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SYNOPSIS  

In recent years, a significant amount of research in the 

field of Coding Theory has led to the development of error-

correcting codes for communication systems. Such codes make 

it possible to correct and/or detect a large percentage of 

the errors which may occur during the transmission of infor-

mation through a communication channel. However, in general, 

these codes are not used in existing communication systems 

due to the inherent complexity of their associated decoders. 

The objective of this thesis is to overcome this difficulty 

for a particular set of codes by developing a simplified de-

coding method which provides error-protection in a communica-

tion system without the associated cost of a complex decoder. 

In particular, a simplified decoding method for certain Pro-

jective Geometry codes is presented. The decoding algorithm, 

based on the results of an extensive analysis of the mathema-

tical structure of Projective Geometries, significantly de-

creases the complexity of the standard decoder of the Projec-

tive Geometry Codes. Moreover, the decoder can be implemented 

simply and with little additional 'cost to the system. 

The thesis begins with an introduction to basic Coding 

Theory and Algebra concepts. This is followed by a detailed 

study of Majority Logic Decoding and Projective Geometry (PG) 

Codes. The mathematical structures, or orbits, used for de-

coding are developed and analysed. The simplified decoder is 

applied to the (63,41) order-3 PG code and the (-255;218) order-

5 PG code. A comparison between the standard Majority Logic 

Decoder and the proposed orbit decoder is made. Modifications 

to the orbit decoder for increasing the distance of the codes 

are described. The thesis is concluded with a discussion of 

further research questions and conclusions drawn from this work. 
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1.1 General Introduction 

Data communication systems are rapidly becoming more 

and more prevalent as technology provides the increasingly 

sophisticated equipment necessary for their existence. The 

majority of communication networks rely heavily upon digital 

computers and their peripheral devices, which have very low 

tolerance to errors in received information. Consequently, 

the application of Coding Theory, as a means of guaranteeing 

the reliability of transmitted information, independent of 

the parameters of the machinery, has become a practical way 

of overcoming errors within these systems: 

Previously, error-correcting codes were restricted to 

highly specialized areas such as space communication or re-

mote control of machinery, where the occurrence of an error 

could be disasterous. Coding was not introduced into less 

specialized systems because of two major factors: 

1) the complexity of existing decoding schemes, and 

2) the cost of the associated circuitry. In the past few 

years both of these problems have been reduced significantly. 

Much research has gone into both the simplification of 

existing codes and the development of new, less complicated 

codes. And, of even more consequence, major technological 

advances have decreased dramatically the cost and size of 

solid state electronic devices. Together, these have made 

coding a feasible solution to errors within a communication 

system. 
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1.2 Communication Channel and Error Correction 

A communication system consists of five major compo-

nents, the source, the encoder, the channel, the decoder and 

the destination, as shown in the flow diagram in Figure 1.1.1. 

noise 

destination] source 

Figure 1.1.1 Communication System 

If no noise were injected into the system, codes would be 

unnecessary. However, in all realistic communication chan-

nels, noise, to varying degrees, is a factor. 

In most instances, the source consists of binary or 

decimal digits grouped in such a way that a source alphabet 

can be defined. A message, consisting of letters from the 

source alphabet, is forwarded to the encoder, which trans-

forms it into a signal acceptable to the channel. This is 

typically in the form of electrical pulses, restricted by 

such channel parameters as power, bandwidth and duration. 

The message is then input to the channel where it is subject 

to errors from channel noise. The message, possibly perturbed 

by errors, is received by the decoder. Based on this input, 

the decoder must decide what message has been sent. The 

decoded message is then passed on to the destination. 

Shannon has shown that a communication channel, as 

depicted above, has a capacity for the transmission of 

information.[451 In fact, if the rate of the source is 

less than the capacity of the channel, then a set of signals 

can be chosen for the encoder such that the probability of 

error by the decoder can be made arbitrarily small. The 
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aforementioned rate of the code is defined as the ratio of 

the number of information digits transmitted to the total 

number of digits transmitted. The ratio of the differnce 

between the total number of digits and the number of infor-

mation digits, to the total number of digits, is the redun-

dancy of a code. The Shannon theory states that reliability 

in transmission is possible but does not suggest how to 

obtain such a system. ,Cading Theory shows that through 

the addition of non-information or redundant digits to a 

message, the theoretical degree of error-protection can be 

obtained but only with an associated decrease in the rate 

at which'information can be transmitted. 

The channel depicted in Figure 1.1.1 is a one-way 

transmission system. Two-way channels exist also and are 

used in situations where error-detection is ct;:v-chc17.1i. In 

such an instance, a request for retransmission can be sent 

to the source and consequently the message retransmitted. 

Such systems will not be discussed in the.following as 

their efficiency, in general, is limited since a short 

code is inefficient in correction of errors and a long code 

requires too much retransmission time. However, a combina7, 

tion of error-correction and error-detection holds much 

potential as a communication system and will be discussed 

later. 

1.3 Types of Codes  

Codes can be divided into two basic categories, block 

and tree codes. 

Block codes are so named because the encoder accepts 

a block of k information digits at a time from the stream 

of information digits produced by the source. These digits 
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are encoded into a block of n channel symbols, 11)1. This 

block, called a codeword, is transmitted through the channel 

where it may be corrupted by noise. It is then decoded as 

a block of n digits by the decoder. The number n is called 

the block length. 

The second kind of code, the tree code, does not break 

the information sequence into independent blocks, but rather, 

operates on the input as a continuous stream. Each semi-

infinite information sequence is associated with a larger 

number of digits than were input. Based on each set of ko  

information digits, ko  small, and all the previous informa-

tion digits, a no-symbol section of code is emitted, no> ko. 

The term 'tree' refers to the convenient tree graph descrip-

tion of such codes. The most common and most researched tree 

code is the convolution code, which consists of shifts of a 

basic string of no  digits. 

Both block and tree codes have the same basic error-

correcting properties as well as limitations and restric-

tions imposed by rate and code complexity. Block codes 

have, with their more well defined mathematical structure, 

a correspondingly richer research history. This thesis is 

concerned with a subset of block codes. 

1.4 Thesis Outline  

The thesis consists of three distinct parts. The 

first of these provides the general Coding Theory and 

Mathematical background required in the rest of the thesis. 

Part II deals with Projective Geometry Codes and a new de-

coding method for these codes based on the mathematical 

structure of the null space. The final part considers 

further research questions and the conclusions. 
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More explicitly, in Part I, Chapter 2 presents a 

general discussion of Coding Theory, emphasizing good codes 

that have been developed, their decodability and the problems 

associated with them. Also, the general objectives of the 

thesis are detailed. Chapter 3 develops a particular sub-

set of block codes, viz. Majority Logic Decodable Codes. A 

discussion of these codes, as presented by Reed[44 and 

Muller[35], is given. Also in this chapter, an extensive 

discussion of the mathematical properties of Projective 

Geometries and of their associated Majority Logic Decodable 

codes is presented. Part I is concluded with a discussion 

of several methods developed to simplify Majority Logic 

Decoding. 

Part II, Chapters 4 through 7, presents a detailed 

study of the mathematical structure of the null space of 

Projective Geometry Codes, illustrating how knowledge of such 

structure can simplify decoding. In Chapter 4, a discussion 

of a 1966 paper by Yamamoto et al[581 provides the basis for 

the development of the orbit structures used for the proposed 

decoding method. Chapter 5 contains an extensive explanation 

of the orbits of, and the associated decoder for, the order-3 

PG(5,2) codes. A comparison is made between this non-ortho-

gonal decoder and the standard Majority Logic Decoder for the 

code. The next chapter consists of a similar discussion of 

the order-5 PG code over PG(7,2) emphasizing that it is a 

logical extension of the PG(5,2) structure presented in 

Chapter 5. The seventh chapter considers the feasibility 

of adding error-detection to the orbit decoder to detect 

more errors than are correctable by the standard Majority 

Logic Decoder and an analysis is made. of the amount of 

information obtained from this addition. 



Part III considers the many further research questions 

which have arisen as a result of this work. Finally, the 

conclusions which are suggested by this study are presented. 



15 

CHATTER 2: BASIC THEORY AND FUNDAMENTAL CODES  

2.1 Introduction 

This chapter provides the reader with the basic alge-

braic Coding Theory background necessary for an understand-

ing of the ideas and concepts presented in the thesis. The 

first section is a brief introduction to the algebra used 

in developing codes. Next follows a discussion of two sub-

classes of the class of block codes: 1) linear, or group, 

codes and 2) cyclic codes. The defining properties and 

outstanding features of these codes are discussed. Several 

parameters used in evaluating algebraic codes are examined. 

Some of the most common block codes are reviewed with empha-

sis being placed on error-correcting properties, ease of 

decodability and minimum distance of the codes. Finally, 

the objectives of the thesis are given. 

We note that as most equipment today is binary, non-

binary results are not emphasized and that in Part II, the 

results refer only to the binary case. 

• 

2.2 Basic Algebra for Coding Theory  

This section is a concise outline of the Algebra 

required in the thesis. It consists of a review of Group 

Theory, Vector Spaces,. Matrix Theory, Polynomial Rings and 

Galois Fields. A more detailed discussion of these topics 

is given by Birkhoff and MacLane in A Survey of Modern  

Algebra[3]. 

2.2.1 Group Theory  

A set of elements a, b, c,... and an operation * is 

a group if it satisfies the following four axioms: 
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1) Closure: If a and b are elements of the set, then 

a*b is an element. 

2) Associativity: For a, b and c in the set, 

a*(b*c) = (a*b)*c. 

3) Identity: There is an element' e, the identity ele-

ment, such that for all a in the set, 

a*e = e*a = a. 

4) Inverse: Every element a of the set has an inverse 

a-1 such that 

a*a-1  = a-1 *a = e. 

A group is Abelian or commutative if, for all a and b in 

the group 

a*b = b*a. 

In the following, we represent the group operation as mult-

iplication rather than use the operator *. 

A subset H of elements of a group G is a subgroup 

of G if H satisfies the above axioms under the group oper-

ator. The order of a subgroup (group) is the number of ele-

ments in the subgroup (group). 

If g is any element in a finite group' G, a sequence 

g,g2,g3 ... can be formed. Then, since G is finite, there 
exist integers j and i, j >i, such that 

gi = gj = gigj i. 

This implies that gj-1  = e. The order of g is the least 

positive integer m for which gm  = e. The set of elements 

g,g2,...,gm=e is a subgroup, specifically the cyclic sub-

group generated by g. 

A right coset (left coset) of a subgroup H of the group 

G is the subset of G obtained by taking any fixed element g 

of G and multiplying all the elements hi,h2,... of H by g 
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on the right (left) to form h1g, h2g, 	(gh1, gh2,...). 

The number of elements in any coset is simply the order of 

the subgroup H. No element of G is in more than one coset 

of H. Two elements g and g' of G are in the same right 

coset of H if and only if g'g-1  is an element of H. The 

number of distinct cosets of G formed from the subgroup H 

is the index of G over H. A subgroup H is normal if for 

any h in H and g in G, g-lhg is H. In a normal sub-

group each left coset is a right coset and vice versa. We 

deal primarily with Abelian subgroups where a left coset is 

always.a right coset and hence each subsopup normal. The 

factor iroup of the group G over the subgroup H, G/H, is 

formed by defining a multiplication operator for cosets. 

If fg1 represents the coset containing the element g, then, 

the factor group has for elements, cosets, and an operator 

such that for (gl} 	fg21 cosets, 

fg21 = 1g1g2i • 

The identity of the factor group G/H is the subgroup H = 

A transformation Z: S T, from a non-empty set S to 

a set T is a rule which assigns to each element p in S a 

unique image element pZ in T. Thus, a transformation is 

merely a function from S to T. 

A permutation is a one to one transformation of a finite 

set into itself. Permutations which give a circular arrange-

ment of the symbols permuted are called cyclic permutations 

or cycles. For example if 

1 	2, 2 -43,  3 -04, 4 -) 1, 

then this can be written as the cycle (1 2 3 4). Any per-

mutation Z can be written as a product of cycles acting on 

disjoint sets of symbols. 

A binary relation R on a set S relates any two elements 
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a and b of the set. 'Either a is in relation to b, aRb, 

or a is not in relation to b, agb. A relation R which has 

the reflexive (aRa), symmetric (aRb implies bRa) and transi-

tive (aRb, bRa imply aRc) properties for all a, b and c in 

the set S is called an equivalence relation. If a is any 

element of S, we denote by R(a) the set of all elements b 

equivalent to a, that is b is in R(a) if and only if bRa. 

Two such R-subsets are either identical or have no elements 

in common. A partition IT of a set S is any collection of 

subsets A,B,... of S such that each element of S belongs to 

one and only one of the subsets of the collection. The col-

lection of all the R-subsets form a partition of S. 

If a group G of transformations of a 'set S exists, then 

G defines an equivalence relation and hence a partition on S 

by the rule a-,, Gb (a is G equivalent to b) if b = g(a) for 

some g in G and a, b in S. The G-equivalence class de-

termined by an element a of S is the set Ga =tg(a)IgEG) 

and this is called the G-orbit or orbit of a in S. 

We proceed now to discuss a set with two operators. A 

ring R is a set of elements a, 	c,... with two operations,• 

addition a+b and multiplication ab, satisfying the 

following.  axioms: 

1) R is an Abelian group under addition. 

2) Closure: For a., b in R, ab is in R. 

3) Associativity: For a,b,c in R, a(bc) = (ab)c. 

4.) Distributivity: For a,b,c in R, a(b+c) = ab+ac 

and (b+c)a = ba+ca. 

The ring R is communative if ab = ba for any two elements 

a and b in R. 

A communative ring with a multiplicative identity and 

for which each non-zero element has a multiplicative inverse, 
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is called a field. A non-communative ring with an inverse 

for each non-zero element is a division ring or skew field. 

We return to the discussion of rings and fields later. 

2.2.2 Vector Spaces,  

A set V of elements is a vector space over a field F 

for which the following axioms hold: 

1) V is an Abelian group under addition. 

2) For any vector y in V and c a field element or scalar, 

cy is defined and in V. 

3) For 2 and y in V, c a scalar, c(u+v) = cu + cv. 

4) For y in V, c and d scalars, (c+d)y = civ+ dy. 

5) For y in V, c and d scalars, (cd)v_ = c(dy), iv = y. 

A set A of elements over a field F is a linear associa-

tive algebra if: 

1) A is a vector space over F. 

2) Closure: For u and y in A, my is in A. 

3) Associativity: For u,v and 3/ in A, (2.y)w = 2(vw). 

4) Distributivity: For c and d in F, 2,v,w in A, 

11(cy+dw) = cgy + dgm and .(cv+dA)2 = cy2 + dyai. 

An n-tuple of n field elements al,a2,...,an  is the 

ordered set (a10.2,...,an). Addition of n-tuples is defined 

by (al,a2,...,an) + (b1,b2,...,bn) = (al+bi,...,an+bn). 

Multiplication by a scalar is as follows: 

c(al,...,an) = (cal,...,can). 

With these two operations defined, it is easy to show that 

the set of all n-tuples over a field is a n-dimensional vector 

space. A linear combination of k vectors or n-tuples vi, 

Y21...,xk •is the vector 2 

= 	+ 	+ akyk, 

where the a- are scalars. The set of all linear combina- 
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tions of a set of vectors y1,12,...,yk  of a vector space 

V is a subspace of V. The vectors v1,v2,...,vk  are lin-

early dependent if and only if there are scalars a1,a2,..., 

ak for which 

aiyi + a2m2 + 	+ akmk  = 2. 

A set of vectors which are not linearly dependent are lin-

early independent. A set of vectors spans a subspace if 

every vector in the subspace is a linear combination of this 

set. The least number of independent vectors which spans a 

space is the dimension of the space, A set of k linearly 

independent vectors which span a k-dimensional subspace is 

: a basis -of the subspace. The inner product of two n-tuples 

is a scalar as follows: 

(al,a2,...,an)*(b1,b2,...,bn) = alb].  + a2b2  + 000 	anbn. 

If the inner product is zero the two vectors are orthogonal. 

2.2.3 Natrix Theory  

In the development of several of the codes to follow 

we refer to matrices. Consequently we now give some basic 

results from Matrix Theory. An (nxm) matrix j  is an 

ordered set of nm field elements expressed as n rows and 

m columns: 

all a12 • 

a21 a22 • 

. . aim  

. a2m 

an  ant • 0 • anm 

Each column or row can be thought of as a vector. The row 

(column) space of E is the set of all linear combinations of 

the row (column) vectors. They form a subspace of all the 

possible m (n)-tuples, the dimension of which is called the 

row (column) rank of M. A matrix may be operated on by any 
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or all of the following elementary row operations or their 

inverses: 

1) interchange any two rows, 

2) multiply any row by a non-zero field element, 

3) add any multiple of one row to another. 

If a matrix I' is obtained from the matrix E by elementary 

row operations, then y and w have the same row space. 

If, for a square (nxn) matrix, the rows are linearly 

independent, then the matrix is non-singular. The identity 

matrix has ones along the diagonal and zeros elsewhere. The 

transpose of a (nxm) matrix E is a (mxn) matrix, le, with the 

rows and columns of E interchanged. Two matrices laiil and 

[bij are added element by element as follows: 

Laij  + [bi,d = [aii  + 

By defining matrix multiplication of a (nxk) matrix [aiilby 

a (kxM) mattrix [bid as [cij] where the element cij  of the 

matrix is defined by 

Clj.. = 

 

ai  b s sj P 

 

we can represent the elementary row operations as elementary 

matrices. With multiplication so defined the inverse of a 

matrix can be formed. 

The set of all n-tuples orthogonal to a subspace V1 of 

a matrix is a subspace V2 and is called the null space of V1. 

If the dimension of V1 is k, then the dimension of the null 

space V2 is (n-k). 

2.2.4 p__yiliolorr 

We now return to our treatment - of rings. An ideal I is 

a subset of elements of a ring R such that: 

1) I is a subgroup of the additive group of R. 
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2) For all a in I, r in R, ar and ra are in I. 

The cosets formed relative to the ideal I are called residue 

classes. They form a ring called the residue class ring. 

The ideals below are from the algebra of all polynom-

ials in one indeterminate over a field F. A monic polynom-

ial has as a coefficient, one, for the highest power of X. 

An irreducible polynomial p(X) of degree n is not divisible 

by any polynomial of non-zero degree less than n. The great-

est common divisor of two polynomials f(X) and g(X) is defined 
• 

as the monic polynomial a(X) with greatest degree, such that 

a(X) divides f(X) and g(X). If a(X)=1, then f(X) and g(X) 

are relatively prime. Degree zero polynomials, or field 

elements, have inverses. However, no polynomial of positive 

degree has an inverse. 

A subset of polynomials is an ideal if and only if 

every polynomial in the subset is a multiple of a fixed 

polynomial. The residue classes of polynomials modulo a 

polynomial f(X) of degree n, form a commutative linear al-

gebra An  of dimension n over a coefficient field. The alge-

bra An  plays an important role in.the development of the codes 

discussed in Chapter 3. In this algebra, if g(X) is the 

monic polynomial of least degree such that the multiples of 

g(X) form an ideal J = (g(X)) and p(X) is a polynomial of 

degree less than n and divisible by g(X), then p(X) is in J. 

Moreover, if p(X) is in J, then g(X) divides p(X). 

Every monic polynomial g(X) which divides (Xn-1) forms 

an ideal with generator polynomial g(X). The null space of 

the ideal generated by g(X), is the ideal with generator 

polynomial h(X) where g(X)•h(X) = (Xn-1). If h(X) has degree 

k then the ideal generated by g(X) modulo (Xn-1) has dimen-

sion k. 
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2.2.5 Galois Fields  

We conclude this section by dealing briefly with some 

properties of Galois Fields. 

An extension field of degree m over a field F is formed 

by taking polynomials over a field F modulo an irreducible 

polynomial, p(X), of degree m. F is called the ground field 

of the extension field. For any prime number p, the residue 

classes of integers modulo p form a field called the Galois 

Field GF(p). The field of polynomials over GF(p) modulo a:  

degree m irreducible polynomial is an extension field called 

the Galois Field of pm elements, GF(pm). 

Any finite field with q elements is isomorphic to GF(q). 

Galois fields represented as residue class-es of polynomials 

modulo an irreducible polynomial over GF(p) have character-

istic p. If pc is an element of the extension field, the 

monic polynomial m(X) of least degree over the ground field 

F for which m(o) = 0, is the minimal polynomial of 04 and is 

irreducible. If p(X) is a polynomial with coefficients in 

the ground field and p(00=0, then the minimal polynomial of 

m(X), divides p(X). Every element in the extension 

field of dimension m has a minimal polynomial of degree m 

or less. The polynomial (Xcl-1-1) has all (q-1) non-zero 

elements of GF(q) as roots. The polynomial (Xm-1) divides 

(Xn-1) if and only if•m divides n. A primitive element of 

GF(q) has order (q-1) and every non-zero element of GF(q) 

can be written as a power of 04. The multiplicative group 

of GF(q), consisting of powers of 0c, is cyclic. An exten-

sion field of GF(q) contains all the roots of (Xqm-i-X). 

Moreover, these roots form a subfield. If p(X) is an irre-

ducible polynomial of degree m with coefficients over GF(q) 

and /5 is a root of p(X) in the extension field, then 
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qm-1 

Acl, • • • 1,3 	are all roots of p(X) with the same order. 

The order of the roots of an irreducible polynomial is the 

exponent to which the polynomial belongs. If a polynomial 

p(X) belongs to b, then p(X) divides (Xb-1) but no other 

polynomial of the form (Xr-1), r<b. An irreducible poly-

nomial of degree m is primitive if it has a primitive ele-

ment as a root. A degree m polynomial is primitive if and 

only if it belongs to (qm-1) or, if and only if it divides 

(Xr-1) for no r less than (qm-1). 

2.3 'Amax or Group Codes 

All the codes, save one, discussed in the thesis are 

members of the class of linear codes. In the following we 

assume that the code symbols are elements of a finite field 

and that q is a power of a prime, where for most cases q is 

2. An excellent and more detailed treatment of the remaining 

topics in this chapter can be found in both1A._,gLl_._Draicfnodig 

Theory by E. R. Berlekamp[13, and in Error-Correcting Codes  

by W. W. Peterson and E. J. Weldon[371. 

A linear block code over GF(q) of block length n and 

dimension k is a k-dimensional subspace V of the n-dimensional 

vector space W of all n-tuples over GF(q). This subspace is 

called a (n,k) linear block code. These codes are also 

called group codes because the k-dimensional subspace V forms 

an Abelian subgroup over the prime field. Vector space 

theory provides a simple characterization of these codes. 

A k-dimensional subspace has a set of k basis vectors. These 

can be written as the k rows of a (kxn) matrix a, called the 

generator matrix of the (n,k) code. The set of codewords is 

then the rcw space of the matrix C. The number of such lin-

ear combinations is qk, which is simply the number of ways 

of selecting the q possible coefficients of each of the k 
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possible basis vectors. 

An alternative description of the (n,k) code is given 

by the (n-k)-dimensional null space V' of the subspace V. 

A matrix H of rank (n-k) with row space V' can be formed. 

Then, the (n,k) code is defined as the set of vectors y, 

orthogonal to H, which is to say y and any row of H have an 

inner product of zero, or in terms of matrices, 

=O. 

This equality can be expressed as (n-k) independent equations: 

vjhij  = 0, 	i=1,2,...,(n-k) 

where vj is the j-th component in the n-tuple y, and hij  is 

the element from the i-th row and j-th column of H. Since 

each of these equations is, in fact, a parity check on the 

codeword y4  the matrix 11, is called the parity-check matrix. 

V' is a subspace of W and hence is also a linear code, the 

(n,n-k) code with null space V. V is the dual code of V' 

and vice versa. 

Decoding of these codes is accomplished by a rearrange-

ment of the vectors of the generating matrix a. Two decoders 

based on this process are presented here, the second being 

an improvement over the first. 

If the qk code vectors are ordered as 	k, 

where i1 is the all zero n-tuple a decoding table can be 

formed. Row one consists of the qk codewords, it,...,iqk. 

Next, one of the remaining non-codeword n-tuples, say mi, is 

selected, where usually ml  is one of the most likely vectors 

to be received if ii, the identity, were sent. The second 

row of the decoding table is then mi+ii, j=1,...,qk. This 

process is repeated until each possible n-tuple appears in 

the table, for a total of qn-k rows. Each row of the table 
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is a coset and the first element in each row, the coset 

leader. Although the table just formed could be used to 

decode, a simplified version requiring less storage is now 

defined. The product of the (n-k)xn parity-check matrix H 

and a codeword vector y is an (n-k) component vector a 
called the syndrome. A vector is a codeword if and only if 

it has a 0 syndrome. To decode in the binary case, a table 

is formed consisting only of the coset leader and syndrome 

for each of the 2n-k  cosets. When a vector is received, its 

syndrome is calculated and then found in the table. The 

coset leader which is associated with it is the most probable 

error. It is subtracted from the received codeword to give 

the decoder's estimate of the message sent.. 

A variation of the above gives step-by-step decoding. 

For this method, it is necessary to determine for each re-

ceived vector the weight of the minimum weight element in 

its coset. This requires a larger table than for the pre-

vious method but can be accomplished without listing the 

whole table of cosets plus syndromes. The q field elements 

fl,f2,...,fq  are listed with zero appearing last. The 

vectors are ordered lexigraphically in the sense that if 

(vi,...,vn) and (wi,...,wn) are two vectors alike in the 

first (j-1) positions, but vj follows wj in the order of the 

field elements, then (vi,...,vn) follows (wi,...,wn). To 

decode the received vector (vi,...,vn), the weight associated 

with its coset is determined. The step-by-step process is 

then begun. The first element vl  of the received vector 

is replaced by vl-fl, v1-f2  and so on until the weight of the 

coset of the altered vector is less than the original coset 

weight. The first element of the received vector is then 

replaced by vl-fi, where fi corresponds to a coset of lower 
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weight. If no smaller coset weight is found vi remains the 

first element of the received vector.. This procedure is re-

peated until the weight of the coset is zero, that is the 

vector represents a codeword. It is then assumed that this 

vector was the codeword sent. This ddcoding method decodes 

each received vector into the nearest code vector. 

The above two methods are indeed valid decoders, how-

ever their drawbacks are significant. With both these decoders 

the storage requirements and look-up times are prohibitive 

for any reasonable length code. Moieover, step-by-step de-

coding.can become a very lengthy process. 

Although these methods are of interest on their own, we 

present them here primarily for the purpose of illustrating 

the relative effectiveness of the more sophisticated methods 

which are to follow. 

2.4 Cyclic Codes  

Cyclic codes are a very important class of block codes. 

This importance is due mainly to the high degree of mathemat-

ical structure possessed by the codes. We begin this section 

with a discussion of the defining 'properties of these codes. 

If V is any subspace of the space of all n-tuples such 

that if y:= (v 	v 	v ) is in V then 	= (v v n-1' 	o 	 -oo 

vi), the vector resulting from cyclically shifting v one unit 

to the right, is also in V, then V is called a cyclic sub-

space. The corresponding code is a cyclic code. 

The most common cyclic subspace considered in coding is 

a subsapce of the n-dimensional algebra An  of polynomials 

modulo (Xn-1). The elements of this algebra are residue 

classes of polynomials, where the representative polynomials 

have degree less than n and each distinct polynomial of 
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degree less than n represents a distinct residue class. For 

a polynomial v(X) = 	1-1 + . . . + viX + vo, the corres- 

ponding n-tuple is written (vn.q,...,v1,v0). Recalling the 

definition of an ideal given in Section 2.2, it is apparent 

that a subspace is cyclic if and only lf it is an ideal. This 

is so because multiplication by X of a polynomial modulo 

(Xn-1) is equivalent to a cyclic shift of the n-tuple repre-

sentation of the polynomial. Every ideal has a generator 

polynomial, g(X). Thus a code is specified by giving the 

generator polynomial g(X) where g(X) divides (X11.-1). The 

null space is then given by the parity-check polynomial 

h(X) = (Xn-1)/g(X). The code generated by h(X) is equivalent 

to the dual code of the code generated by g(X). The poly-

nomial e(x) is a codword polynomial if and only if g(X) 

divides f(X). 

An alternative description of a k-dimensional code is 

given by the roots o1,.  . . .c<n-k of the degree (n-k) gen-

erator polynomial g(X). For this definition, a polynomial 

f(X) is a code polynomial if and only if 0<1, . 	0.(1.1_k are 

roots of f(X). These roots can be expressed as powers of a 

fixed primitive element o‹. of order e, where 0(i  = 0(
41 
 for 

some 41i. If mi(X) is the minimal polynomial of a.j, then 

alltherootsof-(X) are given in the sequence o. 

0(:4
4.(12 	

. Through an analysis of its roots, g(X) is 

factored into its minimal polynomials and the corresponding 

sets of roots are called cycle sets. We refer to this 

concept again in Part II. 

We note briefly that these codes can easily be put into 

. . . matrix form. If g(X) = gn-kXn-k + 	+ giX + go  is the 

generator polynomial of a cyclic code, then the set of poly- 

nomials, X
k-1

g(X), Xk-2g(X), 	Xg(X), g(X) are all code 
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vectors and when expressed as n-tuples, linearly independent. 

Thus, the (kxn) matrix 

gn-k gn-k-1 	• . go  0 . • . • 0 

0g 	 • 0 n-k 	• ▪ • gl go • 

• • 

• 	 • Q. 

• 

0 	0 	• • • gn-k 

is the generating matrix of the code and the row space of 

G is the code. 

One.of the most important features of cyclic codes is 

their simple implementation. For this reason we present a 

succint exposition of the two methods used for encoding. 

For both encoders, a k-symbol block of information 

digits forms the input and is sent through the channel. A 

delay then occurs as the (n-k) check digits are generated. 

The first encoder simply uses a k-stage shift register to 

produce the (n-k) check digits. The second method is some-

what more complicated but still not difficult to implement. 

If f(X) is a polynomial with the k information digits as 

coefficients of Xn-1,...,xn-k,then f(X)=g(X)q(X)+r(X), 

by the dlirision algorithm, and the degree of r(X) is less 

than (n-k) for some q(X). Then, f(X)-r(X) is a codeword, 

and the coefficients in the low order (n-k) positions are 

the negative of the check digits. The encoder for this 

method is an (n-k)-stage shift register with premultipli-

cation by X
n-k. The negative of the (n-k) digits remaining 

in the shift register are sent on to the channel. 

The decoder for cyclic codes provides a simple method 

of error-detection. The received check digits are subtracted 
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from the check digits calculated from the received infor-

mation digits, using, as above, an (n-k)-stage shift register. 

If the result is 0, then the received vector is a codeword, 

otherwise an error is detected. Subh a decoder is an excel-

lent means of error-detection. However, the alterations re-

quired to allow for error-correction are complex and hence 
awA 

the resulting decoderAis not a feasible method of error- 

correction. 

In this section and in the previous one we presented 

two general classes of codes and their associated simplis-

tic decoders. In later sections we introduce specific codes 

and their more complicated and hence more powerful decoders. 

However, first we disucss certain bounds used for comparison 

of codes. 

2.5 error and Distance Bounds  

In this section we deal with several means of evalu-

ating the performance, or describing the capabilities, of a 

given code relative to other codes. 

Probably the most common metric used to characterize a 

code is the Hamming distance. The Hamming weight of a code 

vector y, written w(v), is the number of non-zero components 

in v. The Hamming distance between two vectors yl  and v2  is 

defined as the number of positions in which they differ, or 

in the notation giveri, w(y1-y2). For a linear block code, 

(yl-v2) is a code vector. Thus, the distance between any 

two code words is in fact the weight of some codeword. The 

minimum distance of a linear code is the minimum weight of 

the non-zero code vectors. 

Another distance metric, the Lee weight, exists but this is 

used only infrequently. For completeness we include its de- 
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finition. The Lee weight of an n-tuple (vn_1orn,...,v0) the 

vi  from the set 

wL  

As for the Hamming 

n-1 

(0,1,...,q-1) 

vil, 	where 

distance, the 

is 

= 

Lee 

/vi , Os 	<q 2 vi 

q-vp q/2 < vi  s (q-1). 

distance between two 

n-tuples is defined as the Lee weight of their difference. 

We note that for q=2 and q=3 the two metrics coincide. 

We now examine some of the upper and lower bounds on 

the maximum minimum Hamming distance of a linear (n,k) code, 

with fixed n and k. We do not give a detailed study of 

these bounds but rather present only the results necessary 

for comparing codes. 

The most general upper bound on the minimum distance d 

of an (n,k) linear code is the Plotkin bound of the average 

weight nqk-1(q-1)/(qic-1). Further, if n ?..(qd-1)/(q-1), 

the number of check digits necessary to attain the minimum 

weight d is at least ((qd-1)/(q-1))-1-logqd. 

The Hamming upper bound on dz 2t+1 is expressed as the 

following bound on the number of check symbols: 

(n-k)?. logq(1 +(ikq-1) +(2)(q-1)2  + 	+(.7)(q-1
)t 

). 

A third upper bound on the minimum distance of a linear 

(n,k) code is due to Elias. For large n this bound is tighter 

than either of the above bounds. The Elias bound is: 

d<2t(1-4 )( 
k  

where t is any integer such that 

77 (1J) 2n-k ,  

and k is the smallest integer such that 
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t  1-  2_, (3)/ (2n  "). 

j=0 

These three bounds are the most common upper bounds on min- 

imum distance. We now give the Varsharmov-Gilbert lower bound 

on minimum distance. This bound states that there exists an 

(n,k) code with minimum distance at least d provided 

(d-2) 
	 (y)(q-1)i a (qn-k). 
i=o 

As noted earlier, we are primarily interested in binary 

codes and hence with binary symmetric channels. We now con-

sider some bounds on probability of error, Pe, for such chan-

nels. In the following Q is the probability of correct trans-

mission, P the probability of an error, for the best binary 

code with given rate and length. Given a. minimum distance 

of d, we have the rather trivial bound, 

Pe 
	d 	

(d)picl(d-i), 

/**1  

where [x] is the greatest integer in x. The sphere-packing 

lower bound on Pe  is 

nl i n-i 
Pe 4j) 0<t4.1) P(t+1)Q(n-t-1) 

	
i= 
	(*)PQ 1. 

t the greatest integer such that 

	

e<t +1 = 2n -k  - 	(ril) - 	- • • • - (1 ) > 0. 

We conclude with the random-coding upper bound on Pe  which 

applies only to group codes and states 

Pe 	dg-1 

	

=S-7 	

j +1 j 	(hn+11)(h+i-1)(n) 	ni 	n_i  

A 2 	j 2n- -1 +j=d j  g/2) idg-j h 	2 

where dg  is the largest integer such that 

2n -k > 2 d 1 (21. 
CA'eOutl2i 	 , 



33 

2.6 Eamming Codes  

The Hamming code, which corrects all single errors, is 

a natural extension of the decoding table decoders discussed 

in Section 2.3. The basic binary Hamming code has length 

n=2m-1 and m parity check digits. The decoder for this code 

makes use of the fact that there are 2m-1 single error pat-

terns, each of which can be made the coset leader of a dis-

tinct coset. Moreover, since there are m rows in the parity-

check matrix Ho  its columns can be written as the binary 

representations of the digits 1 to 2m-1. Then if a codeword 

v is transmitted and a single error occurs, giving v'=v+e, 

can be correctly decoded by observing the syndrome a 
= eI . This is a consequence of the error vector e being 

all zeros except for a single 1 in position i, for 1z_.i52m-1. 

Thus, when e is multiplied by H, the resulting syndrome is 

simply the i-th row of ET, that is the binary representation 

of the digit i. To correct the single error in v, the i-th 

digit is -ivl osr-k-ej,. 

The code can be modified to any length n. To do so, the 

matrix HI is constructed as above,• using the smallest m such 

that (2m-1)> n. Then, any selection of (2m-1-n) columns are 

removed, leaving the required n columns. To decode a single 

error, the syndrome is calculated and if it corresponds to 

the j-th row of Lg, then the j-th digit of the codeword is 

in error. 

Detection as well as correction of errors is possible 

with the Hamming decoder if a single parity-check digit is 

added to the codeword. This increases to (m+1) the number 

of,parity-check digits and increases the length of the code 

to 2m. To decode, the syndrome is calculated. If it is 0, 
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no errors are detected. If the last syndrome digit is a one, 

a single error is assumed to have occurred. The position in 

error is determined from the remaining syndrome digits, using 

the above decoder. If the syndrome is not the zero vector 

and the last digit is zero, then a non-correctable error pat-

tern of at least two errors is detected. In a similar way, 

the modified Hamming decoder of any length n can be made to 

detect errors. 

The binary Hamming codes have a fairly simple structure. 

All the vectors in the null-space of the single error-correct- 
tr, ^!'r 	 ;-st-rhq 

ing code have the same Hamming weight. They are also,one of 

the few examples of a perfect code© 

Overall, these codes are a marked improvement on single 

parity-check codes. However, they are still basically high 

rate codes unable to correct any pattern of two or more errors. 

2.7 PCH Codes  

The codes discussed in this section are a generalization 

of the Hamming Cosies. They are the best known of all non-

random cyclic codes and possess powerful error-correcting 

properties and are relatively simple to decode. The BCH 

codes, developed independently by Bose and Chaudhuri in 1960 

and Hocquenghem in 1959, are probably the single most im-

portant class of codes yet developed and have long served 

as a standard by which other codes are compared. 

The definition of a BCH code over an extension field 

GF(qm) of GF(q) is given in terms of the minimal polynomials 

of its roots. For oc. an element of GF(qmrwith order e, r 

an arbitrary non-negative integer, ean integer such that 

2...4.te, and mi(X) the minimal polynomial of ex, r.4i.4r+d-2, 
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the generator polynomial of the BCH code with parameters 

q,m,r,d and c<, is defined as 

g(X) = LCM (mr(X), 	, mr+d-200 ). 

The block length n of the code is the product of the orders 

of the rootso<F,4F+1, 	tord-2. 'The binary BCH codes 

with r=1 and d=2t+1, t an integer and oc a primitive ele- 

ment of GF(2m), are the most important :subclass of this 

class of codes. The roots of the generator polynomial for 

this subclass are 0.4,(0(.2, 	,oet. Recalling the discus- 

sion of minimal polynomials, if oci is the root of mi(X), 

then so are 	etc. Thus, only the roots with an 

odd power yield a distinct minimal polynomial in the factor-

ization of g(X), that is 

g(X) = LCM (mi(X), m3(X),..., m2t-i(x)). 
As eachmi  .(X) can have degree at most m, g(X) has degree at 

most mto, to  the number of factors in g(X), which is tanta-

mount to the code having mto  parity-checks. 

Binary BCH codes have a lower bound on minimum distance 

of (d''). Moreover, for any BCH code with fixed rate, the 

ratio of minimum distance to code length n tends to zero as 

n becomes large. 

The BCH decoding algorithm consists of several steps, 

some of which involve terminology that must be defined be-

fore the decoder can.be presented. 

If the code word sent is given as the polynomial f(X) 

and errors occur which are described by the error polynomial 

e(X), then the received polynomial is u(X)=f(X)+e(X). If 

the elements cj,ce41, ...pcK
r+2t-1 

are substituted suces-

sively into u(X), the resulting sequence is e(ocr), 

e r+2t-1) since 	ce+2t-t 
cj, 	

, 	are roots of the code 

vector u(X). The sequence listed is the basis of the BCH 
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decoding algorithm. The parity-check calculations give the 

2t ectiations: 

n-1 ; v 
e(c(i) =

i=0 	
= E:Y.)j = S., rsj2t -1, 

 i=1 

where Yi  is the magnitude of the error, Xi is the error lo-

cation number and v errors have occurred. Decoding is based 

ontheobservationthate.is non-zero in the above set of 

equations for the positions in error in the received vector. 

In the binary case, as Yi  is one for each error, only the X i  

need be found. In the general case, to correct any number.  

ve;t of errors, the pair (Yi,Xi) must be obtained for each 

error. This is achieved by solving the set of equations: 

Si = EYiXi, r<j...sr+2:t-1. 

To facilitate this, the quantities a100-2,...1 61,0  the element-

ary symmetric functions of the Xi  are defined by the equation: 

(X+X1)(X+X2)...(X+Xv ) = Xv  + 61Xv-1 	'" 6v-1X 	°-vg 
From this equation the following set of linear equations 

relating the S i  and a) are formed: 

Sj6v + 	 + Siinr _161 +S j+v = 0, r.c.j2t-1-v. 

With the above definitions, the decoding can now be described 

as follows: 

1) Calculate from the received vector -u(X), the parity 

checks S i , r...c.j.sr+2t-1. 

2) The maximum successive number v of these equations 

that are linearly independent is the number of errors 

which occurred. 

3) Set 6+1,...,6t  to zero and solve the first v equa-

tions for 01,0-2,...pay,  

4) Substitute each of the non-zero elements of GF(qm) in 

Xv  - v°IAv-1 	+ crir(-0 v 

the roots of which are the error location numbers. 
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5) In the non-binary case the error location numbers ob-

tained in step 4) are substituted into the first v 

equations in 

e(0.)) = 	Y.X = S. j' 1=1 
to solve for the Yi. 

Many simplifications of the basic algorithm have been found 

which reduce the complexity of the calculations used in the 

decoder. For the binary case several simplifications are 

possible. First, the binary circuitry is simpler to construct 

for step 1) and step 4). In step 3) the calculations them-

selves are simpler and moreover, step 5) is unnecessary as 

the magnitude of each error must be one. 

