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Nederlandse samenvatting

Het uitwisselen van informatie is uitermate belangrijk in de snel en onvoorspel-
baar veranderende wereld. De hoeveelheid gegevens groeit heel snel en gegevens
zijn dikwijls gedistribueerd over heterogene gegevensbronnen en databanken. Bij-
gevolg kan dezelfde informatie op verschillende manieren gemodelleerd zijn, wat
coreferentie genoemd wordt: coreferente gegevens omschrijven dezelfde infor-
matie op een verschillende manier. Om de interoperabiliteit, d.i. het vermogen
van systemen en organisaties om samen te werken, te verbeteren is het belangrijk
dat coreferentie kan worden gedetecteerd. Door de grote gegevensvolumes en de
vereiste complexe analyse is een “manuele” detectie gewoonlijk zeer moeilijk en
meestal zelfs onmogelijk. Een geautomatiseerde of semi-geautomatiseerde detec-
tiemethode voor coreferentie is dus noodzakelijk.

Algoritmes voor het detecteren van coreferentie kunnen inwerken op twee
hoofdniveaus, namelijk het metadata-niveau en het dataniveau. De algoritmes voor
beide niveaus kunnen sterk met elkaar interageren. Enerzijds voorzien metadata,
bijvoorbeeld onder de vorm van een ontologie of een taxonomie of onder de vorm
van een databankschema dat de structuur en eigenschappen van de data vastlegt, in
extra informatie over de data, wat het detecteren van coreferentie op het dataniveau
kan ondersteunen. Anderzijds kunnen data, meer specifiek de data die beschreven
zijn door metadata, worden gebruikt om coreferentie in metadata terug te vinden.

In het eerste deel van deze doctoraatsthesis stellen we twee nieuwe technie-
ken voor het detecteren van coreferentie op metadata-niveau voor. Meer bepaald
bestuderen we coreferentiedetectie in XML-databankschema’s.

De eerste techniek maakt enkel gebruik van informatie die bekomen wordt uit
de schema’s zelf. Meer specifiek van de namen (tags) van schemaelementen (attri-
buten) en van de sequenties (hier paden genoemd) waarin deze namen voorkomen,
want elementen kunnen genest zijn in andere elementen. Het detecteren van core-
ferentie gebeurt hier op een hiërarchische wijze. De basis van de techniek bestaat
erin om te bepalen of delen van paden (stappen genoemd) al dan niet coreferent
zijn. Daarvoor wordt een “laag-niveau” methode voor het vergelijken van karak-
terstrings gebruikt. De techniek vergelijkt de elementnamen die voorkomen in de
beschouwde stappen op een lexicale wijze en houdt rekening met de relatieve be-
langrijkheid van de stappen. Deze belangrijkheid hangt af van de positie van de
stap in een pad. De verkregen informatie over de coreferentie van de stappen uit
twee paden wordt gepast geaggregeerd om informatie te verkrijgen over de corefe-
rentie van deze paden. Daarbij wordt uitgegaan van de volgende heuristiek: twee
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paden zijn meer waarschijnlijk coreferent als ze achteraan meer stappen hebben
die coreferent zijn. Het gebruik van deze heuristiek maakt de methode heel effi-
ciënt. Informatie over de coreferentie van paden wordt dan op zijn beurt verder
geaggregeerd om finaal te kunnen beslissen over de coreferentie van delen van
XML-schema’s of volledige XML-schema’s.

De tweede techniek voor het detecteren van coreferentie in XML-databank-
schema’s maakt enkel gebruik van inhoudelijke data (de XML-data) en bestaat uit
een verticale en een horizontale schemavergelijkingsstap. Eerst worden de voor-
komende waarden van attribuutparen lexicaal en statistisch vergeleken tijdens de
verticale schemavergelijkingsstap. Daarna wordt er een horizontale schemaverge-
lijking uitgevoerd die gebaseerd is op het zoeken naar coreferente tuples (stapwaar-
den en padwaarden). Met deze aanpak kunnen ook granulariteit- en bereikproble-
men bij attributen worden opgevangen. Een granulariteitprobleem doet zich voor
wanneer een attribuut uit het ene pad is opgesplitst in meerdere (sub)attributen in
het andere pad. Het bereikprobleem duidt op situaties waarbij coreferente attri-
buten niet noodzakelijk hetzelfde domein, d.i. verzameling van toegestane attri-
buutwaarden, hebben. De techniek laat het ook toe om automatisch, semantische
verbanden tussen schema-attributen te detecteren door enkel te kijken naar de in-
houdelijke data. Gevonden semantische verbanden kunnen op hun beurt nuttig
aangewend worden bij het detecteren van coreferentie in de databankschema’s.
Dit is een duidelijk voordeel ten opzichte van technieken die louter gebruik maken
van metadata en daardoor minder efficiënt kunnen zijn.

In het tweede deel van dit werk wordt een nieuwe, geautomatiseerde tech-
niek “Dynamical Order Construction” (DOC) voorgesteld die het toelaat om een
kennisbank op te bouwen met semantische informatie over de domeinen van de
attributen waarvan de waarden kunnen worden gesorteerd op basis van een (par-
tiële) orderelatie die een notie van veralgemening weergeeft. Een dergelijke ken-
nisbank kan dan bijvoorbeeld worden gebruikt bij het semantisch vergelijken van
attributen in coreferentiebepaling en het fusioneren van data (het samenbrengen
van coreferente data in één enkele representatie). Om een partiële orderelatie over
een domein te bepalen kunnen volgens de DOC-techniek verschillende maten wor-
den gebruikt. Deze maten zijn gebaseerd op de frequentie waarmee (coreferente)
domeinwaarden voorkomen in de inhoudelijke data en zijn alle uitgebreid geëvalu-
eerd door middel van statische methodes. Onze nieuwe techniek heeft als voordeel
dat er geen a priori taxonomische kennis over de attribuutdomeinen vereist is om
de kennisbank op te bouwen. Deze kennis wordt daarentegen dynamisch gecon-
strueerd op basis van de inhoudelijke data. Wanneer deze data veranderen kan ook
de kennisbank worden gecontroleerd en indien nodig worden bijgewerkt.

Het gebruik en de impact van de DOC-techniek op de verschillende aspecten
van gegevensintegratie worden als volgt onderzocht. Ten eerste wordt de impact
van de techniek op de detectie van coreferente databankrecords (tuples) bestu-
deerd. De geconstrueerde partiële orderelatie kan worden gebruikt als bijkomende
bron van informatie voor de validatie van een gevonden coreferentie over tuples.
Meer specifiek kunnen beschouwde attribuutwaarden als coreferent worden gezien
indien ze via de geconstrueerde partiële orderelatie aan elkaar zijn gerelateerd.
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Ten tweede wordt bestudeerd hoe de automatisch geconstrueerde partiële or-
derelatie kan worden gebruikt om coreferente representaties van een entiteit te
fusioneren tot één enkele representatie in die gevallen waar een semantische ver-
gelijking van de data nodig is. Selectie-gebaseerde fusiefuncties voor coreferente
attribuutwaarden worden bestudeerd in het speciaal geval waarbij een gepaste or-
derelatie over het attribuutdomein niet gekend is of moeilijk te verkrijgen is. Een
nieuwe fusiefunctie, die gebalanceerde selectie genoemd wordt, wordt voorge-
steld. De gebruikte heuristiek bij deze functie is dat de meest specifieke waarde
(volgens de orderelatie) van de kandidaatwaarden wordt teruggegeven, op voor-
waarde dat deze waarde vergelijkbaar is met alle andere kandidaatwaarden. Verder
wordt aandacht besteed aan het probleem van onbeslistheid, d.i. wanneer het ge-
bruik van de heuristiek geen resultaat oplevert omdat voor elke kandidaatwaarde
er een andere kandidaatwaarde bestaat waarmee deze niet kan worden vergeleken.

Ten derde wordt het gebruik en de impact van de met de DOC-techniek ver-
kregen “specialisatie-generalisatie” hiërarchie over de domeinwaarden van een at-
tribuut op het automatisch mappen van attribuutwaarden over heterogene datacol-
lecties onderzocht. Er wordt een nieuwe techniek voorgesteld die semantische
verbanden creëert tussen gerelateerde waarden in heterogene datacollecties. De
techniek gaat uit van een uitbreidbare verzameling van mappingfuncties die ge-
baseerd zijn op de geconstrueerde tekstuele beschrijvingen van de beschouwde
waarden en maakt verder gebruik van “information retrieval”-technieken. De ge-
bruikte verzameling van mappingfuncties bestaat voor het grootste deel uit één-
op-meerdere mappingfuncties, wat wil zeggen dat ze één enkele waarde uit de ene
datacollectie gaan mappen op een verzameling van waarden uit de andere data-
collectie. Elke één-op-meerdere mappingfunctie wordt daarom eerst omgezet naar
een verzameling van één-op-één mappingfuncties, die indien mogelijk alle een
waarde van hetzelfde abstractieniveau opleveren. Alle één-op-één mappingfunc-
ties worden toegepast waarna het concept van meerderheid en gebalanceerde se-
lectie worden gebruikt om de resulterende mapping te bepalen. Bijkomend wordt
ook een techniek voorgesteld voor het vinden van onomastische verbanden tussen
attribuutwaarden.

Alle voorgestelde methoden zijn extensief geëvalueerd over grote realistische
datacollecties. Door de geselecteerde onderzoeksproblemen te bestuderen beogen
we bij te dragen tot de wetenschappelijke ontwikkelingen in de gebieden van da-
taintegratie en interoperabiliteit.





Streszczenie po polsku

Wymiana informacji jest niezwykle istotna w nieprzewidywalnym i ciągle zmie-
niającym się świecie. Wciąż powiększa się ilość danych i są to często dane rozpro-
szone w niejednorodnych systemach lub bazach danych. W konsekwencji, ta sama
informacja może być przedstawiana na różne sposoby i dane ją na te różne spo-
soby przedstawiające nazywamy danymi koreferentnymi (ang. coreferent data).
Dla sprawnego przetwarzania informacji pochodzących z różnych źródeł istotne
jest automatyczne wykrywanie koreferencji na różnych poziomach reprezentacji
danych oraz rozwiązanie problemu interoperacyjności - zdolności do efektywnej
współpracy systemów i organizacji. Możemy wyróżnić dwa główne poziomy re-
prezentacji, na których można prowadzić wykrywanie koreferencji: poziom da-
nych i poziom metadanych, przy czym działania te na obydwu poziomach są ze
sobą silnie powiązane. Z jednej strony - metadane opisują dane i mogą wspomagać
proces wykrywania ich podobieństwa. Z drugiej strony - dane, a konkretnie dane
opisane przez metadane (np. schematy baz danych), mogą zostać wykorzystane
do konstrukcji dodatkowych metadanych lub wykrywania koreferencji na pozio-
mie metadanych.

W pierwszej części rozprawy zostały zaproponowane dwa nowatorskie rozwią-
zania problemu dopasowania metadanych i, na tej podstawie, wykrywania korefe-
rencji na ich poziomie w przypadku danych zapisanych z użyciem języka XML.
Pierwsza metoda operuje wyłącznie na informacji zawartej w schematach XML,
a konkretnie na znacznikach (tagach) elementów schematu i ich sekwencjach,
zwanych ścieżkami (ang. paths), prowadzących od korzenia dokumentu XML
do danego elementu. Koreferencja jest tutaj rozważana w sposób hierarchiczny.
Mianowicie, na poziomie podstawowym metoda ta porównuje znaczniki (czę-
ści ścieżek) jako ciągi znaków, z uwzględnieniem ich zróżnicowanej ważności.
Ważność znacznika zależy od jego pozycji na ścieżce: przyjęto, że dla ustalenia
koreferentności ścieżek ważniejsze jest podobieństwo znaczników znajdujących
się na ich końcach. Następnie, informacje na temat koreferencji par znaczników
są odpowiednio agregowane w celu uzyskania informacji na temat koreferentno-
ści ścieżek, które z kolei są agregowane w celu otrzymania ostatecznej decyzji
na temat koreferencyjności całych schematów. Dzięki intuicyjności i względnej
prostocie implementacyjnej tej metody uzyskuje się efektywne i wydajne narzę-
dzie do wykrywania koreferencji. Druga metoda operuje wyłącznie na danych,
które są opisane przez porównywane metadane. Jest ona realizowana w dwóch
krokach. Najpierw, w ramach pierwszego kroku, porównuje się wartości po-
szczególnych atrybutów z użyciem zarówno narzędzi statystycznych, jak i poprzez
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leksykalne porównywanie pojedynczych wartości tychże atrybutów. Drugi krok
bazuje na wykrytych w pierwszym kroku koreferentnych atrybutach i obiektach
w bazie danych. Pozwala to przezwyciężyć problem różnej granulacji informacji
(ang. attribute granularity problem), tzn. dekompozycji atrybutu na poszczególne
(pod)atrybuty, oraz problem stopnia pokrycia informacji (ang. data coverage pro-
blem), tzn. gdy koreferentne atrybuty nie reprezentują w pełni tej samej informacji.
Pozwoliło to na opracowanie sposobu semantycznego dopasowywania atrybutów
porównywanych schematów. Jest to oczywista korzyść płynąca z zastosowania da-
nych w procesie dopasowywania schematów, w porównaniu do metod stosujących
tylko informacje zawarte w tychże schematach, co może być niewystarczające.

W drugiej części pracy zaproponowany został nowatorski algorytm, nazwany
DOC, który automatycznie tworzy bazę wiedzy dotyczącą dziedziny wybranego
atrybutu. Baza ta przyjmuje postać relacji porządku częściowego, określonej na
dziedzinie danego atrybutu. Znajduje to zastosowanie przy porównywaniu ele-
mentów tej dziedziny, pozwalając na uwzględnienie większej lub mniejszej ich
ogólności. Do określania tej relacji zaproponowano zastosowanie różnych miar
odwołujących się do częstości występowania poszczególnych wartości w zbio-
rze danych. Miary te zostały przebadane statystycznie. W rozprawie przeanali-
zowano zastosowanie oraz wpływ takiej bazy wiedzy na różne aspekty integra-
cji danych. Po pierwsze został przebadany wpływ metody DOC na skuteczność
wykrywania danych koreferentnych. Tak skonstruowana relacja częściowego po-
rządku może służyć jako dodatkowe źródło informacji w procesie walidacji kore-
ferentności obiektów. To znaczy, wartości rozważanych atrybutów uznaje się za
koreferentne wtedy, gdy powiązane są one w ramach skonstruowanej relacji. Po
drugie, wyżej przedstawiona relacja porządku częściowego znajduje zastosowanie
w procesie łączenia (fuzji) wielu koreferentnych reprezentacji danej informacji
(ang. data fusion). Selektywne funkcje fuzji danych (ang. selection fusion func-
tions) zostały przeanalizowane dla specjalnego przypadku, dla którego odpowied-
nia relacja porządku albo nie jest znana albo jej otrzymanie jest trudne. Zapropo-
nowana została nowatorska metoda wyboru wartości atrybutu, która ma zastąpić
zbiór wartości w procesie fuzji. Nazwano tę metodę wyborem zrównoważonym
(ang. balanced selection). Metoda ta zwraca najbardziej specyficzną , w sen-
sie rozważanej relacji porządku częściowego, spośród rozważanych wartości, pod
warunkiem, że jest ona porównywalna ze wszystkimi pozostałymi wartościami w
sensie tej relacji. Rozważa się również przypadek, gdy taka wartość nie istnieje
i proponuje się odpowiednie rozszerzenie algorytmu. Po trzecie, przeanalizowano
użycie i wpływ relacji częściowego porządku na mapowanie wartości atrybutów
o niejednorodnych dziedzinach. Zaproponowano nowatorski algorytm tworzący
mapowanie semantyczne pomiędzy wartościami pochodzącymi z niejednorodnych
źródeł danych. W tym celu rozważa się zestaw metod mapujących, które są oparte
na konstruowanych tekstowych opisach rozważanych wartości i stosują techniki
wyszukiwania informacji (ang. information retrieval) do dalszego przetwarza-
nia. Z pomocą tych metod uzyskuje się zbiór mapowań, składający się głównie
z mapowań jeden-do-wielu. Oznacza to, że pojedynczej wartości z jednego źródła
przypisanych zostaje wiele wartości z drugiego źródła. Następnie, zaproponowany
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algorytm redukuje ten zbiór mapowań do zbioru mapowań jeden-do-jeden, przy
czym o ile to możliwe przypisane sobie wartości z różnych źródeł znajdują się
na tym samym poziomie ogólności w sensie rozważanej relacji porządku częścio-
wego. Algorytm ten odwołuje się do częstości mapowań proponowanych przez
poszczególne metody mapujące i stosuje wspomnianą metodę wyboru zrównowa-
żonego. Ponadto, zaproponowano również algorytm znajdujący mapowanie spe-
cyficzne dla konkretnego obiektu, bazujący na nazwach własnych tychże obiektów
(ang. onomastic information). Zaletą zastosowania zaproponowanej nowatorskiej
metody DOC we wspomnianych wyżej podejściach jest fakt, iż pozwala ona stwo-
rzyć automatycznie bazę wiedzy, która znacznie podnosi efektywność realizacji
rozważanych zadań, co pokazano w ramach przeprowadzonych eksperymentów
obliczeniowych.

Wszystkie opisane metody zostały szczegółowo przetestowane na dużych zbio-
rach danych o charakterze praktycznym.





English summary

Exchange of information is extremely important in the rapidly and unpredictably
changing world. The amount of data is growing very fast and is often distributed
over heterogeneous systems or databases. As a consequence, the same piece of in-
formation can be represented in different ways, called coreferent data. This may be
a serious problem in data processing, hampering the interoperability of distributed
systems. Due to the volume of data processed and its required multilevel analy-
sis, it is usually very difficult, and often just impossible, to remedy this problem
“manually”. Thus, it is important to identify coreference in automatic fashion on
different levels to secure the interoperability, i.e. the ability of systems and orga-
nizations to work together. We can distinguish two major levels in coreference
detection, namely, the metadata and the data level, which are strongly related to
each other. On the one hand, metadata, e.g. a knowledge base (such as an ontology
or taxonomy) or a database schema that defines structure and properties, provide
additional information about data and can support the coreference detection on the
data level. On the other hand, the data, more specifically data which are described
by metadata, can be used to construct metadata or detect coreference in metadata.

In the first part of this dissertation we propose two novel schema matching
techniques. The first technique is based only on XML schema information, more
specifically on names (tags) of schema elements and their sequences, called here
paths, as elements may be nested in other elements. Coreference is considered
here in a hierarchical way. On the basic level, the coreference of steps (parts
of paths) is determined by a low-level string comparison method. This method
compares element names lexically and considers their relative importance. The
importance depends on the position of a step in a path. In general, the following
heuristic rule can be considered: two paths are more likely to be coreferent if they
have more similar steps at the end. That makes it a very efficient solution. Then
information on step coreference is properly aggregated to obtain information on
paths coreference which is, in turn, further aggregated to finally decide on the
coreference of whole schemas. The second schema matching technique is only
based on content data and is a composition of a vertical and a horizontal schema
matching. Firstly, attributes domains are statistically and lexically compared in
the vertical matching. Secondly, a horizontal matching is applied which is based
on detecting coreferent tuples. This allows to address the attribute granularity
problem, i.e. decomposition of an attribute into a number of (sub)attributes, and
coverage problem, i.e. coreferent attributes do not necessarily completely have
to represent the same information. This allows to establish semantical schema
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matching between corresponding schema attributes. This is a clear benefit of using
content data in contrast to schema information-only-based methods which can be
ineffective.

In the second part of this work a novel automated method (DOC) is proposed
to construct a knowledge base with semantic information on the domain of an at-
tribute. Such a knowledge base then supports the semantic comparison of domain
values that can be sorted by means of an order relation reflecting a notion of gen-
erality. There are proposed different measures to introduce an order in the relation
which are based on the frequency of values. These measures are extensively eval-
uated using statistical methods. Our novel technique has the advantage that there
is no need for a priori taxonomical knowledge on the attribute domains. Instead,
this knowledge is dynamically constructed and hence only depends on the con-
tent data, which means that it can be automatically reconstructed when these data
change. The use and impact of this method on different aspects of data integration
are investigated as follows. First, the impact of this method on the detection of
coreferent tuples is studied. The constructed order relation can serve as an addi-
tional source of information to validate coreferency of tuples. More specifically,
values of the attributes under consideration are coreferent if there exists a relation
between them in the order relation. Second, the automatically constructed partial
order relation is used to merge coreferent representations of an entity which may
need semantical comparison to obtain a single representation, in the process called
data fusion. Selectional fusion functions have been studied in the special case
where a proper order relation is either unknown or difficult to obtain. The novel
balanced selection is proposed. The heuristics returns the most specific value from
among the candidate values provided that the selected value is comparable to all
other candidate values. Attention is hereby given to the problem of tie breaking,
i.e. if the algorithm does not yield a result because for each value under considera-
tion there exists another value to which it can not be compared. Third, the use and
impact of our specialization-generalization hierarchy on the mapping of attribute
values across heterogeneous data collections are investigated. The novel algorithm
creates semantical mappings between related values in heterogeneous data. To this
aim, an extensible set of mappers are proposed that are based on the constructed
textual descriptions of considered values and employs information retrieval tech-
niques for further processing. The established mapping set consists mostly of one-
to-many mappings which means that single value from the one source is mapped
to more than one value in other source. Thus, the selection algorithm reduces the
mapping set to a set of one-to-one mappings, if possible, on the same level of ab-
straction. It is based on the concept of majority (the frequency of mappings) and
the balanced selection over the candidate mappings set. In addition, we also pro-
pose an algorithm to find a mapping specific for a particular object based on the
onomastic information.

All proposed methods are extensively evaluated on large real-life data collec-
tions. By studying the selected research problems we aim to contribute to the
scientific developments in the areas of data integration and interoperability.
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Introduction

1.1 Coreferent data

Modern information standards and systems (e.g., relational databases, OO environ-
ments, XML) allow to manage information from the real world in a well-structured
manner. Efficient and effective processing of this information requires dealing with
various problems, notably those which have their roots in quality deficiencies of
available information. One of these problems is the existence of coreferent data,
which means that the same real-world entity is described multiple times within one
(or across multiple) database(s). Due to errors, inaccuracies and lack of standard-
isation, coreferent data are not bound to be equal, which makes finding coreferent
data a challenge. As an example, Table 1.1 shows six objects, each representing
the same entity, i.e., the Belfry and Cloth Hall of Ghent which are located in the
same building. Note that no two representations are equal one to another.

Table 1.1 Example of coreferent objects (the source dataset S).

Key Name Lon. Lat. Category
1 Belfry 3.724923 51.053651 Belfry
2 Cloth Hall 3.725098 51.053552 Hist. Building
3 Belfrey 3.724911 51.053677 Tourist Attract
4 Cloth Hall 3.724837 51.053555 POI
5 Belfry of Ghent 3.721661 51.054897 POI
6 Belfry & Cloth Hall 3.724911 51.053653 Monument
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In the past decades, many authors proposed valuable and interesting methods
for automated identification of coreferent objects (see [2] for an overview). Many
of these methods have a probabilistic nature [3–7] and use statistical properties
of variables common to a pair of objects to calculate the probability that these
objects are coreferent. Approaches based on the possibility theory also have been
proposed [8]. Moreover, rule-based approaches [9] use rules to specify conditions
that should be met by two objects to declare them as coreferent.

