27 research outputs found

    Coronary Artery Plaque Characterization from CCTA Scans Using Deep Learning and Radiomics

    Get PDF
    Assessing coronary artery plaque segments in coronary CT angiography scans is an important task to improve patient management and clinical outcomes, as it can help to decide whether invasive investigation and treatment are necessary. In this work, we present three machine learning approaches capable of performing this task. The first approach is based on radiomics, where a plaque segmentation is used to calculate various shape-, intensity- and texture-based features under different image transformations. A second approach is based on deep learning and relies on centerline extraction as sole prerequisite. In the third approach, we fuse the deep learning approach with radiomic features. On our data the methods reached similar scores as simulated fractional flow reserve (FFR) measurements, which - in contrast to our methods - requires an exact segmentation of the whole coronary tree and often time-consuming manual interaction. In literature, the performance of simulated FFR reaches an AUC between 0.79–0.93 predicting an abnormal invasive FFR that demands revascularization. The radiomics approach achieves an AUC of 0.84, the deep learning approach 0.86 and the combined method 0.88 for predicting the revascularization decision directly. While all three proposed methods can be determined within seconds, the FFR simulation typically takes several minutes. Provided representative training data in sufficient quantities, we believe that the presented methods can be used to create systems for fully automatic non-invasive risk assessment for a variety of adverse cardiac events

    Cardiac computed tomography radiomics: an emerging tool for the non-invasive assessment of coronary atherosclerosis

    Get PDF
    In the last decades, significant advances have been made in the preventive approaches to cardiovascular disease. Even so, coronary artery disease remains one of the main causes of morbidity and mortality worldwide. Invasive imaging modalities, such as intravascular ultrasound or optical coherence tomography, have played a key role in the comprehension of the pathological processes underlying myocardial infarction and cerebrovascular disease. These imaging techniques have contributed greatly to the identification and phenotyping of the culprit lesion, the so-called vulnerable plaque. Coronary computed tomographic angiography (CCTA) has emerged in more recent years as the non-invasive modality of choice in the study of coronary atherosclerosis, showing in many studies a diagnostic yield comparable to invasive approaches. Moreover, being able to describe extra-luminal characteristics of the affected vessel, CCTA has greatly contributed towards shifting the attention of researchers from the mere quantification of luminal stenosis to the identification of adverse plaque features, which appear to have a stronger prognostic value. However, the identification of some of the hallmarks of vulnerable plaques is qualitative in nature and, therefore, subject to some degree of inter-reader variability. Moreover, CCTA is still unable to identify some fine markers of plaque vulnerability which can be detected by invasive techniques, such as neovascularization and plaque erosion, among others. Nonetheless, radiological images can be viewed as vast 3-D datasets which, via the use of recent technology, allow for the extraction of numerous quantitative features that may be used to accurately phenotype a given lesion. Radiomics is the process of extrapolating innumerable parameters from a given region of interest, with the goal of establishing correlations between quantitative variables and clinical data. These datasets can then be manipulated to create predictive models via the use of automated algorithms in a process called machine learning. As a result of these approaches, radiological images may offer information regarding the characterization of a plaque which can go much beyond the boundaries of what can be qualitatively asserted by the human eye, contributing to expanding the knowledge of the disease and ultimately assist clinical decisions. Thus far, radiomics has found its more consistent area of application in the field of oncology; to present date, the amount of clinical data regarding coronary artery disease is still relatively small, partly due to the technical difficulties associated with the implementation of such techniques to the study of a small and geometrically complex lesion such as the coronary plaque. The present review, after a summary of the imaging modalities most commonly used nowadays in the study of coronary plaques, will provide a perspective on the application of radiomic analysis to coronary artery disease

    Quantitative cardiac dual source CT; from morphology to function

    Get PDF
    Cardiovascular diseases are a large contributor to the global mortality rate. Non-invasive imaging techniques, such as computed tomography (CT) imaging, have been playing a growing role in the risk assessment, diagnosis, and prognosis of coronary artery disease (CAD). One of the main challenges in the evaluation of CAD is the establishment of the optimal workflow to evaluate the anatomical as well as the functional aspects of CAD in all phases of the ischemic cascade.The research described in this thesis investigates the possibilities of CT to perform both morphological and functional evaluation of CAD and it is debated whether CT can be used clinically for the visualization of the entire ischemic cascade.Results show that the diagnostic and prognostic value of CT procedures for coronary artery disease evaluation can be improved by adding additional functional information to the anatomical evaluation. This was concluded from research done on two new technologies analyzing the blood flow through the coronaries and through the heart muscle. Besides that, important questions regarding protocol optimization and standardization have been investigated. Although CT shows great potential for the evaluation of CAD, the clinical workflow and combination of techniques to be used is yet to be optimized. Automating processes, for example with the use of Artificial Intelligence (AI), can enhance the clinical implementation and can help the field of cardiac radiology deal with the increased demand for cardiac imaging

    Machine learning applications in cardiac computed tomography: a composite systematic review