We have discussed the decoder used for BCH codes in some 

detail for two reasons. First, as mentioned earlier, BCH 

codes are perhaps the best known and most powerful of all 

codes. Secondly, the decoder has illustrated what is con-

sidered to be a relatively easily decoded code. 

2.8 Arithmejic Codes  

We include these codes in our discussion as they are a 

practical method of encoding in a network using a computer. 

These codes are unlike most codes in that, as their 

name suggests, all operations for encoding and decoding are 

arithmetic. Consequently, the standard error and distance 

definitions are not applicable. 

A number N is represented as a polynomial in a radix-r 

system as: 

N = Nn-tr + 	+ N1r1 	No, 05.N4rn, 

The length n codeword is written as Nn_iNn_2...N1No. The 

minimum number of non-zero terms in the polynomial expression: 

N = anrn  + 	+ air + ao, 
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where the ai can be positive or negative but the absolute 

value of each ai is less than r, is the minimum weight of N. 

The arithmetic distance between two numbers N1  and N2  is the 

weight of the differnece N1-N2. If the number N1 is sent and 

N2/4141 received and the distance between N1  and N2  is d, then 

there is a .d-fold error, or equivalently, a number of weight 

d has been added to N1. If there is an arithmetic distance 

of at least d between all coded numbers, then all errors of 

magnitude d or less can be detected. To correct t or fewer 

errors, it is necessary for the minimum distance to be at 

least (2t+1). This definition of distance is especially 

applicable to a computer system as it considers each digit 

of the radix-r number to be possibly in error. 

The actual coded form of the number Nis the n-digit 

radix-r representation of the ntii-riber AN, where A and r are 

relatively.  prime. With this definition there is a similarity 

between these codes and the class of cyclic codes. If there 

is a smallest n such that A divides (rn-1) and n is the 

length of a codeword, then every cyclic shift of a codeword 

is a codeword, for if 

N = an-1rn-1 + 	+ a1r + a0, 

then a cyclic shift gives 

an-2 r
n-1 	+ 	+ aor + an-1-=  rN - an-1(rn-1) 

which is, as required, a multiple of A. 

To represent AN in the form described, the smallest 

number of digits required is at least 

log
r
AN = N + logrA. 

The constant logrA is the redundancy of the code. The AN 

code is capable of correcting all combinations of t errors 

if and only if all numbers of weight at most t have distinct 

residues modulo A. 
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To encode the AN code, the number N is multiplied by A. 

To decode, the received code4number is divide,A by A and if 

the remainder is zero, no errors are assumed. Otherwise, 

the remainder is taken to be the characteristic of the error 

number, which is the difference between the received number 

and the most likely code number transmitted. To determine 

this most likely code number, a search is made in a table of 

remainders and their corresponding most probable error number. 

These codes are interesting as a class of codes which 

are easily implemented on a computer. However, they are re-

strictive in the sense that they basically perform a check 

on the arithmetic of a computer rather than act as a prac-

tical code for a communication network using a computer. 

2.9 Conclusions and Thesis Objectives  

In this chapter we have reviewed algebraic topics re-

quired for the development of codes discussed both in this 

chapter and in later chapters. Two important classes of codes, 

linear codes and cyclic codes, were discussed. Several bounds 

on distance were presented as a means of comparing codes. 

Hamming Codes, as the forerunner of generalized error-cor-

recting codes, were reviewed. As the most well known and 

powerful'of all algebraic codes, BCH Codes received a thor-

ough treatment. The discussion on codes concluded with 

Arithmetic Codes. Notably, an important class of codes, the 

Majority Logic Decodable Codes, was omitted. The next chap-

ter is devoted to these codes. 

In this chapter we have given the reader the background 

necessary to appreciate the rest of the thesis both in terms 

of Mathematics and basic Coding Theory. By presenting 

several typical decoding methods, we emphasized the distinct 
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need for much simpler decoding algorithms if error-correcting 

codes are to be a feasible addition to communication networks. 

We remark that computers, now a major constituent of many 

networks, should be considered as a factor when designing, 

or simplifying existing, decoders. 

The need for simple decoding algorithms with coiespond-

ingly simple circuitry is the prime requirement for a prac-

ticable error-correcting communication system. It is this 

necessity to which we direct the thesis. The approach taken 

is to study in detail the mathematical structures of the null 

space of a class of codes already considered to possess a 

relatively simple decoder compared to those discussed in 

this chapter. To this end, Projective Geometry Codes, a 

subclass of the class of all Majority Logic Decodable Codes, 

were chosen for the study. In the analysis, emphasis is 

placed on finding symmetries in the null space which prove 

useful in simplifying the standard decoder for this class of 

codes. 

Chapter 3 is an extensive review of Majority Logic 

Decoding and Projective Geometry Codes. 
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CHAPTER 1: DIAJORITY'LOGIC DECODABIE CODES  

3.1 ntad=1194 

In this chapter, Majority Logic Decoding and several 

related topics are discussed. We first review a class of 

binary linear codes, the Reed-Muller codes, and the associated 

decoder. The Majority Logic Decoding algorithm, which is 

based on the Reed-Muller decoding method, is considered in 

some detail. The best known class of codes which are Major-

ity Logic Decodable are the finite geometry codes. We discuss 

a subclass of this class, the Projective Geometry Codes, 

giving a detailed mathematical description of Projective 

Geometries and the codes formed from them. The decoder used 

for this subclass is studied. The chapter is concluded with 

a summary of several modifications which have been made to 

the Projective Geometry Code Majority Logic Decoder in order 

to improve its performance. 

3.2 Reed-Muller Codes  

The class of codes discussed in this section are an in-

genious alternative to Hamming Codes and BCH Codes. Unlike 

the latter codes, the Reed-Muller (R-M) Codes, [351[411, can 

be decoded without the error digits being located and cor- 
)tTf.s. 	y 

rected A  The decoder for the R-M Codes depends on the major-

ity testing of redundant digits within the code. As a result, 

the decoder can be very easily implemented. As the mathema-

tical development of the R-M Codes is instructive in under-

standing the basis of the decoding method,- we include a de-

tailed exposition of it. 

We note that Majority Logic Decoding is simply a varia-

tion of the decoding method presented here. 

The R-M Codes are binary codes of length n=2m  with code- 
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words of the form: 

I = (fo,f1t—Pfn-1)' 

fj = 0,1, j=0,1,...,n-1, from the space of all n-tuples over 

GF(2). If 9 denotes binary addition, then the sum of two 

codewords 	= (fo,f1,...,fn_1) and g = (go,g1,...,gn_1) is: 

= (fot—Pfn-1)  $ (gol...Pgn-1) 

= (fo@g0,"*Pfn-legn-1)* 

where xjegj is the modulo-2 sum of the binary digits fj and 

gj, j=0,1,...,n-1. Multiplication by a binary scalar a is 

defined as: 

al = a(f0,..., fn-1)  = (afo'""afn-1)t  

and multiplication of the vector by the vector g as: 

le = (for.e.tfn-1)(go,...tgn-1)  

= (fogow s P fn-1gn-1)6  

The complement 11  of the vector I is: 

I' = 	® .t• 

where a is the identity vector (1,1,...,1). The distance 

between any two vectors and g, is the Hamming distance 

w(f,g). Any code vector can be expressed as: 

= foI 9 fill  9  ". $ fn-1111-lt 

where ij  is the unit vector with a one in the j-th position 

and zeros elsewhere, j=0,1,...,n-1. Moreover, each 	cann 

be written as a product of m vectors from the set of 2m 

vectors 	where Xi is the vector consisting 

of the pair of digits 002 	times, X2 is the vector of digits 
fe ricAth-L2 

00114\ 2 	times and so .on, as follows: 

$1  = (010101...0101) 
X2  = (001100...0011) .  

Lin  = (000000...1111), 



Hence, 	can be expressed as: 

2m-1  
i2 

• = 

	

	
= 

fLi x2 e" iv ' 
jd j  

and 	consists of 2m-1  zeros followed by 2m-1  ones. To 

simplify the notation i 
k
k is defined as 

(Lk if ik=0  

Lk
k 
 = 

Jk if ie." 

Then, using Boolean algebra, 

2  2i  Ij  = X 1X1 	Xi  ••• mm 0  

where the it, t=1,...,m are the binary coefficients of the 

radix-2 expansion of j: 

. 
k 
 k-1 	. 

" 1 2 	1k=0 1 	k=1,...tm. 

with the summation taken modulo-2 and the it, t=1, ...,m as 

above. This expression can be rewritten using the distrib-

utive law and the identity: 

• = 1 $ L. 

to give the following polynomial in the Li's: 

• = g 	$ ••• gmk .$ g12L1L2 $ *** $ gm-1,m41-14 

... 0  g12...mxix2..46. 
The coefficients in this polynomial are the multiple partial 

differences and are defined as follows: 

k 
gk  = A 	• = 

p 
gk1k2...kp = k1k26..kp  f(119""im)  

• P-1 

ki...kp_i 

▪ p-1 
, 
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where A denotes the partial difference and the it's in 

f(il,...,im) are the coefficients in the radix-2 expansion 

of j. 

For the order-r R-M Code, the set of codewords consists 

of the set of polynomials of degree r or less, rim, of the form: 

go ° glxi ° 	grAm 9 	0  g12...rx1...4 

"" gm-r+1,...,m4m-r+1"°Xma 

The sum of any two polynomials from this set is another poly-

nomial from the set. It can be shown [351 that the Hamming 

weight of any non-zero vector in the set is: 

w.(() 2m-r, m=0,1, 	r<m. 

We introduce the decoding method of the R-M Codes through 

and example. For a code with r=1, m=3, any vector from the 

code space is given as: 

gol 3 g1X1 g2X2 0  g3L3. 

The information digits are (golgi,g2,g3) and the generating 

vectors are: 

X1  = (01010101) 

= (00110011) . 

X3 = (00001111) 

.= (11111111). 

Referring to the definition of multiple differences given 

• above we have: 

go  = f(0,0,...,0) = fo  

gl = Q f(0,...) = fogifi  

g2 =Z f(0,...) = foef2 

g3 = A f(0,...) = foef4 3  

and, 
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2 f(0,...) = f olifi@f2ef3  = 0 
1 

4 

• f(0,...) = f oelfi@f4efs  = 0 
13 

• f(0,...) = fo  ef.-.01f0f6 = 0 
; 	23 

123• f(0,...) = foOfie,f2ef3ef4ef5f0f60f7  = 0. 

The last four equations are all zero as r=1 and hence no term 

is of degree two or more. From these equations, we have that 

' 	gl satisfies: 

gl = f  o 9 fl 
= f2 • f3 

f4 f5 
= f20f 30f0f5E0feltf 7. 

Substituting the second and third of these equations into the 

last relation, we obtain: 

gi = f6 17 
and hence, 

gl = foef l = f2@f3 = f0f5 = fefr 
These four relations on gl are disjoint in the sense that 

no two of them have any variables in common. Similarly we 

obtain four independent and disjoint relations on g2  and g3: 

g2 = fo(U2 = f0f3 = f0f6 = f5t"7 

g3 = foGf4 = fl @f5 = fef6 = f3a)f7' 
If, in the received codeword (fo,f 1 ,...,f 7), there are no 

errors, all the above relations hold. If there is a single 

error, then three of the four relations for each of gi ,g2,g3  

hold. And if two errors occur, two of the four relations on 

gi,,  j=1,23, hold. Consequently, gi,g2,g3 can be determined 

correctly from a majority of the estimates on these variables 

if no more than one error occurs during transmission. More-

over, two errors can always be detected. If the four rela- 
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tions on gj, j=1,2,3 are denoted by rjlorj2,ri3pri4, then the 

arithmetic sum of them, Sji Is given by: 

4 
Sj  = i>i  rji. 

Then, the majority decision test for gj  is: 

= 0 if O<Sj<2, 

gj  .1 is indeterminate if Sj=2, 

■.= 1 if 2<S.<4, 

Assuming less than two errors occur, gi,g2 and g3  can be de-

termined and used to find go. This is accomplished by adding 

g212, g3X3  to the received vector to give (mo,...,m7). 

If no errors have occurred, the resulting vector is gog, and 

if there were one error, (mo,...,m7) is a distance of one from 

got. A second majority test can now be applied to obtain go: 
7 

go = 0 if  &mi.< 40  

7 
go  = 1 if ,7 m > 4 . 

1770 ' 
The method used to decode the above example can be 

generalized, such that, using the definition of the poly-

nomial coefficients in terms of the multiple differences, all 

the information digits can be determined from a series of 

majority tests. This is due to the fact that each highest 

or r-th degree coefficient of any polynomial in the code 

satisfies exactly 2
m-r 
 disjoint relations of the form: 

2r  
57 f4  , 	from Q,...,2

m-1
, k=1,...,2r 

1E74 'k 

and the summation taken modulo 2. 

The number of information digits for the R-M Codes of 

order-r is 
r 
0(i) • 
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The order-(m-r-1) code is the dual of the order-r R-M code. 

Although for large n the, rates of R-M Codes are significantly 

lower than those of the BCH Codes, the simple decoding method 

for the former still make them a competitive code. For low 

to medium length codes, the rates of these two classes of 

codes are more comparable, but still, in general, lower for 

the R-M Codes. However, as we are interested in this thesis 

in simple decoding methods, low rate is not considered a de-

trimental code characteristic. 

The R-M Codes have a geometric interpretation. We include 

it here as it established the link between the method of de-

coding discussed above and the Majority Logic Decoding algor-

ithm which is given later. For this description of the code 

we consider the space of dimension m over GF(2), consisting of 

2m  points. Each of these points corresponds to a digit 

position j, j=0,1,...,n-1, in the length n generating vec-

tors Xi  given above. A one appears in each position of the 

vector Xi  for which the corresponding point has its i-th 

coordinatet.equal to zero, that is for each point in an 

(m-1)-dimensional hyperplane through the origin. Thus Xi  is 

the incidence vector of the hyperplane through the origin. 

defined by ti=0. The vector XiXj has a one in each position 

which corresponds to a point with both its i-th and its j-th 

coordinates equal to zero. Hence, XiXj  is the incidence 

vector for an (m-2)-dimensional flats through the origin. 

Similarly, each generating vector represents an incidence 

vector of a flat. 

Each of the code symbols can be associated with a point 

of the m-dimensional space just described. Then, every 

parity-check rule is a check on those symbols associated with 

the points of a flat of dimension at least (r+1) through the 

I ',Ojt 
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origin. Each such flat describes an independent parity- 

check rule. • 
This interpretation of the code leads to the following 

geometric explanation of the decoding method. Each of the 

vectors used to generate the order-r code consists of a pro-

duct of at most r of the vectors Xl,n..141. There are 2r  

points in an r-flat and hence a product of r vectors from 

the Xi has 2m-r  ones. For each of tlie 2m-r  points, p, in a 

generating vector, there exists a perpendicular flat of di-

mension r with 2r  points which passes through the point p. 

These perpendicular flats correspond to the parity-check rules 

used above to determine the information symbols. To see this 

Correspondence we elaborate further. The parity-check flats 

intersect the generating flat whose coefficient is being de-

termined, in one point, but intersects every other flat of 

dimension at least r either not at all or in at least a line. 

This implies the intersection has an even number of points, 

2t, where t is the dimension of the intersection. Thus, in 

the modulo-2 parity-check sum only the coefficient being de-

termined will not cancel out, while all other coefficients will. 

The geometrical description of the R-M Codes assists in 

the understanding of the associated Majority Logic Decoding 

algorithm, which is an extension of the decoding method 

given here. 

The simplicity and elegance of this decoding method have 

made it the most feasible means of decoding a code which 

possesses the necessary independent redundancy relations. 

The remainder of this chapter deals exclusively with such 

codes and the Majority Logic Decoding of them. 



49 
3.3 MiligrktYLI2girke....Q4ging 

In this section we discuss Majority Logic Decoding, a 

decoding method renowned for its relative simplicity. Major-

ity Logic Decoding (MLD), or Threshold Decoding (TD) in the 

binary case, is based on the existence of certain relation-

ships among the parity-check equations of a code in muCh the 

same way as in the R-M Codes. 

We introduce MLD by giving an example which illustrates 

the basic concept used in this decoding method. The binary 

repetition code of length n has two'codewords, the all one 

n-tuple and the all zero n-tuple. Of the n codeword digits, 

the first is the message digit, with the remaining (n-1) 

being check digits. To decode, the number of ones and the 

number of zeros in the received codeword are counted. If the 

majority of the digits are ones, then the all one codeword 

is assumed to have been sent, otherwise the all zero code-

word is assumed. If less than [n/2J errors occurred, the 

decoder's decision is correct. The majority test used here 

is similar to the R-M majority tests. It is this concept of 

taking a majority test on which the MLD algorithm is based. 

We return to the above example after several terms have 

been defined. 

In the following discussion on MLD, the code to which 

we refer is assumed to the cyclic, linear (n,k) code with k 

information digits and (n-k) parity digits. 

If (cn_i,...,ci,c0) represents a codeword and (en-1,..., 

ell eo) the corresponding error word, then the received word 

(rn_1,...1r1,r0) can be written as (cn-1 e n-10-1tceeo). 

If co,...,ck_1  are the information digits, the (n-k) parity 

digits are, in terms of the information digits: 
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k-1 
cj = Y piici, 	j=k,k+1,...,n-1, 

i=0 

and the pji are from GF(ps). The syndrome Si  is defined as 

the value of this equation when rg  is substituted for cg:.  

k-1 
Si  = 2;:o  pjiri - rj  

k-1 . 77  p..ei - e., 
i=0 J1  

Linear combinations of the Sj  are used to Majority Logic 

Decode. 

We say that the sums Ti,T2,...,Tt  of error digits are 

orthogonal on an error digit ei  if every sum Ts  includes ei 

and no other error digit occurs in more than one of the Ts. 

This definition can be extended to sums being orthogonal on 

a set of error digits weighted by coefficients from GF(ps). 

For example, if v1,...,v6 are elements of GF(ps), then the 

following sums are orthogonal on v1e1 + v2e2: 

TI = vie/  + v2e2  

T2  = vie, + v2e2  + v3e3  

T3 = v1e1 + v2e2 	+ v4e4 	+ v6e6  

T4  = vie, + v2e2 	+ v5e5. 

If we look again at the binary repetition code of length 

n=2m-1 with codeword (c2m-2"'" c10 co  ) we note that: 
0 = co + 01 

0 = 00  + 	c2 

• 
• 

0 = co 
	 + c2m _2 

and thus the following sums are orthogonal on eo: 
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ro  + ri  = eo  +e1  

ro  + r2  = eo  + eg  d 

• 

• 

ro  + r2m_2  = eo + e 2m-2° 

To decode this code using MLD, the 2m-2 estimates on eo  are 

input to a threshold unit. If more than (2m-1-1) of the in-

puts are one, the threshold of (2m-1-1) is overcome and the 

output is a one, otherwise a zero. If less than (2
m-1

-1) 

errors occurred, the decoder correctly decodes the error 

digit eo. The value of eo  is added to ro  giving the correct 

value of co. For the repetition codes there is only one in-

formation digit, so the remaining digits need not be decoded. 

As a threshold unit is used to decode in the binary► case, 

the corresponding decoding method is often referred[331,[37] 

to as Threshold Decoding rather than MLD. 

For non-binary codes, a majority unit is used instead 

of a threshold unit. For such codes, the majority unit out-

puts the value receiving a clear majority of the sums ortho-

gonal on it. If no value has a clear majority, then the er-

ror digit is assumed to be zero. 

In general, once the first error digit is decoded in a 

cyclic code, the codeword is shifted and the next error digit 

decoded in the same.manner. This process is repeated until 

the whole n-digit codeword is decoded. 

Orthogonal estimates of a transmitted digit ci, rather 

than sums orthogonal on an error digit ei  can be used to de-

code. For the binary repetition code discussed above we have 

the following orthogonal estimates of co: 
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(r1 	if e1=0 

	

r
2 	if e2  =0, 

co 

2m-2  
r 	if elm-2=0. 

To decode, using the orthogonal estimates, the received 

digits, rather than the syndrome digits, are used as input 

to the threshold unit. The output is then the cTtiplate of 

the code digit co, not the error digit eo. 

When there are an even number of parity-check sums which 

are orthogonal estimates of a digit ci, a tie can occur. A 

more sophisticated decoder can overcome this difficulty. When 

one of the estimates is of the form: 

co=r0  if e0=0, 

the other estimates of c each contain two digits and the 

probability of an error in transmission is p, p<i, then the 

modified decoder can decode using error probabilities. If 

the probability that eco  is zero is: 

Pr(e0=0) = (1-p) 

and the probability that ei+ej is zero is: 

Pr(ei+ei=0) = (1-p)2  + p2<:(1-p), i,j/0, 

then the estimate c0=r0  is more likely to be correct than 

any other single estimate, and hence can be given more 

weight when input to the majority unit. Thus, using 

probabilities, the tie can be broken. 

We present some useful results concerning Majority 

Logic Decodable codes. If a linear code has at least (d-1) 

check sums orthogonal on each code digit, then the code has 

minimum distance at least d. This is a consequence of the 

following. If the i-th digit ci has (d-1) orthogonal check 

sums T1,T2,...,Td-1, then each of these sums is zero since 
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the word is in the code. Also, because each of these sums 

has a non-zero entry by construction, there must be at least 

one other non-zero code digit in each sum, which gives a total 

of d digits. Thus, the minimum distance is at least d. 

A linear code with minimum distance d is said to be 

completely orthogonalizable if (d-1) parity-checks on each 

digit can be determined. Thus, any error pattern guaranteed 

correctable by the minimum distance of the code is correct-

able if the code is completely orthogonalizable. Further, 

if the code is cyclic, then it is completely orthogonalizable 

if there are (d-1) parity-checks orthogonal on eo, the error 

digit in position zero. 

If d is the minimum distance of the dual code of an (n,k) 
lifelh,V) L chic. 

linear code, then the number of errors that can be correCted,t  

is t1  and 

n-1 
t1 2(a-1) 

To establish this we note that each word in the null space 

has weight at least d and thus there must be at least d 

digits in each of the orthogonal sums. One of these digits 

appears in each sum, while (T1-1) appear in only one sum. 

There are (n-1) error digits in addition to the one on which 

the sums are orthogonal. Thus, the total number of ortho- 

gonal sums which can be constructed is no more than (n-1)/(d-1). 

Hence, tr: 	c- 	must be less than or equal to 

half this number that is 

(n-1) 
ti/  < 	 . 

2(d-1) 

The decoding process discussed thus far has required 

only one estimate of the outputs to determine an error or 

code digit. Obviously there are linear (n,k) codes for which 
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it is not possible to construct (d-1) parity-checks ortho-

gonal on each information digit. However, the process dis-

cussed above,can be generalized so that after several steps, 

some of these codes can be decoded. Given the original set 

of parity-checks defined by the parity-check matrix H, it is 

possible to form sets of at least (d-1) parity-checks ortho-

gonal on certain sums of the information noise bits. It is 

then assumed that these sums are known because threshold 

estimates of their values have been obtained. These sums 

are now considered as additional parity-checks and added to 

the matrix H to give a new matrix H'. The extended parity-

check matrix is a true parity-check matrix if the sums added 

were correctly decoded. This process can be repeated L 

times until (d-1) parity-checks orthogonal on the error 
OM,  

digit e0  are obtained. If this procedure can be carried out 

for each of.the n error digits, then the code is said to be 

L-step orthogonalizable. 

Formally, a t-error-correcting code is said to be L-

step orthogonalizable if and only if the code contains sets 

of positions P(1),P(2),..., such that: 

1) For all i, the code contains 2t parity-checks 

orthogonal on P(i). 

2) The subcode of the code that satisfies the additional 

parity-checks: 

c. = 0, for all i, 
jEP(i)  

is (L-1)-step orthogonalizable. 

With L-step decoding the bound given above for 1-step de-. 

coding can be improved. If d again denotes the minimum 

distance of the dual code of an (n,K) linear code, then the 

number of errors, tL, that can be corrected with L-step MLD 

is bounded by: 



tL  < 

r_n_ _ 1, d even, 
a 	2 

n+1— 1 , d odd. 
U+1 2 
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This is established in much the same manner as the t1 bound 

for'the 1-step decoder. The tL errors are corrected if there 

are at least 2tL check sums orthogonal on a set B of digits 

common to each sum. Now B is at most P/2] , otherwise, 

when combining two such sets to give a set still in the null 

space, the new set would have weight less than d, which is 

a contradiction. Consequently,. the 2t1_,  equations have at • 

most [a/21 digits in common and at least d digits altogether. 
Thus, (d-r1/2I) digits appear in one sum only and after se-

lecting the [T1/2] digits, there are (n471/21) digits left 

from which to choose the sets of ca -R/21 ) digits. Hence, 
w■I 

there are at most: 

. 	(n -k1/21) 

— rci/2 
orthogonal equations, which implies: 

2t1,(71 -V,/21) < (n -[T1/21). 

As an example of a cyclic 2-step MLD code, consider the 

binary (7,4) code with 

[10111001 rl 
= 1110010 = R2. 
0111001 R3  

The received word is premultiplied by X3  before decoding 

begins. The check sums corresponding to Ri  and R1+R2 are 

orthogonal on S1=e6+eo, where (e6,...,e0) denotes the error 

word. These two sums are input to a threshold unit whose 

output is an estimate of S1. The sums (R1+R2+R3) and (R1+R3) 

are orthogonal on S2=e6+e4. These sums are input to a second 

threshold unit, whose output is an estimate of S2. Then the 
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estimates of S1  and S2, orthogonal on e6, are input, at the 

second steA to the threshold unit which outputs an estimate 

of the error.digit e6. Thus, the error digit e6 can be de-

termined in two steps, since the code is cyclic and hence 2-

step orthogonalizable. 

We remark here that with every added step in the ortho-

gonalizing process, the complexity of the decoder increases. 

It is of interest to note though, that in L-step orthogonal-

ization of a code, it is never necessary to make more than k 

threshold-decoding decisions. This follows since each deci-

sion is an estimate of a sum of the variables eo,...,ek_1, 

and, there being only k such variables, there can be at most 

k linearly independent sums formed from them. 

The Majority Logic Decoder is most applicable to binary 

codes. For non-binary alphabets the number of parity-checks 

that can be • formed is roughly the same as for the binary 

alphabet. Thus, the advantage of a larger alphabet is lost. 

The Projective Geometry Codes analysed in Part II of the 

thesis are binary codes and hence attain the maximum power 

of this decoding method. 

We conclude this section with an interesting example of 

the power of a t-error correcting Majority Logic Decoder. 

Unlike other t-error-correcting decoders, such as the BCH de-

coder, the Majority Logic Decoder corrects many errors of 

weight greater than t. 

Consider the (1023,10) maximal length code with d=512. 

If this is transmitted over a Binary Symmetric Channel with 

transmission probability of error p0=0.25, then the average 

number of errors per block is (1023)po  which is approximately 

256. Now, [(d-1)/21 is 255, so the probability of error, Fe, 

is nearly one half for an algorithm capable of correcting 
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only errors of weight 1.(d-1)/2] or less. However, if MLD is 

used to determine each of the ten information digits from the 

(d-1)=511 parity-checks orthogonal on each bit, the total 

probability of error is approximately 5x10-7. To see this, 

note that if eo=0, then e0  is incorrectly decoded only if 

more than 256 of the 511 parity-checks orthogonal on e0  are 

one. Since each parity-check includes two other error bits, 

the probability that the sum is one is 0.375. The probability 

that more than 256 of the 511 parity-checks are one, is less 

than 3.1x10-8. Similarly, the probability of incorrect de-

coding if e0=1 is less than 1.0x10-7. The average Pe  in de-

coding ec, is then' 

(0.750)(3.1x10-8) + (0.250)(10'7) < 5.0x10-7. 

Although certainly all examples comparing MLD to other 

methods are not so dramatic, for-high rate codes there are 

many instances when MLD is the most effective decoding method. 

The main advantage of MLD, and certainly the reason that it 

is used in this thesis, is its ease of implementation. It 

is this characteristic which we emphasize in the thesis. 

3.4 projective Geometries  

Part II of the thesis is devoted to a study of a subset 

of Projective Geometry Codes. These codes are based on a 

particular class ofilnite geometry, the finite projective 

geometry. 

Formally, a finite geometry of dimension m is the set 

of elements (points) satisfying the following five conditions, 

given by Veblen and Bussey [51]: 

1) The set contains a finite number of points and one 

or more subsets called lines, each of which contains at least 

three points. 
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II) If A and B are distinct points, there is one and 

only one line that contains bath A and B. 

III) If A, B and C are non-collinear points, and if a 

line 10  contains a point D of the line AB and a point E of 

the line BC but does not contain A or B or C, then the line 

10  contains a point F of the line CA, 

IV) If r is an integer less than m, not all the points 

of the geometry are in the same r-spa.ce. 

V) If IV is satisfied, there is no (m+1)-space. 

We now give the definition of a projective geometry, PG(m,ps), 

of dimension m over GF(ps), and later show that it does indeed 

satisfy the above postulates. A point is defined as a 0-space 

and a line as a 1-space and an r-space*is defined inductively 

as follows. Given (r+1) points P1,...,Pr,Pri1 not all in 

the same (r-1)-space, the set of all points collinear with 

Pr+1 and a point of the (r-1)-space (P1,...,Pr) is the r-

space (P1,...,Pr+1)• 

The most common means of representing a PG(m,ps) is by 

GF (p(m+l)s). In the following we use this description with-

out exception. We now outline this representation. A point 

of an m-dimensional finite PG can be described by a set of 

homogeneous coordinates (c(0,cq,...,0(m), the coefficients of 

(m+1) linearly independent points which define the GF(p(m+l)s). 

m-space. The o(i are elements of GF(ps), such.that at least 

one of them is non-zero. Any point Kaco,...,00,(m) is equi-

valent to the point (o<0,...,o(m) for 0( one of the non-zero 

(.ps-1) elements of GF(ps). The coefficients a0,...,o(m  

which define a point, can be chosen in 
(p(m+1)s - 1) ways, 

where there are (ps-1) representations of any given point. 

It then follows that there are a total of 

(p(m+l)s..1)A ps..1) = (pms 	... 	ps 	1) 
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distinct points in PG(m,ps). Given any two distinct points 

(c(o p...) and 00,...0m), a line is defined as the set of 

points: 

keko  +,061•••10(Ain, +,8,8m) 

where o< and /5 are elements of GF(ps) such that both are 

not zero. The coefficients o‹,/9 can be chosen in ( p2s,..1) 

ways, where (ps-1) of the choices give the same line. Thus 

a line contains 

2 
(P

s -
1)/(Ps-1) = (Ps+1) 

distinct points. And, in r dimensions, r4m, given the (r+1) 

points (xio,a11,...,0(1m), i=0,1,... ,r, not all in the same 

(r-1)-space, the r-space consists of the points 
r 	r 

( 	°(io ... 	°kim)  
1=o 

wherec<0, 0(1,...,.km  are elements of GF(ps), not all simul-

taneously zero. Since there are (p(r+1)s-1) possible non-

zero combinAtions of the 0(i, where (ps-1) combinations define 

the same point, there are 

(p(r+1)s_1)/(ps...1) prs prs-1 ... p 1 

points in an r-space. 

We now show that this formulation, based on GF(p(M+1)S), 

satisfies the above postulates. Each line contains (ps+1) 

points, which fulfills the requirements of postulate I. The 

definition of a line validates postulate II. If (0<0,...,c(m), 

(608...,/em) and ( 0,...4m) are any three non-collinear points 

A,B and C, and to  a line containing D=W(0+/8/10,...,, m+466), 

a point of AB and E=(t/30+4,...,i9A+6tc), a point of BC, and 

to  does not contain A,B or C, and ck,/5,/o, 6 different from 

zero, then we show that to  consists of the points 

(sc{o(o+a/3/30+biopo+bca0, ...,aaarri-!a/3/3m+b/0/3m+bcrgm) 

such that a and b are elements of GF(ps), not both zero. 
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Now it is always possible to find /3 and /o such that 

a/3 + 	= O. 

This gives the point 

(a0(040+balo 	ao(o(m+batfm) 

on to  which is also a point on CA, and postulate III is val-

idated. This is illustrated for m=2, s=1, p=2 in the fol-

lowing 3-dimensional diagram of PG(2,2). 

0 = (0,0,0) 

A = (0,1,0) 

B = (0,0,1) 

C = (1,0,1) 

D = (0,1,1) 

.E = (1,0,0) 

F = (1,1,1) 

G. = (1,1,0) 

Figure 3.4.1 An Example of PG(2,2) 

In Figure 3.4.1, A, B and C are three non-collinear points 

and 0 is the origin (which is not allowed as a point). Ob- 

viously D is on line AB (i.e. ADB) and E is on BC (BCE) and 

D and E are on to=EFD and F is on CA (CFA). 

The last two postulates are satisfied.  by the following 

argument. An r-dimensional geometry may be represented by 

(° 0,041,...,4), the oCi  (r+1) linearly independent points. 

Then the r-dimensional geometry has the same description as 

the m-dimensional geometry containing it. Thus, for r<m, 

there are points not in the r-space and there is no (m+1)-space. 

These arguments show that the formulation given for .  

PG(m,ps) defines a valid finite geometry. 

Using this representation, if 0( is an element of 
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GF(p(m+1)s),  then  (cC), 

(°() 

/g a primitive element of GF(ps), represents a point of the 

projective geometry. 

Knowledge of the number of r-spaces contained in a given 

m-space of the projective geometry is very useful for the 

construction of projective geometry codes. Several steps 

are required in the calculation of this value. First the 

number of ways the (r+1) linearly independent points of the 

PG(r I ps) can be chosen, in order, from the points of PG(m,ps) 

so that they are not all in the same (r-1)-space is: 

(14.psi.....t.pms)(ps+p2s4.....i.pms)(p2s+p3s4.....4.pms) 

The first term in this expression is the number of - ways of 

selecting one point from the PG(m,ps), the second term the 

number of ways of choosing the second point distinct from the 

first point, the third point so that it is not in the line 

defined by the first two points and so on. We now determine 

the number of these bases which yield the same r-space. The 

number of ways the (r+1) base points of the given PG(r o ps) 

can be selected so that they do not all lie in the same (r-1)- 

space is, following the derivation above, 

(14.ps+....i.prs)(ps.i.....i.prs)...(p(r-1)s+prs)(prs).  

The number of r-spaces in the PG(m,ps) is then: 

ms)( 

+prs) ...(p r- s+p S)prs 

= (p(m+1)s_
1)(

pms_1)...(p(m-r+1)s_
1) 

 
• 

   

(p(r+1)8-1)(prs-1). ..(p2s-1)(ps-1) 
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Similarly, a given t-space, t<r<m, is contained in 

(p(m-t)s-1)(p(m-t-1)s-1)...(p(m-r+1)s-1) 
(t,r,m,ps) = 

(P 

distinct PG(rI ps)'s in a given PG(m,ps). 

An alternative description of a.projective geometry can 

be given in terms of an (m+1)-dimensional vector space and 

its subspaces over GF(p(m+l)s). A point is a 1-dimensional, 

non-affine (not through the origin) subspace of the vector 

space; a line a 2-dimensional subspace etc. A point lies on 

a line if it is contained in the 2-dimensional subspace re-

presenting the line. Then, if (xl,...,xm4.1) is a point in 

the (m+1)-space, (cx1,...,cx10.1) defines the same point for 

c non-zero, c an element of GF(ps), because this is simply 

another member of the 1-dimensional subspace representing the 

point. In this description, the coordinates 

(xl,...,xm+1) = (cx1,...,cxm+1), 

are called the homogeneous coordinates of the point. For-

mally, if the points of a linear subspace are represented as: 

0 U 	I 	j E A3 , 

with A a subset of the integers (0,1,...,(p(m+l)s-1)Aps-1)), 

and A a primitive element of OF(ps), then the projective 

subspace of the linear subspace is the set: 

1.00 ljEA3 . 

Thus, an r-dimqnsional projective space of PG(m,ps) is 

the set of all 1-dimensional vector subspaces in some (r+1)-

dimensional vector subspace. 

A hyperplane (a subspace of dimension (m-1) in PG(m,ps)), 

is the locus of points given by: 

aixi + 	+ amxm  am+lxmil = 0, 

the ai not all simultaneously zero, where the ai are the 

homogeneous coordinates of the hyperplanes. From the pro- 

r-  5■1) 	(p S■1)(pS■1) 
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perties of linear vector spaces, it is obvious that taking 

the hyperplanes of PG(mo ps) as points, the dual projective 

space of PG(m,ps) can be formed. In the dual space, any two 

points (hyperplanes), intersect to give a line (an (m-2)- 

space). A space of dimension (m-r-1) results from the inter-

section of (r+1) hyperplanes. The set of points in the 

(m-r-1)-space are the solutions to a set of (r+1) linearly 

independent equations of the forms 

a1x1 + see 	arrolxmil.  =0. 

This corresponds to the definition of an r-space by (r+1) 

linearly independent points in the PG(m,ps). The notion of 

duality is of prime importance in defining the finite 

geometry codes. 

Any non-singular linear transformation T carries a 

1-dimensional vector subspace to another 1-dimensional vector 

subspace. Thus, T induces a one to one transformation of the 

points of the PG(m,ps) and hence projective subspaces are carried 

to projective subspaces. The induced transformation is 

called the projective transformation. These transformations 

are useful in decoding the finite geometry codes. 

We conclude this section by referring again to Figure 

3.4.1.. Based on this representation of PG(2,2), we list 

the projedtive points and lines in Table 3.4.1. The number 

of points in this geometry is 

(p(m+l)s_1ops..1) = 7  
The number of lines is 

(p(m+l)s-1)(pms_1) 

 

.7. 
( p(r+1)s_1)( ps_1) 
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Er1LierajaLEDIXLt% 	Projective 	Lines  
OA 	 OBCE 
OB 	 OBFG 
OC 	 OBDA 
OD 	 OEGA 
OE 	 OEFD 
OF 	OAFC 
OG 	. ODCG 

Table 3.4.1 Projective Points and Lines of PG(2,2) 

3.5 Projective Geometry Codes  
Projective Geometry (PG) Codes are a generalization of 

R-M Codes. They are a cyclic, length n=( p(m+l)s-1) code over 

GF(p). The PG Codes are so named because each of the n digit 

positions in a codeword can be associated with a point from 

the projective geometry PG(m,ps). If (04i), i=0,...,n-1, 

represents a point from the geometry, then it corresponds to 

Xi in the polynomial interpretation of the n-tuple. Thus, 

an r-flat of the geometry can be associated with an n-tuple 

with ones in the positions corresponding to the points in the 

flat and zeros elsewhere. The n-tuple then represents a 

polynomial in the algebra An  of polynomials modulo (Xn-1). 

A cyclic shift of the polynomial representation of an r-flat 
defines another r-flat. If oec; I 04!1,...10(er are the de-
fining points of the original flat, then ceo+1,...,cer+1  

define the new flat. Also, since each point of a PG is a 

1-dimensional linear subspace and an r-flat is a set of these 

points, the r-flats correspond to (r+1)-dimensional linear 

subspaces. 

We now give the formal definition of the code. A 

Projective Geometry cyclic Code of order-r and length n = 

pms+p(m-1)s+...+ps+1, over GF(p) is defined to be the largest 

cyclic code whose null space contains the polynomials cor-

responding to all r-flats of the PG(m,ps). 
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The PG Codes can also be characterized in terms of the 

roots of the parity-check and generator polynomials of the 

code. These roots are now determined. If f(X) is the poly-

nomial associated with an r-flat of PG(m,ps), 0C a primitive 

root of GF( p(m+l)s), then 0(1.a is a root of f(X) provided u 

is a multiple of (ps-1). We establish this with the fol-

lowing argument. If 0( is a primitive element of GF (p(m+i)s), 

then (c4(Ps(m+1)-1) . 	) = 1. Also, in the algebra of poly- 

nomials modulo (Xn-1), 

(ocu)n 	ocu(Ps(m+1)-1) /(0-1) = 1. 

Thus, U must be a multiple of (ps-1), and so any root of f(X) 

is of the form c<:"Ps-1), that is 

f(04:t(Ps-1)) = .(0,ct(Ps-1))i = 0, 

the summation taken over the set R of the (ps(r+1)...1)/(ps_1) 

points of the r-flat. The points in R are of the forms 

,/31.00/1/4!o + • • • + flir aLer , 	ia= 0,...,(ps-1), a=0,...,r 

the dei  linearly independent elements of GF(p(m+l)s), 

/3 a primitive element of GF(ps). Furthermore, each point 

j occurs (ps-1) times in 

csiooLso 	Aircer). 
iili ...1r  

Consequently, this sum can be written as 

E (0_1) 	= (ps...1) 	 (4 i = (ps-l)f(4), 
jER • • JC 

which is, 

f(°() = 1 	E 	(s ioc(eo 	vir ocer).  

(pS-1) io...ir  

Then, f(0(..t(Ps-1)) = 0 if and only if 

2: (pio=e0 	... 4.Air cor)t(ps-1) = 0  
io...ir 

(ps..1)t(ps-1)0jt(ps-1) 

JE 

(1 ) 
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= (pg-i)t(ps-1),(it(ps_1). 

JE 

Expanding  (1) above, we have 

it(ps_1))! (Ai0 ,o)ho...c4ir er ,  hr  

1 	h 	h  1 	
• 

o.... r. 

and 
= t(ps  -1). 