Interestingly enough, regardless of the underlying mathematical framework,
the general idea behind each method is that all modern information systems store
objects as a somehow structured entity characterised by a set of properties [10]
which represent the state of an object and are further divided into object attributes
and relationships. A relationship represents an association between the entity rep-
resented by that object and entities represented by other objects, e.g., the relation-
ship between an order and a client who placed it. An object attribute represents
a fact about the entity represented by that object, it has a descriptive name and
a value. As an example, in Table 1.1 the objects are described by means of four
attributes: “name”, “longitude”, “latitude” and “category”. Starting from decom-
position into attributes, techniques for the automated identification of coreferent
objects will first compare corresponding attributes separately. Next, the results of
these comparisons are combined into one result that can be used to decide whether
the objects are coreferent or not. In [11] the comparison of attributes is studied
and a distinction is made between two types of attribute comparison: syntactical
and semantical comparison.

In the case of syntactical comparison, attributes are compared without any ex-
ternal knowledge. As a consequence, the comparison of attribute values focuses on
similarities between the lexical form of these values. Such comparisons typically
take into account typographical errors, inaccuracies in measurement, abbrevia-
tions, etc. In Table 1.1, the values of the attribute “name” can be compared purely
syntactically by using, for example, the edit distance metric [12] which is defined
as the minimal number of edit operations that are needed to transform one string
into another. Similarly, the attribute values of “longitude” and “latitude” can be
compared by using a metric on the set of real values.

In the case of semantical comparison, attributes are compared by using exter-
nal knowledge, e.g., in the form of an ontology. Typically, this type of compar-
ison tries to exploit connections between values that cannot be determined only
by considering the values alone. Examples are synonyms and value generalisa-
tion/specialisation. For instance, in Table 1.1, the domain of the attribute “cate-
gory” representing information on the type or function of a point of interest (POI)
may be considered as partially ordered by means of a generalisation/specification
relation and whose values should be compared by taking into account some hierar-
chical connections between them. A part of that partial order relation is presented
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Figure 1.1 A part of the partial order relation for the category attribute from the
source dataset S (Table 1.1).

in Figure 1.1, which contains categories from Table 1.1 in the filled squares. How-
ever, an important and relevant conclusion from [11] states that, in many cases, it is
unfeasible to use a predefined knowledge base during coreference detection. The
reasons are that such a knowledge base might not exist or that the database under
consideration lacks standardisation, thus making it difficult to link the actual data
to the knowledge base. As a consequence, dynamical construction of a knowledge
base is an important aspect of improving the detection of coreferent objects.

Moreover, the knowledge base can be useful not only to detect coreferent ob-
jects but also to fuse values of the coreferent objects’ attributes from homogeneous
and heterogeneous data sources.

In the case of homogeneous data sources, where all data sources follow the
same schema with the same domains for corresponding attributes, data fusion is
another crucial operation in the maintenance of data quality which removes mu-
tually duplicate (coreferent) tuples (i.e., tuples that mutually describe the same
entity) and replaces them with a tuple that minimises information loss [13, 14]. In
other words, it is a function that combines multiple tuples into one and resolves
possible conflicts. For instance, provided that the tuples in Table 1.1 are coreferent
tuples (duplicates), the next step in data cleansing, which is the process of detect-
ing and correcting (or removing) corrupt or inaccurate records from a dataset, is
to combine them into one tuple that best represents information about the referred
location. This is usually done by projecting the tuples over their attributes and
by treating the attributes separately. For the POI “name”, a possible solution is to
choose the most frequent name. For “longitude” and “latitude”, a mediating func-
tion such as the median could be considered. However, for the POI “category”,
finding a representative value may be more challenging. An important question
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is: What causes variations in the attribute values for duplicate POIs? In the case
of the POI name, variations can be attributed to spelling errors, abbreviations, etc.
In the case of the POI category, variations are caused by subjectivity. Whereas
one agent decides that the “Belfry of Ghent” is a monument, another might decide
that a monument is not an adequate category and will instead annotate it within
the general category “POI”. In this setting again the taxonomical connection be-
tween the values of the POI category in Figure 1.1 can be used as a basis for fusing
them. For instance, for coreferent tuples in Table 1.1 the category “Belfry” can be
selected because it is the most specific category among all of the candidates with
respect to the taxonomy shown in Figure 1.1. The result of that fusion is presented
in Table 1.2.

Table 1.2 Result of fusion operation on coreferent objects in Table 1.1 (the source
dataset S).

Key Name Lon. Lat. Category
7 Belfry & Cloth Hall 3.724911 51.053653 Belfry

In contrast to homogeneous data sources, data fusion faces two additional
types of challenges for heterogeneous data sources. Heterogeneity can exist at
the schema level, where different data sources often describe the same domain us-
ing different schemas, and it can also exist at the instance level, where different
sources can represent the same real-world entity in different ways [14], e.g., the
category of church can be represented by a value “cathedral” in one data source or
by a value “place of worship” in another data source. Thus, the whole data fusion
process (also known as data integration) consists of three major steps and is shown
in Figure 1.2.

The first step is called the schema matching problem which attempts to recon-
cile structural heterogeneity of data by matching schema elements across the data
sources [1, 15–21] for heterogeneous data sources.

The second step, which is called the object mapping (record linkage, etc.)
problem [3, 13, 22–28], resolves the semantic heterogeneity of data by mapping
data instances across the heterogeneous data sources in substep Value mapping -
transformation and detects coreferent tuples in substep Duplicate detection for ho-
mogeneous and across heterogeneous data sources. Detection of coreferent tuples,
substep Duplicate detection, should be a consequence of the previous steps if we
would like to detect coreferent tuples efficiently. However, detection of coreferent
tuples can be performed in advance and used to establish schema matching or to
map/transform values and unify different representations of the same entities.

The last step is called data fusion which, as described above, merges multiple,
coreferent tuples into a single representation of a real-world entity. It is considered
to be an optional post-processing step, because, e.g., a dataset without coreferent
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Figure 1.2 Data fusion of heterogeneous and homogeneous data sources.

tuples does not need data fusion.
As an illustration, let us consider a data integration scenario of heterogeneous

data sources in which the object in Table 1.2 (called the source dataset S) has to
be merged with the objects in Table 1.3 (called the target dataset T ). First, for
successful data integration schema elements across the data sources have to be
matched as in Figure 1.3. There is a need for syntactical and semantical matching
of corresponding attributes. Different methods can be used to detect coreference
in schemas. Some methods use only content data (e.g., coreferent tuples), others
use only metadata (e.g., schema information, knowledge base), whereas hybrid
methods use both data and metadata.

In the next step of data integration the semantic heterogeneity of data has to be
resolved by established mappings which translate data from one representation to
another. Generally, values of corresponding attributes which may need syntactical
comparison, such as “name”, may not be translated and might be imported to Ta-
ble 1.3 without any additional processing. However, importing values of attributes
which may need semantical comparison, such as “category”, is less trivial because

Table 1.3 Example of coreferent objects (the target dataset T ).

Key POI name GeoCoord1 GeoCoord2 Type
1 Belfrey 51.054898 3.721675 Bell Tower
2 St Bavo 51.054898 3.721675 Cathedral
3 Belfrey of Ghent 51.054898 3.721675 Old Building
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they may often refer to the same concepts that are presented in a different way in
both datasets. For instance, the concept “bell tower” is represented by the category
“Belfry” in Table 1.2 and by the category “Bell Tower”, “Old Building”, etc. in
Table 1.3. Thus, for successful data integration it is crucial not only to establish
schema and data mappings but also to select proper mappings of values of the at-
tributes representing categories where, again, a partial order relation can be useful,
e.g., to select the most specific concept.

Afterwards, coreferent tuples are detected and are fused just as for homoge-
neous data sources. Table 1.4 contains the result of this integration. There are
two objects; the first represents St Bavo cathedral in Ghent, which is an origi-
nal object from Table 1.3, and the second represents the Belfry and Cloth Hall in
Ghent, which is a combination of three candidates: an object from Table 1.2 and
two objects with key 1 and 3 in Table 1.3. More precisely, it contains the longest
name from all candidates, the average geographic coordinates and the type con-
sistent with the target data source. Such operations help to maintain consistency
and decrease the number of coreferent tuples in the integrated database, which has
a major influence on data quality. This, in turn, decreases the cost of a database
maintenance.

Figure 1.3 Example of schema matching of Table 1.2 and Table 1.3.

Table 1.4 Result of data fusion of objects in Table 1.2 and Table 1.3.
.

Key POI name GeoCoord1 GeoCoord2 Type
2 St Bavo 51.054898 3.721675 Cathedral
7 Belfry & Cloth Hall 51.053653 3.724911 Bell Tower

1.2 Metadata

In this dissertation we investigate how data and metadata can help to improve the
detection and fusion of coreferent objects in both homogeneous and heterogeneous



INTRODUCTION 1-7

data sources. Generally, metadata are data about data. More precisely, metadata
can describe and define the structure and properties of any object. Thus, the Na-
tional Information Standards Organization (NISO) [29] distinguishes among three
types of metadata: descriptive, structural and administrative.

Descriptive metadata can help to discover and identify objects. In this context
it can be an external knowledge base (e.g., ontology, order relation), or statistical
information about instance data or keywords which describe an object. Structural
metadata give a description and a definition of how the components (attributes) of
an object (a tuple) are organised. For instance, a schema can define the attributes
of an object, where each attribute is specified by its label, type and the set of
constraints that apply to it. Finally, administrative metadata provide information
to help manage the source. They refer to the technical information, including file
type or when and how the file was created.

All of the above types of metadata can be used to find the real meaning of an
entity. However, the techniques proposed in this dissertation are based only on the
following aspects (types) of metadata. On the one hand, syntactical and semantical
techniques for schema matching are proposed. In this context, database schema is
considered as structural metadata. On the other hand, a partial order relation is
considered as descriptive metadata which helps to increase the quality of data in
the context of the detection of coreferent objects and data fusion.

Extending the notion of coreference, primarily defined with respect to two or
more pieces of data (tuples, elements,...) representing the same real-world entity,
we will also refer to two matched elements of some schemas, notably the attributes
in relational databases and elements in XML, as coreferent. We will also call as
coreferent two or more whole schemas for which a one-to-one matching is identi-
fied. Moreover, we will also name two values of corresponding nominal or ordinal
attributes as coreferent if they denote equivalent concepts in domains of those at-
tributes.

1.3 Problem statement

The purpose of the dissertation is to develop a set of novel algorithms which in a
comprehensive way address various aspects of coreferent data detection using data
itself, associated metadata or both data and metadata. The algorithms proposed
give better or at least comparable results to the ones obtained using some well
known approaches what is confirmed in extensive computational experiments. The
following contributions of this dissertation may be distinguished.
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Question 1: How does one establish schema matching based only
on the schema itself?

A novel automatic method for detecting coreferent elements in XML schemas
based only on metadata (schema information) and also, as a next step, a method
for detecting coreference of XML schemas are proposed. More specifically, de-
tection of coreferent elements in XML schemas based only on a comparison of the
elements’ names (tags) and their sequences (paths) is studied in this dissertation.
Thus, this is a syntactical (lexical) schema matching. The detection of coreference
of whole XML schemas takes into account the importance of coreferent elements.
To determine the importance of elements we use other XML schema information,
such as cardinality, as well as order and depth of elements in the schemas, etc.
However, elements names may be not informative enough and lead to wrong con-
clusions regarding the coreference, e.g. when they are synonyms or homonyms.
Thus, the second research question is considered.

Question 2: How does one establish schema matching based on
content data?

A novel automatic method for detecting corresponding attributes in schemas based
on content data is studied. More specifically, our proposed method for the detec-
tion of coreferent attributes in schemas is based on a statistical and lexical compar-
ison of content data and already earlier detected coreferent tuples across multiple
datasets, which increase the possibility of correct schema matching. We will show
that knowledge of even a small number of coreferent tuples is sufficient to estab-
lish correct matching between corresponding attributes of heterogeneous schemas.
The behaviour of the novel schema matching technique has been evaluated on
several real life datasets, giving a valuable insight in the influence of the differ-
ent parameters of our approach on the results obtained. However, even then the
same information in content data can be represented in different ways. Thus, some
knowledge base is necessary to resolve this problem. Hence, the third research
question is investigated.

Question 3: How can a knowledge base be dynamically con-
structed and used to improve the detection of coreferent tuples
and data fusion in homogeneous or heterogeneous data collec-
tions?

An algorithm is proposed for the automated construction of a partial order relation
over the domain of an attribute whose values may need a semantical comparison
and can be sorted by means of an order relation that reflects a notion of general-
ity. Such an attribute will be referred to as a category attribute. The input for this
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algorithm is a list of a number of known coreferent tuples in a dataset. The gen-
erated order relation can be used to improve detection of further coreferent tuples
and fusion of duplicate values for that attribute. Our approach has the advantage
that there is no need for a priori taxonomical knowledge on the attribute domain
and that the order relation automatically adapts to the values in the dataset. More-
over, we also studied how a partial order relation can best be used in the context
of data fusion. A new strategy is proposed called balanced selection which adopts
the sort-and-select principle. Candidate values for the category attribute coming
from a number of tuples being fused are combined into a single value in two steps.
First, they are sorted using a generality relation. Next, the most specific value
that is comparable to all others is chosen as a result of the fusion function. The
behaviour and (dis)advantages of our methods are experimentally investigated on
large real-life datasets. Moreover, an additional semantical mapping (transforma-
tion) between values of the heterogeneous data sources can be required. Therefore,
the fourth research question is addressed.

Question 4: How does one establish semantical mappings be-
tween the values of attributes and how a partial order relation
can help in the data fusion of heterogeneous data sources?

A novel approach for a specific part of the object mapping problem is proposed
as an answer to this research question. More specifically, novel automatic value-
mapping methods for values of categorical attributes are proposed under the as-
sumption that the partial order relation is given. This novel mapping consists of
two main phases. The first phase creates one-to-many mappings between coref-
erent values using explicit and implicit mappers which means that any value from
one source can be mapped to more than one value in another source. Explicit
mappers are based on dynamically constructed textual descriptions of attributes
values and values’ definitions that are extracted from the world wide web. These
descriptions are pairwise compared using information retrieval techniques to es-
tablish mappings between coreferent values. The created explicit mappings and
the known partial order relations are employed to derive additional mappings by
implicit mappers. In the second phase the one-to-many mappings are transformed
into one-to-one mappings, if possible at the same level of abstraction, using a novel
heuristics. Beside these mappings, called default mappings, our approach creates
mappings which are specific for the particular object using onomastic information.
These proposed techniques are also evaluated on large real-life datasets.
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1.4 Preliminaries

Before we present the details of elaborated algorithms we will first introduce some
relevant basic concepts. We start with the notions related to the fuzzy set theory
and the possibility theory. It plays an important role in all algorithms proposed
in this dissertation. Namely, the possibility theory or, more specifically, the pos-
sibilistic truth values are used to assess the (un)certainty regarding the discovered
coreference between particular data and metadata elements under consideration.
Next, we briefly recapitulate the concepts and notations of the data models which
are considered in this work. Then, we more formally define the problem of coref-
erence detection, which is the main problem addressed in this dissertation.

1.4.1 Fuzzy sets and possibility theory

Fuzzy sets LetU be a universe of discourse, with a generic element ofU denoted
as u, U = {u}. A fuzzy set F in U [30] is characterized by a membership function
µF (u) which associates with each element u ∈ U a real number in the interval
[0,1]. The values of µF (u) represent the “grade of membership” of u in F .

The basic operations of union, intersection and complement on fuzzy sets are
defined as follows:

µA∪B(u) = max(µA(u), µB(u)) (1.1)

µA∩B(u) = min(µA(u), µB(u)) (1.2)

µA(u) = 1− µA(u) (1.3)

Fuzzy restriction Let X be a variable which takes values in a universe of dis-
course U and let X = u mean that X is assigned the value u, u ∈ U . Let F be a
fuzzy set in U which is characterized by a membership function µF . Then F is a
fuzzy restriction on X (or associated with X) if F acts as an elastic constraint on
the values that may be assigned to X in the sense that the assignment of a value u
to X has the form

X = u : µF (u) (1.4)

where µF (u) is interpreted as the degree to which the constraint represented by
F is satisfied when u is assigned to X . Let R(X) denote a fuzzy restriction as-
sociated with X . Then, to express that F plays the role of a fuzzy restriction in
relation to X , we write R(X) = F [31].

Possibility distribution Let F be a fuzzy set in U , with the grade of member-
ship, µF (u), interpreted as the compatibility of u with the concept labeled F . Let
X be a variable taking values in U , and let F act as a fuzzy restriction, R(X),
associated with X . Then the proposition “X is F ” yields a possibility distribution
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on U , πX , which is postulated to be equal to µF , i.e., πX(u) = µF (u). πX(u) is
interpreted as a degree to which it is possible that the value of X is equal u [31].

Possibility measure Let A be a fuzzy set in U and let πX be a possibility dis-
tribution associated with a variable X which takes values in U . The possibility
measure1 of A, denoted ΠX(A) and expressing the possibility that the value of X
is in A, denoted Possibility(X is A), is defined by

Possibility{X is A} , ΠX(A) , sup
u∈U

(µA(u) ∧ πX(u)), (1.5)

where µA(u) is the membership function of A, and ∧ stands for the minimum
operator [31].

Necessity measure In possibility theory, the certainty concerning the statement
that the value of X is in A, denoted Necessity(X is A), is expressed by the ne-
cessity measure NX(A), defined with respect to a possibility measure ΠX(A) as
follows:

Necessity(X is A) , NX(A) , 1−ΠX(A) (1.6)

with A denoting the complement of the fuzzy set A [31].

1.4.2 Multisets

Within the context of this work, the framework of the set theory will not suffice
to present our approach. Instead, the more general framework of multisets (also
called bags) will be used where necessary and the definitions by Yager [32] are
adopted here.

A multiset A over a universe U is defined by a function A : U → N. For each
u ∈ U , A(u) is a non-negative integer denoting the multiplicity (i.e., the number
of occurrences) of u in A. The set of all multisets drawn from a universe U is
denoted M(U). Yager has defined some basic operations on multisets. The j-
cut of a multiset A is a regular set, denoted as Aj and is given by Aj = {u|u ∈
U ∧ A(u) ≥ j}. The counterparts of the classical set intersection and union
operations are defined as follows:

∀u ∈ U : (A ∪B) (u) = max (A(u), B(u)) (1.7)

∀u ∈ U : (A ∩B) (u) = min (A(u), B(u)) . (1.8)

The subsethood (inclusion) for multisets is defined as follows:

A ⊂ B ⇔ ∀u ∈ U A(u) < B(u) (1.9)

A ⊆ B ⇔ ∀u ∈ U A(u) ≤ B(u). (1.10)

1The possibility measure may be defined in a more general, axiomatic, way without a reference to
the concept of the possibility distribution but the definition given here will serve our purposes.
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The theory of multisets provides also an addition operator and a subtraction oper-
ator:

∀u ∈ U : (A⊕B) (u) = A(u) +B(u) (1.11)

∀u ∈ U : (A	B) (u) = max (A(u)−B(u), 0) . (1.12)

The cardinality of a multiset A is calculated as the sum of all multiplicities:

|A| =
∑
u∈U

A(u). (1.13)

Finally, it is said that an element u belongs to the multiset A, denoted as u ∈ A, if
A(u) ≥ 1. Formally:

∀A∈M(U)∀u∈U u ∈ A⇔ A(u) ≥ 1. (1.14)

1.4.3 The data models

The relational and XML data models are extensively used in this dissertation.

The relational model

It is assumed that the reader is familiar with the relational database model as pro-
posed by Codd [33]. For the sake of completeness, we shall briefly recapitulate
the basic concepts and notations of this model that are relevant to the dissertation.
Let A be a countable set of attributes. A (relational) schema R is defined by a
non-empty and finite subset of A. For each attribute a ∈ A, let dom(a) denote
the domain of a. That is, dom(a) represents the set of all possible values for at-
tribute a. Having a relational schema R = {a1, ..., ak}, a relation R over R is
defined by a finite set R ⊆ dom(a1) × ... × dom(ak). Each element of a rela-
tion R with schema R is called a tuple over R. In the remainder, we shall denote
an arbitrary tuple by t. For simplicity, we shall denote the combined universe
dom(a1)× ...×dom(ak) as dom (R). A database schema D is defined by a non-
empty and finite set of relational schemas, i.e., D = {R1, ...,Rn} and a database
D over D is defined as a set of relations {R1, ..., Rn} where Ri is a relation over
Ri, for any i.

One of the standard querying languages of the relational data model is the rela-
tional algebra. It comprises a set of operations which take relations as arguments
and produce other relations. A sequence of operations applied to appropriate rela-
tions makes it possible to retrieve the data needed by a user. Let us remind one of
this operations, the projection. Let R be a relation over a schema R and consider
a set of attributes A ⊆ R. Then the result of the projection operation of R over
A is a relation, denoted R[A], with schema A that is obtained by taking the tuples
in R and retaining only the values of attributes in A. The part of a tuple t ∈ R
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comprising only attributes from A is denoted as t[A] (t[a] in the case where A is
a singleton {a}). It is stressed here that the result of a projection, R[A], is a set,
i.e., if there are two tuples t, s ∈ R such that t[A] = s[A] then only one of them is
preserved in R[A].

The XML model

It is also assumed that the reader is familiar with the Extensible Markup Language
(XML) [34]. For the sake of completeness, we shall briefly recapitulate the con-
cepts of this model that are relevant to the dissertation.

An XML document represents the semi-structured information. The basic
components of an XML document are elements which are composed of an opening
and a closing tag and are used to mark up the sections of an XML document. Ele-
ments form a structured part of a document and may contain other nested elements
or unstructured content. Tags are the names of elements and provide a clue on the
content of an element. Elements may have attributes associated with them which
usually provide some additional information on the content of an element.

There are some syntactical rules which have to be followed to obtain a well-
formed XML document. For example, the closing tag of a nested element have to
appear inside the host element. There may be also other rules stating, e.g., which
elements may be nested in which elements. These rules form an XML document
schema. A document following these rules is called valid.

An XML document forms a tree-like structure. The root corresponds to a root
element which contains, nested within it, elements of the first level which in turn
can contain nested elements, and so on. An element in such a tree, i.e., in an XML
document, may be identified with a path from the root element down to the given
element. The components of such a path, called later on as steps, are the names of
the nested elements. As these names are usually assumed to be meaningful, thus a
path may enrich the semantics of an element.

1.4.4 Object coreference detection

Considering a more abstract view of entity representation, denoting the universe
of the i-th feature of an object by Ui, we can model the universe O of objects by:

O = U1 × · · · × Un. (1.15)

Two objects o1 ∈ O and o2 ∈ O are said to be coreferent (denoted o1 ↔ o2) if
and only if they describe the same real world entity.

