word is assumed. If less than [n/2J errors occurred, the

decoder's decision is correct. The majority test used here

is similar to the R-M majority tests. It is this concept of

taking a majority test on which the MLD algorithm is based.

We return to the above example after several terms have

been defined.

In the following discussion on MLD, the code to which

we refer is assumed to the cyclic, linear (n,k) code with k

information digits and (n-k) parity digits.

If (cn_i,...,ci,c0) represents a codeword and (en-1,...,

ell eo) the corresponding error word, then the received word

(rn_1,...1r1,r0) can be written as (cn-1 e n-10-1tceeo).

If co,...,ck_1 are the information digits, the (n-k) parity

digits are, in terms of the information digits:

50

k-1
cj = Y piici, 	j=k,k+1,...,n-1,

i=0

and the pji are from GF(ps). The syndrome Si is defined as

the value of this equation when rg is substituted for cg:.

k-1
Si = 2;:o pjiri - rj

k-1 . 77 p..ei - e.,
i=0 J1

Linear combinations of the Sj are used to Majority Logic

Decode.

We say that the sums Ti,T2,...,Tt of error digits are

orthogonal on an error digit ei if every sum Ts includes ei

and no other error digit occurs in more than one of the Ts.

This definition can be extended to sums being orthogonal on

a set of error digits weighted by coefficients from GF(ps).

For example, if v1,...,v6 are elements of GF(ps), then the

following sums are orthogonal on v1e1 + v2e2:

TI = vie/ + v2e2

T2 = vie, + v2e2 + v3e3

T3 = v1e1 + v2e2 	+ v4e4 	+ v6e6

T4 = vie, + v2e2 	+ v5e5.

If we look again at the binary repetition code of length

n=2m-1 with codeword (c2m-2"'" c10 co) we note that:
0 = co + 01

0 = 00 + 	c2

•
•

0 = co
	 + c2m _2

and thus the following sums are orthogonal on eo:

51

ro + ri = eo +e1

ro + r2 = eo + eg d

•

•

ro + r2m_2 = eo + e 2m-2°

To decode this code using MLD, the 2m-2 estimates on eo are

input to a threshold unit. If more than (2m-1-1) of the in-

puts are one, the threshold of (2m-1-1) is overcome and the

output is a one, otherwise a zero. If less than (2
m-1

-1)

errors occurred, the decoder correctly decodes the error

digit eo. The value of eo is added to ro giving the correct

value of co. For the repetition codes there is only one in-

formation digit, so the remaining digits need not be decoded.

As a threshold unit is used to decode in the binary► case,

the corresponding decoding method is often referred[331,[37]

to as Threshold Decoding rather than MLD.

For non-binary codes, a majority unit is used instead

of a threshold unit. For such codes, the majority unit out-

puts the value receiving a clear majority of the sums ortho-

gonal on it. If no value has a clear majority, then the er-

ror digit is assumed to be zero.

In general, once the first error digit is decoded in a

cyclic code, the codeword is shifted and the next error digit

decoded in the same.manner. This process is repeated until

the whole n-digit codeword is decoded.

Orthogonal estimates of a transmitted digit ci, rather

than sums orthogonal on an error digit ei can be used to de-

code. For the binary repetition code discussed above we have

the following orthogonal estimates of co:

52

	

(r1 	if e1=0

	

r
2 	if e2 =0,

co

2m-2
r 	if elm-2=0.

To decode, using the orthogonal estimates, the received

digits, rather than the syndrome digits, are used as input

to the threshold unit. The output is then the cTtiplate of

the code digit co, not the error digit eo.

When there are an even number of parity-check sums which

are orthogonal estimates of a digit ci, a tie can occur. A

more sophisticated decoder can overcome this difficulty. When

one of the estimates is of the form:

co=r0 if e0=0,

the other estimates of c each contain two digits and the

probability of an error in transmission is p, p<i, then the

modified decoder can decode using error probabilities. If

the probability that eco is zero is:

Pr(e0=0) = (1-p)

and the probability that ei+ej is zero is:

Pr(ei+ei=0) = (1-p)2 + p2<:(1-p), i,j/0,

then the estimate c0=r0 is more likely to be correct than

any other single estimate, and hence can be given more

weight when input to the majority unit. Thus, using

probabilities, the tie can be broken.

We present some useful results concerning Majority

Logic Decodable codes. If a linear code has at least (d-1)

check sums orthogonal on each code digit, then the code has

minimum distance at least d. This is a consequence of the

following. If the i-th digit ci has (d-1) orthogonal check

sums T1,T2,...,Td-1, then each of these sums is zero since

53

the word is in the code. Also, because each of these sums

has a non-zero entry by construction, there must be at least

one other non-zero code digit in each sum, which gives a total

of d digits. Thus, the minimum distance is at least d.

A linear code with minimum distance d is said to be

completely orthogonalizable if (d-1) parity-checks on each

digit can be determined. Thus, any error pattern guaranteed

correctable by the minimum distance of the code is correct-

able if the code is completely orthogonalizable. Further,

if the code is cyclic, then it is completely orthogonalizable

if there are (d-1) parity-checks orthogonal on eo, the error

digit in position zero.

If d is the minimum distance of the dual code of an (n,k)
lifelh,V) L chic.

linear code, then the number of errors that can be correCted,t

is t1 and

n-1
t1 2(a-1)

To establish this we note that each word in the null space

has weight at least d and thus there must be at least d

digits in each of the orthogonal sums. One of these digits

appears in each sum, while (T1-1) appear in only one sum.

There are (n-1) error digits in addition to the one on which

the sums are orthogonal. Thus, the total number of ortho-

gonal sums which can be constructed is no more than (n-1)/(d-1).

Hence, tr: 	c- 	must be less than or equal to

half this number that is

(n-1)
ti/ < 	 .

2(d-1)

The decoding process discussed thus far has required

only one estimate of the outputs to determine an error or

code digit. Obviously there are linear (n,k) codes for which

54

it is not possible to construct (d-1) parity-checks ortho-

gonal on each information digit. However, the process dis-

cussed above,can be generalized so that after several steps,

some of these codes can be decoded. Given the original set

of parity-checks defined by the parity-check matrix H, it is

possible to form sets of at least (d-1) parity-checks ortho-

gonal on certain sums of the information noise bits. It is

then assumed that these sums are known because threshold

estimates of their values have been obtained. These sums

are now considered as additional parity-checks and added to

the matrix H to give a new matrix H'. The extended parity-

check matrix is a true parity-check matrix if the sums added

were correctly decoded. This process can be repeated L

times until (d-1) parity-checks orthogonal on the error
OM,

digit e0 are obtained. If this procedure can be carried out

for each of.the n error digits, then the code is said to be

L-step orthogonalizable.

Formally, a t-error-correcting code is said to be L-

step orthogonalizable if and only if the code contains sets

of positions P(1),P(2),..., such that:

1) For all i, the code contains 2t parity-checks

orthogonal on P(i).

2) The subcode of the code that satisfies the additional

parity-checks:

c. = 0, for all i,
jEP(i)

is (L-1)-step orthogonalizable.

With L-step decoding the bound given above for 1-step de-.

coding can be improved. If d again denotes the minimum

distance of the dual code of an (n,K) linear code, then the

number of errors, tL, that can be corrected with L-step MLD

is bounded by:

tL <

r_n_ _ 1, d even,
a 	2

n+1— 1 , d odd.
U+1 2

55

This is established in much the same manner as the t1 bound

for'the 1-step decoder. The tL errors are corrected if there

are at least 2tL check sums orthogonal on a set B of digits

common to each sum. Now B is at most P/2] , otherwise,

when combining two such sets to give a set still in the null

space, the new set would have weight less than d, which is

a contradiction. Consequently,. the 2t1_, equations have at •

most [a/21 digits in common and at least d digits altogether.
Thus, (d-r1/2I) digits appear in one sum only and after se-

lecting the [T1/2] digits, there are (n471/21) digits left

from which to choose the sets of ca -R/21) digits. Hence,
w■I

there are at most:

. 	(n -k1/21)

— rci/2
orthogonal equations, which implies:

2t1,(71 -V,/21) < (n -[T1/21).

As an example of a cyclic 2-step MLD code, consider the

binary (7,4) code with

[10111001 rl
= 1110010 = R2.
0111001 R3

The received word is premultiplied by X3 before decoding

begins. The check sums corresponding to Ri and R1+R2 are

orthogonal on S1=e6+eo, where (e6,...,e0) denotes the error

word. These two sums are input to a threshold unit whose

output is an estimate of S1. The sums (R1+R2+R3) and (R1+R3)

are orthogonal on S2=e6+e4. These sums are input to a second

threshold unit, whose output is an estimate of S2. Then the

56

estimates of S1 and S2, orthogonal on e6, are input, at the

second steA to the threshold unit which outputs an estimate

of the error.digit e6. Thus, the error digit e6 can be de-

termined in two steps, since the code is cyclic and hence 2-

step orthogonalizable.

We remark here that with every added step in the ortho-

gonalizing process, the complexity of the decoder increases.

It is of interest to note though, that in L-step orthogonal-

ization of a code, it is never necessary to make more than k

threshold-decoding decisions. This follows since each deci-

sion is an estimate of a sum of the variables eo,...,ek_1,

and, there being only k such variables, there can be at most

k linearly independent sums formed from them.

The Majority Logic Decoder is most applicable to binary

codes. For non-binary alphabets the number of parity-checks

that can be • formed is roughly the same as for the binary

alphabet. Thus, the advantage of a larger alphabet is lost.

The Projective Geometry Codes analysed in Part II of the

thesis are binary codes and hence attain the maximum power

of this decoding method.

We conclude this section with an interesting example of

the power of a t-error correcting Majority Logic Decoder.

Unlike other t-error-correcting decoders, such as the BCH de-

coder, the Majority Logic Decoder corrects many errors of

weight greater than t.

Consider the (1023,10) maximal length code with d=512.

If this is transmitted over a Binary Symmetric Channel with

transmission probability of error p0=0.25, then the average

number of errors per block is (1023)po which is approximately

256. Now, [(d-1)/21 is 255, so the probability of error, Fe,

is nearly one half for an algorithm capable of correcting

57
only errors of weight 1.(d-1)/2] or less. However, if MLD is

used to determine each of the ten information digits from the

(d-1)=511 parity-checks orthogonal on each bit, the total

probability of error is approximately 5x10-7. To see this,

note that if eo=0, then e0 is incorrectly decoded only if

more than 256 of the 511 parity-checks orthogonal on e0 are

one. Since each parity-check includes two other error bits,

the probability that the sum is one is 0.375. The probability

that more than 256 of the 511 parity-checks are one, is less

than 3.1x10-8. Similarly, the probability of incorrect de-

coding if e0=1 is less than 1.0x10-7. The average Pe in de-

coding ec, is then'

(0.750)(3.1x10-8) + (0.250)(10'7) < 5.0x10-7.

Although certainly all examples comparing MLD to other

methods are not so dramatic, for-high rate codes there are

many instances when MLD is the most effective decoding method.

The main advantage of MLD, and certainly the reason that it

is used in this thesis, is its ease of implementation. It

is this characteristic which we emphasize in the thesis.

3.4 projective Geometries

Part II of the thesis is devoted to a study of a subset

of Projective Geometry Codes. These codes are based on a

particular class ofilnite geometry, the finite projective

geometry.

Formally, a finite geometry of dimension m is the set

of elements (points) satisfying the following five conditions,

given by Veblen and Bussey [51]:

1) The set contains a finite number of points and one

or more subsets called lines, each of which contains at least

three points.

58

II) If A and B are distinct points, there is one and

only one line that contains bath A and B.

III) If A, B and C are non-collinear points, and if a

line 10 contains a point D of the line AB and a point E of

the line BC but does not contain A or B or C, then the line

10 contains a point F of the line CA,

IV) If r is an integer less than m, not all the points

of the geometry are in the same r-spa.ce.

V) If IV is satisfied, there is no (m+1)-space.

We now give the definition of a projective geometry, PG(m,ps),

of dimension m over GF(ps), and later show that it does indeed

satisfy the above postulates. A point is defined as a 0-space

and a line as a 1-space and an r-space*is defined inductively

as follows. Given (r+1) points P1,...,Pr,Pri1 not all in

the same (r-1)-space, the set of all points collinear with

Pr+1 and a point of the (r-1)-space (P1,...,Pr) is the r-

space (P1,...,Pr+1)•

The most common means of representing a PG(m,ps) is by

GF (p(m+l)s). In the following we use this description with-

out exception. We now outline this representation. A point

of an m-dimensional finite PG can be described by a set of

homogeneous coordinates (c(0,cq,...,0(m), the coefficients of

(m+1) linearly independent points which define the GF(p(m+l)s).

m-space. The o(i are elements of GF(ps), such.that at least

one of them is non-zero. Any point Kaco,...,00,(m) is equi-

valent to the point (o<0,...,o(m) for 0(one of the non-zero

(.ps-1) elements of GF(ps). The coefficients a0,...,o(m

which define a point, can be chosen in
(p(m+1)s - 1) ways,

where there are (ps-1) representations of any given point.

It then follows that there are a total of

(p(m+l)s..1)A ps..1) = (pms 	... 	ps 	1)

59

distinct points in PG(m,ps). Given any two distinct points

(c(o p...) and 00,...0m), a line is defined as the set of

points:

keko +,061•••10(Ain, +,8,8m)

where o< and /5 are elements of GF(ps) such that both are

not zero. The coefficients o‹,/9 can be chosen in (p2s,..1)

ways, where (ps-1) of the choices give the same line. Thus

a line contains

2
(P

s -
1)/(Ps-1) = (Ps+1)

distinct points. And, in r dimensions, r4m, given the (r+1)

points (xio,a11,...,0(1m), i=0,1,... ,r, not all in the same

(r-1)-space, the r-space consists of the points
r 	r

(°(io ... 	°kim)
1=o

wherec<0, 0(1,...,.km are elements of GF(ps), not all simul-

taneously zero. Since there are (p(r+1)s-1) possible non-

zero combinAtions of the 0(i, where (ps-1) combinations define

the same point, there are

(p(r+1)s_1)/(ps...1) prs prs-1 ... p 1

points in an r-space.

We now show that this formulation, based on GF(p(M+1)S),

satisfies the above postulates. Each line contains (ps+1)

points, which fulfills the requirements of postulate I. The

definition of a line validates postulate II. If (0<0,...,c(m),

(608...,/em) and (0,...4m) are any three non-collinear points

A,B and C, and to a line containing D=W(0+/8/10,...,, m+466),

a point of AB and E=(t/30+4,...,i9A+6tc), a point of BC, and

to does not contain A,B or C, and ck,/5,/o, 6 different from

zero, then we show that to consists of the points

(sc{o(o+a/3/30+biopo+bca0, ...,aaarri-!a/3/3m+b/0/3m+bcrgm)

such that a and b are elements of GF(ps), not both zero.

ale

xi

60

Now it is always possible to find /3 and /o such that

a/3 + 	= O.

This gives the point

(a0(040+balo 	ao(o(m+batfm)

on to which is also a point on CA, and postulate III is val-

idated. This is illustrated for m=2, s=1, p=2 in the fol-

lowing 3-dimensional diagram of PG(2,2).

0 = (0,0,0)

A = (0,1,0)

B = (0,0,1)

C = (1,0,1)

D = (0,1,1)

.E = (1,0,0)

F = (1,1,1)

G. = (1,1,0)

Figure 3.4.1 An Example of PG(2,2)

In Figure 3.4.1, A, B and C are three non-collinear points

and 0 is the origin (which is not allowed as a point). Ob-

viously D is on line AB (i.e. ADB) and E is on BC (BCE) and

D and E are on to=EFD and F is on CA (CFA).

The last two postulates are satisfied. by the following

argument. An r-dimensional geometry may be represented by

(° 0,041,...,4), the oCi (r+1) linearly independent points.

Then the r-dimensional geometry has the same description as

the m-dimensional geometry containing it. Thus, for r<m,

there are points not in the r-space and there is no (m+1)-space.

These arguments show that the formulation given for .

PG(m,ps) defines a valid finite geometry.

Using this representation, if 0(is an element of

61

GF(p(m+1)s), then (cC),

(°()

/g a primitive element of GF(ps), represents a point of the

projective geometry.

Knowledge of the number of r-spaces contained in a given

m-space of the projective geometry is very useful for the

construction of projective geometry codes. Several steps

are required in the calculation of this value. First the

number of ways the (r+1) linearly independent points of the

PG(r I ps) can be chosen, in order, from the points of PG(m,ps)

so that they are not all in the same (r-1)-space is:

(14.psi.....t.pms)(ps+p2s4.....i.pms)(p2s+p3s4.....4.pms)

The first term in this expression is the number of - ways of

selecting one point from the PG(m,ps), the second term the

number of ways of choosing the second point distinct from the

first point, the third point so that it is not in the line

defined by the first two points and so on. We now determine

the number of these bases which yield the same r-space. The

number of ways the (r+1) base points of the given PG(r o ps)

can be selected so that they do not all lie in the same (r-1)-

space is, following the derivation above,

(14.ps+....i.prs)(ps.i.....i.prs)...(p(r-1)s+prs)(prs).

The number of r-spaces in the PG(m,ps) is then:

ms)(

+prs) ...(p r- s+p S)prs

= (p(m+1)s_
1)(

pms_1)...(p(m-r+1)s_
1)

•

(p(r+1)8-1)(prs-1). ..(p2s-1)(ps-1)

62

Similarly, a given t-space, t<r<m, is contained in

(p(m-t)s-1)(p(m-t-1)s-1)...(p(m-r+1)s-1)
(t,r,m,ps) =

(P

distinct PG(rI ps)'s in a given PG(m,ps).

An alternative description of a.projective geometry can

be given in terms of an (m+1)-dimensional vector space and

its subspaces over GF(p(m+l)s). A point is a 1-dimensional,

non-affine (not through the origin) subspace of the vector

space; a line a 2-dimensional subspace etc. A point lies on

a line if it is contained in the 2-dimensional subspace re-

presenting the line. Then, if (xl,...,xm4.1) is a point in

the (m+1)-space, (cx1,...,cx10.1) defines the same point for

c non-zero, c an element of GF(ps), because this is simply

another member of the 1-dimensional subspace representing the

point. In this description, the coordinates

(xl,...,xm+1) = (cx1,...,cxm+1),

are called the homogeneous coordinates of the point. For-

mally, if the points of a linear subspace are represented as:

0 U 	I 	j E A3 ,

with A a subset of the integers (0,1,...,(p(m+l)s-1)Aps-1)),

and A a primitive element of OF(ps), then the projective

subspace of the linear subspace is the set:

1.00 ljEA3 .

Thus, an r-dimqnsional projective space of PG(m,ps) is

the set of all 1-dimensional vector subspaces in some (r+1)-

dimensional vector subspace.

A hyperplane (a subspace of dimension (m-1) in PG(m,ps)),

is the locus of points given by:

aixi + 	+ amxm am+lxmil = 0,

the ai not all simultaneously zero, where the ai are the

homogeneous coordinates of the hyperplanes. From the pro-

r- 5■1) 	(p S■1)(pS■1)

63

perties of linear vector spaces, it is obvious that taking

the hyperplanes of PG(mo ps) as points, the dual projective

space of PG(m,ps) can be formed. In the dual space, any two

points (hyperplanes), intersect to give a line (an (m-2)-

space). A space of dimension (m-r-1) results from the inter-

section of (r+1) hyperplanes. The set of points in the

(m-r-1)-space are the solutions to a set of (r+1) linearly

independent equations of the forms

a1x1 + see 	arrolxmil. =0.

This corresponds to the definition of an r-space by (r+1)

linearly independent points in the PG(m,ps). The notion of

duality is of prime importance in defining the finite

geometry codes.

Any non-singular linear transformation T carries a

1-dimensional vector subspace to another 1-dimensional vector

subspace. Thus, T induces a one to one transformation of the

points of the PG(m,ps) and hence projective subspaces are carried

to projective subspaces. The induced transformation is

called the projective transformation. These transformations

are useful in decoding the finite geometry codes.

We conclude this section by referring again to Figure

3.4.1.. Based on this representation of PG(2,2), we list

the projedtive points and lines in Table 3.4.1. The number

of points in this geometry is

(p(m+l)s_1ops..1) = 7
The number of lines is

(p(m+l)s-1)(pms_1)

.7.
(p(r+1)s_1)(ps_1)

64

Er1LierajaLEDIXLt% 	Projective 	Lines
OA 	 OBCE
OB 	 OBFG
OC 	 OBDA
OD 	 OEGA
OE 	 OEFD
OF 	OAFC
OG 	. ODCG

Table 3.4.1 Projective Points and Lines of PG(2,2)

3.5 Projective Geometry Codes
Projective Geometry (PG) Codes are a generalization of

R-M Codes. They are a cyclic, length n=(p(m+l)s-1) code over

GF(p). The PG Codes are so named because each of the n digit

positions in a codeword can be associated with a point from

the projective geometry PG(m,ps). If (04i), i=0,...,n-1,

represents a point from the geometry, then it corresponds to

Xi in the polynomial interpretation of the n-tuple. Thus,

an r-flat of the geometry can be associated with an n-tuple

with ones in the positions corresponding to the points in the

flat and zeros elsewhere. The n-tuple then represents a

polynomial in the algebra An of polynomials modulo (Xn-1).

A cyclic shift of the polynomial representation of an r-flat
defines another r-flat. If oec; I 04!1,...10(er are the de-
fining points of the original flat, then ceo+1,...,cer+1

define the new flat. Also, since each point of a PG is a

1-dimensional linear subspace and an r-flat is a set of these

points, the r-flats correspond to (r+1)-dimensional linear

subspaces.

We now give the formal definition of the code. A

Projective Geometry cyclic Code of order-r and length n =

pms+p(m-1)s+...+ps+1, over GF(p) is defined to be the largest

cyclic code whose null space contains the polynomials cor-

responding to all r-flats of the PG(m,ps).

65

The PG Codes can also be characterized in terms of the

roots of the parity-check and generator polynomials of the

code. These roots are now determined. If f(X) is the poly-

nomial associated with an r-flat of PG(m,ps), 0C a primitive

root of GF(p(m+l)s), then 0(1.a is a root of f(X) provided u

is a multiple of (ps-1). We establish this with the fol-

lowing argument. If 0(is a primitive element of GF (p(m+i)s),

then (c4(Ps(m+1)-1) .) = 1. Also, in the algebra of poly-

nomials modulo (Xn-1),

(ocu)n 	ocu(Ps(m+1)-1) /(0-1) = 1.

Thus, U must be a multiple of (ps-1), and so any root of f(X)

is of the form c<:"Ps-1), that is

f(04:t(Ps-1)) = .(0,ct(Ps-1))i = 0,

the summation taken over the set R of the (ps(r+1)...1)/(ps_1)

points of the r-flat. The points in R are of the forms

,/31.00/1/4!o + • • • + flir aLer , 	ia= 0,...,(ps-1), a=0,...,r

the dei linearly independent elements of GF(p(m+l)s),

/3 a primitive element of GF(ps). Furthermore, each point

j occurs (ps-1) times in

csiooLso 	Aircer).
iili ...1r

Consequently, this sum can be written as

E (0_1) 	= (ps...1) 	 (4 i = (ps-l)f(4),
jER • • JC

which is,

f(°() = 1 	E 	(s ioc(eo 	vir ocer).

(pS-1) io...ir

Then, f(0(..t(Ps-1)) = 0 if and only if

2: (pio=e0 	... 4.Air cor)t(ps-1) = 0
io...ir

(ps..1)t(ps-1)0jt(ps-1)

JE

(1)

66
= (pg-i)t(ps-1),(it(ps_1).

JE

Expanding (1) above, we have

it(ps_1))! (Ai0 ,o)ho...c4ir er , hr

1 	h 	h 1 	
•

o.... r.

and
= t(ps -1).

This sum is zero unless 	 k. hJ.=(ps-1) for 0j_cr. Hence the J
equation can be written as:

(t(ps-1))! 	0(k0(ps-1) 	erkr(ps-1)

1 	

e,, w
Tko(ps-1))!...(kr(p5-1))!

This sum is zero unless t(ps-1) is the sum of at least (r+1)

multiples of (ps-1). Thus oct(Ps-1) is a root of the parity-

check polynomial of the PG code of order-r and length

(ps(m+1)._l)/(ps...1% j if and only if

ws(t(p2-1)) S r, t/O,

where w5(x), the s-weight of x, is the largest number of

multiples of (ps-1) in the radix-p expansion of x. For p=2,

s=1, this is simply the number of ones in the binary expansion

of x. We note that 00 is not a root of the parity-check

polynomial for if t=0, then

f(c<t(Ps-1)) = E (c,,t(Ps-1)).j
jER

IRI
= E (1) 	= 	110
i=1

(ps(r+1)-1)/(/08-1) = 1, mod p,

where 1111 is the cardinality of the set R. Thus, .0L° is not
a root of h(X), the parity-check polynomial and so is a root

of g(X), the generator polynomial.

The minimum distance of a PG code is at least the BCH

bound on minimum distance for a code of length n. We now

establish this. Any element of Gr (p(m+l)sN j of the form

0.0(Ps-1), with s-weight at least (r+1), and the root 0.(°,

67

is a root of g(X). The number v,

(p_1)ps(m+2-0-1 ... (p-ops(m+1-0+1 (p_i)ps(m-r+1)

▪ (p_1)ps(m-r+3)-1 + 	+ (p-1)Ps(m-r+2)

▪ (p...1)pS(M44.)-1 	... 	(p_1)pSM+1 	(p_i)pSM

(ps..1)pS(M—r+1)(0(r-1) + see 	ps + 1)

= pS(M—r+1)(pSr-1)

= pS(M+1) 	pS(M—r+1)

(pS(M+1)..1) 	(pS(M—r+1)..1)

is divisible by (ps-1), has s-weight r and is a root of h(X).

If another multiple of (ps-1) is added to v, then the s-weight

becomes (r+1), and hence 0(v is the largest root of h(X).

So, for v<i<ps(m+1), i a multiple of (ps-1), 	1 is a root

of g(X). The number of successive roots is:

(ps(m+1)...1) - ((ps(m+1)_1) - (ps(m-r+1)-1))

= (ps(m-)+1)-1).

There are (p5-1) repetitions of each root, so the number of

distinct successive roots is

(ps(m-r+1)-1)/(ps-1).

Thus, as 00 is also a root of g(X), the minimum distance of

an order-r PG code is at least:

ps(m-r+1)-1 	+ 1.
(ps-1)

Using r-step MLD it is possible to correct

ri 	ps(m-r+1)...1
Li ((ps-1)

Or fewer errors in an Ordet-t PG Code. This is possible be-

cause the parity-check sums corresponding to the r-flats which

intersect on a given (r-1)-flat, are orthogonal on the parity-

68

check sum corresponding to the (r-1)-flat.

In order to decode, it is necessary to know the number

of r-flats that intersect on a given (r-1)-flat L. We recall

from the dicsussion on Projective Geometries in Section 3.4

that this quantity is:

J 	(ps(m-r+1)...l)/(ps-1),

The decoding process is as follows. Initially all the parity-

check sums corresponding to the r-flats are known to the de-

coder. As every point in the PG(m,ps) is either in L or in

precisely one of the r-flats that-intersect on L, the J r-

flats which contain L can be used to obtain a set of parity-

checks orthogonal on L. Thus, with one level of majority

logic the parity-check sums corresponding to the (r-1)-flats

are determined, assuming [J/2] or fewer errors occur. Simi-

larly, the (r-2)-flat parity-check sums are obtained, and,

after r steps, the 0-flats or error digits. The r-th order

PG code is thus r-step orthogonalizable, r-step Majority

Logic Decodable, and has distance J+1.

To illustrate the MLD of a PG code, we take the code with •

m=2,p=2 and s=1. This PG code of order r=1 has all the 1-

flats of the projective geometry PG(2,2) in its null space.

If 0(is a root of X3+X+1, then the roots of h(X) are those

c(1 with ws(i) < 1, iXO, that is, 041,0(2, 0(.4. Thus,

h(X) = (X-0()(X- c<2)(X-0(4)

= X3 + X + 1,

and 	
g(X) = 	 0(3)(x... 0(5)(x.. 0(6)

= x4 + x2 + x + 1.

The null space has all the 1-flats of PG(2,2). These are

given below in Table 3.5.1. Since the flats 1,2 and 4 are

orthogonal on 0(3, if zero or one errors occur, the majority

of the estimates give the correct value of 04.3.

69

Flat 0 1 2 3 4 5 6
1. 1 1 0 1 .0 0 0
2 0 1 1 0 1 0 0
3 0 0 1. 1 0 1 0
4 0 0 0 1 1 0 1
5 1 0 0 0 1 1 0
6 0 1 0 0 o 1 1
7 1 0 1 0 0 0 1

Table 3.5.1 1-flats of PG(2,2)

In general, the PG codes have fewer information symbols

than comparable BCH codes. For instance, in Chapter 5, we

study the order-3, length 63, PG code over PG(5,2). This.code

has 41 information digits while the BCH code with the same

length and error-correcting ability, has 45 information digits.

We also discuss the order-5, length 255 PG code over PG(7,2)

with 218 information digits. The corresponding BCH code has
0.■

231 information digits. However, the much simpler decoding

method of the PG codes seems to outweigh this loss in infor-

mation rate, which, for short block lengths, is small. Also,

the PG codes do obtain the BCH lower bound on minimum distance.

In Part II of the thesis, these codes are analysed

further and a simplification of their decoder found.

3.6 Majority Logic Decoder of an (n.k) Code

The most important feature of a Majority Logic Decoder

is the simple circuitry required for its implementation. In

this section, we briefly discuss the decoder in these terms.

Upon receiving a word from the linear (n,k) code, the

Majority Logic Decoder multiplies it by X(n-k) and then di-

vides the result by the generator polynomial g(X). The re-

mainder, a shifted version of the syndrome, is stored in the

register. This is shown in Figure 3.6.1. The next step in

the decoding process is to form the (d-1) check sums orthogonal

1
1

1
GF(ps)

multipliers

GF(ps)
multipliers

4 	.

	 n k)-stage syndrome generator

corrected_
informati-W7
digits

70

on the first error digit. This is done by the (d-1) GF(ps)

adders and their scalar multipliers. Finally, the majority

gate, with the (d-1) inputs from the GF(ps) adders, outputs

the value assumed by majority of its inputs, or zero if there

is no clear majority.

received word

• 1.

d-1 input majority
gate

GF(ps)
inverter

received information
digits

k-stage information
register

cf.) : add unit
Figure 3.6.1 One-step MLD of Cyclic (n,k) Code

In the binary case, which we study in Part II, the majority

gate can be replaced by the much simpler threshold unit. '

Then, if at least half of the inputs are one, a one is out-

put. The value output by the majority unit or threshold

unit, is subtracted from the first information digit.

As the codes considered are cyclic, by shifting both

the information register and the syndrome generator, the

- • •

-k)-stage syndrome generator

1

1

GF(ps)
multipliers

GF(ps)
multipliers D

• • 4.
• • • • • •

ptep 1\\ cai71 input
jority gate

inpu
jority gat

• • #

step 2

GF(ps)
inverter -e

corrected
digits '

received 	1-stage information*
digits 	register

71

second information digit can be corrected in the same manner

as the first. This process is repeated until all the digits

are corrected. As the whole codeword can be decoded with

one level of majority testing, the'decoder is called a one-

step Majority Logic Decoder.

As was noted earlier, each level of majority logic that

is added to the one-step decoder increases the complexity of

the decoder. We depict, in Figure 3.6.2, a 2-step decoder.

Figure 3.6.2 Two-step MLD for Cyclic (n,k) Code

For the two-step decoder, the procedure for the first

step is much the same as in the one-step decoder, the dif-

ference being that (d-1) check sums are orthogonal on two

digits rather than one. Of these two digits, the first digit

72

in each of the (d-1) digit pairs, is the digit eo, in posi-

tion zero, the second digit is distinct from every other di-

git of the (d-1) pairs. Each set of (d-1) parity-check sums

orthogonal on a digit pair is input to a distinct majority

unit. On the second step, (d-1) orthogonal estimates of the

(d-1) digit pairs obtained as output from the majority units

in step one, are input to a second level majority gate (or

threshold unit in the binary case). The (d-1) estimates ob-

tained from step one are orthogonal on the digit eo. Thus,

the output from the second level majority gate is an esti-

mate of the error digit in position zero. As for the one-

step decoder, the final output is subtracted from the first

information digit. Again, as the codes are cyclic, the in-

formation register and syndrome generator are shifted and the

second information digit corrected as the first was. By re-

peating this process n times, the whole codeword can be decoded.

The purpose of including a detailed description of the

Majority Logic Decoder is two-fold. First, it illustrates

the relative simplicity of this decoding method, both in terms

of its circuitry and as compared to the BCH decoder discussed

in Chapter 2. Secondly, in Chapter 4, we develop a simpli-

fied version of this decoder and in evaluating it, compare

it to the standard decoder described here.

3.7 Modifications to the MLD of PG Codes
Since the introduction of MLD in 1954 [351441], there

have been many attempts to simplify even further this de-

coding method. In this section, we review several of the

most relevant of these.

The first of the improvements` involves the concept of

feed-back. If the basic decoder is t-error-correcting, then

73

(t+1) errors can be corrected using the following method.

Suppose there is an error in position e0 of the codeword

and that in one of the (d-1) check sums orthogonal on eo,

there are two additional errors. Then, eo can be corrected

and through feed-back the correction fed into the received

codeword. Then, the remaining t errors can be corrected

using the t-error-correcting decoder.

Townsend and Weldon[50] suggest using a variable

threshold level to decode binary MLD codes. In the standard

decoder, the output from the threshold unit is a one if

T = [(d+1)/2]

or more of the inputs are one. The modification suggested

in this paper initially sets the threshold to T=(d-1). An

attempt is made to decode all n bits of the codeword. If

the decoder is unsuccessful, the threshold of T is decreased

by one to (T-1). The procedure is repeated and if again no

changes are made, T is lowered by one a second time. However,

if an error is corrected, then T is increased by one. This

whole process is continued until T is set to [(d+1)/21, at

which point decoding ceases. Although this method corrects

many more than [(d-1)/2] errors, it does require considerably

more time and more complex circuitry than the standard MLD.