This sum is zero unless 	 k. hJ.=(ps-1) for 0j_cr. Hence the J 
equation can be written as: 

(t(ps-1))! 	0( k0(ps-1) 	erkr(ps-1) 

1 	

e,, w 
Tko(ps-1))!...(kr(p5-1))! 

This sum is zero unless t(ps-1) is the sum of at least (r+1) 

multiples of (ps-1). Thus oct(Ps-1) is a root of the parity-

check polynomial of the PG code of order-r and length 

(ps(m+1)._l)/(ps...1% j  if and only if 

ws(t(p2-1)) S r, t/O, 

where w5(x), the s-weight of x, is the largest number of 

multiples of (ps-1) in the radix-p expansion of x. For p=2, 

s=1, this is simply the number of ones in the binary expansion 

of x. We note that 00 is not a root of the parity-check 

polynomial for if t=0, then 

f(c<t(Ps-1)) = E (c,,t(Ps-1)).j 
jER 

IRI 
= E (1) 	= 	110 
i=1 

(ps(r+1)-1)/(/08-1) = 1, mod p, 

where 1111 is the cardinality of the set R. Thus, .0L° is not 
a root of h(X), the parity-check polynomial and so is a root 

of g(X), the generator polynomial. 

The minimum distance of a PG code is at least the BCH 

bound on minimum distance for a code of length n. We now 

establish this. Any element of Gr (p(m+l)sN j  of the form 

0.0(Ps-1), with s-weight at least (r+1), and the root 0.(°, 
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is a root of g(X). The number v, 

(p_1)ps(m+2-0-1 ... (p-ops(m+1-0+1 (p_i)ps(m-r+1) 

▪ (p_1)ps(m-r+3)-1 + 	+ (p-1)Ps(m-r+2)  

▪ (p...1)pS(M44.)-1 	... 	( p_1)pSM+1 	(p_i)pSM 

(ps..1)pS(M—r+1)(0(r-1) + see 	ps + 1) 

= pS(M—r+1)(pSr-1) 

= pS(M+1) 	pS(M—r+1) 

(pS(M+1)..1) 	(pS(M—r+1)..1) 

is divisible by (ps-1), has s-weight r and is a root of h(X). 

If another multiple of (ps-1) is added to v, then the s-weight 

becomes (r+1), and hence 0(v is the largest root of h(X). 

So, for v<i<ps(m+1), i a multiple of (ps-1), 	1  is a root 

of g(X). The number of successive roots is: 

(ps(m+1)...1) - ( ( ps(m+1)_1) - (ps(m-r+1)-1) ) 

= (ps(m-)+1)-1). 

There are (p5-1) repetitions of each root, so the number of 

distinct successive roots is 

(ps(m-r+1)-1)/(ps-1). 

Thus, as 00 is also a root of g(X), the minimum distance of 

an order-r PG code is at least: 

ps(m-r+1)-1 	+ 1. 
(ps-1) 

Using r-step MLD it is possible to correct 

ri 	ps(m-r+1)...1  
Li  ( 	(ps-1) 

Or fewer errors in an Ordet-t PG Code. This is possible be-

cause the parity-check sums corresponding to the r-flats which 

intersect on a given (r-1)-flat, are orthogonal on the parity- 
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check sum corresponding to the (r-1)-flat. 

In order to decode, it is necessary to know the number 

of r-flats that intersect on a given (r-1)-flat L. We recall 

from the dicsussion on Projective Geometries in Section 3.4 

that this quantity is: 

J 	(ps(m-r+1)...l)/(ps-1), 

The decoding process is as follows. Initially all the parity-

check sums corresponding to the r-flats are known to the de-

coder. As every point in the PG(m,ps) is either in L or in 

precisely one of the r-flats that-intersect on L, the J r-

flats which contain L can be used to obtain a set of parity-

checks orthogonal on L. Thus, with one level of majority 

logic the parity-check sums corresponding to the (r-1)-flats 

are determined, assuming [J/2] or fewer errors occur. Simi-

larly, the (r-2)-flat parity-check sums are obtained, and, 

after r steps, the 0-flats or error digits. The r-th order 

PG code is thus r-step orthogonalizable, r-step Majority 

Logic Decodable, and has distance J+1. 

To illustrate the MLD of a PG code, we take the code with • 

m=2,p=2 and s=1. This PG code of order r=1 has all the 1-

flats of the projective geometry PG(2,2) in its null space. 

If 0( is a root of X3+X+1, then the roots of h(X) are those 

c(1  with ws(i) < 1, iXO, that is, 041,0(2, 0(.4. Thus, 

h(X) = (X-0()(X- c<2)(X-0(4) 

= X3  + X + 1, 

and 	
g(X) = 	 0(3)(x... 0(5)(x.. 0(6) 

= x4 + x2 + x + 1. 

The null space has all the 1-flats of PG(2,2). These are 

given below in Table 3.5.1. Since the flats 1,2 and 4 are 

orthogonal on 0(3, if zero or one errors occur, the majority 

of the estimates give the correct value of 04.3. 
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Flat 0 1 2 3 4 5 6 
1. 1 1 0 1 .0 0 0 
2 0 1 1 0 1 0 0 
3 0 0 1. 1 0 1 0 
4 0 0 0 1 1 0 1 
5 1 0 0 0 1 1 0 
6 0 1 0 0 o 1 1 
7 1 0 1 0 0 0 1 

Table 3.5.1 1-flats of PG(2,2) 

In general, the PG codes have fewer information symbols 

than comparable BCH codes. For instance, in Chapter 5, we 

study the order-3, length 63, PG code over PG(5,2). This.code 

has 41 information digits while the BCH code with the same 

length and error-correcting ability, has 45 information digits. 

We also discuss the order-5, length 255 PG code over PG(7,2) 

with 218 information digits. The corresponding BCH code has 
0.■ 

231 information digits. However, the much simpler decoding 

method of the PG codes seems to outweigh this loss in infor-

mation rate, which, for short block lengths, is small. Also, 

the PG codes do obtain the BCH lower bound on minimum distance. 

In Part II of the thesis, these codes are analysed 

further and a simplification of their decoder found. 

3.6 Majority Logic Decoder of an (n.k) Code  

The most important feature of a Majority Logic Decoder 

is the simple circuitry required for its implementation. In 

this section, we briefly discuss the decoder in these terms. 

Upon receiving a word from the linear (n,k) code, the 

Majority Logic Decoder multiplies it by X(n-k) and then di-

vides the result by the generator polynomial g(X). The re-

mainder, a shifted version of the syndrome, is stored in the 

register. This is shown in Figure 3.6.1. The next step in 

the decoding process is to form the (d-1) check sums orthogonal 
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on the first error digit. This is done by the (d-1) GF(ps) 

adders and their scalar multipliers. Finally, the majority 

gate, with the (d-1) inputs from the GF(ps) adders, outputs 

the value assumed by majority of its inputs, or zero if there 

is no clear majority. 

received word 

• 1. 

d-1 input majority 
gate 

GF(ps) 
inverter 

received information 
digits  

k-stage information 
register 

cf.) : add unit 
Figure 3.6.1 One-step MLD of Cyclic (n,k) Code 

In the binary case, which we study in Part II, the majority 

gate can be replaced by the much simpler threshold unit. ' 

Then, if at least half of the inputs are one, a one is out-

put. The value output by the majority unit or threshold 

unit, is subtracted from the first information digit. 

As the codes considered are cyclic, by shifting both 

the information register and the syndrome generator, the 
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second information digit can be corrected in the same manner 

as the first. This process is repeated until all the digits 

are corrected. As the whole codeword can be decoded with 

one level of majority testing, the'decoder is called a one-

step Majority Logic Decoder. 

As was noted earlier, each level of majority logic that 

is added to the one-step decoder increases the complexity of 

the decoder. We depict, in Figure 3.6.2, a 2-step decoder. 

Figure 3.6.2 Two-step MLD for Cyclic (n,k) Code 

For the two-step decoder, the procedure for the first 

step is much the same as in the one-step decoder, the dif-

ference being that (d-1) check sums are orthogonal on two 

digits rather than one. Of these two digits, the first digit 
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in each of the (d-1) digit pairs, is the digit eo, in posi-

tion zero, the second digit is distinct from every other di-

git of the (d-1) pairs. Each set of (d-1) parity-check sums 

orthogonal on a digit pair is input to a distinct majority 

unit. On the second step, (d-1) orthogonal estimates of the 

(d-1) digit pairs obtained as output from the majority units 

in step one, are input to a second level majority gate (or 

threshold unit in the binary case). The (d-1) estimates ob-

tained from step one are orthogonal on the digit eo. Thus, 

the output from the second level majority gate is an esti-

mate of the error digit in position zero. As for the one-

step decoder, the final output is subtracted from the first 

information digit. Again, as the codes are cyclic, the in-

formation register and syndrome generator are shifted and the 

second information digit corrected as the first was. By re-

peating this process n times, the whole codeword can be decoded. 

The purpose of including a detailed description of the 

Majority Logic Decoder is two-fold. First, it illustrates 

the relative simplicity of this decoding method, both in terms 

of its circuitry and as compared to the BCH decoder discussed 

in Chapter 2. Secondly, in Chapter 4, we develop a simpli-

fied version of this decoder and in evaluating it, compare 

it to the standard decoder described here. 

3.7 Modifications to the MLD of PG Codes  
Since the introduction of MLD in 1954 [351441], there 

have been many attempts to simplify even further this de-

coding method. In this section, we review several of the 

most relevant of these. 

The first of the improvements` involves the concept of 

feed-back. If the basic decoder is t-error-correcting, then 
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(t+1) errors can be corrected using the following method. 

Suppose there is an error in position e0  of the codeword 

and that in one of the (d-1) check sums orthogonal on eo, 

there are two additional errors. Then, eo can be corrected 

and through feed-back the correction fed into the received 

codeword. Then, the remaining t errors can be corrected 

using the t-error-correcting decoder. 

Townsend and Weldon[50] suggest using a variable 

threshold level to decode binary MLD codes. In the standard 

decoder, the output from the threshold unit is a one if 

T = [(d+1)/2] 

or more of the inputs are one. The modification suggested 

in this paper initially sets the threshold to T=(d-1). An 

attempt is made to decode all n bits of the codeword. If 

the decoder is unsuccessful, the threshold of T is decreased 

by one to (T-1). The procedure is repeated and if again no 

changes are made, T is lowered by one a second time. However, 

if an error is corrected, then T is increased by one. This 

whole process is continued until T is set to [(d+1)/21, at 

which point decoding ceases. Although this method corrects 

many more than [(d-1)/2] errors, it does require considerably 

more time and more complex circuitry than the standard MLD. 

Gallager[16] gives a decoding method applicable to low 

density codes, that is, codes with a large number of zero 

entries in the nullspace. The method is particularly suited 

to PG codes as it requires a fixed number j, j23, of ones in 

each column, and k, 10j, ones in each row, of the parity-

check matrix. The parity-checks are calculated and then any 

digit that appears in more than a fixed number of unsatisfied 

parity-check equations is changed. The new value of the digit 
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is used to recompute the parity-checks. The process is con-

tinued until all the parity-checks are satisfied. If e0  is 

the error digit to be corrected, then the term first level 

tier is used to describe all the parity-checks that include 

eo. A second level tier contains the parity-checks on the 

digits involved in the level one tier. The relation to 

orthogonal checks is obvious. A variation on this decoder 

includes a posteriori probabilities on the channel outputs. 

Although this decoder is capable of correcting more than 

the standard number of errors, its decoder is more complex 

and the time required for decoding is greater than for the 

standard MLD. 

The MID algorithm and the above modified decoders all 

are based on orthogonal check sums. We now discuss several 

variations on the Majority Logic Decoder which depend on non-

orthogonal check sums. 

The first of the non-orthogonal decoders of an order-r 

PG code requires only one majority gate, .but the gate does 

however have a very large number of inputs. For this al-

gorithm, the number 

(psm + ps(m-1) + 	+ ps) 	(psm + 	+ psr) 
N - 	  

	

(psr 	ps(r-1) + 	ps) 	(psr+ps(r-1))psr 

of r-flats which pass through a given point, and 

	

(pS111.1. 	+IDS) 	(pS111.1.....ITSr)(pS(r-14....iTS4.1) 

Y - (ps+ps(r-1)+...+ps) ...(ps(r-1)+psr)psr(ps(m-1)+...i.ps+1) 

the number of t-flats passing through a given line, are heeded. 

For a given point contained in N r-flats, each other digit 

in the geometry appears in y of the rr:flats. If 

[N/2Y1 = :psm-1  )/2(psr-1 

or fewer errors occur, then the error digit contained in all 

the r-flats is given correctly by the majority of the r-flats. 
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The complexity of the standard Majority Logic Decoder increases 

with the number of decoding steps. Although this version of 

the decoder requires only one step, it is not feasible to use 

it as a decoding method for two reasons. First, N above is 

very large for reasonable size codes and hence the single 

majority gate has a very large number of inputs. Secondly, 

this method corrects fewer errors than the standard Majority 

Logic Decoder. The latter problem can be overcome by increas-

ing the number of decoding steps to two, and correspondingly 

increasing the number of majority gates. For this decoder, 

the r-flats are used to determine the (r-1)-flats. Then the 

above non-orthogonal procedure can be applied to the (r-1)-

flats, giving a decoder which corrects at least the number 

of errors that the standard Majority Logic Decoder does. 

However, the number of inputs to the second step remains 

large and hence it is questionable whether such a decoder is 

less complex than the standard decoder. 

A second non-orthogonal decoder was originally presented 

by Rudolph [42] and modified by Ng [36]. Given a parity-check 

matrix H of the order-r PG Code over PG(m,ps), EE  the row 

space of II, C a codeword and a the received vector, set 

BE 	C. = Q. 

Then, to decode ri, the i-th digit in a, a matrix 

til =rhpli 

is chosen for which each row has a non-zero element in the 

i-th position, to give Ji rows such that there are ddj non- 

	

zero elements in column j, 	From the equation EE.ET=0, 

we obtain'the J1  estimates ct of ci, the i-th digit of the 

codeword C, 

h pjrj .=1,2,...,Ji. p 
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Each rj, igi is in 0(ij  of the J1  estimates. In the more 

powerful version of this decoder, given by Ng136-1, 	x  is 

selected as the maximum of the c<ij, VI. The oii
max 

 equations 
, 

c.
*  

r=r.1 
 are added to the estimates to give (J1+0<11  ) estimates 
 max 

of ci. The original decoder by Rudolph[421 added only one 

such estimate. Since each error in a can affect at most 

0(mi  ax  of the estimates, MLD can be used to correctly decode 

the i-th digit if no more than 

[(Ji 
 + max -1)/2  max] 

errors occur. The maximum number of errors is corrected 

when '314'°(Max-1)  is maximized. The matrix HE is selected 
on this basis. The decoding process is repeated for each of 

the code digits. The total number of errors that can be 

corrected is then 

min
Ir. +°<M - 	1  ax 	lit  

i 	2 0(i  
max 

which is a constant for PG codes, since they are cyclic. 

This algorithm increases the distanCe and hence number 

of errors correctable by the decoder but with a corresponding 

increase in complexity. 

Perhaps the most important improvement to the MLD algor-

ithm is the one proposed by Chen [6),[71. In developing his 

simplification, he shows that the minimum number of steps in 

which it is possible to decode an order-r PG code, using 

orthogonal MLD, is N=1+1log2(m/(m-rq, which is 

	

1 	if r=0 

	

N = 2 	if m/2 > r > 0 

i+1  if (1-2-1)m > r ? (1-2"(1-1)  )m. 

This is based on the observation that, since all r-flats are 

in the null space of the code, all the (r-1)-flats can be 

determined on the first decoding step. Then, if k is the 
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least integer such that a set of at least J (r-1)-flats or-
, 

thogonal on a given k-flalt can be constructed, J the maximum 

number of r-flats orthogonal on any (r-1)-flat, then each of the 

k-flats can be determined from the (r-1)-flats orthogonal 

on it. This procedure can be repeated until the nose digits, 

or 0-flats, are determined. Further, Chen shows, using flats 

parallel to a given flat through the origin, that there exists 

a sufficient number of flats of the given dimension to guar-

antee this decoding method. Moreover, this method obtains 

the minimum complexity possible using the standard MLD 

algorithm as the basis. 

The final modification discussed involves altering the 

Majority Logic procedure to obtain a decoding algorithm re-

quiring fewer majority gates but more time and buffer stor-

age. The algorithm makes use of certain relationships among 

the syndrome digits. It cyclically shifts these digits, 

stores them and then uses them for the next level of decoding. 

If g = (co,...,cn_i) is the transmitted codeword, and 

= (e0,...,en_1) the error vector, then the received vector 

is a + 1 = 	= (ro,...,rn_1). The following algorithm decodes 

ro  correctly if no more than t errors occur. To decode, the 

decoder solves for e0  in the equation g•lT = 53  for a the 
syndrome, and li  the parity-check matrix. There are 2k  solu-

tions 

 

 to this linear matrix equation. The non-linear con-

straint of w(e) < t, where w(x) is the Hamming weight of x, 

reduces the number of solutions to one. The standard Major-

ity Logic Decoder accomplishes this reduction by deriving 

new parity-checks from the old and adding them to the parity-

check matrix H, to increase its rank. In so doing, the 

number of solutions to the above equation is reduced. This 
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process is repeated L times for a L-step MLD code, at which 

point enough new parity-checks have been added to assure that 

all the solutions give the same value of eo. Then, as the 

code is cyclic, the received word is shifted and the process 

repeated. This decoder, the sequential code reduction decoder ,[1141 

uses the cyclic property at each step. This reduces the 

combinational complexity of the decoder by making it a linear 

function rather than exponential furiction, of the number of 

steps needed for decoding. At each level, the many majority 

units are replaced by one majority unit and extra storage 

space added. The single majority unit calculates, in the 

standard way, an estimate to be used on the next level. This 

estimate, and its (n-1) cyclic shifts are stored. On the 

next level the estimate, and a linear combination of its cyc- 

lic shifts, are used as input to another majority unit. The 

process is repeated until the error digit, es:" is obtained. 

When this method is applied to PG codes of length n<2047, it 

. is possible to decode using, at each stage, 2t orthogonal 

parity-checks and one majority gate, and to correct the 

standard number of errors. This decoder requires that, at 

each level of the decoding procedure, there exists apolynom- 

ial flat which divides a set of 2t polynomial flats orthogonal 

on a flat of lower dimension at the next level. 

This algorithm has illustrated that the complexity of 

the MLD algorithm can be significantly decreased by increas- 

ing the time and storage required for decoding. 

In the next chapter we suggest a method of simplifying 

the MLD algorithm for a subclass of PG codes, based on the 

results of an analysis of the mathematical structure of the 

null space. 



79 

3.8 Conclusions  

In this chapter, we bave considered sevd'ral topics re-

lating to MLD. We began the chapter bydiscussing R-M Codes, 

a class of codes known for its simple decoding algorithm. 

It is this decoding method which forms the basis of the MLD 

algorithm. Together with examples, the MLD method was studied 

in detail. The mathematical properties of Projective Geome-

tries were dealt with. PG Codes, a subclass of the class of 

all codes which are Majority Logic Decodable, were discussed. 

A subclass of these codes are examined in the next chapter. 

We presented a general Majority Logic Decoder for PG Codes, 

emphasizing the circuitry required to implement the decoder. 

This chapter was concluded with a survey of several modifica-

tions which can be made to simplify the standard Majority 

Logic Decoder for PG Codes. 

With this background, the reader is now in a position 

to appreciate the aim of the thesis, the development of a 

simplified version of the Majority Logic Decoder for PG Codes, 

based on mathematical structures of the null space. 
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PART II  
CHAPTER 4: ORBIT STRUCTURE OF PG(5.2)  

4.1 Introduction, 

In this chapter a structural description of the flats 

of a finite Projective Geometry is presented. The background 

to this interpretation is the work of Rao[39], and Yamamoto, 

Fukuda and Hamada[581, concerning the compact representation 

of the flats of a projective geometry. The definition of a 

cycle of a flat, first introduced by Rao[39], is used to de-

fine another structure, the orbit of a set of flats. The de- 

coding method introduced in the thesis is based on these orbits. 

We begin the chapter with a review of the material from 

Rao [391and Yamamoto et al [58j which is pertinent to our study. 

In this and the next chapter we refer exclusively to the 

order-3 (63,41) PG code over PG(5,2). The cycles of this 

geometry are analysed using the theorems of Yamamoto et al. 

Based on these cycles, the orbit structure is defined. A 

' detailed investigation is made of this structure and of the 

symmetries which it exposes. Finally, it is established that 

the orbit structure is independent of the minimal polynomial 

used to define the geometry. 

4.2 ]aysAs.129.9.1Lorjsujdnitgsiggratryilata 
Rao (391and Yamamoto et al[581present a compact represen-

tation of a finite PG, based on the cycles of the flats. We 

review those results of their work which are of use in this 

study. 

The concept of a cycle of a flat was introduced by Raoj321 

to analyse the structure of a family of flats from a finite 

geometry. Yamamoto et al1581found that some of Rao's conjec-

tures were true in only certain cases. Consequently, we refer 
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to the more generalized results of Yamamoto et al in the 

following. 

Recalling the discussion of both Galois Fields and Pro-

jective Geometries, we note the following results which are 

useful in establishing certain theorems given below. We 

write q for ps, p a prime, in the following. The projective 

geometry to which we refer is PG(m,q). 

If (m+1)/(i+1) is integral for some non-negative integer 

i, then (q(1+1)-1) is the least integer u such that 

(0G)11  = 1, 

0 . (q(m+1)-1)/(q(i+1)..1). 

Hence, .0(419" is a primitive element of GF(q(i+1)) and can be 

used to give the following representation of GF(q(i+1)): 

GF(q(i+1)) = {0, oe, 	oPli+1-2)03.. 

The corresponding Projective Geometry, PG(i,q), is then: 

PG(i,q) = {(oco), (0e), ..., (0.4"(cli+1-1)/(q-1))-1)4)3. 

In particular, 

GF(q) = {0, oe, 0(1.1, 	oc (q-2)v}, 

and, 

PG(m,q) = f(0<!)). (00, 	(0J-1)3., 

where, v = (q(m+1)-1)/(q-1), the number of points in PG(m,q). 

The first (i+1) points, 

(0C3). 	(), • • • , ( oCi4) 

of PG(i,q) are linearly independent over GF(q). The set of 

all linear combinations of these points yields PG(i,q). 

If Vd(0) denotes a d-flat in PG(m,q) passing through the 

(d+1) linearly independent points: 

( o bo),  ( 0(1).1), 	(c4bd),  

then Vd(0) is the set of points given by: 

Vd(0) = f(adxbo+ avx.b1+ 	adoN)11 
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and the d-flat Vd(c) is 

	

Vd(c) = t(a004!)04:ci+ 	+ ado(?d+c),J, 

the ai  from GF(q). For some positive integer c, Vd(c)=Vd(0). 

The integer c is called a cycle of the initial d-flat Vd(0). 

This definition was introduced by Rao in[39]. In particular, 

v, the number of points in the geometry, is a cycle of any 

d-flat Vd(0) because Vd(0)=Vd(v). The minimum value of the 

cycles of a d-flat Vd(0) is called the minimum cycle (m.c.) 

of Vd(0). The following are consequences of the definition 

of a cycle: 

i) If 4 is the m.c., then it is a factor of any cycle c, 

and therefore a factor of v. 

ii) All the points of a d-flat of m.d. G can be listed 

as follows, in terms of powers of 0C : 

c 	co  +G 
	, co+(r-1)0 

Clip C/ 44,, so. 
	ci+(r-1)0 

CS, cs+4, Of* , ee(r-1)0, 

/ 0 mod 4, i j, i,j=0,1,...,s, r=v/4. This represen-

tation follows if we note that ci can be expressed as ci=co+ki, 

for some ki. If the m.c. is v, then the above representation 

reduces to the O(d,0,q) points, co,c1,...,c0(d,o,q), where 

( m+1-1 	m-1 	m-d+1_1) 
ff(m,d,q) = 	(q 	-1 	q-1 

the number of d-flats in PG(m,q). 

iii) A necessary condition for the existence of a d-flat 

with m.c. 0, 0<v, is that v=0(m,0,q), the number of points 

in PG(m,q), and 0(d,0,0, the number of points in a d-flat, 

are not relatively prime. This is actually the requirement 

that a subgeometry of ref(d,0,q) points can be formed. 
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iv) If 0 is the m.c. of a d-flat, then a d-flat consist-

ing of points obtained by,aciding the integer k, k=1,2,..., 

0-1, to all the powers of the Ws in the original flat, has 

the same m.c. 4. Thus, for ease of notation, we assume that 

co=0 and that from the initial d-flat Vd(0), the d-flats, Vd(1), 

...,Vd(0-1) can be obtained. 

We now present six theorems from Yamamoto et al [581which 

we use in the development of the orbit structure and which 

are necessary to obtain the cycles of the flats of PG(5,2) 

and PG(7,2). Each theorem is followed by a brief explana-

tion of its derivation. 

Theorem 1: If 4i is integral, 01- = (qm+1-1)/(qi+1-1),.then 

Vi (0.2 = f(ade + arei + 	+ ajo(1 )] is an i-flat of 

m.c. Oi. 

Since Oi is integral, 0C0i  is a primitive element of GF(q5-41) 

and hence, 

PG( i ,q) = (0(5)) , (oei ) 	(0(iGi) 	(,k(  WM -1  0 q-1 ) 	)0)1, 

The first (i+1) of these points are linearly independent 

over GF(q) and hence the linear combination of these points 

can be used to form PG(i,q). Thus, 

	

. Vi(0) = i(aoce + afei  + 	+ aioCi4i)) 

is an i-flat. That it has m.c. 01, is a consequence of the 

fact that any power of DC greater than i0i is necessarily a • 

linear combination of the o('s of lower power: 

Theorem 2: If a d-flat has cycle less than v, then there ex-

ists a positive integer j such that (j+1) divides both 

(m+1) and (d+1), and 47(q1"1-1)Aqi+1-1) is the m.c. of 

Vd. Further, Vd  is composed of a particular set of 

(cid+1_1)/(0+1_1 ) j-flats from the set of 0 j-flats, Vj(0), 

Vj(1),...,Vj(0-1) generated from the initial j-flat 
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/1.(0) 	1(8) 	"1 (4e 	ajc4:14)  , m.c. . 

The d-flat Vd with m.c. 0, by property ii) of the definition 

of a cycle, is written as: 

0, 4, 	j&, 	(r-1)4 

c1,c1+0,... 	 . • ., (r-1)04c1  

• 
• 
• 

cs, cs+0,... cs+je,... (r-1)0+cs, 	r=v/0. 

For some integer j, j < d, the j points (60), (4,...,(a.j4) 

are linearly independent and hence (c((j+1)0) is a linear 

combination of these points. Then, 

Vj(0) = l(ade + a1c(4  + 	+ ajo(iG)) 

is a j-flat with cycle 0. This implies that if (6(c) is any 

point of V.(0), then so is (0("ke) for any integer k. If (0(b) 

is any point in Vd, then so must be (o(b+c), as the points of 

vd are of the form k4+ci. So if (ce),(0),...,(0?),(cK,131), 

...,kbd-j) form a basis for Vd, then so also do ke),(0(51-e.), 

...(oCc+j4),(1),...,(0(e+bd-j). This implies that c is a 

cycle of Vd  since these points generate Vd  as well. And, as 

0 is the m.c. of Vd' c must be a multiple of 4, which implies 

the points cxfV -(0) can be represented as (c(o),(0),..., 

(0(j0),...,(0((r-1)4).  
Then, as the number of points in 11)(0) 

is (qj+1-1)/(q-1), we can substitute this for r and hence 

= v/r = (qm+1-1)/(qi+1-1), 

which implies (j+1) divides (m+1) since (qm+1-1) is divisible 

by (qi+1-1) if and only if (j+1) divides (m+1). Further, 

Vd consists of (s+1) j-flats, Vi(0),Vj(c1), 	,Vj(cs) with 

m.c. 4, and hence 

(s+1) = 0(d,0,q)/X(j,0,q) = (q(141-1)/(qi+1-1) 

which proves that (j+1) is a divisor of (d+1). 
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A corollary of this theorem requires terminology which 

we now define. For (i+l)tadfactor of both cm+1) and (d+1), 

Vi (0) = f(aee + avei + 	+ aio(P311)} 

is an i-flat of m.c. 9i=(qm+1-1)/(qi+1-1) from which the OI 

i-flats Vi(0),Vi(1),...,Vi(9i-1) having the same m.c. 01 

are obtained. From these Gi i-flats it is possible to select 

(di+1) = (d+1)/(i+1) 

flats for which all the respective basis points are linearly 

independent. The linear combinations of these (d+1)=(i+1)(di+1) 

points generate a d-flat with cycle ei. Such a flat is called 

a "d(i)-flat" generated from (di+1) linearly independent i- 

flats of m.c. Oi. When the (gel.) generating flats are in . 

fact (d+1) points, the corresponding flat is a d(0)-flat. 

The following corollary is an extension of Theorem 2. 

Corollary: A d-flat having m.c. 0 less than v is a d(j)-flat 

for some positive integer j. 

Theorem 3: There always exists a d-flat with m.c. v. If 

there exists a positive integer j such that (j+1) di-

vides both (m+1) and (d+1), then there exists a d-flat 

with m.c.0j  • , 

Oj  . = (q1"1-1)/(qi+1-1) < v. 

The first statement follows from the observation that (ce), 

(cC1 ),...,(04.111) are linearly independent points and hence 

Vd  = {(a004° + aloj + 	+ ado(  )J 

is a d-flat with m.c. v. The second part of the theorem is 

established in a similar manner. If we set (mj+1)=(m+1)/(j+1) 

and (d.+1)=(d+1)/(j+1), and let ot_ be a primitive element 

of GF(qm+1), then it is also a primitive element of 

GF((q.14-1)(mj+1)). Hence, the first (mj+1) points,. (c(°), 

K1),...,(0e1j) of FG(mj,qi+1) are linearly independent over 
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GF(c0+1). By selecting a particular set of (dj+1) flats, 

Vj(0),Vj(1),...,Vj(dj), from the 4j  j-flats of m.c. ej, it 

can be shown that these flats are linearly independent and 

generate a d(j)-flat of m.c. 0j. 

Theorem 4: For (j+1) a factor of both (m+1) and (d+1), if 

there is a d-flat Vd  with m.c. 0j=(qm4-1-1)/(044-1), 

then Vd  is considered both a d(j)-flat and a d(i)-flat 

for any non-negative integer i such that (i+1) divides 

(j+1), or i is 0. 

To',establish this theorem, it is only necessary to examine 

the representation of the points of the d-flat Vd. A d(j)-

flat Vd  is generated from (dj+1) linearly independent j-flats, 

Vj(c0),Vj(c1),...,Vj(cdj), where the points of a component 

Vj(cs) flat are given, in terms of powers of 04, as: 

cs, cs+4j, 	cs+(r-1)4j, 	r.=(qj+1-1)/(q-1).  

These points can be expressed in k groups as follows: 

es' 	cs  +0. cs  +(r-1)e. 

cs4-4p 	c +e—fe. s 	J, 	C811 +(r-1)e-4-4. j 

• 
• 
• 

cs+(k-1)ej, cs+Oi+(k-1)0j,..., cs+(r171)&i+(k-1)4j, 

where i is given in the theorem, ei=(qm+1-1)/(qi+1-1)=kej, 

k=(cd+1-1)/(q1+1-1), and ri.(q1+1-1)/(q-1). Each of the 

above k groups is an i-flat with m.c. ei. Thus, Vj(cs) is 

composed of k i-flats of m.c. ei, Vi(cs),Vi(cs+ej), 

Vi(cs+(k-1)ej). And hence, Vd  is a d(i)-flat for any i such 

that (i+1) divides (j+1), or i is zero. 

The above theorems guarantee that the totality of d(i)-

flats not only contains d(i)-flats of m.c. ei  but as well, 
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d(j)-flatsofm.c..e.foranyintegerjsuchthat0i divides 

ei. To obtain ni, the number of d(i)-flats of m.c. el, ni, 

the number of d(j)-flats of m.c. ei, must be subtracted from 

ni, the number of d(i)-flats. The next theorem gives the 

value of ni. 

Theorem 5: The number of d(i)-flats is ni=0(mi,di,q5-11), 

where mi=((m+1)/(i+1))-1, di=((d+1)/(1+1))-1. 

That. ni  is as given, can be established by an enumeration 

argument. The first of the linear independent i-flats can 

be chosen in 0i=(qm+1-1)/(q1+1-1) ways, the second in (ei-1) 

ways, the third in 

(q2(i+1)..1) 

ei - 	(0.+1_1) 

ways, and so on, where this selection is simply ensuring the 

linear independency of the i-flats. The total number of ways 

of choosing the (di+1) linear independent i-flats is 

T(01) = 4i(0i-1)(4i - (q2(1.1.1)-1)1 	(ei - Ndi(i+1)-1) 
(qi+1-1) ' 	(q1  -1) 	

). 

Now, as each d(i)-flat is composed of si=(qd+1-1)/(qi+1-1) 

i-flats which can be generated by any one of 

T(si) = si(si-1)(si  - (m2q+1)-1)) 	(si  - (mdi(i+1)-1)1 
(1.0.+1_1) • 	- 	(m1+1_1) 

sets of.(d1+1) independent i-flats, the number of d(i)-flats 

with cycle 01 is 

• (Qimi+1-1)(Qimi-1)...(Qimi-di+1-1) 
ni  = T(01)/t(si) = 

= 

where Q.=qi+1  

The above five theorems establish the following theorem 

which we use to obtain the cycle structure of flats in PG(5,2) 

and PG(7,2). 
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Theorem 6: 1) If (m+1) and (d+1) are relatively prime, then 

all the d-flats of PG(mA) have m.c. v and can be gener-

ated from ,L=0(m,d,q)/v initial d-flats. 

2) If the Highest Common Factor (HCF) of (m+1) and (d+1) is 

Al es2 	Ae 
P1 P2 '" Pe 	) 1' 

the pi  primes such that pi<pi+1, i=1,...,e-1, then the 

number of distinct m.c.'s is 

-TT (1 + fii ). 
i.1 

Let 
0( x1,...,xe ) = (q"1-1)/( qP1x1p2x2. ..pexe 	1) 

= ((m+1)/(P1x1P2x2"'Pexe))-1)  
d(xl,...,xe) = ((d+1)/(p1x1...pexe))-1 

q(xl,...,xe) = (qP1x1 	Pexe): 

Then the number of d(pixl...pexe)-flats having the cycle 

0(xl,...,xe) and m.c. 0(x1,...,xe) are respectively 

n(xl,...,xe) = 0(m(x11...,xe),(d(x1,...,xe),q(x1,.xe)) 

n*(/91,...,4) = n(41,...,;) 

n*(xl,...,xe) 0 n(xl,...,xe) - 	)77  n*(yi,...,ye). 

	

x 	tej , 

The number of initial d-flats of any m.c.e(xl,...,xe) 

is 7(x1,...,xe)=n*(x1,...,xe)/4(xl,...,xe) from which 

the totality of d-flats having m.c. 0(x1,-...,xe) can 

be generated. 

The theorems of Yamamoto et alj,58]provide a means of parti-

tioning the flats of a finite projective geometry. In the 

following, we extend this concept and develop a non-ortho-

gonal decoding method for order-(m-2) PG codes over PG(m,2). 
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4.3 Cycle Description of PG(5.2)  

We now apply the results obtained in Section 4.2 to the 

PG(5,2). We begin by finding the cycles of the 3-flats of 

PG(5,2). These flats form the null space of the order-3.  

(63,41) PG code over PG(5,2), which, 'in Chapter 5, is decoded 

using a decoding algorithm related to the cycles of the flats. 

The null space 3-flats are obtained and partitioned using 

Yamamoto et al's[58J sixth theorem for m=5, d=3 and ps=q=2. 

The second part of Theorem 6 is applied for the 3-flats 

since the highest common factor of (m+1,d+1) is 

HCF(6,4) = 2 / 1. 

Using this theorem, we obtain the number of distinct cycles, 

the values of the cycles, the number of 3-flats with a given 

cycle and the number of initial 3-flats (i3f) of PG(5,2). 

Since p1=2 and A1=1, the number of m.c.'s is (1+1)=2. From 

the third theorem above, we know that one of the m.c.'s is 

v=63. For x1=1 and x1=0 in Theorem 6 we have: 

x1=1 	 x1=0 

e(1) = (26-1)/(22-1) = 21 	0(0) = (26-1) = 63 

q(1) ='22  = 4 	q(0) = 2 

n*(1) = n(1) = g(2,1,4) = 21 	n(0) = 0(5.3,2) = 651 

A.(1) = 21/21 = 1 	n*(0) = 651-21 = 630 

(0) = 630/63 = 10. 

These calculations show that there are ten 13f's of m.c. 63 

and one i3f of m.c. 21. Each of the ten i3f's of m.c. 63 

generates 63 distinct 3-flats. Recalling the discussion on 

Projective Geometries, we note that each 3-flat can be repre-

sented by a 63-tuple of zeros and ones. In the 63-tuple, 
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each position refers to a point of the geometry. A one ap-

pears in each position which corresponds to a point in the 

3-flat. The resulting 63-tuple is an incidence vector of the 

3-flat. We let (o0.) refer to the point in position i, i=0, 

1,...,62, c a primitive element of GF(26). In the remainder 

of the thesis a point is referrred to as i, rather than 0), 

i=0,1,...,62, and a flat as a set of these points listed in 

ascending order of magnitude. The incidence vectors of the 

63 flats generated by an i3f of m.c. 63 are obtained by cyclic-

ally shifting the i3f incidence vector i positions to the 

left for i=0,1,...1 62. The point representations of the 

flats are generated by subtracting i from each i3f mod 63, 

i=0,1,..., 62. Similarly' the 21 3-flats generated from the 

i3f of m.c. 21 are obtained by cyclically shifting the inci-

dence vector of the i3f i positions to the left, or subtract-

ing i, mod 63, from the point representation of the i3f, 

1=0,1,...,20. 

The PG codes are cyclic and so, when decoding them, it 

is only necessary to consider those 3-flats in the null space 

which contain the point 0. This reduction of the null space 

is possible because once the digit in position 0 has been 

decoded, the codeword can be shifted once and the same pro-

cedure used to decode the next digit. Thus, for each of the 

ten i3f's of m.c. 63, we need generate only the fifteen 3-

flats which intersect on 0. That there are fifteen such 

flats can be established by the following argument. Each 3-

flat has 0(5,0,3)=15 points, which can be represented by the 

integers (io05-1"—"i14)6 By successively subtracting 

j=0,1,...1 14, mod 63, from the point representation of the 

flat, fifteen distinct 3-flats thrOugh the point 0 are obtained. 

Referring to Theorem 2 above, we note that the i3f of 
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m.c. 21 is composed of five 1-flats, one of which contains 

the point 0. The other four flats are shifted versions of 

the first. In terms of initial flats, the first 3-flat 

through 0 can be written as V3(0) and hence the others as 

V33. (c-) for the four positive integers ci, i=1, 	After 

shifting the first five incidence ones to position 0, the 

digits in the incidence vector must again be in the same 

relative positions because the points not in V3(0) are simply 

shifted versions of these points. If we continue to shift 

the 63-tuple, the same five 3-flats are generated a second 

time. As a result, the i3f of m.c. 21 generates only five 

• distinct 3-flats passing through the point 0. 

In later sections, the cycle description of the 1-flats 

of PG(5,2) is required. Thus, we apply Theorem 6 above for 

d+1. In this case, (d+1)=2, so 

HCF(m+1,d+1) = HCF(6,2) = 2 

and again there are (1+1)=2 distinct cycles, one of which . 

must be 63, by Theorem 3. Applying Theorem 6 for x1=1 and 

x1=0 we have: 

x1=0 . 

21 	0(0) = (26-1)/(2-1) = 63 

m(0) = (6-1) = 5 

d(0) = (2-1) = 1 

q(0) = 2 

= 21 	n(0) = 0(5,1,2) = 651 - 

A.(1) = 21/21 = 1 	n*(0) = 651-21 = 630 

AJO) = 630/63 = 10 

Interpreting the above, there are ten ilf's of m.c. 63 and 

one ilf of m.c. 21. Again each i1f of m.c. 63 generates 63 

1-flats and the i1f of m.c. 21 generates 21 1-flats. If we 

x1=1 

= 0(1) = (26-1)/(22-1) 

m(1) =.((5+1)/2)-1) 	= 2 

d(1) = (2/2)-1 = 0 

q(1) = 22  = 4 

n*(1) = n(1) 	= 91(2,014) 
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consider the 1-flats as those flats which are obtained after 

two levels of majority logic decoding, then, as for the 3-
flats, it is only necessary to know the 1-flats which pass 

through O. As there are 0(5,0,1)=3 points in each 1-flat, 

we need only consider the three 1-flats generated from each 

ilf of m.c. 63 which contain the point O. From Theorem 2 

above, the i1f with m.c. 21 is the flat (a00(0  + a1x.21), 

ao  and al from GF(2). Irrespective of the minimal polynomial 

chosen to represent PG(5,2) the points of this flat are 0, 

21 and 42. That this is so, is established in Section 4.6.  

