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A B S T R A C T   

Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and 
associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be 
used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled 
samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active 
learning. This is achieved through selective query of challenging samples for labeling. To the best of our 
knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of 
Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers 
determine whether a patient’s three main coronary arteries are stenotic or not. The fourth classifier predicts 
whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the 
outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled 
samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The 
training is performed once more using the samples labeled so far. The interleaved phases of labeling and training 
are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined 
with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is 
justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of 
dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis 
of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is 
presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample 
discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the 
three main coronary arteries as a sample label and considering the two remaining arteries as sample features.   
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1. Introduction 

There has been an exponential growth of data generated from digital 
devices and in diverse domains, including biomolecular research, com-
merce, social network, engineering sciences, and cybersecurity. By 
2020, the generated data is estimated to be 35 trillion gigabytes [1]. It 
has become increasingly difficult for domain experts to extract useable 
information from large datasets and perform analysis for decision sup-
port systems. There is a need for systems that can automatically mine 
and discover novel knowledge from big data efficiently [2]. Tradition-
ally, training data must be paired with class labels to solve learning 
problems. However, real-world data are often not labeled and require 
time and/or expertise for labeling to render them useable for learning 
[3]. In some applications, such as rating movies or flagging spam emails, 
labeled instances are accessible at low cost. Learning systems can use 
these labels to recommend movies or filter junk mail [4]. However, 
preparing labeled instances is usually costly and time-consuming. For 
example, consider classifying documents and media files, annotating 
knowledge domains, and labeling speech utterances. To circumvent la-
beling costs, new learning paradigms like active learning and 
semi-supervised learning have been proposed [5]. 

Active learning or query learning is a subfield of machine learning 
(ML) [6]. The difference between active and passive learning is depicted 
in Fig. 1. In contrast to passive learning, where the training data are 
provided in advance, and the learner makes no effort to obtain new data, 
the dataset is not provided in active learning, and the model is updated 
continually through querying and receiving new data [7]. As can be seen 
in Fig. 1, in active learning, the training process is begun with a limited 
set of labeled training samples. Throughout the training, the active 
learner may ask for the label of additional samples. The motivation is to 
reduce the number of labeled training samples needed for appropriate 
learning. This is achieved by asking for the label of the most informative 
training samples. There are three major approaches to active learning: 
pool-based, stream-based, and active learning with membership queries 
[8]. In the latter, the active learning system reduces labeling costs by 
querying unlabeled data that may need to be labeled by an oracle, such 
as a human annotator, without manually labeling the entire dataset. 
Active learning has been applied to diverse problems such as remote 
sensing, image classification [9], and multimedia annotation [7], where 
unlabeled samples are abundant, and their labeling cost is high. 

Semi-supervised learning models reduce labeling costs by putting 
assumptions on unlabeled data based on attributes of labeled data [10] 
using techniques like graph-based methods, transductive support vector 
machines (SVMs), co-training, self-training, and 
expectation-maximization with generative mixture models. Discrimi-
native semi-supervised models using graph-based methods and trans-
ductive SVM work best, provided that intraclass and interclass densities 
are high and low, respectively and classes do not overlap. Graph-based 
methods are preferred if two points or more with similar features are in 
the same class. Whenever features can be split into two sets, co-training 
is a good choice. In the case of well-clustered data, 
expectation-maximization with a generative mixture model is appro-
priate. Generative techniques are dependent on data distribution and 
can fail if inputs are not correlated with the classification task [11]. 

Several strategies can reduce annotation costs. Luo et al. [12] 
developed a hierarchical active learning framework where the entire 
population was divided into smaller subpopulations. The model was 
gradually refined through iterative learning from the subpopulations 
with their class labels. One of the common sample selection strategies in 
active learning is to select samples where the system is uncertain about 
their labels. Labeling these samples requires human feedback. Sharma 
et al. [13] showed that the cause of the uncertainty (either strong but 
conflicting evidence or insufficient evidence) could impact learning ef-
ficiency. They advocated an active learning approach that distinguished 
between the two causes of uncertainty. 

Coronary artery disease (CAD) is a common cause of death world-
wide. Invasive coronary angiography is the reference standard for 
diagnosing CAD but it is expensive and associated with risks. Many 
predictive models for CAD based on clinical and noninvasive imaging 
parameters have been developed from labeled datasets using data 
mining algorithms and ML but not (as far as we know) with active 
learning. For diagnosing CAD clinically, we propose an Active Learning 
with Ensemble of Classifiers (ALEC) method based on the interdepen-
dent outcomes of four classifiers that are predicated on the presence of 
CAD in the input sample as well as in each of its three branch coronary 
artery territories: left anterior descending (LAD), left circumflex (LCX), 
and right coronary artery (RCA). ALEC iteratively selects key unlabeled 
samples with uncertain (inconsistent) classification outcomes to be 
manually labeled by medical experts. The performance of the proposed 
approach is compared with existing active learning algorithms on the Z- 
Alizadeh Sani CAD dataset. Our original contributions are as follows.  

• Active learning is used for CAD diagnosis by selective query of the 
label of samples for which the classifier outputs are inconsistent. 
Such samples are those that ALEC is uncertain about.  

• The interdependent relationships between coronary artery stenosis 
per patient and vessel levels are represented as conditional 
probabilities.  

• The soundness of our proposed method is theoretically justified 
through mathematical proof of posed lemmas.  

• The correlation between pairs of features in the dataset is presented.  
• The top 15 features contributing to CAD as well as stenosis of LAD, 

LCX, and RCA, are presented.  
• The discrimination power over dataset samples is visualized, 

assuming each of the LAD, LCX, and RCA features as sample labels.  
• The discrimination power over dataset samples is visualized 

assuming LAD/LCX/RCA as the label and {LCX, RCA}/{LAD, RCA}/ 
{LAD, LCX} as sample features. 

The rest of the paper is structured as follows. The literature review is 
presented in section 2. The dataset used in the experiments is introduced 
in section 3. The proposed method is explained in section 4. The 
experimental results and discussion are presented in section 5. Finally, 
section 6 is devoted to the conclusion and future works. 

2. Active learning and automatic labeling applications 

This section reviews active learning and automatic labeling 

Fig. 1. General schema of active versus passive learning models.  
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applications in various fields, including cardiovascular diseases. At the 
end of the section, based on the reviewed related works, the research gap 
and contribution of our method are highlighted. 

2.1. Science and medicine 

Active learning of medical images [14–18], genes, mRNA, and pro-
tein classes [15] plays a crucial role in the design of decision support 
systems. Especially in medical applications, access to labeled training 
data is often limited. Data augmentation approaches have proved useful 
in increasing the training samples artificially. For example, generative 
adversarial networks (GAN) were exploited in combination with a novel 
mutation model for synthetic data generation [19]. These data were 
used for Ischemic Stroke Lesion Segmentation. The automatic genera-
tion of training data has been investigated as well [18]. To this end, a 
discriminative learning approach was proposed to automatically 
generate training data from fusion image datasets. The generated data 
were used to localize the transesophageal echography transducer in 
X-ray images with a 0.8 mm error. The fusion of image data from echo 
and X-ray fluoroscopy is useful in treatment of structural heart disease. 

Given the promising results obtained by DL in medical diagnosis, it is 
critical to address the training data scarcity to achieve efficient training 
of DL models. By selecting the samples for labeling wisely, active 
learning can play a major role in achieving data efficiency. Examples of 
DL applications in the medical domain are breast cancer diagnosis [20], 
phasic dopamine release identification [21], and early diagnosis of 
Diabetes [22]. 

2.2. Multimedia, mobile, and security applications 

Active learning has been applied to mobile app review labeling [23], 
video labeling [24], intrusion detection [25], television program review 
[26], cybersecurity [27], and security labeling [28]. By studying 
semi-structured interviews and app reviews, Sun et al. [23] identified 
eight psychological needs of mobile app users: self-actualization, 
cognitive, social, hedonic, health, security, low-cost, and utilitarian. 
They trained a classifier to filter app reviews that have words and 
phrases related to these eight psychological needs. A novel video la-
beling system VideoAL was proposed comprising XML rendering, clas-
sification, model learning, feature extraction, annotation, region, and 
shot segmentation [24]. VideoAL can generate MPEG-7 XML metadata 
from MPEG-1 sequence inputs. 