Two elementary operators play an important role in establishing the corefer-
ence of objects: a comparison operator working at the level of object features (or
metadata features, e.g. tags, paths) and an aggregation operator combining the
comparison scores obtained for particular features.
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Definition 1 (Comparison operator). A comparison operator on the universe O is
defined by a function C:

C : O2 → L (1.16)

where (L,≤) is a totally ordered and bounded lattice.

A comparison operator C compares (a feature of) two objects o1 and o2 and
expresses the result of this comparison as a matching degree. This matching degree
may be interpreted as expressing how certain it is that both objects are coreferent
and belongs to a totally ordered and bounded lattice L. In the case of probabilistic
methods, L can be instantiated with the unit interval [0, 1] in order to express the
result of comparison as a probability of coreference of the objects. Other practical
examples of L are the set of truth values B = {T, F}, where T and F denote full
certainty of the match and mismatch, respectively or the set of possibilistic truth
values (PTVs) [8].

In our approach we use PTVs to express the confidence (certainty) in the va-
lidity of the mappings produced by an algorithm. Hereby, a PTV is a normalized
possibility distribution [31] defined over the set of Boolean values B [35]:

PTV 7−→ π : B→ [0, 1]

A PTV expresses the uncertainty about the Boolean value of a proposition p. We
will often use the notation µ(T ) and µ(F ) instead of π(T ) and π(F ) assuming that
the (un)certainty as to the truth of a proposition is expressed as “certainly true”,
“true or false” etc., represented by appropriate fuzzy sets in B; e.g., respectively,
µ(T ) = 1 and µ(F ) = 0, and µ(T ) = µ(F ) = 1, for the previous examples. In
the context considered here, the propositions p of interest are of the form:

p ≡ o1 and o2 are coreferent

where o1 and o2 are two objects.
Let P denote a set of all propositions under consideration. Then each p ∈

P can be associated with a PTV denoted p̃ = {(T, µp̃(T )) , (F, µp̃(F ))}, where
µp̃(T ) represents the possibility that p is true and µp̃(F ) denotes the possibility
that p is false. In what follows, PTVs are often noted as couples (µp̃(T ), µp̃(F )).
It is assumed that each PTV is normalized which means that max(µp̃(T ), µp̃(F ))
= 1. The space of all possibilistic truth values is denoted F(B), i.e., it comprises
all (normalised) fuzzy sets over B.

Let us define the order relation ≥ on the set F(B) by:

p̃ ≥ q̃ ⇐⇒ if((µp̃(F ) ≤ µq̃(F )) and (µp̃(T ) = µq̃(T ) = 1)) or (µq̃(T ) ≤ µp̃(T ))

(1.17)
Moreover, two thresholds (thresholdT and thresholdF ) are employed to de-

cide on two objects coreference. If µp̃(F ) is lower than the thresholdF then
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coreference is declared. If µp̃(T ) is lower than the thresholdT then a lack of
coreference is declared. Finally, if both of the thresholds are exceeded then the
coreference status is declared as being unknown.

Comparison of complex objects is usually a two-stage process. First, parts of
objects, notably values of their features, are compared using a comparison opera-
tor. Thus, we extend our definition of the comparison operator (1.16) so as to make
it applicable also to scalar feature values:

Ci : U2
i → L (1.18)

In this way a separate comparison operator Ci can be defined for each feature.
Then, the results of those comparisons are aggregated to obtain an overall matching
degree reflecting the coreference of the whole objects being compared. Therefore,
another elementary operator, an aggregation operator, is needed.

Definition 2 (Aggregation operator). An aggregation operator on L is defined by
a function A:

A : Ln → L (1.19)

where (L,≤) is a totally ordered and bounded lattice.

For more information on aggregation operators the reader is referred to [36].
We assume an aggregation operator A to be idempotent:

∀ l ∈ L : A(l, l, ..., l) = l (1.20)

Besides that, we assume that A is monotone in the following sense:

∀ (l, l′) ∈ Ln × Ln : l ≤ l′ ⇒ A(l) ≤ A(l′) (1.21)

where the relation≤ is generalized from L to vectors from Ln in a point wise way.
Based on the definition of these two elementary operators, a comparison of two

objects can be generally written as:

C(o1, o2) =
n

A
i=1

(Ci (ui1, ui2)) (1.22)

where ui1 and ui2 denote the value of the ith feature of o1 and o2, respectively.
In our approach L is the space of all PTVs endowed with the relation given

in (1.17). Aggregation of PTVs may be carried out using the Sugeno integral for
possibilistic truth values as defined in [37]; cf. also [38] for the original, general
definition of the Sugeno integral. This integral uses two fuzzy measures (γT and
γF ) which are defined below. Let us first remind briefly the definition of a fuzzy
measure.
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Definition 3 (Fuzzy measure). A fuzzy measure on a finite universe U is a set
function γ : P(U)→ [0, 1] that satisfies the following properties:

γ(∅) = 0 (1.23)

γ(U) = 1 (1.24)

A ⊆ B ⇒ γ(A) ≤ γ(B) (1.25)

Then, in the context considered here, the measure γT (A) (resp. γF (A)) pro-
vides the assessment of certainty that two complex objects are (not) coreferent,
given that the set of (metadata) features A are (not) coreferent. As required by the
definition of fuzzy measures, γT and γF are monotonic and satisfy the boundary
conditions of a fuzzy measure.

Definition 4 (Sugeno integral for PTVs [37]). Given a set of propositions
P = {p1, ..., pn} and a corresponding set of PTVs P̃ = {p̃1, ..., p̃n}, let γT and
γF be two fuzzy measures defined on P which satisfy the condition:

∀Q ⊆ P : min(γT (Q), γF (Q̄)) = 0 (1.26)

where Q̄ denotes the complement of Q.
Then, the Sugeno integral of P̃ with respect to γT and γF is defined by:

SγT,F (P̃ ) : F(B)n → F(B) : P̃ 7→ p̃, where (1.27)

µp̃(T ) = 1−
n∨
i=1

Np̃(i)
(
F
)
∧ γF

(
P(i)F

)
(1.28)

and

µp̃(F ) = 1−
n∨
i=1

Np̃(i)
(
T
)
∧ γT

(
P(i)T

)
(1.29)

where (·)T (respectively (·)F ) is a permutation that orders the elements of P̃ non-
increasingly (non-decreasingly), while P(i)F and P(i)T are sets of propositions pj
with, respectively, i largest values µp̃j (F ) and i largest values µp̃j (T ).

Remark. The motivation to use PTVs and the Sugeno integral is the following.
We would like to show that taking into account similarity and dissimilarity of
objects in each step separately may be advantageous. In fact, De Cooman [39] has
shown in his formal analysis of PTVs that it is essential that possibilities for true
and false can be measured separately. To this aim, the aggregated PTVs indicate
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both the coreference and the lack of coreference of paths/schemas. The choice for
the Sugeno integral is motivated by the ability of the related fuzzy measures to
model complex preferences in the regular case, making the Sugeno integral a very
powerful and flexible aggregation operator [37]. The research on the aggregation
of bipolar information (here: for and against the coreference) is not that developed
in the literature and the Sugeno integral is a prominent example of an aggregation
operator adopted for this setting. Besides that, the experimental results confirm
that this is a promising choice. An alternative aggregator can be, e.g., an Ordered
Weighted Conjunction (OWC) [8] which is in fact a special case of the Sugeno
integral.

1.4.5 Cardinality of a set of PTV qualified propositions

In this thesis we will often use (multi)sets of Boolean propositions, certainty of
truth of which will be expressed with a PTV associated with each proposition. We
will then use the concept of a kind of the cardinality of such a (multi)set which
counts those propositions fully certain to be true (i.e., with a PTV (1,0) assigned)
as 1, does not count at all propositions fully certain to be false (i.e., with a PTV
(0,1) assigned), and counts the remaining propositions to some degree belonging
to [0,1] and depending on how their PTVs are close to (1,0) or (0,1). In fact, this
cardinality is similar to a fuzzy cardinality of fuzzy sets and will be expressed as
a possibility distribution on the set of integers. We will denote this cardinality
as πN (provided that from the context it will be clear which set of propositions it
concerns). We will call it also sometimes as a fuzzy integer due to the fact that
its possibility distribution is assumed to be a convex function, in the same sense
as membership functions of fuzzy numbers are assumed, i.e., every α-cut of this
function (interpreted as a membership function of a fuzzy set) is an interval, i.e.,
contains all integers between the lowest and highest integers belonging to this α-
cut.

In [40], a method is proposed to construct such a possibility distribution (fuzzy
integer) for a (multi)set of propositions associated with PTVs P . In fact, this
method may be treated as constructing a possibility distribution which expresses
the possibility that an integer k represents the number of true propositions in P .

Definition 5 (Cardinality of a set of PTV qualified propositions). Let P be a multi-
set of independent Boolean propositions and let P̃ be the multiset of corresponding
possibilistic truth values, i.e. ∀p ∈ P : p̃ is a PTV associated with p and expressing
the (un)certainty as to the truth of p and let p̃(i) denote the ith largest possibilistic
truth value with respect to the order relation defined by Equation 1.17. The quan-
tity of true propositions in P is given by the following possibility distribution on
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the set of all integers (fuzzy integer):

πN(k) =


µp̃(1)(F ) , k = 0
µp̃(k)

(T ) , k = |P |
min

(
µp̃(k)

(T ), µp̃(k+1)
(F )
)

, else.
(1.30)

This definition states that πN(k) is the minimum of the possibility that at least
k propositions are true and the possibility that at least |P | − k propositions are
false.

Let us define an order relation ≺sup on the set of such possibility distributions
(fuzzy integers).

Definition 6 (Sup-order of fuzzy integers). The order relation ≺sup is defined for
fuzzy integers as follows:

ñ ≺sup m̃⇔ sup ñα < sup m̃α (1.31)

Hereby, ñα is the α-cut of ñ, which is treated here as a fuzzy set, and α is chosen
such that:

α = sup{x| sup ñx 6= sup m̃x} (1.32)

Thus defined partial order coincides with the standard relation “<” on integers
when fuzzy integers under consideration are regular integers, i.e., their possibility
distributions are πN(k) = 1 for a k ∈ N and πN(l) = 0 for l 6= k.

1.5 Outline of the thesis
The remainder of this dissertation is organised as follows. In the next two chap-
ters, solutions are proposed for the schema matching problem. Namely, in Chap-
ter 2, the schema matching approach based on schema information only is investi-
gated, whereas the schema matching approach based on coreferent data is studied
in Chapter 3.

In Chapter 4, an algorithm for Dynamical Order Construction (DOC), which
constructs a partial order relation over the domain of an attribute whose values may
need semantical comparison and can be sorted by the specialisation/generalisation
relation, is introduced. Important features of this algorithm are pointed out and the
parameters are discussed. Moreover, the algorithm’s applicability for data corefer-
ence detection is studied. Usage of the DOC method in the context of data fusion
is investigated and selection strategies are evaluated in Chapter 5. In Chapter 6,
a partial order relation over the domain of an attribute is applied to automatically
establish semantical mappings for attribute values with different domains in het-
erogeneous collections.

Finally, Chapter 7 summarises the most important contributions of this disser-
tation responding to the research questions.
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Coreference detection in schema

based on schema alone

The following publications have been based on the contents of this chapter:

• M. Szymczak, S. Zadrożny, A. Bronselaer, and G. De Tré, “Coreference
detection in an XML schema,” Information Sciences, vol. 296, pp. 237-
262, 2015.

• M. Szymczak, S. Zadrożny, and G. De Tré, “Coreference detection in XML
metadata,” IFSA World Congress NAFIPS Annual Meeting, Proceedings.
Edmonton, Canada, 2013.

2.1 Introduction
In this chapter, a novel approach is proposed for the first step of data integration,
namely for schema matching. Our technique helps to discover coreferent schema
elements in an automatic fashion based only on schema information and, more
specifically, on the names of particular elements. Thus, this is a syntactical ap-
proach. The schema matching method is investigated in terms of importance of
elements. An experimental evaluation of our method shows the role of its param-
eters and its performance in comparison to other well-known schema matching
approaches.

XML [34] was chosen as the data model for multiple reasons. First, XML is one
of the most popular formats to store and exchange data. Second, it consists of two
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well-defined layers: a metadata layer (XML schema) and a data layer (XML doc-
ument). Third, XML schemas can contain complex data structures, which makes
the detection of coreferent schema elements1 a challenging task. Moreover, it is
platform-independent and often contains information that is represented in differ-
ent ways. XML is the basis for many web services and especially for semantic web
services offered in the framework of the Semantic Web. Moreover, XML allows
to define models to control data quality from its content [41, 42]. Namely, these
models use the power of XML Schema language to improve the representation of
documents in the Web with semantic characteristics related to their quality and
thus it is useful to search quality resources in XML format.

2.1.1 Problem illustration

The existence of duplicate data across multiple, related databases significantly
lowers data quality and should be avoided. As an example, Figure 2.1 shows two
data pieces (two instances with hierarchies of elements) resp. taken from FreeDB2

(right tree) and Discogs3 (left tree) which describe the same entity (an instance of
the concept “compact disc”, more precisely CD album “Metallica - Metallica”),
but in different ways. An example of coreferent data is presented in Figure 2.1.
Coreferent data (elements with values) which describe each object, i.e.: the title
(“Metallica”), artist (“Metallica”) or year (“1991”), are linked by arrows.

Equally important as detection of coreferent data is the detection of coreferent
metadata (in this context these are the schema elements), which is investigated
in this chapter. In the case of XML, metadata define the structure, hierarchy and
constraints of data. The basic metadata are tags. A tag is also known as a name
of an XML element. It provides the name for a specific element at the meta-level
and also (as a consequence) at the data level. The tags are the filled rectangles in
Figure 2.1 and in Figure 2.2, where they form the structure and hierarchy of the
schema. The structure and hierarchy specify the parent-child relationships between
the elements (tags). In consequence, a sequence of tags from the root to the leaf
in an XML schema (called a path) precisely defines the context and location of a
specific element, e.g., the sequence of tags “cddb/disc/dtitle” from the right schema
in Figure 2.2. Paths can be considered as one of the main components of an XML
schema and can be compared in a syntactical manner, as they are in this chapter.

Detection of coreferent metadata (schema elements) makes it possible to es-
tablish at least a partial mapping between the data of two XML schemas. As an
example, Figure 2.2 shows a mapping between elements of the metadata layer (hi-

1In the case of XML, schema elements are defined by XML elements or XML attributes and they
are generally called (XML) elements in the scope of this chapter considering a more abstract point of
view.

2FreeDB, http://www.freedb.org/
3Discogs, http://www.discogs.com/data/
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Figure 2.1 Real-world data example: parts of XML documents from Discogs (left
tree - S) and FreeDB (right tree - T) datasets. The filled boxes are the XML tags
(elements) defined in the XML schema, while the not-filled are values of specific
elements. Arrows represent mappings of actually coreferent data.

erarchy of data), respectively, taken from FreeDB (right tree) and Discogs (left
tree). These mappings are in addition to mappings between coreferent XML data
which are presented in Figure 2.1. For instance, in Figure 2.2 a mapping based
on metadata is established between the elements “id” and “did” because the paths
related to these elements may be recognized as coreferent. Moreover, the values
present on the paths (content data) should help to identify the coreferent schema
elements, but this is beyond the scope of this chapter and is investigated in Chap-
ter 3. In this chapter, a novel syntactical schema matching approach based on path
comparison only is proposed.

Many problems have to be addressed when devising such schema matching
techniques. The most important among these are the following:

• How to establish schema matching when objects have different structures
and a different organisation of the same content?
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Figure 2.2 Real-world metadata example: XML schema elements with hierarchies
extracted from Discogs (left tree - S) and FreeDB (right tree - T) datasets. Arrows
represent matchings of coreferent metadata (schema elements).

• How to establish schema matching if abbreviations or typing errors exist in
the tags?

• How to establish schema matching efficiently?

2.1.2 Contributions

The objective of this chapter is to propose a novel, automatic, syntactical method
for detecting coreferent elements in XML schemas based only on metadata and,
also, as a next step, to propose a method for detecting coreference of XML schemas.
More specifically, the detection of coreferent elements in XML schemas based
only on a comparison of the element names (tags) and their sequences (paths) is
studied in this chapter. Detecting the coreference of whole XML schemas takes
into account the coreference of their respective elements and the importance of
the elements in the schema. To determine the importance of elements, some novel
heuristics are proposed. Schema information, such as cardinality, order and ele-
ment depth, is used. The novel heuristics allow to increase the quality of the results
of the coreference detection method for XML schemas.

Our goal was to provide a novel method that would be general enough so that
it could establish the matching of two (XML) schemas (or their parts/paths) with
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limited information available (we assume that only the schemas are given). This
may be useful, e.g., for two software agents trying to set up a mutual understanding
based on their repositories of XML schemas representing information/data crucial
for the purposes of their communication or for data integration of heterogeneous
data sources, namely for matching of corresponding schema elements.

2.1.3 Outline

The rest of this chapter is structured as follows. Related work is presented in
Section 2.2. In Section 2.3 it is presented how coreferent XML elements and
coreferent XML schemas can be detected based on paths. Section 2.4 reports the
experimental results. Finally, Section 2.5 summarises the contributions of this
chapter.

2.2 Related work

There is a large body of work on schema matching which uses only schema (meta-
data) information (cf., e.g., [1,43–47]). In contrast to our method, most approaches
are based on a few different matchers (methods which are able to establish a match-
ing between corresponding elements), called combining matchers, which combine
individual matching criteria, i.e., names and types of elements, constraints (value
ranges restrictions, cardinalities, uniqueness constraints, referential integrity), de-
scriptions, schema structure (i.e., parent, sibling, child, ancestor, descendant) or
auxiliary information. Apart from this, combining matchers can be divided into
two main subcategories: hybrid matchers and composite matchers. On the one
hand, hybrid matchers use multiple matching criteria. On the other hand, compos-
ite matchers combine multiple match results that are obtained from independently
executed matching algorithms.

2.2.1 Hybrid matchers

First of all, we present some important hybrid matchers which are based on schema
information (cf.,e.g., [48, 49]). Cupid [17] is based on element, structure and lin-
guistic level matchings, uses similarity of atomic elements (which capture a lot
of semantics), exploits the internal structure and constraints, and creates context-
dependent matches. Like many other approaches [21, 50–55], Cupid also uses a
matching confidence level value (called similarity coefficient) which is a number
from the interval [0,1]. Cupid matches elements based on structural and linguis-
tic similarities and clusters the concepts with respect to their similarity. Besides
that, Cupid is a generic approach to match different types of schemas: XML or
relational. Similar to the above example is the XML Schema matching method
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proposed in [56]. Like Cupid, it is a hybrid (structural and linguistic) schema
matcher, but dedicated only to XML Schemas and uses predefined external knowl-
edge bases (Wordnet [57], compatible data types table) to calculate the similarity
between elements. In contrast Milne et al. [58] propose a method which calculates
semantic relatedness between terms using links found within their corresponding
Wikipedia articles while the most successful and well known of the corpus-based
approaches is Latent Semantic Analysis (LSA) [59], which relies on the tendency
for related words to appear in similar contexts. Corpus-based approaches obtains
background knowledge by performing statistical analysis of large untagged doc-
ument collections, thus, LSA can only provide accurate judgments when the cor-
pus is very large, and consequently the pre-processing effort required is signifi-
cant. That approaches to measure semantic relatedness can be applied for schema
matching or knowledge modeling [60] and management [61].

Another hybrid approach is SKAT [62, 63]. SKAT is a rule-based approach.
Rules are formulated in first-order logic to express match and mismatch relation-
ships. SKAT supports element and structure matching by using a set of name
matchers, inclusion relationships and structure matching. Besides that, SKAT cre-
ates 1:1 and 1:n mappings between attributes and is able to reuse general matching
rules. However, a user must define the match and mismatch rules. Similar to SKAT
is the ARTEMIS [55] schema integration tool that is a part of MOMIS [64] (a
mediator system). ARTEMIS is a name, constraints and structure based matcher
which clusters similar elements and exploits linguistic information provided by
WordNet [57].

Also, Palopoli et al. propose algorithms [50–52] which (like ARTEMIS and
S-Trans [65]) utilize element and structure level information. The algorithms are
based on a set of user predefined synonyms and homonyms and create matchings
by comparing the distances between the elements in the schema. Another approach
of hybrid matching which is based on schema information is TranScm [66]. Tran-
Scm transforms input schemas into a graph representation (using, e.g., the Simi-
larity flooding algorithm [67]) and applies predefined matching rules on each pair
of nodes in top-down order to create matchings. This approach gives good re-
sults only if the top structure of the two schemas is quite similar. Other structural
matchers are presented in [68–71] and concern algorithms to find mappings in a
tree structure without synonym and hypernym recognition, but using only purely
structural matches or twig matches [72]. Twig matching finds in an XML docu-
ment tree all matches of a given twig, i.e., a subtree template. Modern twig query
matching algorithms often first decompose individual path matches and then merge
them to form twig matches [73].

In contrast, DELTA [74] does not use information about the schema struc-
ture. It groups all other available metadata about attributes into character string
representations which are presented as a document. Next, information retrieval
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techniques are applied on those documents to perform matching.
The approaches proposed in [75] and [76] are similar to our method - both are

based on element names and paths. On the one hand, Rajesh et al. [75] present
the architecture of a system which comprises a linguistic matcher and propose dif-
ferent heuristics to calculate similarity of elements depending on their position in
the hierarchy. However, that method does not consider the importance of elements
like our approach. On the other hand, QMatch [76] relies on the semantic and
structural information encapsulated in an XML schema and extracted from auxil-
iary sources. In our approach we only use schema information, more specifically
information on the lexical similarity of paths.

2.2.2 Composite matchers

The second group of matchers consists of composite schema matching systems
(like LSD [54] or COMA [18]) which automatically combine match results.

COMA is a platform to combine results of different matchers in a flexible
way. This approach copes with different aspects of match processing, i.e. ag-
gregation of matcher specific results, match direction, match candidate selection,
computation of combined similarity, different matcher usages, i.e. single match-
ers vs. matcher combinations, no-reuse vs. reuse approaches and also support
an automatic or interactive mode. Moreover, in interactive mode a user is able to
define and select a matcher and so the match or mismatch strategy for each ele-
ments couple separately. COMA is an iterative generic schema matching system.
Each match iteration consists of three phases: an optional user feedback phase,
the execution of different matchers and the combination of the individual match
results. The algorithm executes independent matchers from a matchers library in
the main step. It exploits different kinds of schema information (i.e. names, data
types, synonyms tables, previous match results). The next step combines results
obtained by individual matchers. Similarity values which are returned by matchers
are aggregated. The aggregation takes, e.g., a maximum or average value of simi-
larities. Finally, the algorithm chooses for each element a couple with the highest
similarity value of all couples, in which the particular element occurs, exceeding
a certain threshold. Besides that, COMA supports directional and undirectional
matchings. Directional means that matching can only be applied to source from
target or from target to source, but cannot be applied in both directions in con-
trast to undirectional matching. Directional schema matching might simplify the
matching problem solution e.g., when one schema is significantly smaller than the
other.