Gallager[16] gives a decoding method applicable to low

density codes, that is, codes with a large number of zero

entries in the nullspace. The method is particularly suited

to PG codes as it requires a fixed number j, j23, of ones in

each column, and k, 10j, ones in each row, of the parity-

check matrix. The parity-checks are calculated and then any

digit that appears in more than a fixed number of unsatisfied

parity-check equations is changed. The new value of the digit

74

is used to recompute the parity-checks. The process is con-

tinued until all the parity-checks are satisfied. If e0 is

the error digit to be corrected, then the term first level

tier is used to describe all the parity-checks that include

eo. A second level tier contains the parity-checks on the

digits involved in the level one tier. The relation to

orthogonal checks is obvious. A variation on this decoder

includes a posteriori probabilities on the channel outputs.

Although this decoder is capable of correcting more than

the standard number of errors, its decoder is more complex

and the time required for decoding is greater than for the

standard MLD.

The MID algorithm and the above modified decoders all

are based on orthogonal check sums. We now discuss several

variations on the Majority Logic Decoder which depend on non-

orthogonal check sums.

The first of the non-orthogonal decoders of an order-r

PG code requires only one majority gate, .but the gate does

however have a very large number of inputs. For this al-

gorithm, the number

(psm + ps(m-1) + 	+ ps) 	(psm + 	+ psr)
N - 	

	

(psr 	ps(r-1) + 	ps) 	(psr+ps(r-1))psr

of r-flats which pass through a given point, and

	

(pS111.1. 	+IDS) 	(pS111.1.....ITSr)(pS(r-14....iTS4.1)

Y - (ps+ps(r-1)+...+ps) ...(ps(r-1)+psr)psr(ps(m-1)+...i.ps+1)

the number of t-flats passing through a given line, are heeded.

For a given point contained in N r-flats, each other digit

in the geometry appears in y of the rr:flats. If

[N/2Y1 = :psm-1)/2(psr-1

or fewer errors occur, then the error digit contained in all

the r-flats is given correctly by the majority of the r-flats.

75

The complexity of the standard Majority Logic Decoder increases

with the number of decoding steps. Although this version of

the decoder requires only one step, it is not feasible to use

it as a decoding method for two reasons. First, N above is

very large for reasonable size codes and hence the single

majority gate has a very large number of inputs. Secondly,

this method corrects fewer errors than the standard Majority

Logic Decoder. The latter problem can be overcome by increas-

ing the number of decoding steps to two, and correspondingly

increasing the number of majority gates. For this decoder,

the r-flats are used to determine the (r-1)-flats. Then the

above non-orthogonal procedure can be applied to the (r-1)-

flats, giving a decoder which corrects at least the number

of errors that the standard Majority Logic Decoder does.

However, the number of inputs to the second step remains

large and hence it is questionable whether such a decoder is

less complex than the standard decoder.

A second non-orthogonal decoder was originally presented

by Rudolph [42] and modified by Ng [36]. Given a parity-check

matrix H of the order-r PG Code over PG(m,ps), EE the row

space of II, C a codeword and a the received vector, set

BE 	C. = Q.

Then, to decode ri, the i-th digit in a, a matrix

til =rhpli

is chosen for which each row has a non-zero element in the

i-th position, to give Ji rows such that there are ddj non-

	

zero elements in column j, 	From the equation EE.ET=0,

we obtain'the J1 estimates ct of ci, the i-th digit of the

codeword C,

h pjrj .=1,2,...,Ji. p

76

Each rj, igi is in 0(ij of the J1 estimates. In the more

powerful version of this decoder, given by Ng136-1, 	x is

selected as the maximum of the c<ij, VI. The oii
max

 equations
,

c.
*

r=r.1
 are added to the estimates to give (J1+0<11) estimates
 max

of ci. The original decoder by Rudolph[421 added only one

such estimate. Since each error in a can affect at most

0(mi ax of the estimates, MLD can be used to correctly decode

the i-th digit if no more than

[(Ji
 + max -1)/2 max]

errors occur. The maximum number of errors is corrected

when '314'°(Max-1) is maximized. The matrix HE is selected
on this basis. The decoding process is repeated for each of

the code digits. The total number of errors that can be

corrected is then

min
Ir. +°<M - 	1 ax 	lit

i 	2 0(i
max

which is a constant for PG codes, since they are cyclic.

This algorithm increases the distanCe and hence number

of errors correctable by the decoder but with a corresponding

increase in complexity.

Perhaps the most important improvement to the MLD algor-

ithm is the one proposed by Chen [6),[71. In developing his

simplification, he shows that the minimum number of steps in

which it is possible to decode an order-r PG code, using

orthogonal MLD, is N=1+1log2(m/(m-rq, which is

	

1 	if r=0

	

N = 2 	if m/2 > r > 0

i+1 if (1-2-1)m > r ? (1-2"(1-1))m.

This is based on the observation that, since all r-flats are

in the null space of the code, all the (r-1)-flats can be

determined on the first decoding step. Then, if k is the

77

least integer such that a set of at least J (r-1)-flats or-
,

thogonal on a given k-flalt can be constructed, J the maximum

number of r-flats orthogonal on any (r-1)-flat, then each of the

k-flats can be determined from the (r-1)-flats orthogonal

on it. This procedure can be repeated until the nose digits,

or 0-flats, are determined. Further, Chen shows, using flats

parallel to a given flat through the origin, that there exists

a sufficient number of flats of the given dimension to guar-

antee this decoding method. Moreover, this method obtains

the minimum complexity possible using the standard MLD

algorithm as the basis.

The final modification discussed involves altering the

Majority Logic procedure to obtain a decoding algorithm re-

quiring fewer majority gates but more time and buffer stor-

age. The algorithm makes use of certain relationships among

the syndrome digits. It cyclically shifts these digits,

stores them and then uses them for the next level of decoding.

If g = (co,...,cn_i) is the transmitted codeword, and

= (e0,...,en_1) the error vector, then the received vector

is a + 1 = 	= (ro,...,rn_1). The following algorithm decodes

ro correctly if no more than t errors occur. To decode, the

decoder solves for e0 in the equation g•lT = 53 for a the
syndrome, and li the parity-check matrix. There are 2k solu-

tions

 to this linear matrix equation. The non-linear con-

straint of w(e) < t, where w(x) is the Hamming weight of x,

reduces the number of solutions to one. The standard Major-

ity Logic Decoder accomplishes this reduction by deriving

new parity-checks from the old and adding them to the parity-

check matrix H, to increase its rank. In so doing, the

number of solutions to the above equation is reduced. This

78

process is repeated L times for a L-step MLD code, at which

point enough new parity-checks have been added to assure that

all the solutions give the same value of eo. Then, as the

code is cyclic, the received word is shifted and the process

repeated. This decoder, the sequential code reduction decoder ,[1141

uses the cyclic property at each step. This reduces the

combinational complexity of the decoder by making it a linear

function rather than exponential furiction, of the number of

steps needed for decoding. At each level, the many majority

units are replaced by one majority unit and extra storage

space added. The single majority unit calculates, in the

standard way, an estimate to be used on the next level. This

estimate, and its (n-1) cyclic shifts are stored. On the

next level the estimate, and a linear combination of its cyc-

lic shifts, are used as input to another majority unit. The

process is repeated until the error digit, es:" is obtained.

When this method is applied to PG codes of length n<2047, it

. is possible to decode using, at each stage, 2t orthogonal

parity-checks and one majority gate, and to correct the

standard number of errors. This decoder requires that, at

each level of the decoding procedure, there exists apolynom-

ial flat which divides a set of 2t polynomial flats orthogonal

on a flat of lower dimension at the next level.

This algorithm has illustrated that the complexity of

the MLD algorithm can be significantly decreased by increas-

ing the time and storage required for decoding.

In the next chapter we suggest a method of simplifying

the MLD algorithm for a subclass of PG codes, based on the

results of an analysis of the mathematical structure of the

null space.

79

3.8 Conclusions

In this chapter, we bave considered sevd'ral topics re-

lating to MLD. We began the chapter bydiscussing R-M Codes,

a class of codes known for its simple decoding algorithm.

It is this decoding method which forms the basis of the MLD

algorithm. Together with examples, the MLD method was studied

in detail. The mathematical properties of Projective Geome-

tries were dealt with. PG Codes, a subclass of the class of

all codes which are Majority Logic Decodable, were discussed.

A subclass of these codes are examined in the next chapter.

We presented a general Majority Logic Decoder for PG Codes,

emphasizing the circuitry required to implement the decoder.

This chapter was concluded with a survey of several modifica-

tions which can be made to simplify the standard Majority

Logic Decoder for PG Codes.

With this background, the reader is now in a position

to appreciate the aim of the thesis, the development of a

simplified version of the Majority Logic Decoder for PG Codes,

based on mathematical structures of the null space.

80

PART II
CHAPTER 4: ORBIT STRUCTURE OF PG(5.2)

4.1 Introduction,

In this chapter a structural description of the flats

of a finite Projective Geometry is presented. The background

to this interpretation is the work of Rao[39], and Yamamoto,

Fukuda and Hamada[581, concerning the compact representation

of the flats of a projective geometry. The definition of a

cycle of a flat, first introduced by Rao[39], is used to de-

fine another structure, the orbit of a set of flats. The de-

coding method introduced in the thesis is based on these orbits.

We begin the chapter with a review of the material from

Rao [391and Yamamoto et al [58j which is pertinent to our study.

In this and the next chapter we refer exclusively to the

order-3 (63,41) PG code over PG(5,2). The cycles of this

geometry are analysed using the theorems of Yamamoto et al.

Based on these cycles, the orbit structure is defined. A

' detailed investigation is made of this structure and of the

symmetries which it exposes. Finally, it is established that

the orbit structure is independent of the minimal polynomial

used to define the geometry.

4.2]aysAs.129.9.1Lorjsujdnitgsiggratryilata
Rao (391and Yamamoto et al[581present a compact represen-

tation of a finite PG, based on the cycles of the flats. We

review those results of their work which are of use in this

study.

The concept of a cycle of a flat was introduced by Raoj321

to analyse the structure of a family of flats from a finite

geometry. Yamamoto et al1581found that some of Rao's conjec-

tures were true in only certain cases. Consequently, we refer

81

to the more generalized results of Yamamoto et al in the

following.

Recalling the discussion of both Galois Fields and Pro-

jective Geometries, we note the following results which are

useful in establishing certain theorems given below. We

write q for ps, p a prime, in the following. The projective

geometry to which we refer is PG(m,q).

If (m+1)/(i+1) is integral for some non-negative integer

i, then (q(1+1)-1) is the least integer u such that

(0G)11 = 1,

0 . (q(m+1)-1)/(q(i+1)..1).

Hence, .0(419" is a primitive element of GF(q(i+1)) and can be

used to give the following representation of GF(q(i+1)):

GF(q(i+1)) = {0, oe, 	oPli+1-2)03..

The corresponding Projective Geometry, PG(i,q), is then:

PG(i,q) = {(oco), (0e), ..., (0.4"(cli+1-1)/(q-1))-1)4)3.

In particular,

GF(q) = {0, oe, 0(1.1, 	oc (q-2)v},

and,

PG(m,q) = f(0<!)). (00, 	(0J-1)3.,

where, v = (q(m+1)-1)/(q-1), the number of points in PG(m,q).

The first (i+1) points,

(0C3). 	(), • • • , (oCi4)

of PG(i,q) are linearly independent over GF(q). The set of

all linear combinations of these points yields PG(i,q).

If Vd(0) denotes a d-flat in PG(m,q) passing through the

(d+1) linearly independent points:

(o bo), (0(1).1), 	(c4bd),

then Vd(0) is the set of points given by:

Vd(0) = f(adxbo+ avx.b1+ 	adoN)11

82

and the d-flat Vd(c) is

	

Vd(c) = t(a004!)04:ci+ 	+ ado(?d+c),J,

the ai from GF(q). For some positive integer c, Vd(c)=Vd(0).

The integer c is called a cycle of the initial d-flat Vd(0).

This definition was introduced by Rao in[39]. In particular,

v, the number of points in the geometry, is a cycle of any

d-flat Vd(0) because Vd(0)=Vd(v). The minimum value of the

cycles of a d-flat Vd(0) is called the minimum cycle (m.c.)

of Vd(0). The following are consequences of the definition

of a cycle:

i) If 4 is the m.c., then it is a factor of any cycle c,

and therefore a factor of v.

ii) All the points of a d-flat of m.d. G can be listed

as follows, in terms of powers of 0C :

c 	co +G
	, co+(r-1)0

Clip C/ 44,, so.
	ci+(r-1)0

CS, cs+4, Of* , ee(r-1)0,

/ 0 mod 4, i j, i,j=0,1,...,s, r=v/4. This represen-

tation follows if we note that ci can be expressed as ci=co+ki,

for some ki. If the m.c. is v, then the above representation

reduces to the O(d,0,q) points, co,c1,...,c0(d,o,q), where

(m+1-1 	m-1 	m-d+1_1)
ff(m,d,q) = 	(q 	-1 	q-1

the number of d-flats in PG(m,q).

iii) A necessary condition for the existence of a d-flat

with m.c. 0, 0<v, is that v=0(m,0,q), the number of points

in PG(m,q), and 0(d,0,0, the number of points in a d-flat,

are not relatively prime. This is actually the requirement

that a subgeometry of ref(d,0,q) points can be formed.

83

iv) If 0 is the m.c. of a d-flat, then a d-flat consist-

ing of points obtained by,aciding the integer k, k=1,2,...,

0-1, to all the powers of the Ws in the original flat, has

the same m.c. 4. Thus, for ease of notation, we assume that

co=0 and that from the initial d-flat Vd(0), the d-flats, Vd(1),

...,Vd(0-1) can be obtained.

We now present six theorems from Yamamoto et al [581which

we use in the development of the orbit structure and which

are necessary to obtain the cycles of the flats of PG(5,2)

and PG(7,2). Each theorem is followed by a brief explana-

tion of its derivation.

Theorem 1: If 4i is integral, 01- = (qm+1-1)/(qi+1-1),.then

Vi (0.2 = f(ade + arei + 	+ ajo(1)] is an i-flat of

m.c. Oi.

Since Oi is integral, 0C0i is a primitive element of GF(q5-41)

and hence,

PG(i ,q) = (0(5)) , (oei) 	(0(iGi) 	(,k(WM -1 0 q-1))0)1,

The first (i+1) of these points are linearly independent

over GF(q) and hence the linear combination of these points

can be used to form PG(i,q). Thus,

	

. Vi(0) = i(aoce + afei + 	+ aioCi4i))

is an i-flat. That it has m.c. 01, is a consequence of the

fact that any power of DC greater than i0i is necessarily a •

linear combination of the o('s of lower power:

Theorem 2: If a d-flat has cycle less than v, then there ex-

ists a positive integer j such that (j+1) divides both

(m+1) and (d+1), and 47(q1"1-1)Aqi+1-1) is the m.c. of

Vd. Further, Vd is composed of a particular set of

(cid+1_1)/(0+1_1) j-flats from the set of 0 j-flats, Vj(0),

Vj(1),...,Vj(0-1) generated from the initial j-flat

84

/1.(0) 	1(8) 	"1 (4e 	ajc4:14) , m.c. .

The d-flat Vd with m.c. 0, by property ii) of the definition

of a cycle, is written as:

0, 4, 	j&, 	(r-1)4

c1,c1+0,... 	 . • ., (r-1)04c1

•
•
•

cs, cs+0,... cs+je,... (r-1)0+cs, 	r=v/0.

For some integer j, j < d, the j points (60), (4,...,(a.j4)

are linearly independent and hence (c((j+1)0) is a linear

combination of these points. Then,

Vj(0) = l(ade + a1c(4 + 	+ ajo(iG))

is a j-flat with cycle 0. This implies that if (6(c) is any

point of V.(0), then so is (0("ke) for any integer k. If (0(b)

is any point in Vd, then so must be (o(b+c), as the points of

vd are of the form k4+ci. So if (ce),(0),...,(0?),(cK,131),

...,kbd-j) form a basis for Vd, then so also do ke),(0(51-e.),

...(oCc+j4),(1),...,(0(e+bd-j). This implies that c is a

cycle of Vd since these points generate Vd as well. And, as

0 is the m.c. of Vd' c must be a multiple of 4, which implies

the points cxfV -(0) can be represented as (c(o),(0),...,

(0(j0),...,(0((r-1)4).
Then, as the number of points in 11)(0)

is (qj+1-1)/(q-1), we can substitute this for r and hence

= v/r = (qm+1-1)/(qi+1-1),

which implies (j+1) divides (m+1) since (qm+1-1) is divisible

by (qi+1-1) if and only if (j+1) divides (m+1). Further,

Vd consists of (s+1) j-flats, Vi(0),Vj(c1), 	,Vj(cs) with

m.c. 4, and hence

(s+1) = 0(d,0,q)/X(j,0,q) = (q(141-1)/(qi+1-1)

which proves that (j+1) is a divisor of (d+1).

85

A corollary of this theorem requires terminology which

we now define. For (i+l)tadfactor of both cm+1) and (d+1),

Vi (0) = f(aee + avei + 	+ aio(P311)}

is an i-flat of m.c. 9i=(qm+1-1)/(qi+1-1) from which the OI

i-flats Vi(0),Vi(1),...,Vi(9i-1) having the same m.c. 01

are obtained. From these Gi i-flats it is possible to select

(di+1) = (d+1)/(i+1)

flats for which all the respective basis points are linearly

independent. The linear combinations of these (d+1)=(i+1)(di+1)

points generate a d-flat with cycle ei. Such a flat is called

a "d(i)-flat" generated from (di+1) linearly independent i-

flats of m.c. Oi. When the (gel.) generating flats are in .

fact (d+1) points, the corresponding flat is a d(0)-flat.

The following corollary is an extension of Theorem 2.

Corollary: A d-flat having m.c. 0 less than v is a d(j)-flat

for some positive integer j.

Theorem 3: There always exists a d-flat with m.c. v. If

there exists a positive integer j such that (j+1) di-

vides both (m+1) and (d+1), then there exists a d-flat

with m.c.0j • ,

Oj . = (q1"1-1)/(qi+1-1) < v.

The first statement follows from the observation that (ce),

(cC1),...,(04.111) are linearly independent points and hence

Vd = {(a004° + aloj + 	+ ado()J

is a d-flat with m.c. v. The second part of the theorem is

established in a similar manner. If we set (mj+1)=(m+1)/(j+1)

and (d.+1)=(d+1)/(j+1), and let ot_ be a primitive element

of GF(qm+1), then it is also a primitive element of

GF((q.14-1)(mj+1)). Hence, the first (mj+1) points,. (c(°),

K1),...,(0e1j) of FG(mj,qi+1) are linearly independent over

86

GF(c0+1). By selecting a particular set of (dj+1) flats,

Vj(0),Vj(1),...,Vj(dj), from the 4j j-flats of m.c. ej, it

can be shown that these flats are linearly independent and

generate a d(j)-flat of m.c. 0j.

Theorem 4: For (j+1) a factor of both (m+1) and (d+1), if

there is a d-flat Vd with m.c. 0j=(qm4-1-1)/(044-1),

then Vd is considered both a d(j)-flat and a d(i)-flat

for any non-negative integer i such that (i+1) divides

(j+1), or i is 0.

To',establish this theorem, it is only necessary to examine

the representation of the points of the d-flat Vd. A d(j)-

flat Vd is generated from (dj+1) linearly independent j-flats,

Vj(c0),Vj(c1),...,Vj(cdj), where the points of a component

Vj(cs) flat are given, in terms of powers of 04, as:

cs, cs+4j, 	cs+(r-1)4j, 	r.=(qj+1-1)/(q-1).

These points can be expressed in k groups as follows:

es' 	cs +0. cs +(r-1)e.

cs4-4p 	c +e—fe. s 	J, 	C811 +(r-1)e-4-4. j

•
•
•

cs+(k-1)ej, cs+Oi+(k-1)0j,..., cs+(r171)&i+(k-1)4j,

where i is given in the theorem, ei=(qm+1-1)/(qi+1-1)=kej,

k=(cd+1-1)/(q1+1-1), and ri.(q1+1-1)/(q-1). Each of the

above k groups is an i-flat with m.c. ei. Thus, Vj(cs) is

composed of k i-flats of m.c. ei, Vi(cs),Vi(cs+ej),

Vi(cs+(k-1)ej). And hence, Vd is a d(i)-flat for any i such

that (i+1) divides (j+1), or i is zero.

The above theorems guarantee that the totality of d(i)-

flats not only contains d(i)-flats of m.c. ei but as well,

87

d(j)-flatsofm.c..e.foranyintegerjsuchthat0i divides

ei. To obtain ni, the number of d(i)-flats of m.c. el, ni,

the number of d(j)-flats of m.c. ei, must be subtracted from

ni, the number of d(i)-flats. The next theorem gives the

value of ni.

Theorem 5: The number of d(i)-flats is ni=0(mi,di,q5-11),

where mi=((m+1)/(i+1))-1, di=((d+1)/(1+1))-1.

That. ni is as given, can be established by an enumeration

argument. The first of the linear independent i-flats can

be chosen in 0i=(qm+1-1)/(q1+1-1) ways, the second in (ei-1)

ways, the third in

(q2(i+1)..1)

ei - 	(0.+1_1)

ways, and so on, where this selection is simply ensuring the

linear independency of the i-flats. The total number of ways

of choosing the (di+1) linear independent i-flats is

T(01) = 4i(0i-1)(4i - (q2(1.1.1)-1)1 	(ei - Ndi(i+1)-1)
(qi+1-1) ' 	(q1 -1) 	

).

Now, as each d(i)-flat is composed of si=(qd+1-1)/(qi+1-1)

i-flats which can be generated by any one of

T(si) = si(si-1)(si - (m2q+1)-1)) 	(si - (mdi(i+1)-1)1
(1.0.+1_1) • 	- 	(m1+1_1)

sets of.(d1+1) independent i-flats, the number of d(i)-flats

with cycle 01 is

• (Qimi+1-1)(Qimi-1)...(Qimi-di+1-1)
ni = T(01)/t(si) =

=

where Q.=qi+1

The above five theorems establish the following theorem

which we use to obtain the cycle structure of flats in PG(5,2)

and PG(7,2).

88

Theorem 6: 1) If (m+1) and (d+1) are relatively prime, then

all the d-flats of PG(mA) have m.c. v and can be gener-

ated from ,L=0(m,d,q)/v initial d-flats.

2) If the Highest Common Factor (HCF) of (m+1) and (d+1) is

Al es2 	Ae
P1 P2 '" Pe) 1'

the pi primes such that pi<pi+1, i=1,...,e-1, then the

number of distinct m.c.'s is

-TT (1 + fii).
i.1

Let
0(x1,...,xe) = (q"1-1)/(qP1x1p2x2. ..pexe 	1)

= ((m+1)/(P1x1P2x2"'Pexe))-1)
d(xl,...,xe) = ((d+1)/(p1x1...pexe))-1

q(xl,...,xe) = (qP1x1 	Pexe):

Then the number of d(pixl...pexe)-flats having the cycle

0(xl,...,xe) and m.c. 0(x1,...,xe) are respectively

n(xl,...,xe) = 0(m(x11...,xe),(d(x1,...,xe),q(x1,.xe))

n*(/91,...,4) = n(41,...,;)

n*(xl,...,xe) 0 n(xl,...,xe) -)77 n*(yi,...,ye).

	

x 	tej ,

The number of initial d-flats of any m.c.e(xl,...,xe)

is 7(x1,...,xe)=n*(x1,...,xe)/4(xl,...,xe) from which

the totality of d-flats having m.c. 0(x1,-...,xe) can

be generated.

The theorems of Yamamoto et alj,58]provide a means of parti-

tioning the flats of a finite projective geometry. In the

following, we extend this concept and develop a non-ortho-

gonal decoding method for order-(m-2) PG codes over PG(m,2).

89

4.3 Cycle Description of PG(5.2)

We now apply the results obtained in Section 4.2 to the

PG(5,2). We begin by finding the cycles of the 3-flats of

PG(5,2). These flats form the null space of the order-3.

(63,41) PG code over PG(5,2), which, 'in Chapter 5, is decoded

using a decoding algorithm related to the cycles of the flats.

The null space 3-flats are obtained and partitioned using

Yamamoto et al's[58J sixth theorem for m=5, d=3 and ps=q=2.

The second part of Theorem 6 is applied for the 3-flats

since the highest common factor of (m+1,d+1) is

HCF(6,4) = 2 / 1.

Using this theorem, we obtain the number of distinct cycles,

the values of the cycles, the number of 3-flats with a given

cycle and the number of initial 3-flats (i3f) of PG(5,2).

Since p1=2 and A1=1, the number of m.c.'s is (1+1)=2. From

the third theorem above, we know that one of the m.c.'s is

v=63. For x1=1 and x1=0 in Theorem 6 we have:

x1=1 	 x1=0

e(1) = (26-1)/(22-1) = 21 	0(0) = (26-1) = 63

q(1) ='22 = 4 	q(0) = 2

n*(1) = n(1) = g(2,1,4) = 21 	n(0) = 0(5.3,2) = 651

A.(1) = 21/21 = 1 	n*(0) = 651-21 = 630

(0) = 630/63 = 10.

These calculations show that there are ten 13f's of m.c. 63

and one i3f of m.c. 21. Each of the ten i3f's of m.c. 63

generates 63 distinct 3-flats. Recalling the discussion on

Projective Geometries, we note that each 3-flat can be repre-

sented by a 63-tuple of zeros and ones. In the 63-tuple,

• 90

each position refers to a point of the geometry. A one ap-

pears in each position which corresponds to a point in the

3-flat. The resulting 63-tuple is an incidence vector of the

3-flat. We let (o0.) refer to the point in position i, i=0,

1,...,62, c a primitive element of GF(26). In the remainder

of the thesis a point is referrred to as i, rather than 0),

i=0,1,...,62, and a flat as a set of these points listed in

ascending order of magnitude. The incidence vectors of the

63 flats generated by an i3f of m.c. 63 are obtained by cyclic-

ally shifting the i3f incidence vector i positions to the

left for i=0,1,...1 62. The point representations of the

flats are generated by subtracting i from each i3f mod 63,

i=0,1,..., 62. Similarly' the 21 3-flats generated from the

i3f of m.c. 21 are obtained by cyclically shifting the inci-

dence vector of the i3f i positions to the left, or subtract-

ing i, mod 63, from the point representation of the i3f,

1=0,1,...,20.

The PG codes are cyclic and so, when decoding them, it

is only necessary to consider those 3-flats in the null space

which contain the point 0. This reduction of the null space

is possible because once the digit in position 0 has been

decoded, the codeword can be shifted once and the same pro-

cedure used to decode the next digit. Thus, for each of the

ten i3f's of m.c. 63, we need generate only the fifteen 3-

flats which intersect on 0. That there are fifteen such

flats can be established by the following argument. Each 3-

flat has 0(5,0,3)=15 points, which can be represented by the

integers (io05-1"—"i14)6 By successively subtracting

j=0,1,...1 14, mod 63, from the point representation of the

flat, fifteen distinct 3-flats thrOugh the point 0 are obtained.

Referring to Theorem 2 above, we note that the i3f of

91

m.c. 21 is composed of five 1-flats, one of which contains

the point 0. The other four flats are shifted versions of

the first. In terms of initial flats, the first 3-flat

through 0 can be written as V3(0) and hence the others as

V33. (c-) for the four positive integers ci, i=1, 	After

shifting the first five incidence ones to position 0, the

digits in the incidence vector must again be in the same

relative positions because the points not in V3(0) are simply

shifted versions of these points. If we continue to shift

the 63-tuple, the same five 3-flats are generated a second

time. As a result, the i3f of m.c. 21 generates only five

• distinct 3-flats passing through the point 0.

In later sections, the cycle description of the 1-flats

of PG(5,2) is required. Thus, we apply Theorem 6 above for

d+1. In this case, (d+1)=2, so

HCF(m+1,d+1) = HCF(6,2) = 2

and again there are (1+1)=2 distinct cycles, one of which .

must be 63, by Theorem 3. Applying Theorem 6 for x1=1 and

x1=0 we have:

x1=0 .

21 	0(0) = (26-1)/(2-1) = 63

m(0) = (6-1) = 5

d(0) = (2-1) = 1

q(0) = 2

= 21 	n(0) = 0(5,1,2) = 651 -

A.(1) = 21/21 = 1 	n*(0) = 651-21 = 630

AJO) = 630/63 = 10

Interpreting the above, there are ten ilf's of m.c. 63 and

one ilf of m.c. 21. Again each i1f of m.c. 63 generates 63

1-flats and the i1f of m.c. 21 generates 21 1-flats. If we

x1=1

= 0(1) = (26-1)/(22-1)

m(1) =.((5+1)/2)-1) 	= 2

d(1) = (2/2)-1 = 0

q(1) = 22 = 4

n*(1) = n(1) 	= 91(2,014)

92

consider the 1-flats as those flats which are obtained after

two levels of majority logic decoding, then, as for the 3-
flats, it is only necessary to know the 1-flats which pass

through O. As there are 0(5,0,1)=3 points in each 1-flat,

we need only consider the three 1-flats generated from each

ilf of m.c. 63 which contain the point O. From Theorem 2

above, the i1f with m.c. 21 is the flat (a00(0 + a1x.21),

ao and al from GF(2). Irrespective of the minimal polynomial

chosen to represent PG(5,2) the points of this flat are 0,

21 and 42. That this is so, is established in Section 4.6.

Thus, as for the 3-flat case, cyclically shifting this flat

21 positions•to obtain a one in position 0 of the incidence

vector, gives the i1f with which we began. As a result, the

ilf of m.c. 21 has only one distinct flat 'which passes through

the point O.

In the following section we develop further the ideas

presented here.

4.4 Orbits of PG(5.2)
In this section we introduce the orbits, the structures

which form the basis of the simplified decoder of the Pro-

jective Geometry Codes. First, however, it is necessary to

define the transformation Z. We denote by Z that transforma-

tion which takes the point representation of an i-flat, Vi,

and subtracts 1 from each point, mod (011+1-1), to give the

i-flat Z(Vi) in PG(m,2), where in this chapter m=5. This

corresponds to dividing the polynomial representation Vi(X)

of the i-flat Vi by X, mod (X63-1), or, to cyclically shifting

the incidence vector of Vi one position to the left. For Vi

an i-flat, we define Zn by

Zn(Vi) = Z(Zn-1(Vi)), 	n>1.

93

The set

(Z,Z2, ...,z63=zo=e1

forms a group over the set of all i-flats in PG(5,2). For

i=3 and i=1, this group partitions the i-flats into orbits,

where each orbit corresponds to one of the iif's and the i-

flats generated from it. Thus, there are ten orbits with 63

members each and one orbit with 21 members. For decoding

purposes, we are interested only in those flats containing

the point O. Therefore, we define a 01-orbit to be the sub-

set of an orbit consisting of only those i-flats in which the

point 0 occurs. The 'Oi' in the term '01-orbit' refers to

the fact that the constituent flats are i-flats through the

point O.

For i=3, each of the 03-orbits of flats with m.c. 63 has

fifteen members. The 03-orbit corresponding to the i3f of

m.c. 21 has five members. The 01-orbits with flats of m.c.

63 have three members each, the 01-orbit with the flat of

m.c. 21 has one member. These observations follow from the

discussion in Section 4.3 concerning the number of flats

which pass through the point O. •

Thus, there is a one to one correspondence between the

eleven orbits and the eleven iif's and between the 0i-orbits

and the iif's through the point 0, i=1,3.

To illustrate these concepts, we list the 01-orbits of

PG(5,2) in Table 4.4.1, where the 1-flats are given using the

exponential representation. The three 1-flats contained in

any given 01-orbit are labelled 'a', 'b' and 'c', where the

'a' 1-flat is the ilf of the 01-orbit, and the 'b' and 'c'

flats are obtained by applying the transformation Z succes-

sively to the ilf until two 1-flats through the point 0 are

94

obtained. The 01-orbits are numbered (11),(21),...,(111),

where the subscript denotes the dimension of the constituent

flats. The 1-flats a, b and c of (t1) are referred to as

tia, tib and tic, respectively, t=1,...,10. The single 1-

flat in (111) is labelled 111a. The'eleven 01-orbits are

grouped into four distinct classes 	the

subscript denoting the dimension of the flats in the class.

These classes are defined later.

(11)a: 0 1 6
(21)

a: 	0 2 12 (30a: 0 4 24
bs 0 5 62 bs 0 10 61 b: 0 20 59

• c: 0 57 58 c: 	0 51 53 c: 0 39 43
I1 (4,)

'I' 	a: 0 8 48
(51)a: 	0 16 33 (61)a: 0 3 32

b: 0 40 55 b: 	0 17 47 ' 	b: 0 31 34
c: 0 15 23 c: 	0 30 46 c: 0 29 60

(71)a: 0 7 26
(81)

a: 	0 14 52 (91)a: 0 28 41
II1 .b: 0 19 56 b: 	0 38 49 b: 0 13 35

c: 0 37 44 c: 	0 11 25 c: 0 22 50

(10,)
' a: 0 9 45 INT1 t(111)

III1 b: 0 36 54 a: 	0 21 42
c: 0 18 27

Table 4.4.1: 01-orbits of PG(5,2), minimal poly-
nomial (0 1 6)

We note that the minimal polynomial used in the representa-

tion of PG(5,2) given in Table 4.4.1 is m(X)=1+X+X6. Through-

out the thesis this minimal polynomial is used to represent

PG(5,2). We show in Section 4.6 that the representation of

PG(5,2) is well-defined, that is independent of the minimal

polynomial chosen to represent it. This implies that the

O.-orbit structure is identical for each representation of

PG(5,2).