2.3. Speech and text 

The massive amount of speech and textual data is a rich source for 
designing, developing, and evaluating ML approaches. However, the 
labeling process of such massive data is tedious, which drives the need 
for automatic labeling and active learning. In the remainder of this 
section, some existing works on automatic labeling and active learning 
of speech and text data are reviewed. 

2.3.1. Labeling of text 
Automated topic labeling of speech and text has garnered growing 

research interest due to its application in search engines and document 
curation [29–33]. A probabilistic approach for automatic multinomial 
topic labeling of words in the text was proposed [31]. This method 
maximized the mutuality between labels, topic models, and 
Kullback-Leibler divergences between word distributions. Extending 
beyond word distributions, Allahyari et al. [32] designed a framework 
that incorporated multinomial distributions of ontological classifica-
tions to improve the automatic labeling of latent topics from text. With 
large document collections, a cluster approach to label closely related 
groups may prove more efficient than surveying individual documents. 
Motivated by the concept that words in text form a hierarchy of com-
ponents with varying generality, Popescul et al. [34] developed two 

clustering techniques for the automatic labeling of document clusters. 
Damerau et al. [35] clustered unlabeled text data using nearest neighbor 
and/or running feature extraction methods and trained labeled data 
using supervised ML algorithms. Hacioglu et al. [36] presented an 
automatic time expression labeling model for English and Chinese texts. 
The model deployed deterministic, discriminative, token-by-token, and 
left-to-right classifiers for extraction of tags for each token, and yielded 
good performance for the one-versus-all multiclass SVM classification 
method. 

2.3.2. Labeling of speech 
Manual labeling of transcriptions of acoustic speech for training is 

time-consuming and costly, which is the motivation for active learning 
models. Li et al. [37] proposed grammar-based semi-supervised incre-
mental learning for continuous speech recognition and labeling for large 
automatic vocabulary. The model initialization required sparse, manu-
ally labeled transcriptions. The model was then run to recognize greater 
numbers of unlabeled data. Clustering approaches can also be applied to 
acoustic models. Fu et al. [38] designed an unsupervised six-stage 
locally embedded clustering method for automatic labeling of 
high-dimensional acoustic speech data that attained efficient dimen-
sionality reduction and data representation and improved clustering 
performance. 

2.4. Active learning in cardiovascular disease diagnosis 

Bizopoulos et al. [39] reviewed emerging research in deep learning 
cardiology applications based on signal and imaging data. Longstaff 
et al. [40] applied semi-supervised and active learning to the real-time 
classification of activity tracker signals on mobile devices, which typi-
cally used static classifiers. Among methods like democratic co-learning, 
en-co-learning, self-learning, and active learning, the former performed 
best. Active learning was also applied to task/patient-adaptive heartbeat 
classification of the cardiologist-benchmarked electrocardiogram (ECG) 
dataset with over 90% less patient-specific training data requirement 
compared to its rival methods [41]. Sun et al. [42] presented an auto-
mated -instance learning strategy called latent topic that applied SVM on 
the topic vectors of ECG. Without labeling heartbeats on the ECG data, 
the model successfully identified myocardial ischemia with better 
sensitivity and specificity than the state-of-the-art. Pasolli et al. [43] 
proposed hybridized SVM with query by committee, posterior proba-
bility, and margin sampling for ECG signal classification. These methods 
used active learning and were tested on simulated and MIT-BIH 
arrhythmia datasets with encouraging results. 

Tissue segmentation is an important step in image processing that 
may be facilitated by active learning. An interactive active learning al-
gorithm was able to generate accurate whole-heart segmentation models 
with reduced user inputs [44]. The method was seeded by a limited 
number of manually segmented pediatric short-axis cine cardiac mag-
netic resonance images. Chyzhyk et al. [45] studied stroke patients and 
reported good results for automatic tissue segmentation of multimodal 
anatomical, diffusion, and functional brain magnetic resonance images. 
They applied active learning selective sampling for training image data 
classifiers. 

2.5. Research gap and contributions 

To highlight the contribution of our proposed approach, the 
reviewed works are summarized in Table 1 and grouped according to 
their application domains. Inspecting Table 1 reveals that our proposed 
approach (ALEC) is the first to use disease-specific characteristics to its 
advantage. Careful analysis of the Z-Alizadeh Sani dataset revealed the 
correlation between stenosis of main coronary arteries and having CAD. 
To the best of our knowledge, such an approach has not been investi-
gated before, which justifies the novelty of our approach. Moreover, we 
are the first to utilize active learning for implementing sample-efficient 
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Table 1 
Summary of related works.   

Ref. Year Objective Data Approach 

Multimedia [20] 2003 Automatic video labeling MPEG-1 video sequence The labeling system is made of seven modules: shot segmentation, region 
segmentation, annotation, feature extraction, model learning (SVM), classification 

[38] 2007 Automatic labeling of high-dimensional data Frey faces, AAI database Unsupervised data clustering and automatic labeling 
Cyber 

Security 
[21] 2010 Classifying intrusion detection alerts in real-time Alerts detected by Snort intrusion 

detection system 
A two-phase approach: 1. Alert collection and clustering, 2. Learning rules for 
classifying alerts based on RIPPER [46] algorithm 

[23] 2013 Automatic text labeling to prepare a collection of annotated texts for 
cyber security applications 

Text data obtained from multiple data 
sources 

Domain-specific, structured data are exploited to train a Maximum Entropy Model 
[47,48] 

[24] 2015 Automatic determination of security labels for textual documents Digital National Security Archive 
containing declassified US government 
documents publicly available 

Textual content extraction using Abbyy [49] OCR service, documents represented by 
bag-of-words model [50], classification is done by SVM 

Text 
processing 

[22] 2013 Automatic filtering of Twitter messages containing the title of a TV 
program 

Tweets containing names of specific TV 
programs 

Building a list of unambiguous TV program names, collecting tweets containing 
selected program names, labeling gathered tweets, training a SVM for tweets 
automatic labeling 

[25] 2009 Topics automatic labeling according to an extracted hierarchy Document and dictionary corpus Topic hierarchy formed based on Google Drive service and OpenOffice English 
Thesaurus, Similarity between topics and the topic hierarchy evaluated using cosine/ 
overlap/ … similarity measures, topic extraction using Latent Dirichlet Allocation 
method [51] 

[26] 2012 Labeling hierarchical topics automatically Documents gathered from Yahoo! 
Answers and Wikipedia 

Exploiting parent-child and sibling relations between topics for assigning labels to 
topics, Ngram Testing [52] used for candidate label extraction, structural assisted 
label ranking: 1. Ranking by term weighting, 2. Ranking by Jensen-Shannon 
Divergence 

[32] 2015 Improved topic labeling using ontology concepts British Academic Written English Corpus 
(BAWE), part of Reuters2 news articles 

The proposed OntoLDA approach integrates ontological concepts with topic models 
in one framework, topic-concept relations exploited labeling accuracy improvement, 

[33] 2013 Automatic topic labeling to facilitate document collections analysis BAWE, BBC corpus, StackExchange 
dataset 

A topic graph is formed based on structured data provided by DBpedia, 

[34] 2000 Automatic labeling of clusters of documents by words Computer science research papers 
obtained from the Cora search service 

First method: X2 significance test employed to detect word usage in hierarchy 
categories. Second method: discriminative words with higher repetition frequency 
are chosen 

[35] 2004 Automatic text labeling for keyword search Unlabeled text data Members of a reference answer set are used as centroids for clustering unlabeled text 
samples, supervised ML method (e.g., a rule-based classifier) is trained on clustered 
(labeled) data 

[36] 2005 Automatic labeling of English and Chinese time expressions ACE Temporal Expression Recognition 
and Normalization (TERN) corpus 