In Szymczak and Koepke [21] we present an automatic method to match sim-
ilar elements of XML schemas based on semantic annotations. Semantic annota-
tions of XML schemas allow for a semantic interpretation of the schema elements
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and are addressed in the W3C recommendation SAWSDL [77]. We describe the
schema elements (using an extended annotation method based on the SAWSDL
specification [78]) in the form of expressions that consist of concepts and proper-
ties of a reference ontology. These expressions are directly added to the schemas.
In order to check for semantic matching, the expressions are automatically trans-
lated to ontology concepts. Thus, the semantic matching is accomplished with
reasoning support and knowledge from the reference ontology. A major time con-
suming and error-prone task in this method is the addition of semantic annotations
to source and target XML schemas.

The approach presented in this work is less computationally expensive than
approaches which are based on external knowledge sources, because it does not
need user effort to create and manage additional sources of information or does
not need manual effort to define match or mismatch rules. This is very impor-
tant as it can be impossible to create a general source of knowledge which covers
all different aspects. String-based similarity allows us to implement an approach
which is simple, fast and based on common and available information (names of
elements). Moreover, external knowledge sources can be (temporarily) unavailable
(e.g., due to the Internet access failure) which decreases their usability in contrast
to our approach which is self-contained. Our approach is somehow more general
as it, to some extent, does not depend on the language in which the XML schema
elements are named. Assuming the availability of an appropriate set of relevant
knowledge bases for any language of interest may be too restrictive and not prac-
tical. Nevertheless, it is true that string-based matching is not able to deal with
synonyms and polysemy. However, it is not necessary to use external knowledge
base to solve these problems. As we will show in Chapter 3 coreference detection
based on synonyms and polysemy is possible when instance data are used.

2.3 XML paths in coreference detection

An XML schema contains various types of metadata which define the structure
of an XML document, data types, restrictions, etc. These metadata allow to re-
construct paths, by which we mean here sequences of elements’ names connect-
ing a root element with leaf elements in corresponding XML documents (without
namespaces which will not be considered in this work).

Two elements in two XML schemas may refer to the same feature of a real-
world entity (may be coreferent) even if they have different tags and are located at
different levels of an XML file structure. This is the case of, for instance, elements
represented by the path “/cddb/disc/artist” from the right schema tree and the path
“/discs/disc/artists/name” from the left schema tree of Figure 2.2. Comparing their
paths, as defined above, may help to discover their coreference. In this section,
a novel method for detecting coreferent XML elements based only on comparing



CHAPTER 2 2-9

Figure 2.3 Classification of schema matching approaches [1].

Figure 2.4 Overall scenario: XML paths in coreference detection

their paths and, as a consequence, coreference of XML schemas, is presented.
Our approach is classified as the schema only based element level and name-based
matching method according to the classification from [1], which is presented in
Figure 2.3. The proposed method is purely syntactic and does not use any other
external information sources such as ontologies or dictionaries. Using such extra
information can increase the quality of coreference detection, but it also requires
more computational resources and is not considered in this chapter.

Figure 2.4 presents the general steps in our approach. First, all input XML
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schemas are modelled as the trees. Afterwards, paths are extracted for each leaf
from a tree. Next, the coreferent paths matrix is generated. The matrix represents
matchings between paths, while elements of the matrix express the (un)certainty
degrees about the paths coreference (represented by PTVs) which are calculated
in the following substeps: Tokenisation of a path, Step comparison, Mapping at
step level, and Aggregation at the step level. Afterwards, for each path the best
mapping with respect to the PTV is selected in phase Mapping at the path level.
Finally, the PTVs corresponding to the mapping on path level are aggregated to
obtain the certainty degree about schema coreference in the last step Aggregation
at the path level. The above steps, except for the last step, concern the detection of
coreferent elements in XML schemas, while the last step applies only to detecting
the coreference of whole XML schemas.

The above mentioned steps will be now presented in detail.

2.3.1 Step 1: Model XML schemas as trees

The input XML Schema is modelled as a labelled unordered rooted tree [56] (as
in Figure 2.2) obtained by the getTree method in lines 1 and 2 of Algorithm 2.1.
The original representation of the XML Schema (directed graph) in which recur-
sive definitions (a leaf element refers to its ancestor) are represented by loops and
reference definitions (simplifying schema by sharing of the common elements) are
represented by cross edges is not appropriate in our approach for two reasons.
First, recursive definitions result in an infinite number of paths. Second, graph
matching is computationally expensive.

Algorithm 2.1 DETECTINGCOREFERENTXMLSCHEMAS

Require: SchemaRS , SchemaRT
Ensure: Propositions stating coreference of schemas p

1: TS ← getTree(RS)
2: TT ← getTree(RT )
3: S ← extraction(TS)
4: T ← extraction(TT )
5: Mpaths ← initialize(S,T )
6: for all aS ∈ S do
7: for all aT ∈ T do
8: MpathsaS,aT

← DetectCoreference(aS .path,aT .path)
9: end for

10: end for
11: Qpaths ← mappings(Mpaths)
12: WQpaths

← calculateWeights(Qpaths)
13: p̃← aggregate(Q̃paths,WQpaths

)
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The transformation is based on the top-down strategy (it starts from the root of
the schema and ends at the leaves) and goes as follows. Each encountered element
and attribute of the XML schema is translated into a node of the tree, preserving
the relationships between the elements or attributes. The names of the elements or
attributes (and other schema information, e.g., the cardinality) are the labels of the
nodes.

However, reference and recursive definitions break the tree structure. There-
fore, the former are transformed into a tree by duplicating the shared elements
under the node that refers to it. Unfortunately, the latter, i.e., recursive definitions,
cannot be solved as reference definitions because this generates an infinite loop
which results in an infinite number of paths. Lu et al. [56] state that matching
a recursively defined node is equivalent to matching the inner node that is being
referred to. Therefore, if a node refers to its ancestor, then the connection is cut.

2.3.2 Step 2: Extraction

The algorithm extracts leaf nodes with metadata (paths to the root) from the input
trees to be compared (lines 3 and 4 in Algorithm 2.1), cf., both trees in Figure 2.2.
The path is constructed step by step by traversing the tree from the root to a leaf
node. This is a sequence of names of traversed nodes which are separated by
slashes.

For example, considering the right tree in Figure 2.2, the path “/cddb/disc/-
tracks/title” is extracted for the node “title” of the tree on the right. Moreover, in
our approach, only leaves are considered because leaves are the only nodes which
are recommended as containing data.

Thus, two sets of paths are obtained. In our example (cf. Fig. 2.2), the set
extracted from the schema tree on the left is denoted as S and set extracted from
the schema tree on the right is denoted as T .

2.3.3 Step 3: Generation of a coreferent paths matrix

A coreferent paths matrix Mpaths is generated based on the technique that was
introduced in [79] (line 5 in Algorithm 2.1). For two input schemas with, re-
spectively, m and n paths, Mpaths is a m × n matrix, where element Mpathsi,j ,
i = 1, . . . , n and j = 1, . . . ,m is a PTV resulting from the comparison of paths i
and j from both schemas and reflecting the (un)certainty about their coreference.
An example is given in Table 2.1. Each row corresponds to a path from S, whereas
each column corresponds to a path from T . The matrix elements are computed us-
ing the following substeps (lines 6-10 in Algorithm 2.1).
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Table 2.1 Example of a coreferent paths matrix. The bold values mean the best
mappings for paths pair (their choice is discussed in Section 2.3.4).
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/discs/disc/genres
T:1.00 T:1.00 T:1.00 T:1.00
F:0.06 F:0.62 F:0.63 F:0.81

/discs/disc/title
T:1.00 T:1.00 T:1.00 T:1.00
F:0.65 F:0.12 F:0.63 F:0.36

/discs/disc/year
T:1.00 T:1.00 T:1.00 T:1.00
F:0.63 F:0.63 F:0.06 F:0.81

/discs/disc/tracklist/title
T:1.00 T:1.00 T:1.00 T:1.00
F:0.81 F:0.36 F:0.81 F:0.16

2.3.3.1 Tokenisation of a path

In this step, each path is tokenised, which results in a list of substrings (elements
on the path) which are called steps (lines 1 and 2 in Algorithm 2.2). Thus, to-
kenisation of a path transforms a path into a list of steps. In most cases, steps are
separate words. In our approach, tokenisation of a path is equivalent to deleting
all delimiting ‘/’ characters in the paths. For instance, tokenisation of the path
“/cddb/disc/tracks/title” results in the list [cddb, disc, tracks, title]. The reason
why we introduce this tokenisation is that traditional string comparison methods
(character based methods) are not efficient for long character strings [8]. A major
advantage of tokenisation of a path is that it decreases complexity and enhances the
effectiveness of string comparison in our approach. Moreover, as was described in
Section 1.4.4, it allows us to introduce a specific aggregation method which helps
to detect coreferent elements more effectively.

Remark: Compound versus simple steps. A special case of comparison
concerns XML paths which consist of long or short steps (label length) describing
the same real entity; for instance, a path which contains many short steps “/or-
der/address/business/street/no” and a path which contains a few long steps “/or-
der/addressBusiness/streetNo”. The problem is how to detect strong matching of
such paths. One solution can be tokenisation of the long steps (i.e., selecting single
words). The change between lower and upper case, hyphen or underscore can be
treated as a separator indicating the place to break a word.
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Algorithm 2.2 DETECTINGCOREFERENTXMLPATHS

Require: Path pathS , Path pathT
Ensure: Propositions stating coreference of paths p

1: pathS .steps← tokenization(pathS)
2: pathT .steps← tokenization(pathT )
3: Msteps ← initialize(pathS .steps, pathT .steps)
4: for all (stepS) ∈ pathS .steps do
5: for all (stepT ) ∈ pathT .steps do
6: MstepsS,T

← compare(stepS , stepT )
7: end for
8: end for
9: Qsteps ← mappings(Msteps)

10: WQsteps
← calculateWeights(Qsteps)

11: p̃← aggregate(Q̃steps,WQsteps
)

2.3.3.2 Steps comparison

The one-level string comparison technique proposed in [8] is used to compare the
resulting steps from each pair of paths (line 6 in Algorithm 2.2). This low-level
comparison method estimates the possibility that two given steps are coreferent
and is based on an approximation of weak string intersections which is the set
of longest common subsequences. It uses the concept of a moving window to
construct the intersection of the two input steps. More specifically, the algorithm
starts at the beginnings of both steps of a pair and moves a window over each of
them. Each time common characters are detected under the moving windows they
are added to the intersection, which is the largest set (in terms of set cardinality)
that is a subset of both steps.

For example, consider a pair of steps (strings) s1=tracks and s2=tracklist. The
construction of the intersection goes then as follows. We start with two one-
character wide windows. Initially each window is at the beginning of a respective
string and contains a character ‘t’. This character is common so it is added to the
intersection and both windows move to their next position. Similarly for ‘r’, ‘a’,
‘c’ and ‘k’. In the next step the windows contain different characters, ‘s’ and ‘l’,
respectively. Thus, the window size is increased by one. This is repeated until the
windows contain a common character, here ‘s’, or there are no more characters
in both of the strings. Next, the common character is added to the intersection,
windows are shrunk to one character and moved to the position where the com-
mon character was found increased by 1. This construction of the intersection is
repeated until the windows reach the ends of strings. Finally, the resulting inter-
section is ‘tracks’. The non common characters are counted (considered as errors)
and decrease possibility that steps are coreferent.
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This method marks out four different types of errors during comparison. These
are prefix, suffix, gap and mismatch. The prefix is an error where one of the input
strings contains a prefix before the matched substring, for instance a letter ‘d’ is
a prefix for dtitle and title. Analogously for suffix. The gap consists of missing
characters in the middle of a string, for instance ‘li’ is a gap and ‘t’ is a suffix
for strings tracklist and tracks. Finally, a mismatch is an umatched character in
both strings. These errors have different importance and influence on the final
matching result. Because of that, the importance of each error type is expressed
by predefined weights between 0 and 1 and are problem dependent. The higher
the weight of an error the lower degree of matching of two strings for which such
an error occurs. In our case, where abbrevations are very popular, the crucial error
types are prefix and mismatch so their weights are set to 1, gap has a weight 0.3
and suffix 0.1 is the minor error.

Our algorithm then compares pairs of steps from one input list with steps from
the other input list. It generates PTVs which express the uncertainty about the
coreference of the compared steps as described above. The possibility that a propo-
sition p, stating that two steps are coreferent, is true ( µp̃(T )) and the possibility
that p is false (µp̃(F )) are calculated by the following equations:

µp̃(T ) =
possT

factor
(2.1)

µp̃(F ) =
possF

factor
(2.2)

where possT, possF and factor equal:

possT =
|intersection|

max(s1.length, s2.length)
(2.3)

possF =

|errors|∑
i=0

(errorsi.size× wi) (2.4)

factor = max(possT, possF ) (2.5)

where |intersection| denotes the number of common chatacters, an |errors| is
the number of types of the errors, errorsi.size is the number of the errors of a
given type.

On the one hand, possT is the ratio between the number of characters that are
found to be common for a pair of steps (cardinality of the intersection) and the
length of the longer step. On the other hand, possF is computed as the sum of the
product of the number of the errors of a given type (from errors that are found dur-
ing comparison) and predefined weight wi of specific error type. Finally, factor
is the maximum of possT and possF and is used to normalize both possibilities.
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The PTVs resulting from the comparisons of all steps in the two paths are
represented in a so-called coreferent steps matrix (lines 3-8 in Algorithm 2.2). An
example of such a matrix is given in Table 2.2.

Our step comparison method thus takes into account misspellings and abbrevi-
ations and, moreover, has a low computational complexity. This is a great advan-
tage for XML coreference detection because abbreviations are frequently used in
XML paths.

This technique was chosen due to its efficiency [8]. In the literature a multi-
tude of algorithms for string comparison has been proposed and these may also be
employed here. An example of an interesting survey concerning strings in general
is [2]. Work focused on coreference (duplicates) detection in the context of XML
is [80]. An example of an approach employing fuzzy logic which might also be of
interest to the reader is [81].

Table 2.2 Example of a coreferent steps matrix. Bold values represent the best
mappings for the steps from both multisets (cf. step 3 substep 3 of the algorithm).

Steps cd
db

di
sc

tr
ac

ks

tit
le

discs
T: 0.0 T: 1.0 T: 0.0 T: 0.0
F: 1.0 F: 0.01 F: 1.0 F: 1.0

disc
T: 0.0 T: 1.0 T: 0.0 T: 0.0
F: 1.0 F: 0.0 F: 1.0 F: 1.0

tracklist
T: 0.0 T: 0.0 T: 1.0 T: 0.0
F: 1.0 F: 1.0 F: 0.17 F: 1.0

title
T: 0.0 T: 0.0 T: 0.0 T: 1.0
F: 1.0 F: 1.0 F: 1.0 F: 0.0

2.3.3.3 Mapping at the step level

This substep selects the best mapping between steps belonging to lists representing
two paths in the coreferent steps matrix Msteps (cf. Table 2.2; the best mappings
are marked in bold, line 9 in Algorithm 2.2). A general form of such a mapping
problem is well known as the assignment problem [82] and in this case we apply
the mapping algorithm proposed in [79] which works as follows. Let us assume
a set SS which contains steps of path pathS and a set ST which contains steps
of path pathT with |SS | ≤ |ST |. The key idea is to create an injective map-
ping Qsteps from SS to ST based on PTVs expressing the certainty of matching
between steps. Having the coreferent steps matrix Msteps, the largest PTVs are
found iteratively, their locations in Msteps are added to the mapping and then the
rows and columns of the locations are removed. The step mapping is conducted
by Algorithm 2.3 which works as follows.

The mapping algorithm [79] first selects the largest PTV for each row of the
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matrix Msteps (largest in the sense of the order relation (1.17)), as in step (a) in
Figure 2.5, where the largest PTVs are bold; if the largest PTV for a row is not
unique then a PTV of steps on the same (or similar) position should be chosen;
if that condition does not help then one of the largest values is chosen randomly
(lines 1-3 in Alg. 2.3). The functions r and c provide mappings of elements from
SS and ST , respectively, to row and column indexes of these elements.

Next, the algorithm checks if conflicts occur (lines 4-15 in Alg. 2.3), i.e., if
two (or more) rows exist, say r1 and r2, with the largest PTV in the same col-
umn. These conflicts are resolved one by one, for any pair of rows sharing the
same column with maximal PTV. For resolving column conflicts the PTVs of rows
preliminarily mapped to it, i.e., having their largest PTVs in it, are sorted in a non-
increasing order and the conflict resolution starts with rows with largest PTVs. If
that condition does not help then, by convention, in this case we choose first rows
with lower indexes. Resolving each conflict consists in choosing one row which
will be mapped to a given column and then the whole procedure of choosing a col-
umn to resolve conflicts is started from the beginning (the already mapped rows
and columns are ignored).

More specifically, the conflict resolution works as follow. On the one hand, if
the maximal PTV in such a column is unique, then the this column is mapped to
the row containing this maximal PTV, say r1, and the mapped column and row are

Algorithm 2.3 STEPMAPPING

Require: (|SS | × |ST |) matrix Msteps

Ensure: Injective mapping Qsteps
1: for all s ∈ SS do
2: m[r(s)]← arg maxt∈ST

M [r(s), c(t)]
3: end for
4: while ∃x 6= y ∧m[r(x)] = m[r(y)] do
5: d← 0
6: p̃1 ←M [r(x)][c(m[r(x)])]
7: p̃2 ←M [r(y)][c(m[r(y)])]
8: if p̃1 = p̃2 then
9: d← choose(M [r(x)],M [r(y)])

10: end if
11: if p̃1 < p̃2 ∨ d = r(x) then
12: m[r(x)]← search(M [r(x)])
13: else
14: m[r(y)]← search(M [r(y)])
15: end if
16: end while
17: ∀s ∈ SS : Qsteps = c−1(m[r(s)])
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Figure 2.5 Example of objects mapping

ignored for further mapping. Then, a subprocedure search is executed (lines 10-14
in Alg. 2.3) to find another column with largest PTV for the remained conflicted
rows, in this case the row r2. In our example from step (a) to (b) in Figure 2.5
there exist conflicts between all rows, because for each of the rows the maximum
has been selected for the same column, i.e., column 1. Row 1 contains the largest
PTV, so this conflict is resolved and row 2 and 3 are relocated.

On the other hand, if the PTVs are equal for two or more rows in a given col-
umn then the subprocedure choose is executed (lines 7-9 in Alg. 2.3). It decides
which row should be passed to subprocedure search, where the new maximum will
be selected (lines 10-14). If there are more than two rows with equal largest PTVs
in the given column then by convention the subprocedure choose is executed for
each pair of rows starting with rows with lower index. The subprocedure choose
selects the remaining PTVs for each conflicting row from columns which have not
yet been mapped to some rows, referred to as enabled positions, which results in
multisets of PTVs, say M1 and M2. The three cases are considered. If M1 = M2,
then both rows contain the same PTVs on enabled positions. By convention, in
this case we choose the first row. If M1 ⊂M2 or M2 ⊂M1, i.e., M2 contains the
same PTVs as M1 on enabled positions and some others PTVs or vice versa (see
Section 1.4.2), then obviously the row corresponding to the largest multiset is cho-
sen because it contains all information captured by the smaller multiset. If neither
of these cases yield, we subtract M1 ∩M2 from both multisets and the multiset
containing the largest PTV after subtraction is chosen. This way the largest possi-
ble PTVs are left for future maximum selection. Just as in our example from step
(b) to (c) in Figure 2.5, a conflict occurs between row 2 and 3 - the selected PTVs
are equal, so multisets M1 = {(1, 0.4)} and M2 = {(1, 0.8)}. The last case is
applied in our example and the largest PTV is selected because (1, 0.4) ≥ (1, 0.8).

Finally, no conflicts occur and the algorithm stops, like in step (c) in Figure 2.5.
Moreover, the example of mapping at the step level is illustrated with the coref-

erent steps matrix shown in Table 2.2. First, for each row the maximum is se-
lected (the row is the first element in a pair, the column is the second element):
(discs,disc), (disc,disc), (tracklist,tracks), (title,title). For rows ‘discs’ and ‘disc’,
a conflict occurs as both of them best match column ‘disc’. However, row ‘disc’
contains a larger PTV as (1, 0) ≥ (1, 0.01), so column ‘cddb’ is chosen as match-
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ing row ‘discs’ (column ‘cddb’ is the only one remaining unselected). Finally,
no conflicts occur and the algorithm stops. The selected PTVs, indicating match-
ing pairs of rows and columns, are shown in bold, e.g., the steps “tracklist” and
“tracks” are chosen as matching and the PTV expressing their matching degree
equals (1.0, 0.17).

2.3.3.4 Aggregation at the step level

The last substep in generating coreferent paths matrix is aggregation of the PTVs
in the coreferent steps matrix, hereby using the mappings that were obtained in
the previous substep (line 11 in Algorithm 2.2). The result of this aggregation is a
PTV for each pair of paths which expresses the uncertainty about the coreference
of these two paths.

For the aggregation at the step level, the following issues should be dealt with.

• On the one hand, consider path “/cddb/disc/tracks/title” from the right schema
and path “/discs/disc/tracklist/title” from the left schema of Figure 2.2, where
not all steps are matched at the beginning of the paths but all are at the end
match. In such a case both paths have a different context but may describe
the same object as illustrated in our example. This means that if the steps at
the end of the paths are coreferent, then this is a strong hint that the paths
are coreferent.

• On the other hand, consider two paths where not all steps are matched at the
end of the paths; cf. paths “/cddb/disc/publisher/telephone” and “/discs/disc-
/publisher/address”. Then, these elements are probably related but not simi-
lar and should not be matched.

• In contrast to the previous case, if one path, pathT , forms more or less a
prefix of another path, pathS , i.e., most of the steps of pathT (especially at
the end) have matching steps at the beginning of pathS , then this supports
the coreference of these paths. Indeed, pathT may correspond to a concept
which is a generalisation of the concept represented by pathS . The degree
of certainty of coreference should be high but lower than the degree of cer-
tainty of coreference in case of an exact matching of the paths. For instance,
consider as pathT the path “/cddb/disc/artist” from the right schema and as
path pathS the path “/discs/disc/artists/name” from the left schema of Fig-
ure 2.2. Here the mismatch between the compared elements arises due to a
possibly different granularity of information representation. In one schema
the element “artist” represents all of the information, while in the second
schema information about an artist is structured using the nested elements
“name”, “role”, and possibly more.
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Thus, it should be clear from these examples that not all steps in a path are
equally important with respect to coreference detection (the importance of each
step is expressed by a weight which is calculated in line 10 of Algorithm 2.2).
Hence, in general, the following heuristic rule can be considered: two paths are
more likely to be coreferent if they have more similar steps at the end. Because of
this the aggregation takes into account the PTVs resulting from the coreference de-
tection of the steps and the position of the steps in their respective paths. This rule
is implemented by using the Sugeno integral for possibilistic truth values (1.27).