Thus, as for the 3-flat case, cyclically shifting this flat 

21 positions•to obtain a one in position 0 of the incidence 

vector, gives the i1f with which we began. As a result, the 

ilf of m.c. 21 has only one distinct flat 'which passes through 

the point O. 

In the following section we develop further the ideas 

presented here. 

4.4 Orbits of PG(5.2)  
In this section we introduce the orbits, the structures 

which form the basis of the simplified decoder of the Pro-

jective Geometry Codes. First, however, it is necessary to 

define the transformation Z. We denote by Z that transforma-

tion which takes the point representation of an i-flat, Vi, 

and subtracts 1 from each point, mod (011+1-1), to give the 

i-flat Z(Vi) in PG(m,2), where in this chapter m=5. This 

corresponds to dividing the polynomial representation Vi(X) 

of the i-flat Vi  by X, mod (X63-1), or, to cyclically shifting 

the incidence vector of Vi one position to the left. For Vi 

an i-flat, we define Zn  by 

Zn(Vi) = Z(Zn-1(Vi)), 	n>1. 
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The set 

(Z,Z2, ...,z63=zo=e1 

forms a group over the set of all i-flats in PG(5,2). For 

i=3 and i=1, this group partitions the i-flats into orbits, 

where each orbit corresponds to one of the iif's and the i-

flats generated from it. Thus, there are ten orbits with 63 

members each and one orbit with 21 members. For decoding 

purposes, we are interested only in those flats containing 

the point O. Therefore, we define a 01-orbit to be the sub-

set of an orbit consisting of only those i-flats in which the 

point 0 occurs. The 'Oi' in the term '01-orbit' refers to 

the fact that the constituent flats are i-flats through the 

point O. 

For i=3, each of the 03-orbits of flats with m.c. 63 has 

fifteen members. The 03-orbit corresponding to the i3f of 

m.c. 21 has five members. The 01-orbits with flats of m.c. 

63 have three members each, the 01-orbit with the flat of 

m.c. 21 has one member. These observations follow from the 

discussion in Section 4.3 concerning the number of flats 

which pass through the point O. • 

Thus, there is a one to one correspondence between the 

eleven orbits and the eleven iif's and between the 0i-orbits 

and the iif's through the point 0, i=1,3. 

To illustrate these concepts, we list the 01-orbits of 

PG(5,2) in Table 4.4.1, where the 1-flats are given using the 

exponential representation. The three 1-flats contained in 

any given 01-orbit are labelled 'a', 'b' and 'c', where the 

'a' 1-flat is the ilf of the 01-orbit, and the 'b' and 'c' 

flats are obtained by applying the transformation Z succes-

sively to the ilf until two 1-flats through the point 0 are 
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obtained. The 01-orbits are numbered (11),(21),...,(111), 

where the subscript denotes the dimension of the constituent 

flats. The 1-flats a, b and c of (t1) are referred to as 

tia, tib and tic, respectively, t=1,...,10. The single 1-

flat in (111) is labelled 111a. The'eleven 01-orbits are 

grouped into four distinct classes 	the 

subscript denoting the dimension of the flats in the class. 

These classes are defined later. 

(11)a: 0 1 6 
(21)

a: 	0 2 12 (30a: 0 4 24 
bs 0 5 62 bs 0 10 61 b: 0 20 59 

• c: 0 57 58 c: 	0 51 53 c: 0 39 43 
I1  (4,) 

'I' 	a: 0 8 48 
(51)a: 	0 16 33 (61)a: 0 3 32 

b: 0 40 55 b: 	0 17 47 ' 	b: 0 31 34 
c: 0 15 23 c: 	0 30 46 c: 0 29 60 

(71)a: 0 7 26 
(81) 

a: 	0 14 52 (91)a: 0 28 41 
II1  .b: 0 19 56 b: 	0 38 49 b: 0 13 35 

c: 0 37 44 c: 	0 11 25 c: 0 22 50 

(10, ) 
' a: 0 9 45 INT1  t(111) 

III1 b: 0 36 54 a: 	0 21 42 
c: 0 18 27 

Table 4.4.1: 01-orbits of PG(5,2), minimal poly-
nomial (0 1 6) 

We note that the minimal polynomial used in the representa-

tion of PG(5,2) given in Table 4.4.1 is m(X)=1+X+X6. Through-

out the thesis this minimal polynomial is used to represent 

PG(5,2). We show in Section 4.6 that the representation of 

PG(5,2) is well-defined, that is independent of the minimal 

polynomial chosen to represent it. This implies that the 

O.-orbit structure is identical for each representation of 

PG(5,2). 

The 1-flats of Table 4.4.1 are generated by selecting 
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two independent points, one of which is 0, and forming the 

corresponding 1-flat. This flat is then cyclically shifted 

to form the 01-orbit. Once an ilf from each of the classes 

and III1  is found, the remaining ilf's in each of these 

classes are formed by multiplying the exponent set of each of 

the i1f's by 2, mod 63, successively until all the initial 

flats are obtained. This process is explained in more detail 

below. Computer programs were written to generate the i-flats 

in the geometry and to partition them into Oi-orbits, 

We now exhibit a most interesting and useful correspon-

dence between the 01-orbits and the 03-orbits. 

In any 03-orbit of m.c. 63, the element 0, by construe-

tion,-is present in all fifteen of the 03-orbit 3-flats. In-

spection of the point sets of each of these 03-orbits shows 

that a set of six of the 62 non-zero points of the geometry 

occurs seven times and the remaining 56 elements each occur 

only three times. Moreover, the set of six points which 

occurs seven times in a given 03-orbit is distinct from the 

set which occurs in any other 03-orbit. An analysis shows 

that each such set consists of the six non-zero points of a 

particular 01-orbit. Thus, a one to one correspondence can 

be established between the 03-orbits of m.c. 63 and the 01- 

orbits of m.c. 63, where an orbit is said to have the m.c. 

of its constituent fiats. The 03-orbits are therefore num-

bered (13),(23),...,(103) to exhibit this correspondence. 

The 03-orbit (t3) contains the six non-zero points of the 

01-orbit (t1) seven times, t=1 ..... 10. The 03-orbit of m.c. 

21 corresponds to the 01-orbit (111). It repeats the two 

non-zero points of (111) five times each, that is points 21 

and 42 appear in each of the five 3-flats which compose (11
3
). 

Every other non-zero point of the geometry appears once only. 
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Of the fifteen 3-flats in any 03-orbit (t3) of m.c. 63, 

there are two 3-flats which do not contain a 1-flat from (ti), 

t=1,...,9. For the purposes of this study we omit these two 

3-flats and refer to the 03-orbit (t3) as the thirteen 3-flats 

which intersect on 0 and contain at least one 1-flat from (t1). 

We now investigate the structure of the 03-orbits (13) 

through (93). The 3-flats of each 03-orbit (t3), t=1,...,9, 

can be ordered so that, representing each 3-flat by the 1- 

flats a, b and c of (t1) that it contains, the following des-

cription of the 3-flats in terms of the 1-flats is obtained: 

at a,b,b,c,c,ab,abt ac,ac,bc,bc,abc. 

In this representation, a single letter indicates that only 

one (t1) 1-flat is present in the (t3) 3-flat, a pair of 

letters that two (t1) 1-flats are in the (t3) 3-flat and abc 

that all three (ti) 1-flats occur in the (t3) 3-flat. More 

explicitly, the 1-flat tia is the only(t1) 1-flat in two of 

the thirteen 3-flats of (t3), appears with the 1-flat t1b 

twice and with the 1-flat tic 'twice. All three 1-flats oc-

cur together in one of the thirteen 3-flats. Observing this, 

each 0
3
-orbit (t3) can be divided into three intersecting 

subsets, At, Bt, Ct, where, for example, the set At  consists 

of the (t
3
) 3-flats, in the representation above, which con-

tain the (t1) 1-flat a: 

a,a,ab,ab,ac,ac,abc. 

Thus, At is the subset which contains the seven 3-flats 

which intersect on t1a. Flats t1b and t1c occur three times 

each in At. We refer to the elements which occur seven times 

as 7-repeats and those which occur three times as 3-repeats. 

The remaining points of a given subset are either 3-repeats 

or 1-repeats of points not in (ti). 

We note that the subsets At, Bt  and Ct  are not ortho- 
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gonal on t1a since there are three occurrences of the 1-flat 

tib and of the 1-flat tic in the seven 3-flats composing At. 

We illustrate later the advantages of the non-orthogonal or-

bit structure for decoding. 

The thirteen 3-flats in (t3) are labelled to reflect 

further the correspondence of (t3) with (t1), t=1,...,9. 

Each 3-flat in (t3) contains at least one 1-flat from(t1). 

We label the 3-flats of (t
3
) with the label of these contained 

(t1) 1-flats. In (t3) there are two 3-flats which contain 

each of the 1-flat groups a,b,c,ab,ac,bc from (t1). These 

two 3-flats of (t3) are distinguished by the subscripts 'i' 

and 'ii'. For example, the 3-flats of (t3) which contain 

both tia and tib are denoted as t3abi and t3ab11. 

In the discussion of the 03-orbits, we have omitted 

(10
3
) and (113). This is due to the unique structures of 

both these orbits. These structures allow (103) and (113) 

to be used for a special purpose in the decoding algorithm. 

We now describe the structures of these two 03-orbits. Al-

though every non-zero point of (101) appears seven times and 

the other points of the geometry,three times each in (103), 

the repeat pattern of the 1-flats a, b and c of (101) is, 

using the representation above: 

abc,abc l abc,abc,abc,abc,abc, 

that is, all six non-zero elements of (101) appear in seven 

of the 3-flats of (103) and do not appear at all in the re-

maining eight 3-flats of (103). We omit those 3-flats in 

(103) which do not contain a 1-flat of (101), to yield seven 

members only in (103). Consequently, in (103) there is only 

one subset, say A10, consisting of seven 3-flats, all of 

which contain the 1-flats 101a, 101b and 101c. The same 
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lettering method is used to label the 3-flats of (103) as 

was used for the (t3) 03-orbits, t=1, 	However, it is 

less illustrative in this case since all the seven 3-flats 

are labelled 103abc' with subscripts.i _,__,...,vii. 

In (113) we have the single 1-flat 111a occurring in 

each of the five 3-flats. Thus, each of the 3-flats is la-

belled 113a, 
with subscripts i,ii,iii,iv,v. 

In the next section we analyse the 03-orbits in terms 

of the 01-orbits, illustrating the numerous symmetries made 

apparent by this arrangement of the 3-flats. 

4.5 Symmetries in the PG(5.21 0i-Orbits 

The analysis of PG(5,2), based on the 0i-orbit structure, 

is completed below. A second transformation, which operates 

on the flats represented as point sets, is introduced, allow-

ing for a further investigation of the symmetrical properties 

of the 0i-orbits. 

We introduce the analysis of the 0i-orbits with Tables 

4.5.1 and 4.5.2 which illustrate several symmetries of the 

0k-orbits. The first Table, Table 4.5.1, consists of.the 7- 

repeats and 3-repeats of each 03-orbit. In Table 4.5.2, each 

0
3
-orbit 3-flat is represented in terms of its constituent 

01-orbit 1-flats. 

	

7-repeat 	3-repeats 

	

subset 	(as 1-flats) 
0
3
-orbit 

(13) 	Al 	lb lc 2a 3b 7a 8c 
B1 	la lc 2b 3a 7b 8c 
C1 	la lb 2c 3b 7b 8a 

(23) 	A2 	2b 2c 3a 4b 8a 9c 
B2 	2a 2c 3b 4a 8b 9c 
C2 	2a 2b 3c 4b 8b 9a 



(33) 	
3b 3c 4a 5b 9a 7c 

B5 	3a 30 4b 5a 9b 7c 
13 
	

• 	C3 	3a 3b 4c 5b 9b 7b 

( 3) 
 A.4 	4b 4c 5 	

7a 8c 
a 6b b 8c 

B4 	ka 4c 5b 6a 7  
C4 	4a 4b 5c 6b 7a 8b 

(53) 	A5 	5b 5c 6a lb 8b 9c 
B5 	5a 5c 6b la 8a 9c 
C5 	5a 5b 60 lb 8a 9b 

(63) 	A6 	6b 6c la 2b 9b 7c 
B6 	6a 6c lb 2a 9a 7c 
C6 	6a 6b lc 2b 9a 7a 
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(73) 	A7 	7b 7c 8a 10a 2c 5a 
B7 ,,, 	7a 7c 8b 10a 2a 5c 
C7 	7a 7b 8c 10c 2c 5c 

( )- 	A8 	8b 8c 9a 10c 3c 6a 
113 	B8 	8a 8c 9b 10c 3a 6c 

C8 	8a 8b 9c 10b 3c 6c 

(93) 	A9 	9b 9c 7b 10b 4c la 
B
9 	

9a 9c 7a 10b 4a is 
C9 	9a 9b 7c 10a 4c lc 

A10 

1-repeats  

2b 5b lc 4c 
3b. 6b .2c 5c 
4b lb 3c 6c 

la 4a 8a 8b 
2a 5a 9a 9b 

.3a 6a 7a 7b 

7c 8c 9c lla 

5-repeat 
subset 

(113) 	A11 . 	is 4c 2a 5a 7c 10b 
2c 5c 3a 6a 8c 10a 

IV
3 	

3c 6c la 4a 9c 10c 

lb 3b 5b 7a 8b 9a 
41) 6b 2b 7b 8a 9b 

Table 4.5.1: 7-repeats and 3-repeats of I , II 
7-repeats and 1-repeats of 311113 
5-repeats and 1-repeats of IV3  ' 

Note: The subscript "1" has been omitted on the 3/1-repeat 

column as all the constituent flats are 1-flats. 
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01- 	(t1) 3- 	1-flats in ji  

	

orbit flat j 	  
.L.3/_ 	 

(13 ) 	a 	la 2a 4a 6a 7a 9b 10c 
b 	lb 2b 3a 4c 6a 6c 10a 

lc 2c 4a 5b 5c 8a 10a 
ab 	la lb 2a 5b 6b 7a 8c 
ac 	la is 2a 3b 6c 7a lla 
be 	lb is 2b 3a 4b 7b 10c 
abc la lb 10 3b 7b 8c 9a 

(23 ) 	a 
b 

ab 
ac 
be 
abc 

(33)' 	a 

13 	
ab 
ac 
be 
abc 

(43) 	a 

ab 
ac 
be. 
abc 

(53 ) 	a 

ab 
ac 
be 
abc 

(63) 	a .  

ab 
ac 
be 
abc 

(73) 	a 

ab 
ac 
be 
abc 

3a 4a 6a 2a 9a 8a 10a 
3b 4b 5a 6c 2a 2c 10b 
3c 4c 6a lb lc-7b 10b 
3a 3b 4a lb 2b 9a 7c 
3a 3c 4a 5b 2c 9a lla 
3b 3c 4b 5a 6b 9b 10a 
3a 3b 3c 5b 9b 7c 8b 

4a 5a la 3a 7b 9a 10c 
4b 5b 6a lc 3a 3c 10a 
4c 5c la 2b 2c 8b 10a 
4a 4b 5a 2b 3b 7b 8c 
4a 4c 5a 6b 3c 7b lla 
4b 4c 5b 6a lb 7a 10c 
4a 4b 40 6b 7a 8c 9b 

5a 6a 2a 4a 8b 7b 10b 
5b 6b la 2c 4a 4c 10c 
5c 6c 2a 3b 3c 9b 10c 
5a 5b 6a 3b 4h 8b 9c 
5a 5c 6a lb 4c 8b lla 
5b 5c 6b la 2b 8a 10b 
5a 5b 5c lb 8a 9c 7a 

6a la 3a 5a 9b 8b 10a 
6b ib, 2a 3c 5a 5c 10b 
6c lc 3a 4b 4c 7a 10b 
6a 6b la 4b 5b 9b 7c 
6a 6c la 2b 5c 9b lla 
6b 6c lb 2a 3b 9a 10a 
6a 6b 6c 2b 9a 7c 8a 

7a 3b 4b 4c 5a 8a lla 
7b lb is 2a 6b 8b lla 
7c la lb 4a 4b 8c 1.0c 
7a 7b la 2a 8b 9a 10a 
7a 7c 2c 6a 6b 8c 10c 
7b 7c 2a 3c 4c 5c 8b 
7a 7b 7c 2c 5c 9c 10a 

1-flats in jii  

la 3c 4b 7c 8b 9c 10a 
lb 3c 4a 7c 8b 10b 11a 
is 3c 5a 6a 6b 7c 8b 
la lb 2b 3a 5a 5c 8c 
la 1c 2c 3b 4c 8a 10b 
lb is 2c 7b 8a 9b 9c 

3a 5c 6b 9c 7a 8c 10b 
3h 5c 6a 9c 7a 10c lla 
3c 5c 1a 2a 2b 9c 7a 
3a. 3b 4h 5a la to 7c 
3a 3c 4c 5b 6c 7b 10c 
3b 3c 40 9b 7b 8a 8c 

4a 6c lb 7c 8a 9c 10a 
4b 6c la 7c 8a 10b lla 
4c 6c 2a 3a 3b 7c 8a 
4a 4b 5b 6a 2a 2c 8c 
4a 4c 5c 6b lc 8b* 10b 
4b 4c 5c 7a 8b 9a 9c 

5a is 2b 8c 9a 7c 10c 
5b is 2a 8c 9a 10a lla 
5c is 3a 4a 4b 8c 9a 
5a 5b 6b la 3a 3c 9c 
5a 5c 6c lb 2c 9b 10a 
5b 5c 6c 8a 9b 7b 7c 

6a 2c 3b 9c 7b 8c 10b 
6b 2c 3a 9c 7b 10c lla 
6c 2c 4a 5a 5b 9c 7b 
6a 6b lb 2a 4a 4c 7c 
6a 6c be 2b 3c 7a 10c 
6b 6c is 9a 7a 8b 8c 

7a lb 2b 3a 3c 5b 10b 
7b 2b 4b 5b 6a 6c 10b 
7c 2b 5b 9a 9b 10b lla 
7a 7b 4a 5a 8a 9b 10a 
7a 7c is 2c 5a 6c 8a 
7b 7c 3a 3b 5c 8c 10c 

2a 3a 5a la 8a ?a 10b 2a 4c 5b 8c 9b 7c 10c 
2b 3b 4a 5c la is 10c 2b 4c 5a 8c 9b 10a lla 
2c 3c 5a 6b 6c 9a 10c 2c 4c 6a la lb 8c 9b 
2a 2b 3a 6b lb 8a 9c 2a 2b 3b 4a 6a 6c 9c 
2a 2c 3a 4b 1c 8a lla 2a 2c 3c 4b 5c 9a 10a 
2b 2c 3b 4a 5b 8b tOb 2b 2c 3c 8b 9a 7a 7c 
2a 2b 2c 4b 8b 9c 7b 
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8
3
) 

11
3 

(93) 

a 	8a 4b 5b 5c 6a 9a lla 8a 2b 3b 4a 4c 6b 10a 
b 	8b 2b 2c 3a lb 9b lla 8b 3b 5b 6b la lc 10a 
c 	8c 2a 2b 5a 5b 9c 10b 8c 3b 6b 7a 7b 10a lla 
ab 8a 8b 2a 3a 9b 7b 10c 8a 8b 5a 6a 9a 7a 10c 
ac 	8a 8c 3c la lb 9c 10b 8a 8c 2c 3c 6a is 9a 
be 8b 8c 3a 4c 5c 6c 9b. 8b 8c 4a 4b 6c 9c 10b 
abc 8a 8b 8c 3c 6c 7c 10c 

a 	9a 5b 6b 6c la 7b lla '9a 3b 4b 5a 5c lb 10c 
b 	9b 3b 3c 4a 2b 7a lla 9b 4b 6b lb 2a 2c 10c 
c 	9c 3a 3b 6a 6b 7c'10a 9c 4b lb 8a 8b 10c lla 
ab 9a 9b 3a 4a 7a 8b 10b 9a 9b 6a la 7b 8a 10b 
ac 9a 9c 4c 2a 2b 7c 10a 9a 9c 3c 4c la 2c 7b 
be 9b 9c 4a 5c 6c is 7a 9b 9c 5a 5b is 7c 10a 
abc 9a 9b 9c 4c lc 8c 10b 

Table 4.5.2: 0 -orbits expressed as 1-flats for 
lasses 1

3 
and 113. 

Before analysing these Tables, we define the transfor-

mation g. We denote by g that transformation which assigns 

to any point (ani) of the geometry, the point (cei), the ex-

ponents mod 63. Using the exponent representation mentioned 

earlier, we say that g takes any point i to the point 2i, mod 

63, that is 

g(i) = 2i 

gn(i) = g(gn-1 (i)), 	n>1. 

The group G of transformations is then 

g2,...,g6=go=e1,  

where gi is 2i. We note that g6=26  is the identity because, 

for 04! a primitive element, <63=1 and hence 0d54= 1  or 

26=1, mod 63. The group G operates on the 3-flats and 1-

flats by operating on each point of the flat. Thus, we can 

write g as a function of a flat. For example, 

g2(11a) = g(g(11a)) = g(g(0 1 6)) 

= g(0 2 12) = g(21a) = (0 4 24) = 31a. 

We observe that the transformation g is a one to one trans-

formation of the set of all Ocorblt.i-flats to itself, that 

is g is a permutation. For example, g establishes the 
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following mappings: 

11a 	21a, 	21a 	31a, 	31a -44/a, 

41a -4 51a, 	51a 	 61a -4 11a, 

which can be written as the cycle (11a 21a 31a 41a 51a 61a), 

of order six, where the order of a cycle is the number of el-

ements in the cycle. We note that the term cycle used here 

is distinct from the cycle of Yamamoto et al[58]. The cor-

rect usage is determined by the context. By applying the 

transformation g to the 1-flats of each 01-orbit, the 1-flats 

can be divided into the four disjoint cycle classes, 11,111, 

III1 and IV1, given in Table 4.5.3. 

Class 
	

1-flat Cycles 	Order of Cvcle 

(la 2a 3a 4a 5a 6a) 	6 
(lb 2b 3b 4b 5b 6b) 	6 
(1c 2c 3c 4c 5c 6c) 	6 

II1 	(7a 8a 9a 7b 8b 9b) 	6 
(7c 8c 9c) 	3 

III1 	(10a 10b 10c) 	3 

IV1 	(11a) 	 1 

Table 4.5.3: 1-flat.Cycles 

Similarly, g can be applied to the 3-flats of each 03-orbit 

to give the classes 13, 113, 1113, 1V3. We note that in 13, 

the subscripts 'i', 'ii' on the 3-flats can be omitted as 

g takes 'i' ('ii') 3-flats only to 'i' ('.ii') 3-flats. This 

is also true in the I13  class for all but the 73abi, 73aci 

and 73  loc.1  cycles. For the three cycles mentioned, g takes 

an 'i' 3-flat to an 'ii' 3-flat and hence the subscripts must 

be included. For example, we have (7 ab1  . 8 ab. 9 ab. 7 ab.. 3 	3 1 3 	3 11 

83abii  93acii). The 3-flat cycles are listed in Table 4.5.4. 

The seven 3-flats in (103) are distinguished by the subscripts 
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i,ii,...,vii, where, in Table 4.5.1 they appear in this order. 

The five 3-flats of (113a) are subscripted similarly. In 

Table 4.5.1, the five 3-flats of A11 appear in the order i, 

ii,iii,iv,v. 

Class 	3-flat Cycles 	Cycle Order 

13 	(13a 23a 33a 43a 53a 63a) 	6 
(13b 23b 33b 43b 53b 6qb) 	6 
(13c 23c 33c 43c 51c 65c) 	• 	6 
(13ab 23ab 33ab 43db 53ab 63ab) 	6 
(11ac 23ac 33ac 41ac 53ac 63ac) 	6 
(15bc 23bc 33bc 4-ibc 53bc 63bc) 	6 
(13abc 23abc 33abc 43abc 53abc 63abc) 	6 

113 	(73a 83a 93a 73b 83b 93b) 	6 • , l73c 83c 91c) 	 3 
• (73abi 83abi 93abi 73abii 83abii 93abii) 	6 
(73aci 83aci 93aci 73bcii 83bcii 93bcii) 	6 
(73bci 83bci 93bci 73acii 83acii,93acii) 	6 
(73abc 83abc 93abc) 	 3 

1113 	(103abci 103abcii 103abciii) 	3 
(103abciv  103abcv  103abcvij 	3 
(103abcvii) 	 1 

IV3 	
(113ai 111aii 113aiii) 	3 
(113aiv  113av) 	 2 

Table 4.5.4: 3-flat Cycles 

Referring to Table 4.5.3 and Table 4.5.4, we observe 

that the cycle structure can be represented at a gross level 

as: 

Ig: (1 2 3 4 5 6) 

lig: (7 8 9) 

III g: (10) 

IVg: (11), 

where the cycle element t refers to the 01-orbit (ti), i=1,3, 

t=1,2,...,11, and the subscript g denotes that these cycles 

are induced by the transformation g. 

The structure of cycles and orbits forms the basis of 
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the simplified decoding method presented in the next chapter. 

The set of 3-flats, expressed as 01-orbit 1-flats, that were 

selected from the null space and arranged in the 03-orbits, 

have many symmetric interpretations. We now discuss these 

symmetries in detail and later show that a knowledge of them 

greatly reduces the complexity of the Majority Logic Decoder 

for the PG code based on PG(5,2). Moreover, the 0i-orbits 

provide for a mathematically interesting analysis of the 

composition and structure of the flats of PG(5,2). 

In order to provide a more pr'ecise analysis of the sym-

metrical properties of the 03-orbits, we introduce more term-

inology. The 01-orbit (101), as we noted earlier, plays an 

important role in the decoding process of Chapter 5. Also, 

it partitions the 01-orbit 1-flats into distinct blocks of 

flats, such that no 1-flat, except from (101), appears in 

more than one block. We refer to these blocks as symmetry 

blocks because they are the basis of many of the symmetric 

distributions found in the 03-orbits and because sets of er-

rors which have the same symmetric block composition are 

treated similarly by the decoder. The symmetric blocks are 

the 1-repeat 1-flats of (103), plus the 1-flats of (101). 

Si: 2b 5b lc 4c 
S2: 3b 6b 2c 50 
S3: 4b lb 3c 6c 

Sio la 4a*  8a 8b 
Sg: 2a 5 	9 9 a a b 
S6: 3a 6a 7a 7h 

S7: 7c 8c 9c lla 

S8: 10a 10b 10c 

Table 4.5.5: Symmetry Blocks of PG(5,2) 
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In the following analyses, the symmetry blocks play an im-

portant role. In particular, those pairs of 1-flats in sym-

metry blocks Si  to S6 from the same cycle of I1 or III, for 

example lc 4c in Si, are symmetrically distributed in the 

03-orbits. The members of S7 represent the two distinct 

cycles, (7c 8c 9c) and (11a). As the symmetry blocks are of 

prime importance, both in the analysis of 01-orbit symmetries 

and in the defining of the 0i-orbit decoder, we investigate 

them in more detail. The symmetry blocks bring to light the 

fact that each element of an ordei 6 cycle is symmetrically 

related to the element in the cycle three cycle positions 

away. If we examine the cycle in II1  of order 6, (7a 8a 9a 

7b 8b 9b), we observe that this can be considered to be 

composed of an 'a' semi-cycle plus a 'b' semi-cycle, each of 

order 3. Here, the element 7a, after 3 cyclic shifts does 

not reappear. However the element that does, 7b, is from 

the same 01-orbit as 7a. We refer to the element ti p as 

the symmetric relative of t1j, for t=7,8,9, j=a,b and j'=a(b) 

if j=b(a). To complete the definition for the II1 class, we 

say that tic is the symmetric relative of tic, t=7,8,9. 

Any two symmetric relatives are separated by three cyclic 

shifts. The same terminology can be used to describe the II.  

cycles. If we look again at the symmetry blocks, we note the 

pairing of cycle members of I1  which are separated by three 

cycle shifts, 11j and 41j, 51j and 21j, 31j and 61j, j=a,b,c. 

As above, we refer to these pairs, a distance of three cycle 

shifts apart, as symmetric relatives. In symmetry blocks 

Si  to S6, the symmetric relatives, t1j and (t+3)1j, appear 

as pairs, j=a,b,c, t=1,2,3. Also, the symmetric relatives 

tia and tib, t=7,8,9, appear in symmetry blocks S4, S5, S6. 
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For consistency, we consider each orbit (t) of I to 

possess the symmetric relative (t+3), t=1,2,3. We note that 

there are no corresponding symmetry blocks or relatives de-

fined on the 3-flats. In the following, we refer frequently 

to both the symmetry blocks and the symmetric relatives. 

If we now examine Table 4.5.1, several examples can be 

found of the symmetric distribution of the 1-flats. We inter-

pret these by referring to the symmetry blocks and symmetric 

relatives. In Table 4.5.1, the 03-orbit (13) and its sym-

metric relative in Ig, (43), have the 1-flats 7a,7b,7b,8c, 

8c,8a and 7b,7a,7a,8c,8c,8b, respectively. Thus, the 03-

orbit (43) contains the symmetric relatives of the I11  1-flats 

which occur in (13). Moreover, the I1  class 3-repeats in 

(13) and (43) are symmetric relatives as well. For instance, 

in (13), 2a,2b,2o and A,3a,3b appear as 1-flats, while in 

(43), we have 5a,5b,5r, and 611,6a,6b. In Table 4.5.1, more 

examples of the balanced distribution of symmetric relatives 

occur. 

It is also possible to analyse Table 4.5.1 by referring 

to the transformation g which defines the cycles. The set 

of entries from a fixed column and row of each 03-orbit of 

one cycle class, shows the effect of the transformation g. 

For instance, if we consider the set of 1-flats from the 

first row and column'of the 3-repeats of each of the 13  03-

orbits, we have the cycle generated by 1-flat lb, (lb 2b 3b 

4b 5b 6b). The set of 1-flats in a fixed column and row of 

the 03-orbits of both the 13  and 113 classes exhibits this 

same cyclic distribution of the 1-flats. 

If we tabulate the number of times each 1-flat appears 

as a 3-repeat in Table 4.5.1, we find that each I11  1-flat 
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occurs seven times, while each T1  1-flat occurs only five 

times. From this observation, should an error occur in a 

1-flat, more of the null space 3-flats would be effected 

than if the error were in a Ii 1-flat. This fact is reflected 

in the decoding algorithm given in Chapter 5. 

Also of note is the fact that no (101) 1-flat appears 

as a 3-repeat in the 13  03-orbits. Consequently, should er-

rors occur in the Hi  or III1  1-flats, the 3-flats in the 

null space from 113  would be effected more than the 13  3-

flats. This too will be discussed in more detail when we 

present; the O.-orbit decoder in Chapter 5. 

We conclude the discussion of Table 4.5.1 by briefly 

referring to the 1113  and IV3  03-orbits. Since each 1-flat 

of (101) appears in each of the (103) 3-flats, a single error 

in a 1-flat in (101) would cause all estimates obtained from 

the (103) null space 3-flats to be in error. The pairing of 

1-flats determined by the symmetry blocks is reflected in 

the IV3  03-orbit (113). 

We now discuss Table 4.5.2. This Table provides many 

more examples of symmetries. The most obvious of these, as 

for Table 4.5.1, is the set of 1-flats which are the entries 

for a fixed row and column of each of the 03-orbits of 13 or 

113. For example, the column two, row ci entry of each 03-

orbit in 13 
gives the cycle generated by the 1-flat lc, (2c 

3c 4c 5c 6c lc). It is possible to find several examples of 

a set of 1-flats or their g-transformations repeating in dis-

tinct 3-flats. In each bcii 3-flat of 13, the pair of 1-flats 

7a,7c or a g-transformation of the pair, occurs. In the 3-

flats t3a;i, t3bii and t3cii, t=1,...,6, the same set of 

three 1-flats appears, where one flat is from 13 and two are 

from 113. For example, the 1-flats 3c, 7c and 8b appear in 
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each of 13a11, 13bii  and 13cii. The corresponding g-trans-

formations of this triple of 1-flats appear in the remaining 

03-orbits of 13. The same (101) 1-flat appears in t3aii, 

t3i b t  t3  c. 	t=1,...,6, For example, we have 101a in each 

of 13aii, 13bi, 13ci. Again, the g-transformations of 101a 

appear in the corresponding 3-flats of the other 03-orbits,  

of 13. 

Examples of the symmetric relative pairs are found in 

the 113 03-orbits. Here the 'semi-cycle' mentioned earlier 

becomes evident. In, for example, the 3-flat 73bci, the 

1-flats 4c and 5c occur. In 73acii, the 3-flat symmetric 

relative of 7
3 
 bc.
1
, we have the 1-flats is and 2c, the sym- 

metric relatives of 4c and 5c, respectively. This pattern 

is repeated in the other 113  03-orbit 3-flats. In 73ai, the 

01-orbit 1-flats 4b and 4c appear. The symmetric relative 

of 73ai, 73bi, contains the corresponding symmetric relatives 

of 4b and 4c, that is lb and lc, respectively. The g-trans- 

formations of these 1-flats appear in the associated 03- 

orbit 3-flats. 

Many other such symmetries are found in Table 4.5.2. 

The few examples given here are sufficient to illustrate the 

way in which the 1-flats are distributed symmetrically among 

the 3-flats. The more frequent occurrence of the Hi  1-flats 

in the null space is'an important consideration in the decod- 

ing algorithm introduced below. That in some 03-orbits an 

error in a 1-flat may appear as a singleton in one subset, 

but as a 3-repeat in another, proves useful for error-correction. 

We note here that a single error is considered to occur 

in a particular 1-flat rather than in a point for the follow- 

ing reason. As mentioned above, a 1-flat refers to the non- 
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zero points only. And, as the two non-zero points of a 1-

flat must always occur together in a 3-flat, it is only 

necessary to analyse one of the two possible non-zero errors 

in the 1-flat, since it is irrelevant to the decoder which 

of the two points is actually in error. 

We now present several Tables which further illustrate 

the symmetric distribution of the 1-flats in the 03-orbit 3-
flats. We include them here to demonstrate that the selection 

of 3-flats for the null space provides a mathematically in-

teresting distribution of the 01-orbit 1-flats. Later, it 

is shown that these symmetries are the basis of the Oi-orbit 

decoder discussed in Chapter 5. 
Table 4.5.1 and Table 4.5.6 can be combined to form 

Table 4.5.2. In Table 4.5.6, the same row and column entry 

of the 03-orbits of 13 and 113 reflect the g-transformations. 

For example, the 'ii' row of the second column of t3a in 13  

is the cycle generated by the 1-flat la, (4a 5a 6a la 2a 3a). 
Several symmetries are made more obvious in this Table than 

in Table 4.5.2. For instance, in Table 4.5.6, in the t3ab 

column of the 13  03-orbits, the 	and 'ii' rows contain 

between them, all the 1-flats from a I1  01-orbit. For example, 

the (33)03-orbit has the three 1-flats la, is and lb. In 

II3' this same column illustrates the symmetric relative of 

the I1 1-flats and of.the II1 'a' and 'b' 1-flats. For ex-

ample, in the (83) row, we have the 1-flats 2a, 7b and 5a,7a. 

This Table also shows that within the 0
3-orbits a given 1-

flat is paired with several distinct 1-flats, a most useful 

property in error-correction. 

The many other symmetries are simply more illustrations 

of the interrelations already mentioned, that is the effect 

of the transformation g and the distribution of 1-flats 
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according to the symmetry blocks. 

t3a 

 

tab tic 

 

t3ab t3ac t3bc 

           

(13)  1:6a4a10c9b 	6a6c4c10a 	4a5b5c10a 	5a5c 6clla 4b10c 9a 
ii:3c4b10a7c8b9c 3c4a7c8b1Oblla 5a6a6b3c7c8b 5b6b 4c10b 9b9c 

(23) 
i:1a5a10b7a 	la1c5c10c 	5a6b6c10c 	6a6c 1011a 5b10b 7b 

ii:4c5b10c8c967c 4c5a8c9b10a11a 6a1a1b4c8c9b 6b1b 5c10a 7a7c 

(3) 
i:
3
2a6a10a8a 	2a2c6c10b 	6a1b1c10b 	laic 2clla 6b10a 8b 

ii:5c6b10b9c7a8c 5c6a9c7alOclla 1a2a2b5c9c7a lb2b 6c10c 8a8c 

(43) 
il3a1a10c9a 	3a3c1c10a 	la2b2c10a 	2a2c 3011a 1b10c 9b 

ii:6c1b10a7c8a9c 6cla7c8alOblla 2a3a3b6c7c8a 2b3b iclOb 9a9c 

(53) 
1:4a2a10b7b 	4a4c2c10c 	2a3b3c10c 	3a3c 4011a 2b10b 7a 

ii:1c2b10c8c9a7c 1c2a8c9alOalla 3a4a4b1c8c9a 3b4b 2c10a 7b7c 

(63) 
1:5a3a10a8b 	5a5c3c10b 	3a4b4c10b 	4a4c 5c11a 3b10a 8a 

ii:2c3b10b9c7b8c 2c3a9c7b10c11a 4a5a5b2c9c7b 4b5b 3c10c 8b8c 

(73) 
ii3b4b4c11a 	6b1b1clla 	1a1b4a4b 	la9a 6c1c 4c3c 9c 

ii:1b2b5b3a3c10b 2b4b5b6a6c10b 2b5b9a9b1Oblla 4a9b 6a6b 3a3b 

(83) 
i:4b5b5c1la 	1b2b2c11a 	2a2b5a5b 	2a7b 1c2c 5c4c 7c 

ii:2b3b6b4a4c10a 3b5b6b1a1c10a 3b6b7a7b10a1la 5a7a lalb 4a4b 

(93) 
i:5b6b6c11a 	2b3b3clla 	3a3b6a6b 	3a8b 2c3c 6c5c 8c 

ii:3b4b1b5a5c10c 4b6b1b2a2c10c 4b1b8a8b10c1la 6a8a 2a2b 5a5b 

Table 4.5.6: 1-repeat 1-flats of 13 and 113 

The remaining Tables in this section illustrate particular 

symmetrical or cyclical properties. Table 4.5.7 indicates 

the pairing of the 1-flats of the 01-orbits. It illustrates 

the symmetries, and the marked differenceq in the structures 

of the 13 and 113 cycle classes. The symmetry and cyclic 

nature of this ditribution are obvious. 
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01- 
orbit 
(t3) 	101a 	101b 	101c 	111a 

(13) 	a,b,c a,bc,X 	ac,b,X 	ac,b,X 

(23) 	ac,b,X 	a,b,c 	a,bc,X 	ac,b,X 

(33) 	a,bc,X 	ac,b,X 	a,b,c 	ac,b,X 
13 

(43) a,b,c 	a,bc,X 	ac,b,X 	ac,b,X 

(53) 	ac,b,X 	a,b,c 	a,bc,X 	ac,b,X 

(63) 	a,bc,X 	ac,b,X 	a,b,c 	ac,b,X 

(73) ab,ab,abc a,b,c 	ac,bc,c 	ac,b,X 

I13  (83) 	a,b,c 	ac,bc,c 	ab,ab,abc 	bc,a,X 

(93) ac,bc,c ab,ab,abc a,b,c 	ab,c,X 

Table 4.5.7: Summary of occitrrence of (101),(111) 
1-flats in 	ILI  3-flats; entries in row (i3), 

, column 101j 6r 11.-ca are the (t3) 3-flats con-
taining the 1-flat 101j or 111a, j=a,b,c; X denotes 
that 101 j or llia appears in one of the two 3-flats 
excluded from (t3). 

Table 4.5.8 indicates the pairing of the 1-flats of the 

01-orbits. It illustrates the symmetries, and the marked 

differences,in the structures of the 13  and 113  cycle classes. 

01- 
orbit 
(t3) (11) (21) (31) (41) (51) (61) (71) (81) (91) 

• 

((13) S S S D1  D2  S S D5  

(23) D2  SSSD1 D4 S S 

(33) D1 D2 S 	S 	S 	S D4 S 
I3 (43) S Di D2 - S S S S D4 

(53) S 	S DI D2 - S D5 S S 

,(63) S 	S 	S Di  D2  - S D5  S 
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01- 
orbit 
(t3) (11) (21) (31) (41) (51) (61) 

	
( 71) (81) (91) 

D6 S D7  D8 S .D9  

D9  D6 S D7 D8  S 

S D9 D6 S D7  D8 

S 	Di° 
D10  - 
S Dio - 

D1: a,c; b,c in t3ab, t3c (cl,b) 

D2: a,b; a,c in t3c, t3b (b,c) 

D3: a,b in t3bc (a,c; b,c) 

D41 a,c in t3bc (a,b;.b,c) 

D5: b,c in t3bc (a,b; a,c) 

D6: a,b; b,c in t3c, tab (a,c) 

D7: a,c; a,b in t3a, t3bc (b,c) 

D8: a,b; b,c in t3a, t3c (a,c) 

D9: a,c; a,b in t3b, t3ac (b,c) 

D10 a,b in t3c (a,c; b,c) 

Table 4.5.8: Occurrence of pairs of 1-flats in 3-flats; 
S denotes 01-orbit 1-flats appear as singletons; 
'-' denotes that 1-flats are, by definition, in each. 
3-flat; Di denotes that 1-flat pairs from the O1-
orbit of that column appear in the row 01-orbit 3- 
flats, and the 1-flats, in parentheses ocdur in the 
3-flats omitted when defining the 03-orbits. 