Time expression labeling formulated as a tagging problem, 1-vs-all multi-class SVM is 
employed 

Speech 
labeling 

[37] 2012 Sample efficient automatic labeling of speech data CCTV news multimedia label database The small number of manually labeled data, Hidden Markov Model (HMM) used as a 
classifier, semi-supervised incremental learning 

Medical [14] 2014 Segmenting and recognizing cerebral vessels automatically High-resolution 3D micro-CT images The vascular structure is represented as a graph, each vessel segment is represented as 
an edge, and its local features (length, diameter, direction, etc.) are used for 
anatomical name assignment to it 

[15] 2001 Assigning protein, assignment of gene or mRNA class labels to 
biological terms in free text 

Nine million words gathered from 
molecular biology journal articles, 
expressed in XML format 

Naïve Bayes, decision tree, inductive rule learning [53] 

[16] 2007 Automated labeling of data for cancer diagnosis Colonoscopy videos Recording expert eye position during a colonoscopy video inspection 
[17] 2014 Automatic labeling of brain anatomies Magnetic resonance images of the brain Train multiple atlas forests [54], cluster atlas forests with similar performance, and 

train a new forest for each cluster 
[18] 2013 Domain adaptation: calculating the transform between trans- 

esophageal echography (TEE) and X-ray fluoroscopy imaging systems 
for structural heart disease treatment with minimal invasion 

TEE and fluoroscopy images Assigning weight to source domain sample, weights are based on target domain 
probability distribution to source domain probability distribution ratio 

[40] 2010 Automatic augmentation of user’s activity classifier after deployment 
on mobile systems 

GPS speed, acceleration Evaluated multiple semi-supervised learning methods and active learning for 
classification of {standing still, walking, running} activities 

[41] 2010 Heartbeat classification in electrocardiogram (ECG) data MIT-BIH Arrhythmia Database Extracting features (Wavelet coefficients, normalized energy in different beat 
segments, etc.) from ECG signal, classification by SVM 

[43] 2010 Sample-efficient training of ECG classifier using active learning MIT-BIH Arrhythmia Database Active learning strategies used: 1. Margin sampling, 2. Posterior probability, 3. Query 
by committee, classification by SVM 

(continued on next page) 
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ML for CAD diagnosis. Our approach superiority is validated by 
comparing its performance against multiple active learning methods for 
CAD diagnosis using the Z-Alizadeh Sani dataset. 

3. Dataset 

The Z-Alizadeh Sani dataset [59] used in the current study contains 
303 subjects: 87 healthy subjects and 216 CAD patients. Each subject is 
represented by 54 features divided into four categories: clinical char-
acteristics, symptoms and signs, ECG, echocardiography, and laboratory 
tests. The complete list of Z-Alizadeh dataset features grouped by cate-
gories is given in Table 2. This is the only public dataset that contains 
comprehensive and detailed information about individual artery ste-
nosis involving the LAD, LCX, and RCA. Therefore, it has been widely 
used in various studies [60–64]. 

In the Z-Alizadeh Sani dataset, diagnosis of CAD was based on the 
detection of more than 50% coronary artery diameter stenosis on 
invasive angiography at per patient level as well as per vessel level in 
one or more of LAD, LCX, and RCA [65]. Among 216 CAD patients, 76, 
118, and 113 had stenotic LAD, LCX, and RCA, respectively. Fig. 2 de-
picts the probability relationships between pairs of CAD, LAD, LCX, and 
RCA groups in the dataset, with the arrows indicating the direction of 
the probability statement. The probabilities in Fig. 2 are extracted from 
samples in the Z-Alizadeh Sani dataset. For example, the value (0.54) on 
LAD→LCX edge is the probability that LCX is stenotic given that LAD is 
already stenotic (P (stenotic LCX | stenotic LAD) = 0.54). To compute 
the aforementioned conditional probability, the number of patients with 
stenotic LAD and stenotic LCX was divided by the number of patients 
having stenotic LAD. The rest of the probabilities in Fig. 2 are computed 
in a similar manner. 

Such depiction as in Fig. 2 is original and provides novel insights into 
the interdependent relationships among the CAD, LAD, LCX, and RCA 
groups. For example, if any of the LAD, LCX, or RCA groups is stenotic, 
CAD is already present (indicated as “1” on arrows from the LAD, LCX, 
and RCA groups pointing to the CAD group). Specific to this dataset, if 
there was LAD stenosis, the probability of LCX stenosis was 0.54; 
conversely, if there was LCX stenosis, the probability of LAD stenosis was 
0.81, as shown in Fig. 2. These data interdependencies and probability 
statements are transferred downstream to classification labels, which 
provide a framework to identify inconsistencies in predicted outcomes. 

3.1. Dataset analysis 

This section carefully investigates the properties of the Z-Alizadeh 
Sani dataset. At first, the features of the dataset are analyzed (Section 
3.1.1), and then the role of three main arteries in the discrimination of 
dataset samples is investigated (Section 3.1.2). 

3.1.1. Analysis of dataset features 
The correlation between pairs of dataset features is shown in Fig. 3, 

where only a subset of features with higher discrimination power for 
CAD diagnosis is included. These data have been collected from patients 
suspected of having CAD who have been referred to the hospital. For 
example, age positively correlates with features like hypertension 
(HTN), ST depression, and serum creatinine (CR). Not surprisingly, 
fasting blood sugar (FBS) and diabetes mellitus status (DM), as well as 
blood urea nitrogen (BUN) and CR, are positively correlated, whereas 
neutrophil (Neut) and lymphocyte counts (Lymph) are negatively 
correlated. The most important features contributing to the diagnosis of 
CAD and stenosis of LAD, LCX, and RCA are determined using infor-
mation gain [66] and visualized in Fig. 4. As can be seen, features with 
higher levels of contribution to CAD diagnosis are shown with higher 
height in Fig. 4. Typical chest pain is the most dominant feature 
contributing to stenosis of LAD (Fig. 4a) and RCA (Fig. 4c), as well as 
having CAD (Fig. 4d). Regarding LCX stenosis, the age feature has the 
highest contribution. Ta
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3.1.2. Role of main arteries in sample discrimination 
The dataset contains labels describing the status of individual ar-

teries (LAD, LCX, and RCA) and overall CAD diagnosis, i.e., the presence 
of stenosis in at least one artery. In this section, the dataset is analyzed, 
and the results are visualized using dimensionality reduction methods 
such as principal component analysis (PCA) [67], partial least squares 
(PLS) [68], and t-SNE [69] methods. PCA and PLS perform unsupervised 
and supervised dimensionality reductions, respectively, allowing us to 

investigate the difference in discrimination power when dataset sample 
labels are considered or ignored. Fig. 5 shows the data partitioned ac-
cording to the individual artery (LAD, LCX, RCA) and overall CAD status 
(normal/stenotic) using PCA, PLS, and t-SNE methods. All three 
dimensionality reduction methods are good at discriminating normal 
versus stenotic samples. Overall, PLS performance is slightly better than 
PCA and t-SNE. In addition, discrimination power is best for CAD, fol-
lowed by LAD, RCA, and LCX. This stems from the fact that the CAD 
label contains all the information provided by the status of LAD, LCX, 
and RCA. 

The result of investigating correlations between the labeled artery 
and the other two arteries is shown in Fig. 6. Here, the PLS method is 
used since it gives better results compared with PCA and t-SNE when the 
arteries are analyzed independently. For example, in Fig. 6a, the status 
of the LAD artery is used to denote labels of the dataset samples, and the 
status of the LCX and RCA arteries is used as features. As the athero-
sclerotic process is driven by systemic factors, e.g., blood cholesterol 
level, it is reasonable to assume that knowledge of the status of the other 
two main arteries will provide some information about the status of the 
artery of interest. 

We further investigate the discrimination power when the number of 
stenotic arteries is considered a label of dataset samples, again using the 
PLS method. The result is shown in Fig. 7. The four groups of data points 
correspond to four label values {Normal, One artery with a stenosis, Two 
arteries with stenosis, Three arteries with stenosis}. As seen in Fig. 7, 
samples with the labels “Normal” and “Three arteries with stenosis” are 
easily distinguishable, and between them are located samples with one 
or two stenotic arteries. 