The aggregation operator for the comparison of two paths, S and T , is defined
by the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of pairs of steps identi-
fied in the previous substep of the algorithm, i.e., ‘mapping at the step level’,

• P̃ is the set of PTVs corresponding to the above-mentioned propositions
representing the uncertainty about their truth values computed as discussed
in the previous substep and represented in a coreferent steps matrix,

• the fuzzy measure γT is defined by:

γT (Q) =

k∑
j=1

wj , Q ⊆ P,Q = {p1, . . . , pk} (2.6)

where wj is the weight of the jth pair (sjS ,sjT ) of steps, computed by:

wj =
rj
k∑
i=1

ri

(2.7)

Hereby, rj is in turn defined by:

rj =
1

2
×

((pos(sjS)

len(pS)

)exp(pS ,j)
+
(pos(sjT )

len(pT )

)exp(pT ,j))
(2.8)

where step sjS belongs to path pS , pos(s) is a function which determines the
position of step s in its path, i.e.: pos(s) = 1 for the first step in the path,
pos(s) = len(pS) for the last step in the path, and len(pS) is the length of
path pS (the number of steps in this path) and

exp(pS , j) = len(pS)− pos(sjS).

The exponentiation employed in (2.8) helps to spread the weights. More
precisely, thanks to it the distribution of weights follows the power law and
weights for steps at the beginning of a path are lower than weights for steps
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at the end. This helps to implement the assumption that two paths are more
likely to be coreferent if they have more similar steps at the end.

Moreover, a special procedure has to be applied in cases where the com-
pared paths contain a different number of steps. For each unmatched step
the algorithm adds a PTV (0,1) and its coresponding weight. This weight
depends on the position of the unmatched step in the path. It means, if
len(pS) 6= len(pT ) then for each step sj belongs to path pS (pT ) which is
not matched to any step that belongs to path pT (pS , respectively) are as-
signed a PTV (0,1) and weight w. The weight w is calculated according to
Equation (2.7) where rj is calculated as follows:

rj =
1

2
×
(pos(sj)
len(p)

)exp(p,j)
(2.9)

where p is a path pS or pT , pos(sj) is a function which determines the
position of step sj in its path and len(p) is the length of path p.

For instance, assume two paths, “/cddb/disc/title” and “/discs/disc/tracklist/-
title”. The unmatched step is “tracklist” and its weight equals:

r =
1

2
×
(

3

4

)(4−3)

=
1

2
× 0.75 = 0.375 (2.10)

w =
0.375

2.016
= 0.19. (2.11)

• the fuzzy measure γF is defined by

γF (Q) =

{
1 if Q = P
0 otherwise (2.12)

what is implied by condition (1.26) is that for each Q which is a subset of
P (except Q = ∅), the fuzzy measure γT of Q (γT (Q)) is always greater
than 0 because weights (on which γT depends) are greater than 0 (cf. Equa-
tions (2.7)-(2.8)). Therefore, the fuzzy measure γF of the complement of
the set Q (γF (Q̄)) must be equal to 0 (except when Q = P ) to satisfy con-
dition (1.26).

Example. The aggregation at the step level for the paths “/cddb/disc/tracks/title”
and “/discs/disc/tracklist/title” (cf. Table 2.2) goes as follows: first, the weights for
the pairs of steps are computed using (2.7)-(2.8):

r(cddb, discs) =
(

1
4

)(4−1)
= 0.0156

r(disc, disc) =
(

2
4

)(4−2)
= 0.25

r(tracks, tracklist) =
(

3
4

)(4−3)
= 0.75

r(title, title) =
(

4
4

)(4−4)
= 1

(2.13)
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w(cddb, discs) = 0.0156/2.0156 = 0.008
w(disc, disc) = 0.2500/2.0156 = 0.124
w(tracks, tracklist) = 0.7500/2.0156 = 0.372
w(title, title) = 1.0000/2.0156 = 0.496

(2.14)

These weights are then used to aggregate the PTVs from Table 2.2. Table 2.3
shows the calculations for Necp̃(T ). The rows are sorted in decreasing order
by ranking the PTVs expressing the coreference between matched pairs of steps
(cf. Definition 4). The first column (not counting the column with the heading
i) shows matched steps. The second column shows the PTVs expressing their
coreference, while column 4 gives the value for Nec(p̃(i)T = T ). For example,
Nec(p̃(i)T = T ) in row 3 is computed by Nec(p̃(i)T = T ) = 1 − Posp̃(F ) =

1 − 0.16 = 0.84. The third column shows the weights. The fuzzy measure γT of
the subsequent sets P(i)T is shown in column 5 and is calculated by Equation (2.6)
e.g., for the step pair (tracks, tracklist) we obtain γT (P(3)T ) = w1 +w2 +w3 =

0.12 + 0.5 + 0.37 = 0.99. The last column shows the minimum (denoted by ∧ in
(1.29)) of γT (P(i)T ) and Necp̃(T ), e.g., for (tracks, tracklist) we obtain 0.84.
Finally,Necp̃(T ) for paths “/cddb/disc/tracks/title” and “/discs/disc/tracklist/title”
is the maximum value (denoted by ∨ in (1.29)) of the last column of Tables 2.3
(cf. Equation (1.27)) and is equal to 0.84 (the bold value in Table 2.3).

Table 2.3 Necp̃(T ) for paths “/cddb/disc/tracks/title” and “/discs/disc/tracklist/ti-
tle”.

i Step PTV wi Nec(p̃(i)T ) γT
(
P(i)T

)
∧

1
disc T: 1.00

0.12 1 0.12 0.12
disc F: 0.00

2
title T: 1.00

0.5 1 0.62 0.62
title F: 0.00

3
tracks T: 1.00

0.37 0.84 0.99 0.84
tracklist F: 0.16

4
cddb T: 0.00

0.01 0 1 0
discs F: 1.00

Necp̃(F ) is calculated analogously to Necp̃(T ). This time the rows are sorted
in increasing order by ranking the PTVs as shown in Table 2.4 (cf. Definition 4).
Nec(p̃(i)F = F ) corresponding to a PTV representing the matching degree of two
steps is shown in column 4; e.g., for the pair of steps (tracks, tracklist) in row 2:
Nec(p̃(i)F = F ) = 1 − Posp̃(T ) = 1 − 1 = 0. The fuzzy measure γF is equal
to 0 for all sets except for the whole set P , corresponding to the last row of the
table. The last column shows the minimum (denoted by ∧ in (1.28)) of γF (P(i)F )

and Nec(p̃(i)F = F ), which equals 0 for all of the matched step pairs. Finally, the
Necp̃(F ) for paths “/cddb/disc/tracks/title” and “/discs/disc/tracklist/title” is the
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maximum of the values (denoted by ∨ in (1.28)) of the last column of Tables 2.4
(cf. Equation (1.27)) and is equal to 0 (the bold value in Table 2.4). Hence, the
coreference between the paths

“/cddb/disc/tracks/title” and “/discs/disc/tracklist/title”
is expressed by the PTV p̃ with µp̃(T ) = 1−0 = 1 and µp̃(F ) = 1−0.84 = 0.16,
where 0 and 0.84 are, respectively, the maximum value (∨) of the last columns of
Tables 2.4 and 2.3 (cf. Equation (1.27); respectively, Necp̃(F ) and Necp̃(T )).

Table 2.4 Necp̃(F ) for paths “/cddb/disc/tracks/title” and “/discs/disc/tracklist/-
title”.
i Step PTV wi Nec(p̃(i)F ) γF (P(i)F ) ∧

1
cddb T: 0.00

0.01 1 0 0
discs F: 1.00

2
tracks T: 1.00

0.37 0 0 0
tracklist F: 0.16

3
disc T: 1.00

0.12 0 0 0
disc F: 0.00

4
title T: 1.00

0.5 0 1 0
title F: 0.00

2.3.4 Step 4: Mapping algorithm at the path level

Once again, our algorithm establishes a mapping, but this time between paths (line
11 in Algorithm 2.1). The mappings of paths determined here with PTVs are inputs
for the next step, where PTVs are aggregated to a single PTV which represents the
(un)certainty of the coreference of the whole XML schemas.

In this step the best mapping between the paths of two XML schemas is de-
termined, based on the coreferent paths matrix which is generated in the previous
step and whose example is shown in Table 2.1. The procedure is analogous to the
‘Mapping at the steps level’ as described above. Indeed, a coreferent paths matrix
also consists of PTVs, of which the largest in each row is selected, thus, handling
conflicts as described in Step 3, Substep 3. For example, the PTVs of the selected
matched paths are set in bold in Table 2.1.

2.3.5 Step 5: Aggregation at the path level

Finally, the coreference of the whole XML schemas can be computed (line 13
in Algorithm 2.1). To this aim the aggregation of PTVs expressing the paths’
coreference is done using a technique based on the Sugeno integral for PTVs [37],
in a similar way as was proposed for the ‘Aggregation at the step level’ as described
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in Step 3, Substep 4. As was argued earlier, this approach makes it possible to
adequately cope with the different importances of aggregated elements, i.e., paths
in this case (it is calculated in line 12 in Algorithm 2.1). In [83] it is stated that
not all attributes (elements, paths, generally metadata) are equally important and
not all of them have the same role in coreference discovery. For instance, it can
be assumed that a path “/cddb/disc/title” of the node “title” is more important than
a path “/cddb/disc/id” of the node “id”, but this is, of course, context-dependent.
Because of this, mapped elements are classified into subsets from the most to the
least important. This classification can be done manually or be based on heuristics
or knowledge stored in a knowledge base. Thus, PTVs expressing coreference of
all matched pairs of paths can be aggregated using the Sugeno integral, as defined
in Definition 4. The resulting aggregated PTV then expresses the (un)certainty
about the coreference between the two input XML schemas, such as the left and
right schemas represented in Figure 2.2.

In the next paragraph, heuristics are presented to compute the importance of
each XML leaf element (path). They are based on expert opinions that the most
important information is unique and required, and also given closer to the root.
This allows to increase the quality of the results of the proposed approach.

2.3.5.1 Heuristics

In this paragraph four novel heuristics are proposed which help to determine the
importance of the elements (paths, objects). They are using the following criteria:
element requirement, element uniqueness, r-distance descendant, k-closest descen-
dant. Each heuristic considers different metadata (schema level information) but
returns a normalised score which is expressed by a value in the unit interval [0,1]
(see the example below of the heuristics: (2.17)-(2.20)). A higher score speci-
fies higher importance of an element. Afterwards, for each element the scores are
summed up to the finalScore:

∀aS ∈ S, finalScore(aS) =
sumScores(aS)

maxi∈S(sumScores(ai))
(2.15)

where sumScores equals:

sumScores(aS) =
∑
k∈H

getScorek(aS) (2.16)

where aS with a path is a leaf element from a set S (T , respectively), H is a set
of all heuristics, getScorek(aS) represents the score of aS obtained using the k-th
heuristics from H , a set of considered heuristics, and returns a value between 0
and 1. The finalScore is normalised to a value between 0 and 1 by dividing it by
the maximum of all sumScores values of elements from S (T , respectively).
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The final score is used to classify each element with respect to its importance.
This importance is expressed by a weight which is a normalised value between
0 and 1; a higher weight means that the element is more important. Moreover,
the weight (importance) of a pair of mapped elements equals the minimum of the
importance weights of these elements.

The heuristics under consideration are the following:

• Element requirement is based on the minimum cardinality constraint (called
minOccurs for short), which can be defined in a schema and takes a value
that is greater than or equal to 0. The value 0 means that the element is
optional, the value 1 means that the element is required and has to occur
minimum one time, and so on. With this heuristic elements with minOccurs
values equal 0 are the least important. So, this heuristic prefers elements
which are neither optional nor repeatable and returns 0 if an element is op-
tional, 1 if it is required or not repeated, and 1/minOccurs in other cases:

∀aS ∈ S, req(aS) =

{
0, if minOccurs is 0
minOccurs−1, else. (2.17)

• Element uniqueness is based on the maximum cardinality constraint (called
maxOccurs for short) which can be defined in the schemas and takes a value
that is greater than or equal to 0. This value specifies the maximum number
of occurrences for the element. An element is least important if the maxOc-
curs value equals unbounded (∞), which means that there is no limit on the
maximum number of its occurrences. On the other hand, the element is the
most important if its maxOccurs value equals 1. This heuristic prefers ele-
ments which are not repeated, so it returns 0 if an element has no maximum
number of occurrences and 1/maxOccurs in other cases:

∀aS ∈ S, unique(aS) =

 0, if maxOccurs
is∞ or 0

maxOccurs−1, else.
(2.18)

Remark. The values of these indicators are inherited from their ancestors.
An inherited minOccurs (maxOccurs) equals the product of all minOccurs
(maxOccurs) of the current element and its ancestors. For instance, in Ta-
ble 2.5, the maxOccurs defined in the schema of the element “title” with
the path “/discs/disc/tracklist/title” equals 1, but the maxOccurs of the par-
ent element “tracklist” with the path “/discs/disc/tracklist” can be more than
1 (i.e. unbounded), so the inherited (real) maximum occurrence of that el-
ement is then unbounded; minOccurs of the element “title” with the path
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“/discs/disc/videos/title” equals 1, but the minOccurs of the parent element
“videos” with the path “/discs/disc/videos” equals 0, so the real minimum
occurrence of that element then equals 0.

Table 2.5 Example of minimum and maximum occurrence indicators of elements
which are defined in XML Schema and their paths from the left schema S of
Figure 2.2.

Element Path Min Occurs Max Occurs
discs /discs 1 1
disc /discs/disc 1 ∞
tracklist /discs/disc/tracklist 1 ∞
title /discs/disc/tracklist/title 1 1
videos /discs/disc/videos 0 ∞
title /discs/disc/videos/title 1 1

• R-distance descendant is based on the number of steps in a path. It reflects
that leaves which are close to the root (with short paths) are the most impor-
tant. This heuristic score is calculated by the following equation:

∀aS ∈ S, rDist(aS) = 1 +
1− depth(aS .path)

DepthMax
(2.19)

where DepthMax is the maximum depth in the tree and depth returns the
depth of a path (number of steps in the path). For instance, Table 2.6 shows
the depths of a few elements (leaves) and their paths from the left tree A of
Figure 2.2.

Table 2.6 Example of depth (depth(p)) and position (pos(p)) of elements and their
paths from the left schema S of Figure 2.2.

Element Path p depth(p) pos(p)
styles /discs/disc/styles 3 1
genres /discs/disc/genres 3 2
title /discs/disc/videos/title 4 3
title /discs/disc/title 3 4
mainrelease /discs/disc/mainrelease 3 5

• K-closest descendant is based on the position of an element (precisely a
leaf) in the tree. It is based on an assumption that the order of elements is
important, i.e., more important elements first occur in a schema. The score
of this heuristic is calculated by the equation:
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∀aS ∈ S, kClosest(aS) = 1 +
1− pos(aS .path)

|S|
(2.20)

where |S| is the number of elements (leaves) in the XML tree S; pos(path)

is the position of the leaf from this tree which is pointed by a path and the
numbering is based on the depth-first search.

For instance, Table 2.6 contains the position of a few elements (leaves) and
their paths from the left tree S of Figure 2.2.

Remark. It should be noted that there is a crucial difference between the
importance of steps (tags) in a path (Equation (2.8)) and the importance
of elements (leaves) in the schema (Equation (2.20)). In the first case the
importance of steps (tags) in a path is considered in the context of a single
element. On the other hand, in the latter case the order of the element is
considered in the context of the whole schema.

Example. Calculating the finalScore of a leaf element aS1 “title” with pathS
“/discs/disc/title” goes as follows. First, the importance of the element with the
given path is computed using heuristics (2.17)-(2.20):

req(aS1 ) = 1
1 = 1, because inherited minOccurs = 1

unique(aS1 ) = 0, because inherited maxOccurs =∞

rDist(aS1 ) = 1 + 1−3
4 = 0.5

kClosest(aS1 ) = 1 + 1−4
11 = 0.73.

(2.21)

The normalised final score is calculated by Equation (2.15) and equals 0.89, be-
cause the maximum importance for all considered leaf elements (paths) equals 2.5.

In contrast, the finalScore of a leaf element aS2 “title” with a pathS
“/discs/disc/tracklist/title”

goes as follows. First, the importance of the element with the path is computed:

req(aS2 ) = 1
1 = 1, b/c inherited minOccurs = 1

unique(aS2 ) = 0, b/c inherited maxOccurs =∞

rDist(aS2 ) = 1 + 1−4
4 = 0.25

kClosest(aS2 ) = 1 + 1−10
11 = 0.18.

(2.22)

Hence, the normalised final score equals 0.57. The resulting weight properly
reflects the expert opinion that the “title” of a compact disc is more important than
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Figure 2.6 Real-world data example: XML schema elements with hierarchies ex-
tracted from Discogs (left tree - S) and FreeDB (right tree - T) datasets with final
scores (FS), subset weights (W) and weights of mapped elements (shown on ar-
rows).

the “title” of a single track. Figure 2.6 contains two real-world schema trees with
final scores (abbr. FS) calculated for each leaf element.

Moreover, all leaf elements (based on final scores) are classified to the pre-
defined subsets (with the predefined weights), ranking these elements from most
to least important. We can assume three importance subsets: the most important
with a weight of 1.0 which contains elements with final scores ∈ ]0.7,1], average
important with a weight 0.7 which contains elements with final scores ∈ ]0.5,0.7],
and the least important with a weight of 0.5 which contains elements with final
scores ∈ [0,0.5]. The weights expressing the importance (abbrev. W) of each ele-
ment are presented in Figure 2.6. For instance, the element “year” from S with a
final score of 0.75 is classified into the most important subset with a weight of 1.0,
but a coreferent element from T with a final score of 0.4 is classified into the least
important subset with a weight of 0.5. Moreover, the final weights (which express
the importance) of the mapped pairs of elements are shown on the mapping arrow
and are equal to the minimum of weights of the mapped elements, i.e. it equals 0.5
for the considered elements.
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2.3.6 Algorithm features

The algorithm creates mappings between XML leaf elements. One element (which
is represented by a path) from the first schema is matched to at most one element (a
path) in the second schema. Moreover, the method to detect coreferent XML paths
applies a bottom-up strategy. It checks all combinations of fine-grained elements
and finds a match even if elements at a higher level are not similar. Because of
this, no coreferent elements get lost. This strategy is more expensive than the
top-down strategy, where the matching of parent element restricts the choices for
all descendant elements. However, the top-down solution might mislead matchers
when higher structures are different, but lower ones are quite similar.

2.4 Evaluation and discussion

Our system is compared with the popular schema matching systems COMA 3.0 [18,
84], Cupid [17], QMatch [76], HMAT [75], a method by Lu et al. [56] (referred to
in what follows also as MatchingLu), and also with a two-level string matcher [8]
(referred to in what follows also as StringMatcher II). The datasets used in this
comparison are described in what follows.

Figure 2.7 Purchase order schemas pair 1 (PO1).

Figure 2.8 Purchase order schemas pair 2 (PO2).
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Figure 2.9 Purchase order schemas pair 3 (PO3).

Figure 2.10 University courses schemas.

2.4.1 Datasets

To illustrate the proposed approach we consider three different real-world datasets,
respectively, containing information about ‘compact discs’, ‘purchase order’, ‘uni-
versity courses’ and a synthetic dataset which is generated for the purpose of exe-
cution time evaluation.

Compact disc data are represented by two schemas (also being used in our
running example). The first schema is extracted from FreeDB and consists of 8
leaf elements. The second schema is extracted from Discogs and consists of 33
leaf elements, of which 7 have been identified manually as being coreferent with
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the FreeDB elements. The real coreferent elements are presented in Table 2.10.

The purchase order data comprise three schema pairs that were used in evalu-
ating other schema matching approaches [17,76]. Each pair has a different level of
complexity. The first pair shown in Figure 2.7 is the simplest one, where the dif-
ference mostly consists in the tags’ abbreviations and the structure. Each schema
consists of 7 leaf elements, all of which have been identified manually as being
coreferent. The second pair shown in Figure 2.8 differs (besides the tags’ abbre-
viations and structure) in the usage of synonyms. Each schema consists of 8 leaf
elements, all of which have also been identified manually as being coreferent. Fi-
nally, the schemas of the last pair shown in Figure 2.9 are similar to the second pair,
but the number of leaf elements is larger. Each schema of the last pair consists of
33 leaf elements, of which 28 are coreferent. The actual coreferent elements of the
first and second purchase order pairs are presented in Table 2.10. The coreference
of the last pair is not presented due to limited space and similarity to the truly real
coreferent elements of the second pair.

The university course data comprise four schemas, one schema (called source)
is from [76] and three other are from the AnHai Doan repository4, which are de-
rived from the websites of three universities: Reed College (Reed), University of
Wisconsin-Milwaukee (UWM) and Washington State University (WSU). These
schemas are presented in Figure 2.10 and are considered in pairs: (Source, WSU)
contains 10 pairs of coreferent elements, (Source, UWM) 11 and (Source, Reed)
10. Truly coreferent elements were manually identified by experts based on the
schemas and instance data and are presented in Table 2.9.

Table 2.7 contains a summary of these datasets. The number of elements in the
data vary between 9 and 43, while the number of leaves vary between 7 and 33.
The maximum depth for these datasets equals 5, while the average depth does not
exceed 4.

The synthetic data comprise six pairs of schemas which are generated by multi-
plexing of purchase order pair 3 (PO3, PurOrd3) shown in Figure 2.9 and replacing
the elements’ names by random words of length 3 through 10. For instance, the
pair (PO3-2, PurOrd3-2) consists of two copies of the pair (PO3, PurOrd3) with
new elements’ names, the pair (PO3-3, PurOrd3-3) consists of three copies of the
pair (PO3, PurOrd3), etc. The number of elements in the pairs vary between 42/44
and 602/632, while the number of leaves vary between 33 and 495. Table 2.8 con-
tains a summary of these datasets. The input size represents multiplication of the
leaf counts of the two trees.

4Doan, AnHai, http://www.cs.washington.edu/research/xmldatasets
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Table 2.7 Real-world datasets.
Datasets # elements # leaves Max

depth
Average
depth

# coreferent
elements

A: FreeDB 11 8 4 3.1
7

B: Discogs 39 33 5 3.9
A: PO1 10 7 4 3.1

7
B: PurOrd1 9 7 3 2.4
A: PO2 13 8 4 3.4

8
B: PurOrd2 15 8 4 3.9
A: PO3 41 33 4 3.2

28
B: PurOrd3 43 33 4 3.8
A: Source 14 10 4 3.5

10
B: REED 16 12 4 3.3
A: Source 14 10 4 3.5

10
B: UWM 21 15 5 3.9
A: Source 14 10 4 3.5

10
B: WSU 20 16 4 3.3

2.4.2 Experiment: Path comparison

Goal. This experiment was conducted to show the advantages of using our method
(referred to as Paths Matcher) and the two-level string comparison method as pro-
posed in [8] (referred to as String Matcher II).