Table 4.5.9 is an extended version of Table 4.5.1 il-

lustrating precisely the occurrence of the 3-repeats in the 

03-orbits. Many symmetries of Table 4.5.1 are more clearly 

depicted. 

We have presented these Tables as a concise means of 

describing the symmetric and cyclic properties of the selected 

subset of 3-flats of PG(5,2). We refer to these Tables when 

discussing the 01-orbit decoder. . 
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flat 	(13) 	(23) 	(33) 	(43) 	(53) 	(63) 

At  

	

a:. 2a7a 	3a8a 	4a9a 	5a7b 	6a8b 	la9b 

ab 1b2a7a8c 2b3a8a9c 3b4a9a7c 4b5a7b8c 5b6a8b9c 6b1a967c 

	

1b8c 	2b9c 	3b7c 	4b8c 	5b9c 	6b7c 

ac 1c2a3b7a 2c3a4b8a 3c4a5b9a 4c5a6b7b 5c6a1b8b 6c1a2b9b 

	

1c3b 	2c4b 	3c5b 	4c6b 	5c1b 	6c2b 

abc 1b1c3b8c 2b2c4b9c 3b3c5b7c 4b4c6b8c 5b5clb9c 6b6c2b7c 

Bt  

b  2b3a 3b4a 4b5a 5b6a 6bla .1b2a 

ab 1a2b3a8c 2a3b4a9c 3a4b5a7c 4a5b6a8c 5a6b1a9c 6a1b2a7c 

	

la8c 	2a9c 	3a7c' 	4a8c 	5a9c 	6a7c 

be 1c2b3a7b 2c3b4a8b 3c4b5a9b 4c5b6a76. 5c6b1a8a 6c1b2a9a 

	

1c7b 	2c8b 	3c9b 	4c7a 	5c8a 	6c9a 

abc lalc7b8c 2a2c8b9c 3a3c967c 4a4c7a8c 5a5c8a9c 6a6c9a7c 

Ct  

c 2c8a 3c9a 4c7b 5c8b 6c9b 107a 

ac la2c3b8a 2a3c4b9a 3a4c5b7b 4a5c6b8b 5a6c1b9b 6a1c2b7a 

	

1a3b 	2a4b 	3a5b 	4a6b 	5alb 	6a2b 

be 1b2c7b8a 2b3c8b9a 3b4c967b 4b5c7a8b 5b6c8a9b 6b1c9a7a 

	

1b7b 	2b8b 	3b9b 	. 4b7a 	5b8a 	6b9a 

abc la1b3b7b 2a2b4b8b 3a3b5b9b 4a4b6b7a 5a5b1b8a 6a6b2b9a 

(71) (83) (93) 

At  
a 8a5a 9a6a 	. 7bla 

ab 7b8a10a5a 8b9a10c6a 967b1Obla 
7b10a 8b100 9b10b 

ac 7c8a2c5a 8c9a3c6a 9c7b4c1a 
7c2c 8c3c 9c4c 

abc 7b7c10a2c 8b8c10c3c 9b9c10b4c 
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3- 
flat 	(73) 	(83) 	(93) 

Bt 
b 8b2a 9b3a 7a4a 

	

ab 	7a8b10a2a 8a9b10c3a 9a7a10b4a 
7a10a 	8a10c 	9a10b 

be 7c8b2a5c 8c9b3a6c 9c7a4a1c 
7050 	8c6c 	9c1c 

	

abc 	7a7c10a5c 8a8c10c6c 9a9c10b1c 

Ct 

	

c 	8c10c 	9c10b 	7c10a 
• 

	

ac 	.7a8c10c2c 8a9c10b3c 9a7c10a4c 
7a2c 	8a3c 	9a4c 

	

be 	7b8c10c5c 8b9c10b6c 967clOalc 
7b5c 	8b6c 	9b1c 

abc 7a7b2c5c 8a8b3c6c 9a9b4c1c 

Table 4.5.9: Expansion of Table 4.5.1 
1-flats in column (t3) are 3-repeats in their cor-
responding subset At,Bt  or Ct; each entry in a given 
column and row must appear 3 times within its subset, 
e.g. 2a is in rows a, ab, and ac of Al, column (13) 

	

4.6 Independence of 	Structure on Minimal Polynomial 

In the discussion of the PG(5,2) given in this chapter, 

we have .defined the geometry using the minimal polynomial 

m(x) of the. primitive element oC, where 

	

m(X) 	1 + X  + X6. 

The fact that any primitive element and its associated min-

imal polynomial yields a valid representation of PG(5,2) as-

sures that any such interpretation is structurally equivalent 

to any other. That is, the 01-orbit structure given in Table 

4.5.2 is independent of the minimal polynomial chosen to re-

present the geometry where the six possible polynomials for 



115 

this geometry, expressed as powers are, (0 1 6), (0 5 6), 

(0 1 2 5 6), (0 2 3 5 6), (0 1 4 5 6), (0 1 3 4 6). The 1-

flats of the geometries generated .from the five miminal poly-

nomials, other than (0 1 6), can be labelled such that the 

resulting isomorphic geometry has a 01-orbit structure ident-

ical to the one given for (0 1 6). In the following, it is 

shown how the isomorphic labelling of the 1-flats is accom-

plished. 

First, we indicate how the 0i-orbits, given any minimal 

polynomial, are constructed. We then illustrate the one to 

one correspondence between the (0 1 6) labelling of the 1-

flats and the minimal polynomial m'(X) labelling for m'(X) 

not (0 1 6). 

Before forming the 0i-orbits we recall that the null 

space consists only of those flats which intersect on posi-

tion 0, and hence that when forming a 1-flat, one of the two 

linearly independent points required to form a 1-flat, must 

be 0. 

As the IV1  01-orbit is fixed for any representation, we 

obtain it first. It has m.c. 21 and consists of one 1-flat 

only, which is (0 21 42). This follows from the second 

theorem of Yamamoto et al[581 given above. 

We noted earlier that the (101) 01-orbit was distinct 

from the other orbits and because of this uniqueness would 

play a special role in decoding. Correspondingly, the struc-

ture of the III1 01-orbit is unlike the structure of the other 

01-orbits. Every non-zero point in the (101) 01-orbit is a 

multiple of 9. Thus, the initial 1-flat of (101) is always 

formed by selecting, as the two linearly independent points, 

0 and a multiple of 9. The remaining 1-flats in the 01-orbit 

are obtained by subtracting, mod 63, the first non-zero point 
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of the initial flat from each of the points in the flat. By 

repeating the subtraction a second time, using the third 

point, the three 1-flats of (101) are found. 

To obtain the I1 and III.  1-flats, two linearly inde- 

pendent points, the first of which 3.8 0, are selected. The 

second point can not be a multiple of 9 or 21 as these points 

are present in the IIII. and IV1 01-orbits. We note that the 

totality of the non-zero points of the 01-orbit 1-flats ex- 

haust the 62 non-zero points of PG(5,2). Thus, no non-zero 

point can appear in more than one 01-orbit 1-flat. 

The process of obtaining the initial 1-flats for I1 and 

01-:orbits is simplified by selecting the second linearly 

independent point from the set of linearly independent points 

11,2,3,4,51 , although any one of the non-zero points not al-

ready present in a 1-flat can be chosen. A 1-flat is formed 

using a point from this set and the point 0 as the two lin-

early independent points. This initial 1-flat is then suc- 

cessively multiplied by 2i, i=1,...,5, that is the transfor-

mation g is applied five times. If six distinct 1-flats are 

obtained, these are the class I1 initial 1-flats. If only 

three distinct 1-flats are generated, they are the initial 

1-flats of Hi. The 01-orbit for each distinct initial 1- 

flat is produced by the subtraction algorithm used for the 

class III1' 

To obtain the initial 1-flats of the remaining class, 

any point not occurring in the 1-flats already generated, is 

selected. The corresponding 1-flat is formed. The remaining 

initial 1-flats and their corresponding 01-orbit 1-flats are 

obtained as for theirevious class of 01-orbits. 

This procedure generates the 01-orbits irrespective of 

the minimal polynomial chosen. The 03-orbits are obtained 
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by a similar process using four independent points rather 

than two. 

We now proceed to establish the isomorphism between the 

1-flats of the geometry represented by the minimal polynomial 

m(X)=(0 1 6) and the geometry represented by the minimal poly-

nomial m'(X) where m'(X) is one of (0 5 6), (0 1 2 5 6), 

(0 2 3 5 6), (0 1 4 5 6), (0 1 3 4 6). The set of minimal 

polynomials can be partitioned into two sets according to the 

number of points in the minimal polynomial, that is (0 1 6), 

(0 5 6) and (0 1 2 5 6), (0 2 3 5 .6), (0 1 4 5 6), (0 1 3 4 6). 

The procedure for establishing the 1-flat isomorphism is the 

same for minimal polynomials within the same set. We denote 

the geometry formed with minimal polynomial m(X)=(0 1 6) as 

PG(5,2) with 0i-orbits (tj), j=1,3, 1-flats t1, t=1,...,11 

and cycle classes I1,II1,III1,IV1. For the geometry formed 

by any other minimal polynomial re(X)/(0 1 6), we refer to 

the geometry as .PG'(5,2), with 1-flats ti, t=1,...,11, 0'j-

orbits (tip, j=1,3, t=1,...,11 and cycle'classes 

IVI. First, the 1-flat isomorphism for m'(X)=(0 5 6) is 

established, as the correspondence is quite simple. Each 

01  -orbit (t'1) in PG'(5,2) consists of the same point set as 

the 01-orbit (t1) in PG(5,2), but with a different arrange-

ment of the points among the 1-flats, t=1,...,9. Consequently 

the labelling of the' 1-flats of (ti), t=1,...,9, is immed- 	• 

iately obvious. The two non-zero points in each 1-flat of 

(ti) are from two distinct 1-flats in (t1). We label a given 

1-flat j in (ti) by the 1-flat letter from (t1) not repre-

sented in j. For instance, (1l) in PG(5,2) is: 

a: 0 1 6 
b: 0 5 62 
c: 0 57 58. 
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The three 1-flats of (11) are: 

a:  0 57 62 
b:  0 1 58 
c:  0 5 6. 

As the first of these, (0 57 62), has no representative from 

11a, it is called 11a in (11). By similar reasoning, 11b 

and lic are labelled. The III1  and IV1 01-orbits are ident-

ical for the minimal polynomials (0 1 6) and (0 5 6). 

Once the 1-flats have been labelled using this algorithm, 

the 3-flats can be labelled using the same method given in 

Section 4.4 for the geometry with minimal polynomial (0 1 6). 

The assignment of labels to form the isomorphism of the 

1-flats for the second set of minimal polynomials is slightly 

more complicated. To determine the isomorphism, we first de-

fine the set Qt  as the set of three 01-orbits of PG(5,2) of 

which the non-zero points of the 01-orbit (t1) are members, 

t=1,...,9. For example, if m'(X)=(0 1 4 5 6), then a 01-

orbit (tj.) of the I1 class is: 

0 1 39 
0 38 62 
0 24 25, 

and the Qt  subset is formed as follows. Referring to Table 

4.4.1, the points 1 and 62 are in (11), the points 24 and 39 

are in (31) and the points 25 and 38 are in (81). Thus the 

set Qt  is (1),(3),(8). Each Qt  consists of two 01-orbits 

from I1  and one from.IIi, t=1,...19. If we consult Table 

4.5.1, we note that there is one and only one 03-orbit, (t3), 

which has 1-flats from each orbit of Qt  in every 7-repeat - 

subset At, Bt, Ct. We use this association to number the 

01-orbits. Consequently the 01-orbit of PG'(5,2) listed above 

is the 01-orbit (11). The labelling of the 1-flats of I,  is 

as follows. The 1-flat consisting of an a and c 1-flat from 
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two of the 01-orbits of Qt, t=1,...,6, is labelled t;c. The 

1-flat with its two non-zero points from two b 1-flats of • 
• 

the Qt  01-orbits is tib. The remaining 1-flat is labelled 

tia. In the above example, the point 1 in the first 1-flat 

is from 11a and the point 39 from 31c.. Thus, this 1-flat is 

labelled 1;c. The three 1-flats given above are labelled: 

a:  0 24 25 
b:  0 38 62 
c:  0 1 39. 

, 
The labelling of the 1-flats of the 	01-orbits is 

slightly different than the I; case, but the assignment of 
1 

the 01-orbit number is as for the Iclass. The tia 1-flat 

in (t1) is the 1-flat with both its non-zero points from b 

1-flats of the Qt  01-orbits, t=7,8,9. The tic flat is the 

one which consists of two non-zero points from the c 1-flats 

of the Ii  01-orbits in 	The The remaining 1-flat is labelled 

tib. The labelling of (71) is thus: 

a:  0 20 49 
b:  0 14 34 
c:  0 29 43, 

where the points 20 and 49 are from 31b and 81b, respectively. 

The points 29 and 43 are from 61p and 31c, respectively. 

Each of the (101) 1-flats consists of the same points 

as the 1-flats of (101) but 101j / 101j, j=a,b,c. These la- 

bels can be assigned by referring to the labels given to the 

I1 and II1 classes and the 3-flats of the 03
-orbits. In 

Table 4.6.1 we list the 1-flats of the 0;-orbits of the 

PG'(5,2) with minimal polynomial (0 1 4 5 6). 

The 03-orbits are labelled as they were in Section 4.4 

for the case when the minimal polynomial was (0 1 6). Thus, 

the results given in the Tables of this chapter concerning 

the symmetrical properties of the 0i-orbit structure of PG(5,2) 
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describe exactly the symmetries of PG'(5,2) with minimal poly-

nomial m1(X)/(0 1 6). 

. 
) (11') 	(21  

a: 0 24 25 
62 

a: 0 48 50 	a: 0 33 37 
b: 0 	61 	b: 0 6 59 

I 	c: 0 
38  
1 39 	c: 0

13  
2 15 	c: 0

2 
 4 30 

Q1:(1),(3),(8) 	(22:(2),(4).(9) 	Q3:(3),(5),(7) 
t 	 e 

(41)s 0 
	(60 

a: 0 3 11 	a: 0 6 22 	a: 0 12 44 
b: 0 52 55 	b: 0 41 ".7 	b: 0 19 31 
c: 0 8 60 	c: 0 16 57 	c: 0 32 51 

\... Q10(4)1(6)1(8) Q5:(5),(1).(9) Q6:(6),(2),(7) 

1 
(71 

a
) 
 : 

1 
(81)  (91) 

0 20 49 a: 0 35 40 a: 0 7 17 
II b: 0 14 34 bs 0 5 28 b:  0 10 56 

c: 0 29 43 	c: 0 23 58 	c: 0 46 53 
Q7:(3),(6),(8) 	Q8:(1),(4),(9) 	Q9:(2),(5),(7) 

(10; ) 
a: 

III 	b: 
c: 

0 
0 
0 

36 
18 
9 

54 
27 
45 

IV 	a: 0 21 42 
1(1* 

Table 4.6.1: 01-orbits of PG'(5,2) 

In this section we have shown that it is possible to 

establish an isomorphism between the flats of PG(5,2) and the 

flats of PG'(5,2). Consequently; the 0i-orbit structure de-

fined is independent of the minimal polynomial chosen to re-

present the geometry and the results concerning decoding and 

error-correction hold for any representation of PG(5,2). 

4.7 pasis of the 0i-orbit Symmetry  

We conclude this chapter with a brief mathematical ex-

planation of the 01-orbit structure. 

In the previous section, it was shown that the 0i-orbit 

structure was independent of the minimal polynomial chosen 

to represent PG(5,2). As a consequence, it is possible to 
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express the irf's, r=1,2,3, without explicitly referring to 

a minimal polynomial, as was necessary in Table 4.4.1 and 

Table 4.6.1. In the following, the parameter d represents 

the non-zero point which, together with 0, generates the first 

ilf in I1. All other irf's, r=1,2,3 'can be expressed in terms 

of d. This is illustrated in Table 4.7.1. 

r221 

0,d 
0,2d 

Ii 0  0 4d 
0, 8d 
0,16d 
0,32d 

0,7d 
II1 0'14d 0,28d 

III10,9d 

rag 
0,d,2d 
0,2d,4d 

I2 	0  0 0 4d 8d 
0, 8d,16d 
0,16d,32d 
0,32d,d 

0,7d,14d 
II2 014d028d 

0,28d,56d 

III2 " 0 9d 18d 

0,d,2d,3d 
0,2d,4d,6d 
0 4d f8d I12d 
0,8d,16d,24d 
0,16d,32d,48d 
0,32d,d,33d 

0,7d,14d,21d 
II3 0,14d,28d,42d 0,28d,56d,21d 

II13 0 9d•  18d 27d 

Table 4.7.1: Initial r-flats,, r=1,2,3, in terms of 
the parameter d. 

We note that for d=1 this reduces to the representation of 

PG(5,2) with minimal polynomial (0 1 6) given in Table 4.4.1 

for r=1. For d=25, r=1, this generates Table 4.6.1, the re-

presentation with minimal polynomial (0 1 4 5 6). 

Table 4.7.1 is formed by taking the two linearly inde-

pendent points 0 and d as the defining points of the first 

i1f in I1. The first i2f in III is defined by the three lin-

early independent points 0,d,2d and the first i3f by 0,d,2d,3d. 

That these points are in fact linearly independent, is a 

consequence of the geometry being defined over GF(2). Thus, 

instead of taking the point (o(.) as a primitive element, the 

point (cc!:1) can be used and hence the points given are linearly 

independent. Moreover, this justifies the process, given in 

previous sections, of multiplying any given set of independent 
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points by 2, to obtain another set of independent points. 

The choice of 0 and 7d as the two linearly independent 

points for II1 ilf, reflects the special structure of this 

class. The coefficient 7 is a proper divisor of the number 

of points in the geometry. The interrelation of cylce mem-

bers of this class is a result of this property. Similarly, 

the coefficient of d in the IIT and IV classes is a proper 

divisor of 63. 

By referring to Table 4.7.1, we can account for the 

following: 

I) the one to one correspondence between the 03-orbits 

and the 01-orbits, 

ii) the occurrence of the 1-flat'symmetric relatives 

in the 0
3
-orbits, and 

iii) the 1-flat t+1 appearing as a 3-repeat in the 03-

orbit (t3), t=1, 

The first of these observations is immediately obvious from 

an inspection of the linearly independent points of the 1-

flats and corresponding 3-flats. To generate the correspond-

ing i3f of a given i1f t1, the set K = tO, kd } , k>0, is 

augmented to the set K* = f0lkd,2kd,3kd3, where these points 

represent the geometry based on the primitive element c(kd 

rather than 06 and hence are linearly independent. The set 

of all linear combinations of 0 and kd must be contained in 

the set of all linear combinations of K*. Hence, the cor-

respondence between the two sets follows. Further, that each 

point of the 1-flat appears seven times in the 03-orbit gen-

erated from the 3-flat t3 formed from K*, can now easily be 

established. The points in the 1-flat t1  are 0, kd, 

The points in the 3-flat t3  are, in terms of the linearly 
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independent points of ti, 

0,kd,2kd,3kd,O+kd,0+2kd,0+3kd,kd+2kd,kd+3kd,2kd+3kd, 
0+kd+2kd,O+kd+3kd,0+2kd+3kd,kd+2kd+3kd,O+kd+2kd+3kd. 

We say the two points i and j in t3 differ by kd if both i 

and j, expressed terms of the linearly independent points of 

t1, have the same number of components, and each component 

is  of i is js+kd for js  a linearly independent point in j. 

If there are two points, i and j, i<j, in t3, differing by 

kd, subtracting i from the point set representation of t3, 

gives a 3-flat in the 03-orbit (t3) containing the points 0 

and kd, and hence, the 1-flat t1. The following are all the 

possible pairs of points from K* which differ by kd: 

0,kd 
kd,2kd 
2kd,3kd 
0+kd,kd+2kd 
kd+2kd,2kd+3kd 
0+kd+2kd,kd+2kd+3kd 
0+2kd,kd+3kd. 

Thus, the ilf t1  appearsseven times in the 03-orbit (t3). 

Similarly, it can be shown that the other members of the (t1) 

01-orbit appear seven times, as required. 

A further examination of the points in t3  shows that 

neither of the two points, p1=0+kd+3kd or p2=0+2kd+3kd, dif-

fer by kd from any other point in t3. Thus, subtracting pi, 

i=1,2 from each point in the point set representation of t3  

gives two 3-flats through the point 0, but, such that they 

do not contain any of the points of t1. We recall that the 

fifteen 3-flats through 0 are obtained from successively sub-

tracting each point of t3  from the point representation of 

t
3
. Two of these flats are omitted from the 03-orbit of t3. 

These two flats correspond to the points pi  and p2. The 

omission of eight of the 3-flats generated from 103  is simi-

larly explained, noting that each linear combination of points.  



124 

in 101a forms a point which is again a multiple of 9d. 

The occurrence of synimitric relatives in the 03-orbit 

3-flats is also explained by studying Table 4.7.1. If we 

consider the non-zero point of two symmetric relative 1-flats 

in I1, the same pair of points occurs in the corresponding 

13 3-flats separated by 3 cycle positions. For instance, in 

d and 8d are the independent points for the first and 

fourth flats, respectively. In the first and fourth flats 

of 13, d and 8d, as extensions of the I1  1-flats, appear. 

But, as well, d and 8d appear in the sixth and third 13  3-flat 

point sets, respectively, that is in a second set of 3-flats 

separated by 3 cycle positions. Such a separation is simply 

the multiplication of the non-zero independent point of the 

first 1-flat, by 2, three times. This is half the number of 

multiplications required to give the identity 26. Hence, we 

have the term 'semi-cycle' used above. Thus, if kd is the 

non-zero independent point of a 1-flat, 23(kd) is the non-

zero independent point in its symmetric relative 1-flat. 

We observe that the non-zero independent point of the 

1-flat t+1 always appears as a non-zero independent point in 

the i3f t3. This occurs because the non-zero independent point 

in the i1f t+1 is formed by multiplying the independent point 

of t by 2, while the second non-zero independent point in the. 

point set of t3  is twice the first, that is the same point 

as the non-zero independent point of t+1. Thus, the 1-flat 

t+1 appears as a 3-repeat in the 03-orbit (t3). 

We have explained here the major symmetric properties 

of the 03-orbits. The many other symmetries which are pre-

sented in Section 4.5 are also explained by furthe.r refer-

ence to Table 4.7.1. 
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4.8 Conclusions  
,‘ i In this chapter we have introduced a mast interesting 

mathematical structure, defined on the flats of PG(5,2), by 

extending the definitions of Yamamoto et al[581. This struc-

ture exhibits a well-defined set of symmetrical properties 

which are of interest when analysing the geometry mathematical-

ly. Moreover, the structure allows for a simplification of 
• 

the standard Majority Logic Decoder of the PG code defined 

on PG(5,2). The details of this decoder are given in Chapter 5. 

In particular, we began this chapter by giving a detailed 

description of the results on Finite Geometries as outlined 

in the 1966 paper by Yamamoto et al[581. Based on these re-

sults, an analysis of the cycles of the PG(5,2) was given. 

The 0.-orbit structure, used as the basis of the decoder 

in Chapter 5, was developed. The symmetrical distribution 

offlatsinthe0.-orbits of PG(5,2) was described, both in 

the text and in the extensive set of Tables presented. 

Finally, it was shown that the structure introduced was in-

dependent of the minimal polynomial chosen to represent the 

geometry. Hence, the decoding method'developed in Chapter 5 

does not depend on a particular representation of PG(5,2) by 

a minimal polynomial. Several symmetric properties of the 

0.-orbit structure were explained by referring to a repre-

sentation of the flats which is independent of a minimal 

polynomial. 
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CHAPTER  5: Oi-ORBIT DECODER_ OF THE ORDER-3 (63.41) PG CODE  
tI 

5.1 Introduction 

The decoder presented here is defined in terms of the 

concepts introduced in the previous chapter. 

We begin this chapter with a detailed study of the stan-

dard Majority Logic Decoder of the order-3 (63,41) PG code. 

This is followed by the definition af the Oi-oibit decoder 

of the code. Reference is made to the Tables and terminology 

of Chapter 4 in the analysis of the decoder. It is shown 

that all possible 1,2 and 3-errors are correctable using this 

decoder and that certain sets of i-errors are related in such 

a way that the decoding algorithm treats them identically, 

1=1,2,3. The simplicity of the 01-orbit decoder, as compared 

to the standard Majority Logic Decoder of this code, is empha-

sized with reference to the circuitry and decoding time 

required by each. 

* 5.2 Order-3 (63.41) PG Code Standard Wajority Logic Decoder  

Order-r PG Codes are Majority Logic Decodable codes re-

quiring r steps of Majority Logic. Several modifications to 

the original decoder have been suggested, several of which 

are discussed in Chapter 3. As the original Majority Logic 

Decoder is the most common method used to decode PG codes, 

we refer to it as the standard PG code decodei4  and compare 

the Oi-orbit decoder with it. In this section we investigate 

in detail the Majority Logic Decoder for the order-3 PG code 

based on PG(5,2). 

In Chapter 3 we discussed MLD in general. We now make 

this specific for the (63,41) order-3 PG code. As-mentioned 

in the previous chapter, this code is cyclic and hence it is 
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only necessary to consider as members of the null space, 
• 4 

those 3-flats which pas6 through zero. There are, referring 

to Chapter 3, 

(25-1)(24-1)(23-1) 
X(0,3,5,2) = (23-1)(22-1)(2-1) = 155 

such 3-flats. Similarly, there are 

(25-1)(24-1) 
A(0,2,5,2) = 	 = 155 

(22-1)(2-1) • 

2-flats which intersect on 0, and 

A(0,1,5,2) = (25-1) 	31 
(2-1) 

1-flats which intersect on 0. The decoding process is based 

on the orthogonality of these flats. The 3-flats through 0 

are initially known to the decoder. Those 3-flats which in-

tersect on a given 2-flat through 0 are used to obtain an 

estimate of the 2-flat. Similarly, an estimate for each 2-

flat through 0 is determined. These estimates then provide 

estimates of the 1-flats, since each 1-flat through 0 has an 

associated set of 2-flats which intersect on it. Finally, 

using the 1-flats which intersect on 0, an estimate of the 

error digit in position 0 is obtained. If no more than three 

errors have occurred, this estimate is correct. We now dis-

cuss the circuitry necessary to implement the decoder. 

Before the decoding process can begin, a preliminary step 

is necessary in which the received word is multiplied by 

Xn-k=x63-41=x22  and then divided by the generating polynomial 

g(X) = (X4.1)(X6i-X5+1)(X3+X+1)(X6  i.x5
.4.x4.1.x2+1)(X+X5-1-X4-1-X-1-1) 

= X24X20I-X19+X181-X15419-FX7+X54-X44.X3+X+1. 

The remainder, r(X), a shifted version of the syndrome, is 

stored in a register. Circuitry is required for the multipli-

cation (simply a shift of the received word) and for the divi-

sion by g(X). 
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On step 1, estimates of the 155 2-flats through 0 are 

obtained from the 3-flats known to the decoder. There are 

seven 3-flats which intersect on each a-flat through 0. The 

appropriate bits in the syndrome register are tapped to obtain 

the values corresponding to each of these 3-flats. These are 

input to GF(2) adders to obtain the binary sum of each 3-flat. 

The se,ren binary sums which correspond to the seven 3-flats 

orthogonal on a given 2-flat, are input to the threshold 

unit, with threshold 4, which corresponds to the 2-flat. The 

output is the estimate of the 2-flat on which the seven in-

put 3-flats are orthogonal. 

The circuitry required for step 1 can be broken down 

into two parts. First, taps on the syndrome register and 

GF(2) adders for these taps, are required for a total of 

155x7=1085 binary sums. Secondly, each set of seven sums 

which correspond to the 3-flats intersecting on a 2-flat, is 

input to a threshold unit, for a total of 155 7-input thres-

hold units. 

The second step is somewhat simpler. For each 1-flat 

through 0, there are 15 2-flats which intersect on it. The 

output from the 15 threshold units in step 1 which correspond 

to the 15 2-flats which intersect on a given 1-flat, are in-

put to a threshold unit of threshold eight. The output is 

an estimate of the 1-flat through 0. The circuitry for the 

second step consists of 31 15-input threshold units, one for 

each of the 31 1-flats through 0. 

On the third step, the 31 outputs from the second level 

threshold units, corresponding to. the 31 1-flats which inter-

sect on 0, are input to a single threshold unit. The output 

from this is the decoder's estimate of the error digit in 
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position O. 

Therefore, the standard threshold decoder for the order-

3 (63,41) PG code requires: 

i) circuitry to multiply the received word by X22  and 

divide the result by g(X) =x22+x204.x191.x18+x154.x9i.x74.x54.x44.x31.x+1, 

ii) 155x7=1085 sets of taps on the syndrome register and 

corresponding sets of GF(2) adders, 

iii) 155 7-input threshold units, 

iv) 31 15-input threshold units, 

v) one 31-input threshold unit. 

The circuitry for the standard decoder can be reduced some-

what by the following observation. On step 1, the total 

number of errors which can be corrected is determined, that 

is 17/21. 3. Thus, it is only necessary to input seven esti-

mates to each threshold unit at any level, since no more than 

three errors can be corrected. This in turn reduces the num-

ber of 2-flat and 1-flat estimates required on steps 2 and 

3, respectively. So, on step 3, only estimates of seven 1-

flats are needed as input to the threshold unit. Consequent-

ly in step 2 only seven threshold units are necessary, one 

for each of the 1-flats required in step 3. Each of these 

seven threshold units needs only seven inputs, instead of the 

previous fifteen, for a total of 49 2-flat estimates. Hence, • 

on step 1, 49, rather than 155, threshold unite are neces-

sary. Correspondingly, 49x7=343 sets of taps and GF(2) ad-

ders are required to form the inputs to the 49 threshold units. 

As a result, the version of the standard Majority Logic De-

coder.used most commonly to decode the order-3 (63,41) PG 

code requires: 

i) circuitry to multiply the received word by X22  and 
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divide the result by g(X) = x224.x204.x194.x18
41154.x94.x7415.1. 

x4+01-x+1, 	 ; 

ii) 49x7=343 sets of taps on the syndrome register and 

corresponding sets of GF(2) adders, 

iii) 49+7+1 = 57 7-input threshold units. 

In the next section we present a decoding algorithm for 

the order-3 (63,41) PG code which is based on the Oi-orbit 

structures introduced in Chapter 4. • 

5.3 01-Orbit Decoder of the Order-3 (63.41) PG Code  

The Oi-orbit non-orthogonal decoder of the order-3 

(63,41) PG code is a simplification of the standard Majority 

Logic Decoder of the code. Fewer threshold units, simpler 

circuitry and fewer decoding steps are required for this de-

coder. 

The first step of the 01-orbit decoder involves obtain-

ing non-orthogonal estimates of the 1-flats of the 01-orbits 

(11) through (91), from the 03-orbit .3-flats which are known 

to the decoder. Also, dependent on the errors in the (103) 

and (113) 3-flats, certain binary flags may be set. The 

estimates from the first step are orthogonal on the point O. 

These estimates are input to a counter on the second step. 

Assuming. no more than three errors have occurred, the error 

digit in position 0 is correctly determined by the output of ' 

the counter and, in a. small number of cases, by the setting 

of the flags. The circuitry for the decoder is now described. 

On the first step, for each 03-orbit 3-flat, taps on 

the register positions corresponding to the points of a 3-

flat are input to a binary adder, the output of which is the 

sum known to the decoder Thr the 3-flat. Associated with 

each of the subsets At, Bt  and Ct, t=1,...,9, is a 7-input 
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threshold unit of threshold 4. The seven inputs are the bin-

ary sums corresponding tottli(e seven 3-flats.comprising the 

subsets At  Bt, Ct, respectively. The seven sums correspond-

ing to the seven 3-flats of (103) are input to a counter unit. 

The output of the 27 threshold units are orthogonal estimates 

on the point O. A flag f1 is set if one and only one of the 

seven inputs to the (103) counter unit is a one, and a flag 

f2  if five or seven of the inputs are one. A counter deter-

mines the number of the (113) 3-flats, 113ai, 113aii, 113aiii, 

which have a binary sum of one. A. flag f3 is set if either 

two or three of these binary sums are one. These three flags 

are simply binary flip-flops, set if the output of a counter 

is a given value. 

The first step of the 01-orbit decoder requires a total 

of (13x9)+7+3=127 sets of calculations on the taps of the 

storage register vs. 1085 (343 in the simplified version) for 

the standard decoder. Three flags may have to be set. A 

total of 27 threshold units with seven inputs each are neces-

sary, plus 2 counters for the flags. The standard decoder 

has 155 (49 in the simplified version) 7-input threshold units. 

On the second step, the 27 outputs from step 1 are input 

to a counter. These outputs correspond to 27 1-flats ortho-

gonal on the point O. The decoder's decision as to the 

value of the error digit in position 0 is dependent on the 

value c output by the counter and, in some cases, the flags 

fl, f2 and f3. We make this explicit in the following, where 

if ec, denotes the error digit in position 0, then,if 

c<14 or c=15, then e0=0, 

c>16, then eel_ 

c=16, fi  or f2  is set, then e0=1; otherwise e0=0 

c=14, both f2 and f3 are set, then e0=1; otherwise e0=0. 
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Thus, on the second step a simple counter is required and 

logical units to test the-  tlligs. It is show in the next 

section, that the flags must be checked for less than ea of 

the possible correctable error patterns, that is, over 99.75% 

of the correctable error sets have a count of 15,1_or less 

than 14, or more than 16. 

This decoding method does not require that the received 

word be premultiplied by X22  and the'result divided by g(X). 

The tapped values need only be fed into binary flip-flops 

and the output then directly input into a threshold unit. 

The Or-orbit decoder circuitry consists of a total of 27 7-

input theshold units, two counters and three binary flags. 

The standard Majority Logic Decoder requires circuitry for 

preinultiplication, division, GF(2) adders, 155 7-input thres-

hold units, 31 15-input threshold units and a 31-input thres-

hold unit, or, in the simplified version, 57 7-input theshold 

units. The reduction in circuitry and complexity for the 

01-orbit decoder is significant. Moreover, should the decoder 

consist of a front-end mini-computer, the counting and flag 

testing of the 01-orbit decoder becomes even more simple. 

5.4 01-orbit Decoder Error Analysis  

An 'analysis of the correctable error patterns of the Oi-

orbit decoder reflects the 01-orbit structures used to define.  

the decoder. This section contains an extensive investiga-

tion of these error patterns and the method the decoder uses 

to correct them. 

The standard Majority Logic Decoder corrects all 1, 2, 

3-errors and some errors of higher weight. The Oi-orbit de-

coder also corrects all 1, 2 and 3-errors. Some higher weight 

errors are corrected, however, we discuss those in Chapter 7. 
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A computer simulation of this decoder was written. All 

possible 1, 2 and 3-error patterns were shown to be correct-

able by the Oi-orbit decoder through the use of this model. 

The symmetries of the Or-orbit structure allow for certain 

reductions in the space of errors which the decoder model 

must analyee. First, every 3-flat in the Oi-orbit null space 

consists of the non-zero points of seven 1-flats from the 01-

orbits. Thus, one of the non-zero points of a 01-orbit 1- 

flat present in a 3-flat, implies the other non-zero point 

is as well. Hence, it is only necessary to consider one of 

the two non-zero points in each 1-flat as a possible single 

error. Consequently, in this analysis, we refer to a 1-flat 

error as an error in one of the non-zero points of the 1-flat. 

This simplification also applies to the 2 and 3-error patterns. 

If two errors occur in the.non-zero points of a 1-flat, that 

is each non-zero point is in error, then these errors, in 

effect, cancel out. As far as the decoder is concerned, there 

are no errors, for these two points always occur together in 

each null space 3-flat. Consequently, only non-zero 2-error 

patterns such that each single error is in a distinct 1-flat 

need be considered. For non-zero 3-error patterns, if two 

of the errors are in non-zero points of the same 1-flat, then 

these two errors, as in the 2-error case, 'cancel out°, and 

this reduces to a single error. Thus, for the non-zero 3-
error patterns, only error triples such that each point is 

from a distinct 1-flat, are analysed. In the following we 

refer to a non-zero error as tj, t=1,...,10, j=a,b,c, or llat 

that is by the 1-flat label, since it is irrelevant which of 
the non-zero points is in error. For instance, we refer to 

the non-zero error triple la7a8a and the zero error triple 
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01a4a. The former error pattern consists of a single error 

in each of the 1-flats la, 7a and 8a. Thus, la7a8a refers 

to 2x2x2=8 possible point error triples, all of which are 

treated identically by the decoder. Similarly, the error 

triple 01a4a consists of an error in 0 and a single error in 

one of the non-zero points of both the 1-flat la and the 1-

flat 4a, for a total of 1x2x2=4 possible point error triples. 

Again, the decoder treats each of the four error triples 

identically. The decrease in the error-space size is quite 

considerable. The simulated decoder need only test one-

eighth 

 

 of all possible non-zero 3-error sets, one-quarter of 

the non-zero'2-error sets, one-half of the non-zero single 

errors, one-quarter of the zero error 3-error sets and one-

half of the zero 2-error sets. 

A second reduction in the set of error patterns which 

must be tested by the decoder model is possible because of 

the 01-orbit structure and its cycles. Due to the structure 

of the cycles of the classes I1, IIi, 'Hi  and IV1, given in 

Table 4.5.3, it is only necessary to test one element of 

each cycle as a single error. Thus, the set of single errors 

0,1a,lb,lc,7a,70,10al lla represents all possible single er-

ror patterns. For instance, la represents each of the single 

errors in the cycle (la 2a 3a 4a 5a 6a) bedause, as shown in 

Table 4.5.2, each of the 1-flats ta, t=2,...,6, has the ex-

act same distribution in the 3-flats as la. This is true 

for the representatives of the other cycles. This simplifi-

cation can be extended to the 2 and 3-error sets. For in-

stance, the non-zero pair la7a represents the pairs of er-

rors, 2a8a, 3a9a, 4a7b, 5a8b, 6a9b. Similarly, the triple 

la7a10a represents the error triples 2a8a10c, 3a9a10b, 4a7b10a, 

5a8b10c, 6a9b10b. Similar representations are used if one 
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of the errors is 0. With this second reduction of the er-

ror space, we discuss the results of the computer simula-

tion of the decoder. 

We begin with the possible single errors. If 0 is in 

error, the count is 27, and hence the decoder correctly de-

termines that eo, the error digit in position 0, is a 1. If 

la, ib, lc, 7a or 7c is in error, then the count is 1 and the 

decoder makes the decision that e0=0, that is that the digit 

in position 0 is correct. All other errors in the same 

cycle as these, have the same count and hence are correctly 

decoded. If 10a or 11a is in error, the count is 0 and the 

decoder determines correctly that e0=0. 

The 2-error patterns with one error in 0 and the other 

error any single error except 11a, have a count of 26. Con-

sequently, the decoder determines correctly that there is an 

error in position 0 and hence that e0=1. For the error pair 

011a, the count is 27, and again the decoder decides that e0=1. 

Every non-zero pair of errors has a count less than 14 and 

hence the decoder decides that e0=0, that is that no error 

has occurred in position 0. 

The sets of error triples can be divided into three dis-

tinct groups. The first group consists of the non-zero er-

ror triples with a count of 15, or less than 14. Each error 

triple of the second group has a count of at least 17 and 

consists of the 0 error plus two non-zero errors. The third 

group has both zero and non-zero error triples and a count 

of either 14 or 16. We discuss each group separately. 

The first group is comprised of all possible non-zero 

error triples excepting those given in Table 5.4.1. The 

count for these error triples ranges from 1 to 13 or is 15. 
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Hence, the decoder decides correctly that the digit in posi-

tion 0 is correct, and thei-efore that e0=0. 

The second group consists of all zero error triples ex-

cept those listed in Table 5.4.1. The count for this group 

ranges from 17 to 24 and hence the decoder makes the deci-

sion that the digit in position 0 is in error and ec, is set 

to 1. 

We note that none of the 1, 2 or 3-errors discussed so 

far have required the testing of the flags f1, f2 or f3. 

It is of interest to note at this point that it is pos-

sible to obtain from the decoder, information about the com-

position of the error triples. For instance, if the count 

is 24, we know from the simulation that the error triple is 

one of the six error sets, 011ata, t=1,...,6. If the count 

is 23, then the error triple is Otalla or Otb11a, t=7,8,9. 

If the count is 18, then one of the errors is 0 and one is 

10a, 10b or 10c. More examples are given in Chapter 7 of 

. the added information concerning the error sets that it is 

possible to gain from the decoder. 

The third group is the set of 3-errors which have a 

count of either 14 or 16. We list these in Table 5.4.1. 