4. Active learning with ensemble of classifiers (ALEC) 

ALEC is based on the interdependent outcomes of four classifiers that 
are predicated on the presence of CAD in the input sample data as well as 
in each of its three branch coronary artery territories. The high-level 
steps of ALEC are shown in Fig. 8. As the first step, the dataset is 
divided into equal-sized labeled and unlabeled data partitions, and the 
former is used to train the four classifiers (CCAD,CLAD,CLCX, and CRCA). 
Next, the predictions of the four classifiers (i.e., ̂f CAD, f̂ LAD, f̂ LCX, f̂ RCA) for 
unlabeled data are used to quantify the level of inconsistency: high, 
medium, and low. Inconsistency levels are shown in Table 3. For each 
unlabeled sample data, if the classifier outputs are consistent, the sample 

Table 2 
Features of Z-Alizadeh Sani dataset.  

Feature type Feature name Range 

Clinical 
characteristics 

Age 30–86 
Weight 48–120 
Sex Male, Female 
Body mass index (BMI), kg/m2 18–41 
Diabetes Mellitus Yes, No 
Hypertension) Yes, No 
Current smoker Yes, No 
Ex-smoker Yes, No 
Family history Yes, No 
Obesity Yes if BMI >25, No 

otherwise 
Chronic renal failure Yes, No 
Cerebrovascular accident Yes, No 
Airway disease Yes, No 
Thyroid Disease Yes, No 
Congestive heart failure Yes, No 
Dyslipidemia Yes, No 

Symptom and sign Blood pressure, mmHg 90–190 
Pulse rate, beats per minute 50–110 
Edema Yes, No 
Weak peripheral pulse Yes, No 
Lung rales Yes, No 
Systolic murmur Yes, No 
Diastolic murmur Yes, No 
Typical Chest Pain Yes, No 
Dyspnea Yes, No 
Function class 1, 2, 3, 4 
Atypical Yes, No 
Nonanginal chest pain Yes, No 
Exertional chest pain Yes, No 
Low threshold angina Yes, No 

Electrocardiography Rhythm Sinus rhythm, Atrial 
fibrillation 

Q wave Yes, No 
ST elevation Yes, No 
ST depression Yes, No 
T wave inversion Yes, No 
Left ventricular hypertrophy Yes, No 
Poor R wave progression Yes, No 

Laboratory and echo Fasting blood sugar, mg/dl 62–400 
Creatine, mg/dl 0.5–2.2 
Triglyceride, mg/dl 37–1050 
Low-density lipoprotein, mg/dl 18–232 
High-density lipoprotein, mg/ 
dl 

15–111 

Blood urea nitrogen, mg/dl 6–52 
Erythrocyte sedimentation rate, 
mm/h 

1–90 

Hemoglobin, g/dl 8.9–17.6 
Potassium, mEq/l 3.0–6.6 
Sodium, mEq/l 128–156 
White blood cell count, cells/ml 3700–18,000 
Lymphocyte count, % 7–60 
Neutrophil count, % 32–89 
Platelet count, 1000/ml 25–742 
Ejection fraction, % 15–60 
Region wall motion 
abnormality score, numbera 

0, 1, 2, 3, 4 

Valvular heart disease gradeb Normal, Mild, 
Moderate, and Severe  

a The values are the average computed over wall segments. 
b This grade is assigned to the valve with the highest stenosis level compared 

to the other valves. 

Fig. 2. Probability relationships between stenoses of the different coro-
nary arteries. 
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is added to the pool of labeled samples for use during the next training 
phase. Ten percent of the inconsistent sample data are prioritized for 
manual labeling by medical experts according to the grade of inconsis-
tency (from high to low) before being added to the training pool. The 
system is retrained on old and new labeled data, and the process is 
repeated until all data are labeled. 

ALEC is a flexible framework that will work with various design 
choices. Any binary classifier can be used as one of the n classifiers. For 
example, neural networks can be used as classifiers and can be trained 

by standard optimizers such as Adam [70] using an appropriate loss 
function (e.g., binary cross entropy). 

The pseudocode of ALEC is presented in Algorithm 1. The input is 
dataset D; and CCAD, CLAD, CLCX, and CRCA are the classifiers. In Line 1, 
dataset D is partitioned into labeled and unlabeled samples. In Line 2, 
the set of samples whose labels will be predicted by ALEC is initialized as 
an empty set. This set will be used to compute the labeling accuracy of 
ALEC during the training process (Lines 22–24). The main loop of ALEC 
is initialized at Line 3. This loop continues until no more unlabeled 

Fig. 3. Correlations between pairs of features in the Z-Alizadeh Sani dataset. In each, the strength of the correlation is indicated by the color scale.  

Fig. 4. The most important features contribute to the diagnosis of CAD as well as stenosis of LAD, LCX, and RCA.  
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Fig. 5. Graphical representations of the discrimination power of LAD, LCX, RCA, and CAD labels produced using PCA, PLS, and tSNE dimensionality reduc-
tion methods. 
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samples remain. In Lines 4–7, the four classifiers are trained on the 
current set of labeled samples. The set of labeled samples grows as more 
unlabeled samples are labeled either by ALEC or by medical experts. 
Next, the trained classifiers are used to classify unlabeled samples (Lines 
9–13). At Line 14, every unlabeled sample undergoes a consistency 
check. The level of inconsistency is determined according to Table 3. 
Consistent samples will be added to the set of labeled samples (Line 15). 
The samples failing the consistency check will be added to the set of 
inconsistent samples (Line 18). In Line 19, the inconsistent samples are 
sorted based on their inconsistency level from high to low. At Line 20, 

starting from the most inconsistent samples, 10% of the sorted samples 
are manually labeled by medical experts and added to the set of labeled 
samples. At this point, one iteration of the “while” loop at Line 3 is 
completed, and a new iteration begins. After all unlabeled samples have 
been labeled, the “while” loop (Line 3) terminates, and the labeling 
performance of ALEC is evaluated at Lines 21–25. At Line 26, the trained 
classifiers and the computed accuracy are returned. 

Algorithm 1. ALEC pseudocode   

Fig. 6. Discrimination power of two out of three main arteries with the remaining artery as sample label using the PLS method. Discrimination power of LAD label 
when LCX and RCA are used as features (a); of LCX label when LAD and RCA are used as features (b); and of RCA when LAD and LCX are used as features (c). Part (a) 
shows the best classification quality, which suggests that {LCX, RCA} provide more information about LAD compared with what {LAD, RCA} and {LAD, LCX} provide 
about LCX and RCA, respectively. 

Fig. 7. Scatter plot of dataset samples when the number of stenotic arteries is considered as the label.  
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5. Results 

This section presents the details of the parameter settings used for the 
different classification methods. The performance of these methods with 
and without using ALEC is compared. Moreover, ALEC is compared with 
other active learning methods. 

5.1. Classifier parameter settings 

We experimented with several classifiers like SVM [71–73], random 
forest [74–76], k-nearest neighbors (KNN) [77–79], neural network [4, 
80,81], C4.5 [82–84], and naïve Bayes [85–87]. The parameter details 
of these classifiers are presented in Table 4. In SVM, the parameter C of 
the radial basis function (RBF) kernel trades off the correct classification 
of training examples against the maximization of the decision function’s 
margin. The parameter γ of the RBF kernel [88,89] can be considered the 
inverse of the influence radius of samples selected as support vectors. In 
C4.5, the parameters m, c, g, and s denote the tree construction stopping 
parameter, tree pruning confidence level parameter, splitting criterion, 
and subset split, respectively [90–92]. 

