470 research outputs found

    Coreference detection in XML metadata

    Get PDF
    Preserving data quality is an important issue in data collection management. One of the crucial issues hereby is the detection of duplicate objects (called coreferent objects) which describe the same entity, but in different ways. In this paper we present a method for detecting coreferent objects in metadata, in particular in XML schemas. Our approach consists in comparing the paths from a root element to a given element in the schema. Each path precisely defines the context and location of a specific element in the schema. Path matching is based on the comparison of the different steps of which paths are composed. The uncertainty about the matching of steps is expressed with possibilistic truth values and aggregated using the Sugeno integral. The discovered coreference of paths can help for determining the coreference of different XML schemas

    Handling metadata in the scope of coreference detection in data collections

    Get PDF

    Fusing Automatically Extracted Annotations for the Semantic Web

    Get PDF
    This research focuses on the problem of semantic data fusion. Although various solutions have been developed in the research communities focusing on databases and formal logic, the choice of an appropriate algorithm is non-trivial because the performance of each algorithm and its optimal configuration parameters depend on the type of data, to which the algorithm is applied. In order to be reusable, the fusion system must be able to select appropriate techniques and use them in combination. Moreover, because of the varying reliability of data sources and algorithms performing fusion subtasks, uncertainty is an inherent feature of semantically annotated data and has to be taken into account by the fusion system. Finally, the issue of schema heterogeneity can have a negative impact on the fusion performance. To address these issues, we propose KnoFuss: an architecture for Semantic Web data integration based on the principles of problem-solving methods. Algorithms dealing with different fusion subtasks are represented as components of a modular architecture, and their capabilities are described formally. This allows the architecture to select appropriate methods and configure them depending on the processed data. In order to handle uncertainty, we propose a novel algorithm based on the Dempster-Shafer belief propagation. KnoFuss employs this algorithm to reason about uncertain data and method results in order to refine the fused knowledge base. Tests show that these solutions lead to improved fusion performance. Finally, we addressed the problem of data fusion in the presence of schema heterogeneity. We extended the KnoFuss framework to exploit results of automatic schema alignment tools and proposed our own schema matching algorithm aimed at facilitating data fusion in the Linked Data environment. We conducted experiments with this approach and obtained a substantial improvement in performance in comparison with public data repositories

    Cross-Platform Text Mining and Natural Language Processing Interoperability - Proceedings of the LREC2016 conference

    Get PDF
    No abstract available

    Cross-Platform Text Mining and Natural Language Processing Interoperability - Proceedings of the LREC2016 conference

    Get PDF
    No abstract available

    Towards a Linked Semantic Web: Precisely, Comprehensively and Scalably Linking Heterogeneous Data in the Semantic Web

    Get PDF
    The amount of Semantic Web data is growing rapidly today. Individual users, academic institutions and businesses have already published and are continuing to publish their data in Semantic Web standards, such as RDF and OWL. Due to the decentralized nature of the Semantic Web, the same real world entity may be described in various data sources with different ontologies and assigned syntactically distinct identifiers. Furthermore, data published by each individual publisher may not be complete. This situation makes it difficult for end users to consume the available Semantic Web data effectively. In order to facilitate data utilization and consumption in the Semantic Web, without compromising the freedom of people to publish their data, one critical problem is to appropriately interlink such heterogeneous data. This interlinking process is sometimes referred to as Entity Coreference, i.e., finding which identifiers refer to the same real world entity. In the Semantic Web, the owl:sameAs predicate is used to link two equivalent (coreferent) ontology instances. An important question is where these owl:sameAs links come from. Although manual interlinking is possible on small scales, when dealing with large-scale datasets (e.g., millions of ontology instances), automated linking becomes necessary. This dissertation summarizes contributions to several aspects of entity coreference research in the Semantic Web. First of all, by developing the EPWNG algorithm, we advance the performance of the state-of-the-art by 1% to 4%. EPWNG finds coreferent ontology instances from different data sources by comparing every pair of instances and focuses on achieving high precision and recall by appropriately collecting and utilizing instance context information domain-independently. We further propose a sampling and utility function based context pruning technique, which provides a runtime speedup factor of 30 to 75. Furthermore, we develop an on-the-fly candidate selection algorithm, P-EPWNG, that enables the coreference process to run 2 to 18 times faster than the state-of-the-art on up to 1 million instances while only making a small sacrifice in the coreference F1-scores. This is achieved by utilizing the matching histories of the instances to prune instance pairs that are not likely to be coreferent. We also propose Offline, another candidate selection algorithm, that not only provides similar runtime speedup to P-EPWNG but also helps to achieve higher candidate selection and coreference F1-scores due to its more accurate filtering of true negatives. Different from P-EPWNG, Offline pre-selects candidate pairs by only comparing their partial context information that is selected in an unsupervised, automatic and domain-independent manner.In order to be able to handle really heterogeneous datasets, a mechanism for automatically determining predicate comparability is proposed. Combing this property matching approach with EPWNG and Offline, our system outperforms state-of-the-art algorithms on the 2012 Billion Triples Challenge dataset on up to 2 million instances for both coreference F1-score and runtime. An interesting project, where we apply the EPWNG algorithm for assisting cervical cancer screening, is discussed in detail. By applying our algorithm to a combination of different patient clinical test results and biographic information, we achieve higher accuracy compared to its ablations. We end this dissertation with the discussion of promising and challenging future work

    Intelligent Information Access to Linked Data - Weaving the Cultural Heritage Web

    Get PDF
    The subject of the dissertation is an information alignment experiment of two cultural heritage information systems (ALAP): The Perseus Digital Library and Arachne. In modern societies, information integration is gaining importance for many tasks such as business decision making or even catastrophe management. It is beyond doubt that the information available in digital form can offer users new ways of interaction. Also, in the humanities and cultural heritage communities, more and more information is being published online. But in many situations the way that information has been made publicly available is disruptive to the research process due to its heterogeneity and distribution. Therefore integrated information will be a key factor to pursue successful research, and the need for information alignment is widely recognized. ALAP is an attempt to integrate information from Perseus and Arachne, not only on a schema level, but to also perform entity resolution. To that end, technical peculiarities and philosophical implications of the concepts of identity and co-reference are discussed. Multiple approaches to information integration and entity resolution are discussed and evaluated. The methodology that is used to implement ALAP is mainly rooted in the fields of information retrieval and knowledge discovery. First, an exploratory analysis was performed on both information systems to get a first impression of the data. After that, (semi-)structured information from both systems was extracted and normalized. Then, a clustering algorithm was used to reduce the number of needed entity comparisons. Finally, a thorough matching was performed on the different clusters. ALAP helped with identifying challenges and highlighted the opportunities that arise during the attempt to align cultural heritage information systems
    corecore