These error triples are broken down into sets such that each 

set is the cycle associated with the first point error triple.  

of the set. Hence, each triple is treated identically by 

the decoder. The error triples followed by fi, i=1,2,3, 

have the flag fi set. That the decoding algorithm corrects 

the digit in position 0 when the error triples given in 

Table 5.4.1 occur, follows from the definition of the decoder 

and Table 4.5.1 (for the setting of the flags). We note 

that each triple in Table 5.4.1 which is followed by a flag 

consists of II1 1-flat errors and/or the zero error only. 
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count c=14 
	 count c=16  

7a7b0;f2,f3 
8a8b0;f2,f3 
9a9b0;f2,f3 

7a7c0;f2,f3 
8a8c0;f2,f3 
9a9c0;f2,f3 

7b7c0;f2,f3 
8b8c0;f2,f3 
9b9c0;f2,f3 

la9a7b 
2a7b8b 
3a8b9b 
4a967a 
5a7a8a 
6a8a9a 

1b1c7b 
2b2c8b 
3b3c9b 
4b4c7a 
5b5c8a 
6b6c9a 

1a2c4c 
2a3c5c 
3a4c6c 
4a5c1c 
5a6c2c 
6a1c3c 

7a7b10a;f2 
8a8b10c;f2 
9a9b10b; f2 

'‘ 1a4b7c 
2a5b8c 
3a6b9c 
4a1b7c 
5a2b8c 
6a3b9c 

1b2c9b 
2b3c7a 
3b4c8a 
4b5c9a 
5b6c7b 
6b1c8b 

1c9b9c 
2c7a7c 
3c8a8c 
4c9a9c 
5c7b7c 
6c8b8c 

la8b0;f2  
2a5b0;f2 
3a7a0;f2 
4a8a0;f2 
5a9a0;f2 
6a7b0;f2 

la9b0;f2 
2a7a0;f2 
3a8a0;f2 
4a9a0;f2 
5a7b0;f2 
6a8b0i f2 

1b8b0;f2  
2b9b0;f2 
3b7a0;f2 
4b8a0; f2 
5b9a0;f2 
6b7b0;f2 

7c10b0;f1 
8c10a0;f1 
9c10c0;f1 

7c8c0;f2 
8c9c0;f2 
9c7c0;f2 

1c8b0;f2 
2c9b0;f2  
3c7a0;f2 
4c8a0;f2 
5c9a0;f2  
6c7b0;f2 

Table 5.4.1: Error triples with c=14, 16; 
flag f1: 1 input to (101) counter is 1, 
flag f23 5 or 7 inputs to (103) counter are 1 
flag f3: 2 or 3 inputs to (113) counter are 1. 

It is possible to determine information from the decoder as 

to the composition of the error triples. For instance, if 

the count is 14 and both flag f2 and f3  are set, then 0 is 

in error plus one of the pairs tatb, tatc, tbtc, t=7,8,9. 

If the count is 16 and the f1  flag set, then the error triple 

is 07c10b, 08c10a or 09c10c. If no flags are set, and the 

count is 14 or 16, then it is known that one of the non-flagged 

error triples from Table 5.4.1 is in error. Such knowledge 

can be useful if an analysis of the channel errors is being 

made. Moreover, the decoding process can be shortened, since 

it is unnecessary to ..decode the positions known to be cor-

rect. Only those positions which correspond to possible 

errors need be decoded. 

As was noted in the definition of the decoder, if there 
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is a computer associated with the channel, which is frequently 

the case, the testing and setting of the flags is a trivial 

task. However, even if this must be done using circuitry, 

the few additional flip-flops required to implement the flags 

is not costly. Moreover, we now show that the number of er-

ror triples which require the testing of flags, that is the 

error triples of Table 5.4.1, is very small. The calcula-

tion of the total number of possible' correctable errors and 

the percentage of these which appear in Table 5.4.1 follows. 

The following error sets can be chosen, where each error is 

distinct, that is no two non-zero errors occur in the same 

1-flat: 

3 non-zero errors in 	62x60x58 

0 + 2 non-zero errors in 1x62x60 

= 215760 ways, 

= 	3720 ways, 

2 non-zero errors in 62x60 = 3720 ways, 

0'+ a non-zero error in 1x62 = 62 ways, 

1 error in 63 = 63 ways, 

for a total of 223325 correctable error patterns. Now the 

number of these patterns occurring in Table 5.4.1 is as follows: 

3 non-zero errors 	(2x2x2)x39 = 312, 

0 + 2 non-zero errors (2x2)x39 = 156, 

for a total of 468 error patterns. Thus, the flag checking 

is necessary for only 468/223325 < 0.21% <Z.% of all possible 

correctable error patterns. If a decoder which corrected 

only 99.75% of all possible correctable error patterns were 

acceptable, then the resulting modified 01-orbit decoder 

would be very simple. It would require 27 7-input threshold 

units. If a count of 14 or 16 were flagged, then retrans- 

mission could be used for the i% of the error patterns that 

the decoder could not correct. 

The simplicity and power of the defined decoder is obvious. 
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5.5 Dslag1N31912A 

We have defined and andlysed the Oi-orbit decoder of the 

order-3 (63,41) PG code in this chapter. The simplicity of 

the decoder, requiring only 27 threshold units, two counters 

and three flags, was emphasized. 

We began the chapter with a detailed discussion of the 

standard Majority Logic Decoder of the order-3 (63,41) PG 

code. MLD was discussed in Chapter '3 in general. In this 

chapter the discussion was made specific with a study of 

the circuitry required for the decoder of the (63,41) PG 

code. This was followed by the definition of the Oi-orbit 

decoder of the code, comparing it to the standard Majority 

Logic Decoder. The reduction in circuitry for the Oi-orbit 

decoder vs. the Majority Logic Decoder was significant. The 

former, unlike the latter, needs no division or multiplica- 

tion circuitry. Even the simplified version of the Majority 

Logic Decoder requires more than twice the number of thres- 

hold units necessary for the 01-orbit decoder. By referring 

to the results of a computer simulation of the decoder, the 

various i-error sets, 1=1,2,3, were analysed. Finally, it 

was shown that the testing of the 01-orbit decoder flags is 

necessary for less than 4% of all possible correctable error 

patterns. MoreOver, if it is acceptable to correct only 

99.757 of all correctable error patterns, the•01-orbit de- 

coder can be simplified even further. 
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CHAPTER 6: 01-ORBIT DECODER QF ORDER-5 _(25.218) PG CODE  

6.1 Introduction 

The order-5 (255,218) PG code anddts 01-orbit decoder 

are studied in this chapter. The analysis is similar to, 

but less detailed than, that given the order-3 (63,41) PG 

code. This is due to the fact that the 01-orbit structures 

of PG(7,2) are merely extensions of those of PG(5,2). The 

objective of this chapter is then not to emphasize the math-

ematical symmetries as in Chapter 4, but to illustrate the 

dramatic decrease in the circuitry requirements if the Oi-

orbit decoder is used to decode the order-5 (255,218) PG 

code instead. of the Majority Logic Decoder. 

6.2 Stand rd Mort Lo 	ode of 	218 	ode 

As the order of a Majority Logic Decodable code increases, 

so does the complexity of the decoder. With each added level 

of Majority Logic, more circuitry is required. In this sec-

tion we discuss the circuitry for MLD an order-5, rather 

than order-3, code, in particular, the order-5 (255,218) PG 

code. As the theory of the decoder was given in Chapter 5, 

we simply present the details of the circuitry here. 

In order to calculate the number of threshold units 

necessary to decode using MLD, the following information is 

required. Referring the Chapter 3, the number. of 5-flats 

orthogonal on the position 0 is: 

(27-1)(26-1)(25-1)(24-1)(23-1) 
A(0,5,7,2) = 	 = 2667, 

(25-1)(24-1)(23-1)(22-1) 

the number of 4-flats orthogonal on the position 0 is: 

(27-1)(26-1)(25-1)(24-1) 
A(0,)4',7,2) = 	 = 11811, 

(24-1)(23-1)(22-1) 

the number of 3-flats orthogonal on the position 0 is: 
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(27-1)(26-1)(25-1) 
M0,317,2) = 	 - 11811, 

(23-1)(221-1) 

the number of 2-flats orthogonal on position 0 is: 

(27-1)(26-1) 
A(0,2,7,2) - 	 = 2667, 

(22_1) 

and the number of 1-flats orthogonal on the position 0 is: 

X(0,1,7,2) = (27-1) = 127. 	' 

Also, the number of 5-flats orthogonal on a given 4-flat is: 

A(4,5,7,2) = (23-1) = 7, 

the number of 4-flats orthogonal on a given 3-flat is: 

X(3,4,7,2) = (24-1) = 15, 

the number of 3-flats orthogonal on a given 2-flat is: 

A(2,3,7,2) = (25-1) = 31, 

the number of 2-flats orthogonal on a given 1-flat is: 

A(1,2,7,2) = (26-1) = 63, 

and the number of 1-flats orthogonal on a point is: 

A(0,1,7,2) = (27-1) = 127. 

• Given these quantities, it is now possible to describe the 

circuitry required to Majority Logic Decode the order-5 

(255,218) PG code. 

The process begins 'kith a preliminary step of multi- 

plying plying the received word by 	and dividing the re- 

sult by the generating polynomial g(X). The remainder after . 

division is stored in the syndrome register. -On the first 

step, as there are seven 5-flats orthogonal on each 4-flat, 

11811x7=82677 sets of taps and GF(2) adders are necessary to 

obtain the inputs to the 11811-  7-input threshold units. On 

the second step, there are 11811 15-input threshold units 

which output estimates of the 3-flats. These estimates are 

input to the 2667 31-input threshold units of step 3. The 

outputs, estimates of the 2-flats, are input to the 127 63- 
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input threshold units of step 4. On the final step, these 

estimates are input to a eirirgle I27-input threshold unit whose 

output is the estimate of the error digit in position O. 

Thus, the circuitry required for MLD the order-5 (255, 

218) PG code involves: 

i) circuitry for the premultiplication of the received 

word by X37 and division of the result by the generating 

polynomial g(X), 

ii) 11811x7=82677 sets of taps on the syndrome register 

and corresponding GF(2) adders, 

iii) 11811 7-input threshold units, 

iv) 11811 15-;input threshold units, 

v) 2667 31-input threshold units, 

vi) 127 63-input threshold units, 

vii) one 127-input theshold unit. 

A simplification similar to that made for the Majority Logic 

Decoder of the (63,41) PG code can be made to the (255,218) 

PG code Majority Logic Decoder. Since, on the first step, 

the total number of errors correctable, [7/21= 3, is determined, 

no more than 3 errors can be corrected on any step. Thus 

three errors are corrected if only seven estimates are input 

to the threshold units at each level.. As a result, the fol- 

lowing circuitry will also decode the order-5 (255,218) PG code: 

i) circuitry for the premultiplication of.the received 

word by X37  and division of the result by the generating 

polynomial g(X); the remainder is stored in a register, 

ii) 2401x7=16807 sets of taps on the syndrome register 

and corresponding GF(2) adders 

iii) 2401+343+49+7+1=2801 7-input threshold units. 

We refer to both the standard and simplified versions of the 

Majority Logic Decoder for the order-5 (255,218) PG code 
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when we discuss the Oi-orbit decoder of the code. 

6.3 FG(7.2) 01-orbit Structure  

O.-orbits can be defined on PG(7,2). To do so, we be-

gin by applying Yamamoto et al's[581sixth theorem to the flats 

of dimension (m-2)=(7-2)=5, and of dimension 1 in PG(7,2). 

First, however, we calculate the total number of 5-flats and 

the total number of 1-flats in PG(7,.2). From Gliapter 3, 

there ares 

(28-1)(27-1)(26-1)(25-1)(24-1)(23-1) 
0(7,5,2) - 	  - 10795 

(26-1)(25-1)(24-1)(23-1)(22-1) 

5-flats in PG(7,2) and 

(28-1)(27-1) 
0(7,1,2) = 	= 10795 

(22-1) 

1-flats in PG(7,2). We recall that the number of (m-2)=3- 

flats is the same as the number of 1-flats of PG(5,2). Sim-

ilarly, the number of (m-2)=5-flats is the same as the number 

of 1-flats in PG(7,2). We now apply Theorem 6 for d=5,1. 

The highest common factor of (m+1;d+1) is HCF(8,2)=21. 

Thus the number of cycles is (1+1)=2, one of which, from 

Theorem 3, is v=255, the number of points in the geometry. 

From Theorem 6, we haves 

x1=1 	 x1=0 

e(1) = (28-1)/(22-1) = 85 	e(o) = (28-1)/(2-1) = 255 

n(1) = 0(3,2,4) = 85 . 	n(0) = 0(7,5,2) = 10795 

11,(1) = 85/85 = 1 	n*(0) = 10795 - 85 = 10710 

-ISO) = 10710/255 = 42. 

These calculations show that there are 42 i5f's of m.c. 255 
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and one 151 of m.c. 85. Each of the 42 151's of m.c. 255 

generates 255 distinct 5-flits. The point representations 

of these flats are obtained by subtracting j mod 255 from the 

point set of each i5f, j=0,1,...,254. Similarly, the 85 5-

flats generated from the i5f of m.c. 85 are obtained by sub-

tracting j, mod 255, from the point representation of the 

i5f, j=0,1,...,84. 

The order-5 (255,218) PG code has all the 5-flats of 

PG(7,2) in its null space. This code is cyclic, so when d - 

coding, it is only necessary to consider those 5-flats in 

the null space which contain the point 0. Thus, only the 5-

flats in PG(7,2) which contain the point 0 are considered as 

null space 5-flats. Using the arguments of Section 4.3, we 

need generate for each i5f of m.c. 255, only the 63 5-flats 

which contain the point 0. 

From Theorem 2 above and the discussion in Section 4.3, 

the i5f of m.c. 85 is composed of 21 1-flats, one of which 

• is (0 85 170). The other 20 1-flats are (0+ci 85+ci 170+ci), 

addition mod 255, for positive integers ci, i=1,...,20. As 

a result, the i5f of m.c. 85 generates only 21 distinct 5-

flats through the point 0. 

As in Chapter 4, we now apply Theorem 6 to the d=1-flats. 

In this case (d+1)=2, so HCF(m+1,d+1)=HCF(8,2)=21, and hence • 

there are (1+1)=2 distinct cycles, one of which must be 255, 

by Theorem 3. Applying Theorem 6j- we have that there are 42 

i1f's of m.c. 255 and one ilf of m.c. 85. Each ilf of m.c. 

255 generates 255 1-flats and the i1f of m.c. 85 generates 

85 1-flats. As in Chapter 4, it is only necessary to know 

the 1-flats which pass through 0. As there are 0(7,0,1)=3 

points in each 1-flat, there are 3 1-flats generated from 

each ilf of m.c. 255 which contain the point 0. From Theorem 
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2 above, the ilf with m.c. 85 is the flat (a00(;) 	alooL8-J
5%  
, 

at), al  from GF(2), and thuso'the points of tie flat are 

(0 85 170), irrespective of the polynomial chosen to represent 

the geometry. As for the 111a 1-flat (0 21 42) of PG(5,2), 

the ilf of m.c. 85 of PG(7,2) generates only one distinct 

flat which contains the point 0. The calculations for Theorem 

6 are given below. 

x1=1 
	 x1 =0 

e.(1) 	(28-0/(22-1) = 85 	e(0) 	(28-1)/(2-1) = 255 

m(1) . (8/21)-1 = 3 	m(0) = (8/2°)-1 = 7 

d(1) 	(2/2)-1 = 0 	d(0) = (2/2°)-1 = 1 

q(1) = 22  = 4 	q(0) = 21  = 2 

n(1) = 0(3,0,4) = 85 
	

n(0) = 0(7,1,2) = 10795 

71,(1) = 85/85 = 1 
	

n*(0) = 10795 - 85 = 10710 

/.(0) = 10710/255 = 42. 

As in the PG(5,2) case, the 1-flats and the (m-2)-flats 

have the same distinct cycles and number of initial flats of 

these minimal cycles. Consequently we are able to define the 

orbits and 0i-orbits, and hence a simplified decoder. 

The transformation Z was defined in Chapter 4 as the 

transformation which takes the point j to the point (j-1) 

mod (2111+1-1)=255. The transformations tZ,Z2,...,Z255=Z°=e) 

form a group over the set of all i-flats in PG(7,2). For 

i=5 and i=1 this group partitions the i-flats into orbits, 

where each orbit corresponds to one of the iif's and i-flats 

generated from it. Thus, there are 42 orbits with 255 members 

each and one orbit with 85 members. As we are interested 

only in those flats containing the point 0, we use the term 

O.-orbit, introduced in Chapter 4, to refer to the 'subset of 

an orbit consisting of only those i-flats in which the point 



146 

0 occurs. For i=5, each 05-orbit with flats of m.c. 255, 

has 63 members. The 05-orbit corresponding to the i5f of 

m.c. 85 has 21 members. The 01-orbits with flats of m.c. 255 

have three members each and the 01-orbit with the flat of 

m.c. 85 has one member. We say that the 01-orbit has the 

m.c. of its constituent i-flats. 

There is a one to one correspondence between the 43 

orbits and the 43 iif's, and between the 0i-orbits and the 

iif's through 0, i=1,5. We recall a similar correspondence 

in PG(5,2). We list the 01-orbits of PG(7,2) in Table 6.3.1, 

using the point representation. 

(10 (21) (31)  (41) 
a: 0 1 25 a: 0 2 50 a: 0 	4 100 	a: 	0 8 200 
b: 0 24 254 b: 0 48 253 b:  0 96 251 	b: 	0 192 247 
c:  0 230 231 c: 0 205 207 c: 0 155 159 	c: 	0 55 	63 

(51) (60 (71)  (81) 
a: 0 16 145 a: 0 32 35 a: 0 	64 	70 	a: 0 128 140 
b: 0 129 239 b: 0 3 223 b:  0 	6 191 	b: 0 	12 127 
cs 0 110 126 c:  0 220 252 c: 0 185 249 	c: 0 115 243,, 

(91) (101) (111) (121) 
a:0 5 138 a: 0 	10 21 a: 0 	20 	42 	a: 	0 40 	84 
b:0:133 250 b: 0 	11 245 b:  0 	22 235 	b: 	0 44 215 
c:0 117 122 0: 0 234 244 c:  0 213 233 	c: 	0 171 211 

III 
(131) (141) (151) (160 

a:0 80 168 a: 0 160 81 a: 0 	65 162 	a: 	0 130 	69 
b:0 88 175 b: 0 176 95 b:  0 190 	97 	b: 	0 125 194 
c:0 87 167 c:  0 174 79 c: 0 158 	93 	c: 	0 61 186 

(171) (181) (191) (201) 
a:0 13 99 a:0 26 198 a:0 52 141 	a:0 104 27 
b:0 86 242 b:0 172 229 b:0 80 203 	b:0 178 151 
c:0 156 169 c:0 57 83 c:0 114 166 	c:0 228 77 

III1  
(210 (221) (231) (241) 
a:0 208 54 a:0 161 108 a:0 67 216 	a:0 134 177 
b:0 101 47 b:0 202 94 b:0 149 188 	b:0 	43 121 
c:0 201 154 c:0 147 53 c:0 39 106 	c:0 	78 212 

(251) (260 (27 	) (281) 
a:0 19 92 a:0 38 184 MO 76 113 	a:0 152 226 
b:0 73 236 b:0 146 217 b:0 37 179 	b:0 	74 103 IV 
c:0 163 182 c:0 71 109 c:0 142 218 	c:0 	29 181 
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(291) (301) (311) (321) 
a:0 	49 197 a:0 	98 139 a:0 196 23 a:0 137 46 
b:0 148 206 b:0 	41 157 b:0 	82 59 b:0 164 118 1V1  
c:0 	58 107 c:0 116 214 c:0 232 173 c:0 209 91 

(331) (340 (351) (361) 
a:0 	7 112 a:0 	14 224 a:0 28 193 a:0 	56 131 
b:0 105 248 b:0 210 241 b:0 165 227 b:0 	75 199 
c:0 143 150 c:0 	31 	45 cs0 62 90 c:0 124 180 

(371) (380 (391 ) (400 
a:0 111 246 a:0 222 237 a70 189 219 a:0 123 183 
bs0 	9 120 
c:0 135 144 

b:0 	18 240 
c:0 	15 	33 

b:0 
c:0 

36 
30 

225 
66 

b:0 	72 195 	VII.  
c:0 	60 132 

(411) (421) (431) 
a:0 	17 	68 a:0 	34 136 a:0 	85 170 VIII1 
b:0 	51 238 b:0 102 221 VIII.  
c:0 187 204 c:0 119 153 

Table 6.3.1: 01-orbits of PG(7,2), minimal poly-
nomial (0 2 3 4 8) 

The labelling of the flats is as in Chapter 4. The 01-orbits 

are numbered (11), (21), ..., (431), with constituent 1-flats 

ta, tb, tc, t=1,...,42. The subscript 1 on t is used only 

if it is not obvious that 1-flats are being discussed. The 

single 1-flat of (431) is labelled 43a. The 01-orbits are 

divided into the eight classes 	defined 

later. 

The 1-flats of Table 6.3.1 are formed as the 1-flats of 

Table 4.4.t were, taking two linearly independent points, one 

of which is 0. 

The correspondence exhibited between the 01-orbits and 

the 03-orbits of PG(5,2) has a counterpart in PG(7,2). Here, 

there is a one to one correspondence between the 01-orbits 

and the 05-orbits which is merely an extension of the PG(5,2) 

case. Each 05-orbit contains the six non-zero points of one 

and only one 01-orbit (11),...,(421), 31 times, and the re-

maining non-zero points 15 times each. Consequently, the 



148 

05-orbits are numbered (15),...,(425), to reflect this, 

where the 05-orbit (t5) contains the non-zero points of (t1) 

31 times. The 05-orbit of m.c. 85 corresponds to the 01-

orbit (431) and is numbered (435). We note that the number 

of times the non-zero points of the 01-orbit 1-flats repeat 

in a (m-2)-flat is equivalent to the number of points in a 

(m-3)-flat. 

Of the 63 5-flats in any 05-orbit (t5) of m.c. 255, 

there are eight 5-flats which do not contain a 1-flat from 

(t1), t=1,2,...,40. For this study, we omit these.eight 5-

flats and refer to the 05-orbit (t5) as the 55 5-flats which 

intersect on 0 and contain at least one 1-flat from (ti). 

The three subsets At  Bt, Ct' t=1,2,...,40, are formed 

to correspond to the similar subsets in PG(5,2). In each 

(t
5
) 05-orbit, t=1,2,...,40, there are eight 5-flats contain-

ing only the 1-flat tia from (ti). These are labelled t5ai, 

t5aviii• Similarly, there are eight 5-flats which con-

tain tib, eight containing tic, eight containing both tia 

and tib, eight containing tia and tic, eight containing tib 

and tic, and seven containing all three 1-flats tia, tib, tic. 

The labelling of these is consistent with the labelling of 

the 5-flats containing tia only. The subset At  is defined 

as the subset of 5-flats from (t5) which contains the 1-flat 

tia, that is the 31 5-flats, t5ai, t5abi, t5aci, t5abcs, j=i, 

...,viii, s=i,.. 	Bt  and Ct  are defined similarly. 

As in the PG(5,2) case, the subsets At, Bt  and Ct  are non-

orthogonal on their defining 1-flats a, b, c, respectively. 

These non-orthogonal subsets are the basis of the 01-orbit 

decoder. 

In the PG(7,2) there are certain 05-orbits which have 

unique structures. These 05-orbits, (415), (425), (435), 
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are now described. They play a special role in the decoding 

process, just as (103) and (113) did. in PG(5,2). 

In (415) and (425), fifteen of the 5-flats contain all 

three 1-flats 41a, 41b, 41c, and 42a, 42b, 42c, respectively. 

The (415) 5-flats which do not contain all three of 41a, 41b, 

41c, are omitted, leaving the 15 5-flats, 415abci,...,415abexv. 

The (425) 05-orbit is defined similarly. The subsets A41  and 

A42  are defined as the whole 05-orbit (t5), t=41,42, respec-

tively. It is interesting to note that 41a, 41b, 41c, 43a 

appear in each of the 15 5-flats of (425) and that 42a, 42b, 

42c, 43a appear in each of the 15 5-flats of (415). These 

thirty 5-flats play an important role in decoding. Some of 

the 48 5-flats omitted from (415) and the 48 omitted from 

(425) have a special use in decoding. 

In (435), the single 1-flat 43a occurs in each of the 

21 5-flats. These flats are labelled 435ai,...t435axxi. 

This 05-orbit also has a special role in the decoding algor-

ithm. The 5-flats of these two classes appear in Appendix A. 

The transformation g, introduced in Chapter 4, which 

takes the point j to the point 2j, mod 255, establishes sym-

metries in the PG(7,2) 0i-orbits similar to the ones in the 

PG(5,2).0i-orbits. The cycles of the 01-orbits, defined by 

g are given in Table 6.3.2. Similarly, g can be applied to 

the 5-flats of each 05-orbit to give the classes 15,..., 

V1115. We do not include them here as they follow directly 

from the 1-flat cycles and are similar to the 3-flat cycles 

of Table 4.5.4. The cycles at a gross level of 0i-orbits 

are more illustrative and are listed in Table 6.3.3. The 

subscript g on each cycle class denotes that the cycles are 

induced by the transformation g. 
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Class 	1-flat Cycles 	Cycle Order 

II 	(la 2a 3a 4a 5at6d7a 8a) 	. 	8 
(lb 2b 3b 4b 5b 6b 7b 8b) 	8 
(lc 2c 3c 4c 5c 6c 7c 8c) 	8 

II, 	(9a 10a lla 12a 13a 14a 15a 16a) 	8 
(9b 10b llb 12b 13b 14b 15b 16b) 	8 
(9c 10c lic 12c 13c 14c 15c 16c) 	'8 

III1 	(17a 18a 19a 20a 21a 22a 23a 24a) 	8 
(17b 18b 19b 20b 21b 22b 23b 24b) 	8 
(17c 18c 19c 20c 21c 22c 23c 24c) 	.8 

IV1 	(25a 26a 27a 28a 29a 30a 31a 32a) 	8 
(25b 26b 27b 28b 29b 30b 31b 32b) 	8 
(25c 26c 27c 28c 29c 30c 31c 32c) 	8 

V 	.(33a 34a 35a 36a) 	4 

	

1 	(33b 34b 35b 36b 33c 34c 35c 36c) 	8 

VI1 	(37a 38a 39a 40a) 	4 
(37b 38b 39b 40b 37c 38c 39c 40c) 	'8 

VIII 	(41a 42a) 	• 	 2 
(41b. 42b 41c 42c) 

VIIII  (43a) 	 1 

Table 6.3.2: 1-flat Cycles 

	

Class 	01-orbit Cycle 	Order  

II 	
(1 2 3 4 5 6 7 8) 	8 
(9 10 11 12 13 14 15 16) 	8 

IIIg  (17 18 19 20 21 22 23 24) 	8 
IVg 	(25 26 27 28 29 30 31 32) 	8 

	

Vg g 	(33 34 35 36) 	4 
VI, 	(37 38 39 40) 	4 

	

VII 	(41 42) 	2 

	

VIIIg 	(43) 	 1 g 

Table 6.3.3: Cycles of the 0i-orbits 

The 05-orbits (415) and (425) partition the 01-orbit 1-

flats, excepting the (411) and (421) 1-flats, into distinct 

blocks, such that no 1-flat appears in more than one block. 

This partition defines the symmetry blocks of PG(7,2). These 

blocks are the basis of many of the symmetric distributions 
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of 1-flats in the 05-orbits. Moreover, sets of errors which 

have the same symmetry block' composition are treated similarly 

by the decoder. The 18 symmetry blocks are listed in Table 

6.3.4, where, from symmetry block Sj(0), the remaining h sym-

metry blocks generated from it, are obtained by applying the 

transformation g, a total of h times. 

Symmetry Block 	DrAer 

S1(0): la 2b 5a 6b 26b 30b 35b 35c 	4 
S1(1): 2a 3b 6a 7b 27b 31b 36b 36c 
S1(2): 3a 4b 7a 8b 28b 32b 33c 33b 
S1(3): 4a 5b 8a lb 29b 25b 34c 34b 

S2(0): lc 5c 9b 13b 17b 18c 21b 22c 	4 
S2(1): 2c 6c 10b 14b 18b 19c 22b 23c 
S2(2): 3c 7c llb 15b 19b 2c 23b 24c 
S2(3): 4c 8c 12b 16b 20b 21c 24b 17c 

S3(0): 9a 12c 13a 16c 27c 31c 40b 40c 	4 
S3(1): 10a 13c 14a 9c 28c 32c 37c 37b 
S5(2): 11a 14c 15a 10c 29c 25c 38c 38b 
S3(3): 12a 15c 16a 11c 30c 26c 39c 39b 

S4(0): 17a 19a 21a 23a 25a 27a 29a 31a 	2 
S4(1): 18a 20a 22a 24a 26a 28a 30a 32a 

S5(0): 33a 34a 35a 36a 37a 38a 39a 40a 	1 

S6(0): 41a 42a 41b 42b 41c 42c 43a 	1. 

Table 6.3.4: Symmetry Blocks of PG(7,2) 

A given member of a symmetry block appears in a 5-flat of 

(415) or (425) if and only if all other members of that sym-. 

metry block also appear in the 5-flat. A concise represen-

tation of (415) and (425) is given in Table 6.3.5, where Sj(h) 

represents the symmetry block obtained from h applications 

of g on Sj(0), that is, Sj(h)=gh(Sj(0)). We note that 

there is a one to one correspondence between the 5-flats of 

(415) and (425). For Vi a 5-flat of (415), g(Vi). is a 5-

flat of (425). 

The symmetry blocks are of prime importance in defining 
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the01  ....orbit decoder of the PG code over PG(7,2), just as 

the symmetry blocks of PG(502) were in the 01.-orbit decoder 

of the PG code over PG(5,2). 

i4151_25-orbit 1.4251_15-orbit 
S2(0) S3(3) 	S4(1) S6(6) s2(1) s3(o) s4(o) s6(o) 
S2(1) S3(2) s5(o) S6(0) S2(2) s3(3) S5(0) S6(0) 
S2(2) S3(1) S4(1) S6(0) S2(3) S3(2) S4(0) 	S6(0) 
S2(3) S3(0) S5(0) S6(0) S2(0) S3(1) S(0) S6(0) 
S1(0) 1(3) S4(0) S6(0) Si(1) Si(0) S4(1) S6(0) 
S1(1) S1(2) S4(0) s6(o) S1'(2) S1(3) S4(1) S6(0) 
S3(1) s3(3) S4(0) S6(0) S3(2) S3(0) S4(1) S6(0) 
S1(0) S3(2) s3(3)  S6(0) S(1) S(3) S(0) S(0) 
S1(2) S3(0) S3(1) S6(0) Si(3) s3(1) S3

3
(2) S6(0).  

S2(1) S2(3) S4(1) 	S6(0) S2(2) S2(0) S4(0) S6(0) 
S1(3) S1(1) S5(0) s6(o) S1(0) S1(2) S5(0) S6(0) 
i(3) S2(2) 

S2(o) 
S3(0) S6(0) S1(0) s2(3) S3(1) S6(0) 

S1(1) S3(2) S6(0) S1(2) s2(1)  S3(3) S6(0) 
Si(0) S2(2) S2(1) S6(0) S1(1) s2(3) s2(2) S6(0) 
S1(2) S2(0) S2(3) S6(0) S1(3) s2(1)  S2(0) S6(0) 

Table 6.3.5: 5-flats of (415), (425) in terms of 
Symmetry Blocks 

The detailed study of the 01-orbit structure of PG(5,2) 

emphasized the mathematical symmetries of the structure. The 

size of PG(7,2) makes a comparable representation unwieldy. 

Consequently, we stress only the dramatic reduction in the 

amount of circuitry required to decode the order-5 (255,218) 

PGcodewhenthe0--orbit decoder is used to decode rather 

than the Majority Logic Decoder. 

6.4 Oi-orbit Decoder of Order-5 (255_,218) PG Code  

The Oi-orbit non-orthogonal decoder of the (255,218) PG 

code is a logical extension of the 01-orbit decoder of the 

(63,41) PG code. Much less circuitry and fewer decoding 

steps are required for this decoder than for the Majority 

Logic Decoder of the code. The description of the 01-orbit 

follows directly from the discussion of the 01-orbit decoder 

of the order-3 (63,41) PG code. There are, just as for the 
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PG(5,2) decoder, two decoding steps. Vie now discuss these. 

On the first step, non'-,orthogonal estiffates of the 1-

flats of the 01-orbits (11) through (405) are obtained from 

the 05-orbit 5-flats which are initially known to the decoder. 

Also, dependent on the errors associated with the (415) and 

(425) 5-flats, certain binary flags may be set. The esti-

mates obtained from the first step correspond to 1-flats 

orthogonal on the point O. These estimates are input to a 

counter on the second step. Assuming no more than three er-

rors have occurred, the error digit in position 0 is correctly 

determined by the output of the counter. In a few cases, the 

flags set in step 1 must also be consulted and sums obtained 

corresponding to certain'5-flats not used previously. The 

circuitry for the decoder is now described. 

The received word is stored in a register. On the 

first step, for each 05-orbit 5-flat, taps on the register 

positions corresponding to the points of the 5-flat are in- 

. put to a binary adder, the output of which is the sum known 

to the decoder for the 5-flat. Associated with each of the 

subsets At, Bt, 0.0  t=1,...,40, is a 31-input threshold unit 

with threshold 16. The 31 inputs are the binary sums cor-

responding to the 31 5-flats comprising the subsets At, Bt, 

Ct$ respectively. The 15 sums corresponding to the 15 5 

flats of (415) and the 15 sums corresponding to the 15 5-

flats of (425) are input to two 15-input counter units, res-

pectively. The output of the 120 threshold units are ortho-

gonal estimates of the point O. A flag f1 is set if the num-

ber of ones input to the (415) and (425) counters is 11,9 or 

9,9 or 9,11 or 3,3, respectively. A second flag, f2, is set 

if the inputs are 9,7 or 7,9 or 9,5, respectively. A third 

flag, f3, is set if all 30 inputs to the two counters are 
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ones. The three flags are simply binary flip-flops, set if 

the number of inputs to:-atcounter is a given,value. 

The circuitry required for this step involves a total 

of (55x40)+15+15=2230 sets of calculations ot the taps of the 

storage register vs. 82677 (or 16807 in the simplified version) 

for the standard Majority Logic Decoder. The (55x40) in the 

above equation refers to the 55 5-flats in each of the 40 

05-orbits. Three flags may have to le set. A total of 120 

31-input threshold units and two counters for the flags, are 

necessary. The standard decoder requires on the first step, 

11811 (2401 in the simplified version) 7-input threshold units. 

On the second step the 120 outputs from step 1 are in-

put to a counter. These-outputs correspond to 120 1-flats 

orthogonal on the point O. The decoder's decision as to the 

value of the error digit in position 0 is dependent on the 

value c output by the counter, and in some cases, the flags 

f1, f2, f3. In the less than 0.02% of cases that f3  is set,  

certain 5-flats not previously used in decoding, must be 

examined. If eo  denotes the error digit in position 0, then 

the decoder is defined by: 

if c<100, then e0=0, 

c >108, then e0=1, 

c-=108, f3  set, then e0=0; f3  not set, then e0=1, 

100<c107, fi  set, then e0=1, 

f2  set, then e0=0, 

f
3 

set, c=101, then e0=0, 

f3 
set, c101, then consult decoding table. 

We note that in the last case, that is when the count is in 

the range 100 to 107 and f3  is set, c/101, that the error 

triples consist of either the 0 error or one of the members 

of S6(0) and two non-zero errors from the same symmetry block. 
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In the next section it is shown that the flag f3  is set for 

less than 0.02% of all the correctable 1, 2, and 3-error 

patterns. If the f3 
flag is set and c/101, sums correspond-

ing to certain 5-flats not pi.eviously used must be obtained. 

We discuss these seven cases where the f3 flag is set and the 

Count c is in the range 100 to 107, c/101, in the next section. 

Thus,• on the second step, a simple counter, logical 

units to test the flags and seven further sets of 5-flat 

sums and logical units are required. 

This decoding method does not require that the received 

word be premultiplied by X37  and the result divided by the 

generating polynomial g(X). The tapped values need only be 

fed into binary flip-flops and the output then directly in-

put into a threshold unit. The 01-orbit Circuitry consists 

of a total of 120 31-input threshold units, three counters, 

three binary flags, logical units to test the flags and a 

small decoding table of 35 entries. The standard Majority 

Logic Decoder requires circuitry for multiplication, divi-

sion, GF(2) adders, 11811 7-input threshold units, 11811 15-

input threshold units, 2667 31-input theshold units, 127 63-

input threshold units and one 127-input threshold unit, or, 

in the simplified version 2801 7-input threshold units. The 

savings in circuitry achieved by the use of the 0i-orbit de-

coder are significant. If, as suggested for the PG(5,2) 

case, a mini-computer is associated with the channel, the 

flag setting and testing step of the 01-orbit decoder, be-

comes trivial. Specific 1, 2 and 3-error sets are discussed 

in the next section. 

6.5 Frror Analysis of the Decoder  

In this section, it is shown that the 0i-orbit decoder 
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of the order-5 (255,218) PG code is capable of correcting 

all 1, 2 and 3-errors. Hence, the 01-orbit decoder possesses 

the same error-correcting capablilities as the Majority Logic 

Decoder but requires only a fraction of the circuitry. In 

Chapter 7, the decoder's ability to correct some errors of 

higher weight is illustrated. 

A computer simulation of the 01-orbit decoder was used 

to test all possible 1, 2 and 3-errors of the order-5 (255, 

218) PG code. Reductions to the size of the error space 

were made using the same techniques as were used to decrease 

the size of the order-3 (63,41) PG code error space. 

We begin the analysis by examining all possible single 

errors. We observe that it is only necessary to test the 0 

error and one member of each cycle of Table 6.3.2. If 0 is 

in error, the output from the counter in step 2 is 120 and 

hence the decoder correctly determines that e0 the error 

digit in position 0, is a one. If one of la, ib, lc, 9a, 9b, 

90, 17a, 17b, 17c, 25a, 25b, 25c, 33a, 33b, 37a or 37b is in 

error, then the count is 1 and the decoder makes the decision 

that e0=0, that is that the digit in position 0 is correct. 

If one of 41a, 41b or 43a is in error, the count is 0, and 

the decoder determines correctly that e0=0. All other single 

errors in the same cycle as one of the above errors have the 

same count and hence are correctly decoded. 

The 2-error patterns consisting of the 0 error and any 

non-zero error, have a count of 119. Thus, the decoder de- 

termines correctly that there is an error in position 0 and 
• 

hence that eo=1. Every non-zero pair of errors has a count 

between 4 and 20 and hence the decoder decides that e0=0, 

that is no error has occurred in position 0. 

The sets of error triples can be divided into four 
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distinct groups. The first group consists of the non-zero 

error triples with a count less than 100. Each error triple 

of the second group has a count of at least 108 and consists 

of the 0 error plus two non-zero errors. We also include 

the non-zero triples 41a41b41c, 42a42b41b, 41a41c42b and 

42a42c41b, with count 108, in the second group. Error triples 

with a count between 100 and 107 such that one error is either 

0 or a member of S6(0) and the other two are non-zero errors 

from two distinct symmetry blocks, are in the third group. 