5.2. Comparison of classification methods 

We compared the performance of various classifiers on the dataset 
with and without ALEC and reported the results in Table 5 and Table 6, 
respectively. With ALEC, the training process was started with an equal 
number of samples in the labeled and unlabeled sets, but the number of 
queried samples for manual labeling by experts varied among the indi-
vidual classifiers. For a fair comparison of the classifiers with and 
without ALEC, the same number of training samples used by classifiers 
with ALEC (Equation (1)) was randomly selected from the dataset and 
provided to the corresponding classifiers for training without ALEC. The 
total number of training samples in equation (1) is computed based on 
the number of manually labeled samples with consistent labeling at the 
last training iteration of classifiers using ALEC. 

# training samples=
⌈
# dataset samples

2

⌉

+# manually labeled samples

+# samples with consistent labeling
(1) 

Despite having access to the same number of training samples, 
classifiers without ALEC performed worse (Table 6) than the scenario in 
which ALEC was used (Table 5). This is mainly because in the absence of 
active learning, instead of asking the label of important samples delib-
erately, a random set of labeled training samples (Equation (1)) are 
given to the learner methods, reducing the chance of receiving more 
informative samples. 

Among the evaluated classifiers, SVM attained the best performance 
with and without ALEC. Random forest gained the largest performance 
boost (absolute accuracy gain of 5.98%) from ALEC. As random forest 
relies on information theory to build an ensemble of decision trees, ac-
cess to more informative samples via ALEC can plausibly enhance the 
quality of generated decision trees and improve classification perfor-
mance. In contrast, C4.5 forms a single decision, cannot fully exploit the 
potential of actively selected samples, and consequently exhibited only a 
modest accuracy boost of 2.52% with ALEC. Considering that K-Nearest 
Neighbor relies on nearby samples for classification of test samples, it 
has gained considerable performance thank to more informative sam-
ples provided by ALEC. Using informative training samples also helps 
with reduction of training loss during neural network training as it is 
evident in Tables 5 and 6. Even Naïve Bayes which is a simple classifier 
has received 4.15% performance boost due to using good training 
samples suggested by ALEC. 

5.3. Comparison with other active learning methods 

We compared the performance of ALEC with the best classifier SVM 
with other active learning methods using the Active Learning in Python 
(ALiPy) package [93]. These 19 active learning algorithms are summa-
rized below. 
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Hierarchical Active Learning with Cost (HALC): This multi-label 
active learning strategy exploits label hierarchies for cost-effective 
queries by incorporating the potential contributions of ancestor and 
descendant labels to derive a criterion for expressing how much infor-
mation each candidate query can offer [94]. As each instance may have 
multiple labels, the cost of annotation is higher. In addition, the labels 
are prepared into hierarchies from coarse to fine and have variable 
annotation costs as labels at different hierarchy levels contribute in 
different ways to model training. 

Uncertainty sampling: This sequential algorithm selects the most 
uncertain instance-label pairs for the expert query [95], and can reduce 
by 500-fold the amount of training data that needs to be manually 
classified for the stipulated level of effectiveness. The method is widely 
used for text categorization but can also be extended to other classifi-
cation tasks. 

Active Self-Paced Learning (ASPL): Lin et al. [96] described a 
strategy for face identification that combined self-paced learning and 
active learning to automatically annotate new instances and incorporate 

Table 4 
Parameter settings for classifiers.  

Algorithm name Value of parameters 

Support vector 
machine 

C = 0; γ = 0.1; Kernel type = RBF 

Random forest Number of trees = 10; Minimal size for split = 4; Minimal leaf 
size = 2; Maximal depth = 20 

K-nearest neighbor K = 5 
Neural network Number of hidden layers = 1; Learning rate = 0.3; Number of 

epochs = 1000; Optimizer: Adam; Loss function: binary cross 
entropy 

C4.5 m = 2; c = 25; g = off; s = off 
Naïve Bayes –  

Fig. 8. Flowchart of the proposed method.  

Table 3 
Uncertain instances with inconsistency in predicted target attributes.  

f̂ CAD f̂ LAD f̂ LCX f̂ RCA 
Level of inconsistency 

0 1 0 0 Low 
0 0 1 0 Low 
0 0 0 1 Low 
0 1 1 0 Medium 
0 0 1 1 Medium 
0 1 0 1 Medium 
0 1 1 1 High 
1 0 0 0 High 

1 and 0 represent the presence and absence of stenosis in the predicted target 
attributes. 
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them into training under weak expert recertification. The method 
proved to be efficient as the performance was not compromised even 
though the number of annotated samples was drastically decreased. The 
method had high classification accuracy and was robust against noisy 
data. 

Discriminative and Representative query for Batch Mode active 
learning (BMDR): Wang and Ye [97] devised an algorithm to select a 
batch of informative and representative instances by minimizing the 
empirical risk bound for active learning. A novel upper bound for the 
true risk in active learning was formulated, and a practical active 
learning batch mode method was derived by curtailing this upper 
bound. Their method was able to query the most informative samples 
while protecting the source distribution as much as possible. 

Self-Paced Active Learning (SPAL): Starting the training with 
easier samples and gradually making the samples harder can improve 
performance. SPAL [98] is a technique that considers the easiness and 
potential value of an instance simultaneously. Using this method, the 
model was trained by querying the appropriate samples at the right time 
with minimum cost. 

Learning Active Learning (LAL): a data-driven strategy was pro-
posed based on training a regression model that predicted error reduc-
tion for a candidate in each learning iteration [99]. By formulating the 
query selection procedure as a regression problem, this method was not 
constrained to accessible active learning heuristics but instead learned 
techniques empirically from previous active learning outcomes. The 
strategy could be learned from either a subset of domain-specific data or 
simple synthetic two-dimensional datasets. 

Expected error reduction: Roy and McCallum [100] proposed an 
active learning strategy that optimized expected future errors directly. 
This is contrary to other techniques that aim to lessen version space size. 
These techniques were popular because closed-form calculation of the 
expected future error is obstinate in many learning techniques. Their 
Monte Carlo approach made it feasible to approximate the expected 
error reduction because of the query labeling. 

Cost-Effective Active Learning (CEAL): In traditional active 
learning, the ground truth of queried labels is returned by a single 
labeler. Huang et al. [101] performed active selection for both instances 
and labelers and evaluated instance-labeler pairs’ cost-effectiveness for 
active selection to achieve high labeling accuracy by a selected labeler at 

a low cost. Such an approach is useful when there are multiple labelers 
with different qualities of labeling and costs. 

Active Feature Acquisition with Supervised Matrix Completion 
(AFASMC): an approach for training a classification model with a 
minimal acquisition cost is AFASMC [102] which combines supervised 
matrix completion and active feature query. The performance may 
degrade in applications where some features are missing from the 
dataset. As some features may be correlated with each other, it is 
possible to recover missing feature values based on these correlations. 
The quality of recovered feature values and the overall performance 
relies on choosing the most informative features. The new objective 
function could diminish reconstruction error and compensate for the 
loss of training data while completing the feature matrix. 

Query-by-Committee (QBC): Mamitsuka [103] proposed a novel 
query-learning strategy that combined query by committee with 
bagging and boosting. QBC used many copies of a randomized algorithm 
as a committee. The randomized algorithms performed prediction on 
data samples. The sample with the highest uncertainty among members 
of the committee was chosen for the query. Such a sample provided the 
maximum information gain to select the next query point where the 
weighted majority voting by acquiring hypotheses had a minimal 
margin. 

Active qUery on Relevance Ordering (AURO): as a simple selec-
tion strategy, AURO [104] was proposed to query triplets comprising 
one instance and two labels each, based on the relative order of rele-
vance of the labels to the instance. This novel multi-label active learning 
approach, which demanded less proficiency of the annotator and yet 
obtained richer information with each query, significantly lessened the 
labeling task of annotators. 

QUerying Informative and Representative Examples (QUIRE): 
this method adapted the active learning min-max view to measure 
sample representativeness based on prediction uncertainties in the 
labeled and unlabeled samples, respectively [105]. Using QUIRE, the ad 
hoc query of unlabeled instances was optimized according to their 
representativeness level. 