Procedure. A set of path pairs was compared by Paths Matcher and String Matcher
II, accordingly. The latter method was chosen in this comparison because it is sim-
ilar to Paths Matcher while the main difference is that StringMatcher does not take
into account the positions of the path elements.

Result. Table 2.11 presents the PTVs denoting the (un)certainty of coreference
for selected pairs of paths, calculated using both methods. The columns corre-
spond to particular methods and rows contain selected paths from the CD and
university course datasets. Path pairs from the CD datasets have equal number
of steps and different steps at the beginning, but are more similar at the end. As
Paths Matcher takes into account this feature of coreferent paths, it gives much
better results for these pairs than the other method. However, when the paths are
similar at the beginning the results obtained using Paths Matcher are only slightly
better. Thus, our method properly implements the assumption that not all steps are
equally important and that differences at the beginning of the paths do not exclude
the paths’ coreference.
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Table 2.8 Synthetic datasets.

Datasets # elements # leaves Max
depth

Average
depth

Input
size

A: PO3-1 42 33 5 4.2
1089

B: PurOrd3-1 44 33 5 4.8
A: PO3-2 82 66 5 4.2

4356
B: PurOrd3-2 86 66 5 4.8
A: PO3-3 122 99 5 4.2

9801
B: PurOrd3-3 128 99 5 4.8
A: PO3-5 202 165 5 4.2

27225
B: PurOrd3-5 212 165 5 4.8
A: PO3-10 402 330 5 4.2

108900
B: PurOrd3-10 422 330 5 4.8
A: PO3-15 602 495 5 4.2

245025
B: PurOrd3-15 632 495 5 4.8

Paths Matcher properly deals with the differences in the schema structures
(e.g., the fourth row of Table 2.11), abbreviations (e.g., “tracklist” and “tracks”
in the fourth row) and misspellings. This is confirmed by the larger PTVs re-
turned by our method for truly coreferent elements (cf., e.g., “/cddb/disc/year”
and “/discs/disc/year” in the first row of Table 2.11) and lower PTVs for ele-
ments that are not coreferent, c.f. for instance “/root/courseListing/restrictions”
and “/root/course/instructor” in row 5 of Table 2.11.

2.4.3 Evaluation settings

To determine the quality of our approach Paths Matcher, we compared results ob-
tained by Paths Matcher against the manually derived results from the Tables 2.9
and 2.10. We can distinguish three sets. The first set, true positive B, contains the
truly coreferent objects which are automatically derived by the approach. The sec-
ond set, false negative A, contains truly coreferent objects which are not identified.
The last set, false positive C, are objects falsely identified as coreferent. Based on
the cardinality of these sets we specified three quality measures of precision, recall
and F-Measure. These are commonly used in Information Retrieval [85].

Precision is one of the important measures of classifiers quality and is defined
in our case as the fraction of truly coreferent objects among all objects classified
by a given algorithm as being coreferent:

Precision =
|B|

|B|+ |C|
. (2.23)
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Table 2.9 Real coreferent paths of university courses datasets.
Source vs Reed Source vs UWM Source vs WSU
/root/course/courseNumber /root/course/courseNumber /root/course/title
/root/course/crse /root/courselisting/course /root/course/title
/root/course/section /root/course/title /root/course/instructor
/root/course/sect /root/courselisting/title /root/course/instructor
/root/course/title /root/course/credits /root/course/time/start
/root/course/title /root/courselisting/credits /root/course/times/start
/root/course/instructor /root/course/section /root/course/time/end
/root/course/instructor /root/courselisting/sectionlisting/section /root/course/times/end
/root/course/place/building /root/course/time/day /root/course/place/building
/root/course/place/building /root/courselisting/sectionlisting/days /root/course/place/bldg
/root/course/credits /root/course/time/start /root/course/place/room
/root/course/units /root/courselisting/sectionlisting/hours/start /root/course/place/room
/root/course/place/room /root/course/time/end /root/course/time/day
/root/course/place/room /root/courselisting/sectionlisting/hours/end /root/course/days
/root/course/time/start /root/course/place/building /root/course/courseNumber
/root/course/time/starttime /root/courselisting/sectionlisting/bldgandrm/bldg /root/course/crs
/root/course/time/end /root/course/place/room /root/course/credits
/root/course/time/endtime /root/courselisting/sectionlisting/bldgandrm/rm /root/course/credits
/root/course/time/day /root/course/instructor /root/course/section
/root/course/days /root/courselisting/sectionlisting/instructor /root/course/sect

High precision means that the method returns more relevant (coreferent) than
irrelevant results. Recall is another important quality measure which in our case
can be defined as the fraction of true positive objects among all coreferent objects
present in a test dataset:

Recall =
|B|

|A|+ |B|
. (2.24)

High recall means that a method is capable of discovering most of the actu-
ally relevant (coreferent) objects. F-Measure is the last of the measures. It is the
harmonic mean of precision and recall:

F-Measure = 2× Precision×Recall
Precision+Recall

. (2.25)

Neither precision nor recall alone can accurately express matching quality. On
the one hand, precision can be usually maximised at the expense of poor recall
by reducing the number of returned objects. On the other hand, high recall can
be achieved at the expense of poor precision by increasing the number of returned
objects. Therefore, the F-Measure is used in our evaluation as a measurement for
the balance between precision and recall.

Our algorithm employs two thresholds (thresholdT and thresholdF ) to de-
cide on the paths’ coreference (see Section 1.4.4). Thresholds are set to maximise
quality measures (precision, recall and F-Measure5). We have observed that the

5Paths with an unknown coreference status are considered as non-coreferent for the calculation of
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Table 2.10 Real coreferent paths of Purchase Order datasets PO1 and PO2 and
also CD datasets.

Pair PO1 Pair PO2 Discogs vs FreeDB
/po/orderNo /po/poShipTo/street /discs/disc/id
/purchaseOrder/orderNo /purchaseOrder/deliverTo/address/street /cddb/disc/did
/po/purchaseInfo/shippingAddr /po/poShipTo/city /discs/disc/artists/name
/purchaseOrder/shipTo /purchaseOrder/deliverTo/address/city /cddb/disc/artist
/po/purchaseInfo/billingAddr /po/poBillTo/street /discs/disc/title
/purchaseOrder/billTo /purchaseOrder/invoiceTo/address/street /cddb/disc/dtitle
/po/purchaseInfo/lines/item /po/poBillTo/city /discs/disc/genres
/purchaseOrder/items/item /purchaseOrder/invoiceTo/address/city /cddb/disc/category
/po/purchaseInfo/lines/quantity /po/poLines/item/line /discs/disc/styles
/purchaseOrder/items/qty /purchaseOrder/items/item/lineNumber /cddb/disc/genre
/po/purchaseInfo/lines/unitOfMeasure /po/poLines/item/qty /discs/disc/year
/purchaseOrder/items/uom /purchaseOrder/items/item/quantity /cddb/disc/year
/po/purchaseDate /po/poLines/item/uom /discs/disc/tracklist/title
/purchaseOrder/date /purchaseOrder/items/item/unitOfMeasure /cddb/disc/tracks/title

/po/poLines/count
/purchaseOrder/items/itemCount

Figure 2.11 The F-Measure of Paths Matcher for different datasets depends on the
setting of threshold for µp̃(F ).

quality measure of matching for each dataset depends on the setting of thresholdF
for µp̃(F ), while thresholdT for µp̃(T ) does not depend on the dataset and can
easily be fixed to 0.5. Figure 2.11 shows that the F-Measure for each dataset de-
pends on the setting of the threshold for µp̃(F ). For instance, the best results for
the CD data are achieved for thresholdF between 0.15 and 0.35.

The schema matching systems that are used in our comparison have a set of
tunable parameters. To determine the optimal setting for the Cupid and QMatch

precision and recall.
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Table 2.11 Comparison of two algorithms for detecting paths coreference.

Paths Paths Matcher String
Matcher II

/cddb/disc/year T: 1.00 T: 1.00
/discs/disc/year F: 0.06 F: 0.25
/cddb/disc/genre T: 1.00 T: 1.00
/discs/disc/genres F: 0.06 F: 0.25
/cddb/disc/dtitle T: 1.00 T: 1.00
/discs/disc/title F: 0.12 F: 0.25
/cddb/disc/tracks/title T: 1.00 T: 1.00
/discs/disc/tracklist/title F: 0.17 F: 0.42
/root/course/instructor T: 1.00 T: 1.00
/root/courseListing/restrictions F: 0.56 F: 0.12
/root/course/title T: 1.00 T: 1.00
/root/courseListing/title F: 0.19 F: 0.04
/root/course/days T: 1.00 T: 1.00
/root/courseListing/sectionListing/days F: 0.33 F: 0.67

algorithms, a set of experiments was run [76]. The threshold of the label matcher,
which is used in both algorithms to determine whether two labels should be con-
sidered as a match, is set to 0.45. Next, the significance value attributed to the
match value of the label when computing the path match is 0.8 for Cupid and
0.43 for QMatch; the significance value attributed to the quality of matching of
children when computing the paths match is 0.2 for Cupid and 0.285 for QMatch.
Moreover, the overall threshold value used to make a decision on whether or not
to increment or decrement leaf similarity values based on ancestor values is 0.6
for Cupid and 0.7 for QMatch. The increment and decrement constants for both
algorithms by which the similarity values are increased or decreased are fixed to
0.1 and 0.075 respectively. QMatch uses two more parameters. The first, i.e. the
significance value of the property set (i.e. max occurrence, order of elements, data
type) attributed to the match degree when computing the paths match is 0.285. The
second parameter, i.e. the weight attributed to the path difference when computing
the paths match for non-leaf nodes is 0.3. Moreover, to secure a fair comparison
of QMatch and Cupid, a modified version of the former, denoted QMatch’, is used
which limits the property match to a data type match.

The parameters used to fine tune the HMAT system are the following: lin-
guistic similarity threshold (lt), root similarity threshold (rt), descendant similar-
ity threshold (dt), and sibling similarity threshold (st). Only similarity measures
which exceed these predefined thresholds are considered for evaluation. The sys-
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tem gave optimum performance for the following values: lt=0.4, rt=0.5, dt=0.4,
and st=0.4 [75]. In contrast, MatchingLu employs one threshold which is fixed to
0.28 in our experiments.

The last matching system which we compared with our Paths Matcher is COMA.
A key feature of COMA is its flexible support for multiple, independently exe-
cutable matchers that can be executed within a user-controlled match process or
workflow. We used the workflows OnlyNodesW and AllContextW, which returned
the best results. AllContextW identifies and matches all contexts by considering
all paths (sequences of nodes) for a shared element from the root to the element,
while OnlyNodesW creates matching without contexts. Also, both workflows ap-
ply predefined matchers, such as label matcher, path matcher, structure matcher
and synonyms matcher.

2.4.3.1 Experiment: Comparison results

Goal. In this experiment, accuracy of Paths Matcher is evaluated by comparing
its results with a ground truth taxonomy and with alternative approaches.

Procedure. The accuracy of our method and the alternative approaches is mea-
sured by precision, recall and F-Measure. First, the result of Paths Matcher is
compared to COMA 3.0 and MatchingLu on the CD dataset. Next, our method
is evaluated by comparing the result with all alternative approaches on the PO
datasets and the university datasets.

Result. Figure 2.12 presents the precision, recall and F-Measure for the com-
pact disc data used in our experiments and calculated for the results obtained us-
ing our algorithm (Paths Matcher), COMA 3.0 and MatchingLu. Paths Matcher
and COMA returned ex aequo results for the CD dataset, while MatchingLu was
slightly better. However, it should be noted that our method is a simple matcher
based only on labels, in contrast to other methods which use a set of predefined
matchers, synonyms, abbreviations mappings tables (in the case of COMA) and a
WordNet dataset (in the case of the MatchingLu method).

Figure 2.12 Precision, recall and F-Measure of our method (Paths Matcher),
COMA 3.0 and MatchingLu for CD data set.
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Moreover, our approach is compared with Cupid, QMatch’, QMatch, HMAT,
and with COMA 3.0 and MatchingLu using other datasets. Figure 2.13 and Fig-
ure 2.14 show the results for three pairs of schemas of the Purchase Order and
University Courses datasets, respectively. All of the methods return fairly good
results. However, as was mentioned above, our approach does not use synonyms
and abbreviations mappings as does COMA or QMatch. This explains the worse
results of Paths Matcher for pairs PO2 and PO3 in Figure 2.13, where knowledge
about synonyms is crucial in order to detect true positive mappings. Surprisingly,
MatchingLu returns worse results for these two sets even though it uses WordNet
because it has failed to map the elements’ names with noise characters, e.g., “po-
ShipTo” and “poBillTo” with “deliverTo” and “invoiceTo”, respectively. Nonethe-
less, Paths Matcher returns better results than other methods for some pairs of
schemas that differ the most in structure and names (abbreviations) of their ele-
ments, i.e. for pair PO1 in Figure 2.13 or Source vs WSU in Figure 2.14.

Figure 2.13 Precision, recall and F-Measure of Purchase Order data for our
method (PathMatcher), Cupid, QMatch’, QMatch, COMA 3.0, HMAT and
LuMatching.

Figure 2.14 Precision, recall and F-Measure of University Courses data for
our method (PathMatcher), Cupid, QMatch’, QMatch, COMA 3.0, HMAT and
LuMatching.
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2.4.3.2 Experiment: Execution time

Goal. In the last experiment, we investigated to what extent the use of the Paths
Matcher method introduces a computational overhead with respect to alternative
approaches.

Procedure. The execution time of ours and alternative approaches (COMA 3.0
and MatchingLu) was measured in this experiment. These approaches were se-
lected for the comparison for the following reasons. COMA 3.0 is a well-known
approach that uses different schema information and decides on matching based
on the combined results of several individual matchers. On the other hand, Match-
ingLu decides on matching by using an external source of information, i.e. Word-
Net. Thus both methods implement rather complex and extra data demanding
matching algorithms, in contrast to our matcher which implements a simple ap-
proach which basically boils down to matching schema elements based only on
path comparison. This experiment is composed of two sub-experiments. The first
sub-experiment is conducted to measure the execution time for matching small
schemas (the number of leaves is not larger than 33) which are used in the liter-
ature to check the quality of schema matching methods. For each schema pair,
the matching procedure is repeated 100 times in order to obtain mean time eval-
uation. The second sub-experiment is conducted to collect the execution times of
the schema matching methods under comparison for larger schemas, where the
number of leaves varies between 33 and 495. We subdivided the input size, repre-
sented by multiplication of the leaves count of the two schema trees into intervals
and then calculated the average execution times for each interval (each experiment
is repeated 100 times).

Figure 2.15 Execution time of matching small schemas for our method (Path-
Matcher), COMA 3.0 and MatchingLu.

Result. The results of the first sub-experiment are shown in Figure 2.15 (for each
schema pair separately) and in Figure 2.16 (average execution time). Our approach
needs, on average, only 37 ms to establish matching, whereas COMA 3.0 does the
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same almost 3 times slower. However, MatchingLu generates matching with a
similar quality (confirmed by F-Measure in Figure 2.16) on average more than
90 times slower than our approach and 25 times slower than COMA 3.0. Com-
puting semantic similarities by MatchingLu is a very expensive task: given two
words, the program algorithm checks all of their relations stored in WordNet and
tries to find the highest ranked connection. Even though they restrict the relation
to synonymy and hypernymy only, the searching space in WordNet is still huge.
Moreover, the normalized rate between execution time and F-Measure is calcu-
lated. Figure 2.16 shows these rates for the evaluated methods. Namely, it equals
0.007 for the MatchingLu, that is based on WordNet, 0.225 for COMA and 0.768
for our method.

The results of the second sub-experiment are shown in Figure 2.17. Our
method also copes well with large schemas. Paths Matcher outperforms COMA
3.0, especially for the largest schemas.

Figure 2.16 Normalized rate between execution time and F-Measure for our
method (PathsMatcher), COMA 3.0 and MatchingLu.

Figure 2.17 Execution time of matching large schemas for our method (Path-
Matcher), COMA 3.0 and MatchingLu.

2.4.4 Experiment: Schemas coreference

Goal. In this experiment the coreference of whole schemas is evaluated.
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Procedure. PTVs expressing coreference of all matched paths are aggregated
using the Sugeno integral, as defined in Definition 4. The resulting aggregated
PTV then expresses the (un)certainty about the coreference between the two input
XML schemas.

Result. Table 2.12 presents aggregated PTVs of XML schema pairs from our
datasets. For truly coreferent schema pairs we have obtained high certainty degrees
about their coreference, and for non-coreferent these degrees were low. The high-
est certainty about coreference of schema pairs was obtained for (Source,Reed)
and (Source,WSU), which in fact are the most similar. On the other hand, other
schema pairs have lower certainty of coreference because they significantly differ
in terms of tags names and structure.

Table 2.12 Schemas coreference.
Datasets FreeDB Source Source Source Pair Pair Pair

Discogs Reed UWM WSU PO1 PO2 PO3

PTV
T: 1.00 T: 1.00 T: 1.00 1.00 1.00 1.00 1.00
F: 0.20 F: 0.00 F: 0.19 0.00 0.33 0.30 0.20

2.5 Conclusions
In this chapter we propose a novel method for finding coreferent schema elements
based on coreferent paths, which may help to further decide on the coreference
of the whole XML schemas. Paths are one of the most crucial metadata in XML
files. Detection of coreferent paths requires recognising coreferent steps which
paths are composed of. We treat coreference as a binary notion, i.e., two paths
are either coreferent or not. However, we assume that the results of coreference
detection may be uncertain, which is represented by employing possibilistic truth
values.

Coreference is considered here in a hierarchical way. On the basic level, the
coreference of steps (parts of XML paths) is determined by a low-level string com-
parison method [8].

Then information on step coreference, with an explicit representation of its
related uncertainty using PTVs, is properly aggregated to obtain information on
paths coreference which is, in turn, further aggregated to finally decide on the
coreference of whole XML schemas. We apply a Sugeno integral for PTVs to
aggregate information on the coreference of subsequent levels of this hierarchy.
This allows us to explicitly cope with the position of the elements in a path and
with the relative importance of paths within their schema which are set up by our
novel techniques.
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The presented novel schema matching approach is the answer for the first
research question set in this PhD which concerns syntactical matching of corre-
sponding schema elements of heterogeneous datasets based only on schema infor-
mation. In contrast, in the next chapter a novel schema matching approach which
is based on content data is proposed as the answer for the next research ques-
tion. More specifically, statistical analysis and lexical comparison of content data,
and efficiently detected coreferent tuples across heterogeneous datasets are used to
establish semantical matching between corresponding schema elements. As will
be explained this schema matching approach improves the results of the schema
matching at the expense of using additional information.





3
Coreference detection in schema based

on coreferent content data

3.1 Introduction

The existence of coreferent content data (coreferent tuples, duplicates) which de-
scribe the same entity but in a different way across multiple, related databases sig-
nificantly lowers data quality and should be avoided. However, a small number of
coreferent tuples can be useful in the data integration process, which involves im-
porting data from one source to another. Namely, coreferent tuples may be helpful
in establishing a true matching between the corresponding attributes of heteroge-
neous database schemas. This is known as the schema matching problem, which
is the first step in data integration and is investigated in this chapter. In contrast
to the schema matching approach in the previous chapter which is based only on
schema information, here we exploit also data to match the schemas.

3.1.1 Problem illustration

As a motivating example let us consider the schema matching scenario in which
corresponding attributes (schema elements) in the source dataset S in the leftmost
XML tree in Figure 3.1 and the target dataset T in the rightmost XML tree in
Figure 3.1 have to be aligned as in Figure 3.1. Without loss of generality, XML
data can be represented in Tables such as the source dataset in Table 3.1 and the



3-2 COREFERENCE DETECTION IN SCHEMA BASED ON COREFERENT DATA

Figure 3.1 POI data example: parts of XML documents from the source dataset S
(left tree) and the target dataset T (right tree). The filled boxes are the attributes
(elements) defined in the schema, while the not-filled ones are their values. Arrows
represent mappings of coreferent schema elements (metadata).

target dataset in Table 3.21. The attributes “Key”, “Name”, “Lat”, “Lon” and “Cat-
egory” in the left-hand tree in Figure 3.1 and Table 3.1 have to be matched to the
attributes “ID”, “POI”, “Geo1”, “Geo2” and “Type” in the right-hand tree in Fig-
ure 3.1 and Table 3.2, respectively. It is obvious that matching techniques which
are based on the attributes’ names (such as Paths Matcher in Chapter 2) are not
capable to establish all of these matchings. Semantical matching of corresponding
attributes has to be established as coreferent attributes may have different names.
Moreover, an attribute “Address” in Figure 3.1 and in Table 3.1 is decomposed
into a number of (sub)attributes: “Street”, “City”, “ZipCode” in Figure 3.1 and
in Table 3.2. Thus, a one-to-many matching between these attributes is required;
namely, a concatenation function has to be applied to solve the attribute granu-
larity problem. In general also the coverage problem of matched attributes exists,
i.e. coreferent attributes do not necessarily completely have to represent the same
information; for example, the attribute “Address” in Figure 3.1 and in Table 3.1
does not contain information about the country. Moreover, due to errors, inaccu-
racies and lack of standardisation, coreferent data are not bound to be equal, i.e.
the Belfry in Ghent has a different category in the considered tables. It should be
clear that detected coreferent tuples do not guarantee perfect schema matching, i.e.
the attributes “Name” and “Type” may contain similar values, e.g. cafe or theatre,
which may mislead the matching system. Therefore, all of this makes the finding
of coreferent data in schemas using content data a challenging task.

Examples of coreferent tuples are the objects described in the first, second,
fourth, fifth and sixth rows in Table 3.1 and Table 3.2, respectively. They have
slightly different names, similar geographic coordinates and different categories

1The order of datasets does not matter, i.e. there exists schema matching between corresponding
attributes from the source dataset and the target dataset, and vice versa.
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Table 3.1 Example of objects extracted from the source dataset S
Key Name Lon. Lat. Category Address

1 Belfry & Cloth Hall 3.724911 51.053653 Tourist Attract Sint-Baafsplein, 9000 Ghent
2 Saint Bavo 3.797826 50.984194 church Sint-Baafsplein, 9000 Ghent
3 Cafe-Restaurant De Ster 4.050876 51.281777 restaurant Grotestraat 91, 7471 BL Goor
4 Het Kouterhof 3.665122 51.034331 lodging Stoopkensstraat 24, 3320 Hoegaarden
5 Borluut B&B 3.657992 51.018882 lodging Kleine Gentstraat 69, 9051 St-Denijs-Westrem
6 Gravensteen Hotel 3.719741 51.056485 hotel Jan Breydelstraat 35,9000,Ghent
7 Carlton Hotel 3.713951 51.036280 lodging Chartreuseweg 20, 8200 Brugge
8 Vlaamse Opera 3.722336 51.049746 theater Schouwburgstraat 3, 9000 Ghent

Table 3.2 Example of objects extracted from the target dataset T
ID POI Geo1 Geo2 Type Street City ZipCode
1 Belfort en Lakenhalle 51.054898 3.721675 Bell Tower Emile Braunplein Gent 9000 BE
2 Sint-Bavokerk 51.054898 3.721675 Church Sint-Baafsplein Gent 9000 BE
3 Cafe Theatre 51.049830 3.722015 Restaurant Schouwburgstraat 5-7 Gent 9000 BE
4 Het Kouterhof 51.034379 3.665140 Hotel Stoopkensstraat 24 Hoegaarden 3320 BE
5 Borluut Bed Breakfast 51.018938 3.657975 Hotel Kleine Gentstraat 69 St-Denijs-Westrem 9051 BE
6 Hotel Gravensteen 51.056465 3.719741 Hotel Jan Breydelstratt 35 Gent 9000 BE

and addresses, but they are still describing coreferent objects. These detected
coreferent tuple pairs in the considered datasets are used to derive schema match-
ing, known as horizontal matching. The same or similar attribute values among
coreferent tuple pairs imply coreference of the corresponding attributes of the
schemas.