The fourth group has both zero and non-zero error triples • 

and a count between 100 and 107. Each triple in this group 

consists of those error triples such that two of the errors, 

e1 and e2, are from the same symmetry block and the other 

error is either 0 or the member of S6(0) in which el and e2 

appear together in Table 6.3.1. The three triples of 1-flats 

from S6(0) listed in the S6 section of Table 6.5.1 are also 

in this group. 

al  pairs  
41a: 1a26b 2b35c 5a30b 6b35b 2a6a 3b7b 27b31b 36b36c 

3a28b 4b33b 7a32b 8b33c 4a8a 5b1b 29b25b 34c34b 

41b: la6b 2b5a 26b35b 30b35c 2a36b 3b31b 6a36c 7b27b 
3a33b 4b28b 7a33c 8b32b 4a5b 8a1b 25b34c 29b34b 

41c: 1a35c 5a35b 2b26b 6b30b 2a3b 6a7b 27b36c 31b36b 
3a8b 7a4b 28b33c 32b33b 4a34c 8a34b 1b29b 5b25b 

42a: la5a 2b6b 26b30b 35b35c 2a27b 3b36c 6a31b 7b36b 
3a7a 4b8b 28b32b 33b33c 4a29b 5b34b 8a25b 1b34c 

42b: la2b 5a6b 26b35c 30b35b 2a7b 3b6a 27b36b 31b36c 
3a33c 4b32b 7a33b 8b28b 4a34b 5b29b 8a34c 1b25b 

42c: 1a35b 5a35c 2b30b 6b26b 2a36c 3b27b 7b31b 6a36b 
3a4b 7a8b 28b33b 32b33c 4alb 8a5b 29b34c 25b34b 

43a: la30b 2b35b 5a26b 6b35c 2a31b 3b36b 6a27b 7b36c 
3a32b 4b33c 7a28b 8b33b 4a25b 5b34c 8a29b 1b34b 
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S2 pairs 

41a: 1c9b 5c13b 17b22c 21b18c 2c19c 6b23c 10b22b 14b18b 
3c11b 7c15b 19b24c 23b20c 4c21c 8c17c 12b24b 16b20b 

41b: 1c131; 5c9b 17b18c 21b22c 2c6c 10b14b 18b22b 19c23c 
3c24c 7c20c 11b19b 15b23b 4c20b 9c16b 12b17c 16b21c 

41c: 1c22c 5c18c 9b17b 13b21b 2c18b 6c22b 10b23c 14b19c 
3c15b 7c11b 19b20c 23b24c 4c8c 12b16b 20b24b 17c21c 

42a: 1c18c 5c22c 9b21b 13b17b 2c10b 6c14b 18b23c 22b19c 
3c20c 7c24c 11b23b 15b19b 4c12b 8c16b 20b17c 24b21c 

42b: 1c17b 5c21b 9b22c 13b18c 2c14b 6c10b 18b19c 22b23c 
3c7c 11b15b 19b23b 20c24c 4c17c 8c21c 12b20b 16b24b 

42c: 1c5c 9b13b 17b21b 18c22c 2c23c 6c19c 10b18b 14b22b 
3c19b 7c23b 11b24c 15b20c 4c16b 8c12b 20b21c 24b17c 

43a: 1c21b 5c17b 9b18c 13b22c 2c22b 6c18b 10b19c 14b23c 
3c23b.7c19b 11b20c 15b24c 4c24b 8c20b 12b210 16b17c 

a3  pairs  
41a: 9a40c 13a40b 12c27c 16c31c 10a9c 14a13c 28c37c 32c37b 

11a38b 15a38c 10c25c 14c29c 12allc 16a15c 26c39b 30c39c 

41b: 9a27c 13a31c 12c40c 16c40b 10a13c 14a9c 28c37b 32c37c 
10c14c 25c29c 38b38c 12a39c 16a39b 11c30c 15c26c 

41c: 9a13a 12c16c 27c310 40b4 0c 10a37c 14a37b 9c28c 13c32c 
11a29c 15a25c 10c38c 14c38b 12a15c 16a11c 26c39c 30c39b 

42a: 9a16c 13a12c 27c40b 31c40c 10a37b 14a37c 13c28c 17c32c 
11a10c 15a14c 29c38c 25c38b 12a39b 16a39c 11c26c 15c30c 

42b: 9a40b 13a40c 12c31c 16c27c 10a28c 14a32c 13c37b 17c37c 
11a14c 15a10c 29c38b 25c38c 12a16a 11c15c 26c30c 39b39c 

42c: 9a12c 13a16c 27c40c 31c40b 10a14a 13c9c 28c32c 37b37c 
11a38c 15a38b 10c29c 14c25c 12a30c 16a26c 11c39c 15c39b 

43a: 9a31c 12c40b 13a27c 16c40c 10a32c 13c37c 14a28c 9c37b 
11a25c 14c38c 15a29c 10c38b 12a26c 15c39c 16a30c 11c39b 

o4  pairs  

41a: 17a27a 19a29a 21a31a 23a25a 18a32a 20a26a 22a28a 24a30a 

41b: 17a29a 19a27a 21a25a 23a31a 18a32a 20a26a 27a28a 24a30a 

41c: 17a25a 19a31a 21a29a 23a27a 18a24a 20a22a 26a28a 30a32a 

42a: 17a31a 19a25a 21a27a 23a29a 18a28a 20a30a 22a32a 24a26a 

42b: 17a23a 19a21a 25a27a 29a31a 18a30a 20a28a 22a26a 24a32a 

42c: 17a19a 21a23a 25a31a 27a29a 18a26a 20a32a 22a30a 34a28a 

43a: 17a21a 19a23a 25a29a 27a31a 18a22a 20a24a 26a30a 28a32a 
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a5  pairs  
41a: 33a35a 37a39a 34a38a 36a40a 

41b: 33a38a 34a35a 36a39a 37a40a 

41c: 33a36a 34a37a 38a39a 55a40a 

42a: 33a37a 34a36a 35a39a 38a40a 

42b: 33a40a 34a39a 35a36a 37a38a 

42c: 33a34a 35a38a 36a37a 39a40a 

43a: 33a39a 34a40a 35a37a 36a38a 

trifles  

41a42a43a 41b42b43a 41c42c43a 

Table 6.5.1: Pairs and Triples of E 

The pairs in Table 6.5.1 are those which always occur together 

in 415a, 415b, 415c, 425a, 425b,... 425c and 435a 5-flats given 

in Appendix A. The fourth group is referred to as the set 

E. An example of an error triple in E is 42c1c5c. The two 

errors is and 5c, both from the symmetry block S2(0), occur 

together in the S2  pairs 42c set in Table 6.5.1. We note 

that associated with each error triple in E is a cycle of 

errors in E such that each error in the cycle is treated 

identically by the decoder. For instance, the cycle set 

associated with 42c1c5c, that is (41b2c6c, 52b3c7c, 41c4c8c), 

are all in E and treated identically by the decoder. The er-

ror triple 01c5c is in E. The (415) and (425) f3  flag is set 

for this triple and the triple 42c1c5c, since 15 inputs to the 

(415), and the 15 to the (425), counters are all ones for 

both these triples. 

The first group of error triples is comprised of all 

possible non-zero error triples excepting those in the set 

E. The count for these triples ranges from 0 to 99. Hence, 
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the decoder decides correctly that the digit in position 0 

is correct, and therefore that e0=0. 

When discussing the remaining groups we refer to the 

number of ones input to the (415) and (425) counter units of 

step 1 as i/j, where a total of i of the inputs to (415) are 

ones, and j of the inputs to (425) are ones. If the input 

is 11/9, 9/9 or 3/3 the f1  flag is set, if the input is 9/7, 

7/9 or 9/5 the f2 flag is set and if the input is 15/15 the 

f3 flag is set. 

The second group consists of all 0 error triples except 

those in E (see Table 6.5.2). The count for this group ranges 

from 108 to 116. If the count is 108 and the f3 flag set, 

then eo is 0, otherwise the decoder makes the decision that 

the digit in position 0 is in error and e0  is set to 1. 

Just as in the PG(5,2} case, information can be obtained 

from the decoder concerning the composition of the error 

triples. For instance, if the count is 116, the error triple is 

in one of the cycles generated from 09a43a, 09b43a, 09c43a, 

041a43a, 041b43a. More examples are given in Chapter 7 of 

the added information concerning the error sets which it is 

possible to gain from the decoder. 

For the third group, either f1 or f2  is set. By refer-

ring to Table 6.3.5 or Appendix A, the decoding rule that if 

fi  is set, 0 is in error and that if f2 is set, 0 is not in 

error, is verified. We note that the input to (415) and (425) 

is 3/3 if and only if one error is 0, one error is from S6(0) 

and the third error is from any symmetry block excepting S6(0)..  

In this case the 0 and S6(0) errors appear together in each 

5-flat in (415) and (425) and hence cancel with each other. 

The remaining error gives a count of 3 in each of (415) and 

(425) since each point not in (411) or (421) appears three 
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times in (415) and (425). The other counts for which f1 or 

f2  is set are explained similarly. 

• The error triples of E, the fourth group, are given 

below in Table 6.5.2. 

count=100  

la30b43a 
2a31b43a 
3a32b43a 
4a25b43a 
5a26b43a 
6a27b43a 
7a28b43a 
8a29b43a 

33a35a0 
34a36a0 

9a12c42c 
10a13c4lb 
11a14c42b 
12a15c41c 
13a16c42c* 
14a9c4lb 
15a10c42b 
16a11c41c 

25b34c41b 
26b35c42b 
27b36c41c 
28b33b42c 
29b34b41b 
30b35b42b 
31b36b41c 
32b33c42c 

33a34a42c 
34a35a41b 
35a36a42b 
36a33a41c 

37a40a4lb 
38a37a42b 
39a38a41c 
40a39a42c 

37a39a41a 
38a40a42a 

33a40a42b 
34a37a41c 
35a38a42c 
36a39a41b 

••• 

count=101  

33b33c42a 
34b34c4la 
35b35c42a 
36b36c41a 

couht=102 

1a26b41a 
2a27b42a 
3a28b41a 
4a29b42a 
5a30b41a 
6a31b42a 
7a32b4la 
8a25b42a 

17b22c4la 
18b23c42a 
19b24c4la 
20b17c42a 
21b18c4la 
22b19042a 
23b20c41a 
24b21c42a 

1c18c42a 
2c19c41a 
3c20c42a 
4c21c4la 
5c22c42a 
6c23c4la 
7c24c42a 
8c17c4la 

25b34b42c 
26b35b41b 
27b36b42b 
28b33c41c 
29b34c42c 
30b35c41b 
31b36c42b 
32b33b41c 

9b21b42a 
10b221041a 
11b234142a 
12b24b4la 
131)17b42a 
14b18b4la 
15b19b42a 
16b20b4la 

1b34b0 
2b35b0 
3b36b0 
4b33c0 
51034c0 
6b35c0 
7b36c0 
8b33b0 

1b34b43a 
2b35b43a 
3b36b43a 
4b33c43a 
5b34c43a 
6b35c43a 
7b36c43a 
8b33b43a 

17a25a41c 
18a26a42c 
19a27a4lb 
20a28a42b 
21a29a410 
22a30a42c 
23a31a4lb 
24a32a42b 
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count=103 

1b29b41c 
2b30b42c 
3b31b41b 
4b32b4 2b 
5b25b41c 
6b26b42c 
7b27b4lb 
8b28b42b 

c cunt =104  

1 c5c42c 
2c6c41b 
3c7c42b 
4 c 8041 c 

41a42a43a 
41 b42b43a 
41 c42c43a 

9c37c42b 
10038041 c 
11 c39c42c 
12040041 b 
13c37b42b 
14 c38b41 c 
15c39b42c 
16c40b4 lb 

9a27c4lb 
10a28c42b 
11a29c41c 
12a30c42c 
13a31 041 b 
14a32c42b 
1%25041 c 
16a26c42c  

25b29b41a 
26b30b42a 
27b31b41a 
28b32b42a 

17a27a4la 
18a28a42a 
19a29a41a 
20a30a42a 
21 a31a41a 
22a32a42a 
23a25a41 a 
24a26a42a 

1 a35b0 33a34a0 
2a36b0 34a35a0 
3a33c0 35a36a0 
4a34c0 36a33a0 
5a35c0 
6a36c0 33b33c0 
7a33b0 34103400 
8a34b0 35b35c0 

36b36c0 

la5a0 la30b0 1 a35c0 
2a6a0 2a31b0 2a36c0 
3a7a0 3a32b0 3a33b0 
4a 8a0 4a25b0 4a34b0 

5a26b0 	 a35130 
1b5b0 6a27b0 

5  
6a36b0 

2b6b0 7a28b0 7a33c0 
3b7b0 8a29b0 8a 34c 0 
4b8b0 

colint=105  

37b37c42c 
38b38c4 1 b 
39b39c42b 
4 Ob40c41 c 

count t---1116■ 

33a37a.42a 
34a38a4 la 
35a39a.42a 
36a40a4la 

1a26b0 25a29a0 25b34b0 33a39a0 
2a27b0 26a30a0 26b35b0 34a40a0 
3a28b0 27a31a0 27b36b0 35a37a0 
4a29b0 28a32a0 28b33c 0 36a38a0 
5a30b0 	 29b34 c0 
6a31b0 2502900 30b35c 0 33a40a0 
7a32b0 2603000 31b36c0 34a37a0 
8a25b0 2703100 32b33b0 35a38a0 

2803200 	 36a39a0 

1a2b0 la6b0 1b25b0 25c38c0 
2a3b0 2a7b0 2b26b0 26c39c0 
3a4b0 3a8b0 3b27b0 2704000 
4a5b0 4a1 b0 4b28b0 28c37b0 
5a6b0 5a2b0 5b29b0 29c38b0 
6a7b0 6a3b0 6b30b0 30c39b0 
7a8b0 7a4b0 7b31 b0 31 c40b0 
8a1b0 8a5b0 8b32b0 32c37c0 

101800 1021b0 1b34c0 17a25a0 17a31a0 
201900 2c22b0 2b35c0 18a26a0 18a32a0 
302000 3c23b0 3b36c0 19a27a0 19a25a0 
402100 4c24b0 4b33b0 20a28a0 20a26a0 
502200 5c17b0 5b34b0 21a29a0 21a27a0 
602300 6c18b0 6b35b0 22a30a0 22a28a0 
702400 7c19b0 7b36b0 23a31a0 23a29a0 
801700 8c20b0 8b33c0 24a32a0 24a30a0 

25a27a0 25c38c0 25c38b0 33a37a0 33a38a0 
26a28a0 26c39c0 26c39b0 34a38a0 34a39a0 
27a29a0 2704000 27c40b0 35a39a0 35a40a0 
28a30a0 28c37b0 2803700 36a40a0 36a37a0 -- 
29a31a0 29c38b0 2903800 
30a32a0 30c39b0 3003900 
31a25a0 31 c40b0 3104000 
32a26a0 32c37c0 32c37b0 
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count=107  

1a35b42c 1b29b0 1c13b0 1c22c0 17a27a0 17a29a0 
2a361041b 2b30b0 2c14b0 2c23c0 18a28a0 18a30a0 
3a33c42b 3b31b0 3c15b0 3c24c0 19a29a0 19a31a0 
4a34c41c 4b32b0 4c16b0 4c17c0 20a30a0 20a32a0 
5a35c42c 5b25b0 50.9b0 5c18c0 21a31a0 21a25a0 
6a36c41b 6b26b0 6c10b0 6c19c0 22a32a0 22a26a0 
7a33b42b 7b27b0 7c11b0 7c20c0 23a25a0 23a27a0 
8a34b41c 8b28b0 8c12b0 8c21c0 24a26a0 24a28a0 

25c38b0 1c5c0 25b29b0 
26c39b0 2c6c0 26b30b0 
27c40b0 3c7c0 27b31b0 
28c37c0 4c8c0 28b32b0 
29c38c0 
30c39c0 
31c40c0 
32c37b0 

Table 6.5.2: Set E Error Triples, f3 set for each triple 

The fourth group, E, requires the extra calculations 

mentioned in the last section. For these'error triples, 

since the non-zero (or non-S6(0).) errors are in the same sym-

metry block, a 5-flat of (415) or (425) either contains all 

three of the errors or only the one error, 0 or a S6(0) er-

ror. Thus the corresponding binary sum for each 5-flat is 

one and the input to (415) and (425) is thence 15/15. We 

recall that it was necessary to refer to certain (113) 03-

orbit 3-flats to determine ec, when all inputs to (103) were 

ones in the PG(5,2) case. Similarly, certain of the unused 

5-flats must be consulted to determine whether 0 is in error 

for the error triples from E when all inputs to the compar-

able (415) and (425) 05-orbits of PG(7,2) are ones. The 5-

flats which are used to determine the value of e0  are from 

(435) or from the 5-flats of 415a, 415b, 415c, 425a, 425b, 

425c, given in Appendix A. Corresponding to each of the 

counts 100, 102,103,...,107, is a set of one or more 5 to 

16 bit storage words. For a count c in this range, the value 

of the error digit in position 0 is determined by whether or 
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not the pattern of binary sums of the 5-flats associated 

with the count c matches the stored word or words for c. For 

example, if the count is 102, the stored word is the 8 bit 

word consisting of all ones. If the 5-flat sums of 435ai, 

435aviii are also all ones, then e0  is 1, otherwise it 

is 0. Four of the counts require only the one pattern word 

consisting of all ones to determine the value of eso. The re-

maining three have 8, 15 and 8 pattern words, respectively. 

A simple binary compare is all that is required to test the 

matching of the calculated pattern with these. The complete 

set of decoding patterns for the fourth group, in the form 

of a decoding table, is given in Table 6.5.3. 

104 	415bx1,415bxii ,415cxv, 

415cxvi,425bxv ,425bxvi, 

425cxv ,425cxvi,435ai,.. 

435aviii  

105 415bix,415cxiii,425bxiii, 

425bxiv,425cxiii 

-if all l's, e =1; otherwise 
if less than 6 l's, e0=0; 
if 6 l's and pattern is 
11101011,11011101,01111110, 
10111011,11010111,11101110, 
10111101,01110111, e0=1; 
else e0=0 

-if last 8 bits all l's, e0=0; 
if first 8 bits all 1's,e0=0, 
else if pattern one of 
01111111,10111111,11011111, 
11101111,11110000,00001111, 
00000000 then e0=1; 
if 6 l's in patterns of 
11100111,11111100, 
00111111,11001111, e0=1; 
else e0=0; 

if 4 l's and pattern 
00111100,00110011,11000011, 
11001100, e0=1; if in last 
8 bits there are 4 l's, 
e=0; else e0=1 

-if all l's, e0=0, else 
eo=1 

Count  

100 

102 

103 

Associated 5-flat 

415aviii ,415bxi1,415cxv, 

425bxv,425av ,425cxv  

435aviii 

415bxi,415bxii,41 5exv,  
415cxvi,425bxv,425bxvi, 

425cxv,425cxvi 

Decoding Patterns.and Rule  

-if all l's, then e0=1; 
otherwise e0=0 

-if all l's, e0=1; else e0=0 
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Count 	gssociated -flats 

106 415aii,415avi,415aviii, 

425ai,425aiii,42-5aiv  

107 415bxj,415bxii,415cxv, 

415cxvi,425bxv,425bxvi, 

425Cxv ,425Cxvi 

Decoding Patterns and Rule  

-if all l's, e0=0; else e0=1 

-if pattern one of 
10001011,11100100,00011101, 
10110010,01000111,11011000, 
00101110,01110001 e0=0; 
else eo=1 

Table 6.5.3: Decoding Table for Error Triples 
in E 

The addition of a decoding table for the .E error triples 

adds decoding time rather than complexity to the decoder, 

for simple binary comparisons are all that are necessary to 

correctly determine ec, for these cases. However, for most 

of the correctable error patterns, the decoding table is not 

needed and hence no extra time added to the decoding process. 

In the following we show, assuming all errors equally pro-

bable, that the decoding table is consulted for less than 

0.02% of the possible correctable error patterns. 

We first calculate the number of error triples in E. 

The number of 0 error triples, from Table 6.5.2, is 250. 

Each of these triples represents four error triples, for a 

total of 250x4=1000 0 error triples. For the non-zero case, 

we have 154 triples, each of which represents eight point er-

ror triples for a total of 154x8=1232 error triples. Thus, 

there are 1000+1232=2232 error triples in E. We now obtain 

the total number of correctable error patterns. The total 

number o.f 1-errors is 255, zero 2-errors is 1x254=254, non-

zero 2-errors is 254x252=64008, zero 3-errors is 1x254x252= 

64008, and non-zero 3-errors is 254x252x250=16002000, for a 

total of 16,130,525 correctable error patterns. Thus, the 

the error triples of E comprise only 
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2232/16130525 < 0.02% 

of all possible correctable error patterns. If a decoder 

correcting 99.98% of all correctable error patterns were ac-

ceptable, then the resulting 0i-orbit decoder is extremely 

simple compared to the Majority Logic Decoder. It would re-

quire 120 31-input threshold units, three counters, and_three 

flags. If retransmission were possible, then if the count 

were in the range 100 to 108, the 0.02% of the uncorrectable 

errors could be corrected using retransmission. 

6.6 Conclusions  

In this chapter the 0i-orbit decoder of the order-5 

(255,218) PG code has been defined and analysed. The object-

ive of the discussion presented was to emphasize the enormous, 

difference in the circuitry reqtkired for the 0i-orbit decoder 

and the Majority Logic.Decoder of the code. The standard 

Majority Ldgic Decoder requires circuitry for premultipli-

cation and division, GF(2) adders and 26479 threshold units 

(2801 in the simplified version). The 0i-orbit decoder does 

not require division or multiplication circuitry and only a 

total of 120 threshold units, three counters„three..flags 

and a 35 entry decoding table and associated logical units. 

The chapter began with a summary of the circuitry used 

in MLD the order-5 (255,218) PG code. The 0i-Orbit structure 

of PG(7,2) was presented. Based on these structures, the 0i-

orbit decoder was defined. That all 1, 2, 3-error patterns 

are correctable using the defined decoder was established by 

referring to the results of a simulation model of the decoder. 

Finally, it was shown that the error patterns for which the 

decoding table must be consulted comprise less than 0.02% of 

all correctable error patterns. 



167 

CHAPTER 7: YODIFICATIONS TO THE Oi-ORBIT DECODER  

7.1 Introduction 

In thi'S chapter we analyse further and make modifications 

to, the 01-orbit decoders introduced previously. The Oi-

orbit structure provides an interpretation of the Projective 

Geometries which yields considerable information concerning 

the distribution and composition of the correctable error 

patterns. Investigation of the errors of higher weight in-

dicates that the decoder can be modified to detect some such 

errors. 

For both the 01-orbit decoders studied, we discuss in-

formation which can be obtained concerning the composition 

of the 1, 2 and 3-errors. Also, several modifications to 

the two decoders are suggested which allow for the detection 

of some 4 and 5-errors. 

First, the Or-orbit decoder of the order-3 (63,41) PG 

code is considered. Then a similar discussion of the order-

5 (255,218) PG code is given. 

7.2 Order-3 (63.41) PG Code  

7.2.1 Composition of Errors from Knowledge of Decoder's Output  

If the composition of the error pattern which has occurred 

is known, it is possible to shorten the decoding process. 

As it is only necessary to correct those positions in the 

received word which can have been in error, only a fraction 

of the (2m+1-1) digit positions need to be decoded. In this 

section we show that it is possible, for some error sets, to 

determine the subset of error sets in which the given error 

pattern occurs. This requires that the decoder knua the 

count c output from the counter of step 2, the value of the 
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flags fl, f2, f3, and whether the number of inputs to (103) 

is odd or even. In the following we assume 4that no more 

than three errors have occurred. 

We begin by discussing the single errors. If the count 

c is 27, then it is immediately known that 0 is in error. 

If the f3 flag is set, no other error has occurred and thus, 

decoding may cease. If the count c is 0, then there is one 

error in one of the non-zero points of the 1-flat 11a. Hence, 

the decoder needs to decode only the two positions 21 and 42, 

as these are the only digits possibly in error. No 2 or 3-

error pattern has a count of O. If the count is one and the 

f3 flag not set, the decoder knows that a single non-zero er-

ror has occurred in a 1-flat other than 11a. 

Similar information is available when two errors have 

occurred. If the count is 27 and the f3 flag is not set, 

then the two errors are 0 and one of the non-zero points of 

11a. Consequently only the digit in position 0 and the lla 

digits need be decoded. Thus, at most three positions need 

to be decoded. If the count is 26, the decoder knows that 

two errors have occurred, one of which is O. Once the 0 er-

ror and the second error have been corrected, decoding may 

cease. If the two errors are non-zero, then the decoder is 

able to determine, for some pairs, the error subsets in 

which the errors occurred. For instance, if the count is 13 

and the number of ones input to (103) is even, then the two 

errors are in the cycles generated by 7a7b or 7a7c. If the 

count is three and the input to (103) even, then the error 

pair is a member of the cycle generated by lalla. If the 

count is four and the input to (103) even, then the error 

pair is a member of the cycle of 1b11a. For these cases 
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only the positions corresponding to possible errors need be 

decoded, rather than all 63 positions. 

. The composition of some error triples can be ascertained 

from knowledge of the count c associated with the error triple. 

If the count is 24, then the three errors are from the cycle 

generated by Olalla or 010alla. The error triple is a member 

of the cycle of 01b11a, OlalOb, 01c10b or 07a10c, if the 

count is 23. If the count is 22, one of the cycles generated 

from 01c4c or 01c1la contains the triple of errors. If the 

count is 13 and the input to (103) odd, then the non-zero. 

error triple is a member of one of the cycles generated from 

1a8b10a, lalb8c, 1a2b5c or 7c8c10c. If the flag f3 is not 

set and the count is 1, the non-zero error triple is from 

the cycle generated by la5blla. We recall that if the f3  

flag is set, only one error has occurred. 

These 1, 2 and 3-error examples have shown how informa-

tion as to the composition of the errors can be obtained from 

the decoder. For certain counts only those positions that 

may be in error need to be decoded. Decoding time can be 

shortened if a table is added to the decoder which, for a 

set of counts, contains the possible digits in error if one 

of the counts occurs. Only those counts with a predetermined 

number of associated error positions are included to make 

storage requirements economical. If the count obtained is 

in the table, the corresponding positions are decoded. If 

the count is not in the table, normal decoding is continued 

until a count in the table appears. Once the positions given 

in the table for the count have been decoded, decoding 

terminates. 
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7.2.2 Errors of Weight Four  

Applying the techniques'of the previous sub-section, 

the 0--orbit decoder can be modified to detect many errors 

of weight four. We note that already many errors of weight 

four are corrected by the decoder defined. For instance, all 
C. 61 	 lt% 	 CE2‘ 

4-errors containing (,„ with a count greater than 16 are auto-

matically corrected, as are all non-zero 4-errors with a count 

less than 14. We let w represent the number of ones input 

to (103). In this chapter we denote as Sg, the symmetry 

block S8 augmented by the element 0, that is Sg = 10a1OblOc0. 

The results presented in this sub-section are based on 

the following observations. First, if a non-S8 error triple 

occurs, the number w, of ones input to (103) must be 1 or 3. 

This follows if we consider the three possIble distributions 

of the error triples in symmetry blocks. If all three errors 

are in the same symmetry block, then the sum in (103) corres-

ponding to that symmetry block is one and all other (103) 

sums are 0. If the three errors occur in three distinct sym-

metry blocks, then the three corresponding sums in (103) 

each are one and the remaining four are zero. If two errors 

occur in the same symmetry block, their binary sum is zero. 

The third error, in a distinct symmetry block, gives a sum 

of one. All other sums are zero and hence only one of the 

inputs to (103) has a non-zero value. 

If the error triple contains one member of Sg, the num-

ber of ones input to (103) is 5 or 7. We determine this as 

for the non-S8 case. If the two non-S8 errors are in the 

same symmetry block, the associated binary sum is zero. The 

S8 error occurs in each 3-flat of (103) and hence each has 

an associated binary sum of one, for a total of w=7 ones in-

put to (103). If the two non-S8 errors are in distinct 
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symmetry blocks, each sums to zero with the S8 error. The 

remaining five inputs correspond to the 3-flats which contain 

only the S8 error. Thus there are a total of w=5 inputs to 

(103) which are ones. If two errors are in Sg, w=1 and if 

all three are in S8, w=7. 

If there are four non-S8 errors, then w is 0, 2 or 4. 

If all four errors are in the same symmetry block, or if two 

errors are in one symm-otry block and two in another, then w=0. 

If two errors are in the same symmetry block and the remain-

ing two in two distinct symmetry blocks, then w=2. If all 

four errors are in four distinct symmetry blocks, then w=4. 

If one error is in S8, then w can be 4 or 6, depending 

on the arrangement of errors in symmetry blocks. If each 

non-S8 error is in a distinct symmetry block, w=4. If either 

two or three of the non-S8 errors are in the same symmetry 

block, then w=6. 

If two of the errors are from S8, w is 0 or 2 depending 

on whether the non-S8 errors are in the same or distinct sym-

metry blocks, respectively. If there are three S8 errors, 

w=6. If there are four S8 errors, then w=0. 

Consequently, if there are three errors, w is odd and 

if there are four errors, w is even. 

The following observations form the basis of the state- 

ments concerning 4-error patterns. First, we recall that if 

two errors occur, one of which is 0, then the count is 26 or 

27. Secondly, if two non-zero errors occur, then the count 

is at most 13. If the count is 13, then the errors are either 

from the. cycle of 7a7b or 7a7c, w equal to 0 or 2 respective-

ly. If the count is 12, the error is in the cycle of 7c10b 

and w=6. If the count is 11, the error pair is from the cycle 

of la8b or 7c8c, with w=0, or from the cycle of la9b, 1b8b 
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or 1c8b, with w=2. Finally, from the above discussion on 

4-errors, we recall that w is 0, 2, 4 or 6 if there are four 

errors. And from the simulation, if one of the errors is 

0, the count is at least 12. We now suggest modifications to 

the Oi-orbit decoder to allow for the consideration of 4-errors. 

If the count is at least 14, but no more than 26 and w 

is even, then a 4-error is detected. From the discussion on 

the assignment of w, if w is 0, 2 or 6, then one of the errors 

is in S8. If the count is 13 and w is 4 or 6, or if w is 0 

and f3 is set, then the decoder detects a 4-error. If the• 

count is 12 and w is even, then there are four errors. Final- 

ly, if the count is a•t most 11 and w is even, then 0 is not 

in error and there are either two or four errors. 

Information concerning the composition of the four er- 

ror sets can be obtained. For instance, if 0 is in error and 

the other three errors are in three distinct symmetry blocks, 

then the count is unusually low, between 12 and 16. Typical- 

ly a 0 error 4-tuple has a count of at least 18. Similarly, 

if there is a non-zero 4-error with two errors from I1 and 

two from II1, then for a count of at least 18, the two 

errors and one of the I1 are in distinct symmetry blocks. 

For example, 1b5b7ax has a high count for x not the 0 error. 
• 

The three 1-flats lb, 5b and 7a are in distinct symmetry 

blocks. 

These few examples are included to illustrate the type 

of information which can be obtained concerning the 4-error 

patterns. 

7.2.3 Err...(21 -12tEiYa 

We briefly discuss the analysis possible when five er-

rors have occurred. The situation becomes very complex, so 
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only a few cases are presented. In the following we assume 

that at most five errors have occurred. 

We begin by listing in Table 7.2.1, the value of w, the 

weight associated with the (103) inputs, for each possible 

distribution of the given errors among the symmetry blocks. 

In Table 7.2.1, each error 5-tuple is described by a sum of 

digits. Each digit represents the number of errors appear-

ing in a single symmetry block. The digit 0 denotes an error 
• 

from S8. For instance, 3+1+1 denotes that three of the er- 

rors are in the same symmetry block and the two remaining. er-

rors are in two distinct symmetry blocks. 

• 

non-S8 5-errors V. a8_1mgErSIT 1.Y. 

4+1 1 4+o .7 
3+2 1 3+1+0 5 
3+1+1 3 2;2+0 7 
2+2+1 1 2+1+1+0 5 
2+1+1+1 3 1 +1+1+1+0 3 	• 
1+1+1+1+1 5 

Table 7.2.1: Weight w of (103) Inputs 

From Table 7.2.1 and the discussion in the previous sub- 

section, 	i • section, we know that if w=7, then a member of S8 	in error. 

If w=1 and the count is at least 17, then no member of qi is 

in error and hence e0=0. This follows from Table 7.2.1 and 

the discussion of 1 and 3-errors given earlier. 

Certain information concerning the distribution of the 

errors is available. For instance, if all five non-S8 er- 

rors are from five distinct symmetry blocks, then an unusual- 

ly high count results. For example, the 5-error set 1c3c5c2a4a 

has a count of 25, while most non-Sg 5-errors have a count 

of at most 15. However, if two of the errors are in the 

same symmetry block, then the count is as expected, less than 

15. Similar problem cases arise if one of the errors is 0. 
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If three of the four remaining errors are in three distinct 

symmetry blocks and are in class II1, then the associated 

count is unusually low. For example, the error 5-tuple 

7a8a9a8b0 has a count of 3. 

When 1, 2 or 3-errors occur, distinct numerical boundar-

ies between the non-zero and zero error counts occurred. 

However, in the case of 4 and 5-errors, the boundaries are 

no longer distinct. It is possible to•detect many 4 and 5-

errors, however, only the 4 and 5-errors for which the count 

falls into the defined ranges of the Oi-orbit decoder of . 

Chapter 5, are corrected. 

7.3 0rder-5 (255,218) PG Code 	• 

7.3.1 amusition qf Errors from Knowledge of Decoder's Outp.i 
The analysis below follows closely to that given in 

Section 7.2.1 for the order-3 code. Again we assume that no 

more than three errors have occurred. The analysis is based 

on the count c output by the counter of step 2, the number, 

w1, of ones input to the counter associated with (415), the 

number, w2,of ones input to the counter for (425), and the 

binary sums associated with certain 5-flats of 415a, 415b, 

415c, 425a, 425b, 425c and (435), given in Appendix A. 

We begin by discussing the single errors. If the count 

is 120 and w1  and w2 both 15, then 0 is in error and no other 

error has occurred. Thus, the decoding may cease after pos-

ition 0 is corrected since no other digit position is in er-

ror. If the count is one and if exactly three of the sums 

associated with the 5-flats 435ai, 	435axvi  are 

one, then a single non-zero error has occurred in one of the 

1-flat classes I1  through VI1. If the count is 0 and if zero 
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or one of the sums associated with 415ai, 415bi, 415ci, 425ai, 

425bi, 425ci is one, then there is a single non-zero error 

from (411), (421) or (431). In this case, only the 14 posi-es 
tions corresponding to the points of these 01-orbits need to 

be decoded as the error cannot occur in any of the other 241 

Positions. For all three cases of a single error, once the 

error has been corrected, decoding can cease, as the received 

word is then correct. Ihis can result in considerable 

savings in decoding time. 

Similar information is available for the two errors. 

If the count is 119, then 0 and a single non-zero point from 

one of the classes I1 through VI1 are in error. If the count 

is 120 and w1  and w2 both 0, then 0 and one of the non-zero 

points of (411), (421) or (431) are in error. Once 0 and 

one of the positions associated with the points of (411), 

(42/), (430 have been corrected, decoding may cease. At 

most 15 digit positions need' to be corrected, rather than the 

standard 255. If the two errors are non-zero, the count is 

at most 20. If the count is 20, then the error pair is a 

member of the cycle of 33a35a. We note that the two errors 

are from the same symmetry block. Only the positions cor-

responding to the 1-flats of the symmetry block 

S5
(0) need to be decoded, as the error pair'is amongst these 

positions. If the count is 4 and w1 and w2  both 0, or both 

12, then the error pair is from the cycle of 41a43a or 41b43a. 

Only the positions corresponding to these error pairs need 

to be decoded. If the count is 5 and w1  and w2  both even, 

then the 'error pair is from one of the cycles generated by 

9a9b, 9a9c, 9a10a, 9a16a, 9b9c, 9b10b, 9b16b, 9c10c, 9c16c. 

If the count is 6 and wl  and w2 both 12, then the error pair 

is from one of the cycles of 9a42b, 17a43a, 17b43a, 17c43a, 
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37a43a, 37b42c, 37b43a. 

The 3-errors can also be analysed and information ob-

tained concerning the composition of certain error triples. 

For example, if the count is 101, and both w1 and w2  15, 

then the error triple is from the cycle of 33b33c42a.  If 

wi and w2  are 15, and the count 100, 102,..., 107, the er-

ror triples are as given in Table 6.5.2. If the count is 1 

and wl and w2  both 15, then the error triple is one of the 

members of the cycles of 33b33c41c, 33a33b33c or 37b37c41c. 

If the count is 0 and wl and w2  both 15, then the errors • 

are from the cycles generated by 41a42a41b, 41a41b42b, 

41a42b43a, 41b42b41c or 41b42b43a. If the count is 116, 

then the error triples are from the cycle generated from 

9a43a0, 9b43a0, 9c43a0 or 41b43a0. If the count is 114, then 

the error triple is from the cycle generated from 9a42b0, 

37b42c0, 37b43a0, 17a43a0, 17b43a0 or 17c43a0. If the count 

is 108 and w1  and w2  are both 15, then the error triple is 

from the cycle of 41a41b42c. Finally, if the count is 104 

and wi and w2  both 15, then the error triple is one of the 

members of the cycle of 41a42a43a. 

Many more such examples can be found for the 1, 2 and 

3-errors. For these, only the positions corresponding to 

possible errors need to be decoded rather than all 255 posi-

tions. A table consisting of the positions possibly in er-

ror for certain counts could be added to the decoder. Given 

the count output on the second step of decoding, a simple 

look up would determine the positions to be decoded. Only 

those counts with an associated number of possible error 

positions less than a given value would be stored, in order 

to keep the storage requirements reasonable. For counts not 
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in the table, decoding would continue as normal until a 

count was obtained which was in the table. Then, only the 

positions in the table associated with the count would be de-

coded. Once these positions were decoded, the decoding pro-

cess would cease. It is obvious from the examples given, 

that this modification would greatly reduce the required 

decoding time. 

7.3.2 Erroxsotilaiehtm 

An analysis of the count output on step 2 of the decod-

ing process and the inputs w1 and w2  to the (415) and (425) 

counters, respectively, provides information concerning the 

4-errors. As a result, some 4-errors can be detected. Those 

zero 4-errors with a count greater than 10 and the non-zero 

4-errors with a count less than t00 are corrected by the de-

coder defined in Chapter 6. In the following we assume that 

no more than four errors occurred. We write S6(0) to denote 

the'set S6(0) augmented by the point 0. 

If two or four errors occur, then the values of w1 and 

w2  are always even. This follows from an analysis of the 

distribution of the 2 and 4-errors among the symmetry blocks. 

If three errors occur, the values of w1 and w2  are both odd. 

Using these two facts and the results of the simulation of 

the decoder when four errors have occurred, we are able to 

make the following statements. 

If the count is in the range 60 to 80 and w1 and w2  

even, then e0=0. If the count is high (at least 80), and 

w1 and w2  are not 8,6 or 6,8, and the four non-zero errors 

are from distinct symmetry blocks, then three of the four 

errors are in the same 5-flat of (415) or (425). If wi, w2  

are 8,6 or 6,8 and the count is high, then one of the errors 
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is from S6(0) and the remaining three from the same flat of 

(415) or (425). If the count is high, then the values of w1, 

w2- are 8,6 or 12,12 or.6,6 or 8,8 or 10,6 or 10,8. If two 

of the errors are from the same symmetry block and two are 

from S6(0), then both w1  and w2  are 0. If the count is less 

than 30, then w1 and w2 are,  either both 0, both 6 or one is 

6 and one is 8. 
As for the 4-errors in the order-3 (63,41) PG code, the 

4-errors for this code do not have well-defined boundaries 

between the 0 and non-zero error sets. The comments given 

indicate some of the information which it is possible to 

obtain concerning the 4-errors. 

7.3.3 Errors of Weight Five  
We now discuss briefly the-5-errors and the way in 

which the 0.l  -orbit decoder treats them. Even less informa-

tion is available than was for the 4-error sets. We assume 

thdt no more than five errors have occurred. 

As for the 4-error case, all zero 5-errors with a count 

greater than 108 or non-zero 5-errors with a count less than 

100 are corrected by the 01-orbit decoder defined in Chapter 

6. As for the 3-errors, the values of wl and w2 are odd for 

all 5-error sets. In the following analysis, we say that the 

count is ordinary (vs. high or low) if for the non-zero 5-
errors the value is between 20 and 40, and for the zero 

error sets between 40 and 60. 

If the count is very high for a non-zero 5-error, or 

very low for a zero 5-error, then two non-distinct sets of 

single errors, each consisting of three errors, can be se-

lected such that the three errors of each set appear in a 

distinct 5-flat of (415) or (425). If two such sets can not 
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be formed, then the count is ordinary. If all 5-errors are 

from the same symmetry block, but not from S6(0), then the 

count is very low and wl  and w2  are both 3. If the five er-

rors are all from S6(0), then the count is very high and wi  

and w2 are both 15. If one of the errors is 0 and the rest 

from S6(0), then the count is very low and both wl  and w2' 

are 15. Also, if four errors are from the same symmetry 

block, other than S6(0), and 0 is in error, then the count 

is very high and both w1 and w2  are 15. If the five errors 

occur in two distinct symmetry blocks, neither of which is 

S6(0), in the ratio 3 to 2, or 4 to 1, then the count is 

ordinary unless the two symmetry blocks appear together in 

Table 6.3.5. 

The information available concerning the 5-errors is of 
••• 

interest primarily as an analysis of the distribution of the 

counts. The distinct boundary between the counts associated 

with zero and non-zero error sets that result when 1, 2 or 

3 errors occur, is not present for the 5-errors. Consequent-

ly, detection of the higher weight errors, rather than 

correction is more feasible. 

7.4 aanglaaisma 

The results of this chapter indicate that it is pos-

sible to modify the decoder to allow for significant savings 

in the time required for decoding, and for the detection of 

some errors of higher weights. The symmetry blocks are of 

prime importance in the analysis presented. 

The chapter began with a discussion of the information 

which it is possible to obtain from the decoder concerning 

the composition of the 1, 2 and 3-errors of the order-3 

(63,41) PG code. It was suggested that significant decreases 
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in the time required for decoding can be obtained by decoding 

only those ccdeword positions which, from knowledge of the 

composition of the errors, can possibly be in error. A 

short analysis of the distribution of the 4-errors and 5-

errors in. terms of the count obtained from step 2 of the 

decoding process was presented. 

The second part of the chapter contained corresponding 

results for the order-5 (255,218) PG code. As the code 

length was much longer for this code, the decrease in de-

coding time was even more significant. The 4 and 5-error. 

analysis gave an indication of the symmetries present in the 

distribution - of these errors. As the demarcation between 

the counts of the zero and non-zero error sets was not well 

defined, the information was of use primarily for detection 

of errors rather than correction. 
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PART III  
CHAPTER 8: SUVYARY OF RESULTS, CONCLUSIONS AND FURTHER 

RESEARCH TOPICS 

8.1 Summary' of Results and Conclusions  

In this thesis a mathematical analysis of the two Pro-

jective Geometries, PG(5,2) and PG(7,2), led to the develop-

ment of a decoding algorithm for the order-3 PG code over 

PG(5,2) and the order-5 PG code over PG(7,2) which required 

only a small fraction of the circuitry used to Majority 

Logic Decode the codes. 

The first three chapters of the thesis were devoted to 

a concise presentation of the basic algebra and fundamental 

Coding Theory necessary to the understanding of the ideas 

and concepts presented in the thesis. In•particular, Major-

ity Logic Decoding and Projective Geometries were discussed. 

The fourth chapter introduced the work of Yamamoto et al[5E] 

concerning the cycles of a Finite Geometry. The results 

frOm this were used to define the Oi-orbits. An extensive 

analysis of the PG(5,2) 3-flat and 1-flats was presented 

based on the 0--orbits. The numerous symmetric properties 

of this structure provided an important mathematical inter-

pretation of PG(5,2). After further investigation of this 

structure, the 01-orbit decoder was defined in Chapter 5. 