Stability: Chakraborty et al. [106] proposed an 
ensemble/stability-based method to utilize conditional Gaussian distri-
butions for uncertainty prediction of missing entries in the matrix to 
recover the complete matrix from partially observed entries (active 
matrix completion), thereby selecting query locations. 

Interval Estimate Threshold (IEThresh): from multiple experts or 
oracles with different degrees of reliability, the ones with the highest 
labeling accuracies were selected [107]. To this end, labeling sources 
with measured upper-bound confidence intervals below a specified 
threshold were filtered out, which enriched the overall accuracy of the 
remaining ones. Therefore, the most informative samples for active 
learning were obtained with minimum labeling effort. 

Active learning based on Uncertainty and Diversity for Incre-
mental multi-label learning (AUDI): Instances may be simultaneously 
associated with multiple labels, increasing labeling costs. A novel multi- 
label strategy was proposed, which exploits measures of diversity and 
uncertainty in the label and instance spaces to select the optimal 
instance-label pairs for iterative query on whether each label was pos-
itive on each instance [108]. 

Adaptive: Multi-label classification involves dispersing each 
instance to multiple groups but can be expensive and time-consuming. Li 
and Guo [109] proposed an adaptive framework for active instance se-
lection. To this end, two new multi-label active learning approaches i.e. 
label cardinality inconsistency approach and the max-margin prediction 
uncertainty approach were integrated. 

Maximum loss reduction with Maximal Confidence (MMC): In a 
multi-label text classification paradigm, creating multiple labels for each 
document is impractical since multi-label text classifiers require large 
training data. A new multi-label active learning strategy was proposed 
which could reduce the amount of required labeled data without losing 
classification accuracy [110]. This method optimized the cutback in 

Table 6 
Classification results without the proposed active learning algorithm using the 
number of training samples in equation (1).  

Classifier Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Area under 
curve 

Support vector 
machine 

94.25 97.93 91.25 0.91 

Random forest 90.52 95.62 83.85 0.84 
K-Nearest 

neighbor 
80.65 86.25 77.86 0.75 

Neural network 87.63 94.76 80.69 0.76 
C4.5 90.83 92.49 85.62 0.85 
Naïve Bayes 79.97 84.53 76.85 0.74  

Table 5 
Classification results with the proposed active learning algorithm.  

Classifier Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Area under 
curve 

Support vector 
machine 

97.01 97.21 93.25 0.95 

Random forest 96.50 97.22 88.62 0.91 
K-nearest 

neighbor 
86.25 87.64 79.25 0.80 

Neural network 91.25 97.66 83.25 0.82 
C4.5 93.35 95.27 86.98 0.89 
Naïve Bayes 84.12 85.75 80.54 0.79  
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expected loss, which was computed as the sum of all label losses. The 
size of the version space determined the model loss, and the reduction 
rate of the version space was optimized using SVM. The method could 
predict labels for each unlabeled data. 

Repeated: repeated labeling of data items conferred advantages 
when it was costly to process unlabeled data, where it would be cheaper 
to label everything multiple times, or if the labels were noisy [111]. 
However, repeated labeling could not always enhance the model and 
label quality, and different notions of uncertainty should be considered 
when choosing data points for repeated labeling. 

Random graph density: Ebert et al. [112] constructed an explor-
atory graph using dataset samples as graph nodes. Edges of the graph 
were weighted according to the Manhattan distance between pairs of 
nodes. The graph edges were the K-nearest neighbors of each sample in 
the graph. Highly connected samples were identified using the graph. 
These were the samples that belonged to the same class. 

It is also useful to categorize the 19 active learning methods reviewed 
above according to their working mechanisms or predominant data is-
sues. The categorization is shown in Table 7. As can be seen, most of the 
methods are based on the instance selection mechanism. The second 
most common category is multi-label data which contains four methods. 
The rest of the categories in Table 7 are less popular. 

The 20 algorithms were run 100 times for a fair comparison, and the 
corresponding mean accuracies were compared. In each run, 50% of the 
samples were labeled and used for training, and the rest were unlabeled. 
The same set of training samples was given to all 20 active learning 
algorithms, and SVM with RBF kernel was used as the base classifier in 
all cases. SVM was acknowledged to be the best classifier in the field 
[122]. The comparison results are illustrated in Fig. 9, in which the 
x-axis represents the number of queries, i.e., the number of samples 
manually labeled. Our proposed method (ALEC) ranks first, followed by 
SPAL and the uncertainty method. The proposed method queries sam-
ples with higher inconsistency levels between predicted attributes (CAD, 
LAD, LCX, and RCA) (see Table 3). Such an approach not only eased the 
label identification of difficult unlabeled samples but also helped with 
learning the labels of simpler samples. 

Curriculum learning has always been an effective approach to 
improving the learning process. Inspired by curriculum learning, SPAL 
starts learning with easier samples and tackles harder samples as the 
training unfolds. The performance of active learning methods heavily 
depends on the strategy based on which samples are chosen for manual 

labeling. The uncertainty method is based on such observation and 
chooses samples with the highest uncertainty for manual labeling. It is 
no surprise that this method has gained a third place among the eval-
uated methods. 

HALC relies on label hierarchy. In CAD diagnosis, such label hier-
archy exists, as shown by the probability relationships between stenosis 
of different coronary arteries (Fig. 2). By exploiting the labeling hier-
archy between CAD and LAD, LCX, and RCA features, HALC has gained a 
fourth place among the evaluated methods. HALC is expected to obtain 
better performance in problems with multiple levels of hierarchy. In our 
case, the hierarchy is not very deep which is why HALC has exhibited 
lower performance compared to ALEC, SPAL, and uncertainty method. 

The LAL method seeks to ask for labels of samples that yield 
maximum reduction in prediction error. ASPL chooses samples it is most 
uncertain about for manual labeling. These are exactly the samples that 
will give the classifier the largest performance boost. The expected error 
reduction method estimates the expected reduction in future errors upon 
asking for the label of a specific sample. The samples yielding the highest 
error reduction will be chosen for manual labeling. The sample selection 
strategies of LAL, ASPL, and Expected error reduction method are 
somewhat similar to our proposed method (ALEC) sample selection 
criterion for manual labeling. In our method, samples with the highest 
inconsistency level are chosen for manual labeling since they are the 
ones that can correct potential inconsistencies between our four classi-
fiers. Therefore, LAL, ASPL, the expected error reduction method, and 
ALEC are practically the same, except that they come from different 
perspectives. The reason that ALEC outperforms LAL and ASPL is that 
ALEC incorporates medical domain knowledge regarding CAD diag-
nosis, whereas LAL and ASPL are general-purpose active learning 
methods. 

CEAL method relies on actively selecting samples and labelers to 
enhance its performance. However, in our experiments, there is only one 
labeling source. Therefore, CEAL cannot reach its full potential. That is 
the reason for its poorer performance compared to ALEC and some other 
evaluated methods such as SPAL, HALC, and LAL. 

BMDR balances the discriminative and representative information 
during empirical risk minimization, so BMDR is expected to outperform 
other active learning methods. However, BMDR is a batch-based 
method, so at each manual labeling phase, it queries the labels of mul-
tiple samples. Therefore, the batch mode approach leads to poor sample 
efficiency of the BMDR method. That is why it has been outperformed by 
some other methods. 

AFASMC method can estimate missing values of features. However, 
the dataset used in our experiments has no feature with missing values, 
so AFASMC cannot take advantage of its ability to estimate missing 
values. That is why it has underperformed compared to some of the 
other methods. The stability method also focuses on the completion of 
missing values that are not present in the evaluated dataset. Like 
AFASMC, stability cannot exploit its ability for missing value 
completion. 

QBC handles uncertainty by querying the labels of samples near the 
margin since these samples are the ones that the classifiers are most 
uncertain about. However, QBC is designed to be a general-purpose 
method, so it could not perform as well as our proposed method, 
which is specific to CAD diagnosis. Moreover, training multiple in-
stances of the same classifier when the number of labeled samples is 
limited is not going to be that much useful. The reason is that the number 
of labeled samples is not enough to initialize the parameters of multiple 
classifiers to sensible values. 