    Get PDF
    Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were performed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation (AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies pertaining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection. Within electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT

    CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease

    Get PDF
    This study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue & mdash; around the anterior interventricular artery (IVA) & mdash; to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alone. In fact, with the best model (Random Forest + Mutual Information) the AUROC reached 0.820 +/- 0.076 . As a matter of fact, the combined use of both types of features (i.e., radiomic and clinical) allows for improved performance regardless of the feature selection method used. Experimental findings demonstrated that the use of radiomic features alone achieves better performance than the use of clinical features alone, while the combined use of both clinical and radiomic biomarkers further improves the predictive ability of the models. The main contribution of this work concerns: (i) the implementation of multimodal predictive models, based on both clinical and radiomic features, and (ii) a trusted system to support clinical decision-making processes by means of explainable classifiers and interpretable features

    Cardiac computed tomography radiomics for the non-invasive assessment of coronary inflammation

    Get PDF
    Radiomics, via the extraction of quantitative information from conventional radiologic images, can identify imperceptible imaging biomarkers that can advance the characterization of coronary plaques and the surrounding adipose tissue. Such an approach can unravel the underlying pathophysiology of atherosclerosis which has the potential to aid diagnostic, prognostic and, therapeutic decision making. Several studies have demonstrated that radiomic analysis can characterize coronary atherosclerotic plaques with a level of accuracy comparable, if not superior, to current conventional qualitative and quantitative image analysis. While there are many milestones still to be reached before radiomics can be integrated into current clinical practice, such techniques hold great promise for improving the imaging phenotyping of coronary artery disease.Kevin Cheng, Andrew Lin, Jeremy Yuvaraj, Stephen J. Nicholls and Dennis T.L. Won

    A token-mixer architecture for CAD-RADS classification of coronary stenosis on multiplanar reconstruction CT images

    Get PDF
    Background and objective: In patients with suspected Coronary Artery Disease (CAD), the severity of stenosis needs to be assessed for precise clinical management. An automatic deep learning-based algorithm to classify coronary stenosis lesions according to the Coronary Artery Disease Reporting and Data System (CAD-RADS) in multiplanar reconstruction images acquired with Coronary Computed Tomography Angiography (CCTA) is proposed. Methods: In this retrospective study, 288 patients with suspected CAD who underwent CCTA scans were included. To model long-range semantic information, which is needed to identify and classify stenosis with challenging appearance, we adopted a token-mixer architecture (ConvMixer), which can learn structural relationship over the whole coronary artery. ConvMixer consists of a patch embedding layer followed by repeated convolutional blocks to enable the algorithm to learn long-range dependences between pixels. To visually assess ConvMixer performance, Gradient-Weighted Class Activation Mapping (Grad-CAM) analysis was used. Results: Experimental results using 5-fold cross-validation showed that our ConvMixer can classify significant coronary artery stenosis (i.e., stenosis with luminal narrowing ≥50%) with accuracy and sensitivity of 87% and 90%, respectively. For CAD-RADS 0 vs. 1–2 vs. 3–4 vs. 5 classification, ConvMixer achieved accuracy and sensitivity of 72% and 75%, respectively. Additional experiments showed that ConvMixer achieved a better trade-off between performance and complexity compared to pyramid-shaped convolutional neural networks. Conclusions: Our algorithm might provide clinicians with decision support, potentially reducing the interobserver variability for coronary artery stenosis evaluation

    Recent Trends in Artificial Intelligence-Assisted Coronary Atherosclerotic Plaque Characterization

    Full text link
    Coronary artery disease is a major cause of morbidity and mortality worldwide. Its underlying histopathology is the atherosclerotic plaque, which comprises lipid, fibrous and—when chronic—calcium components. Intravascular ultrasound (IVUS) and intravascular optical coherence tomography (IVOCT) performed during invasive coronary angiography are reference standards for characterizing the atherosclerotic plaque. Fine image spatial resolution attainable with contemporary coronary computed tomographic angiography (CCTA) has enabled noninvasive plaque assessment, including identifying features associated with vulnerable plaques known to presage acute coronary events. Manual interpretation of IVUS, IVOCT and CCTA images demands scarce physician expertise and high time cost. This has motivated recent research into and development of artificial intelligence (AI)-assisted methods for image processing, feature extraction, plaque identification and characterization. We performed parallel searches of the medical and technical literature from 1995 to 2021 focusing respectively on human plaque characterization using various imaging modalities and the use of AI-assisted computer aided diagnosis (CAD) to detect and classify atherosclerotic plaques, including their composition and the presence of high-risk features denoting vulnerable plaques. A total of 122 publications were selected for evaluation and the analysis was summarized in terms of data sources, methods—machine versus deep learning—and performance metrics. Trends in AI-assisted plaque characterization are detailed and prospective research challenges discussed. Future directions for the development of accurate and efficient CAD systems to characterize plaque noninvasively using CCTA are proposed.</jats:p
    corecore