It was shown that this decoder corrected the same number of 

errors as the Majority Logic Decoder of the code but required 

only a fraction of the circuitry. While the Majority Logic 

Decoder consisted of 187 threshold units (57 in the simpli-

fied version) and circuitry for multiplication and division, 

the O.-orbit decoder had only 27 threshold units, 2 counters 

and no division or multiplication circuitry. In Chapter 6, 

the results of Yamamoto et al(581 were used to define the 
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Of-orbits of PG(7,2). Owing to the size of the geometry, the 

analysis of the 01-orbit structure was not as detailed as for 

PG(5,2). Ac decoder of the order-5 PG code over PG(7,2), 

based on the 01-orbits, was defined and shown to correct the 

same number of errors as the Majority Logic Decoder of the 

code. The decrease in the circuitry required for the  Oi-

orbit decoder from that required for the Majority Logic De-

coder, was far more significant for this case. The Majority 

Logic Decoder required division and multiplication circuitry 

and 26,479 threshold units (2,801 in the simplified version), 

while the 01-orbit decoder required only 120 threshold units, 

three counters and a 35 entry decoding table and associated 

logical decision units. In Chapter 7 it was shown that sig-

nificant decreases in decoding time for both decoders could 

be obtained as a result of•a further analysis of the decoder. 

For certain outputs of the decoder's step 2 counter, it was 

possible to determine the subset of positions in which the 

errors occurred. Thus, it was only necessary to correct 

those positions, as all other digits in the received word 

were known to be correct and hence it was unnecessary to de-

code them. For both decoders, some 4 and 5-errors were 

correctable and many others detectable. 

In this thesis we have shown that by analysing the math-

ematical structure of the null space of the order-3 PG code 

over PG(5,2) and the order-5 PG code over PG(7,2), a simpli-

fied decoder can be defined. The decoder presented requires 

only a fraction of the circuitry needed for MLD the code. 

Thus, we have significantly simplified a decoding algorithm 

which is already considered relatively simple. Moreover, if 

a small computer is associated with a communication channel, 
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as is frequently the case, the implementation of the Oi-orbit 

decoder is trivial. 

We have shown in this thesis that it is possible for a 

particular set of codes, to overcome the problem of a decoder 

being too complex to warrent its implementation. 

8.2 Further Research Topics  

We discuss in this section several topics related to 

the work in the thesis. First we consider the feasiblity of 

generalizing the 01-orbit decoding method so that any order 

PG code over PG(m,2) can be decoded. To this end, we invest-

igate the structure of the 2-flats of PG(5,2), that is the 

null space flats of the order-2=(m-3) PG code over PG(5,2). 

We recall that only order-(m-2) codes were studied in pre-

vious chapters. Secondly, we suggest further study of the 

structure of the null space with the goal of increasing the 

power of the 01-orbit decoder. The section is concluded with 

several questions concerning the algebraic interpretation 

of the results presented in the thesis. 

In the following, we present several interesting results 

concerning the structure of the 2-flats of PG(5,2) which sug-

gest that a generalization of the 01-orbit decoder is pos-

sible. To begin the analysis of the order-2 PG code we ap-

ply Yamamoto et al's[58] sixth theorem to PG(5,2) for d=2. 

This provides the following information: 

—.1=11"°  

4(1) 	(26-1)/(23-1) = 9 
m(1) = (6/3)-1 = 1 
d(1) =.(3/3)-1 = 0 
q(1) = 2) = 8 
n*(1) = n(1) = X(1,0,8) = 9 
A.(1) = n*(1)/G(1) = 1 
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Thus we have that there are 22 i2f's of m.c. 63 and one i2f 

of m.c. 9. Each of the 22 i2f's of m.c. 63 generates 63 2- 

flats and the i2f of m.c. 9 generates 9 2-flats. The trans-
. 

formation Z, introduced in Chapter 4, can be applied to the 

2-flats, with the result that the 2-flats can be partitioned 

into orbits such that each orbit corresponds to one of the 

i2f's and the 2-flats generated from it. The 02-orbits are 

the subsets of the orbits consisting of only those 2-flats 

in which the point 0 occurs. Thus, each 02-orbit of m.c. 

63 has seven members and the 02-orbit of m.c. 9 has one mem-

ber. We recall the one to one correspondence between the 

03-orbits and the 01-orbits in Chapter 4. There, the six 

non-zero points of the 01-orbit .(t1) were repeated seven 

times in the 03-orbit (t3). Certain points were repeated 

three times each and the remainfng points once each. The 

number of times a point repeats, 7,3 or 1, corresponds to 

the number of points in a 2, 1 or 0-flat, respectively. We 

select the nine 02-orbits of m.c. 63, each of which repeats 

the six non-zero points of one and only one of the 01-orbits 

three times. These 02-orbits are numbered as the 03-orbits 

were to reflect the correspondence. The 2-flats of each O2-

orbit (t2), t=1,...,9, can be ordered so that, representing 

each 2-flat by the 1-flats a, b and c of (ti) that it con-

tains, the following description is obtained, a, b, c, ab, 

ac, be. One of the seven 2-flats does not contain a 1-flat 

from (ti). This 2-flat is omitted and the 02-orbit (t2) is 

said to consist of the six 2-flats listed above. As for the 

3-flats, -three intersecting subsets At, Bt, Ct can be formed, 

where, for example, the set At  consists of the three (t2) 

2-flats, in the representation above, which contain the (t1) 
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1-flat a, that is a, ab, ac. The 1-flats t1b and tic occur 

once each in At. The 2-flats are labelled as the 3-flats 

were, to show the correspondence with the 1-flats. For ex-

ample, the 2-flat containing both the 1-flats tia and t1b is 

labelled t2ab. The 2-flat which consists of the six non-

zero points of (101) is labelled (102). Corresponding to 

(110, there are five 02-orbits which repeat three times on 

the non-zero points of (111). As for the order-3 code, we 

propose that these flats be used strictly for setting flags. 

We note that the number of times a point repeats in a 

02-orbit is 3, 1 or 0, that is the number of points in a 1-

flat, 0-flat; or, for continuity, a null flat. This is 

exactly 1 dimension less than the order-3 code. 

We list in Table 8.1.1 the 2-flats of the 02-orbits (12) 
••• 

through (102), in terms of.their constituent 1-flats. 

(12) 
a: la 2a 7a 
b: lb 3a 2b 
c: lc 2c 8a 

ab: la lb 8c 
ac: la is 3b 

I21,  be: lb is 7b 

(42) 
a: 4a 5a 7b 
b: 4b 6a 5b 
c: 4c 5c 8b 

ab: 4a 4b 8c 
ac: 4a 4c 6b 
be: 4b 4c 7a 

(79) 
a: 7a 5a 8a 

II 	b: 7b 2a 8b 
c: 7c 10c 8c 

ab: 7a 7b 10a 
ac: 7a 7c 2c 
bcC 7b 7c 5c 

(22) 
a: 2a 3a 8a 
b: 2b 4a 3b 
b: 2c 3c 9a 

ab: 2a 2b 9c 
ac: 2a 2c 4b 
be: 2b 2c 8b 

(52) 
a: 5a 6a 8b 
b: 5b la 6b 
c: 50 6c 9b 

ab: 5a 5b 9c 
ac: 5a 5c lb 
bc: 5b 5c 8a 

(82) 
a: 8a 6a 9a 
b: 8b 3a 9b 
c: 8c 10b 9c 

ab: 8a 8b 10c 
ac: 8a 8c 3c 
be: 8b 8c 6c 

(32)  
a: 3a 4a ga 
b: 3b 5a 4b 
c: 3c 4c 7b 

ab: 3a 3b 7c 
ac: 3a 3c 5b 
be: 3b 3c gb 

(62) 
a: 6a la 9b 
b: 6b 2a lb 
c: 6c is 7a 

ab: 6a 6b 7c 
ac: 6a 6c 2b 
be: 6b 6c 9a 

(92) 
a: 9a la 7b 
b: 9b 4a 7a 
c: 9c 10a 7c 

ab: 9a 9b 10b 
ac: 9a 9c 4c 
be: 9b 9c lc 

(102) 
1112t abc: 10a 10b 10c 

Table 8.1.1: 2-flats of (12) - (102) 



186 

We see from Table 8.1.1 that the cycles induced by the trans-

formation g and given in Table 4.5.3 are present in the 2-

flats. Moreover, if we were to form a Table of the subsets 

At Bt, Ct, listing the 1-repeats, rather than the 3-repeats, 

the results would be identical to Table 4.5.1, with the title 

'3-repeat' replaced by '1-repeat'. All the cycle and repeat 

properties would simply be reduced by one dimension. For ex-

ample, the II1 1-flats appear as 3-repeats seven times and 

the I/  1-flats five times each in Table 4.5.1. In the cor-

responding Table of 02-orbits, the 1-flats of II1 would ap-

pear as singletons seven times and the I1  1-flats as single-

tons five times each. 

Based on these observations, we propose that the decod-

ing method used above can be adapted to the order-2 code to 

correct any number of errors less than 8, that is the number 

of errors correctable with MLD. Assuming that the order-2 

code can be decoded as suggested, we propose further that 

this decoding method can be generalized to higher dimension 

PG codes. The fact that Yamamoto et al's[581sixth theorem 

is applicable to any PG over GF(2) strongly supports such a 

generalization. As only two decoding steps and an associated 

decoding table, would be required, the savings over the MLD 

method would increase with an increase in the dimension of 

the code. 

Before leaving the 2-flats of PG(5,2), we remark on 

another interesting property which may lead to an alterna-

tive decoding method for codes of order other than (m-2). 

We discussed above the nine 02-orbits of m.c. 63 that corres-

pond to the 01-orbits (11),...,(91), and mentioned the five 

02-orbits which repeated three times on the 01-orbit (111). 

The remaining eight 02-orbits are listed in terms of 1-flats 
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in Table 8.1.2. These 02-orbits are non-perfect difference 

sets, that is every point that appears, does so once only, 

except of course the point 0 which is in each 2-flat. Also, 

twenty of the points of PG(5,2) do not appear in each of the 

02-orbits of Table 8.1.2. The 20 points for the 02-orbits 

in the first three columns are the non-zero points of two 

symmetric relative 01-orbits from I1, of a 01-orbit from 

and of (111). The remaining two 02-orbits in column four have 

the non-zero points of (71), (81), (91) and (110 as omitted 

points. In Table 8.1.2 the 02-orbits are given in four col-

umns, where the two 02-orbits in each column have the same 

set of omitted 

orbits, are 

(31),(61  ), 
ill), (1111_ 

points. 	The omitted points, listed as 01- 

given at the top of each column. 
• 

(11),(411), 	(21),(50, 	(71),(81), 
.04),(111/ 	121),(1111 	121),(1111 

2a 9a 10a 	3a 7b 10c 	2a 3b 6c 
• 2b 3c 7a 	3b 4c 8a 	4a 5b 2c 

2c 5a 6c 	3c 6a lc 	6a lb 4c 

la 8a 10b 
lb 2c 9b 
lc 4a 5c 
4b 8b 9c 
5a 9a 10c 6a 7b 10b 

5b 9b 7c 	6b 7a 8c 	is 2b 10) 
la 8b 10a 3c 4h 10a 

2a 5b Sc 3a 6b 9c 4a lb 7c 5c 6b 10b 
2b 4c 10a 3b 5c 10c 4b 6c 10b la 3a 5a ) 

4a 8b 10b 5a 9b 10a 6a 7a 10c 3a 4b is 
4b 5c 9a 5b 6c 7b 6b lc 8b 5a 6b 3c 
40 la 2c 5c 2a 3c 6c 3a 4c la 2b 5c 
lb 8a 9c . 2b 9a 7c 3b 7b 8c 
2a 9b 10c 3a 7a 10b 4a 8a 10a 

2c 3b 101 
4c 5b 10c 

5a 2b 8c 6a 3b 9c la 4b 7c 6c lb 10a 
5b lc 10a 6b 2c 10c lb 3c 10b 2a.,. 4a 	6a 3. 

Table 8.1.2: 2-flats of m.c. 63 in terms of 1-flats 

For the 02-orbits of the first three columns, if Vi is any 

2-flat in one of the 02-orbits of a given column, then g3(Vi) 

is the corresponding 2-flat in the other 02-orbit of the col-

umn. In the fourth column, if Vi  is any 2-flat in one of the 

02-orbits, then g(Vi) is the corresponding 2-flat in the other 
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02-orbit. Each of the 02-orbits in column 4 can be divided 

into the three subsets indicated in Table 8.1.2. 

The structure of these eight 02-orbits assures that 

within a given column, no two 1-flats that appear in the same 

2-flat in one of the 02-orbits, appear together in the second 

02-orbit. It is interesting to note that, within the eight 

02-orbits, the II1 1-flats appear less frequently than the 

1-flats, four times vs. six times each. We recall that 

the II1  1-flats appear more frequently in the 02-orbits (12), 

..., (92). The following four facts concerning the 02-orbits 

of Table 8.1.2 may prove useful in designing a decoder 

based on these 02-orbits: 

i) (111) does not appear in any of the 02-orbits, 

ii) three other 01-orbits are missing in each 02-orbit; 

in particular, the points of a symmetric relative pair of 

0i-orbits are missing for each of the 02-orbits in the first 

three columns, 

iii) the two 02-orbits in a given column are such that any 

two 1-flats which appear together in one of the 02-orbits do 

not appear together in the other, 

iv) no point, other than 0, is repeated more than once in 

any of the 02-orbits, that is the 2-flats are orthogonal on 0. 

We now present several other topics which require in- 

vestigation. A further study of the structure of PG(m,2) 

is necessary in order to determine if the null space flats 

can give enough additional information to the decoder for 

errors of weight greater than [(2m-r+1-1)/2] to be corrected 

in the order-r PG code over PG(m,2). We recall that certain 

of the Or-orbit r-flats were omitted in defining the 05.-orbit 

decoders. The use of some of these flats as checks may 
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provide enough information to the decoder for errors of 

higher weight to be corrected. 

• The presentation of the codes that we have given does 

not refer to the algebraic interpretation of the PG codes. 

To relate the two descriptions could be quite complex, but 

Would prove interesting. If such a study were done, the 

following points should be considered: 

i.)Howarethe0.-orbits related algebraically? 

ii) Is there a partitioning of the roots of the parity 

check polynomial induced by the 01-orbit structure. 

iii) Does a knowledge of the algebraic representation as-

sist in obtaining the roots necessary to generate the indi-

vidual classes Ii,IIi.... ? 

iv) How are the polynomials-  corresponding to the 1-flats 

in the 01-orbit (t1) related to those of the r-flats in the 

0,-orbit (tr)? 

v) The distinct iif's of a class are obtained by successive-

ly multiplying the point representation of a given iif by 2 

until all iif's are obtained. What is the comparable alge-

braic operation? 

vi) Within a given 01-orbit, there are 6 non-zero points. 

These can be considered as 3 non-zero points and their mod 

(2n+1-1) inverses. Is there an algebraic interpretation of 

this? 

vii) What is the algebraic explanation of the many sym-

metries present in the 01-orbit structures? 

It is hoped that the investigation of the questions 

presented'in this section will provide a generalized 01-orbit 

decoder for the order-r PG code over PG(m,2) requiring only 

a fraction of the circuitry needed to Majority Logic Decode 

the code. 



2.; A.1 	05-orbit (415) 5-flats  

1c5c 9b11c12a13b15c161 17b18a18c20a21b22a22c24a 26a26c28a30a30c32a 39b39c 41a41b41c42a42b42c43a 
3c7c 11b13c14a15b9c10a 19b20a20c22a23b24a24c18a 28a28c30a32a32c26a 37c37b 41a41b41c42a42b42c43a 

2c6c 10b10c11a14b14c15a 18b19c22b23c 25c29c 33a34a35a36a 37a38a38b38c39a40a 41a41b41c42a42b42c43a 
4c8c 12b12c13a16b16c9a 20b21c24b17c 27c31c 35a36a33a34a 39a40a40b40c38a37a 41a41b41c42a42b42c43a 

1a2b5a6b 10c1lallc12a14c15a15c16a 25c26b26c29c30b30c 35b35c 38b38c39b39c 41a41b41c42a42b42c43a 
3a4b7a8b 12c13a13c14a16c9a9c10a 27c28b28c31c32b32c 33c33b 40b40c37c37b 41a41b41c42a42b42c43a 

2c4c6c8c 10b12b14b16b 17c18a18b19c20a20b21c22a22b23c24a24b 26a28a30a32a 41a41b41c42a42b42c43a 

1c2a3b5c6a7b 9b10c11a13b14c15a 17b18c21b22c 25c27b29c31b 36b36c 38b38c 41a41b41c42a42b42c43a 
3c4a5b7cba1b 11b12c13a15b16c9a 19b20c23b24c 27c29b31c25b 34c34b 40b40c 41a41b41c42a42b42c43a 

lalb2b4a5a5b6b8a 17a19a21a23a 25a25b26b27a29a,29b30b31a 34b34c35b35c 41a41b41c42a42b42c43a 
3a3b4b6a7a7b8b2a 19a21a23a17a 27a27b28b29a31a31b32b25a 36b36c33c33b 41a41b41c42a42b42c43a 

1b2a3b4a5b6a7b8a 25b27b29b31b 33a34a34b34c35a36a36b36c 37a38a39a40a 41a41b41c42a42b42c43a 

la2b2c3c5a6b6c7c 10b11a14b15b 18b19b19c20c22b23b23c24c 26b30b 35b35c 41a41b41c42a42b42c43a 
3a4b4c5c7a8b8c1c 12b13b16b9b 20b21b21c22c24b17b17c18c 28b32b 33c33b 41a41b41c42a42b42c43a 

9c10a11c12a13c14a15c16a 17a19a21a23a25a26c27a28c29a30c31a32c  37b37c39b39c 41a41b41c42a42b42c43a 



A.2 	05-orbit (425) 5-flats  

2c6c 10b12c13a14b16c9a 18b19a19c21a22b23a23c17a 27a27c29a31a31c25a 40b40c 41a41b41c42a42b42c43a 
4c8c 12b14c15a16b10c11a 20b21a21c23a24b17a17c19a 29a29c31a25a25c27a 38c38b 41a41b41c42a42b42c43a 

3c7c 11b11c12a15b15c16a 19b20c23b24c 26c30c 34a35a36a33a 38a39a39b39c40a37a 41a41b41c42a42b42c43a 
5cic 13b13c14a9b9c10a 21b22c17b18c 28c32c 36a33a34a35a 40a37a37b37c38a39a 41a41b41c42a42b42c43a 

2a3b6a7b 11c12a12c13a15c16a16c9a 26c27b27c30c31b31c 36b36c 39b39c40b40c 41a41b41c42a42b42c43a 
4a5b8alb 13c14a14c15a9c10a10c11a 28c29b29o32c25b25c 34c34b 37c37b38c38b 41a41b41c42a42b42c43a 

3c5c7c1c 11b13b15b9b 18c19a19b20c21a21b22c23a23b24c17a17b 27a29a31a25a 41a41b41c42a42b42c43a 

2c3a4b6c7a8b 10b11c12a14b15c16a 18b19c22b23c 26c28b30c32b 33c33b 39b39c 41a41b41c42a42b42c43a 
4c5a6b8c1a2b 12b13c14a16b9c10a 20b21c24b17c 28c30b32c26b 35c35b 37c37b 41a41b41c42a42b42c43a 

2a2b3b5a6a6b7bla 18a20a22a24a 26a26b27b8a30d,30b31b32a 35b35c36b36c 41a41b41c42a42b42c43a 
4a4b5b7a8a8b1b3a 20a22a24a18a 28a28b29b30a32a32b25b26a 33c33b34c34b 41a41b41c42a42b42c43a 

2b3a4b5a6b7a8b1a 26b28b30b32b 35a35b35c36a33a33c33b34a 38a39a40a37a 41a41b41c42a42b42c43a 

2a3b3c4c6a7b7c8c 11b12b15b16b 19b20b20c21c23b24b24c17c 27b31b36b36c 41a41b41c42a42b42c43a 
4a5b5c6c8a1b1c2c 13b14b9b10b 21b22b22c23c17b18b18c19c 29b25b34c34b 41a41b41c42a42b42c43a 

10c11a12c13a14c15a1609a 18a20a22a24a 26a27c28a29c30a31c32a25c 38b38c40b40c 41a41b41c42a42b42c43a 



ON A.3 1115L1211513 415c 5-flats  

is lalb1c4b5b 9b9c10a10c12b14b16c 18b19a19b20344c240 25c26a26b29a30c31c 33a33b35a36b36c 39c 41a 
ii: 3a3b3c6b7b 11b11c12a12c14b16b10c 20b21a21b22a18b18c 27c28a28b31a32c25c 35a35b33a34b34c 37b 41a 
iii: 5a5b5c8b1b 13b13c14a14c16b10b12c 22b23a23b24a20b20c 29c30a30b25a26c27c 33a33c35a36b36c 39b 41a 
iv: 7a7b7c2b3b 15b15c16a16c10b12b14c 24b17a17b18a22b22c 31c32a32b27a28c29c 35a35c33a34e34b 37c 41a 

v: 2a2b3a6a7c 9c10a10b13a15a15b16b 18c19a20b21b22b24a 25b28b29a29b30a30c 35c 37a38c39a39e40b 41a 
vi: 4a4b5a8a1c 11c12a12b15a9a9b10b 20c21a22b23b24b18a 27b30b31a31b32a32c 33b 39a40c37a37b38c 41a 
vii: 6a6b7a2a3c 13c14a14b9a11a11b12b 22c23a24b17b18b20a 29b32b25a25b26a26c 35b 37a38b39a39b40c 41a 
viii: 6aBb1a4a5c 15c16a16b11a13a13b14b 24c17a18b19b20b22a 31b26b27a27b28a28c 33c 39a40b37a37c38b 41a 

ix: 1c2b3c4c6c8b 9b11b12c13c14a15a 17a20a21c23c 26a27a27b27c30c31b 33c34a34b34c35c 38a38c39c 41a 
x: 3c4b5c6c8c2b 11b13b14c15c16a9a 19a22a23c17c 28a29a29b29c32c25b 35c36a36b36c33b 40a40c37b 4Ia 
xi: 5c6b7c8c2c4b 13b15b16c9c10a11a 21a24a17919c 30a31a31b31c26c27b 33b34a34c34b35b 38a38b39b 41a 
xii: 7c8b1c2c4c6b 15b9b10c11c12a13a 23a18a19c21c 32a25a25b25c28c29b 35b36a36c36b33c 40a40b37c 41a 

xiii: 1a1b2a2c3a4c5b6a 11a12c15c16a 17b18a19a19c20c21c22c23b 26b27c28b29a32a32c 34a37b38a38b 41a 
xiv: 3a3b4a4c5a6c7b8a 13a14c9c10a 19b20a21a21c22c23c24c17b 28b29c30b31a26a26c 36a 39b40a40b 41a 
xv: 5a5b6a6c7a8c1b2a 15a16c11012a 21b22a23a23c24c17c18c19b 30b31c32b25a28a28c 34a 37c38a38c 41a 
xvi: 7a7b8a8c1a2c3b4a 9a10c13c14a 23b24a17a17c18c19c20c21b 32b25c26b27a30a30c 36a 39c40a40c 41a 

41 b 

is 3c4b7a 9a10b10c12a14b14c16b 17b18c21c22a23a24a24c 26b27b27c28b29b31a32c 34a34b35a35b 37c39c 41b 
ii: 7c8b3b 13a14b14c16a10b10c12b 21'b22c17c18a19a20a20c 30b31b31c32b25b27a28c 3La34c35a35c 37b39b 41b 

iii: 1c4b6a8c 9a11b13b15c 19a19b19c23c24b 25b25c26c27a27c28a28b29c30a30b32c 34c35c36a36c 37c39a 41b 
iv: 5c8b2a4c 13a15b9b11c 23a23b23c19c20b 29b29c30c31a31c32a32b25c26a26b28c 34b35b36a36b 37b39a 41b 

v: 1b3a4c7b8a 10a10c11b13c14c16a16c 17b18c19b19c20b21a23c 25a26a27b30b32a 33b35c 37a39b40a40b 41b 
vi: 5b7a8c3b4a 14a14c15b9c10c12a12c 21b22c23b23c24b17a19c 29a30a31b26b28a 33c35b 37a29c40a40c 41b 



rn 
vii: la1c2c3a6b6c7b 9c11a12b13a13b14a15a15b15c 17c21a23b 25a26c27b28a29b30a31c 33b34a34b35a 41b 
viii: 5a5c6c7a2b2c3b 13c15a16b9a9b10a1lalib11c 21c17a19b 29a30c31b32a25b26a27c 33c34a34c35a 41b 

ix: la2c4a4b5b6a6b6c 12c15b16a16b 17b18c19a21c23b 26a27a28b28c32a 33a36c 37b38a38b38c39b40c 41b 
x: 5a6c8a8b1b2a2b2c 16c11b12a12b 21b22c23a17c19b 30a31a32b32c28a 33a36b 37.c38a38c38b39c40b 41b 

xi: 1a3c3c4a4c5b5c6b8b 9b11a15a15c16c 18b19a20b22a22b24a24c 26c27a31b32b32c 37a37c40a40b 41b 
xii: 5a7b7c8a8c1b1c2b4b 13b15a11a11c12c 22b23a24b18a18b20a20c 30c31a27b28b28c 37a37b40a40c 41b 

xiii: 1b2a5c7a7c8a 9b9c10b12c14a14b15c16b 20c21a21c22a24a25a25c26c29c30b '33a33c35c36b38a40c 41b 
xiv: 5b6a1c3a3c4a 13b13c14b16c10a10b11c12b 24c17a17c18a20a 29a29c30c25c26b 33a33b35b36c38a40b 41b 

xv: 2b3a4c5a6a7c 9c12a13a14a 17a17b18b18c20b20c22a22b24a 25b29a31c 33b34c36a36c 38b38c39a39c 41b 
xvis 6b7a8c1a2a3c 13c16a9a10a 21a21b22b22024b24c18a18b20a 29b25a27c 33c34b36a36b 38c38b39a39b 41b 

41
52-  
is 1c2b5b 10a12b12c14b15a16b16c 19c20a21a22a22c23b24c 25b25c26b27b29a30c32b 33a33b36a36c 37c39b 41c 
its 5c6b1b 14a16b16clOblia12b12c 23c24a17a18a18c19b20c 29b29c30b31b25a26c28b 33a33c36a36b 37b39c 41c 

iii: 2b4a6c7c 9b11b13c15a 17a17b17c21c22b 25a25c26a26b27c28a28b30c31b31c32c 33c34a34c36b 37a39b 41c 
iv: 6b8a2c3c 13b15b9c11a 21a21b21c17c18b 29a29c30a30b31c32a32b26c27b27c28c 33b34a34b36c 37a39c 41c 

v: 1a2c5b6a7b 9b11c12c14a14c16a16c 17b17c18b19a21c23b24c 25b28b30a31a32a 33c35c37b38a38b39a 41c 
vi: 5a6clb2a3b 13b15c16clOalOcl2a12c 21b21c22b23a17c19b20c 29b32b26a27a28a 33b35b 37c38a38c39a 41c 

viis 1a1c2a3b4a7c 9c10b11b11c12b14c16a16b 18a22c23a23c24a 27a27c28c31c32b 33b34c35a35c 38b40a 41c 
viii: 5a5b6a7b8a3c 13c14b15b15c16b10c12a12b 22a18c19a19c20a 31a31c32c27c28b 33c34b35a35b 38c40a 41c 

ix: 1a2c3a4a5c8b 10a11a12a15c '18b18c20a20b22a23a23b24b24c 27a29c31b 34a34035c36b 37a37c40b40c 41c 
x: 5a6c7a8a1c4b 14a15a16a11c 22b22c24a24b18a19a19b20b20c 31a25c27b 34a34b35b36c 37a37b40c40b 41c 

xi: 1a4b4c5b7a7c8c 9a10b11a11b12a13a13b13c15c 19a21b23C 25b26a27b28a29c31a32c 33a35c36a36c 41c 
xii: 5a8b8c1b3a3c4c 13a14b15a15b16a9a9b9clIc 23a17b19c 29b30a31b32a25c27a28c 33a35b36a36b 41c 



41' 

xiii: 2a2bjb4a4o4c7a8c 10c13b14a14b 17a19c21b23b24c 25a26b26c30a32a 34c35a37b38c39c40a40b40c 41c 
xiv: 6a6b7b8a8b8c3a4c 14c9b10a10b 21a23c17b19b20c 29a.30b30c26a28a 34b35a37c38b39b40a40c40b 41c 

xv: 1b1c2a2c3b3c4b6b7a 9a13a13c14c15b 17a18b20a20b22a22c24b 25a27b30b30c32c 38a38b39a39b 41c 
xvi: 5b5c6a6c7b7c8b2b3a 13a9a9c10c11b 21a22b24a24018a18c20b 29a25b26b26c28c 38a38c39a39c 41c 

A.4 425a 425b 425c 5-flats  

425a 

is 3b4b8a8b8c 9a9c11b13b15c161,16c 17b18a18b19a23b23c 25a25b28a29c30c32c 34a35b35c36a36c 38c 42a 
its 5b6b2a2b2c lla11c13b15b9clOblOc 19b20a20b21a17b17c 27a27b30a31c32c26c 36a33c33b34a34b 40c 42a 

7b8b4a4b4c 13a13c15b9b11c12b12c 21b22a22b23a19b19c 29a29b32a25c26c28c 34a3505b36a36b 38b 42a 
iv: 1b2b6a6b6c 15a15c9b11b13c14b14c 23b24a24b17a21b21c 31a31b26a27c28c30c 36a33b33c34a34c 40b 42a 

v: lalb2a5a6c 9a9b12a14a14b15b16c 	17c18a1,9b20b21b23a 27b28a28b29a29c32b 34c 37c38a38c39b40a 42a 
vi: 3a3b4a7a8c 11a11b14a16a16b9b10c 19c20a21b22b23b17a 29b30a30b31a31c26b 36c 39c40a40c37c38a 42a 
vii: 5a5b6ala2c 13a13b16alOalObllb12c 21c22a23b24b17b19a 31b32a32b25a25c28b 34b 37b38a38b39c40a. 42a 
viii: 7a7b8a3a4c 15a15b10a12a12b1jb14c 23c24a17b18b19b21a 25b26a26b27a27c30b 36b 39b40a40b37b38a 42a 

ix: 1b2c3c5c7b8c 10b11c12c13a14a16b 19a20c22c24a 25a26a26b26c29c30b 33a33b33c34c36b 37a37c38c 42a 
x: 3b4c5c7c1b2c 12b13c14c15a16a10b 21a22c24c18a 27a28a28b28c31c32b 35a35b3506c340 39a39c40c 42a 
xi: 5b6c7c1c3b4c 14b15c16c9a10a12b 23a24c18c20a 29a30a30b30c25c26b 33a33c33b34b36c 37a37b38b 42a 
xii: 7b8c1c3c5b6c 16b9c10c11a12a14b 17a18c20c22a 31a32a32b32c27c28b 35a35c35b36b34b 39a39b40b 42a 

xiii: 1c2b3a6a6b7a7c8a 9c12c13a16a 17c18c19c20b22b23a24a24c 25b26a29a29c31b32c 35a 38c39a39c 42a 
xiv: 3c4b5a8a8b1a1c2a 11c14c15a10a 19c20c21c22b24b17a18a18c 27b28a31a31c25b26c 33a 40c37a37b 42a 
xv: 5c6b7a2a2b3a3c4a 13c16c9a12a 21c22c23c24b18b19a20a20c 29b30a25a25c27b28c 35a 38b39a39b 42a 
xvi: 7c8b1a4a4b5a5c6a 15c1Oc11a14a 23c24c17c18b20b21a22a22c 31b32a27a27c29b30c 33a 40b37a37c 42a 



trN  
b 5_ 

is 1104b8c 9allbl1c13014a15b15c 18c19a20a21a21c22b23c 25b26b28a29c31b32b32c 35a35c36a36c 38b40b 42b 
5b8b4c 13a15b15c9b10allb11c 22c23a24a17a17c18b19c 29b30b32a25c27b28b28c 35a35b36a36b 38c40c 42b 

iii: 1b3a5c6c 10b12c14a16b 20c21b24a24b24c 25a25b26c27a27b29c30b30c31c32a32c 33a33c35b36b 38b40b 42b 
iv: 5b7a1c2c 14b16c10a12b 24c17b20a20b20c 29a29b30c31a31b25c26b26c27c28a28c 33a33b35c36c 38c40a42b 

v: 1a2b4a5c8b 9a9c1lallc12b14c15c 	18b19c20b20c21b22a24c 25a26a27a28b31b 34b36c 37a37c38a40b 42b 
vi: 5a6b8a1c4b 13a13c15a15c16blOclic 22b23c24b24c17b18a20c 29a30a31a32b27b 34b36b 37a37b38a40c 42b 

vii: 1c2a3a4c7b8a 9a10alla14c 17b17c19a19b21a22a22b23b23c 26a28c30b 33a33c34c35b 39b39c40a40b 42b 
viii: 5c6a7a8c3b4a 13a14a15a10c 21b21c23a23b17a18a18b19b19c 30a32c26b 33a33b34b35c 39c39b40a40c 42b 

ix: la2b3a6c8a8c 9b10b10c11b13c15a15b16c 17a21c22a22c23a 26a26c27c30c31b 33c34a34c36c 37b39a 42b 
x: 5a6b7a2c4a4c 13b14b14c15b9c11a11b12c 21a17c18a18c19a 30a30c31c26c27b 33b34a34b36b 37c39a 42b 

xi: 2a2c3c4a7b7c8b 10c12a13b14a14b15a16a16b16c 18c22a24b 26a27c28b29a30b31a32c 34b35a35b36a 42b 
xii: 6a6c7c8a3b3c4b 14c16a9b10a1Obllal2a12b12c 22c18a20b 30a31c32b25a26b27a28c 34c35a35c36a 42b 

xiii: lalb2b3a3b3c6a7c 9c12b13a13b 18c20b22b23c24a 25b25c29a31a32a 33c34a 37a38c39a39b39c40c 42b 
xiv: 5a5b6b7a7b7c2a3c 13c16b9a9b 22c24b18b19c20a 29b29c25a27a28a 33b34a 37b38b39a39c39b40b 42b 

xv: 1a1c2b2c3b5b6a8b8c 12a12c13c14b16a 17b19a19b21a21c 23b24a 28b29b29c31c32a 37a37b38a38b 42b 
xvi: 5a5c6b6c7b1b2a4b4c 16a16c9c10b12a 21b23a23b17a17c19b20a 32b25b25c27c28a 37a37c38a38c 42b 

is 2b6c7b 9b9c11b12a13b13c15a 17a18a19a19c20b21c24c 26a27c29b30b30c31b32b 33a33c34a34c 38b40c 42c 
ii: 6b2c3b 13b13c15b16a9b9clla 21a22a23a23c24b17c20c 30a31c25b26b26c27b28b 33a33b34a34b 38c40b 42c 

1a3c4c7b 10c12a14b16b 18c19b22a22b22c 25a25b27c28b28c29c30a30c31a31b32c 33b34b35a35b 38a40c 42c 
iv: 5a7c8c3b 14c16a10b12b 22c23b18a18b18c 29a29b31c32b32c25c26a26c27a27b28c 33c34c35a35c 38a40b 42c 



v: 2a3c6b7a8b 9a9c10b12c13c15a15c 17c18b18c19b20a22c24b 25a26b29b31a32a 34c36c 38b39a39b40a 42c 
vis 

0-■ 
6a7c2b3a4b 13a13c14b16c9c11a11c 21c22b22c23b24a18c20b 29a30b25b27a28a 34b36b 38c39a39c40a 42c 

vii: 1a4c6a6c7a8b 9b11c13a13b14c15b16b16c 19c20a20c21a23a 25c28c29b32a32c 34c35b36a36b 37a39c 42c 
viii: 5a8c2a2c3a4b 13b15c9a9b10c11b12b12c 23c24a24c17a19a 29c32c25b28a28c 34b35c36a36c 37a39b 42c 

ix: 1a2c5b6a7c8a 9a12c15a16a 17a17b19a20a20b21b21c23b23c 26c28b32a 33b35a35b36b 37b37c38a38b 42c 
x: 5a6c1b2a3c4a 13a16c11a12a 21a21b23a24a24b17b17c19b19c 3002b28a 33c35a35c36c 37c37b38a38c 42c 

xi: 1b1c2b4a4c5c6a 9a10a1OblOc12c14a15b16a16b 18b20c24a 25a26c28a29c30b31a32b 33a33c34a36b 42c 
xii: 5b5c6b8a8c1c2a 13a14a14b14c16c10allb12a12b 22b24c20a 29a30c32a25c26b27a28b 33a33b34a36c 42c 

xiii: lalb1c4a5c7a7b8b lObllallbl5c 18b20b21c22a24c 27a29a30a31b31c 35b36a 37a37b37c38c39b40b 42c 
xivs 5a5b5c8a1c3a3b4b 14b15a15b11c 22b24b17c18a20c 31a25a26a27b27c 35c36a 37a37c37b38b39c40b 42c 

xv: 1b3b4a6b6c7a7c8b8c 10a10c11c12b14a 17a17b19a19c21b22a23b 26b27b27c29c30a 39a39c40a40c 42c 
xvi: 5b7b8a2b2c3a3c4b4c 14a14c15c16b10a 2,1a21b?3a23c17b18a19b 30b31b31c25c26a 39a39b40a40b 42c 

A.5 	05-orbit (435) 5-flats 

i:1a2a4a5c6c8b8c 11a12c13c15b15c 17b18a18b20b22a24c 25b25c27a30b31a31b 33b35a 37a37c39c40b 43a 
ii: 2a3a5a6c7c1b1c 12a!3c14c16b16c 18b19a19b21b23a17c 26b26c28a31b32a32b 34b36a 38a38c4007c 43a 
iii: 3a4a6a7c8c2b2c 13a14c15c9b9c 	19b20a20b22b24a18c 27b27c29a32b25a25b 35b33a 39a39c37b38c 43a 
iv: 4a5a7a8c1c3b3c 14a15c16c10b10c 20b21a21b23b17a19c 28b28c30a25b26a26b 36b34a 40a40c38b39c 43a 
v: 5a6a8a1c2c4b4c 15a16c9c11b11c 21b22a22b24b18a20c 29b29c31a26b27a27b 33c35a 37a37b39b40c 43a 
vi: 6a7a1a2c3c5b5c 16a9c10c12b12c 22b23a23b17b19a21c 30b30c32a27b28a28b 34c36a 38a38b40b37b 43a 
vii: 7a8a2a3c4c6b6c 9a10c11c13b13c 23b24a24b18b20a22c 31.1331c25a28b29a29b 35c33a 39a39b37c38b 43a 
viii: 8a1a3a4c5c7b7c 10a11c12c14b14c 24b17a17b19b21a23c 32b32c26a29b30a30b 36c34a 40a40b38c39b 43a 

ix: 1a1b8b4b5c 10b11b12a12c14a15a16b 17b17c19c20a20c24a 25a26c28c29a29c30b 33a33c34b36b 39a40b 43a 
x: 2a2b1b5b6c 11b12b13a13c15a16a9b 18b18c20c21a21c17a 26a27c29c30a30c31b 34a34c35b33c 40a37c 43a 
xis 3a3b2b6b7c 12b13b14a14c16a9a10b 19b19c21c22a22c18a 27a28c30c31a31c32b 35a35c36b34c 37a38c 43a 

xii: 4a4b3b7b8c 13b14b15a15c9alOallb 20b20c22c23a23c19a 28a29c31c32a32c25b 36a36c33c35c 38a39c 43a 



ON 
xiii: 5a5b4b8b1c 14b15b16a16c10a11a12b 21b21c23c24a24c20a 29a30c32c25a25c26b 33a33b34c36c 39a40c 43a 

xiv: 6a6b5b1b2c 15b16b9a9c11a12a13b 22b22c24c17a17c21a 30a31c25c26a26c27b 34a34b35c33b 40a37b 43a 

xv: 7a7b6b2b3c 16b9b10a10c12a13a14b 23b23c17c18a18c22a 31a32c26c27a27c28b 35a35b36c34b 37a38b 43a 

xvi: 8a8b7b3b4c 9b10b1lallc13a14a15b 24b24c18c19a19c23a 32a25c27c28a28c29b 36a36b33b35b 38a39b 43a 

xvii: 1a1c2b5a5c6b 9a9b12c13a13b16c 	17b18c21b22c 26b27c30b31c 35b35c 40b40c 41a41b41c42a42b42c43a 
xviii: 2a2c3b6a6c7b 10a10b13c14a14b9c 18b19c22b23c 27b28c31b32c 36b36c 37b37c 41a41b41c42a42b42c43a 

xix: 3a3c4b7a7c8b 11a11b14c15a15b10c 19b20c23b24c 28b29c32b25c 33c33b 38b38c 41a41b41c42a42b42c43a 
xx: 4a4c5b8a8c1b 12a12b15016a16b11c 20b21c24b17c 29b30c25b26c 34c34b 39b39c 41a41b41c42a42b42c43a 

xxi: 17a18a19a20a21a22a23a24a 25a26a27a28a29a30a31a32a 33a34a35a36a37a38a39a40a 41a41b41c42a42b42c43a 
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