The 1-flats of Table 4.4.1 are generated by selecting

95

two independent points, one of which is 0, and forming the

corresponding 1-flat. This flat is then cyclically shifted

to form the 01-orbit. Once an ilf from each of the classes

and III1 is found, the remaining ilf's in each of these

classes are formed by multiplying the exponent set of each of

the i1f's by 2, mod 63, successively until all the initial

flats are obtained. This process is explained in more detail

below. Computer programs were written to generate the i-flats

in the geometry and to partition them into Oi-orbits,

We now exhibit a most interesting and useful correspon-

dence between the 01-orbits and the 03-orbits.

In any 03-orbit of m.c. 63, the element 0, by construe-

tion,-is present in all fifteen of the 03-orbit 3-flats. In-

spection of the point sets of each of these 03-orbits shows

that a set of six of the 62 non-zero points of the geometry

occurs seven times and the remaining 56 elements each occur

only three times. Moreover, the set of six points which

occurs seven times in a given 03-orbit is distinct from the

set which occurs in any other 03-orbit. An analysis shows

that each such set consists of the six non-zero points of a

particular 01-orbit. Thus, a one to one correspondence can

be established between the 03-orbits of m.c. 63 and the 01-

orbits of m.c. 63, where an orbit is said to have the m.c.

of its constituent fiats. The 03-orbits are therefore num-

bered (13),(23),...,(103) to exhibit this correspondence.

The 03-orbit (t3) contains the six non-zero points of the

01-orbit (t1) seven times, t=1 10. The 03-orbit of m.c.

21 corresponds to the 01-orbit (111). It repeats the two

non-zero points of (111) five times each, that is points 21

and 42 appear in each of the five 3-flats which compose (11
3
).

Every other non-zero point of the geometry appears once only.

96

Of the fifteen 3-flats in any 03-orbit (t3) of m.c. 63,

there are two 3-flats which do not contain a 1-flat from (ti),

t=1,...,9. For the purposes of this study we omit these two

3-flats and refer to the 03-orbit (t3) as the thirteen 3-flats

which intersect on 0 and contain at least one 1-flat from (t1).

We now investigate the structure of the 03-orbits (13)

through (93). The 3-flats of each 03-orbit (t3), t=1,...,9,

can be ordered so that, representing each 3-flat by the 1-

flats a, b and c of (t1) that it contains, the following des-

cription of the 3-flats in terms of the 1-flats is obtained:

at a,b,b,c,c,ab,abt ac,ac,bc,bc,abc.

In this representation, a single letter indicates that only

one (t1) 1-flat is present in the (t3) 3-flat, a pair of

letters that two (t1) 1-flats are in the (t3) 3-flat and abc

that all three (ti) 1-flats occur in the (t3) 3-flat. More

explicitly, the 1-flat tia is the only(t1) 1-flat in two of

the thirteen 3-flats of (t3), appears with the 1-flat t1b

twice and with the 1-flat tic 'twice. All three 1-flats oc-

cur together in one of the thirteen 3-flats. Observing this,

each 0
3
-orbit (t3) can be divided into three intersecting

subsets, At, Bt, Ct, where, for example, the set At consists

of the (t
3
) 3-flats, in the representation above, which con-

tain the (t1) 1-flat a:

a,a,ab,ab,ac,ac,abc.

Thus, At is the subset which contains the seven 3-flats

which intersect on t1a. Flats t1b and t1c occur three times

each in At. We refer to the elements which occur seven times

as 7-repeats and those which occur three times as 3-repeats.

The remaining points of a given subset are either 3-repeats

or 1-repeats of points not in (ti).

We note that the subsets At, Bt and Ct are not ortho-

97

gonal on t1a since there are three occurrences of the 1-flat

tib and of the 1-flat tic in the seven 3-flats composing At.

We illustrate later the advantages of the non-orthogonal or-

bit structure for decoding.

The thirteen 3-flats in (t3) are labelled to reflect

further the correspondence of (t3) with (t1), t=1,...,9.

Each 3-flat in (t3) contains at least one 1-flat from(t1).

We label the 3-flats of (t
3
) with the label of these contained

(t1) 1-flats. In (t3) there are two 3-flats which contain

each of the 1-flat groups a,b,c,ab,ac,bc from (t1). These

two 3-flats of (t3) are distinguished by the subscripts 'i'

and 'ii'. For example, the 3-flats of (t3) which contain

both tia and tib are denoted as t3abi and t3ab11.

In the discussion of the 03-orbits, we have omitted

(10
3
) and (113). This is due to the unique structures of

both these orbits. These structures allow (103) and (113)

to be used for a special purpose in the decoding algorithm.

We now describe the structures of these two 03-orbits. Al-

though every non-zero point of (101) appears seven times and

the other points of the geometry,three times each in (103),

the repeat pattern of the 1-flats a, b and c of (101) is,

using the representation above:

abc,abc l abc,abc,abc,abc,abc,

that is, all six non-zero elements of (101) appear in seven

of the 3-flats of (103) and do not appear at all in the re-

maining eight 3-flats of (103). We omit those 3-flats in

(103) which do not contain a 1-flat of (101), to yield seven

members only in (103). Consequently, in (103) there is only

one subset, say A10, consisting of seven 3-flats, all of

which contain the 1-flats 101a, 101b and 101c. The same

98

lettering method is used to label the 3-flats of (103) as

was used for the (t3) 03-orbits, t=1, 	However, it is

less illustrative in this case since all the seven 3-flats

are labelled 103abc' with subscripts.i _,__,...,vii.

In (113) we have the single 1-flat 111a occurring in

each of the five 3-flats. Thus, each of the 3-flats is la-

belled 113a,
with subscripts i,ii,iii,iv,v.

In the next section we analyse the 03-orbits in terms

of the 01-orbits, illustrating the numerous symmetries made

apparent by this arrangement of the 3-flats.

4.5 Symmetries in the PG(5.21 0i-Orbits

The analysis of PG(5,2), based on the 0i-orbit structure,

is completed below. A second transformation, which operates

on the flats represented as point sets, is introduced, allow-

ing for a further investigation of the symmetrical properties

of the 0i-orbits.

We introduce the analysis of the 0i-orbits with Tables

4.5.1 and 4.5.2 which illustrate several symmetries of the

0k-orbits. The first Table, Table 4.5.1, consists of.the 7-

repeats and 3-repeats of each 03-orbit. In Table 4.5.2, each

0
3
-orbit 3-flat is represented in terms of its constituent

01-orbit 1-flats.

	

7-repeat 	3-repeats

	

subset 	(as 1-flats)
0
3
-orbit

(13) 	Al 	lb lc 2a 3b 7a 8c
B1 	la lc 2b 3a 7b 8c
C1 	la lb 2c 3b 7b 8a

(23) 	A2 	2b 2c 3a 4b 8a 9c
B2 	2a 2c 3b 4a 8b 9c
C2 	2a 2b 3c 4b 8b 9a

(33) 	
3b 3c 4a 5b 9a 7c

B5 	3a 30 4b 5a 9b 7c
13
	

• 	C3 	3a 3b 4c 5b 9b 7b

(3)
 A.4 	4b 4c 5 	

7a 8c
a 6b b 8c

B4 	ka 4c 5b 6a 7
C4 	4a 4b 5c 6b 7a 8b

(53) 	A5 	5b 5c 6a lb 8b 9c
B5 	5a 5c 6b la 8a 9c
C5 	5a 5b 60 lb 8a 9b

(63) 	A6 	6b 6c la 2b 9b 7c
B6 	6a 6c lb 2a 9a 7c
C6 	6a 6b lc 2b 9a 7a

99

(73) 	A7 	7b 7c 8a 10a 2c 5a
B7 ,,, 	7a 7c 8b 10a 2a 5c
C7 	7a 7b 8c 10c 2c 5c

()- 	A8 	8b 8c 9a 10c 3c 6a
113 	B8 	8a 8c 9b 10c 3a 6c

C8 	8a 8b 9c 10b 3c 6c

(93) 	A9 	9b 9c 7b 10b 4c la
B
9 	

9a 9c 7a 10b 4a is
C9 	9a 9b 7c 10a 4c lc

A10

1-repeats

2b 5b lc 4c
3b. 6b .2c 5c
4b lb 3c 6c

la 4a 8a 8b
2a 5a 9a 9b

.3a 6a 7a 7b

7c 8c 9c lla

5-repeat
subset

(113) 	A11 . 	is 4c 2a 5a 7c 10b
2c 5c 3a 6a 8c 10a

IV
3 	

3c 6c la 4a 9c 10c

lb 3b 5b 7a 8b 9a
41) 6b 2b 7b 8a 9b

Table 4.5.1: 7-repeats and 3-repeats of I , II
7-repeats and 1-repeats of 311113
5-repeats and 1-repeats of IV3 '

Note: The subscript "1" has been omitted on the 3/1-repeat

column as all the constituent flats are 1-flats.

100

01- 	(t1) 3- 	1-flats in ji

	

orbit flat j 	
.L.3/_ 	

(13) 	a 	la 2a 4a 6a 7a 9b 10c
b 	lb 2b 3a 4c 6a 6c 10a

lc 2c 4a 5b 5c 8a 10a
ab 	la lb 2a 5b 6b 7a 8c
ac 	la is 2a 3b 6c 7a lla
be 	lb is 2b 3a 4b 7b 10c
abc la lb 10 3b 7b 8c 9a

(23) 	a
b

ab
ac
be
abc

(33)' 	a

13 	
ab
ac
be
abc

(43) 	a

ab
ac
be.
abc

(53) 	a

ab
ac
be
abc

(63) 	a .

ab
ac
be
abc

(73) 	a

ab
ac
be
abc

3a 4a 6a 2a 9a 8a 10a
3b 4b 5a 6c 2a 2c 10b
3c 4c 6a lb lc-7b 10b
3a 3b 4a lb 2b 9a 7c
3a 3c 4a 5b 2c 9a lla
3b 3c 4b 5a 6b 9b 10a
3a 3b 3c 5b 9b 7c 8b

4a 5a la 3a 7b 9a 10c
4b 5b 6a lc 3a 3c 10a
4c 5c la 2b 2c 8b 10a
4a 4b 5a 2b 3b 7b 8c
4a 4c 5a 6b 3c 7b lla
4b 4c 5b 6a lb 7a 10c
4a 4b 40 6b 7a 8c 9b

5a 6a 2a 4a 8b 7b 10b
5b 6b la 2c 4a 4c 10c
5c 6c 2a 3b 3c 9b 10c
5a 5b 6a 3b 4h 8b 9c
5a 5c 6a lb 4c 8b lla
5b 5c 6b la 2b 8a 10b
5a 5b 5c lb 8a 9c 7a

6a la 3a 5a 9b 8b 10a
6b ib, 2a 3c 5a 5c 10b
6c lc 3a 4b 4c 7a 10b
6a 6b la 4b 5b 9b 7c
6a 6c la 2b 5c 9b lla
6b 6c lb 2a 3b 9a 10a
6a 6b 6c 2b 9a 7c 8a

7a 3b 4b 4c 5a 8a lla
7b lb is 2a 6b 8b lla
7c la lb 4a 4b 8c 1.0c
7a 7b la 2a 8b 9a 10a
7a 7c 2c 6a 6b 8c 10c
7b 7c 2a 3c 4c 5c 8b
7a 7b 7c 2c 5c 9c 10a

1-flats in jii

la 3c 4b 7c 8b 9c 10a
lb 3c 4a 7c 8b 10b 11a
is 3c 5a 6a 6b 7c 8b
la lb 2b 3a 5a 5c 8c
la 1c 2c 3b 4c 8a 10b
lb is 2c 7b 8a 9b 9c

3a 5c 6b 9c 7a 8c 10b
3h 5c 6a 9c 7a 10c lla
3c 5c 1a 2a 2b 9c 7a
3a. 3b 4h 5a la to 7c
3a 3c 4c 5b 6c 7b 10c
3b 3c 40 9b 7b 8a 8c

4a 6c lb 7c 8a 9c 10a
4b 6c la 7c 8a 10b lla
4c 6c 2a 3a 3b 7c 8a
4a 4b 5b 6a 2a 2c 8c
4a 4c 5c 6b lc 8b* 10b
4b 4c 5c 7a 8b 9a 9c

5a is 2b 8c 9a 7c 10c
5b is 2a 8c 9a 10a lla
5c is 3a 4a 4b 8c 9a
5a 5b 6b la 3a 3c 9c
5a 5c 6c lb 2c 9b 10a
5b 5c 6c 8a 9b 7b 7c

6a 2c 3b 9c 7b 8c 10b
6b 2c 3a 9c 7b 10c lla
6c 2c 4a 5a 5b 9c 7b
6a 6b lb 2a 4a 4c 7c
6a 6c be 2b 3c 7a 10c
6b 6c is 9a 7a 8b 8c

7a lb 2b 3a 3c 5b 10b
7b 2b 4b 5b 6a 6c 10b
7c 2b 5b 9a 9b 10b lla
7a 7b 4a 5a 8a 9b 10a
7a 7c is 2c 5a 6c 8a
7b 7c 3a 3b 5c 8c 10c

2a 3a 5a la 8a ?a 10b 2a 4c 5b 8c 9b 7c 10c
2b 3b 4a 5c la is 10c 2b 4c 5a 8c 9b 10a lla
2c 3c 5a 6b 6c 9a 10c 2c 4c 6a la lb 8c 9b
2a 2b 3a 6b lb 8a 9c 2a 2b 3b 4a 6a 6c 9c
2a 2c 3a 4b 1c 8a lla 2a 2c 3c 4b 5c 9a 10a
2b 2c 3b 4a 5b 8b tOb 2b 2c 3c 8b 9a 7a 7c
2a 2b 2c 4b 8b 9c 7b

101

8
3
)

11
3

(93)

a 	8a 4b 5b 5c 6a 9a lla 8a 2b 3b 4a 4c 6b 10a
b 	8b 2b 2c 3a lb 9b lla 8b 3b 5b 6b la lc 10a
c 	8c 2a 2b 5a 5b 9c 10b 8c 3b 6b 7a 7b 10a lla
ab 8a 8b 2a 3a 9b 7b 10c 8a 8b 5a 6a 9a 7a 10c
ac 	8a 8c 3c la lb 9c 10b 8a 8c 2c 3c 6a is 9a
be 8b 8c 3a 4c 5c 6c 9b. 8b 8c 4a 4b 6c 9c 10b
abc 8a 8b 8c 3c 6c 7c 10c

a 	9a 5b 6b 6c la 7b lla '9a 3b 4b 5a 5c lb 10c
b 	9b 3b 3c 4a 2b 7a lla 9b 4b 6b lb 2a 2c 10c
c 	9c 3a 3b 6a 6b 7c'10a 9c 4b lb 8a 8b 10c lla
ab 9a 9b 3a 4a 7a 8b 10b 9a 9b 6a la 7b 8a 10b
ac 9a 9c 4c 2a 2b 7c 10a 9a 9c 3c 4c la 2c 7b
be 9b 9c 4a 5c 6c is 7a 9b 9c 5a 5b is 7c 10a
abc 9a 9b 9c 4c lc 8c 10b

Table 4.5.2: 0 -orbits expressed as 1-flats for
lasses 1

3
and 113.

Before analysing these Tables, we define the transfor-

mation g. We denote by g that transformation which assigns

to any point (ani) of the geometry, the point (cei), the ex-

ponents mod 63. Using the exponent representation mentioned

earlier, we say that g takes any point i to the point 2i, mod

63, that is

g(i) = 2i

gn(i) = g(gn-1 (i)), 	n>1.

The group G of transformations is then

g2,...,g6=go=e1,

where gi is 2i. We note that g6=26 is the identity because,

for 04! a primitive element, <63=1 and hence 0d54= 1 or

26=1, mod 63. The group G operates on the 3-flats and 1-

flats by operating on each point of the flat. Thus, we can

write g as a function of a flat. For example,

g2(11a) = g(g(11a)) = g(g(0 1 6))

= g(0 2 12) = g(21a) = (0 4 24) = 31a.

We observe that the transformation g is a one to one trans-

formation of the set of all Ocorblt.i-flats to itself, that

is g is a permutation. For example, g establishes the

102

following mappings:

11a 	21a, 	21a 	31a, 	31a -44/a,

41a -4 51a, 	51a 	 61a -4 11a,

which can be written as the cycle (11a 21a 31a 41a 51a 61a),

of order six, where the order of a cycle is the number of el-

ements in the cycle. We note that the term cycle used here

is distinct from the cycle of Yamamoto et al[58]. The cor-

rect usage is determined by the context. By applying the

transformation g to the 1-flats of each 01-orbit, the 1-flats

can be divided into the four disjoint cycle classes, 11,111,

III1 and IV1, given in Table 4.5.3.

Class
	

1-flat Cycles 	Order of Cvcle

(la 2a 3a 4a 5a 6a) 	6
(lb 2b 3b 4b 5b 6b) 	6
(1c 2c 3c 4c 5c 6c) 	6

II1 	(7a 8a 9a 7b 8b 9b) 	6
(7c 8c 9c) 	3

III1 	(10a 10b 10c) 	3

IV1 	(11a) 	 1

Table 4.5.3: 1-flat.Cycles

Similarly, g can be applied to the 3-flats of each 03-orbit

to give the classes 13, 113, 1113, 1V3. We note that in 13,

the subscripts 'i', 'ii' on the 3-flats can be omitted as

g takes 'i' ('ii') 3-flats only to 'i' ('.ii') 3-flats. This

is also true in the I13 class for all but the 73abi, 73aci

and 73 loc.1 cycles. For the three cycles mentioned, g takes

an 'i' 3-flat to an 'ii' 3-flat and hence the subscripts must

be included. For example, we have (7 ab1 . 8 ab. 9 ab. 7 ab.. 3 	3 1 3 	3 11

83abii 93acii). The 3-flat cycles are listed in Table 4.5.4.

The seven 3-flats in (103) are distinguished by the subscripts

103

i,ii,...,vii, where, in Table 4.5.1 they appear in this order.

The five 3-flats of (113a) are subscripted similarly. In

Table 4.5.1, the five 3-flats of A11 appear in the order i,

ii,iii,iv,v.

Class 	3-flat Cycles 	Cycle Order

13 	(13a 23a 33a 43a 53a 63a) 	6
(13b 23b 33b 43b 53b 6qb) 	6
(13c 23c 33c 43c 51c 65c) 	• 	6
(13ab 23ab 33ab 43db 53ab 63ab) 	6
(11ac 23ac 33ac 41ac 53ac 63ac) 	6
(15bc 23bc 33bc 4-ibc 53bc 63bc) 	6
(13abc 23abc 33abc 43abc 53abc 63abc) 	6

113 	(73a 83a 93a 73b 83b 93b) 	6 • , l73c 83c 91c) 	 3
• (73abi 83abi 93abi 73abii 83abii 93abii) 	6
(73aci 83aci 93aci 73bcii 83bcii 93bcii) 	6
(73bci 83bci 93bci 73acii 83acii,93acii) 	6
(73abc 83abc 93abc) 	 3

1113 	(103abci 103abcii 103abciii) 	3
(103abciv 103abcv 103abcvij 	3
(103abcvii) 	 1

IV3 	
(113ai 111aii 113aiii) 	3
(113aiv 113av) 	 2

Table 4.5.4: 3-flat Cycles

Referring to Table 4.5.3 and Table 4.5.4, we observe

that the cycle structure can be represented at a gross level

as:

Ig: (1 2 3 4 5 6)

lig: (7 8 9)

III g: (10)

IVg: (11),

where the cycle element t refers to the 01-orbit (ti), i=1,3,

t=1,2,...,11, and the subscript g denotes that these cycles

are induced by the transformation g.

The structure of cycles and orbits forms the basis of

104

the simplified decoding method presented in the next chapter.

The set of 3-flats, expressed as 01-orbit 1-flats, that were

selected from the null space and arranged in the 03-orbits,

have many symmetric interpretations. We now discuss these

symmetries in detail and later show that a knowledge of them

greatly reduces the complexity of the Majority Logic Decoder

for the PG code based on PG(5,2). Moreover, the 0i-orbits

provide for a mathematically interesting analysis of the

composition and structure of the flats of PG(5,2).

In order to provide a more pr'ecise analysis of the sym-

metrical properties of the 03-orbits, we introduce more term-

inology. The 01-orbit (101), as we noted earlier, plays an

important role in the decoding process of Chapter 5. Also,

it partitions the 01-orbit 1-flats into distinct blocks of

flats, such that no 1-flat, except from (101), appears in

more than one block. We refer to these blocks as symmetry

blocks because they are the basis of many of the symmetric

distributions found in the 03-orbits and because sets of er-

rors which have the same symmetric block composition are

treated similarly by the decoder. The symmetric blocks are

the 1-repeat 1-flats of (103), plus the 1-flats of (101).

Si: 2b 5b lc 4c
S2: 3b 6b 2c 50
S3: 4b lb 3c 6c

Sio la 4a* 8a 8b
Sg: 2a 5 	9 9 a a b
S6: 3a 6a 7a 7h

S7: 7c 8c 9c lla

S8: 10a 10b 10c

Table 4.5.5: Symmetry Blocks of PG(5,2)

105

In the following analyses, the symmetry blocks play an im-

portant role. In particular, those pairs of 1-flats in sym-

metry blocks Si to S6 from the same cycle of I1 or III, for

example lc 4c in Si, are symmetrically distributed in the

03-orbits. The members of S7 represent the two distinct

cycles, (7c 8c 9c) and (11a). As the symmetry blocks are of

prime importance, both in the analysis of 01-orbit symmetries

and in the defining of the 0i-orbit decoder, we investigate

them in more detail. The symmetry blocks bring to light the

fact that each element of an ordei 6 cycle is symmetrically

related to the element in the cycle three cycle positions

away. If we examine the cycle in II1 of order 6, (7a 8a 9a

7b 8b 9b), we observe that this can be considered to be

composed of an 'a' semi-cycle plus a 'b' semi-cycle, each of

order 3. Here, the element 7a, after 3 cyclic shifts does

not reappear. However the element that does, 7b, is from

the same 01-orbit as 7a. We refer to the element ti p as

the symmetric relative of t1j, for t=7,8,9, j=a,b and j'=a(b)

if j=b(a). To complete the definition for the II1 class, we

say that tic is the symmetric relative of tic, t=7,8,9.

Any two symmetric relatives are separated by three cyclic

shifts. The same terminology can be used to describe the II.

cycles. If we look again at the symmetry blocks, we note the

pairing of cycle members of I1 which are separated by three

cycle shifts, 11j and 41j, 51j and 21j, 31j and 61j, j=a,b,c.

As above, we refer to these pairs, a distance of three cycle

shifts apart, as symmetric relatives. In symmetry blocks

Si to S6, the symmetric relatives, t1j and (t+3)1j, appear

as pairs, j=a,b,c, t=1,2,3. Also, the symmetric relatives

tia and tib, t=7,8,9, appear in symmetry blocks S4, S5, S6.

106

For consistency, we consider each orbit (t) of I to

possess the symmetric relative (t+3), t=1,2,3. We note that

there are no corresponding symmetry blocks or relatives de-

fined on the 3-flats. In the following, we refer frequently

to both the symmetry blocks and the symmetric relatives.

If we now examine Table 4.5.1, several examples can be

found of the symmetric distribution of the 1-flats. We inter-

pret these by referring to the symmetry blocks and symmetric

relatives. In Table 4.5.1, the 03-orbit (13) and its sym-

metric relative in Ig, (43), have the 1-flats 7a,7b,7b,8c,

8c,8a and 7b,7a,7a,8c,8c,8b, respectively. Thus, the 03-

orbit (43) contains the symmetric relatives of the I11 1-flats

which occur in (13). Moreover, the I1 class 3-repeats in

(13) and (43) are symmetric relatives as well. For instance,

in (13), 2a,2b,2o and A,3a,3b appear as 1-flats, while in

(43), we have 5a,5b,5r, and 611,6a,6b. In Table 4.5.1, more

examples of the balanced distribution of symmetric relatives

occur.

It is also possible to analyse Table 4.5.1 by referring

to the transformation g which defines the cycles. The set

of entries from a fixed column and row of each 03-orbit of

one cycle class, shows the effect of the transformation g.

For instance, if we consider the set of 1-flats from the

first row and column'of the 3-repeats of each of the 13 03-

orbits, we have the cycle generated by 1-flat lb, (lb 2b 3b

4b 5b 6b). The set of 1-flats in a fixed column and row of

the 03-orbits of both the 13 and 113 classes exhibits this

same cyclic distribution of the 1-flats.

If we tabulate the number of times each 1-flat appears

as a 3-repeat in Table 4.5.1, we find that each I11 1-flat

107

occurs seven times, while each T1 1-flat occurs only five

times. From this observation, should an error occur in a

1-flat, more of the null space 3-flats would be effected

than if the error were in a Ii 1-flat. This fact is reflected

in the decoding algorithm given in Chapter 5.

Also of note is the fact that no (101) 1-flat appears

as a 3-repeat in the 13 03-orbits. Consequently, should er-

rors occur in the Hi or III1 1-flats, the 3-flats in the

null space from 113 would be effected more than the 13 3-

flats. This too will be discussed in more detail when we

present; the O.-orbit decoder in Chapter 5.

We conclude the discussion of Table 4.5.1 by briefly

referring to the 1113 and IV3 03-orbits. Since each 1-flat

of (101) appears in each of the (103) 3-flats, a single error

in a 1-flat in (101) would cause all estimates obtained from

the (103) null space 3-flats to be in error. The pairing of

1-flats determined by the symmetry blocks is reflected in

the IV3 03-orbit (113).

We now discuss Table 4.5.2. This Table provides many

more examples of symmetries. The most obvious of these, as

for Table 4.5.1, is the set of 1-flats which are the entries

for a fixed row and column of each of the 03-orbits of 13 or

113. For example, the column two, row ci entry of each 03-

orbit in 13
gives the cycle generated by the 1-flat lc, (2c

3c 4c 5c 6c lc). It is possible to find several examples of

a set of 1-flats or their g-transformations repeating in dis-

tinct 3-flats. In each bcii 3-flat of 13, the pair of 1-flats

7a,7c or a g-transformation of the pair, occurs. In the 3-

flats t3a;i, t3bii and t3cii, t=1,...,6, the same set of

three 1-flats appears, where one flat is from 13 and two are

from 113. For example, the 1-flats 3c, 7c and 8b appear in

108

each of 13a11, 13bii and 13cii. The corresponding g-trans-

formations of this triple of 1-flats appear in the remaining

03-orbits of 13. The same (101) 1-flat appears in t3aii,

t3i b t t3 c. 	t=1,...,6, For example, we have 101a in each

of 13aii, 13bi, 13ci. Again, the g-transformations of 101a

appear in the corresponding 3-flats of the other 03-orbits,

of 13.

Examples of the symmetric relative pairs are found in

the 113 03-orbits. Here the 'semi-cycle' mentioned earlier

becomes evident. In, for example, the 3-flat 73bci, the

1-flats 4c and 5c occur. In 73acii, the 3-flat symmetric

relative of 7
3
 bc.
1
, we have the 1-flats is and 2c, the sym-

metric relatives of 4c and 5c, respectively. This pattern

is repeated in the other 113 03-orbit 3-flats. In 73ai, the

01-orbit 1-flats 4b and 4c appear. The symmetric relative

of 73ai, 73bi, contains the corresponding symmetric relatives

of 4b and 4c, that is lb and lc, respectively. The g-trans-

formations of these 1-flats appear in the associated 03-

orbit 3-flats.

Many other such symmetries are found in Table 4.5.2.

The few examples given here are sufficient to illustrate the

way in which the 1-flats are distributed symmetrically among

the 3-flats. The more frequent occurrence of the Hi 1-flats

in the null space is'an important consideration in the decod-

ing algorithm introduced below. That in some 03-orbits an

error in a 1-flat may appear as a singleton in one subset,

but as a 3-repeat in another, proves useful for error-correction.

We note here that a single error is considered to occur

in a particular 1-flat rather than in a point for the follow-

ing reason. As mentioned above, a 1-flat refers to the non-

109

zero points only. And, as the two non-zero points of a 1-

flat must always occur together in a 3-flat, it is only

necessary to analyse one of the two possible non-zero errors

in the 1-flat, since it is irrelevant to the decoder which

of the two points is actually in error.

We now present several Tables which further illustrate

the symmetric distribution of the 1-flats in the 03-orbit 3-
flats. We include them here to demonstrate that the selection

of 3-flats for the null space provides a mathematically in-

teresting distribution of the 01-orbit 1-flats. Later, it

is shown that these symmetries are the basis of the Oi-orbit

decoder discussed in Chapter 5.
Table 4.5.1 and Table 4.5.6 can be combined to form

Table 4.5.2. In Table 4.5.6, the same row and column entry

of the 03-orbits of 13 and 113 reflect the g-transformations.

For example, the 'ii' row of the second column of t3a in 13

is the cycle generated by the 1-flat la, (4a 5a 6a la 2a 3a).
Several symmetries are made more obvious in this Table than

in Table 4.5.2. For instance, in Table 4.5.6, in the t3ab

column of the 13 03-orbits, the 	and 'ii' rows contain

between them, all the 1-flats from a I1 01-orbit. For example,

the (33)03-orbit has the three 1-flats la, is and lb. In

II3' this same column illustrates the symmetric relative of

the I1 1-flats and of.the II1 'a' and 'b' 1-flats. For ex-

ample, in the (83) row, we have the 1-flats 2a, 7b and 5a,7a.

This Table also shows that within the 0
3-orbits a given 1-

flat is paired with several distinct 1-flats, a most useful

property in error-correction.

The many other symmetries are simply more illustrations

of the interrelations already mentioned, that is the effect

of the transformation g and the distribution of 1-flats

110

according to the symmetry blocks.

t3a

tab tic

t3ab t3ac t3bc

(13) 1:6a4a10c9b 	6a6c4c10a 	4a5b5c10a 	5a5c 6clla 4b10c 9a
ii:3c4b10a7c8b9c 3c4a7c8b1Oblla 5a6a6b3c7c8b 5b6b 4c10b 9b9c

(23)
i:1a5a10b7a 	la1c5c10c 	5a6b6c10c 	6a6c 1011a 5b10b 7b

ii:4c5b10c8c967c 4c5a8c9b10a11a 6a1a1b4c8c9b 6b1b 5c10a 7a7c

(3)
i:
3
2a6a10a8a 	2a2c6c10b 	6a1b1c10b 	laic 2clla 6b10a 8b

ii:5c6b10b9c7a8c 5c6a9c7alOclla 1a2a2b5c9c7a lb2b 6c10c 8a8c

(43)
il3a1a10c9a 	3a3c1c10a 	la2b2c10a 	2a2c 3011a 1b10c 9b

ii:6c1b10a7c8a9c 6cla7c8alOblla 2a3a3b6c7c8a 2b3b iclOb 9a9c

(53)
1:4a2a10b7b 	4a4c2c10c 	2a3b3c10c 	3a3c 4011a 2b10b 7a

ii:1c2b10c8c9a7c 1c2a8c9alOalla 3a4a4b1c8c9a 3b4b 2c10a 7b7c

(63)
1:5a3a10a8b 	5a5c3c10b 	3a4b4c10b 	4a4c 5c11a 3b10a 8a

ii:2c3b10b9c7b8c 2c3a9c7b10c11a 4a5a5b2c9c7b 4b5b 3c10c 8b8c

(73)
ii3b4b4c11a 	6b1b1clla 	1a1b4a4b 	la9a 6c1c 4c3c 9c

ii:1b2b5b3a3c10b 2b4b5b6a6c10b 2b5b9a9b1Oblla 4a9b 6a6b 3a3b

(83)
i:4b5b5c1la 	1b2b2c11a 	2a2b5a5b 	2a7b 1c2c 5c4c 7c

ii:2b3b6b4a4c10a 3b5b6b1a1c10a 3b6b7a7b10a1la 5a7a lalb 4a4b

(93)
i:5b6b6c11a 	2b3b3clla 	3a3b6a6b 	3a8b 2c3c 6c5c 8c

ii:3b4b1b5a5c10c 4b6b1b2a2c10c 4b1b8a8b10c1la 6a8a 2a2b 5a5b

Table 4.5.6: 1-repeat 1-flats of 13 and 113

The remaining Tables in this section illustrate particular

symmetrical or cyclical properties. Table 4.5.7 indicates

the pairing of the 1-flats of the 01-orbits. It illustrates

the symmetries, and the marked differenceq in the structures

of the 13 and 113 cycle classes. The symmetry and cyclic

nature of this ditribution are obvious.

111

01-
orbit
(t3) 	101a 	101b 	101c 	111a

(13) 	a,b,c a,bc,X 	ac,b,X 	ac,b,X

(23) 	ac,b,X 	a,b,c 	a,bc,X 	ac,b,X

(33) 	a,bc,X 	ac,b,X 	a,b,c 	ac,b,X
13

(43) a,b,c 	a,bc,X 	ac,b,X 	ac,b,X

(53) 	ac,b,X 	a,b,c 	a,bc,X 	ac,b,X

(63) 	a,bc,X 	ac,b,X 	a,b,c 	ac,b,X

(73) ab,ab,abc a,b,c 	ac,bc,c 	ac,b,X

I13 (83) 	a,b,c 	ac,bc,c 	ab,ab,abc 	bc,a,X

(93) ac,bc,c ab,ab,abc a,b,c 	ab,c,X

Table 4.5.7: Summary of occitrrence of (101),(111)
1-flats in 	ILI 3-flats; entries in row (i3),

, column 101j 6r 11.-ca are the (t3) 3-flats con-
taining the 1-flat 101j or 111a, j=a,b,c; X denotes
that 101 j or llia appears in one of the two 3-flats
excluded from (t3).

Table 4.5.8 indicates the pairing of the 1-flats of the

01-orbits. It illustrates the symmetries, and the marked

differences,in the structures of the 13 and 113 cycle classes.