However, detecting coreferent tuple pairs without having knowledge about
the correspondences between the attributes of heterogeneous schemas (known as
schema alignment) is time-consuming and error prone. It requires the comparison
of the values of each attribute from one schema with the values of each attribute
from the other schema. Thus, one of the main challenges in the efficient detec-
tion of coreferent tuple pairs is the reduction of the set of attributes involved in
the comparison to those that may correspond to each other. For this purpose our
content data-based approach statistically and lexically compares the attributes’ do-
mains and selects potentially corresponding (coreferent) attributes which are called
candidate attributes. This method is known as vertical matching. It significantly
decreases the number of comparisons and increases the quality of coreferent tuple
pairs detection. Candidate attributes give the first tips of the coreference among at-
tributes, which is confirmed or rejected by detected coreferent tuples or even may
be the basis to establish schema matching in case of a lack of coreferent tuples.
However, it should be clear that vertical matching is necessary but not sufficient
for efficient attribute coreference identification. Thus, our approach is a combi-
nation of vertical and horizontal schema matching methods used to establish the
matching of corresponding attributes.

Many problems have to be addressed while devising such a schema matching
algorithm. To sum up, the most important among them are the following:

• How can content data be useful in schema matching?
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• How can coreferent tuples be detected in unaligned schemas?

• How can one-to-one and one-to-many semantic matching be established be-
tween corresponding attributes?

• How can attribute granularity and the coverage matching problems occur-
rence be recognized?

3.1.2 Contributions

The objective of this chapter is to propose a novel automatic semantical match-
ing method of corresponding (coreferent) attributes in schemas based on data and
metadata. More specifically, the detection of coreferent attributes in schemas is
based on statistical and lexical analysis of content data and detected coreferent tu-
ples across pairs of datasets, which increases the confidence in schemas matching.
In other words, our method is a combination of vertical and horizontal schema
matching techniques that applies possibilistic truth values (PTVs) and a kind of
cardinality of a set of PTV to express the uncertainty about the matchings. Apart
from this, our approach copes with the attribute granularity problem and the infor-
mation coverage problem.

We will show that even a small number of coreferent tuples is sufficient to
establish a correct matching between corresponding attributes of heterogeneous
schemas. Such methods can then later be used to improve the coreference detection
of data described by schema which are considered as metadata of content data.

3.1.3 Outline

The remainder of this chapter is organized as follows. In Section 3.2, an exten-
sive overview of work related to the topic of this chapter is provided. Next, in
Section 3.3.2, an overview of our novel content data-based schema matching al-
gorithm is presented. In Sections 3.4-3.6, the details of the algorithm are studied.
In Section 3.7 an experimental study of the proposed methods and techniques is
reported. Finally, Section 3.8 summarizes the most important contributions of this
chapter.

3.2 Related work

Schema matching can be established by using different methods. Some methods
use only data (e.g. duplicates [19, 54]), others use only metadata (e.g. schema in-
formation [15–17,86], knowledge base [21]), whereas other methods use both data
and metadata, e.g. [18,20]. In this chapter the content data-based schema matching
approach is proposed which uses coreferent tuples. There is a large body of work
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on schema matching which uses content data [1]; for example, LSD [54] extracts
information from a training set and consists of a learning and classification phase.
More specifically, given a user-supplied mapping between schema elements, the
learning step looks at content data to train the learner, thereby discovering charac-
teristic content data patterns and matching rules. Next, these patterns and rules can
be applied to match other schema elements. As opposed the approach in [87] does
not require training or learning as in the learning-based or neural network tech-
niques, but captures valuable knowledge about the domain of the attribute. This
approach uses regular expression as a formalism to characterize a set of attribute
values. Having this regular expression, the corresponding attributes are detected
by matching the regular expression of one attribute with the value of another at-
tribute using the match function (Java built in function: java.util.regex). In many
cases it is still not clear which attributes correspond to each other. Thus, regular
expressions are a valuable and useful tool but should be supported by other tech-
niques. As opposed to most instance-based solutions which use summary infor-
mation (e.g., average value) for attribute classification, we derive schema matching
from detected coreferent tuples in the datasets. One schema matching approach us-
ing duplicates is ILA [88], which is a domain-independent program that learns the
meaning of external information by explaining it in terms of internal categories.
ILA considers a pair of objects as duplicates if both objects contain at least one
attribute value in common and relies on a high extensional overlap (a number of
coreferent tuples). In our opinion these assumptions are unrealistic.

IMap [20] is based on both schema and instance information as well as on a
domain ontology and uses past matchings. The duplicates are identified by the user
and only exact matches of attribute values are considered by a matcher. IMap copes
with various attribute granularities, as in Chua et al. [89] and Lu et al. [28], but
the focus is on numerical and differently scaled data (as opposed to our approach
which focuses on textual data). Statistical analysis is employed to data in dupli-
cates which are assumed to be identified by a common ID attribute. This means
that at least one attribute is already aligned. The approach of Chua et al. [89] clas-
sifies attributes into domain classes (e.g. categorical) and forms attribute groups
(sets of attributes from the same relation which may be corresponding) based on
predefined rules. Then, the correspondence scores of pairs of attribute groups are
calculated. Finally, attributes are matched based on these scores. The approach
of Lu et al. [28], one the other hand, uses correlation analysis techniques (super-
vised by the user) to identify attributes which are potentially semantically related;
secondly, they apply regression analysis to generate the relevant conversion func-
tion that allows the attribute values of one database to be transformed into attribute
values of the other database.

DUMAS [19], just as in our approach, drops several of the assumptions that
were made in the above works: coreferent tuples are automatically detected using
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unaligned schemas; a few coreferent tuples being sufficient to establish schema
matching (low extensional overlap). Moreover, it does not use any external source
of information, such as an ontology; it is a content data-based approach. In contrast
to our approach, DUMAS does not apply possibility theory and does not combine
vertical and horizontal schema matching methods to detect coreferent tuples and
establish schema matching.

3.3 Content data-based schema matching
Before we continue to describe our method for schema matching, first of all we
should define the problem more formally.

3.3.1 Problem definition

As a reminder, within the scope of this chapter it is assumed that entities from the
real world are described as objects (tuples) which are characterised by a number
of attributes (features). A schema R of a given dataset, which consists of tuples,
is identified by a set of attributes A. For each attribute a ∈ A, let dom(a) denote
the domain of a (the set of possible values for attribute a) and let dom′(a) denote
the subset of dom(a) comprising the values of a that are actually present in the
(tuples of the) dataset.

Two datasets are considered. The source dataset over the schema RS with the
set of attributes AS = {aS1 ,. . .,aSn} is denoted as S, while the target dataset over
the schema RT with the set of attributes AT = {aT1 , . . . , aTm} is denoted as T .
The one-to-many schema matching is defined as follows.

Definition 7 (One-to-many schema matching). A relationM is a schema matching
if:

M ⊆ 2AS × 2AT × M̃ (3.1)

where M = {mi} = {(A′S , A′T , m̃)}, A′S ⊆ AS , A′T ⊆ AT and A′S or A′T is a
singleton set, M̃ is the set of PTVs and m̃ ∈ M̃ expresses the certainty degree to
which A′S matches A′T .

Some additional properties may be associated with each matching m ∈ M .
For example, the local matching cardinality, denoted cardlm, is the number of
matched attributes in m, i.e., cardlm = |A′S |+|A′T | (e.g. cardlm is equal to 2 for a
one-to-one matching). Moreover, particular matchings may be classified to a type.
The following matching types are distinguished:

• full matching (coverage level 1): corresponding attributes have the same
meaning and cover completely the same concept, e.g. “Name” and “POI” or
“Type” and “Category” in Figure 3.1;
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• inclusion matching (coverage level 0.5): corresponding attributes have par-
tially the same meaning and do not cover completely the same concept, e.g.
“Address” in the source S in Figure 3.1 represents the address of a POI
which consists of a street, house number, city and zip code, and this is a part
of the concatenation of the attributes “Street”, “City” and “ZipCode” in the
target T in Figure 3.1, which consists of the same information as address
from the source but is extended by a country code. “Street” in the target T
in Figure 3.1 represents only a part of the address from the source. Thus,
two sub-types of matching are considered: the source is a part of the target
and the target is a part of the source, respectively;

• has a common part matching (coverage level 0.3): corresponding attributes
have partially the same meaning, do not cover completely the same concept
and are not an inclusion matching. E.g. the matching between “Address” in
the source S and “ZipCode” in the target T in Figure 3.1. “Address” repre-
sents the address of a POI which consists of a street name, house number,
city and zip code without the country code; while “ZipCode” in the target T
in Figure 3.1 represents the zip code and country code of a POI, thus only
the zip code is a common part.

• unknown (coverage level 0): if attributes do not match.

• concatenation. This is a special case of attribute matching which combines
two or more attributes. Combining matching types might result in another
matching type. For instance, a combination of two inclusion matchings may
give a full matching (of attributes) or an inclusion matching. E.g. let assume
inclusion matchings between attributes from the source S and the target T
in Figure 3.1: “Address” and “Street”; “Address” and “City”; “Address” and
“ZipCode”. Concatenation of these matchings gives a full matching.

The matching m ∈ M can be interpreted as a one-to-one matching of corre-
sponding attributes if the cardinalities of A′T and A′S are equal to 1.

Furthermore, in the context of a one-to-many schema matching M , we con-
sider a set D of coreferent tuple pairs which is defined as follows.

Definition 8 (A set D of coreferent tuple pairs). A set D of coreferent tuple pairs
consists of 4-tuples d = (tS , tT ,MV , d̃) where tS and tT are coreferent tuples
from the source and target datasets, respectively, MV is a set of attributes match-
ings for which there are coreferent values in both particular tuples tS and tT , and
d̃ is a PTV representing the (un)ceratinty that two tuples tS ∈ S and tT ∈ T are
coreferent.
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3.3.2 Algorithm

The novel content data-based schema matching Algorithm 3.1 creates matchings
between corresponding attributesAS andAT of the source dataset S and the target
dataset T , respectively, using content data. Therefore, the inputs for the algorithm
are the source and target datasets (S and T , respectively), and a set of parameters
(PV , PH and PC for each phase) which are used to establish a schema matching.
The objective of our algorithm is to establish as many valid one-to-one or one-
to-many schema matchings M for coreferent attributes as possible. Our approach
is classified as the hybrid content only based matching method according to the
classification from [1], which is presented in Figure 2.3.

Algorithm 3.1 SCHEMAMATCHINGALGORITHM

Require: Dataset S, Dataset T , Parameters PV , Parameters PH , Parameters PC
Ensure: Schema Matching M

1: MV ← getVerticalMatchings({dom′(aS)}aS∈AS
, {dom′(aT )}aT∈AT

,PV )
2: M ← getHorizontalMatchings(S,T ,MV ,PH )
3: M ← resolveConflicts(M ,PC)

The Algorithm 3.1 is composed of three main phases. First, vertical schema
matchings are established by the method getVerticalMatchings which compares
the domains of particular attributes (line 1 in Algorithm 3.1, which is further dis-
cussed in Section 3.4). Second, the established vertical matchings MV are used to
detect coreferent tuple pairs in the heterogeneous data sources which, in turn, con-
stitute a basis to generate horizontal schema matchings M by using the method
getHorizontalMatchings (line 2 in Algorithm 3.1, which is further discussed in
Section 3.5). Finally, conflicts are resolved by the method resolveConflicts (line
3 in Algorithm 3.1, which is further discussed in Section 3.6). These steps are
described in detail in the following sections.

3.4 Phase I: Vertical matching

The first phase of our novel schema matching approach is the generation of one-to-
one and one-to-many vertical matchings between corresponding attributes. These
matchings are established by Algorithm 3.2 based on statistical analysis and lex-
ical comparison of attribute domains. Thus the input for the algorithm are the
subsets of the domains consisting of these values that actually occur in tuples of
respective datasets, {dom′(aS)}aS∈AS

and {dom′(aT )}aT∈AT
, and also a set PV

of parameters which define the thresholds and submatcher settings and is detailed
further on. This phase consists of three steps.

In the first step, “Statistical analysis of content data”, the subsets of the attribute
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domains are statistically compared by the statistical matcher, and if particular sub-
sets are coreferent, then the matching between their corresponding attributes is
established (lines 2-18 in Algorithm 3.2); otherwise the attribute domains are lex-
ically compared in the second step called “Overlapping” by the lexical matcher
(lines 19-25 in Algorithm 3.2). More specifically, each pair of attributes is pro-
cessed sequentially by the following techniques. First, the results of the statistical
analysis of the subsets of the attribute domains (such as the analysing the average
length, average values, called attribute properties) are compared, which is a rela-
tively computationally non-expensive statistical technique. Second, only if coref-
erence between two attributes is not declared then the intersection of the subsets of
their domains, which are represented by multisets of terms, is calculated based on
the equality relation, i.e. two terms are added to the intersection if they are equal.
Thus, two attributes are considered as coreferent if a cardinality of the intersection
exceeds threshold. Third, if coreference between the attributes is still not declared,
then the subsets of their domains are calculated analogously to the second tech-
nique but based on the low-level string comparison technique [8] instead of the
equality relation. This is the most computationally expensive method of the three,
but it is also the most valuable because non-equal but coreferent terms can be de-
tected. The established matchings are added to the set M1:1

V of the one-to-one
schema matchings. Next, in the third step, called “Generalization”, from the es-
tablished one-to-one schema matchings in M1:1

V , a one-to-many schema matching
(∈ M1:n

V ) is generated (line 28 in Algorithm 3.2). Finally, the vertical schema
matching MV is composed of the one-to-one schema matchings M1:1

V and the
one-to-many schema matchings M1:n

V (line 29 in Algorithm 3.2). These steps are
described in detail in the following subsections.

3.4.1 Step 1: Statistical analysis of content data

In the first step the attribute domains of each schema are statistically analysed
separately using predefined Data Analysers PV .AN (lines 2-8 in Algorithm 3.2).
This returns a set of properties for each attribute which are considered as a basis
for some heuristics for determining the coreference of attributes. There is a large
body of work of such properties and heuristics [90–93]. Thus, we give only some
examples of such properties and also give an example of an application. These
aspects are subject to further research and outside the scope of the work. The
proposed examples of such heuristics are the following:

• average, minimum and maximum length as a number of characters in a value
without white spaces (numbers are considered as character strings, e.g., tele-
phone numbers, bank accounts, etc.);

• average, minimum and maximum number of tokens for alphabetic and al-
phanumerical data types. Each value is tokenised, which results in a set of
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Algorithm 3.2 VERTICALMATCHINGALGORITHM

Require: {dom′(aS)}aS∈AS
, {dom′(aT )}aT∈AT

, Parameters PV
Ensure: Schema Matching MV

1: Schema Matching M1:1
V ← null

2: Properties PS [], PT []
3: for all aS ∈ AS do
4: PS [aS ]← getProperties(dom′(aS),PV .AN )
5: end for
6: for all aT ∈ AT do
7: PT [aT ]← getProperties(dom′(aT ),PV .AN )
8: end for
9: for all aS ∈ AS do

10: for all aT ∈ AT do
11: Matching m← null
12: if compareStats(PS [aS ],PT [aT ]) > PV .thrStats then
13: m.A′S ← aS

14: m.A′T ← aT

15: m.πN ← π1
N

16: M1:1
V ←M1:1

V ∪m
17: continue
18: end if
19: m.πN ← compareDom(dom′(aS),dom′(aT ),PV )
20: FuzzyInteger πthr(domS ,domT ) ← getThr(PV .thrOverlap)
21: if πthr(domS ,domT ) ≺sup m.πN then
22: m.A′S ← m.A′S ∪ aS
23: m.A′T ← m.A′T ∪ aT
24: M1:1

V ←M1:1
V ∪m

25: end if
26: end for
27: end for
28: Schema Matching M1:n

V ← getGeneralization(M1:1
V )

29: MV ←M1:1
V ∪M1:n

V

substrings which are called tokens. In most cases, the tokens are separate
words. In our approach, the tokenisation of a value is equivalent to subdi-
viding the value in a multiset of tokens and deleting all white spaces in a
value;

• average, minimum and maximum value for numerical data types;

• data type: numerical (values contain only numbers), alphabetic (values con-
tain only letters and special characters), alphanumerical (values contain any
characters);
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Next, attributes aS and aT that have similar properties are considered as poten-
tially coreferent (candidate attributes, line 12 in Algorithm 3.2) and the established
matching m between them is added to the set of matchings M1:1

V (lines 13-16 in
Algorithm 3.2, similarity for all properties is assumed here). The statistical criteria
are very strict, thus this matching is assigned a full certainty which is expressed
by the fuzzy integer π1

N that ∀x ∈ N π1
N(x) = 1. The basis to decide if properties

are similar is the similarity function. We use a simple function that calculates the
similarity of properties for particular attributes as a normalised difference of prop-
erty values. The returned values are within the unit interval [0, 1], where 1 means
strong similarity and 0 means a complete lack of similarity. Properties with a sim-
ilarity above threshold PV .thrStats are considered to be similar. The similarity
function is defined by Equation (3.2) and is applied for all properties, except for
data type property which is considered similar only if compared data types are the
same.

simProp(aS , aT ) = 1− |propVal(aS)− propVal(aT )|
|propVal(aS)|+ |propVal(aT )|

(3.2)

Hereby aS ∈ AS and aT ∈ AT , and propVal is a method which gets the value of a
particular property, e.g., the maximum length of the values for an attribute aS (or
aT ).

Remark. Information from the schema, e.g. maximum value, etc., is not con-
sidered because it might be too general and may mislead the matching algorithm.
For instance, let assume a database of students with an attribute “Age” of type
INTEGER in the range of −231 to 231 − 1. This statistical analysis of the values
of the attribute “Age” which are actually presented in the database may return a
range of 20 to 29. This information can be more useful than data type restriction
which is defined in the database schema.

Table 3.3 Properties of attribute domains from the source dataset in Table 3.1.
Num means numerical datatype, str means alphabetic data type, and str-num means
alphanumeric datatype.

Property Name Lon. Lat. Category Address
Min length 10 8 9 5 27
Max length 23 8 9 15 44
Avg length 14.86 8 9 8 31.36
Min #tokens 2 - - 1 3
Max #tokens 4 - - 2 5
Avg #tokens 2.38 - - 1.13 3.86
Min value - 3.657992 50.984194 - -
Max value - 4.050876 51.281777 - -
Avg value2 - 3.756594 51.064419 - -
Data type str num num str str-num
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Example

Let us consider the attributes from the source dataset in Table 3.1 and the target
dataset in Table 3.2. The calculated properties of the subsets of the attribute do-
mains from these datasets are presented in Table 3.3 and Table 3.4, respectively.
Next, the similarities between these properties are calculated by Equation 3.2, e.g.
for the attributes aS = “Lon” and aT = “Geo2” we obtain:

MinLength: simProp(aS , aT ) = 1− |8−8|
|8|+|8| = 1

MaxLength: simProp(aS , aT ) = 1− |8−8|
|8|+|8| = 1

AvgLength: simProp(aS , aT ) = 1− |8−8|
|8|+|8| = 1

MinValue: simProp(aS , aT ) = 1− |3.657992−3.657975|
|3.657992|+|3.657975| = 0, 999998

MaxValue: simProp(aS , aT ) = 1− |4.050876−3.722015|
|4.050876|+|3.722015| = 0.957691

AvgValue: simProp(aS , aT ) = 1− |3.756594−3.701370|
|3.756594|+|3.701370| = 0.992595

(3.3)
Assuming that the threshold PV .thrStats is equal to 0.8, these attributes are con-
sidered as being coreferent because the similarity of all properties of these attribute
domains exceeds 0.8. The same holds for the attribute pair “Lat” and “Geo1”.
Thus, these two attribute pairs determine two one-to-one matchings which are
added to the set M1:1

V of one-to-one matchings. However, the other attribute pairs
are not coreferent based on the statistical information, therefore they are further
processed in the next step of our algorithm.

Table 3.4 Properties of attribute domains from the target dataset 3.2. Num means
numerical datatype, str means alphabetic data type, and str-num means alphanu-
meric datatype.

Property POI Geo1 Geo2 Type Street City ZipCode
Min length 12 9 8 5 15 4 7
Max length 21 9 8 10 20 17 7
Avg length 16.17 9 8 8.83 18.17 7.17 7
Min #tokens 1 - - 1 1 1 2
Max #tokens 3 - - 2 3 1 2
Avg #tokens 2.16 - - 1.17 2.16 1 2
Min value - 51.018938 3.657975 - - - -
Max value - 51.056465 3.722015 - - - -
Avg value3 - 51.044901 3.701370 - - - -
Data type str num num str str-num str str-num

3.4.2 Step 2: Overlapping

The attributes aS and aT , whose statistical properties are not similar enough, are
considered in this step. More specifically, a lexical comparison of the subsets
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dom′(aS) and dom′(aT ) of the attribute domains is conducted using soft strings
comparison. For that purpose, the method compareDom is used which works as
follows (lines 19-25 in Algorithm 3.2).

First, special characters that appear in the values of dom′(aS) and dom′(aT ),
i.e. dash, semicolon, dot, etc., are replaced by a space character, which results in
strings of terms separated by space. This way, each attribute is described by a mul-
tiset of obtained terms (WaS and WaT , respectively). Next, the intersection I of
these multisets is calculated according to formula (1.7). Thus, multiset I contains
the common terms of WaS and WaT , which are assigned a PTV (1,0) and are the
basis for further checking whether the particular attributes aS and aT are coref-
erent or not. Namely, these associated PTVs multiplied by the term multiplicity
form a multiset P̃ which is used to construct a possibility distribution πN (a fuzzy
integer) introduced in Definition 5.