The AURO method focuses on multi-label problems. The samples of 
the dataset used in our experiments are not multi-label. Therefore, the 
AURO method could not use its ability to gain more information from 
multi-label samples. 

QUIRE relaxes the label of the samples to continuous values. How-
ever, sample labels are discrete values. Such relaxation may hurt per-
formance. IEthresh method has the ability to select among multiple 

Table 7 
Categories of 19 active learning algorithms implemented on Active Learning in 
Python package.  

Main Mechanism Active Learning Algorithm 

Instance selection Active self-paced learning [96] 
Uncertainty [95] 
Query by committee [113] 
Expected error reduction [114] 
Random graph density [112] 
Discriminative and representative queries for batch mode 
active learning [97] 
Learning active learning [99] 
Self-paced active learning [98] 

Multi-label data Active learning based on uncertainty and diversity for 
incremental multi-label learning [115] 
Querying informative and Representative [105] 
Maximum loss reduction with maximal confidence [116] 
Adaptive [117] 

Querying features Active feature acquisition with supervised matrix completion 
[118] 
Stability [119] 

Novel query type Active query on relevance ordering [104] 
Different labeling 

costs 
Hierarchical active learning with cost [94] 
Cost-effective active learning [101] 

Noisy oracles Interval estimate threshold [120] 
Repeated [121]  
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annotators. However, in our experiments, there is only one source for 
labeling queried samples. Therefore, IEthresh cannot benefit from 
selecting among multiple annotators. 

AUDI, Adaptive, and MMC are all multi-label active learning 
methods. However, the evaluated dataset in our experiments is the 
single label, so the ability of these methods to handle multi-label data is 
not of much use here. 

The effort-repeated method, which puts labels on each sample mul-
tiple times, is only beneficial when data samples are noisy. The evalu-
ated dataset is not noisy, so the repeated method does not gain any 
advantage from labeling samples multiple times. 

Random graph density has the worst performance among the eval-
uated methods. This is mainly due to heavy reliance on the K-nearest 
neighbor algorithm while forming the graph between dataset samples. 
The structure of the graph is very sensitive to the choice of hyper- 
parameter K for the K-nearest neighbor method. It is not clear how the 
appropriate choice for K should be determined for different problems. 
An inappropriate choice of K can hurt performance badly. 

5.4. Theoretical considerations 

In this section, we lay out the theoretical basis of why ALEC has 
outperformed standard classifiers. CT(p) represents the consistency 
condition. Whenever the condition in equation (3) holds, the predictions 
of the four classifiers are consistent, and there is no need to query the 
sample label. 

CT(p)= (CLAD(p) ∨ CLCX(p) ∨ CRCA(p)) ⊙ CCAD(p) (2) 

The operator of ʘ shows the XNOR or logical complement of the 
exclusive OR operator. CCAD(P), CLAD(P), CLCX(P), and CRCA(P) are the 
outputs of classifiers used for diagnosing CAD and stenosis of LAD, LCX, 
and RCA. The error of CT(P) classifier is given by: 

error(CT)=FPR(CT)×Pr(CAD= 0)+FNR(CT)×Pr(CAD= 1)
= Pr((X ∪Y ∪ Z) ∩W|CAD= 0)× Pr(CAD= 0)
+ Pr (X ∩Y ∩ Z ∩W|CAD= 1) × Pr (CAD= 1)

(3)  

where X, Y, Z, and W are stochastic events corresponding to CLAD pre-
dicting LAD has stenosis, CLCX predicting LCX has stenosis, CRCA 

predicting RCA has stenosis, and CCAD predicting patient has CAD. False 
positive rate (FPR) and false negative rate (FNR) are the probabilities of 
false alarm and miss rate, respectively [123]: 

FPR=
∑
False positive

∑
Condition negative

(4)  

FNR=
∑
False negative

∑
Condition positive

(5) 

Next, we will prove that the error rate of our proposed method is 
lower than the standard classifier (CCAD(p)) in Lemma 1. In Lemma 2, we 
also prove that our method error rate is lower than classification using 
the following rule: 

CT ’(p)=CLAD(p) ˅ CLCX(p) ˅ CRCA(p). (6) 

Accordingly, we will prove the two following lemmas. 

Lemma 1. error(CT) ≤ error(CCAD(p)). 

It is obvious that, 

P(A∩B) ≤ P(B) (7) 

Applying the inequality in Equation (7) to “Pr((X∪Y ∪Z) ∩W|CAD =

0)” in equation (3) yields: 

error(CT)= Pr((X ∪ Y ∪Z) ∩W|CAD= 0)× Pr(CAD= 0)
+ Pr(X ∩ Y ∩Z ∩W|CAD= 1)×Pr(CAD= 1)≤Pr(W|CAD= 0)
× Pr(CAD= 0)+Pr(X ∩Y ∩Z ∩W|CAD= 1)
× Pr(CAD= 1)≤Pr(W|CAD= 0)× Pr(CAD= 0)
+ Pr(W|CAD= 1)×Pr(CAD= 1)= error(CCAD(p))

(8)  

which proves the following inequality: 

error(CT) ≤ error( CCAD(p)) (9)  

Lemma 2. error(CT) ≤ error(CT
′

). 

We know that 

Fig. 9. Comparison of different active learning algorithms.  
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error(CT
′

) =Pr(X ∪Y ∪ Z|CAD= 0)×Pr(CAD= 0)+ Pr (X ∩ Y ∩ Z|CAD= 1)

× Pr (CAD= 1)
(7) 

So, according to Equation (3) 

error(CT)=Pr((X ∪Y ∪ Z) ∩W|CAD= 0)× Pr(CAD= 0)
+ Pr(X ∩Y ∩ Z ∩W|CAD= 1)× Pr(CAD= 1)
≤ Pr(X ∪Y ∪ Z|CAD= 0)× Pr(CAD= 0)
+ Pr(X ∩Y ∩ Z ∩W|CAD= 1)× Pr(CAD= 1)
≤ Pr(X ∪Y ∪ Z|CAD= 0)× Pr(CAD= 0)

+ Pr(X ∩Y ∩ Z|CAD= 1)× Pr(CAD= 1)= error(CT
′

)

(8) 

Consequently, we show that error(CT) ≤ error(CT’). 
According to the results obtained in Lemmas 1 and 2, combining the 

four classifiers CCAD(P), CLAD(P), CLCX(P), and CRCA(P) leads to better 
classification performance for CAD diagnosis compared with using the 
single classifier CCAD(P) and the three classifiers CLAD(P), CLCX(P), and 
CRCA(P) in combination, respectively. 

5.5. Discussion 

We were motivated to develop a computer-aided diagnostic tool for 
the clinical prediction of CAD because of the significant impact of the 
disease and the high cost and associated risks of invasive angiography. 
However, high-quality real-world clinical data are scarce due to high 
labeling costs. Active learning approaches can circumvent these chal-
lenges by optimizing the selection of samples for manual labeling, 
thereby improving model training efficiency and reducing annotation 
costs. In this study, we have proposed a novel ALEC method for CAD 
diagnosis based on the outcomes of four classifiers predicated on the 
presence of CAD in the input sample and each of its three branch cor-
onary artery territories: LAD, LCX, and RCA. ALEC is first trained using 
labeled samples. For each unlabeled sample, if the classifier outputs are 
consistent, the sample is added to the labeled samples pool for iterative 
training; if inconsistent, the sample is manually labeled by medical ex-
perts before being added to the pool. The process is repeated until all 
samples are labeled. Compared with 19 other established active learning 
algorithms, ALEC combined with the SVM classifier attained superior 
performance with 97.01% accuracy. The comprehensive nature of the Z- 
Alizadeh Sani dataset underpins the interdependent probabilistic re-
lationships between per-patient CAD diagnosis and per vessel LAD, LCX, 
and RCA stenosis. The empirical arguments for the superiority of the 
proposed method are elegantly supplemented by theoretical justifica-
tion. The solutions to the lemmas posed above established the theoret-
ical foundation for the soundness of the proposed method. ALEC also 
owes its excellent performance to the input of domain-specific knowl-
edge of medical experts. Using the domain knowledge, important sam-
ples are chosen for manual labeling by experts. While the reliance on 
problem-specific knowledge is a limitation with ALEC, the number of 
samples that are required to be labeled manually is significantly 
reduced, which should inspire interest and garner wider application. 