01-
orbit
(t3) (11) (21) (31) (41) (51) (61) (71) (81) (91)

•

((13) S S S D1 D2 S S D5

(23) D2 SSSD1 D4 S S

(33) D1 D2 S 	S 	S 	S D4 S
I3 (43) S Di D2 - S S S S D4

(53) S 	S DI D2 - S D5 S S

,(63) S 	S 	S Di D2 - S D5 S

112

01-
orbit
(t3) (11) (21) (31) (41) (51) (61)

	
(71) (81) (91)

D6 S D7 D8 S .D9

D9 D6 S D7 D8 S

S D9 D6 S D7 D8

S 	Di°
D10 -
S Dio -

D1: a,c; b,c in t3ab, t3c (cl,b)

D2: a,b; a,c in t3c, t3b (b,c)

D3: a,b in t3bc (a,c; b,c)

D41 a,c in t3bc (a,b;.b,c)

D5: b,c in t3bc (a,b; a,c)

D6: a,b; b,c in t3c, tab (a,c)

D7: a,c; a,b in t3a, t3bc (b,c)

D8: a,b; b,c in t3a, t3c (a,c)

D9: a,c; a,b in t3b, t3ac (b,c)

D10 a,b in t3c (a,c; b,c)

Table 4.5.8: Occurrence of pairs of 1-flats in 3-flats;
S denotes 01-orbit 1-flats appear as singletons;
'-' denotes that 1-flats are, by definition, in each.
3-flat; Di denotes that 1-flat pairs from the O1-
orbit of that column appear in the row 01-orbit 3-
flats, and the 1-flats, in parentheses ocdur in the
3-flats omitted when defining the 03-orbits.

Table 4.5.9 is an extended version of Table 4.5.1 il-

lustrating precisely the occurrence of the 3-repeats in the

03-orbits. Many symmetries of Table 4.5.1 are more clearly

depicted.

We have presented these Tables as a concise means of

describing the symmetric and cyclic properties of the selected

subset of 3-flats of PG(5,2). We refer to these Tables when

discussing the 01-orbit decoder. .

113

flat 	(13) 	(23) 	(33) 	(43) 	(53) 	(63)

At

	

a:. 2a7a 	3a8a 	4a9a 	5a7b 	6a8b 	la9b

ab 1b2a7a8c 2b3a8a9c 3b4a9a7c 4b5a7b8c 5b6a8b9c 6b1a967c

	

1b8c 	2b9c 	3b7c 	4b8c 	5b9c 	6b7c

ac 1c2a3b7a 2c3a4b8a 3c4a5b9a 4c5a6b7b 5c6a1b8b 6c1a2b9b

	

1c3b 	2c4b 	3c5b 	4c6b 	5c1b 	6c2b

abc 1b1c3b8c 2b2c4b9c 3b3c5b7c 4b4c6b8c 5b5clb9c 6b6c2b7c

Bt

b 2b3a 3b4a 4b5a 5b6a 6bla .1b2a

ab 1a2b3a8c 2a3b4a9c 3a4b5a7c 4a5b6a8c 5a6b1a9c 6a1b2a7c

	

la8c 	2a9c 	3a7c' 	4a8c 	5a9c 	6a7c

be 1c2b3a7b 2c3b4a8b 3c4b5a9b 4c5b6a76. 5c6b1a8a 6c1b2a9a

	

1c7b 	2c8b 	3c9b 	4c7a 	5c8a 	6c9a

abc lalc7b8c 2a2c8b9c 3a3c967c 4a4c7a8c 5a5c8a9c 6a6c9a7c

Ct

c 2c8a 3c9a 4c7b 5c8b 6c9b 107a

ac la2c3b8a 2a3c4b9a 3a4c5b7b 4a5c6b8b 5a6c1b9b 6a1c2b7a

	

1a3b 	2a4b 	3a5b 	4a6b 	5alb 	6a2b

be 1b2c7b8a 2b3c8b9a 3b4c967b 4b5c7a8b 5b6c8a9b 6b1c9a7a

	

1b7b 	2b8b 	3b9b 	. 4b7a 	5b8a 	6b9a

abc la1b3b7b 2a2b4b8b 3a3b5b9b 4a4b6b7a 5a5b1b8a 6a6b2b9a

(71) (83) (93)

At
a 8a5a 9a6a 	. 7bla

ab 7b8a10a5a 8b9a10c6a 967b1Obla
7b10a 8b100 9b10b

ac 7c8a2c5a 8c9a3c6a 9c7b4c1a
7c2c 8c3c 9c4c

abc 7b7c10a2c 8b8c10c3c 9b9c10b4c

1.14

3-
flat 	(73) 	(83) 	(93)

Bt
b 8b2a 9b3a 7a4a

	

ab 	7a8b10a2a 8a9b10c3a 9a7a10b4a
7a10a 	8a10c 	9a10b

be 7c8b2a5c 8c9b3a6c 9c7a4a1c
7050 	8c6c 	9c1c

	

abc 	7a7c10a5c 8a8c10c6c 9a9c10b1c

Ct

	

c 	8c10c 	9c10b 	7c10a
•

	

ac 	.7a8c10c2c 8a9c10b3c 9a7c10a4c
7a2c 	8a3c 	9a4c

	

be 	7b8c10c5c 8b9c10b6c 967clOalc
7b5c 	8b6c 	9b1c

abc 7a7b2c5c 8a8b3c6c 9a9b4c1c

Table 4.5.9: Expansion of Table 4.5.1
1-flats in column (t3) are 3-repeats in their cor-
responding subset At,Bt or Ct; each entry in a given
column and row must appear 3 times within its subset,
e.g. 2a is in rows a, ab, and ac of Al, column (13)

	

4.6 Independence of 	Structure on Minimal Polynomial

In the discussion of the PG(5,2) given in this chapter,

we have .defined the geometry using the minimal polynomial

m(x) of the. primitive element oC, where

	

m(X) 	1 + X + X6.

The fact that any primitive element and its associated min-

imal polynomial yields a valid representation of PG(5,2) as-

sures that any such interpretation is structurally equivalent

to any other. That is, the 01-orbit structure given in Table

4.5.2 is independent of the minimal polynomial chosen to re-

present the geometry where the six possible polynomials for

115

this geometry, expressed as powers are, (0 1 6), (0 5 6),

(0 1 2 5 6), (0 2 3 5 6), (0 1 4 5 6), (0 1 3 4 6). The 1-

flats of the geometries generated .from the five miminal poly-

nomials, other than (0 1 6), can be labelled such that the

resulting isomorphic geometry has a 01-orbit structure ident-

ical to the one given for (0 1 6). In the following, it is

shown how the isomorphic labelling of the 1-flats is accom-

plished.

First, we indicate how the 0i-orbits, given any minimal

polynomial, are constructed. We then illustrate the one to

one correspondence between the (0 1 6) labelling of the 1-

flats and the minimal polynomial m'(X) labelling for m'(X)

not (0 1 6).

Before forming the 0i-orbits we recall that the null

space consists only of those flats which intersect on posi-

tion 0, and hence that when forming a 1-flat, one of the two

linearly independent points required to form a 1-flat, must

be 0.

As the IV1 01-orbit is fixed for any representation, we

obtain it first. It has m.c. 21 and consists of one 1-flat

only, which is (0 21 42). This follows from the second

theorem of Yamamoto et al[581 given above.

We noted earlier that the (101) 01-orbit was distinct

from the other orbits and because of this uniqueness would

play a special role in decoding. Correspondingly, the struc-

ture of the III1 01-orbit is unlike the structure of the other

01-orbits. Every non-zero point in the (101) 01-orbit is a

multiple of 9. Thus, the initial 1-flat of (101) is always

formed by selecting, as the two linearly independent points,

0 and a multiple of 9. The remaining 1-flats in the 01-orbit

are obtained by subtracting, mod 63, the first non-zero point

116

of the initial flat from each of the points in the flat. By

repeating the subtraction a second time, using the third

point, the three 1-flats of (101) are found.

To obtain the I1 and III. 1-flats, two linearly inde-

pendent points, the first of which 3.8 0, are selected. The

second point can not be a multiple of 9 or 21 as these points

are present in the IIII. and IV1 01-orbits. We note that the

totality of the non-zero points of the 01-orbit 1-flats ex-

haust the 62 non-zero points of PG(5,2). Thus, no non-zero

point can appear in more than one 01-orbit 1-flat.

The process of obtaining the initial 1-flats for I1 and

01-:orbits is simplified by selecting the second linearly

independent point from the set of linearly independent points

11,2,3,4,51 , although any one of the non-zero points not al-

ready present in a 1-flat can be chosen. A 1-flat is formed

using a point from this set and the point 0 as the two lin-

early independent points. This initial 1-flat is then suc-

cessively multiplied by 2i, i=1,...,5, that is the transfor-

mation g is applied five times. If six distinct 1-flats are

obtained, these are the class I1 initial 1-flats. If only

three distinct 1-flats are generated, they are the initial

1-flats of Hi. The 01-orbit for each distinct initial 1-

flat is produced by the subtraction algorithm used for the

class III1'

To obtain the initial 1-flats of the remaining class,

any point not occurring in the 1-flats already generated, is

selected. The corresponding 1-flat is formed. The remaining

initial 1-flats and their corresponding 01-orbit 1-flats are

obtained as for theirevious class of 01-orbits.

This procedure generates the 01-orbits irrespective of

the minimal polynomial chosen. The 03-orbits are obtained

117

by a similar process using four independent points rather

than two.

We now proceed to establish the isomorphism between the

1-flats of the geometry represented by the minimal polynomial

m(X)=(0 1 6) and the geometry represented by the minimal poly-

nomial m'(X) where m'(X) is one of (0 5 6), (0 1 2 5 6),

(0 2 3 5 6), (0 1 4 5 6), (0 1 3 4 6). The set of minimal

polynomials can be partitioned into two sets according to the

number of points in the minimal polynomial, that is (0 1 6),

(0 5 6) and (0 1 2 5 6), (0 2 3 5 .6), (0 1 4 5 6), (0 1 3 4 6).

The procedure for establishing the 1-flat isomorphism is the

same for minimal polynomials within the same set. We denote

the geometry formed with minimal polynomial m(X)=(0 1 6) as

PG(5,2) with 0i-orbits (tj), j=1,3, 1-flats t1, t=1,...,11

and cycle classes I1,II1,III1,IV1. For the geometry formed

by any other minimal polynomial re(X)/(0 1 6), we refer to

the geometry as .PG'(5,2), with 1-flats ti, t=1,...,11, 0'j-

orbits (tip, j=1,3, t=1,...,11 and cycle'classes

IVI. First, the 1-flat isomorphism for m'(X)=(0 5 6) is

established, as the correspondence is quite simple. Each

01 -orbit (t'1) in PG'(5,2) consists of the same point set as

the 01-orbit (t1) in PG(5,2), but with a different arrange-

ment of the points among the 1-flats, t=1,...,9. Consequently

the labelling of the' 1-flats of (ti), t=1,...,9, is immed- 	•

iately obvious. The two non-zero points in each 1-flat of

(ti) are from two distinct 1-flats in (t1). We label a given

1-flat j in (ti) by the 1-flat letter from (t1) not repre-

sented in j. For instance, (1l) in PG(5,2) is:

a: 0 1 6
b: 0 5 62
c: 0 57 58.

118

The three 1-flats of (11) are:

a: 0 57 62
b: 0 1 58
c: 0 5 6.

As the first of these, (0 57 62), has no representative from

11a, it is called 11a in (11). By similar reasoning, 11b

and lic are labelled. The III1 and IV1 01-orbits are ident-

ical for the minimal polynomials (0 1 6) and (0 5 6).

Once the 1-flats have been labelled using this algorithm,

the 3-flats can be labelled using the same method given in

Section 4.4 for the geometry with minimal polynomial (0 1 6).

The assignment of labels to form the isomorphism of the

1-flats for the second set of minimal polynomials is slightly

more complicated. To determine the isomorphism, we first de-

fine the set Qt as the set of three 01-orbits of PG(5,2) of

which the non-zero points of the 01-orbit (t1) are members,

t=1,...,9. For example, if m'(X)=(0 1 4 5 6), then a 01-

orbit (tj.) of the I1 class is:

0 1 39
0 38 62
0 24 25,

and the Qt subset is formed as follows. Referring to Table

4.4.1, the points 1 and 62 are in (11), the points 24 and 39

are in (31) and the points 25 and 38 are in (81). Thus the

set Qt is (1),(3),(8). Each Qt consists of two 01-orbits

from I1 and one from.IIi, t=1,...19. If we consult Table

4.5.1, we note that there is one and only one 03-orbit, (t3),

which has 1-flats from each orbit of Qt in every 7-repeat -

subset At, Bt, Ct. We use this association to number the

01-orbits. Consequently the 01-orbit of PG'(5,2) listed above

is the 01-orbit (11). The labelling of the 1-flats of I, is

as follows. The 1-flat consisting of an a and c 1-flat from

119

two of the 01-orbits of Qt, t=1,...,6, is labelled t;c. The

1-flat with its two non-zero points from two b 1-flats of •
•

the Qt 01-orbits is tib. The remaining 1-flat is labelled

tia. In the above example, the point 1 in the first 1-flat

is from 11a and the point 39 from 31c.. Thus, this 1-flat is

labelled 1;c. The three 1-flats given above are labelled:

a: 0 24 25
b: 0 38 62
c: 0 1 39.

,
The labelling of the 1-flats of the 	01-orbits is

slightly different than the I; case, but the assignment of
1

the 01-orbit number is as for the Iclass. The tia 1-flat

in (t1) is the 1-flat with both its non-zero points from b

1-flats of the Qt 01-orbits, t=7,8,9. The tic flat is the

one which consists of two non-zero points from the c 1-flats

of the Ii 01-orbits in 	The The remaining 1-flat is labelled

tib. The labelling of (71) is thus:

a: 0 20 49
b: 0 14 34
c: 0 29 43,

where the points 20 and 49 are from 31b and 81b, respectively.

The points 29 and 43 are from 61p and 31c, respectively.

Each of the (101) 1-flats consists of the same points

as the 1-flats of (101) but 101j / 101j, j=a,b,c. These la-

bels can be assigned by referring to the labels given to the

I1 and II1 classes and the 3-flats of the 03
-orbits. In

Table 4.6.1 we list the 1-flats of the 0;-orbits of the

PG'(5,2) with minimal polynomial (0 1 4 5 6).

The 03-orbits are labelled as they were in Section 4.4

for the case when the minimal polynomial was (0 1 6). Thus,

the results given in the Tables of this chapter concerning

the symmetrical properties of the 0i-orbit structure of PG(5,2)

120

describe exactly the symmetries of PG'(5,2) with minimal poly-

nomial m1(X)/(0 1 6).

.
) (11') 	(21

a: 0 24 25
62

a: 0 48 50 	a: 0 33 37
b: 0 	61 	b: 0 6 59

I 	c: 0
38
1 39 	c: 0

13
2 15 	c: 0

2
 4 30

Q1:(1),(3),(8) 	(22:(2),(4).(9) 	Q3:(3),(5),(7)
t 	 e

(41)s 0
	(60

a: 0 3 11 	a: 0 6 22 	a: 0 12 44
b: 0 52 55 	b: 0 41 ".7 	b: 0 19 31
c: 0 8 60 	c: 0 16 57 	c: 0 32 51

\... Q10(4)1(6)1(8) Q5:(5),(1).(9) Q6:(6),(2),(7)

1
(71

a
)
 :

1
(81) (91)

0 20 49 a: 0 35 40 a: 0 7 17
II b: 0 14 34 bs 0 5 28 b: 0 10 56

c: 0 29 43 	c: 0 23 58 	c: 0 46 53
Q7:(3),(6),(8) 	Q8:(1),(4),(9) 	Q9:(2),(5),(7)

(10;)
a:

III 	b:
c:

0
0
0

36
18
9

54
27
45

IV 	a: 0 21 42
1(1*

Table 4.6.1: 01-orbits of PG'(5,2)

In this section we have shown that it is possible to

establish an isomorphism between the flats of PG(5,2) and the

flats of PG'(5,2). Consequently; the 0i-orbit structure de-

fined is independent of the minimal polynomial chosen to re-

present the geometry and the results concerning decoding and

error-correction hold for any representation of PG(5,2).

4.7 pasis of the 0i-orbit Symmetry

We conclude this chapter with a brief mathematical ex-

planation of the 01-orbit structure.

In the previous section, it was shown that the 0i-orbit

structure was independent of the minimal polynomial chosen

to represent PG(5,2). As a consequence, it is possible to

121

express the irf's, r=1,2,3, without explicitly referring to

a minimal polynomial, as was necessary in Table 4.4.1 and

Table 4.6.1. In the following, the parameter d represents

the non-zero point which, together with 0, generates the first

ilf in I1. All other irf's, r=1,2,3 'can be expressed in terms

of d. This is illustrated in Table 4.7.1.

r221

0,d
0,2d

Ii 0 0 4d
0, 8d
0,16d
0,32d

0,7d
II1 0'14d 0,28d

III10,9d

rag
0,d,2d
0,2d,4d

I2 	0 0 0 4d 8d
0, 8d,16d
0,16d,32d
0,32d,d

0,7d,14d
II2 014d028d

0,28d,56d

III2 " 0 9d 18d

0,d,2d,3d
0,2d,4d,6d
0 4d f8d I12d
0,8d,16d,24d
0,16d,32d,48d
0,32d,d,33d

0,7d,14d,21d
II3 0,14d,28d,42d 0,28d,56d,21d

II13 0 9d• 18d 27d

Table 4.7.1: Initial r-flats,, r=1,2,3, in terms of
the parameter d.

We note that for d=1 this reduces to the representation of

PG(5,2) with minimal polynomial (0 1 6) given in Table 4.4.1

for r=1. For d=25, r=1, this generates Table 4.6.1, the re-

presentation with minimal polynomial (0 1 4 5 6).

Table 4.7.1 is formed by taking the two linearly inde-

pendent points 0 and d as the defining points of the first

i1f in I1. The first i2f in III is defined by the three lin-

early independent points 0,d,2d and the first i3f by 0,d,2d,3d.

That these points are in fact linearly independent, is a

consequence of the geometry being defined over GF(2). Thus,

instead of taking the point (o(.) as a primitive element, the

point (cc!:1) can be used and hence the points given are linearly

independent. Moreover, this justifies the process, given in

previous sections, of multiplying any given set of independent

122

points by 2, to obtain another set of independent points.

The choice of 0 and 7d as the two linearly independent

points for II1 ilf, reflects the special structure of this

class. The coefficient 7 is a proper divisor of the number

of points in the geometry. The interrelation of cylce mem-

bers of this class is a result of this property. Similarly,

the coefficient of d in the IIT and IV classes is a proper

divisor of 63.

By referring to Table 4.7.1, we can account for the

following:

I) the one to one correspondence between the 03-orbits

and the 01-orbits,

ii) the occurrence of the 1-flat'symmetric relatives

in the 0
3
-orbits, and

iii) the 1-flat t+1 appearing as a 3-repeat in the 03-

orbit (t3), t=1,

The first of these observations is immediately obvious from

an inspection of the linearly independent points of the 1-

flats and corresponding 3-flats. To generate the correspond-

ing i3f of a given i1f t1, the set K = tO, kd } , k>0, is

augmented to the set K* = f0lkd,2kd,3kd3, where these points

represent the geometry based on the primitive element c(kd

rather than 06 and hence are linearly independent. The set

of all linear combinations of 0 and kd must be contained in

the set of all linear combinations of K*. Hence, the cor-

respondence between the two sets follows. Further, that each

point of the 1-flat appears seven times in the 03-orbit gen-

erated from the 3-flat t3 formed from K*, can now easily be

established. The points in the 1-flat t1 are 0, kd,

The points in the 3-flat t3 are, in terms of the linearly

123

independent points of ti,

0,kd,2kd,3kd,O+kd,0+2kd,0+3kd,kd+2kd,kd+3kd,2kd+3kd,
0+kd+2kd,O+kd+3kd,0+2kd+3kd,kd+2kd+3kd,O+kd+2kd+3kd.

We say the two points i and j in t3 differ by kd if both i

and j, expressed terms of the linearly independent points of

t1, have the same number of components, and each component

is of i is js+kd for js a linearly independent point in j.

If there are two points, i and j, i<j, in t3, differing by

kd, subtracting i from the point set representation of t3,

gives a 3-flat in the 03-orbit (t3) containing the points 0

and kd, and hence, the 1-flat t1. The following are all the

possible pairs of points from K* which differ by kd:

0,kd
kd,2kd
2kd,3kd
0+kd,kd+2kd
kd+2kd,2kd+3kd
0+kd+2kd,kd+2kd+3kd
0+2kd,kd+3kd.

Thus, the ilf t1 appearsseven times in the 03-orbit (t3).

Similarly, it can be shown that the other members of the (t1)

01-orbit appear seven times, as required.

A further examination of the points in t3 shows that

neither of the two points, p1=0+kd+3kd or p2=0+2kd+3kd, dif-

fer by kd from any other point in t3. Thus, subtracting pi,

i=1,2 from each point in the point set representation of t3

gives two 3-flats through the point 0, but, such that they

do not contain any of the points of t1. We recall that the

fifteen 3-flats through 0 are obtained from successively sub-

tracting each point of t3 from the point representation of

t
3
. Two of these flats are omitted from the 03-orbit of t3.

These two flats correspond to the points pi and p2. The

omission of eight of the 3-flats generated from 103 is simi-

larly explained, noting that each linear combination of points.

124

in 101a forms a point which is again a multiple of 9d.

The occurrence of synimitric relatives in the 03-orbit

3-flats is also explained by studying Table 4.7.1. If we

consider the non-zero point of two symmetric relative 1-flats

in I1, the same pair of points occurs in the corresponding

13 3-flats separated by 3 cycle positions. For instance, in

d and 8d are the independent points for the first and

fourth flats, respectively. In the first and fourth flats

of 13, d and 8d, as extensions of the I1 1-flats, appear.

But, as well, d and 8d appear in the sixth and third 13 3-flat

point sets, respectively, that is in a second set of 3-flats

separated by 3 cycle positions. Such a separation is simply

the multiplication of the non-zero independent point of the

first 1-flat, by 2, three times. This is half the number of

multiplications required to give the identity 26. Hence, we

have the term 'semi-cycle' used above. Thus, if kd is the

non-zero independent point of a 1-flat, 23(kd) is the non-

zero independent point in its symmetric relative 1-flat.

We observe that the non-zero independent point of the

1-flat t+1 always appears as a non-zero independent point in

the i3f t3. This occurs because the non-zero independent point

in the i1f t+1 is formed by multiplying the independent point

of t by 2, while the second non-zero independent point in the.

point set of t3 is twice the first, that is the same point

as the non-zero independent point of t+1. Thus, the 1-flat

t+1 appears as a 3-repeat in the 03-orbit (t3).

We have explained here the major symmetric properties

of the 03-orbits. The many other symmetries which are pre-

sented in Section 4.5 are also explained by furthe.r refer-

ence to Table 4.7.1.

125

4.8 Conclusions
,‘ i In this chapter we have introduced a mast interesting

mathematical structure, defined on the flats of PG(5,2), by

extending the definitions of Yamamoto et al[581. This struc-

ture exhibits a well-defined set of symmetrical properties

which are of interest when analysing the geometry mathematical-

ly. Moreover, the structure allows for a simplification of
•

the standard Majority Logic Decoder of the PG code defined

on PG(5,2). The details of this decoder are given in Chapter 5.

In particular, we began this chapter by giving a detailed

description of the results on Finite Geometries as outlined

in the 1966 paper by Yamamoto et al[581. Based on these re-

sults, an analysis of the cycles of the PG(5,2) was given.

The 0.-orbit structure, used as the basis of the decoder

in Chapter 5, was developed. The symmetrical distribution

offlatsinthe0.-orbits of PG(5,2) was described, both in

the text and in the extensive set of Tables presented.

Finally, it was shown that the structure introduced was in-

dependent of the minimal polynomial chosen to represent the

geometry. Hence, the decoding method'developed in Chapter 5

does not depend on a particular representation of PG(5,2) by

a minimal polynomial. Several symmetric properties of the

0.-orbit structure were explained by referring to a repre-

sentation of the flats which is independent of a minimal

polynomial.

126

CHAPTER 5: Oi-ORBIT DECODER_ OF THE ORDER-3 (63.41) PG CODE
tI

5.1 Introduction

The decoder presented here is defined in terms of the

concepts introduced in the previous chapter.

We begin this chapter with a detailed study of the stan-

dard Majority Logic Decoder of the order-3 (63,41) PG code.

This is followed by the definition af the Oi-oibit decoder

of the code. Reference is made to the Tables and terminology

of Chapter 4 in the analysis of the decoder. It is shown

that all possible 1,2 and 3-errors are correctable using this

decoder and that certain sets of i-errors are related in such

a way that the decoding algorithm treats them identically,

1=1,2,3. The simplicity of the 01-orbit decoder, as compared

to the standard Majority Logic Decoder of this code, is empha-

sized with reference to the circuitry and decoding time

required by each.

* 5.2 Order-3 (63.41) PG Code Standard Wajority Logic Decoder

Order-r PG Codes are Majority Logic Decodable codes re-

quiring r steps of Majority Logic. Several modifications to

the original decoder have been suggested, several of which

are discussed in Chapter 3. As the original Majority Logic

Decoder is the most common method used to decode PG codes,

we refer to it as the standard PG code decodei4 and compare

the Oi-orbit decoder with it. In this section we investigate

in detail the Majority Logic Decoder for the order-3 PG code

based on PG(5,2).

In Chapter 3 we discussed MLD in general. We now make

this specific for the (63,41) order-3 PG code. As-mentioned

in the previous chapter, this code is cyclic and hence it is

127

only necessary to consider as members of the null space,
• 4

those 3-flats which pas6 through zero. There are, referring

to Chapter 3,

(25-1)(24-1)(23-1)
X(0,3,5,2) = (23-1)(22-1)(2-1) = 155

such 3-flats. Similarly, there are

(25-1)(24-1)
A(0,2,5,2) = 	 = 155

(22-1)(2-1) •

2-flats which intersect on 0, and

A(0,1,5,2) = (25-1) 	31
(2-1)

1-flats which intersect on 0. The decoding process is based

on the orthogonality of these flats. The 3-flats through 0

are initially known to the decoder. Those 3-flats which in-

tersect on a given 2-flat through 0 are used to obtain an

estimate of the 2-flat. Similarly, an estimate for each 2-

flat through 0 is determined. These estimates then provide

estimates of the 1-flats, since each 1-flat through 0 has an

associated set of 2-flats which intersect on it. Finally,

using the 1-flats which intersect on 0, an estimate of the

error digit in position 0 is obtained. If no more than three

errors have occurred, this estimate is correct. We now dis-

cuss the circuitry necessary to implement the decoder.

Before the decoding process can begin, a preliminary step

is necessary in which the received word is multiplied by

Xn-k=x63-41=x22 and then divided by the generating polynomial

g(X) = (X4.1)(X6i-X5+1)(X3+X+1)(X6 i.x5
.4.x4.1.x2+1)(X+X5-1-X4-1-X-1-1)

= X24X20I-X19+X181-X15419-FX7+X54-X44.X3+X+1.

The remainder, r(X), a shifted version of the syndrome, is

stored in a register. Circuitry is required for the multipli-

cation (simply a shift of the received word) and for the divi-

sion by g(X).

128

On step 1, estimates of the 155 2-flats through 0 are

obtained from the 3-flats known to the decoder. There are

seven 3-flats which intersect on each a-flat through 0. The

appropriate bits in the syndrome register are tapped to obtain

the values corresponding to each of these 3-flats. These are

input to GF(2) adders to obtain the binary sum of each 3-flat.

The se,ren binary sums which correspond to the seven 3-flats

orthogonal on a given 2-flat, are input to the threshold

unit, with threshold 4, which corresponds to the 2-flat. The

output is the estimate of the 2-flat on which the seven in-

put 3-flats are orthogonal.

The circuitry required for step 1 can be broken down

into two parts. First, taps on the syndrome register and

GF(2) adders for these taps, are required for a total of

155x7=1085 binary sums. Secondly, each set of seven sums

which correspond to the 3-flats intersecting on a 2-flat, is

input to a threshold unit, for a total of 155 7-input thres-

hold units.

The second step is somewhat simpler. For each 1-flat

through 0, there are 15 2-flats which intersect on it. The

output from the 15 threshold units in step 1 which correspond

to the 15 2-flats which intersect on a given 1-flat, are in-

put to a threshold unit of threshold eight. The output is

an estimate of the 1-flat through 0. The circuitry for the

second step consists of 31 15-input threshold units, one for

each of the 31 1-flats through 0.

On the third step, the 31 outputs from the second level

threshold units, corresponding to. the 31 1-flats which inter-

sect on 0, are input to a single threshold unit. The output

from this is the decoder's estimate of the error digit in

129

position O.

Therefore, the standard threshold decoder for the order-

3 (63,41) PG code requires:

i) circuitry to multiply the received word by X22 and

divide the result by g(X) =x22+x204.x191.x18+x154.x9i.x74.x54.x44.x31.x+1,

ii) 155x7=1085 sets of taps on the syndrome register and

corresponding sets of GF(2) adders,

iii) 155 7-input threshold units,

iv) 31 15-input threshold units,

v) one 31-input threshold unit.

The circuitry for the standard decoder can be reduced some-

what by the following observation. On step 1, the total

number of errors which can be corrected is determined, that

is 17/21. 3. Thus, it is only necessary to input seven esti-

mates to each threshold unit at any level, since no more than

three errors can be corrected. This in turn reduces the num-

ber of 2-flat and 1-flat estimates required on steps 2 and

3, respectively. So, on step 3, only estimates of seven 1-

flats are needed as input to the threshold unit. Consequent-

ly in step 2 only seven threshold units are necessary, one

for each of the 1-flats required in step 3. Each of these

seven threshold units needs only seven inputs, instead of the

previous fifteen, for a total of 49 2-flat estimates. Hence, •

on step 1, 49, rather than 155, threshold unite are neces-

sary. Correspondingly, 49x7=343 sets of taps and GF(2) ad-

ders are required to form the inputs to the 49 threshold units.

As a result, the version of the standard Majority Logic De-

coder.used most commonly to decode the order-3 (63,41) PG

code requires:

i) circuitry to multiply the received word by X22 and

130

divide the result by g(X) = x224.x204.x194.x18
41154.x94.x7415.1.

x4+01-x+1, 	 ;

ii) 49x7=343 sets of taps on the syndrome register and

corresponding sets of GF(2) adders,

iii) 49+7+1 = 57 7-input threshold units.

In the next section we present a decoding algorithm for

the order-3 (63,41) PG code which is based on the Oi-orbit

structures introduced in Chapter 4. •

5.3 01-Orbit Decoder of the Order-3 (63.41) PG Code

The Oi-orbit non-orthogonal decoder of the order-3

(63,41) PG code is a simplification of the standard Majority

Logic Decoder of the code. Fewer threshold units, simpler

circuitry and fewer decoding steps are required for this de-

coder.

The first step of the 01-orbit decoder involves obtain-

ing non-orthogonal estimates of the 1-flats of the 01-orbits

(11) through (91), from the 03-orbit .3-flats which are known

to the decoder. Also, dependent on the errors in the (103)

and (113) 3-flats, certain binary flags may be set. The

estimates from the first step are orthogonal on the point O.

These estimates are input to a counter on the second step.

Assuming. no more than three errors have occurred, the error

digit in position 0 is correctly determined by the output of '

the counter and, in a. small number of cases, by the setting

of the flags. The circuitry for the decoder is now described.

On the first step, for each 03-orbit 3-flat, taps on

the register positions corresponding to the points of a 3-

flat are input to a binary adder, the output of which is the

sum known to the decoder Thr the 3-flat. Associated with

each of the subsets At, Bt and Ct, t=1,...,9, is a 7-input

131

threshold unit of threshold 4. The seven inputs are the bin-

ary sums corresponding tottli(e seven 3-flats.comprising the

subsets At Bt, Ct, respectively. The seven sums correspond-

ing to the seven 3-flats of (103) are input to a counter unit.

The output of the 27 threshold units are orthogonal estimates

on the point O. A flag f1 is set if one and only one of the

seven inputs to the (103) counter unit is a one, and a flag

f2 if five or seven of the inputs are one. A counter deter-

mines the number of the (113) 3-flats, 113ai, 113aii, 113aiii,

which have a binary sum of one. A. flag f3 is set if either

two or three of these binary sums are one. These three flags

are simply binary flip-flops, set if the output of a counter

is a given value.

The first step of the 01-orbit decoder requires a total

of (13x9)+7+3=127 sets of calculations on the taps of the

storage register vs. 1085 (343 in the simplified version) for

the standard decoder. Three flags may have to be set. A

total of 27 threshold units with seven inputs each are neces-

sary, plus 2 counters for the flags. The standard decoder

has 155 (49 in the simplified version) 7-input threshold units.

On the second step, the 27 outputs from step 1 are input

to a counter. These outputs correspond to 27 1-flats ortho-

gonal on the point O. The decoder's decision as to the

value of the error digit in position 0 is dependent on the

value c output by the counter and, in some cases, the flags

fl, f2 and f3. We make this explicit in the following, where

if ec, denotes the error digit in position 0, then,if

c<14 or c=15, then e0=0,

c>16, then eel_

c=16, fi or f2 is set, then e0=1; otherwise e0=0

c=14, both f2 and f3 are set, then e0=1; otherwise e0=0.

132

Thus, on the second step a simple counter is required and

logical units to test the- tlligs. It is show in the next

section, that the flags must be checked for less than ea of

the possible correctable error patterns, that is, over 99.75%

of the correctable error sets have a count of 15,1_or less

than 14, or more than 16.

This decoding method does not require that the received

word be premultiplied by X22 and the'result divided by g(X).

The tapped values need only be fed into binary flip-flops

and the output then directly input into a threshold unit.

The Or-orbit decoder circuitry consists of a total of 27 7-

input theshold units, two counters and three binary flags.

