6 research outputs found

    Performance improvement of decision trees for diagnosis of coronary artery disease using multi filtering approach

    Get PDF
    The heart is one of the strongest muscular organs in the human body. Every year, this disease can kill many people in the world. Coronary artery disease (CAD) is named as the most common type of heart disease. Four well-known decision trees (DTs) are applied on the Z-Alizadeh Sani CAD dataset, which consists of J48, BF tree, REP tree, and NB tree. A multi filtering approach, named MFA, was used to modify the weight of attributes to improve the performance of DTs in this study. The model was applied on three main coronary arteries including the Left Anterior Descending (LAD), Left Circumflex (LCX), and Right Coronary Artery (RCA). The obtained results show that data balancing has a valuable impact on the performance of DTs. The comparison results show that this study provides the best results applied on the Z-Alizadeh Sani dataset compared to previous studies. The proposed MFA could improve the performance of the classic DTs algorithms significantly, with the highest accuracies obtained by NB tree for LAD, LCX, and RCA are 94.90%, 92.97% and 93.43%, respectively

    SALMANTICOR study. Rationale and design of a population-based study to identify structural heart disease abnormalities: a spatial and machine learning analysis

    Get PDF
    [EN]Introduction: This study aims to obtain data on the prevalence and incidence of structural heart disease in a population setting and, to analyse and present those data on the application of spatial and machine learning methods that, although known to geography and statistics, need to become used for healthcare research and for political commitment to obtain resources and support effective public health programme implementation. Methods and analysis: We will perform a cross-sectional survey of randomly selected residents of Salamanca (Spain). 2400 individuals stratified by age and sex and by place of residence (rural and urban) will be studied. The variables to analyse will be obtained from the clinical history, different surveys including social status, Mediterranean diet, functional capacity, ECG, echocardiogram, VASERA and biochemical as well as genetic analysis. Ethics and dissemination: The study has been approved by the ethical committee of the healthcare community. All study participants will sign an informed consent for participation in the study. The results of this study will allow the understanding of the relationship between the different influencing factors and their relative importance weights in the development of structural heart disease

    ALEC: Active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease

    Get PDF
    Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patient’s three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Coronary artery disease detection using computational intelligence methods

    Full text link
    Nowadays, cardiovascular diseases are very common and are one of the main causes of death worldwide. One major type of such diseases is the coronary artery disease (CAD). The best and most accurate method for the diagnosis of CAD is angiography, which has significant complications and costs. Researchers are, therefore, seeking novel modalities for CAD diagnosis via data mining methods. To that end, several algorithms and datasets have been developed. However, a few studies have considered the stenosis of each major coronary artery separately. We attempted to achieve a high rate of accuracy in the diagnosis of the stenosis of each major coronary artery. Analytical methods were used to investigate the importance of features on artery stenosis. Further, a proposed classification model was built to predict each artery status in new visitors. To further enhance the models, a proposed feature selection method was employed to select more discriminative feature subsets for each artery. According to the experiments, accuracy rates of 86.14%, 83.17%, and 83.50% were achieved for the diagnosis of the stenosis of the left anterior descending (LAD) artery, left circumflex (LCX) artery and right coronary artery (RCA), respectively. To the best of our knowledge, these are the highest accuracy rates that have been obtained in the literature so far. In addition, a number of rules with high confidence were introduced for deciding whether the arteries were stenotic or not. Also, we applied the proposed method on two challenging datasets and obtained the best accuracy in comparison with other methods
    corecore