To diagnose CAD efficiently, it is crucial to identify its key associated 
factors. This study tries to shed some light on the unexplored aspects of 
CAD disease by careful inspection of the Z-Alizadeh Sani CAD dataset. 
The correlation matrix (Fig. 3) and top features contributing to LAD, 
LCX, and RCA stenosis and having CAD (Fig. 4) provide important in-
sights into the interplay between factors contributing to CAD. One of the 
important observations is that pairs of correlated features (according to 
Fig. 3) have approximately the same amount of contribution to the 
status of LAD, LCX, RCA, and CAD (Fig. 4). The data samples are also 
visualized based on the number of stenotic arteries (Fig. 7), demon-
strating that the number of stenotic arteries can be used to organize 
dataset samples in a meaningful and consistent way. It is evident from 
Fig. 7 that normal samples (with no stenotic arteries) and CAD samples 

with three stenotic arteries form the two extremes of the dataset samples 
spectrum, while samples with one and two stenotic samples lie between 
the two extremes of the spectrum. 

6. Conclusion and future work 

In this research, we have proposed a new active learning method, 
ALEC, for CAD diagnosis that classifies stenosis of individual coronary 
arteries. To this end, demographic, clinical, ECG, and laboratory fea-
tures were used to train the four classifiers to determine CAD and the 
stenosis status in LAD, LCX, and RCA vessel territories for each patient. , 
The inconsistency of the classifier outcomes was checked against the 
interdependent relationships of the four diagnostic categories and 
graded. For each test sample, if there was no inconsistency between the 
predictions of the four classifiers, the assigned label to the sample was 
confirmed. However, if there was inconsistency in the labels assigned to 
the sample, the sample was ranked according to the level of inconsis-
tency. The higher the level of inconsistency in sample labels, the higher 
the priority the sample had to be queried for labeling by medical experts 
involved in the dataset acquisition. Combining this ensemble of four 
classifiers with SVM, ALEC attained superior performance compared to 
existing active learning modules implemented by ALiPy. 

ALEC can be used as a diagnostic step before actually performing 
angiography on patients suspected of having CAD. This leads to reduced 
diagnosis costs and more importantly avoids the unnecessary risks and 
side effects associated with angiography. The only limitation of ALEC is 
that it is CAD-specific. The success of ALEC is due to the fact that domain 
knowledge about CAD disease is exploited to create an ensemble of 
classifiers to make robust predictions. Therefore, the proposed approach 
can only be applied to diseases with multiple related features (i.e., 
symptoms). Recall that in the case of CAD disease, the related features 
are stenosis of 3 main coronary arteries of the heart, i.e., LAD, LCX, and 
RCA. As future work, the possibility of applying ALEC to problems 
similar to CAD is worth investigating. Semi-supervised learning algo-
rithms can also be incorporated to improve the efficiency of our algo-
rithm on larger datasets with many samples. 
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approach for stroke lesion segmentation on multimodal MRI data, 
Neurocomputing 150 (2015) 26–36. 

[46] W.W. Cohen, Fast effective rule induction, in: Machine Learning Proceedings, 
Elsevier1995, 1995, pp. 115–123. 

[47] A. McCallum, D. Freitag, F.C. Pereira, Maximum Entropy Markov Models for 
Information Extraction and Segmentation, Icml, 2000, pp. 591–598. 

[48] A. Ratnaparkhi, A Maximum Entropy Model for Part-Of-Speech Tagging, 
Conference on Empirical Methods in Natural Language Processing, 1996. 

[49] http://www.abbyy.com. (Accessed 2 February 2023). 
[50] R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, ACM press, New 

York, 1999. 
[51] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3 

(2003) 993–1022. 
[52] J. Chen, J. Yan, B. Zhang, Q. Yang, Z. Chen, Diverse topic phrase extraction 

through latent semantic analysis, in: Sixth International Conference on Data 
Mining (ICDM’06), IEEE, 2006, pp. 834–838. 

[53] W.W. Cohen, Learning Trees and Rules with Set-Valued Features, vol. 1, AAAI/ 
IAAI, 1996, pp. 709–716. Citeseer. 

[54] C. McIntosh, T.G. Purdie, Contextual atlas regression forests: multiple-atlas-based 
automated dose prediction in radiation therapy, IEEE Trans. Med. Imag. 35 
(2015) 1000–1012. 

[55] M. Alipour-Vaezi, R. Tavakkoli-Moghadaam, M. Samieinasab, Scheduling the 
COVID-19 vaccine distribution based on data-driven decision-making methods, 
Journal of Industrial Engineering and Management Studies 8 (2022) 196–206. 

[56] X. Zhu, J. Li, J. Ren, J. Wang, G. Wang, Dynamic ensemble learning for multi- 
label classification, Inf. Sci. 623 (2023) 94–111. 

[57] M. Alipour-Vaezi, A. Aghsami, F. Jolai, Prioritizing and queueing the emergency 
departments’ patients using a novel data-driven decision-making methodology, a 
real case study, Expert Syst. Appl. 195 (2022), 116568. 

[58] C. Cai, H. Lin, H. Wang, Y. Xu, Q. Ouyang, L. Lai, J. Pei, miDruglikeness: 
subdivisional drug-likeness prediction models using active ensemble learning 
strategies, Biomolecules 13 (2023) 29. 

[59] R. Alizadehsani, J. Habibi, M.J. Hosseini, H. Mashayekhi, R. Boghrati, 
A. Ghandeharioun, B. Bahadorian, Z.A. Sani, A data mining approach for 
diagnosis of coronary artery disease, Comput. Methods Progr. Biomed. 111 
(2013) 52–61. 

[60] R. Alizadehsani, M.J. Hosseini, A. Khosravi, F. Khozeimeh, M. Roshanzamir, 
N. Sarrafzadegan, S. Nahavandi, Non-invasive detection of coronary artery 
disease in high-risk patients based on the stenosis prediction of separate coronary 
arteries, Comput. Methods Progr. Biomed. 162 (2018) 119–127. 

[61] R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, M.H. Zangooei, 
A. Khosravi, S. Nahavandi, R.S. Tan, U.R. Acharya, Model uncertainty 
quantification for diagnosis of each main coronary artery stenosis, Soft Comput 
24 (2019) 10149–10160. 

[62] R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P.M. Kebria, 
F. Khozeimeh, S. Nahavandi, N. Sarrafzadegan, U.R. Acharya, Machine learning- 
based coronary artery disease diagnosis: a comprehensive review, Comput. Biol. 
Med. 111 (2019) 1–14. 

[63] R. Alizadehsani, M.H. Zangooei, M.J. Hosseini, J. Habibi, A. Khosravi, 
M. Roshanzamir, F. Khozeimeh, N. Sarrafzadegan, S. Nahavandi, Coronary artery 
disease detection using computational intelligence methods, Knowl. Base Syst. 
109 (2016) 187–197. 

[64] R. Alizadehsani, M.J. Hosseini, Z.A. Sani, A. Ghandeharioun, R. Boghrati, 
Diagnosis of Coronary Artery Disease Using Cost-Sensitive Algorithms, 12th 
International Conference on Data Mining Workshops, 2012, pp. 9–16. 

[65] Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A.A. Yarifard, 
Computer aided decision making for heart disease detection using hybrid neural 
network-Genetic algorithm, Comput. Methods Progr. Biomed. 141 (2017) 19–26. 

[66] L.E. Raileanu, K. Stoffel, Theoretical comparison between the gini index and 
information gain criteria, Ann. Math. Artif. Intell. 41 (2004) 77–93. 

[67] M. Ringnér, What is principal component analysis? Nat. Biotechnol. 26 (2008) 
303–304. 
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