The standard Majority Logic Decoder requires circuitry for

preinultiplication, division, GF(2) adders, 155 7-input thres-

hold units, 31 15-input threshold units and a 31-input thres-

hold unit, or, in the simplified version, 57 7-input theshold

units. The reduction in circuitry and complexity for the

01-orbit decoder is significant. Moreover, should the decoder

consist of a front-end mini-computer, the counting and flag

testing of the 01-orbit decoder becomes even more simple.

5.4 01-orbit Decoder Error Analysis

An 'analysis of the correctable error patterns of the Oi-

orbit decoder reflects the 01-orbit structures used to define.

the decoder. This section contains an extensive investiga-

tion of these error patterns and the method the decoder uses

to correct them.

The standard Majority Logic Decoder corrects all 1, 2,

3-errors and some errors of higher weight. The Oi-orbit de-

coder also corrects all 1, 2 and 3-errors. Some higher weight

errors are corrected, however, we discuss those in Chapter 7.

133

A computer simulation of this decoder was written. All

possible 1, 2 and 3-error patterns were shown to be correct-

able by the Oi-orbit decoder through the use of this model.

The symmetries of the Or-orbit structure allow for certain

reductions in the space of errors which the decoder model

must analyee. First, every 3-flat in the Oi-orbit null space

consists of the non-zero points of seven 1-flats from the 01-

orbits. Thus, one of the non-zero points of a 01-orbit 1-

flat present in a 3-flat, implies the other non-zero point

is as well. Hence, it is only necessary to consider one of

the two non-zero points in each 1-flat as a possible single

error. Consequently, in this analysis, we refer to a 1-flat

error as an error in one of the non-zero points of the 1-flat.

This simplification also applies to the 2 and 3-error patterns.

If two errors occur in the.non-zero points of a 1-flat, that

is each non-zero point is in error, then these errors, in

effect, cancel out. As far as the decoder is concerned, there

are no errors, for these two points always occur together in

each null space 3-flat. Consequently, only non-zero 2-error

patterns such that each single error is in a distinct 1-flat

need be considered. For non-zero 3-error patterns, if two

of the errors are in non-zero points of the same 1-flat, then

these two errors, as in the 2-error case, 'cancel out°, and

this reduces to a single error. Thus, for the non-zero 3-
error patterns, only error triples such that each point is

from a distinct 1-flat, are analysed. In the following we

refer to a non-zero error as tj, t=1,...,10, j=a,b,c, or llat

that is by the 1-flat label, since it is irrelevant which of
the non-zero points is in error. For instance, we refer to

the non-zero error triple la7a8a and the zero error triple

134

01a4a. The former error pattern consists of a single error

in each of the 1-flats la, 7a and 8a. Thus, la7a8a refers

to 2x2x2=8 possible point error triples, all of which are

treated identically by the decoder. Similarly, the error

triple 01a4a consists of an error in 0 and a single error in

one of the non-zero points of both the 1-flat la and the 1-

flat 4a, for a total of 1x2x2=4 possible point error triples.

Again, the decoder treats each of the four error triples

identically. The decrease in the error-space size is quite

considerable. The simulated decoder need only test one-

eighth

 of all possible non-zero 3-error sets, one-quarter of

the non-zero'2-error sets, one-half of the non-zero single

errors, one-quarter of the zero error 3-error sets and one-

half of the zero 2-error sets.

A second reduction in the set of error patterns which

must be tested by the decoder model is possible because of

the 01-orbit structure and its cycles. Due to the structure

of the cycles of the classes I1, IIi, 'Hi and IV1, given in

Table 4.5.3, it is only necessary to test one element of

each cycle as a single error. Thus, the set of single errors

0,1a,lb,lc,7a,70,10al lla represents all possible single er-

ror patterns. For instance, la represents each of the single

errors in the cycle (la 2a 3a 4a 5a 6a) bedause, as shown in

Table 4.5.2, each of the 1-flats ta, t=2,...,6, has the ex-

act same distribution in the 3-flats as la. This is true

for the representatives of the other cycles. This simplifi-

cation can be extended to the 2 and 3-error sets. For in-

stance, the non-zero pair la7a represents the pairs of er-

rors, 2a8a, 3a9a, 4a7b, 5a8b, 6a9b. Similarly, the triple

la7a10a represents the error triples 2a8a10c, 3a9a10b, 4a7b10a,

5a8b10c, 6a9b10b. Similar representations are used if one

135

of the errors is 0. With this second reduction of the er-

ror space, we discuss the results of the computer simula-

tion of the decoder.

We begin with the possible single errors. If 0 is in

error, the count is 27, and hence the decoder correctly de-

termines that eo, the error digit in position 0, is a 1. If

la, ib, lc, 7a or 7c is in error, then the count is 1 and the

decoder makes the decision that e0=0, that is that the digit

in position 0 is correct. All other errors in the same

cycle as these, have the same count and hence are correctly

decoded. If 10a or 11a is in error, the count is 0 and the

decoder determines correctly that e0=0.

The 2-error patterns with one error in 0 and the other

error any single error except 11a, have a count of 26. Con-

sequently, the decoder determines correctly that there is an

error in position 0 and hence that e0=1. For the error pair

011a, the count is 27, and again the decoder decides that e0=1.

Every non-zero pair of errors has a count less than 14 and

hence the decoder decides that e0=0, that is that no error

has occurred in position 0.

The sets of error triples can be divided into three dis-

tinct groups. The first group consists of the non-zero er-

ror triples with a count of 15, or less than 14. Each error

triple of the second group has a count of at least 17 and

consists of the 0 error plus two non-zero errors. The third

group has both zero and non-zero error triples and a count

of either 14 or 16. We discuss each group separately.

The first group is comprised of all possible non-zero

error triples excepting those given in Table 5.4.1. The

count for these error triples ranges from 1 to 13 or is 15.

136

Hence, the decoder decides correctly that the digit in posi-

tion 0 is correct, and thei-efore that e0=0.

The second group consists of all zero error triples ex-

cept those listed in Table 5.4.1. The count for this group

ranges from 17 to 24 and hence the decoder makes the deci-

sion that the digit in position 0 is in error and ec, is set

to 1.

We note that none of the 1, 2 or 3-errors discussed so

far have required the testing of the flags f1, f2 or f3.

It is of interest to note at this point that it is pos-

sible to obtain from the decoder, information about the com-

position of the error triples. For instance, if the count

is 24, we know from the simulation that the error triple is

one of the six error sets, 011ata, t=1,...,6. If the count

is 23, then the error triple is Otalla or Otb11a, t=7,8,9.

If the count is 18, then one of the errors is 0 and one is

10a, 10b or 10c. More examples are given in Chapter 7 of

. the added information concerning the error sets that it is

possible to gain from the decoder.

The third group is the set of 3-errors which have a

count of either 14 or 16. We list these in Table 5.4.1.

These error triples are broken down into sets such that each

set is the cycle associated with the first point error triple.

of the set. Hence, each triple is treated identically by

the decoder. The error triples followed by fi, i=1,2,3,

have the flag fi set. That the decoding algorithm corrects

the digit in position 0 when the error triples given in

Table 5.4.1 occur, follows from the definition of the decoder

and Table 4.5.1 (for the setting of the flags). We note

that each triple in Table 5.4.1 which is followed by a flag

consists of II1 1-flat errors and/or the zero error only.

. 	• 	•

137

count c=14
	 count c=16

7a7b0;f2,f3
8a8b0;f2,f3
9a9b0;f2,f3

7a7c0;f2,f3
8a8c0;f2,f3
9a9c0;f2,f3

7b7c0;f2,f3
8b8c0;f2,f3
9b9c0;f2,f3

la9a7b
2a7b8b
3a8b9b
4a967a
5a7a8a
6a8a9a

1b1c7b
2b2c8b
3b3c9b
4b4c7a
5b5c8a
6b6c9a

1a2c4c
2a3c5c
3a4c6c
4a5c1c
5a6c2c
6a1c3c

7a7b10a;f2
8a8b10c;f2
9a9b10b; f2

'‘ 1a4b7c
2a5b8c
3a6b9c
4a1b7c
5a2b8c
6a3b9c

1b2c9b
2b3c7a
3b4c8a
4b5c9a
5b6c7b
6b1c8b

1c9b9c
2c7a7c
3c8a8c
4c9a9c
5c7b7c
6c8b8c

la8b0;f2
2a5b0;f2
3a7a0;f2
4a8a0;f2
5a9a0;f2
6a7b0;f2

la9b0;f2
2a7a0;f2
3a8a0;f2
4a9a0;f2
5a7b0;f2
6a8b0i f2

1b8b0;f2
2b9b0;f2
3b7a0;f2
4b8a0; f2
5b9a0;f2
6b7b0;f2

7c10b0;f1
8c10a0;f1
9c10c0;f1

7c8c0;f2
8c9c0;f2
9c7c0;f2

1c8b0;f2
2c9b0;f2
3c7a0;f2
4c8a0;f2
5c9a0;f2
6c7b0;f2

Table 5.4.1: Error triples with c=14, 16;
flag f1: 1 input to (101) counter is 1,
flag f23 5 or 7 inputs to (103) counter are 1
flag f3: 2 or 3 inputs to (113) counter are 1.

It is possible to determine information from the decoder as

to the composition of the error triples. For instance, if

the count is 14 and both flag f2 and f3 are set, then 0 is

in error plus one of the pairs tatb, tatc, tbtc, t=7,8,9.

If the count is 16 and the f1 flag set, then the error triple

is 07c10b, 08c10a or 09c10c. If no flags are set, and the

count is 14 or 16, then it is known that one of the non-flagged

error triples from Table 5.4.1 is in error. Such knowledge

can be useful if an analysis of the channel errors is being

made. Moreover, the decoding process can be shortened, since

it is unnecessary to ..decode the positions known to be cor-

rect. Only those positions which correspond to possible

errors need be decoded.

As was noted in the definition of the decoder, if there

138

is a computer associated with the channel, which is frequently

the case, the testing and setting of the flags is a trivial

task. However, even if this must be done using circuitry,

the few additional flip-flops required to implement the flags

is not costly. Moreover, we now show that the number of er-

ror triples which require the testing of flags, that is the

error triples of Table 5.4.1, is very small. The calcula-

tion of the total number of possible' correctable errors and

the percentage of these which appear in Table 5.4.1 follows.

The following error sets can be chosen, where each error is

distinct, that is no two non-zero errors occur in the same

1-flat:

3 non-zero errors in 	62x60x58

0 + 2 non-zero errors in 1x62x60

= 215760 ways,

= 	3720 ways,

2 non-zero errors in 62x60 = 3720 ways,

0'+ a non-zero error in 1x62 = 62 ways,

1 error in 63 = 63 ways,

for a total of 223325 correctable error patterns. Now the

number of these patterns occurring in Table 5.4.1 is as follows:

3 non-zero errors 	(2x2x2)x39 = 312,

0 + 2 non-zero errors (2x2)x39 = 156,

for a total of 468 error patterns. Thus, the flag checking

is necessary for only 468/223325 < 0.21% <Z.% of all possible

correctable error patterns. If a decoder which corrected

only 99.75% of all possible correctable error patterns were

acceptable, then the resulting modified 01-orbit decoder

would be very simple. It would require 27 7-input threshold

units. If a count of 14 or 16 were flagged, then retrans-

mission could be used for the i% of the error patterns that

the decoder could not correct.

The simplicity and power of the defined decoder is obvious.

139

5.5 Dslag1N31912A

We have defined and andlysed the Oi-orbit decoder of the

order-3 (63,41) PG code in this chapter. The simplicity of

the decoder, requiring only 27 threshold units, two counters

and three flags, was emphasized.

We began the chapter with a detailed discussion of the

standard Majority Logic Decoder of the order-3 (63,41) PG

code. MLD was discussed in Chapter '3 in general. In this

chapter the discussion was made specific with a study of

the circuitry required for the decoder of the (63,41) PG

code. This was followed by the definition of the Oi-orbit

decoder of the code, comparing it to the standard Majority

Logic Decoder. The reduction in circuitry for the Oi-orbit

decoder vs. the Majority Logic Decoder was significant. The

former, unlike the latter, needs no division or multiplica-

tion circuitry. Even the simplified version of the Majority

Logic Decoder requires more than twice the number of thres-

hold units necessary for the 01-orbit decoder. By referring

to the results of a computer simulation of the decoder, the

various i-error sets, 1=1,2,3, were analysed. Finally, it

was shown that the testing of the 01-orbit decoder flags is

necessary for less than 4% of all possible correctable error

patterns. MoreOver, if it is acceptable to correct only

99.757 of all correctable error patterns, the•01-orbit de-

coder can be simplified even further.

140

CHAPTER 6: 01-ORBIT DECODER QF ORDER-5 _(25.218) PG CODE

6.1 Introduction

The order-5 (255,218) PG code anddts 01-orbit decoder

are studied in this chapter. The analysis is similar to,

but less detailed than, that given the order-3 (63,41) PG

code. This is due to the fact that the 01-orbit structures

of PG(7,2) are merely extensions of those of PG(5,2). The

objective of this chapter is then not to emphasize the math-

ematical symmetries as in Chapter 4, but to illustrate the

dramatic decrease in the circuitry requirements if the Oi-

orbit decoder is used to decode the order-5 (255,218) PG

code instead. of the Majority Logic Decoder.

6.2 Stand rd Mort Lo 	ode of 	218 	ode

As the order of a Majority Logic Decodable code increases,

so does the complexity of the decoder. With each added level

of Majority Logic, more circuitry is required. In this sec-

tion we discuss the circuitry for MLD an order-5, rather

than order-3, code, in particular, the order-5 (255,218) PG

code. As the theory of the decoder was given in Chapter 5,

we simply present the details of the circuitry here.

In order to calculate the number of threshold units

necessary to decode using MLD, the following information is

required. Referring the Chapter 3, the number. of 5-flats

orthogonal on the position 0 is:

(27-1)(26-1)(25-1)(24-1)(23-1)
A(0,5,7,2) = 	 = 2667,

(25-1)(24-1)(23-1)(22-1)

the number of 4-flats orthogonal on the position 0 is:

(27-1)(26-1)(25-1)(24-1)
A(0,)4',7,2) = 	 = 11811,

(24-1)(23-1)(22-1)

the number of 3-flats orthogonal on the position 0 is:

141

(27-1)(26-1)(25-1)
M0,317,2) = 	 - 11811,

(23-1)(221-1)

the number of 2-flats orthogonal on position 0 is:

(27-1)(26-1)
A(0,2,7,2) - 	 = 2667,

(22_1)

and the number of 1-flats orthogonal on the position 0 is:

X(0,1,7,2) = (27-1) = 127. 	'

Also, the number of 5-flats orthogonal on a given 4-flat is:

A(4,5,7,2) = (23-1) = 7,

the number of 4-flats orthogonal on a given 3-flat is:

X(3,4,7,2) = (24-1) = 15,

the number of 3-flats orthogonal on a given 2-flat is:

A(2,3,7,2) = (25-1) = 31,

the number of 2-flats orthogonal on a given 1-flat is:

A(1,2,7,2) = (26-1) = 63,

and the number of 1-flats orthogonal on a point is:

A(0,1,7,2) = (27-1) = 127.

• Given these quantities, it is now possible to describe the

circuitry required to Majority Logic Decode the order-5

(255,218) PG code.

The process begins 'kith a preliminary step of multi-

plying plying the received word by 	and dividing the re-

sult by the generating polynomial g(X). The remainder after .

division is stored in the syndrome register. -On the first

step, as there are seven 5-flats orthogonal on each 4-flat,

11811x7=82677 sets of taps and GF(2) adders are necessary to

obtain the inputs to the 11811- 7-input threshold units. On

the second step, there are 11811 15-input threshold units

which output estimates of the 3-flats. These estimates are

input to the 2667 31-input threshold units of step 3. The

outputs, estimates of the 2-flats, are input to the 127 63-

142

input threshold units of step 4. On the final step, these

estimates are input to a eirirgle I27-input threshold unit whose

output is the estimate of the error digit in position O.

Thus, the circuitry required for MLD the order-5 (255,

218) PG code involves:

i) circuitry for the premultiplication of the received

word by X37 and division of the result by the generating

polynomial g(X),

ii) 11811x7=82677 sets of taps on the syndrome register

and corresponding GF(2) adders,

iii) 11811 7-input threshold units,

iv) 11811 15-;input threshold units,

v) 2667 31-input threshold units,

vi) 127 63-input threshold units,

vii) one 127-input theshold unit.

A simplification similar to that made for the Majority Logic

Decoder of the (63,41) PG code can be made to the (255,218)

PG code Majority Logic Decoder. Since, on the first step,

the total number of errors correctable, [7/21= 3, is determined,

no more than 3 errors can be corrected on any step. Thus

three errors are corrected if only seven estimates are input

to the threshold units at each level.. As a result, the fol-

lowing circuitry will also decode the order-5 (255,218) PG code:

i) circuitry for the premultiplication of.the received

word by X37 and division of the result by the generating

polynomial g(X); the remainder is stored in a register,

ii) 2401x7=16807 sets of taps on the syndrome register

and corresponding GF(2) adders

iii) 2401+343+49+7+1=2801 7-input threshold units.

We refer to both the standard and simplified versions of the

Majority Logic Decoder for the order-5 (255,218) PG code

143

when we discuss the Oi-orbit decoder of the code.

6.3 FG(7.2) 01-orbit Structure

O.-orbits can be defined on PG(7,2). To do so, we be-

gin by applying Yamamoto et al's[581sixth theorem to the flats

of dimension (m-2)=(7-2)=5, and of dimension 1 in PG(7,2).

First, however, we calculate the total number of 5-flats and

the total number of 1-flats in PG(7,.2). From Gliapter 3,

there ares

(28-1)(27-1)(26-1)(25-1)(24-1)(23-1)
0(7,5,2) - 	 - 10795

(26-1)(25-1)(24-1)(23-1)(22-1)

5-flats in PG(7,2) and

(28-1)(27-1)
0(7,1,2) = 	= 10795

(22-1)

1-flats in PG(7,2). We recall that the number of (m-2)=3-

flats is the same as the number of 1-flats of PG(5,2). Sim-

ilarly, the number of (m-2)=5-flats is the same as the number

of 1-flats in PG(7,2). We now apply Theorem 6 for d=5,1.

The highest common factor of (m+1;d+1) is HCF(8,2)=21.

Thus the number of cycles is (1+1)=2, one of which, from

Theorem 3, is v=255, the number of points in the geometry.

From Theorem 6, we haves

x1=1 	 x1=0

e(1) = (28-1)/(22-1) = 85 	e(o) = (28-1)/(2-1) = 255

n(1) = 0(3,2,4) = 85 . 	n(0) = 0(7,5,2) = 10795

11,(1) = 85/85 = 1 	n*(0) = 10795 - 85 = 10710

-ISO) = 10710/255 = 42.

These calculations show that there are 42 i5f's of m.c. 255

144

and one 151 of m.c. 85. Each of the 42 151's of m.c. 255

generates 255 distinct 5-flits. The point representations

of these flats are obtained by subtracting j mod 255 from the

point set of each i5f, j=0,1,...,254. Similarly, the 85 5-

flats generated from the i5f of m.c. 85 are obtained by sub-

tracting j, mod 255, from the point representation of the

i5f, j=0,1,...,84.

The order-5 (255,218) PG code has all the 5-flats of

PG(7,2) in its null space. This code is cyclic, so when d -

coding, it is only necessary to consider those 5-flats in

the null space which contain the point 0. Thus, only the 5-

flats in PG(7,2) which contain the point 0 are considered as

null space 5-flats. Using the arguments of Section 4.3, we

need generate for each i5f of m.c. 255, only the 63 5-flats

which contain the point 0.

From Theorem 2 above and the discussion in Section 4.3,

the i5f of m.c. 85 is composed of 21 1-flats, one of which

• is (0 85 170). The other 20 1-flats are (0+ci 85+ci 170+ci),

addition mod 255, for positive integers ci, i=1,...,20. As

a result, the i5f of m.c. 85 generates only 21 distinct 5-

flats through the point 0.

As in Chapter 4, we now apply Theorem 6 to the d=1-flats.

In this case (d+1)=2, so HCF(m+1,d+1)=HCF(8,2)=21, and hence •

there are (1+1)=2 distinct cycles, one of which must be 255,

by Theorem 3. Applying Theorem 6j- we have that there are 42

i1f's of m.c. 255 and one ilf of m.c. 85. Each ilf of m.c.

255 generates 255 1-flats and the i1f of m.c. 85 generates

85 1-flats. As in Chapter 4, it is only necessary to know

the 1-flats which pass through 0. As there are 0(7,0,1)=3

points in each 1-flat, there are 3 1-flats generated from

each ilf of m.c. 255 which contain the point 0. From Theorem

•

145

2 above, the ilf with m.c. 85 is the flat (a00(;) 	alooL8-J
5%
,

at), al from GF(2), and thuso'the points of tie flat are

(0 85 170), irrespective of the polynomial chosen to represent

the geometry. As for the 111a 1-flat (0 21 42) of PG(5,2),

the ilf of m.c. 85 of PG(7,2) generates only one distinct

flat which contains the point 0. The calculations for Theorem

6 are given below.

x1=1
	 x1 =0

e.(1) 	(28-0/(22-1) = 85 	e(0) 	(28-1)/(2-1) = 255

m(1) . (8/21)-1 = 3 	m(0) = (8/2°)-1 = 7

d(1) 	(2/2)-1 = 0 	d(0) = (2/2°)-1 = 1

q(1) = 22 = 4 	q(0) = 21 = 2

n(1) = 0(3,0,4) = 85
	

n(0) = 0(7,1,2) = 10795

71,(1) = 85/85 = 1
	

n*(0) = 10795 - 85 = 10710

/.(0) = 10710/255 = 42.

As in the PG(5,2) case, the 1-flats and the (m-2)-flats

have the same distinct cycles and number of initial flats of

these minimal cycles. Consequently we are able to define the

orbits and 0i-orbits, and hence a simplified decoder.

The transformation Z was defined in Chapter 4 as the

transformation which takes the point j to the point (j-1)

mod (2111+1-1)=255. The transformations tZ,Z2,...,Z255=Z°=e)

form a group over the set of all i-flats in PG(7,2). For

i=5 and i=1 this group partitions the i-flats into orbits,

where each orbit corresponds to one of the iif's and i-flats

generated from it. Thus, there are 42 orbits with 255 members

each and one orbit with 85 members. As we are interested

only in those flats containing the point 0, we use the term

O.-orbit, introduced in Chapter 4, to refer to the 'subset of

an orbit consisting of only those i-flats in which the point

146

0 occurs. For i=5, each 05-orbit with flats of m.c. 255,

has 63 members. The 05-orbit corresponding to the i5f of

m.c. 85 has 21 members. The 01-orbits with flats of m.c. 255

have three members each and the 01-orbit with the flat of

m.c. 85 has one member. We say that the 01-orbit has the

m.c. of its constituent i-flats.

There is a one to one correspondence between the 43

orbits and the 43 iif's, and between the 0i-orbits and the

iif's through 0, i=1,5. We recall a similar correspondence

in PG(5,2). We list the 01-orbits of PG(7,2) in Table 6.3.1,

using the point representation.

(10 (21) (31) (41)
a: 0 1 25 a: 0 2 50 a: 0 	4 100 	a: 	0 8 200
b: 0 24 254 b: 0 48 253 b: 0 96 251 	b: 	0 192 247
c: 0 230 231 c: 0 205 207 c: 0 155 159 	c: 	0 55 	63

(51) (60 (71) (81)
a: 0 16 145 a: 0 32 35 a: 0 	64 	70 	a: 0 128 140
b: 0 129 239 b: 0 3 223 b: 0 	6 191 	b: 0 	12 127
cs 0 110 126 c: 0 220 252 c: 0 185 249 	c: 0 115 243,,

(91) (101) (111) (121)
a:0 5 138 a: 0 	10 21 a: 0 	20 	42 	a: 	0 40 	84
b:0:133 250 b: 0 	11 245 b: 0 	22 235 	b: 	0 44 215
c:0 117 122 0: 0 234 244 c: 0 213 233 	c: 	0 171 211

III
(131) (141) (151) (160

a:0 80 168 a: 0 160 81 a: 0 	65 162 	a: 	0 130 	69
b:0 88 175 b: 0 176 95 b: 0 190 	97 	b: 	0 125 194
c:0 87 167 c: 0 174 79 c: 0 158 	93 	c: 	0 61 186

(171) (181) (191) (201)
a:0 13 99 a:0 26 198 a:0 52 141 	a:0 104 27
b:0 86 242 b:0 172 229 b:0 80 203 	b:0 178 151
c:0 156 169 c:0 57 83 c:0 114 166 	c:0 228 77

III1
(210 (221) (231) (241)
a:0 208 54 a:0 161 108 a:0 67 216 	a:0 134 177
b:0 101 47 b:0 202 94 b:0 149 188 	b:0 	43 121
c:0 201 154 c:0 147 53 c:0 39 106 	c:0 	78 212

(251) (260 (27) (281)
a:0 19 92 a:0 38 184 MO 76 113 	a:0 152 226
b:0 73 236 b:0 146 217 b:0 37 179 	b:0 	74 103 IV
c:0 163 182 c:0 71 109 c:0 142 218 	c:0 	29 181

147

(291) (301) (311) (321)
a:0 	49 197 a:0 	98 139 a:0 196 23 a:0 137 46
b:0 148 206 b:0 	41 157 b:0 	82 59 b:0 164 118 1V1
c:0 	58 107 c:0 116 214 c:0 232 173 c:0 209 91

(331) (340 (351) (361)
a:0 	7 112 a:0 	14 224 a:0 28 193 a:0 	56 131
b:0 105 248 b:0 210 241 b:0 165 227 b:0 	75 199
c:0 143 150 c:0 	31 	45 cs0 62 90 c:0 124 180

(371) (380 (391) (400
a:0 111 246 a:0 222 237 a70 189 219 a:0 123 183
bs0 	9 120
c:0 135 144

b:0 	18 240
c:0 	15 	33

b:0
c:0

36
30

225
66

b:0 	72 195 	VII.
c:0 	60 132

(411) (421) (431)
a:0 	17 	68 a:0 	34 136 a:0 	85 170 VIII1
b:0 	51 238 b:0 102 221 VIII.
c:0 187 204 c:0 119 153

Table 6.3.1: 01-orbits of PG(7,2), minimal poly-
nomial (0 2 3 4 8)

The labelling of the flats is as in Chapter 4. The 01-orbits

are numbered (11), (21), ..., (431), with constituent 1-flats

ta, tb, tc, t=1,...,42. The subscript 1 on t is used only

if it is not obvious that 1-flats are being discussed. The

single 1-flat of (431) is labelled 43a. The 01-orbits are

divided into the eight classes 	defined

later.

The 1-flats of Table 6.3.1 are formed as the 1-flats of

Table 4.4.t were, taking two linearly independent points, one

of which is 0.

The correspondence exhibited between the 01-orbits and

the 03-orbits of PG(5,2) has a counterpart in PG(7,2). Here,

there is a one to one correspondence between the 01-orbits

and the 05-orbits which is merely an extension of the PG(5,2)

case. Each 05-orbit contains the six non-zero points of one

and only one 01-orbit (11),...,(421), 31 times, and the re-

maining non-zero points 15 times each. Consequently, the

148

05-orbits are numbered (15),...,(425), to reflect this,

where the 05-orbit (t5) contains the non-zero points of (t1)

31 times. The 05-orbit of m.c. 85 corresponds to the 01-

orbit (431) and is numbered (435). We note that the number

of times the non-zero points of the 01-orbit 1-flats repeat

in a (m-2)-flat is equivalent to the number of points in a

(m-3)-flat.

Of the 63 5-flats in any 05-orbit (t5) of m.c. 255,

there are eight 5-flats which do not contain a 1-flat from

(t1), t=1,2,...,40. For this study, we omit these.eight 5-

flats and refer to the 05-orbit (t5) as the 55 5-flats which

intersect on 0 and contain at least one 1-flat from (ti).

The three subsets At Bt, Ct' t=1,2,...,40, are formed

to correspond to the similar subsets in PG(5,2). In each

(t
5
) 05-orbit, t=1,2,...,40, there are eight 5-flats contain-

ing only the 1-flat tia from (ti). These are labelled t5ai,

t5aviii• Similarly, there are eight 5-flats which con-

tain tib, eight containing tic, eight containing both tia

and tib, eight containing tia and tic, eight containing tib

and tic, and seven containing all three 1-flats tia, tib, tic.

The labelling of these is consistent with the labelling of

the 5-flats containing tia only. The subset At is defined

as the subset of 5-flats from (t5) which contains the 1-flat

tia, that is the 31 5-flats, t5ai, t5abi, t5aci, t5abcs, j=i,

...,viii, s=i,.. 	Bt and Ct are defined similarly.

As in the PG(5,2) case, the subsets At, Bt and Ct are non-

orthogonal on their defining 1-flats a, b, c, respectively.

These non-orthogonal subsets are the basis of the 01-orbit

decoder.

In the PG(7,2) there are certain 05-orbits which have

unique structures. These 05-orbits, (415), (425), (435),

149

are now described. They play a special role in the decoding

process, just as (103) and (113) did. in PG(5,2).

In (415) and (425), fifteen of the 5-flats contain all

three 1-flats 41a, 41b, 41c, and 42a, 42b, 42c, respectively.

The (415) 5-flats which do not contain all three of 41a, 41b,

41c, are omitted, leaving the 15 5-flats, 415abci,...,415abexv.

The (425) 05-orbit is defined similarly. The subsets A41 and

A42 are defined as the whole 05-orbit (t5), t=41,42, respec-

tively. It is interesting to note that 41a, 41b, 41c, 43a

appear in each of the 15 5-flats of (425) and that 42a, 42b,

42c, 43a appear in each of the 15 5-flats of (415). These

thirty 5-flats play an important role in decoding. Some of

the 48 5-flats omitted from (415) and the 48 omitted from

(425) have a special use in decoding.

In (435), the single 1-flat 43a occurs in each of the

21 5-flats. These flats are labelled 435ai,...t435axxi.

This 05-orbit also has a special role in the decoding algor-

ithm. The 5-flats of these two classes appear in Appendix A.

The transformation g, introduced in Chapter 4, which

takes the point j to the point 2j, mod 255, establishes sym-

metries in the PG(7,2) 0i-orbits similar to the ones in the

PG(5,2).0i-orbits. The cycles of the 01-orbits, defined by

g are given in Table 6.3.2. Similarly, g can be applied to

the 5-flats of each 05-orbit to give the classes 15,...,

V1115. We do not include them here as they follow directly

from the 1-flat cycles and are similar to the 3-flat cycles

of Table 4.5.4. The cycles at a gross level of 0i-orbits

are more illustrative and are listed in Table 6.3.3. The

subscript g on each cycle class denotes that the cycles are

induced by the transformation g.

150

	

Class 	1-flat Cycles 	Cycle Order

II 	(la 2a 3a 4a 5at6d7a 8a) 	. 	8
(lb 2b 3b 4b 5b 6b 7b 8b) 	8
(lc 2c 3c 4c 5c 6c 7c 8c) 	8

II, 	(9a 10a lla 12a 13a 14a 15a 16a) 	8
(9b 10b llb 12b 13b 14b 15b 16b) 	8
(9c 10c lic 12c 13c 14c 15c 16c) 	'8

III1 	(17a 18a 19a 20a 21a 22a 23a 24a) 	8
(17b 18b 19b 20b 21b 22b 23b 24b) 	8
(17c 18c 19c 20c 21c 22c 23c 24c) 	.8

IV1 	(25a 26a 27a 28a 29a 30a 31a 32a) 	8
(25b 26b 27b 28b 29b 30b 31b 32b) 	8
(25c 26c 27c 28c 29c 30c 31c 32c) 	8

V 	.(33a 34a 35a 36a) 	4

	

1 	(33b 34b 35b 36b 33c 34c 35c 36c) 	8

VI1 	(37a 38a 39a 40a) 	4
(37b 38b 39b 40b 37c 38c 39c 40c) 	'8

VIII 	(41a 42a) 	• 	 2
(41b. 42b 41c 42c)

VIIII (43a) 	 1

Table 6.3.2: 1-flat Cycles

	

Class 	01-orbit Cycle 	Order

II 	
(1 2 3 4 5 6 7 8) 	8
(9 10 11 12 13 14 15 16) 	8

IIIg (17 18 19 20 21 22 23 24) 	8
IVg 	(25 26 27 28 29 30 31 32) 	8

	

Vg g 	(33 34 35 36) 	4
VI, 	(37 38 39 40) 	4

	

VII 	(41 42) 	2

	

VIIIg 	(43) 	 1 g

Table 6.3.3: Cycles of the 0i-orbits

The 05-orbits (415) and (425) partition the 01-orbit 1-

flats, excepting the (411) and (421) 1-flats, into distinct

blocks, such that no 1-flat appears in more than one block.

This partition defines the symmetry blocks of PG(7,2). These

blocks are the basis of many of the symmetric distributions

151

of 1-flats in the 05-orbits. Moreover, sets of errors which

have the same symmetry block' composition are treated similarly

by the decoder. The 18 symmetry blocks are listed in Table

6.3.4, where, from symmetry block Sj(0), the remaining h sym-

metry blocks generated from it, are obtained by applying the

transformation g, a total of h times.

Symmetry Block 	DrAer

S1(0): la 2b 5a 6b 26b 30b 35b 35c 	4
S1(1): 2a 3b 6a 7b 27b 31b 36b 36c
S1(2): 3a 4b 7a 8b 28b 32b 33c 33b
S1(3): 4a 5b 8a lb 29b 25b 34c 34b

S2(0): lc 5c 9b 13b 17b 18c 21b 22c 	4
S2(1): 2c 6c 10b 14b 18b 19c 22b 23c
S2(2): 3c 7c llb 15b 19b 2c 23b 24c
S2(3): 4c 8c 12b 16b 20b 21c 24b 17c

S3(0): 9a 12c 13a 16c 27c 31c 40b 40c 	4
S3(1): 10a 13c 14a 9c 28c 32c 37c 37b
S5(2): 11a 14c 15a 10c 29c 25c 38c 38b
S3(3): 12a 15c 16a 11c 30c 26c 39c 39b

S4(0): 17a 19a 21a 23a 25a 27a 29a 31a 	2
S4(1): 18a 20a 22a 24a 26a 28a 30a 32a

S5(0): 33a 34a 35a 36a 37a 38a 39a 40a 	1

S6(0): 41a 42a 41b 42b 41c 42c 43a 	1.

Table 6.3.4: Symmetry Blocks of PG(7,2)

A given member of a symmetry block appears in a 5-flat of

(415) or (425) if and only if all other members of that sym-.

metry block also appear in the 5-flat. A concise represen-

tation of (415) and (425) is given in Table 6.3.5, where Sj(h)

represents the symmetry block obtained from h applications

of g on Sj(0), that is, Sj(h)=gh(Sj(0)). We note that

there is a one to one correspondence between the 5-flats of

(415) and (425). For Vi a 5-flat of (415), g(Vi). is a 5-

flat of (425).

The symmetry blocks are of prime importance in defining

152

the01 orbit decoder of the PG code over PG(7,2), just as

the symmetry blocks of PG(502) were in the 01.-orbit decoder

of the PG code over PG(5,2).

i4151_25-orbit 1.4251_15-orbit
S2(0) S3(3) 	S4(1) S6(6) s2(1) s3(o) s4(o) s6(o)
S2(1) S3(2) s5(o) S6(0) S2(2) s3(3) S5(0) S6(0)
S2(2) S3(1) S4(1) S6(0) S2(3) S3(2) S4(0) 	S6(0)
S2(3) S3(0) S5(0) S6(0) S2(0) S3(1) S(0) S6(0)
S1(0) 1(3) S4(0) S6(0) Si(1) Si(0) S4(1) S6(0)
S1(1) S1(2) S4(0) s6(o) S1'(2) S1(3) S4(1) S6(0)
S3(1) s3(3) S4(0) S6(0) S3(2) S3(0) S4(1) S6(0)
S1(0) S3(2) s3(3) S6(0) S(1) S(3) S(0) S(0)
S1(2) S3(0) S3(1) S6(0) Si(3) s3(1) S3

3
(2) S6(0).

S2(1) S2(3) S4(1) 	S6(0) S2(2) S2(0) S4(0) S6(0)
S1(3) S1(1) S5(0) s6(o) S1(0) S1(2) S5(0) S6(0)
i(3) S2(2)

S2(o)
S3(0) S6(0) S1(0) s2(3) S3(1) S6(0)

S1(1) S3(2) S6(0) S1(2) s2(1) S3(3) S6(0)
Si(0) S2(2) S2(1) S6(0) S1(1) s2(3) s2(2) S6(0)
S1(2) S2(0) S2(3) S6(0) S1(3) s2(1) S2(0) S6(0)

Table 6.3.5: 5-flats of (415), (425) in terms of
Symmetry Blocks

The detailed study of the 01-orbit structure of PG(5,2)

emphasized the mathematical symmetries of the structure. The

size of PG(7,2) makes a comparable representation unwieldy.

Consequently, we stress only the dramatic reduction in the

amount of circuitry required to decode the order-5 (255,218)

PGcodewhenthe0--orbit decoder is used to decode rather

than the Majority Logic Decoder.

6.4 Oi-orbit Decoder of Order-5 (255_,218) PG Code

The Oi-orbit non-orthogonal decoder of the (255,218) PG

code is a logical extension of the 01-orbit decoder of the

(63,41) PG code. Much less circuitry and fewer decoding

steps are required for this decoder than for the Majority

Logic Decoder of the code. The description of the 01-orbit

follows directly from the discussion of the 01-orbit decoder

of the order-3 (63,41) PG code. There are, just as for the

153

PG(5,2) decoder, two decoding steps. Vie now discuss these.

On the first step, non'-,orthogonal estiffates of the 1-

flats of the 01-orbits (11) through (405) are obtained from

the 05-orbit 5-flats which are initially known to the decoder.

Also, dependent on the errors associated with the (415) and

(425) 5-flats, certain binary flags may be set. The esti-

mates obtained from the first step correspond to 1-flats

orthogonal on the point O. These estimates are input to a

counter on the second step. Assuming no more than three er-

rors have occurred, the error digit in position 0 is correctly

determined by the output of the counter. In a few cases, the

flags set in step 1 must also be consulted and sums obtained

corresponding to certain'5-flats not used previously. The

circuitry for the decoder is now described.

The received word is stored in a register. On the

first step, for each 05-orbit 5-flat, taps on the register

positions corresponding to the points of the 5-flat are in-

. put to a binary adder, the output of which is the sum known

to the decoder for the 5-flat. Associated with each of the

subsets At, Bt, 0.0 t=1,...,40, is a 31-input threshold unit

with threshold 16. The 31 inputs are the binary sums cor-

responding to the 31 5-flats comprising the subsets At, Bt,

Ct$ respectively. The 15 sums corresponding to the 15 5

flats of (415) and the 15 sums corresponding to the 15 5-

flats of (425) are input to two 15-input counter units, res-

pectively. The output of the 120 threshold units are ortho-

gonal estimates of the point O. A flag f1 is set if the num-

ber of ones input to the (415) and (425) counters is 11,9 or

9,9 or 9,11 or 3,3, respectively. A second flag, f2, is set

if the inputs are 9,7 or 7,9 or 9,5, respectively. A third

flag, f3, is set if all 30 inputs to the two counters are

154

ones. The three flags are simply binary flip-flops, set if

the number of inputs to:-atcounter is a given,value.

The circuitry required for this step involves a total

of (55x40)+15+15=2230 sets of calculations ot the taps of the

storage register vs. 82677 (or 16807 in the simplified version)

for the standard Majority Logic Decoder. The (55x40) in the

above equation refers to the 55 5-flats in each of the 40

05-orbits. Three flags may have to le set. A total of 120

31-input threshold units and two counters for the flags, are

necessary. The standard decoder requires on the first step,

11811 (2401 in the simplified version) 7-input threshold units.

On the second step the 120 outputs from step 1 are in-

put to a counter. These-outputs correspond to 120 1-flats

orthogonal on the point O. The decoder's decision as to the

value of the error digit in position 0 is dependent on the

value c output by the counter, and in some cases, the flags

f1, f2, f3. In the less than 0.02% of cases that f3 is set,

certain 5-flats not previously used in decoding, must be

examined. If eo denotes the error digit in position 0, then

the decoder is defined by:

if c<100, then e0=0,

c >108, then e0=1,

c-=108, f3 set, then e0=0; f3 not set, then e0=1,

100<c107, fi set, then e0=1,

f2 set, then e0=0,

f
3

set, c=101, then e0=0,

f3
set, c101, then consult decoding table.

We note that in the last case, that is when the count is in

the range 100 to 107 and f3 is set, c/101, that the error

triples consist of either the 0 error or one of the members

of S6(0) and two non-zero errors from the same symmetry block.

155

In the next section it is shown that the flag f3 is set for

less than 0.02% of all the correctable 1, 2, and 3-error

patterns. If the f3
flag is set and c/101, sums correspond-

ing to certain 5-flats not pi.eviously used must be obtained.

We discuss these seven cases where the f3 flag is set and the

Count c is in the range 100 to 107, c/101, in the next section.

Thus,• on the second step, a simple counter, logical

units to test the flags and seven further sets of 5-flat

sums and logical units are required.

This decoding method does not require that the received

word be premultiplied by X37 and the result divided by the

generating polynomial g(X). The tapped values need only be

fed into binary flip-flops and the output then directly in-

put into a threshold unit. The 01-orbit Circuitry consists

of a total of 120 31-input threshold units, three counters,

three binary flags, logical units to test the flags and a

small decoding table of 35 entries. The standard Majority

Logic Decoder requires circuitry for multiplication, divi-

sion, GF(2) adders, 11811 7-input threshold units, 11811 15-

input threshold units, 2667 31-input theshold units, 127 63-

input threshold units and one 127-input threshold unit, or,

in the simplified version 2801 7-input threshold units. The

savings in circuitry achieved by the use of the 0i-orbit de-

coder are significant. If, as suggested for the PG(5,2)

case, a mini-computer is associated with the channel, the

flag setting and testing step of the 01-orbit decoder, be-

comes trivial. Specific 1, 2 and 3-error sets are discussed

in the next section.

6.5 Frror Analysis of the Decoder

In this section, it is shown that the 0i-orbit decoder

156

of the order-5 (255,218) PG code is capable of correcting

all 1, 2 and 3-errors. Hence, the 01-orbit decoder possesses

the same error-correcting capablilities as the Majority Logic

Decoder but requires only a fraction of the circuitry. In

Chapter 7, the decoder's ability to correct some errors of

higher weight is illustrated.

A computer simulation of the 01-orbit decoder was used

to test all possible 1, 2 and 3-errors of the order-5 (255,

218) PG code. Reductions to the size of the error space

were made using the same techniques as were used to decrease

the size of the order-3 (63,41) PG code error space.

We begin the analysis by examining all possible single

errors. We observe that it is only necessary to test the 0

error and one member of each cycle of Table 6.3.2. If 0 is

in error, the output from the counter in step 2 is 120 and

hence the decoder correctly determines that e0 the error

digit in position 0, is a one. If one of la, ib, lc, 9a, 9b,

90, 17a, 17b, 17c, 25a, 25b, 25c, 33a, 33b, 37a or 37b is in

error, then the count is 1 and the decoder makes the decision

that e0=0, that is that the digit in position 0 is correct.

If one of 41a, 41b or 43a is in error, the count is 0, and

the decoder determines correctly that e0=0. All other single

errors in the same cycle as one of the above errors have the

same count and hence are correctly decoded.

The 2-error patterns consisting of the 0 error and any

non-zero error, have a count of 119. Thus, the decoder de-

termines correctly that there is an error in position 0 and
•

hence that eo=1. Every non-zero pair of errors has a count

between 4 and 20 and hence the decoder decides that e0=0,

that is no error has occurred in position 0.

The sets of error triples can be divided into four

157

distinct groups. The first group consists of the non-zero

error triples with a count less than 100. Each error triple

of the second group has a count of at least 108 and consists

of the 0 error plus two non-zero errors. We also include

the non-zero triples 41a41b41c, 42a42b41b, 41a41c42b and

42a42c41b, with count 108, in the second group. Error triples

with a count between 100 and 107 such that one error is either

0 or a member of S6(0) and the other two are non-zero errors

from two distinct symmetry blocks, are in the third group.

The fourth group has both zero and non-zero error triples •

and a count between 100 and 107. Each triple in this group

consists of those error triples such that two of the errors,

e1 and e2, are from the same symmetry block and the other

error is either 0 or the member of S6(0) in which el and e2

appear together in Table 6.3.1. The three triples of 1-flats

from S6(0) listed in the S6 section of Table 6.5.1 are also

in this group.

al pairs
41a: 1a26b 2b35c 5a30b 6b35b 2a6a 3b7b 27b31b 36b36c

3a28b 4b33b 7a32b 8b33c 4a8a 5b1b 29b25b 34c34b

41b: la6b 2b5a 26b35b 30b35c 2a36b 3b31b 6a36c 7b27b
3a33b 4b28b 7a33c 8b32b 4a5b 8a1b 25b34c 29b34b

41c: 1a35c 5a35b 2b26b 6b30b 2a3b 6a7b 27b36c 31b36b
3a8b 7a4b 28b33c 32b33b 4a34c 8a34b 1b29b 5b25b

42a: la5a 2b6b 26b30b 35b35c 2a27b 3b36c 6a31b 7b36b
3a7a 4b8b 28b32b 33b33c 4a29b 5b34b 8a25b 1b34c

42b: la2b 5a6b 26b35c 30b35b 2a7b 3b6a 27b36b 31b36c
3a33c 4b32b 7a33b 8b28b 4a34b 5b29b 8a34c 1b25b

42c: 1a35b 5a35c 2b30b 6b26b 2a36c 3b27b 7b31b 6a36b
3a4b 7a8b 28b33b 32b33c 4alb 8a5b 29b34c 25b34b

43a: la30b 2b35b 5a26b 6b35c 2a31b 3b36b 6a27b 7b36c
3a32b 4b33c 7a28b 8b33b 4a25b 5b34c 8a29b 1b34b

158

S2 pairs

41a: 1c9b 5c13b 17b22c 21b18c 2c19c 6b23c 10b22b 14b18b
3c11b 7c15b 19b24c 23b20c 4c21c 8c17c 12b24b 16b20b

41b: 1c131; 5c9b 17b18c 21b22c 2c6c 10b14b 18b22b 19c23c
3c24c 7c20c 11b19b 15b23b 4c20b 9c16b 12b17c 16b21c

41c: 1c22c 5c18c 9b17b 13b21b 2c18b 6c22b 10b23c 14b19c
3c15b 7c11b 19b20c 23b24c 4c8c 12b16b 20b24b 17c21c

42a: 1c18c 5c22c 9b21b 13b17b 2c10b 6c14b 18b23c 22b19c
3c20c 7c24c 11b23b 15b19b 4c12b 8c16b 20b17c 24b21c

42b: 1c17b 5c21b 9b22c 13b18c 2c14b 6c10b 18b19c 22b23c
3c7c 11b15b 19b23b 20c24c 4c17c 8c21c 12b20b 16b24b

42c: 1c5c 9b13b 17b21b 18c22c 2c23c 6c19c 10b18b 14b22b
3c19b 7c23b 11b24c 15b20c 4c16b 8c12b 20b21c 24b17c

43a: 1c21b 5c17b 9b18c 13b22c 2c22b 6c18b 10b19c 14b23c
3c23b.7c19b 11b20c 15b24c 4c24b 8c20b 12b210 16b17c

a3 pairs
41a: 9a40c 13a40b 12c27c 16c31c 10a9c 14a13c 28c37c 32c37b

11a38b 15a38c 10c25c 14c29c 12allc 16a15c 26c39b 30c39c

41b: 9a27c 13a31c 12c40c 16c40b 10a13c 14a9c 28c37b 32c37c
10c14c 25c29c 38b38c 12a39c 16a39b 11c30c 15c26c

41c: 9a13a 12c16c 27c310 40b4 0c 10a37c 14a37b 9c28c 13c32c
11a29c 15a25c 10c38c 14c38b 12a15c 16a11c 26c39c 30c39b

42a: 9a16c 13a12c 27c40b 31c40c 10a37b 14a37c 13c28c 17c32c
11a10c 15a14c 29c38c 25c38b 12a39b 16a39c 11c26c 15c30c

42b: 9a40b 13a40c 12c31c 16c27c 10a28c 14a32c 13c37b 17c37c
11a14c 15a10c 29c38b 25c38c 12a16a 11c15c 26c30c 39b39c

42c: 9a12c 13a16c 27c40c 31c40b 10a14a 13c9c 28c32c 37b37c
11a38c 15a38b 10c29c 14c25c 12a30c 16a26c 11c39c 15c39b

43a: 9a31c 12c40b 13a27c 16c40c 10a32c 13c37c 14a28c 9c37b
11a25c 14c38c 15a29c 10c38b 12a26c 15c39c 16a30c 11c39b

o4 pairs

41a: 17a27a 19a29a 21a31a 23a25a 18a32a 20a26a 22a28a 24a30a

41b: 17a29a 19a27a 21a25a 23a31a 18a32a 20a26a 27a28a 24a30a

41c: 17a25a 19a31a 21a29a 23a27a 18a24a 20a22a 26a28a 30a32a

42a: 17a31a 19a25a 21a27a 23a29a 18a28a 20a30a 22a32a 24a26a

42b: 17a23a 19a21a 25a27a 29a31a 18a30a 20a28a 22a26a 24a32a

42c: 17a19a 21a23a 25a31a 27a29a 18a26a 20a32a 22a30a 34a28a

43a: 17a21a 19a23a 25a29a 27a31a 18a22a 20a24a 26a30a 28a32a

159

a5 pairs
41a: 33a35a 37a39a 34a38a 36a40a

41b: 33a38a 34a35a 36a39a 37a40a

41c: 33a36a 34a37a 38a39a 55a40a

42a: 33a37a 34a36a 35a39a 38a40a

42b: 33a40a 34a39a 35a36a 37a38a

42c: 33a34a 35a38a 36a37a 39a40a

43a: 33a39a 34a40a 35a37a 36a38a

trifles

41a42a43a 41b42b43a 41c42c43a

Table 6.5.1: Pairs and Triples of E

The pairs in Table 6.5.1 are those which always occur together

in 415a, 415b, 415c, 425a, 425b,... 425c and 435a 5-flats given

in Appendix A. The fourth group is referred to as the set

E. An example of an error triple in E is 42c1c5c. The two

errors is and 5c, both from the symmetry block S2(0), occur

together in the S2 pairs 42c set in Table 6.5.1. We note

that associated with each error triple in E is a cycle of

errors in E such that each error in the cycle is treated

identically by the decoder. For instance, the cycle set

associated with 42c1c5c, that is (41b2c6c, 52b3c7c, 41c4c8c),

are all in E and treated identically by the decoder. The er-

ror triple 01c5c is in E. The (415) and (425) f3 flag is set

for this triple and the triple 42c1c5c, since 15 inputs to the

(415), and the 15 to the (425), counters are all ones for

both these triples.

The first group of error triples is comprised of all

possible non-zero error triples excepting those in the set

E. The count for these triples ranges from 0 to 99. Hence,

160

the decoder decides correctly that the digit in position 0

is correct, and therefore that e0=0.

When discussing the remaining groups we refer to the

number of ones input to the (415) and (425) counter units of

step 1 as i/j, where a total of i of the inputs to (415) are

ones, and j of the inputs to (425) are ones. If the input

is 11/9, 9/9 or 3/3 the f1 flag is set, if the input is 9/7,

7/9 or 9/5 the f2 flag is set and if the input is 15/15 the

f3 flag is set.

The second group consists of all 0 error triples except

those in E (see Table 6.5.2). The count for this group ranges

from 108 to 116. If the count is 108 and the f3 flag set,

then eo is 0, otherwise the decoder makes the decision that

the digit in position 0 is in error and e0 is set to 1.

Just as in the PG(5,2} case, information can be obtained

from the decoder concerning the composition of the error

triples. For instance, if the count is 116, the error triple is

in one of the cycles generated from 09a43a, 09b43a, 09c43a,

041a43a, 041b43a. More examples are given in Chapter 7 of

the added information concerning the error sets which it is

possible to gain from the decoder.

For the third group, either f1 or f2 is set. By refer-

ring to Table 6.3.5 or Appendix A, the decoding rule that if

fi is set, 0 is in error and that if f2 is set, 0 is not in

error, is verified. We note that the input to (415) and (425)

is 3/3 if and only if one error is 0, one error is from S6(0)

and the third error is from any symmetry block excepting S6(0)..

In this case the 0 and S6(0) errors appear together in each

5-flat in (415) and (425) and hence cancel with each other.

The remaining error gives a count of 3 in each of (415) and

(425) since each point not in (411) or (421) appears three

161

times in (415) and (425). The other counts for which f1 or

f2 is set are explained similarly.

• The error triples of E, the fourth group, are given

below in Table 6.5.2.

count=100

la30b43a
2a31b43a
3a32b43a
4a25b43a
5a26b43a
6a27b43a
7a28b43a
8a29b43a

33a35a0
34a36a0

9a12c42c
10a13c4lb
11a14c42b
12a15c41c
13a16c42c*
14a9c4lb
15a10c42b
16a11c41c

25b34c41b
26b35c42b
27b36c41c
28b33b42c
29b34b41b
30b35b42b
31b36b41c
32b33c42c

33a34a42c
34a35a41b
35a36a42b
36a33a41c

37a40a4lb
38a37a42b
39a38a41c
40a39a42c

37a39a41a
38a40a42a

33a40a42b
34a37a41c
35a38a42c
36a39a41b

•••

count=101

33b33c42a
34b34c4la
35b35c42a
36b36c41a

couht=102

1a26b41a
2a27b42a
3a28b41a
4a29b42a
5a30b41a
6a31b42a
7a32b4la
8a25b42a

17b22c4la
18b23c42a
19b24c4la
20b17c42a
21b18c4la
22b19042a
23b20c41a
24b21c42a

1c18c42a
2c19c41a
3c20c42a
4c21c4la
5c22c42a
6c23c4la
7c24c42a
8c17c4la

25b34b42c
26b35b41b
27b36b42b
28b33c41c
29b34c42c
30b35c41b
31b36c42b
32b33b41c

9b21b42a
10b221041a
11b234142a
12b24b4la
131)17b42a
14b18b4la
15b19b42a
16b20b4la

1b34b0
2b35b0
3b36b0
4b33c0
51034c0
6b35c0
7b36c0
8b33b0

1b34b43a
2b35b43a
3b36b43a
4b33c43a
5b34c43a
6b35c43a
7b36c43a
8b33b43a

17a25a41c
18a26a42c
19a27a4lb
20a28a42b
21a29a410
22a30a42c
23a31a4lb
24a32a42b

162

count=103

1b29b41c
2b30b42c
3b31b41b
4b32b4 2b
5b25b41c
6b26b42c
7b27b4lb
8b28b42b

c cunt =104

1 c5c42c
2c6c41b
3c7c42b
4 c 8041 c

41a42a43a
41 b42b43a
41 c42c43a

9c37c42b
10038041 c
11 c39c42c
12040041 b
13c37b42b
14 c38b41 c
15c39b42c
16c40b4 lb

9a27c4lb
10a28c42b
11a29c41c
12a30c42c
13a31 041 b
14a32c42b
1%25041 c
16a26c42c

25b29b41a
26b30b42a
27b31b41a
28b32b42a

17a27a4la
18a28a42a
19a29a41a
20a30a42a
21 a31a41a
22a32a42a
23a25a41 a
24a26a42a

1 a35b0 33a34a0
2a36b0 34a35a0
3a33c0 35a36a0
4a34c0 36a33a0
5a35c0
6a36c0 33b33c0
7a33b0 34103400
8a34b0 35b35c0

36b36c0

la5a0 la30b0 1 a35c0
2a6a0 2a31b0 2a36c0
3a7a0 3a32b0 3a33b0
4a 8a0 4a25b0 4a34b0

5a26b0 	 a35130
1b5b0 6a27b0

5
6a36b0

2b6b0 7a28b0 7a33c0
3b7b0 8a29b0 8a 34c 0
4b8b0

colint=105

37b37c42c
38b38c4 1 b
39b39c42b
4 Ob40c41 c

count t---1116■

33a37a.42a
34a38a4 la
35a39a.42a
36a40a4la

1a26b0 25a29a0 25b34b0 33a39a0
2a27b0 26a30a0 26b35b0 34a40a0
3a28b0 27a31a0 27b36b0 35a37a0
4a29b0 28a32a0 28b33c 0 36a38a0
5a30b0 	 29b34 c0
6a31b0 2502900 30b35c 0 33a40a0
7a32b0 2603000 31b36c0 34a37a0
8a25b0 2703100 32b33b0 35a38a0

2803200 	 36a39a0

1a2b0 la6b0 1b25b0 25c38c0
2a3b0 2a7b0 2b26b0 26c39c0
3a4b0 3a8b0 3b27b0 2704000
4a5b0 4a1 b0 4b28b0 28c37b0
5a6b0 5a2b0 5b29b0 29c38b0
6a7b0 6a3b0 6b30b0 30c39b0
7a8b0 7a4b0 7b31 b0 31 c40b0
8a1b0 8a5b0 8b32b0 32c37c0

101800 1021b0 1b34c0 17a25a0 17a31a0
201900 2c22b0 2b35c0 18a26a0 18a32a0
302000 3c23b0 3b36c0 19a27a0 19a25a0
402100 4c24b0 4b33b0 20a28a0 20a26a0
502200 5c17b0 5b34b0 21a29a0 21a27a0
602300 6c18b0 6b35b0 22a30a0 22a28a0
702400 7c19b0 7b36b0 23a31a0 23a29a0
801700 8c20b0 8b33c0 24a32a0 24a30a0

25a27a0 25c38c0 25c38b0 33a37a0 33a38a0
26a28a0 26c39c0 26c39b0 34a38a0 34a39a0
27a29a0 2704000 27c40b0 35a39a0 35a40a0
28a30a0 28c37b0 2803700 36a40a0 36a37a0 --
29a31a0 29c38b0 2903800
30a32a0 30c39b0 3003900
31a25a0 31 c40b0 3104000
32a26a0 32c37c0 32c37b0

163
count=107

1a35b42c 1b29b0 1c13b0 1c22c0 17a27a0 17a29a0
2a361041b 2b30b0 2c14b0 2c23c0 18a28a0 18a30a0
3a33c42b 3b31b0 3c15b0 3c24c0 19a29a0 19a31a0
4a34c41c 4b32b0 4c16b0 4c17c0 20a30a0 20a32a0
5a35c42c 5b25b0 50.9b0 5c18c0 21a31a0 21a25a0
6a36c41b 6b26b0 6c10b0 6c19c0 22a32a0 22a26a0
7a33b42b 7b27b0 7c11b0 7c20c0 23a25a0 23a27a0
8a34b41c 8b28b0 8c12b0 8c21c0 24a26a0 24a28a0

25c38b0 1c5c0 25b29b0
26c39b0 2c6c0 26b30b0
27c40b0 3c7c0 27b31b0
28c37c0 4c8c0 28b32b0
29c38c0
30c39c0
31c40c0
32c37b0

Table 6.5.2: Set E Error Triples, f3 set for each triple

The fourth group, E, requires the extra calculations

mentioned in the last section. For these'error triples,

since the non-zero (or non-S6(0).) errors are in the same sym-

metry block, a 5-flat of (415) or (425) either contains all

three of the errors or only the one error, 0 or a S6(0) er-

ror. Thus the corresponding binary sum for each 5-flat is

one and the input to (415) and (425) is thence 15/15. We

recall that it was necessary to refer to certain (113) 03-

orbit 3-flats to determine ec, when all inputs to (103) were

ones in the PG(5,2) case. Similarly, certain of the unused

5-flats must be consulted to determine whether 0 is in error

for the error triples from E when all inputs to the compar-

able (415) and (425) 05-orbits of PG(7,2) are ones. The 5-

flats which are used to determine the value of e0 are from

(435) or from the 5-flats of 415a, 415b, 415c, 425a, 425b,

425c, given in Appendix A. Corresponding to each of the

counts 100, 102,103,...,107, is a set of one or more 5 to

16 bit storage words. For a count c in this range, the value

of the error digit in position 0 is determined by whether or

164

not the pattern of binary sums of the 5-flats associated

with the count c matches the stored word or words for c. For

example, if the count is 102, the stored word is the 8 bit

word consisting of all ones. If the 5-flat sums of 435ai,

435aviii are also all ones, then e0 is 1, otherwise it

is 0. Four of the counts require only the one pattern word

consisting of all ones to determine the value of eso. The re-

maining three have 8, 15 and 8 pattern words, respectively.

A simple binary compare is all that is required to test the

matching of the calculated pattern with these. The complete

set of decoding patterns for the fourth group, in the form

of a decoding table, is given in Table 6.5.3.

104 	415bx1,415bxii ,415cxv,

415cxvi,425bxv ,425bxvi,

425cxv ,425cxvi,435ai,..

435aviii

105 415bix,415cxiii,425bxiii,

425bxiv,425cxiii

-if all l's, e =1; otherwise
if less than 6 l's, e0=0;
if 6 l's and pattern is
11101011,11011101,01111110,
10111011,11010111,11101110,
10111101,01110111, e0=1;
else e0=0

-if last 8 bits all l's, e0=0;
if first 8 bits all 1's,e0=0,
else if pattern one of
01111111,10111111,11011111,
11101111,11110000,00001111,
00000000 then e0=1;
if 6 l's in patterns of
11100111,11111100,
00111111,11001111, e0=1;
else e0=0;

if 4 l's and pattern
00111100,00110011,11000011,
11001100, e0=1; if in last
8 bits there are 4 l's,
e=0; else e0=1

-if all l's, e0=0, else
eo=1

Count

100

102

103

Associated 5-flat

415aviii ,415bxi1,415cxv,

425bxv,425av ,425cxv

435aviii

415bxi,415bxii,41 5exv,
415cxvi,425bxv,425bxvi,

425cxv,425cxvi

Decoding Patterns.and Rule

-if all l's, then e0=1;
otherwise e0=0

-if all l's, e0=1; else e0=0

165

Count 	gssociated -flats

106 415aii,415avi,415aviii,

425ai,425aiii,42-5aiv

107 415bxj,415bxii,415cxv,

415cxvi,425bxv,425bxvi,

425Cxv ,425Cxvi

Decoding Patterns and Rule

-if all l's, e0=0; else e0=1

-if pattern one of
10001011,11100100,00011101,
10110010,01000111,11011000,
00101110,01110001 e0=0;
else eo=1

Table 6.5.3: Decoding Table for Error Triples
in E

The addition of a decoding table for the .E error triples

adds decoding time rather than complexity to the decoder,

for simple binary comparisons are all that are necessary to

correctly determine ec, for these cases. However, for most

of the correctable error patterns, the decoding table is not

needed and hence no extra time added to the decoding process.

In the following we show, assuming all errors equally pro-

bable, that the decoding table is consulted for less than

0.02% of the possible correctable error patterns.

We first calculate the number of error triples in E.

The number of 0 error triples, from Table 6.5.2, is 250.

Each of these triples represents four error triples, for a

total of 250x4=1000 0 error triples. For the non-zero case,

we have 154 triples, each of which represents eight point er-

ror triples for a total of 154x8=1232 error triples. Thus,

there are 1000+1232=2232 error triples in E. We now obtain

the total number of correctable error patterns. The total

number o.f 1-errors is 255, zero 2-errors is 1x254=254, non-

zero 2-errors is 254x252=64008, zero 3-errors is 1x254x252=

64008, and non-zero 3-errors is 254x252x250=16002000, for a

total of 16,130,525 correctable error patterns. Thus, the

the error triples of E comprise only

166

2232/16130525 < 0.02%

of all possible correctable error patterns. If a decoder

correcting 99.98% of all correctable error patterns were ac-

ceptable, then the resulting 0i-orbit decoder is extremely

simple compared to the Majority Logic Decoder. It would re-

quire 120 31-input threshold units, three counters, and_three

flags. If retransmission were possible, then if the count

were in the range 100 to 108, the 0.02% of the uncorrectable

errors could be corrected using retransmission.

6.6 Conclusions

In this chapter the 0i-orbit decoder of the order-5

(255,218) PG code has been defined and analysed. The object-

ive of the discussion presented was to emphasize the enormous,

difference in the circuitry reqtkired for the 0i-orbit decoder

and the Majority Logic.Decoder of the code. The standard

Majority Ldgic Decoder requires circuitry for premultipli-

cation and division, GF(2) adders and 26479 threshold units

(2801 in the simplified version). The 0i-orbit decoder does

not require division or multiplication circuitry and only a

total of 120 threshold units, three counters„three..flags

and a 35 entry decoding table and associated logical units.

The chapter began with a summary of the circuitry used

in MLD the order-5 (255,218) PG code. The 0i-Orbit structure

of PG(7,2) was presented. Based on these structures, the 0i-

orbit decoder was defined. That all 1, 2, 3-error patterns

are correctable using the defined decoder was established by

referring to the results of a simulation model of the decoder.

Finally, it was shown that the error patterns for which the

decoding table must be consulted comprise less than 0.02% of

all correctable error patterns.

167

CHAPTER 7: YODIFICATIONS TO THE Oi-ORBIT DECODER

7.1 Introduction

In thi'S chapter we analyse further and make modifications

to, the 01-orbit decoders introduced previously. The Oi-

orbit structure provides an interpretation of the Projective

Geometries which yields considerable information concerning

the distribution and composition of the correctable error

patterns. Investigation of the errors of higher weight in-

dicates that the decoder can be modified to detect some such

errors.

For both the 01-orbit decoders studied, we discuss in-

formation which can be obtained concerning the composition

of the 1, 2 and 3-errors. Also, several modifications to

the two decoders are suggested which allow for the detection

of some 4 and 5-errors.

First, the Or-orbit decoder of the order-3 (63,41) PG

code is considered. Then a similar discussion of the order-

5 (255,218) PG code is given.

7.2 Order-3 (63.41) PG Code

7.2.1 Composition of Errors from Knowledge of Decoder's Output

If the composition of the error pattern which has occurred

is known, it is possible to shorten the decoding process.

As it is only necessary to correct those positions in the

received word which can have been in error, only a fraction

of the (2m+1-1) digit positions need to be decoded. In this

section we show that it is possible, for some error sets, to

determine the subset of error sets in which the given error

pattern occurs. This requires that the decoder knua the

count c output from the counter of step 2, the value of the

168

flags fl, f2, f3, and whether the number of inputs to (103)

is odd or even. In the following we assume 4that no more

than three errors have occurred.

We begin by discussing the single errors. If the count

c is 27, then it is immediately known that 0 is in error.

If the f3 flag is set, no other error has occurred and thus,

decoding may cease. If the count c is 0, then there is one

error in one of the non-zero points of the 1-flat 11a. Hence,

the decoder needs to decode only the two positions 21 and 42,

as these are the only digits possibly in error. No 2 or 3-

error pattern has a count of O. If the count is one and the

f3 flag not set, the decoder knows that a single non-zero er-

ror has occurred in a 1-flat other than 11a.

Similar information is available when two errors have

occurred. If the count is 27 and the f3 flag is not set,

then the two errors are 0 and one of the non-zero points of

11a. Consequently only the digit in position 0 and the lla

digits need be decoded. Thus, at most three positions need

to be decoded. If the count is 26, the decoder knows that

two errors have occurred, one of which is O. Once the 0 er-

ror and the second error have been corrected, decoding may

cease. If the two errors are non-zero, then the decoder is

able to determine, for some pairs, the error subsets in

which the errors occurred. For instance, if the count is 13

and the number of ones input to (103) is even, then the two

errors are in the cycles generated by 7a7b or 7a7c. If the

count is three and the input to (103) even, then the error

pair is a member of the cycle generated by lalla. If the

count is four and the input to (103) even, then the error

pair is a member of the cycle of 1b11a. For these cases

169

only the positions corresponding to possible errors need be

decoded, rather than all 63 positions.

. The composition of some error triples can be ascertained

from knowledge of the count c associated with the error triple.

If the count is 24, then the three errors are from the cycle

generated by Olalla or 010alla. The error triple is a member

of the cycle of 01b11a, OlalOb, 01c10b or 07a10c, if the

count is 23. If the count is 22, one of the cycles generated

from 01c4c or 01c1la contains the triple of errors. If the

count is 13 and the input to (103) odd, then the non-zero.

error triple is a member of one of the cycles generated from

1a8b10a, lalb8c, 1a2b5c or 7c8c10c. If the flag f3 is not

set and the count is 1, the non-zero error triple is from

the cycle generated by la5blla. We recall that if the f3

flag is set, only one error has occurred.

These 1, 2 and 3-error examples have shown how informa-

tion as to the composition of the errors can be obtained from

the decoder. For certain counts only those positions that

may be in error need to be decoded. Decoding time can be

shortened if a table is added to the decoder which, for a

set of counts, contains the possible digits in error if one

of the counts occurs. Only those counts with a predetermined

number of associated error positions are included to make

storage requirements economical. If the count obtained is

in the table, the corresponding positions are decoded. If

the count is not in the table, normal decoding is continued

until a count in the table appears. Once the positions given

in the table for the count have been decoded, decoding

terminates.

170

7.2.2 Errors of Weight Four

Applying the techniques'of the previous sub-section,

the 0--orbit decoder can be modified to detect many errors

of weight four. We note that already many errors of weight

four are corrected by the decoder defined. For instance, all
C. 61 	 lt% 	 CE2‘

4-errors containing (,„ with a count greater than 16 are auto-

matically corrected, as are all non-zero 4-errors with a count

less than 14. We let w represent the number of ones input

to (103). In this chapter we denote as Sg, the symmetry

block S8 augmented by the element 0, that is Sg = 10a1OblOc0.

The results presented in this sub-section are based on

the following observations. First, if a non-S8 error triple

occurs, the number w, of ones input to (103) must be 1 or 3.

This follows if we consider the three possIble distributions

of the error triples in symmetry blocks. If all three errors

are in the same symmetry block, then the sum in (103) corres-

ponding to that symmetry block is one and all other (103)

sums are 0. If the three errors occur in three distinct sym-

metry blocks, then the three corresponding sums in (103)

each are one and the remaining four are zero. If two errors

occur in the same symmetry block, their binary sum is zero.

The third error, in a distinct symmetry block, gives a sum

of one. All other sums are zero and hence only one of the

inputs to (103) has a non-zero value.

If the error triple contains one member of Sg, the num-

ber of ones input to (103) is 5 or 7. We determine this as

for the non-S8 case. If the two non-S8 errors are in the

same symmetry block, the associated binary sum is zero. The

S8 error occurs in each 3-flat of (103) and hence each has

an associated binary sum of one, for a total of w=7 ones in-

put to (103). If the two non-S8 errors are in distinct

171

symmetry blocks, each sums to zero with the S8 error. The

remaining five inputs correspond to the 3-flats which contain

only the S8 error. Thus there are a total of w=5 inputs to

(103) which are ones. If two errors are in Sg, w=1 and if

all three are in S8, w=7.

If there are four non-S8 errors, then w is 0, 2 or 4.

If all four errors are in the same symmetry block, or if two

errors are in one symm-otry block and two in another, then w=0.

If two errors are in the same symmetry block and the remain-

ing two in two distinct symmetry blocks, then w=2. If all

four errors are in four distinct symmetry blocks, then w=4.

If one error is in S8, then w can be 4 or 6, depending

on the arrangement of errors in symmetry blocks. If each

non-S8 error is in a distinct symmetry block, w=4. If either

two or three of the non-S8 errors are in the same symmetry

block, then w=6.

If two of the errors are from S8, w is 0 or 2 depending

on whether the non-S8 errors are in the same or distinct sym-

metry blocks, respectively. If there are three S8 errors,

w=6. If there are four S8 errors, then w=0.

Consequently, if there are three errors, w is odd and

if there are four errors, w is even.

The following observations form the basis of the state-

ments concerning 4-error patterns. First, we recall that if

two errors occur, one of which is 0, then the count is 26 or

27. Secondly, if two non-zero errors occur, then the count

is at most 13. If the count is 13, then the errors are either

from the. cycle of 7a7b or 7a7c, w equal to 0 or 2 respective-

ly. If the count is 12, the error is in the cycle of 7c10b

and w=6. If the count is 11, the error pair is from the cycle

of la8b or 7c8c, with w=0, or from the cycle of la9b, 1b8b

172

or 1c8b, with w=2. Finally, from the above discussion on

4-errors, we recall that w is 0, 2, 4 or 6 if there are four

errors. And from the simulation, if one of the errors is

0, the count is at least 12. We now suggest modifications to

the Oi-orbit decoder to allow for the consideration of 4-errors.

If the count is at least 14, but no more than 26 and w

is even, then a 4-error is detected. From the discussion on

the assignment of w, if w is 0, 2 or 6, then one of the errors

is in S8. If the count is 13 and w is 4 or 6, or if w is 0

and f3 is set, then the decoder detects a 4-error. If the•

count is 12 and w is even, then there are four errors. Final-

ly, if the count is a•t most 11 and w is even, then 0 is not

in error and there are either two or four errors.

Information concerning the composition of the four er-

ror sets can be obtained. For instance, if 0 is in error and

the other three errors are in three distinct symmetry blocks,

then the count is unusually low, between 12 and 16. Typical-

ly a 0 error 4-tuple has a count of at least 18. Similarly,

if there is a non-zero 4-error with two errors from I1 and

two from II1, then for a count of at least 18, the two

errors and one of the I1 are in distinct symmetry blocks.

For example, 1b5b7ax has a high count for x not the 0 error.
•

The three 1-flats lb, 5b and 7a are in distinct symmetry

blocks.

These few examples are included to illustrate the type

of information which can be obtained concerning the 4-error

patterns.

7.2.3 Err...(21 -12tEiYa

We briefly discuss the analysis possible when five er-

rors have occurred. The situation becomes very complex, so

173

only a few cases are presented. In the following we assume

that at most five errors have occurred.

We begin by listing in Table 7.2.1, the value of w, the

weight associated with the (103) inputs, for each possible

distribution of the given errors among the symmetry blocks.

In Table 7.2.1, each error 5-tuple is described by a sum of

digits. Each digit represents the number of errors appear-

ing in a single symmetry block. The digit 0 denotes an error
•

from S8. For instance, 3+1+1 denotes that three of the er-

rors are in the same symmetry block and the two remaining. er-

rors are in two distinct symmetry blocks.

•

non-S8 5-errors V. a8_1mgErSIT 1.Y.

4+1 1 4+o .7
3+2 1 3+1+0 5
3+1+1 3 2;2+0 7
2+2+1 1 2+1+1+0 5
2+1+1+1 3 1 +1+1+1+0 3 	•
1+1+1+1+1 5

Table 7.2.1: Weight w of (103) Inputs

From Table 7.2.1 and the discussion in the previous sub-

section, 	i • section, we know that if w=7, then a member of S8 	in error.

If w=1 and the count is at least 17, then no member of qi is

in error and hence e0=0. This follows from Table 7.2.1 and

the discussion of 1 and 3-errors given earlier.

Certain information concerning the distribution of the

errors is available. For instance, if all five non-S8 er-

rors are from five distinct symmetry blocks, then an unusual-

ly high count results. For example, the 5-error set 1c3c5c2a4a

has a count of 25, while most non-Sg 5-errors have a count

of at most 15. However, if two of the errors are in the

same symmetry block, then the count is as expected, less than

15. Similar problem cases arise if one of the errors is 0.

174

If three of the four remaining errors are in three distinct

symmetry blocks and are in class II1, then the associated

count is unusually low. For example, the error 5-tuple

7a8a9a8b0 has a count of 3.

When 1, 2 or 3-errors occur, distinct numerical boundar-

ies between the non-zero and zero error counts occurred.

However, in the case of 4 and 5-errors, the boundaries are

no longer distinct. It is possible to•detect many 4 and 5-

errors, however, only the 4 and 5-errors for which the count

falls into the defined ranges of the Oi-orbit decoder of .

Chapter 5, are corrected.

7.3 0rder-5 (255,218) PG Code 	•

7.3.1 amusition qf Errors from Knowledge of Decoder's Outp.i
The analysis below follows closely to that given in

Section 7.2.1 for the order-3 code. Again we assume that no

more than three errors have occurred. The analysis is based

on the count c output by the counter of step 2, the number,

w1, of ones input to the counter associated with (415), the

number, w2,of ones input to the counter for (425), and the

binary sums associated with certain 5-flats of 415a, 415b,

415c, 425a, 425b, 425c and (435), given in Appendix A.

We begin by discussing the single errors. If the count

is 120 and w1 and w2 both 15, then 0 is in error and no other

error has occurred. Thus, the decoding may cease after pos-

ition 0 is corrected since no other digit position is in er-

ror. If the count is one and if exactly three of the sums

associated with the 5-flats 435ai, 	435axvi are

one, then a single non-zero error has occurred in one of the

1-flat classes I1 through VI1. If the count is 0 and if zero

175

or one of the sums associated with 415ai, 415bi, 415ci, 425ai,

425bi, 425ci is one, then there is a single non-zero error

from (411), (421) or (431). In this case, only the 14 posi-es
tions corresponding to the points of these 01-orbits need to

be decoded as the error cannot occur in any of the other 241

Positions. For all three cases of a single error, once the

error has been corrected, decoding can cease, as the received

word is then correct. Ihis can result in considerable

savings in decoding time.

Similar information is available for the two errors.

If the count is 119, then 0 and a single non-zero point from

one of the classes I1 through VI1 are in error. If the count

is 120 and w1 and w2 both 0, then 0 and one of the non-zero

points of (411), (421) or (431) are in error. Once 0 and

one of the positions associated with the points of (411),

(42/), (430 have been corrected, decoding may cease. At

most 15 digit positions need' to be corrected, rather than the

standard 255. If the two errors are non-zero, the count is

at most 20. If the count is 20, then the error pair is a

member of the cycle of 33a35a. We note that the two errors

are from the same symmetry block. Only the positions cor-

responding to the 1-flats of the symmetry block

S5
(0) need to be decoded, as the error pair'is amongst these

positions. If the count is 4 and w1 and w2 both 0, or both

12, then the error pair is from the cycle of 41a43a or 41b43a.

Only the positions corresponding to these error pairs need

to be decoded. If the count is 5 and w1 and w2 both even,

then the 'error pair is from one of the cycles generated by

9a9b, 9a9c, 9a10a, 9a16a, 9b9c, 9b10b, 9b16b, 9c10c, 9c16c.

If the count is 6 and wl and w2 both 12, then the error pair

is from one of the cycles of 9a42b, 17a43a, 17b43a, 17c43a,

176

37a43a, 37b42c, 37b43a.

The 3-errors can also be analysed and information ob-

tained concerning the composition of certain error triples.

For example, if the count is 101, and both w1 and w2 15,

then the error triple is from the cycle of 33b33c42a. If

wi and w2 are 15, and the count 100, 102,..., 107, the er-

ror triples are as given in Table 6.5.2. If the count is 1

and wl and w2 both 15, then the error triple is one of the

members of the cycles of 33b33c41c, 33a33b33c or 37b37c41c.

If the count is 0 and wl and w2 both 15, then the errors •

are from the cycles generated by 41a42a41b, 41a41b42b,

41a42b43a, 41b42b41c or 41b42b43a. If the count is 116,

then the error triples are from the cycle generated from

9a43a0, 9b43a0, 9c43a0 or 41b43a0. If the count is 114, then

the error triple is from the cycle generated from 9a42b0,

37b42c0, 37b43a0, 17a43a0, 17b43a0 or 17c43a0. If the count

is 108 and w1 and w2 are both 15, then the error triple is

from the cycle of 41a41b42c. Finally, if the count is 104

and wi and w2 both 15, then the error triple is one of the

members of the cycle of 41a42a43a.

Many more such examples can be found for the 1, 2 and

3-errors. For these, only the positions corresponding to

possible errors need to be decoded rather than all 255 posi-

tions. A table consisting of the positions possibly in er-

ror for certain counts could be added to the decoder. Given

the count output on the second step of decoding, a simple

look up would determine the positions to be decoded. Only

those counts with an associated number of possible error

positions less than a given value would be stored, in order

to keep the storage requirements reasonable. For counts not

177

in the table, decoding would continue as normal until a

count was obtained which was in the table. Then, only the

positions in the table associated with the count would be de-

coded. Once these positions were decoded, the decoding pro-

cess would cease. It is obvious from the examples given,

that this modification would greatly reduce the required

decoding time.

7.3.2 Erroxsotilaiehtm

An analysis of the count output on step 2 of the decod-

ing process and the inputs w1 and w2 to the (415) and (425)

counters, respectively, provides information concerning the

4-errors. As a result, some 4-errors can be detected. Those

zero 4-errors with a count greater than 10 and the non-zero

4-errors with a count less than t00 are corrected by the de-

coder defined in Chapter 6. In the following we assume that

no more than four errors occurred. We write S6(0) to denote

the'set S6(0) augmented by the point 0.

If two or four errors occur, then the values of w1 and

w2 are always even. This follows from an analysis of the

distribution of the 2 and 4-errors among the symmetry blocks.

If three errors occur, the values of w1 and w2 are both odd.

Using these two facts and the results of the simulation of

the decoder when four errors have occurred, we are able to

make the following statements.

If the count is in the range 60 to 80 and w1 and w2

even, then e0=0. If the count is high (at least 80), and

w1 and w2 are not 8,6 or 6,8, and the four non-zero errors

are from distinct symmetry blocks, then three of the four

errors are in the same 5-flat of (415) or (425). If wi, w2

are 8,6 or 6,8 and the count is high, then one of the errors

178

is from S6(0) and the remaining three from the same flat of

(415) or (425). If the count is high, then the values of w1,

w2- are 8,6 or 12,12 or.6,6 or 8,8 or 10,6 or 10,8. If two

of the errors are from the same symmetry block and two are

from S6(0), then both w1 and w2 are 0. If the count is less

than 30, then w1 and w2 are, either both 0, both 6 or one is

6 and one is 8.
As for the 4-errors in the order-3 (63,41) PG code, the

4-errors for this code do not have well-defined boundaries

between the 0 and non-zero error sets. The comments given

indicate some of the information which it is possible to

obtain concerning the 4-errors.

7.3.3 Errors of Weight Five
We now discuss briefly the-5-errors and the way in

which the 0.l -orbit decoder treats them. Even less informa-

tion is available than was for the 4-error sets. We assume

thdt no more than five errors have occurred.

As for the 4-error case, all zero 5-errors with a count

greater than 108 or non-zero 5-errors with a count less than

100 are corrected by the 01-orbit decoder defined in Chapter

6. As for the 3-errors, the values of wl and w2 are odd for

all 5-error sets. In the following analysis, we say that the

count is ordinary (vs. high or low) if for the non-zero 5-
errors the value is between 20 and 40, and for the zero

error sets between 40 and 60.

If the count is very high for a non-zero 5-error, or

very low for a zero 5-error, then two non-distinct sets of

single errors, each consisting of three errors, can be se-

lected such that the three errors of each set appear in a

distinct 5-flat of (415) or (425). If two such sets can not

179

be formed, then the count is ordinary. If all 5-errors are

from the same symmetry block, but not from S6(0), then the

count is very low and wl and w2 are both 3. If the five er-

rors are all from S6(0), then the count is very high and wi

and w2 are both 15. If one of the errors is 0 and the rest

from S6(0), then the count is very low and both wl and w2'

are 15. Also, if four errors are from the same symmetry

block, other than S6(0), and 0 is in error, then the count

is very high and both w1 and w2 are 15. If the five errors

occur in two distinct symmetry blocks, neither of which is

S6(0), in the ratio 3 to 2, or 4 to 1, then the count is

ordinary unless the two symmetry blocks appear together in

Table 6.3.5.

The information available concerning the 5-errors is of
•••

interest primarily as an analysis of the distribution of the

counts. The distinct boundary between the counts associated

with zero and non-zero error sets that result when 1, 2 or

3 errors occur, is not present for the 5-errors. Consequent-

ly, detection of the higher weight errors, rather than

correction is more feasible.

7.4 aanglaaisma

The results of this chapter indicate that it is pos-

sible to modify the decoder to allow for significant savings

in the time required for decoding, and for the detection of

some errors of higher weights. The symmetry blocks are of

prime importance in the analysis presented.

The chapter began with a discussion of the information

which it is possible to obtain from the decoder concerning

the composition of the 1, 2 and 3-errors of the order-3

(63,41) PG code. It was suggested that significant decreases

180

in the time required for decoding can be obtained by decoding

only those ccdeword positions which, from knowledge of the

composition of the errors, can possibly be in error. A

short analysis of the distribution of the 4-errors and 5-

errors in. terms of the count obtained from step 2 of the

decoding process was presented.

The second part of the chapter contained corresponding

results for the order-5 (255,218) PG code. As the code

length was much longer for this code, the decrease in de-

coding time was even more significant. The 4 and 5-error.

analysis gave an indication of the symmetries present in the

distribution - of these errors. As the demarcation between

the counts of the zero and non-zero error sets was not well

defined, the information was of use primarily for detection

of errors rather than correction.

181

PART III
CHAPTER 8: SUVYARY OF RESULTS, CONCLUSIONS AND FURTHER

RESEARCH TOPICS

8.1 Summary' of Results and Conclusions

In this thesis a mathematical analysis of the two Pro-

jective Geometries, PG(5,2) and PG(7,2), led to the develop-

ment of a decoding algorithm for the order-3 PG code over

PG(5,2) and the order-5 PG code over PG(7,2) which required

only a small fraction of the circuitry used to Majority

Logic Decode the codes.

The first three chapters of the thesis were devoted to

a concise presentation of the basic algebra and fundamental

Coding Theory necessary to the understanding of the ideas

and concepts presented in the thesis. In•particular, Major-

ity Logic Decoding and Projective Geometries were discussed.

The fourth chapter introduced the work of Yamamoto et al[5E]

concerning the cycles of a Finite Geometry. The results

frOm this were used to define the Oi-orbits. An extensive

analysis of the PG(5,2) 3-flat and 1-flats was presented

based on the 0--orbits. The numerous symmetric properties

of this structure provided an important mathematical inter-

pretation of PG(5,2). After further investigation of this

structure, the 01-orbit decoder was defined in Chapter 5.

It was shown that this decoder corrected the same number of

errors as the Majority Logic Decoder of the code but required

only a fraction of the circuitry. While the Majority Logic

Decoder consisted of 187 threshold units (57 in the simpli-

fied version) and circuitry for multiplication and division,

the O.-orbit decoder had only 27 threshold units, 2 counters

and no division or multiplication circuitry. In Chapter 6,

the results of Yamamoto et al(581 were used to define the

182

Of-orbits of PG(7,2). Owing to the size of the geometry, the

analysis of the 01-orbit structure was not as detailed as for

PG(5,2). Ac decoder of the order-5 PG code over PG(7,2),

based on the 01-orbits, was defined and shown to correct the

same number of errors as the Majority Logic Decoder of the

code. The decrease in the circuitry required for the Oi-

orbit decoder from that required for the Majority Logic De-

coder, was far more significant for this case. The Majority

Logic Decoder required division and multiplication circuitry

and 26,479 threshold units (2,801 in the simplified version),

while the 01-orbit decoder required only 120 threshold units,

three counters and a 35 entry decoding table and associated

logical decision units. In Chapter 7 it was shown that sig-

nificant decreases in decoding time for both decoders could

be obtained as a result of•a further analysis of the decoder.

For certain outputs of the decoder's step 2 counter, it was

possible to determine the subset of positions in which the

errors occurred. Thus, it was only necessary to correct

those positions, as all other digits in the received word

were known to be correct and hence it was unnecessary to de-

code them. For both decoders, some 4 and 5-errors were

correctable and many others detectable.

In this thesis we have shown that by analysing the math-

ematical structure of the null space of the order-3 PG code

over PG(5,2) and the order-5 PG code over PG(7,2), a simpli-

fied decoder can be defined. The decoder presented requires

only a fraction of the circuitry needed for MLD the code.

Thus, we have significantly simplified a decoding algorithm

which is already considered relatively simple. Moreover, if

a small computer is associated with a communication channel,

4(0)
m(0)
d(0)
q(0) = 2
n(0) = 0(5,2,2) = 1395
n*(0) = 1395-9 = 1386
-ASO) = 1386/63 = 22.

=
=
.

(26-1
(6A)-

)/(
1

(3/1)-1

2
= 5
-1)

= 2

= 63

183

as is frequently the case, the implementation of the Oi-orbit

decoder is trivial.

We have shown in this thesis that it is possible for a

particular set of codes, to overcome the problem of a decoder

being too complex to warrent its implementation.

8.2 Further Research Topics

We discuss in this section several topics related to

the work in the thesis. First we consider the feasiblity of

generalizing the 01-orbit decoding method so that any order

PG code over PG(m,2) can be decoded. To this end, we invest-

igate the structure of the 2-flats of PG(5,2), that is the

null space flats of the order-2=(m-3) PG code over PG(5,2).

We recall that only order-(m-2) codes were studied in pre-

vious chapters. Secondly, we suggest further study of the

structure of the null space with the goal of increasing the

power of the 01-orbit decoder. The section is concluded with

several questions concerning the algebraic interpretation

of the results presented in the thesis.

In the following, we present several interesting results

concerning the structure of the 2-flats of PG(5,2) which sug-

gest that a generalization of the 01-orbit decoder is pos-

sible. To begin the analysis of the order-2 PG code we ap-

ply Yamamoto et al's[58] sixth theorem to PG(5,2) for d=2.

This provides the following information:

—.1=11"°

4(1) 	(26-1)/(23-1) = 9
m(1) = (6/3)-1 = 1
d(1) =.(3/3)-1 = 0
q(1) = 2) = 8
n*(1) = n(1) = X(1,0,8) = 9
A.(1) = n*(1)/G(1) = 1

184

Thus we have that there are 22 i2f's of m.c. 63 and one i2f

of m.c. 9. Each of the 22 i2f's of m.c. 63 generates 63 2-

flats and the i2f of m.c. 9 generates 9 2-flats. The trans-
.

formation Z, introduced in Chapter 4, can be applied to the

2-flats, with the result that the 2-flats can be partitioned

into orbits such that each orbit corresponds to one of the

i2f's and the 2-flats generated from it. The 02-orbits are

the subsets of the orbits consisting of only those 2-flats

in which the point 0 occurs. Thus, each 02-orbit of m.c.

63 has seven members and the 02-orbit of m.c. 9 has one mem-

ber. We recall the one to one correspondence between the

03-orbits and the 01-orbits in Chapter 4. There, the six

non-zero points of the 01-orbit .(t1) were repeated seven

times in the 03-orbit (t3). Certain points were repeated

three times each and the remainfng points once each. The

number of times a point repeats, 7,3 or 1, corresponds to

the number of points in a 2, 1 or 0-flat, respectively. We

select the nine 02-orbits of m.c. 63, each of which repeats

the six non-zero points of one and only one of the 01-orbits

three times. These 02-orbits are numbered as the 03-orbits

were to reflect the correspondence. The 2-flats of each O2-

orbit (t2), t=1,...,9, can be ordered so that, representing

each 2-flat by the 1-flats a, b and c of (ti) that it con-

tains, the following description is obtained, a, b, c, ab,

ac, be. One of the seven 2-flats does not contain a 1-flat

from (ti). This 2-flat is omitted and the 02-orbit (t2) is

said to consist of the six 2-flats listed above. As for the

3-flats, -three intersecting subsets At, Bt, Ct can be formed,

where, for example, the set At consists of the three (t2)

2-flats, in the representation above, which contain the (t1)

185

1-flat a, that is a, ab, ac. The 1-flats t1b and tic occur

once each in At. The 2-flats are labelled as the 3-flats

were, to show the correspondence with the 1-flats. For ex-

ample, the 2-flat containing both the 1-flats tia and t1b is

labelled t2ab. The 2-flat which consists of the six non-

zero points of (101) is labelled (102). Corresponding to

(110, there are five 02-orbits which repeat three times on

the non-zero points of (111). As for the order-3 code, we

propose that these flats be used strictly for setting flags.

We note that the number of times a point repeats in a

02-orbit is 3, 1 or 0, that is the number of points in a 1-

flat, 0-flat; or, for continuity, a null flat. This is

exactly 1 dimension less than the order-3 code.

We list in Table 8.1.1 the 2-flats of the 02-orbits (12)
•••

through (102), in terms of.their constituent 1-flats.

(12)
a: la 2a 7a
b: lb 3a 2b
c: lc 2c 8a

ab: la lb 8c
ac: la is 3b

I21, be: lb is 7b

(42)
a: 4a 5a 7b
b: 4b 6a 5b
c: 4c 5c 8b

ab: 4a 4b 8c
ac: 4a 4c 6b
be: 4b 4c 7a

(79)
a: 7a 5a 8a

II 	b: 7b 2a 8b
c: 7c 10c 8c

ab: 7a 7b 10a
ac: 7a 7c 2c
bcC 7b 7c 5c

(22)
a: 2a 3a 8a
b: 2b 4a 3b
b: 2c 3c 9a

ab: 2a 2b 9c
ac: 2a 2c 4b
be: 2b 2c 8b

(52)
a: 5a 6a 8b
b: 5b la 6b
c: 50 6c 9b

ab: 5a 5b 9c
ac: 5a 5c lb
bc: 5b 5c 8a

(82)
a: 8a 6a 9a
b: 8b 3a 9b
c: 8c 10b 9c

ab: 8a 8b 10c
ac: 8a 8c 3c
be: 8b 8c 6c

(32)
a: 3a 4a ga
b: 3b 5a 4b
c: 3c 4c 7b

ab: 3a 3b 7c
ac: 3a 3c 5b
be: 3b 3c gb

(62)
a: 6a la 9b
b: 6b 2a lb
c: 6c is 7a

ab: 6a 6b 7c
ac: 6a 6c 2b
be: 6b 6c 9a

(92)
a: 9a la 7b
b: 9b 4a 7a
c: 9c 10a 7c

ab: 9a 9b 10b
ac: 9a 9c 4c
be: 9b 9c lc

(102)
1112t abc: 10a 10b 10c

Table 8.1.1: 2-flats of (12) - (102)

186

We see from Table 8.1.1 that the cycles induced by the trans-

formation g and given in Table 4.5.3 are present in the 2-

flats. Moreover, if we were to form a Table of the subsets

At Bt, Ct, listing the 1-repeats, rather than the 3-repeats,

the results would be identical to Table 4.5.1, with the title

'3-repeat' replaced by '1-repeat'. All the cycle and repeat

properties would simply be reduced by one dimension. For ex-

ample, the II1 1-flats appear as 3-repeats seven times and

the I/ 1-flats five times each in Table 4.5.1. In the cor-

responding Table of 02-orbits, the 1-flats of II1 would ap-

pear as singletons seven times and the I1 1-flats as single-

tons five times each.

Based on these observations, we propose that the decod-

ing method used above can be adapted to the order-2 code to

correct any number of errors less than 8, that is the number

of errors correctable with MLD. Assuming that the order-2

code can be decoded as suggested, we propose further that

this decoding method can be generalized to higher dimension

PG codes. The fact that Yamamoto et al's[581sixth theorem

is applicable to any PG over GF(2) strongly supports such a

generalization. As only two decoding steps and an associated

decoding table, would be required, the savings over the MLD

method would increase with an increase in the dimension of

the code.

Before leaving the 2-flats of PG(5,2), we remark on

another interesting property which may lead to an alterna-

tive decoding method for codes of order other than (m-2).

We discussed above the nine 02-orbits of m.c. 63 that corres-

pond to the 01-orbits (11),...,(91), and mentioned the five

02-orbits which repeated three times on the 01-orbit (111).

The remaining eight 02-orbits are listed in terms of 1-flats

187

in Table 8.1.2. These 02-orbits are non-perfect difference

sets, that is every point that appears, does so once only,

except of course the point 0 which is in each 2-flat. Also,

twenty of the points of PG(5,2) do not appear in each of the

02-orbits of Table 8.1.2. The 20 points for the 02-orbits

in the first three columns are the non-zero points of two

symmetric relative 01-orbits from I1, of a 01-orbit from

and of (111). The remaining two 02-orbits in column four have

the non-zero points of (71), (81), (91) and (110 as omitted

points. In Table 8.1.2 the 02-orbits are given in four col-

umns, where the two 02-orbits in each column have the same

set of omitted

orbits, are

(31),(61),
ill), (1111_

points. 	The omitted points, listed as 01-

given at the top of each column.
•

(11),(411), 	(21),(50, 	(71),(81),
.04),(111/ 	121),(1111 	121),(1111

2a 9a 10a 	3a 7b 10c 	2a 3b 6c
• 2b 3c 7a 	3b 4c 8a 	4a 5b 2c

2c 5a 6c 	3c 6a lc 	6a lb 4c

la 8a 10b
lb 2c 9b
lc 4a 5c
4b 8b 9c
5a 9a 10c 6a 7b 10b

5b 9b 7c 	6b 7a 8c 	is 2b 10)
la 8b 10a 3c 4h 10a

2a 5b Sc 3a 6b 9c 4a lb 7c 5c 6b 10b
2b 4c 10a 3b 5c 10c 4b 6c 10b la 3a 5a)

4a 8b 10b 5a 9b 10a 6a 7a 10c 3a 4b is
4b 5c 9a 5b 6c 7b 6b lc 8b 5a 6b 3c
40 la 2c 5c 2a 3c 6c 3a 4c la 2b 5c
lb 8a 9c . 2b 9a 7c 3b 7b 8c
2a 9b 10c 3a 7a 10b 4a 8a 10a

2c 3b 101
4c 5b 10c

5a 2b 8c 6a 3b 9c la 4b 7c 6c lb 10a
5b lc 10a 6b 2c 10c lb 3c 10b 2a.,. 4a 	6a 3.

Table 8.1.2: 2-flats of m.c. 63 in terms of 1-flats

For the 02-orbits of the first three columns, if Vi is any

2-flat in one of the 02-orbits of a given column, then g3(Vi)

is the corresponding 2-flat in the other 02-orbit of the col-

umn. In the fourth column, if Vi is any 2-flat in one of the

02-orbits, then g(Vi) is the corresponding 2-flat in the other

188

02-orbit. Each of the 02-orbits in column 4 can be divided

into the three subsets indicated in Table 8.1.2.

The structure of these eight 02-orbits assures that

within a given column, no two 1-flats that appear in the same

2-flat in one of the 02-orbits, appear together in the second

02-orbit. It is interesting to note that, within the eight

02-orbits, the II1 1-flats appear less frequently than the

1-flats, four times vs. six times each. We recall that

the II1 1-flats appear more frequently in the 02-orbits (12),

..., (92). The following four facts concerning the 02-orbits

of Table 8.1.2 may prove useful in designing a decoder

based on these 02-orbits:

i) (111) does not appear in any of the 02-orbits,

ii) three other 01-orbits are missing in each 02-orbit;

in particular, the points of a symmetric relative pair of

0i-orbits are missing for each of the 02-orbits in the first

three columns,

iii) the two 02-orbits in a given column are such that any

two 1-flats which appear together in one of the 02-orbits do

not appear together in the other,

iv) no point, other than 0, is repeated more than once in

any of the 02-orbits, that is the 2-flats are orthogonal on 0.

We now present several other topics which require in-

vestigation. A further study of the structure of PG(m,2)

is necessary in order to determine if the null space flats

can give enough additional information to the decoder for

errors of weight greater than [(2m-r+1-1)/2] to be corrected

in the order-r PG code over PG(m,2). We recall that certain

of the Or-orbit r-flats were omitted in defining the 05.-orbit

decoders. The use of some of these flats as checks may

189

provide enough information to the decoder for errors of

higher weight to be corrected.

• The presentation of the codes that we have given does

not refer to the algebraic interpretation of the PG codes.

To relate the two descriptions could be quite complex, but

Would prove interesting. If such a study were done, the

following points should be considered:

i.)Howarethe0.-orbits related algebraically?

ii) Is there a partitioning of the roots of the parity

check polynomial induced by the 01-orbit structure.

iii) Does a knowledge of the algebraic representation as-

sist in obtaining the roots necessary to generate the indi-

vidual classes Ii,IIi.... ?

iv) How are the polynomials- corresponding to the 1-flats

in the 01-orbit (t1) related to those of the r-flats in the

0,-orbit (tr)?

v) The distinct iif's of a class are obtained by successive-

ly multiplying the point representation of a given iif by 2

until all iif's are obtained. What is the comparable alge-

braic operation?

vi) Within a given 01-orbit, there are 6 non-zero points.

These can be considered as 3 non-zero points and their mod

(2n+1-1) inverses. Is there an algebraic interpretation of

this?

vii) What is the algebraic explanation of the many sym-

metries present in the 01-orbit structures?

It is hoped that the investigation of the questions

presented'in this section will provide a generalized 01-orbit

decoder for the order-r PG code over PG(m,2) requiring only

a fraction of the circuitry needed to Majority Logic Decode

the code.

2.; A.1 	05-orbit (415) 5-flats

1c5c 9b11c12a13b15c161 17b18a18c20a21b22a22c24a 26a26c28a30a30c32a 39b39c 41a41b41c42a42b42c43a
3c7c 11b13c14a15b9c10a 19b20a20c22a23b24a24c18a 28a28c30a32a32c26a 37c37b 41a41b41c42a42b42c43a

2c6c 10b10c11a14b14c15a 18b19c22b23c 25c29c 33a34a35a36a 37a38a38b38c39a40a 41a41b41c42a42b42c43a
4c8c 12b12c13a16b16c9a 20b21c24b17c 27c31c 35a36a33a34a 39a40a40b40c38a37a 41a41b41c42a42b42c43a

1a2b5a6b 10c1lallc12a14c15a15c16a 25c26b26c29c30b30c 35b35c 38b38c39b39c 41a41b41c42a42b42c43a
3a4b7a8b 12c13a13c14a16c9a9c10a 27c28b28c31c32b32c 33c33b 40b40c37c37b 41a41b41c42a42b42c43a

2c4c6c8c 10b12b14b16b 17c18a18b19c20a20b21c22a22b23c24a24b 26a28a30a32a 41a41b41c42a42b42c43a

1c2a3b5c6a7b 9b10c11a13b14c15a 17b18c21b22c 25c27b29c31b 36b36c 38b38c 41a41b41c42a42b42c43a
3c4a5b7cba1b 11b12c13a15b16c9a 19b20c23b24c 27c29b31c25b 34c34b 40b40c 41a41b41c42a42b42c43a

lalb2b4a5a5b6b8a 17a19a21a23a 25a25b26b27a29a,29b30b31a 34b34c35b35c 41a41b41c42a42b42c43a
3a3b4b6a7a7b8b2a 19a21a23a17a 27a27b28b29a31a31b32b25a 36b36c33c33b 41a41b41c42a42b42c43a

1b2a3b4a5b6a7b8a 25b27b29b31b 33a34a34b34c35a36a36b36c 37a38a39a40a 41a41b41c42a42b42c43a

la2b2c3c5a6b6c7c 10b11a14b15b 18b19b19c20c22b23b23c24c 26b30b 35b35c 41a41b41c42a42b42c43a
3a4b4c5c7a8b8c1c 12b13b16b9b 20b21b21c22c24b17b17c18c 28b32b 33c33b 41a41b41c42a42b42c43a

9c10a11c12a13c14a15c16a 17a19a21a23a25a26c27a28c29a30c31a32c 37b37c39b39c 41a41b41c42a42b42c43a

A.2 	05-orbit (425) 5-flats

2c6c 10b12c13a14b16c9a 18b19a19c21a22b23a23c17a 27a27c29a31a31c25a 40b40c 41a41b41c42a42b42c43a
4c8c 12b14c15a16b10c11a 20b21a21c23a24b17a17c19a 29a29c31a25a25c27a 38c38b 41a41b41c42a42b42c43a

3c7c 11b11c12a15b15c16a 19b20c23b24c 26c30c 34a35a36a33a 38a39a39b39c40a37a 41a41b41c42a42b42c43a
5cic 13b13c14a9b9c10a 21b22c17b18c 28c32c 36a33a34a35a 40a37a37b37c38a39a 41a41b41c42a42b42c43a

2a3b6a7b 11c12a12c13a15c16a16c9a 26c27b27c30c31b31c 36b36c 39b39c40b40c 41a41b41c42a42b42c43a
4a5b8alb 13c14a14c15a9c10a10c11a 28c29b29o32c25b25c 34c34b 37c37b38c38b 41a41b41c42a42b42c43a

3c5c7c1c 11b13b15b9b 18c19a19b20c21a21b22c23a23b24c17a17b 27a29a31a25a 41a41b41c42a42b42c43a

2c3a4b6c7a8b 10b11c12a14b15c16a 18b19c22b23c 26c28b30c32b 33c33b 39b39c 41a41b41c42a42b42c43a
4c5a6b8c1a2b 12b13c14a16b9c10a 20b21c24b17c 28c30b32c26b 35c35b 37c37b 41a41b41c42a42b42c43a

2a2b3b5a6a6b7bla 18a20a22a24a 26a26b27b8a30d,30b31b32a 35b35c36b36c 41a41b41c42a42b42c43a
4a4b5b7a8a8b1b3a 20a22a24a18a 28a28b29b30a32a32b25b26a 33c33b34c34b 41a41b41c42a42b42c43a

2b3a4b5a6b7a8b1a 26b28b30b32b 35a35b35c36a33a33c33b34a 38a39a40a37a 41a41b41c42a42b42c43a

2a3b3c4c6a7b7c8c 11b12b15b16b 19b20b20c21c23b24b24c17c 27b31b36b36c 41a41b41c42a42b42c43a
4a5b5c6c8a1b1c2c 13b14b9b10b 21b22b22c23c17b18b18c19c 29b25b34c34b 41a41b41c42a42b42c43a

10c11a12c13a14c15a1609a 18a20a22a24a 26a27c28a29c30a31c32a25c 38b38c40b40c 41a41b41c42a42b42c43a

ON A.3 1115L1211513 415c 5-flats

is lalb1c4b5b 9b9c10a10c12b14b16c 18b19a19b20344c240 25c26a26b29a30c31c 33a33b35a36b36c 39c 41a
ii: 3a3b3c6b7b 11b11c12a12c14b16b10c 20b21a21b22a18b18c 27c28a28b31a32c25c 35a35b33a34b34c 37b 41a
iii: 5a5b5c8b1b 13b13c14a14c16b10b12c 22b23a23b24a20b20c 29c30a30b25a26c27c 33a33c35a36b36c 39b 41a
iv: 7a7b7c2b3b 15b15c16a16c10b12b14c 24b17a17b18a22b22c 31c32a32b27a28c29c 35a35c33a34e34b 37c 41a

v: 2a2b3a6a7c 9c10a10b13a15a15b16b 18c19a20b21b22b24a 25b28b29a29b30a30c 35c 37a38c39a39e40b 41a
vi: 4a4b5a8a1c 11c12a12b15a9a9b10b 20c21a22b23b24b18a 27b30b31a31b32a32c 33b 39a40c37a37b38c 41a
vii: 6a6b7a2a3c 13c14a14b9a11a11b12b 22c23a24b17b18b20a 29b32b25a25b26a26c 35b 37a38b39a39b40c 41a
viii: 6aBb1a4a5c 15c16a16b11a13a13b14b 24c17a18b19b20b22a 31b26b27a27b28a28c 33c 39a40b37a37c38b 41a

ix: 1c2b3c4c6c8b 9b11b12c13c14a15a 17a20a21c23c 26a27a27b27c30c31b 33c34a34b34c35c 38a38c39c 41a
x: 3c4b5c6c8c2b 11b13b14c15c16a9a 19a22a23c17c 28a29a29b29c32c25b 35c36a36b36c33b 40a40c37b 4Ia
xi: 5c6b7c8c2c4b 13b15b16c9c10a11a 21a24a17919c 30a31a31b31c26c27b 33b34a34c34b35b 38a38b39b 41a
xii: 7c8b1c2c4c6b 15b9b10c11c12a13a 23a18a19c21c 32a25a25b25c28c29b 35b36a36c36b33c 40a40b37c 41a

xiii: 1a1b2a2c3a4c5b6a 11a12c15c16a 17b18a19a19c20c21c22c23b 26b27c28b29a32a32c 34a37b38a38b 41a
xiv: 3a3b4a4c5a6c7b8a 13a14c9c10a 19b20a21a21c22c23c24c17b 28b29c30b31a26a26c 36a 39b40a40b 41a
xv: 5a5b6a6c7a8c1b2a 15a16c11012a 21b22a23a23c24c17c18c19b 30b31c32b25a28a28c 34a 37c38a38c 41a
xvi: 7a7b8a8c1a2c3b4a 9a10c13c14a 23b24a17a17c18c19c20c21b 32b25c26b27a30a30c 36a 39c40a40c 41a

41 b

is 3c4b7a 9a10b10c12a14b14c16b 17b18c21c22a23a24a24c 26b27b27c28b29b31a32c 34a34b35a35b 37c39c 41b
ii: 7c8b3b 13a14b14c16a10b10c12b 21'b22c17c18a19a20a20c 30b31b31c32b25b27a28c 3La34c35a35c 37b39b 41b

iii: 1c4b6a8c 9a11b13b15c 19a19b19c23c24b 25b25c26c27a27c28a28b29c30a30b32c 34c35c36a36c 37c39a 41b
iv: 5c8b2a4c 13a15b9b11c 23a23b23c19c20b 29b29c30c31a31c32a32b25c26a26b28c 34b35b36a36b 37b39a 41b

v: 1b3a4c7b8a 10a10c11b13c14c16a16c 17b18c19b19c20b21a23c 25a26a27b30b32a 33b35c 37a39b40a40b 41b
vi: 5b7a8c3b4a 14a14c15b9c10c12a12c 21b22c23b23c24b17a19c 29a30a31b26b28a 33c35b 37a29c40a40c 41b

rn
vii: la1c2c3a6b6c7b 9c11a12b13a13b14a15a15b15c 17c21a23b 25a26c27b28a29b30a31c 33b34a34b35a 41b
viii: 5a5c6c7a2b2c3b 13c15a16b9a9b10a1lalib11c 21c17a19b 29a30c31b32a25b26a27c 33c34a34c35a 41b

ix: la2c4a4b5b6a6b6c 12c15b16a16b 17b18c19a21c23b 26a27a28b28c32a 33a36c 37b38a38b38c39b40c 41b
x: 5a6c8a8b1b2a2b2c 16c11b12a12b 21b22c23a17c19b 30a31a32b32c28a 33a36b 37.c38a38c38b39c40b 41b

xi: 1a3c3c4a4c5b5c6b8b 9b11a15a15c16c 18b19a20b22a22b24a24c 26c27a31b32b32c 37a37c40a40b 41b
xii: 5a7b7c8a8c1b1c2b4b 13b15a11a11c12c 22b23a24b18a18b20a20c 30c31a27b28b28c 37a37b40a40c 41b

xiii: 1b2a5c7a7c8a 9b9c10b12c14a14b15c16b 20c21a21c22a24a25a25c26c29c30b '33a33c35c36b38a40c 41b
xiv: 5b6a1c3a3c4a 13b13c14b16c10a10b11c12b 24c17a17c18a20a 29a29c30c25c26b 33a33b35b36c38a40b 41b

xv: 2b3a4c5a6a7c 9c12a13a14a 17a17b18b18c20b20c22a22b24a 25b29a31c 33b34c36a36c 38b38c39a39c 41b
xvis 6b7a8c1a2a3c 13c16a9a10a 21a21b22b22024b24c18a18b20a 29b25a27c 33c34b36a36b 38c38b39a39b 41b

41
52-
is 1c2b5b 10a12b12c14b15a16b16c 19c20a21a22a22c23b24c 25b25c26b27b29a30c32b 33a33b36a36c 37c39b 41c
its 5c6b1b 14a16b16clOblia12b12c 23c24a17a18a18c19b20c 29b29c30b31b25a26c28b 33a33c36a36b 37b39c 41c

iii: 2b4a6c7c 9b11b13c15a 17a17b17c21c22b 25a25c26a26b27c28a28b30c31b31c32c 33c34a34c36b 37a39b 41c
iv: 6b8a2c3c 13b15b9c11a 21a21b21c17c18b 29a29c30a30b31c32a32b26c27b27c28c 33b34a34b36c 37a39c 41c

v: 1a2c5b6a7b 9b11c12c14a14c16a16c 17b17c18b19a21c23b24c 25b28b30a31a32a 33c35c37b38a38b39a 41c
vi: 5a6clb2a3b 13b15c16clOalOcl2a12c 21b21c22b23a17c19b20c 29b32b26a27a28a 33b35b 37c38a38c39a 41c

viis 1a1c2a3b4a7c 9c10b11b11c12b14c16a16b 18a22c23a23c24a 27a27c28c31c32b 33b34c35a35c 38b40a 41c
viii: 5a5b6a7b8a3c 13c14b15b15c16b10c12a12b 22a18c19a19c20a 31a31c32c27c28b 33c34b35a35b 38c40a 41c

ix: 1a2c3a4a5c8b 10a11a12a15c '18b18c20a20b22a23a23b24b24c 27a29c31b 34a34035c36b 37a37c40b40c 41c
x: 5a6c7a8a1c4b 14a15a16a11c 22b22c24a24b18a19a19b20b20c 31a25c27b 34a34b35b36c 37a37b40c40b 41c

xi: 1a4b4c5b7a7c8c 9a10b11a11b12a13a13b13c15c 19a21b23C 25b26a27b28a29c31a32c 33a35c36a36c 41c
xii: 5a8b8c1b3a3c4c 13a14b15a15b16a9a9b9clIc 23a17b19c 29b30a31b32a25c27a28c 33a35b36a36b 41c

41'

xiii: 2a2bjb4a4o4c7a8c 10c13b14a14b 17a19c21b23b24c 25a26b26c30a32a 34c35a37b38c39c40a40b40c 41c
xiv: 6a6b7b8a8b8c3a4c 14c9b10a10b 21a23c17b19b20c 29a.30b30c26a28a 34b35a37c38b39b40a40c40b 41c

xv: 1b1c2a2c3b3c4b6b7a 9a13a13c14c15b 17a18b20a20b22a22c24b 25a27b30b30c32c 38a38b39a39b 41c
xvi: 5b5c6a6c7b7c8b2b3a 13a9a9c10c11b 21a22b24a24018a18c20b 29a25b26b26c28c 38a38c39a39c 41c

A.4 425a 425b 425c 5-flats

425a

is 3b4b8a8b8c 9a9c11b13b15c161,16c 17b18a18b19a23b23c 25a25b28a29c30c32c 34a35b35c36a36c 38c 42a
its 5b6b2a2b2c lla11c13b15b9clOblOc 19b20a20b21a17b17c 27a27b30a31c32c26c 36a33c33b34a34b 40c 42a

7b8b4a4b4c 13a13c15b9b11c12b12c 21b22a22b23a19b19c 29a29b32a25c26c28c 34a3505b36a36b 38b 42a
iv: 1b2b6a6b6c 15a15c9b11b13c14b14c 23b24a24b17a21b21c 31a31b26a27c28c30c 36a33b33c34a34c 40b 42a

v: lalb2a5a6c 9a9b12a14a14b15b16c 	17c18a1,9b20b21b23a 27b28a28b29a29c32b 34c 37c38a38c39b40a 42a
vi: 3a3b4a7a8c 11a11b14a16a16b9b10c 19c20a21b22b23b17a 29b30a30b31a31c26b 36c 39c40a40c37c38a 42a
vii: 5a5b6ala2c 13a13b16alOalObllb12c 21c22a23b24b17b19a 31b32a32b25a25c28b 34b 37b38a38b39c40a. 42a
viii: 7a7b8a3a4c 15a15b10a12a12b1jb14c 23c24a17b18b19b21a 25b26a26b27a27c30b 36b 39b40a40b37b38a 42a

ix: 1b2c3c5c7b8c 10b11c12c13a14a16b 19a20c22c24a 25a26a26b26c29c30b 33a33b33c34c36b 37a37c38c 42a
x: 3b4c5c7c1b2c 12b13c14c15a16a10b 21a22c24c18a 27a28a28b28c31c32b 35a35b3506c340 39a39c40c 42a
xi: 5b6c7c1c3b4c 14b15c16c9a10a12b 23a24c18c20a 29a30a30b30c25c26b 33a33c33b34b36c 37a37b38b 42a
xii: 7b8c1c3c5b6c 16b9c10c11a12a14b 17a18c20c22a 31a32a32b32c27c28b 35a35c35b36b34b 39a39b40b 42a

xiii: 1c2b3a6a6b7a7c8a 9c12c13a16a 17c18c19c20b22b23a24a24c 25b26a29a29c31b32c 35a 38c39a39c 42a
xiv: 3c4b5a8a8b1a1c2a 11c14c15a10a 19c20c21c22b24b17a18a18c 27b28a31a31c25b26c 33a 40c37a37b 42a
xv: 5c6b7a2a2b3a3c4a 13c16c9a12a 21c22c23c24b18b19a20a20c 29b30a25a25c27b28c 35a 38b39a39b 42a
xvi: 7c8b1a4a4b5a5c6a 15c1Oc11a14a 23c24c17c18b20b21a22a22c 31b32a27a27c29b30c 33a 40b37a37c 42a

trN
b 5_

is 1104b8c 9allbl1c13014a15b15c 18c19a20a21a21c22b23c 25b26b28a29c31b32b32c 35a35c36a36c 38b40b 42b
5b8b4c 13a15b15c9b10allb11c 22c23a24a17a17c18b19c 29b30b32a25c27b28b28c 35a35b36a36b 38c40c 42b

iii: 1b3a5c6c 10b12c14a16b 20c21b24a24b24c 25a25b26c27a27b29c30b30c31c32a32c 33a33c35b36b 38b40b 42b
iv: 5b7a1c2c 14b16c10a12b 24c17b20a20b20c 29a29b30c31a31b25c26b26c27c28a28c 33a33b35c36c 38c40a42b

v: 1a2b4a5c8b 9a9c1lallc12b14c15c 	18b19c20b20c21b22a24c 25a26a27a28b31b 34b36c 37a37c38a40b 42b
vi: 5a6b8a1c4b 13a13c15a15c16blOclic 22b23c24b24c17b18a20c 29a30a31a32b27b 34b36b 37a37b38a40c 42b

vii: 1c2a3a4c7b8a 9a10alla14c 17b17c19a19b21a22a22b23b23c 26a28c30b 33a33c34c35b 39b39c40a40b 42b
viii: 5c6a7a8c3b4a 13a14a15a10c 21b21c23a23b17a18a18b19b19c 30a32c26b 33a33b34b35c 39c39b40a40c 42b

ix: la2b3a6c8a8c 9b10b10c11b13c15a15b16c 17a21c22a22c23a 26a26c27c30c31b 33c34a34c36c 37b39a 42b
x: 5a6b7a2c4a4c 13b14b14c15b9c11a11b12c 21a17c18a18c19a 30a30c31c26c27b 33b34a34b36b 37c39a 42b

xi: 2a2c3c4a7b7c8b 10c12a13b14a14b15a16a16b16c 18c22a24b 26a27c28b29a30b31a32c 34b35a35b36a 42b
xii: 6a6c7c8a3b3c4b 14c16a9b10a1Obllal2a12b12c 22c18a20b 30a31c32b25a26b27a28c 34c35a35c36a 42b

xiii: lalb2b3a3b3c6a7c 9c12b13a13b 18c20b22b23c24a 25b25c29a31a32a 33c34a 37a38c39a39b39c40c 42b
xiv: 5a5b6b7a7b7c2a3c 13c16b9a9b 22c24b18b19c20a 29b29c25a27a28a 33b34a 37b38b39a39c39b40b 42b

xv: 1a1c2b2c3b5b6a8b8c 12a12c13c14b16a 17b19a19b21a21c 23b24a 28b29b29c31c32a 37a37b38a38b 42b
xvi: 5a5c6b6c7b1b2a4b4c 16a16c9c10b12a 21b23a23b17a17c19b20a 32b25b25c27c28a 37a37c38a38c 42b

is 2b6c7b 9b9c11b12a13b13c15a 17a18a19a19c20b21c24c 26a27c29b30b30c31b32b 33a33c34a34c 38b40c 42c
ii: 6b2c3b 13b13c15b16a9b9clla 21a22a23a23c24b17c20c 30a31c25b26b26c27b28b 33a33b34a34b 38c40b 42c

1a3c4c7b 10c12a14b16b 18c19b22a22b22c 25a25b27c28b28c29c30a30c31a31b32c 33b34b35a35b 38a40c 42c
iv: 5a7c8c3b 14c16a10b12b 22c23b18a18b18c 29a29b31c32b32c25c26a26c27a27b28c 33c34c35a35c 38a40b 42c

v: 2a3c6b7a8b 9a9c10b12c13c15a15c 17c18b18c19b20a22c24b 25a26b29b31a32a 34c36c 38b39a39b40a 42c
vis

0-■
6a7c2b3a4b 13a13c14b16c9c11a11c 21c22b22c23b24a18c20b 29a30b25b27a28a 34b36b 38c39a39c40a 42c

vii: 1a4c6a6c7a8b 9b11c13a13b14c15b16b16c 19c20a20c21a23a 25c28c29b32a32c 34c35b36a36b 37a39c 42c
viii: 5a8c2a2c3a4b 13b15c9a9b10c11b12b12c 23c24a24c17a19a 29c32c25b28a28c 34b35c36a36c 37a39b 42c

ix: 1a2c5b6a7c8a 9a12c15a16a 17a17b19a20a20b21b21c23b23c 26c28b32a 33b35a35b36b 37b37c38a38b 42c
x: 5a6c1b2a3c4a 13a16c11a12a 21a21b23a24a24b17b17c19b19c 3002b28a 33c35a35c36c 37c37b38a38c 42c

xi: 1b1c2b4a4c5c6a 9a10a1OblOc12c14a15b16a16b 18b20c24a 25a26c28a29c30b31a32b 33a33c34a36b 42c
xii: 5b5c6b8a8c1c2a 13a14a14b14c16c10allb12a12b 22b24c20a 29a30c32a25c26b27a28b 33a33b34a36c 42c

xiii: lalb1c4a5c7a7b8b lObllallbl5c 18b20b21c22a24c 27a29a30a31b31c 35b36a 37a37b37c38c39b40b 42c
xivs 5a5b5c8a1c3a3b4b 14b15a15b11c 22b24b17c18a20c 31a25a26a27b27c 35c36a 37a37c37b38b39c40b 42c

xv: 1b3b4a6b6c7a7c8b8c 10a10c11c12b14a 17a17b19a19c21b22a23b 26b27b27c29c30a 39a39c40a40c 42c
xvi: 5b7b8a2b2c3a3c4b4c 14a14c15c16b10a 2,1a21b?3a23c17b18a19b 30b31b31c25c26a 39a39b40a40b 42c

A.5 	05-orbit (435) 5-flats

i:1a2a4a5c6c8b8c 11a12c13c15b15c 17b18a18b20b22a24c 25b25c27a30b31a31b 33b35a 37a37c39c40b 43a
ii: 2a3a5a6c7c1b1c 12a!3c14c16b16c 18b19a19b21b23a17c 26b26c28a31b32a32b 34b36a 38a38c4007c 43a
iii: 3a4a6a7c8c2b2c 13a14c15c9b9c 	19b20a20b22b24a18c 27b27c29a32b25a25b 35b33a 39a39c37b38c 43a
iv: 4a5a7a8c1c3b3c 14a15c16c10b10c 20b21a21b23b17a19c 28b28c30a25b26a26b 36b34a 40a40c38b39c 43a
v: 5a6a8a1c2c4b4c 15a16c9c11b11c 21b22a22b24b18a20c 29b29c31a26b27a27b 33c35a 37a37b39b40c 43a
vi: 6a7a1a2c3c5b5c 16a9c10c12b12c 22b23a23b17b19a21c 30b30c32a27b28a28b 34c36a 38a38b40b37b 43a
vii: 7a8a2a3c4c6b6c 9a10c11c13b13c 23b24a24b18b20a22c 31.1331c25a28b29a29b 35c33a 39a39b37c38b 43a
viii: 8a1a3a4c5c7b7c 10a11c12c14b14c 24b17a17b19b21a23c 32b32c26a29b30a30b 36c34a 40a40b38c39b 43a

ix: 1a1b8b4b5c 10b11b12a12c14a15a16b 17b17c19c20a20c24a 25a26c28c29a29c30b 33a33c34b36b 39a40b 43a
x: 2a2b1b5b6c 11b12b13a13c15a16a9b 18b18c20c21a21c17a 26a27c29c30a30c31b 34a34c35b33c 40a37c 43a
xis 3a3b2b6b7c 12b13b14a14c16a9a10b 19b19c21c22a22c18a 27a28c30c31a31c32b 35a35c36b34c 37a38c 43a

xii: 4a4b3b7b8c 13b14b15a15c9alOallb 20b20c22c23a23c19a 28a29c31c32a32c25b 36a36c33c35c 38a39c 43a

ON
xiii: 5a5b4b8b1c 14b15b16a16c10a11a12b 21b21c23c24a24c20a 29a30c32c25a25c26b 33a33b34c36c 39a40c 43a

xiv: 6a6b5b1b2c 15b16b9a9c11a12a13b 22b22c24c17a17c21a 30a31c25c26a26c27b 34a34b35c33b 40a37b 43a

xv: 7a7b6b2b3c 16b9b10a10c12a13a14b 23b23c17c18a18c22a 31a32c26c27a27c28b 35a35b36c34b 37a38b 43a

xvi: 8a8b7b3b4c 9b10b1lallc13a14a15b 24b24c18c19a19c23a 32a25c27c28a28c29b 36a36b33b35b 38a39b 43a

xvii: 1a1c2b5a5c6b 9a9b12c13a13b16c 	17b18c21b22c 26b27c30b31c 35b35c 40b40c 41a41b41c42a42b42c43a
xviii: 2a2c3b6a6c7b 10a10b13c14a14b9c 18b19c22b23c 27b28c31b32c 36b36c 37b37c 41a41b41c42a42b42c43a

xix: 3a3c4b7a7c8b 11a11b14c15a15b10c 19b20c23b24c 28b29c32b25c 33c33b 38b38c 41a41b41c42a42b42c43a
xx: 4a4c5b8a8c1b 12a12b15016a16b11c 20b21c24b17c 29b30c25b26c 34c34b 39b39c 41a41b41c42a42b42c43a

xxi: 17a18a19a20a21a22a23a24a 25a26a27a28a29a30a31a32a 33a34a35a36a37a38a39a40a 41a41b41c42a42b42c43a

198
EZIEB:EacaS..

1. • Berlekamp, E. 1968. Algebraic Coding Theory. Toronto:
McGraw-Hill Book Co,

2. Berman, G. 1952. "Finite Projective Geometries". Can. J.
Lath,, 4, p. 302-313.

Birkhoff, G., and MacLane, S. 1965. A Survey of Modern
Algebra, third edition. New York: The 'Macmillan Co.

4. Blake, I., and Mullin, R. 1975. The Mathematical ThenEy
Codincr. London: Academic Press.

5. Blumenthal, L. 1961. A Modern View of Geometry. San
Francisco: W. H. Freeman.

6. Chen, C. L. 1971. "On MLD of Finite Geometry Codes".
IEEE Trans., IT-17, p. 332-336.

7. 	. 1972. "A Note on MLD of Finite Geometry Codes".
IEEE rans., ilzia, P.539-541.

8. 	. 1972. "On Shortened Finite Geometry Codes". 	
and Control, 2.2, p.216-221.

9. Chen, C. L., Peterson, W. W.-and Weldon, E. J. 1969.
"Some Results On Quasi-Cyclic Codes". .Inf. and
Opntrol 1.5., p.407-423.

10. Chen, C. L., and Warren, M. 1973. "Note on 1-step Maj-
ority Logic Decodable Codes". IFE5 Trans., a:19,
p.135-137.

11. Chien, R. T., Hong, M., Preparata, F. P. 1971. "Results
in the Theory of Arithmetic Codes". ,Infe_and Con-
trol, 12, p, 246.-264.

12. Delsarte, P. 1969. "Geometric Approach to a Class of
Cyclic Codes". J. Comb, theory, 	p.340-358.

13. Duct N. G. 1971. "Pseudostep Orthogonalization: A New
Threshold-Decoding Algorithm". IEEE Trans.,
12, p.766-767.

14. Forney, G. D. 1966. "Generalized Minimum Distance De-
doding". IEEE Tran,s., 21,11, p.125-131.

15. Gallager, R. 1963. "Low Density Parity-Check Codes".
IEEE Trans., IT-8, p.21-28.

16. Gallager, R. 1968. InfarMaIignlheory and Reliable Com-
munioatim, Toronto: John Wiley and Sons, Inc.

17. Goethals, J. M. and Delsarte, P. 1968. "On a Class of
MLD Cyclic Codes". xmalnang., XT-14, p.182-188.

199

18. Goethals, J. M., Delsarte, P., MacWilliams, F. J. 1970.
"On Generalized Reed-Muller Codes and Their Rela-
tives". Inf. And Qontro,l, 16, p.403-442.

19. Gore, W. E. 1969. "Generalized Threshold Decoding of
Linear Codes". IEEE Trans., 1T-15, p. 590-592.

20. 	. 1969. "The Equivalence of L-step Orthogonalization
and Reed Decoding Procedure". IEEE Trans., 1T-15,
p.184-186.

21. Hall, M. 1943. "Projective Planes". bans. Am. Math, Soc.,
5./±, p.229-277.

22. 	. 1947. "Cyclic Projective Planes". Duke Math. J.,
p. 1079-1090.

23. 	. 1967. Combinatorial Theory. London: Blaisdell
Publishing Co.

24. Hartman, C. R. P.,Ducey, J. B. , Rudolph, L. D. 1974. ,
"On the Structure of Finite Geometry Codes". IEEE
Trans., IT-20, p.240-252.

25. Kasami, T., and Lin, S. 1971. "Decoding for the Duals of
Primitive Polynomial Codes". IEEE Trans.,
p.322-330.

e••

26. Kasami, T., Lin, S., Peterson, W. 1968. "New Generali-
zations of the Reed-Muller Codes, Part I: Primi-
tive Codes". JEEE_Irans„, I1714_, p.189-199.

27. 	. 1968. "Polynomial Codes".IZZETrans., 11714, Do.
6., p.307-314.

28. Kasami, T., Takura, N., Azumi, S. 1976. "On the Weight
Enumeration of Weights Less Than 2.5d of Reed-
Muller Codes". Inf. and_Dontrol, 12, p.380-395.

29. Lin, S. 1973. "Multifold Euclidean Geometry Codes".
,IEEZLZKana..., XT-19, P.537-548.

30. MacWilliams, F. J. 1965. "Binary Cyclic Alphabets". Bell
s_.= erns Tech, J., LA, p.303-332. ..

31. Mandelbauin,i D. 1967. "Arithmetic Codes With Large Distances".
IEEE Trans,, JT-13, D.237-242.

32. Mann, H. B., editor. 1968. Error-Correcting Codes. Pro-
ceedings of Symposium Organized by the Mathematics
Research Center, U.S. Army, U. of Wisconsin,
New York: Wiley.

33. Massey, J. L. 1963. Threshold DgOadina. M.I.T. Press
Research Monograph 20. Cambridge, Mass.: M.I.T.
Press.

34. 1968. "Advances In Threshold Decoding". Advances
5.11 Communications Systema. A. V. Balakrishnan, Ed.,
New York.: Academic Press, Inc.

200

35. Muller, D. E. 1954. "Application of Boolean Algebra to
Switching Circuit Design and Error Detection".
IRE Trans., .17,.Q71, p.6-12.

36. Ng, M. 1970. "On Rudolph's MLD Algorithm". IBELTrana.,
1T-16, p.651.-652.

37. Peterson, W., and Weldon, E. 1972. Zrror-Correcting
second edition. Cambridge, Mass.: The M.L.T.Press.

38. Rahman, W., and Blake, I. 1975. "MLD Using Combinatorial
Designs". IEEE Trans., IT-21, p.585-587.

39. Rao, C. R. 1944. "Finite Geometries and Certain Derived
Results in the Theory of Numbers". proc.,.2f Nat.

s-inLssssj„2a, 10-11, p.136-149.

40. . "Difference Sets and Combinatorial Arrangements
-Derivable from Finite Geometries". Nat. Inst. Sci.
LIndia„ la, P.123-135.

41. Reed,.I. S. 1954. "A Class of Multiple Error-Correcting
Codes and the Decoding Scheme". .ARE Trans..,
4, p.38-49

42. Rudolph, L. D. 1967. "A Class of MLD Codes". IEEE Trans.,
;T-13, p.305-307

43. 	. 1968. "Threshold.Decoding of Cyclic Codes". IEEE
Txana., 31Y-L5_,p.414-418.

44. Rudolph, L. D., and Hartman, C. R. P. 1973. "Decoding By
Sequential Code Reduction". IEEE Trans., IT-19,
P.549-555.

45. Shannon, C. E. and Weaver, W. 1949. YD.thematical ThaPrY
of Communication. Urbana: U. of Illinois Press.

46. Shiva, S. G. S., and Tavares, S. E. 1974. "On Binary Ma-
jority Logic Decodable Codes". IEEa_Illana., 3T-20,
p.131-133.

47. Smith, K. J. C. 1969. "On p-rank of the Incidence Matrix
of Points and Hyperplanes in Finite Projective
Geometries". J. Comb Th., p.122-129.

48. Tavares, S. E., Allard, P. E., Shiva, S. G. S. 1971. "On
the Decomposition of Cyclic Codes into Cyclic
Classes". Inf. and Control, L. p.342-354.

49. 	. 1973. "A Note on the Decomposition of Cyclic
Codes into Cyclic Classes". 11,1. and Control, Z,
p.100-106.

50. Townsend R. L. and Weldon, E. J. 1967. "Self-Orthogonal
Quasi-Cyclic Codes". 'EU Tuna., .I 11, p.183-195.

51. Veblen, 0., and Bussey, M. 1906. "Finite Projective
Geometries". Trang. Am. Math.aga2, 7, p.241-259.

201

52. Veblen, 0., and Young, J. we 1910. projective Geometry.
Vols. I and III. New-York: Blaisdel Publishers.

53. Weldon, E. J. 1966. "Difference Set Cyclic Codes". Bell
aytems Tech J., 45, p.1045-1055.

54. 	. 1967. "Euclidean Geometry Cyclic Codes". Proceed-
j.ngp of Symposium of Comb„inatorial_VatheFatics at
the University of North Carolina Chapel_Zill, N.C.

55. . 1968. "New Generalizations of the Reed-Muller Codes,
Part II: Non-Primitive Codes". IEEE Trans.. IT-14,
p.199-205.

56. Willet, M. C. 1975. "Cycle Representatives for Minimal
Cyclic Codes". EEEE Trans., IT-Z1, p.716-717.

57. Wolf, J. K. 1973. "A SurVey of Coding Theory, 1967-72".
.IEEE Traria., 1T-19, p.381-389.

58. Yamamoto, S., Fukuda, T., Hamada, N. 1966. "On Finite
Geometries and Cyclically Generated Incomplete
Block Designs". j..,5sj,almash5.ma Univ. Sr.e A:I,
p.137-149.