The fuzzy integer πN of intersection I reflects the possibility that two attribute
domains are coreferent. Hence, if πN is greater than the threshold πthr(domS ,domT )

with respect to the order relation of Definition 6, then the attributes aS ∈ AS and
aT ∈ AT are considered to be potentially coreferent (candidate attributes, line 21
in Algorithm 3.2), and the established matching m between them is added to the
setM1:1

V of matchings (lines 22-24 in Algorithm 3.2). The threshold πthr(domS ,domT )

is a fuzzy integer and is dynamically calculated by the method getThr (lines 20 in
Algorithm 3.2). This threshold depends on the particular attribute domains and the
predefined parameter PV .thrOverlap, which specifies the percentage of domain
terms that overlap. More specifically, πthr(domS ,domT ) is constructed from n PTVs
(1,0), where n is calculated by the following equation:

n = bmin(|WaS |, |WaT |)× PV .thrOverlapc (3.4)

However, if a fuzzy integer m.πN of matching is not larger than the threshold
πthr(domS ,domT ), then the domains of the considered attribute aS and aT are analo-
gously compared again, but the equalness relation, which decides on the corefer-
ence of the terms, is replaced by the low-level string comparison method proposed
in [8]. This low-level comparison method estimates the possibility that two given
terms are coreferent or not (see Section 2.3.3.2). Two terms are considered as
coreferent if µp̃(F ) of the resulting PTV is lower than µp̃(F ) of the predefined
threshold PV . ˜thr (see Section 1.4.4).

Example

Let us consider the attribute aS = “Address” from the source dataset in Table 3.1
and the attribute aT = “City” from the target dataset in Table 3.2. Let us assume
that these attributes have not been indicated as coreferent based on the analysis
carried out in Step 1. After preprocessing the subset dom′(aS) of the attribute
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domain, the resulting multiset WaS contains the terms: “Sint-Baafsplein” (multi-
plicity 2), “9000” (3), “Ghent” (4), “Hoegaarden” (1), “St-Denijs-Westrem” (1),
“Gentstraat” (1), etc. Whereas, the multisetWaT of the subset dom′(aT ) of the at-
tribute domain consists of the terms: “Gent” (4), “Hoegaarden” (1) and “St-Denijs-
Westrem” (1). Next, the intersection I of the multisetsWaS andWaT is calculated
which contains two terms, “Hoegaarden” and “St-Denijs-Westrem”, both with a
multiplicity equal to 1 (the multiplicity of an element in the intersection of two
multisets is the minimum of the multiplicities of that element in both multisets, see
Section 1.4.2). Both returns are given an associated PTV (1,0). Thus, the fuzzy
integer of this intersection is constructed from the multiset of PTVs {(1,0);(1,0)}
by Equation 1.30.

Figure 3.2 Fuzzy integers derived from the possibilistic truth values of the at-
tribute matching (“Address”; “City”) based on the equality relation, the threshold
πthr(domS ,domT ) and the attribute matching (“Address”; “City”) based on the low-
level string comparison method.

Figure 3.2 (the top left-most graph) shows the multiset of possibilistic truth
values, where a circle denotes the possibility of T and a triangle denotes the pos-
sibility of F . The derived possibility distribution πN (the fuzzy integer) is shown
below the possibilistic truth values. The middle graph of Figure 3.2, in turn, shows
the multiset of PTVs which are used to construct the threshold πthr(domS ,domT )

which depends on the particular attribute domains and the predefined parameter
PV .thrOverlap and is shown in the graph below the multiset of PTVs. Following
the specification, the multiset of PTVs which is used to construct the threshold
πthr(domS ,domT ) consists of n PTVs equal to (1,0), where n is calculated by Equa-
tion 3.4 with PV .thrOverlap = 0.35 and equals to n = bmin(33, 6)× 0.35c =

2. The fuzzy integer πN is not larger than πthr(domS ,domT ) (w.r.t. Definition 6),
because the 1-cuts of both fuzzy integers have the same supremum equal 2. So,
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the domains of the considered attributes aS and aT are next compared using the
low-level string comparison method with µp̃(F ) = 0.5 as the predefined threshold
PV . ˜thr. That comparison returns an intersection I , which consists of the follow-
ing elements: (“Gentstraat”,“Gent”) with an associated PTV (1,0.3) and multiplic-
ity 1; (“Ghent”,“Gent”), (1,0.12), 4; (“St-Denijs-Westrem”,“St-Denijs-Westrem”),
(1,0), 1; and (“Hoegaarden”,“Hoegaarden”), (1,0), 1. Figure 3.2 (the right-most
top graph) shows the multiset of PTVs {(1,0); (1,0); (1,0.12); (1,0.12); (1,0.12);
(1,0.12); (1,0.3)}, which are used by Equation 1.30 to construct a fuzzy integer
πN and is shown below the PTVs in Figure 3.2. Now, it turns out that, the fuzzy
integer πN is larger than the threshold πthr(domS ,domT ) (w.r.t. Definition 6), because
the 1-cut of the right-most fuzzy integer has a higher supremum, equal 7, than the
middle fuzzy integer threshold, which has the supremum 2. This is the same fuzzy
integer threshold as above because it depends on the same particular attribute do-
mains - we consider the same attributes. Thus, the attributes “Address” and “City”
are considered as being potentially coreferent and the established matching m be-
tween them is added to the set M1:1

V of matchings.

3.4.3 Step 3: Generalization

The last step of the vertical matching phase derives a one-to-many schema match-
ingM1:n

V by using the method called getGeneralization based on one-to-one schema
matchingM1:1

V (line 28 in Algorithm 3.2). Afterwards, the vertical schema match-
ing MV is composed of the schema matching M1:n

V and M1:1
V (line 29 in Algo-

rithm 3.2). The method getGeneralization is implemented by the Algorithm 3.3
which works as follows.

The input schema matching M1:1
V , which is generated in steps 1 and 2 (Sec-

tion 3.4.1 and 3.4.2, respectively), is the basis to generate a set M ′1:n of one-to-
many matchings by combining a number of one-to-one matchings which have the
same attribute from AS or AT , i.e., a one-to-many matching has either the form:
(line 1 in Algorithm 3.3):

(A, aTj ), where A ⊆ AS ∧ |A| ≥ 2 ∧ ∀aSi ∈ A ∃(aSi , aTj ) ∈M1:1
V (3.5)

or,

(aSi , A), where A ⊆ AT ∧ |A| ≥ 2 ∧ ∀aTj ∈ A ∃(aSi , aTj ) ∈M1:1
V (3.6)

Afterwards, for each matching m1:n ∈ M ′1:n, the extended domains are com-
pared by the compareDom method (line 3 in Algorithm 3.3). This is done anal-
ogously as in the “Overlapping” step of Section 3.4.2. An extended domain is
constructed by the method getDom and contains concatenated values of all at-
tributes that are specified in the parameters, i.e., of all attributes forming the set A
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in m1:n (cf. (3.5)-(3.6)). The values are concatenated one by one and separated
with a white space into a new value which belongs to the extended domain.

Next, alternative matchings M1:1
alt ⊆ M1:1

V are selected by the method getAl-
ternatives (line 4 in Algorithm 3.3). An alternative matching m1:1 ∈ M1:1

alt for
m1:n should have at least one attribute in common with the matching m1:n ∈
M ′1:n, i.e., (aSk , a

T
l ) is an alternative matching with respect to (A, aTj ) if aSk ∈ A

or aTl = aTj , and similarly for (aSi , A). Finally, if the fuzzy integer πN of the one-
to-many matching m1:n is larger (w.r.t. Definition 6) than the fuzzy integer of any
alternative matching m1:1 ∈ M1:1

alt (line 6 in Algorithm 3.3), then the matching
m1:n is added to the schema matching M1:n

V (line 7 in Algorithm 3.3).

Algorithm 3.3 GENERALIZATIONALGORITHM

Require: Schema Matching M1:1
V

Ensure: Schema Matching M1:n
V

1: Schema Matching M ′1:n ← getCombination(M1:1
V )

2: for all Matching m1:n ∈M ′1:n do
3: m1:n.πN ← compareDom(getDom(m1:n.A

′
S),getDom(m1:n.A

′
T ))

4: Schema Matching M1:1
alt ← getAlternatives(M1:1

V ,m1:n)
5: for all Matching m1:1 ∈M1:1

alt do
6: if m1:1.πN ≺sup m1:n.πN then
7: M1:n

V ←M1:n
V ∪m1:n

8: break
9: end if

10: end for
11: end for

Remark. This generalization is specified for alphanumerical data, where nu-
merical data are considered as character data. For numerical data more sophisti-
cated concatenation method (such as aggregation or transformation function, e.g.,
a function which calculates average value) of values of all attributes that are spec-
ified in the matching parameters, i.e., of all attributes forming the set A in m1:n

(cf. (3.5)-(3.6)), is required and it is out of the scope of this work.

Example

Let us consider the one-to-many matching m1:n ∈ M ′1:n as a combination of the
one-to-one matching M1:1

V in Table 3.5. Namely, m1:n establishes a matching
of the attribute aS = “Address” (aS ∈ AS) from the source dataset in Table 3.1
and the attributes A′T = {“Street”, “City”, “ZipCode”} from the target dataset in
Table 3.2 (A′T ⊆ AT ). This matching is derived as a combination of the one-to-one
(candidate, alternative) matchings 7, 8 and 9 of Table 3.5.

First, the extended domains are constructed by using the method getDom.
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Table 3.5 Example of the vertical schema matching M1:1
V .

Matching m Source Target
1 Name Type
2 Name POI
3 Lon. Geo2
4 Lat. Geo1
5 Category Type
6 Key Id
7 Address ZipCode
8 Address Street
9 Address City

These domains contain the values of all attributes forming the set A in a one-
to-many matching; cf. (3.5)-(3.6). The extended domain domext(A

′
S) = dom(aS)

= dom(“Address”) contains the values: “Sint-Baafsplein, 9000 Ghent”, “Grotes-
traat 91, 7471 BL Goor”, “Jan Breydelstraat 35, 9000, Ghent”, etc. The ex-
tended domain domext(A

′
T ) = domext({“Street”, “City”, “ZipCode”}) contains

the concatenated values: “Emile Braunplein Gent 9000 BE, “Sint-Baafsplein Gent
9000 BE”, “Jan Breydelstraat 35 Gent 9000 BE”, etc. Both extended domains
domext(A

′
S) and domext(A

′
T ) are compared by the compareDom method just as

in the “Overlapping” step in Section 3.4.2. More specifically, after preprocess-
ing the attribute domains, the multiset WA′S

= WaS contains the terms: “Sint-
Baafsplein” (multiplicity 2), “9000” (3), “Ghent” (4), “Hoegaarden” (1), “St-
Denijs-Westrem” (1), “Gentstraat” (1), etc. The multiset WA′T

contains the terms:
“BE” (6), “Gent” (4), “9000” (4) “Hoegaarden” (1), “St-Denijs-Westrem” (1),
“Sint-Baafsplein” (1), etc. Next, the intersection I of these multisets is determined
which contains the terms: “Kleine” with associated PTV (1,0) and multiplicity 1;
“Gentstraat”, (1,0), (1); “24”, (1,0), (1); “5”, (1,0), (1); “69”, (1,0), (1); “3320”,
(1,0), (1); “9051”, (1,0), (1); “Schouwburgstraat”, (1,0), (1); “9000”, (1,0), (4);
“Stoopkensstraat”, (1,0), (1); “Sint-Baafsplein”, (1,0), (1); “Jan”, (1,0), (1), “St-
Denijs-Westrem”, (1,0), (1); “Hoegaarden”, (1,0), (1). All associated PTVs are
(1,0) because all the compared terms are equal. Next, the fuzzy integer expressing
the cardinality of the multiset of matching terms is constructed from the resulting
multiset of PTVs multiplied by the term multiplicity by Equation 1.30.

Figure 3.3 shows the set of possibilistic truth values, where a circle denotes the
possibility of T and triangle denotes the possibility of F . The derived possibility
distribution πN (the fuzzy integer) is shown below the possibilistic truth values.

Next, alternative matchings M1:1
alt ⊆ M1:1

V are selected by the method getAl-
ternatives, i.e. one-to-one matchings that have at least one attribute in common
with the constructed one-to-many matching m1:n. Namely, (“Address”; “Zip-
Code”), (“Address”; “City”), and (“Address”; “Street”). Finally, it turns out that
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Figure 3.3 Fuzzy integers derived from possibilistic truth values of the attribute
matching (“Address”; “Street”, “City”, “ZipCode”).

the fuzzy integer πN related to the one-to-many matching m1:n is larger than the
fuzzy integer (w.r.t. Definition 6) related to each alternative matching in Fig-
ure 3.4, because the 1-cut of the fuzzy integer resulting from concatenation m1:n

has a higher supremum (17 in Figure 3.3) than the fuzzy integers of the alternative
matchings (2, 9, 6, respectively in Figure 3.4). So, the matching m1:n is added to
the schema matching M1:n

V .

Figure 3.4 Fuzzy integers derived from possibilistic truth values of the alternative
attribute matchings for the attribute “Address”: (“Address”; “City”), (“Address”;
“Street”) and (“Address”; “ZipCode”).

Finally, the the union of sets of matchings M1:1
V and M1:n

V forms the final set
of candidate matchings MV , which is the basis to detect coreferent tuples and to
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establish the final matching between corresponding attributes in the next phase.

3.5 Phase II: Horizontal matching
In this phase, the candidate vertical schema matchingMV from the previous phase
is used to establish the horizontal schema matching M by the method getHorizon-
talMatchings (line 2 in Algorithm 3.1). More specifically, in step 1 of this phase the
vertical schema matching MV is used to efficiently detect coreferent tuples across
heterogeneous data sources (Section 3.5.1). This significantly reduces the number
of comparisons and the complexity of the approach and in turn is the basis for gen-
erating the final schema matching in the second step of this phase (Section 3.5.2).
The following subsections describe both steps of the horizontal matching phase.

3.5.1 Step 1: Coreferent tuples detection

The coreferent tuples detection Algorithm 3.4 for schema matching searches for
the n-most coreferent tuple pairs D across tuples in the source dataset S and the
target dataset T using the candidate vertical schema matching MV as follows.
First, each tuple from the source is compared with each tuple from the target.
More precisely, the values of the corresponding attributes, which are matched by
MV , are compared by the method compareTuples (line 3 in Algorithm 3.4) which
inter alia calculates the possibility that two given tuples are coreferent (expressed
by a PTV denoted as d̃) and returns a pair of coreferent tuples d. The details of
this comparison are presented in Algorithm 3.5 and described in the next Para-
graph 3.5.1.1. Next, coreferent tuple pair d is added to the set D of coreferent
tuple pairs (line 4 in Algorithm 3.4). Finally, the detected coreferent tuple pairs
d ∈ D are sorted by d̃ using Equation 1.17 and the PH .n most coreferent tuple
pairs are the result of this algorithm (line 7 and 8 in Algorithm 3.4, respectively).
Using a fixed threshold on the matching degree would be unreasonable because the
(un)certainty of tuples coreference varies along with the number of corresponding
attributes [19], i.e. if only a few attributes are truly coreferent then the certainty
will be low. Thus, instead, our method ranks coreferent tuple pairs by their PTVs
and gets the n-most coreferent tuple pairs. It has to be clear that the goal is not
to detect all coreferent tuples. These coreferent tuple pairs serve as the basis to
establish horizontal schema matching, what is discussed in the next Section 3.5.2.

3.5.1.1 Tuples comparison

A comparison of two tuples is conducted by Algorithm 3.5 and works as follows.
First, the input tuples tS and tT from the source dataset and the target dataset,
respectively, form a pair of candidate coreferent tuples (d.tS , d.tT ) (line 1 and 2
in Algorithm 3.5, respectively). Second, a comparison of attribute values for each
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Algorithm 3.4 COREFERENTTUPLEDETECTIONALGORITHM

Require: Dataset S, Dataset T , Schema Matching MV , Parameters PH
Ensure: n-most Coreferent Tuple Pairs D

1: for all Tuple tS ∈ S do
2: for all Tuple tT ∈ T do
3: Coreferent tuple pair d← compareTuples(tS ,tT ,MV ,PH )
4: D ← D ∪ d
5: end for
6: end for
7: D ← sort(D)
8: D ← getMostCoreferent(PH .n,D)

matching m ∈ MV computed in the previous step works as follows. An initial
matching d.m is initialized as a copy of a matching m (line 4 in Algorithm 3.5).
Next, for each attribute(s) m.A′S (m.A′T ) of a candidate matching m ∈ MV the
value(s) vS or vT from tuples d.tS and d.tT are respectively extracted (lines 5
and 6 in Algorithm 3.5). In case of 1:n matching of attributes (see Section 3.4.3),
the extracted values can be vectors of values vS [] or vT [] whose coordinates are
concatenated into vS or vT before they are compared. Afterwards, the extracted
values vS and vT are compared using a data type-specific method which estimates
the possibility d.m̃ that two given values are coreferent (line 7 in Algorithm 3.5).
More precisely, a numerical and an alphanumerical matchers are considered as
follows.

Numerical matcher. Numerical values are compared by a method which is
based on the difference (diff ) of the considered values and a difference thresh-
old (PH .thrDiff ). The difference threshold is a real number which defines the
maximum allowed difference of values, and depends on the range of values of a
particular attribute and the predefined parameter PH .thrNum, which specifies the
percentage of difference for average range of the considered attributes m.A′S and
m.A′T (1:n attribute matching does not apply for numerical data, thus,m.A′S = aS

and m.A′T = aT ). More specifically, PH .thrDiff is calculated by the following
equation:

PH .thrDiff =

⌊
range(dom′(aS)) + range(dom′(aT ))

2
× PH .thrNum

⌋
(3.7)

where range is a difference between the maximum and minimum value of dom′(aS)

or dom′(aT ) from the source or the target. If the difference diff between values
is smaller than the difference threshold PH .thrDiff , then the possibility that a
proposition p stating that the two values are coreferent is true (µp̃(T )) equals 1,
and the possibility that p is false (µp̃(F )) is a fraction of the difference diff and
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the difference thresholdPH .thrDiff ; otherwise, a lack of coreference is declared,
i.e. µp̃(T ) = 0 and µp̃(F ) = 1.

Alphanumerical matcher. Alphanumerical values are transformed into sets
of substrings which are in most cases separate words. The string is split at the
position of a white space, comma, dot or other special character. The usefulness
of this approach follows from the fact that character-based methods are typically
not well suited for longer strings. Next, the substrings are compared with one an-
other by the low-level string comparison method [8] (see Section 2.3.3.2). This
gives a comparison matrix of PTVs which is used to establish a mapping between
substrings (see Section 2.3.3.3). The selected PTVs are aggregated by the Sugeno
integral [37, 38, 94]. Aggregation results in a single PTV which reflects the possi-
bility that two given values are coreferent (see Section 1.4.4). More specifically,
the aggregation operator for the comparison of two values, vS and vT , is defined
by the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of pairs of substrings,

• P̃ is the set of selected PTVs corresponding to the above-mentioned propo-
sitions representing the uncertainty about their truth values computed by the
low-level string comparison method,

• the fuzzy measure γT is defined by:

γT (Q) =

k∑
j=1

wj , Q ⊆ P,Q = {p1, . . . , pk} (3.8)

where wj is the weight of the jth pair (sjS ,sjT ) of substrings, computed by:

wj =
1

|P |
(3.9)

• the fuzzy measure γF is defined by

γF (Q) =

{
1 if Q = P
0 otherwise (3.10)

what is implied by condition (1.26) is that for each Q which is a subset of P
(see Section 2.3.3.4).

Moreover, pairs of substrings with the selected PTVs are grouped into two sets.
The first set contains substrings which have an associated PTV that is larger than
PH . ˜thr w.r.t. Equation 1.17, and are called coreferent tokens. The second set
contains substrings which have an associated PTV that is not larger than PH . ˜thr

and are called non-coreferent tokens. These two sets are the basis for deriving the
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type of matching. The type type of matching d.m (see Section 3.3.1) is specified
based on the number of coreferent and non-coreferent tokens (substrings) of the
values vS and vT by a method which is presented in the next Section 3.5.1.2 (line 8
in Algorithm 3.5). Next, the matching d.m is added to the set d.MV of matchings
for the coreferent tuples pair d.

Finally, the set d.MV contains matchings d.m of coreferent attributes A′S and
A′T for the particular tuples d.tS and d.tT . Each matching d.m ∈ d.MV has an
associated PTV (d.m̃), which expresses the possibility that attributes A′S and A′T
are coreferent for the particular tuples d.tS and d.tT based on their values, and
is the basis for further checking whether the particular tuples d.tS and d.tT are
coreferent or not. Namely, these associated PTVs form a multiset d.M̃V and are
aggregated by the Sugeno integral [37, 38, 94]. The aggregation returns a single
PTV d̃ which reflects the possibility that two given tuples are coreferent (line 11
in Algorithm 3.5). More specifically, the aggregation operator for the comparison
of two tuples, d.tS and d.tT , is defined by the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of attributes A′S and
A′T for the particular tuples d.tS and d.tT , represented by d.MV = {d.mi},

• P̃ is the set of PTVs corresponding to the above-mentioned propositions,
represented by d.M̃V ,

• the fuzzy measure γT is defined by:

γT (Q) =

k∑
j=1

wj , Q ⊆ P,Q = {p1, . . . , pk} (3.11)

wherewj is the weight of the jth pair (A′S ,A′T ) of attributes for the particular
tuples, computed by:

wj = ∀d.m̃ ∈ d.M̃V : wd.m̃ =
1

|d.MV |
. (3.12)

These weights are equal for each PTV and depend on the number of match-
ings.

• the fuzzy measure γF is defined by

γF (Q) =

{
1 if Q = P
0 otherwise (3.13)

what is implied by condition (1.26) is that for each Q which is a subset of P
(see Section 2.3.3.4).
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Algorithm 3.5 COMPARETUPLESALGORITHM

Require: Tuple tS , Tuple tT , Schema Matching MV , Parameters PH
Ensure: Coreferent tuple pair d

1: d.tS ← tS

2: d.tT ← tT

3: for all Matching m ∈MV do
4: Matching d.m← m
5: var vS ← d.tS [m.A′S ]
6: var vT ← d.tT [m.A′T ]

7: d.m̃← compare(vS , vT , PH . ˜thr, PH .thrNum)
8: d.m.type← mType(vS , vT )
9: d.MV ← d.MV ∪ d.m

10: end for
11: d̃← aggregate(d.M̃V )

3.5.1.2 Matching type of tuples

The matching types, which are defined in Section 3.3.1, depend on the factors
ratioS and ratioT . These factors represent the completeness of each matching
d.m ∈ d.MV for the particular tuples tS and tT and are based on the number of
coreferent tokens (substrings) of compared values vS ∈ tS and vT ∈ tT . The
factor ratioS (ratioT ) is the fraction of the number of coreferent tokens over the
number of tokens of the value vS (vT , respectively). Thus, the following condi-
tions have to be considered:

• if ratioS = 0 and ratioT = 0 then m ∈M is an “unknown” matching

• if ratioS = 1 and ratioT = 1 then m ∈M is a “full” matching

• if ratioS = 1 and ratioT 6= 1 then m ∈ M is a “source is part of target”
matching

• if ratioS 6= 1 and ratioT = 1 then m ∈ M is a “target is part of source”
matching

• if ratioS 6= 1 and ratioT 6= 1 then m ∈M is a “a common part” matching

Example

Let us consider coreferent tuple pairs detection for the following case. The input
is the vertical matching MV of Table 3.6, which is the basis for detecting coref-
erent tuple pairs across the source and target datasets, of Table 3.1 and Table 3.2,
respectively. Each tuple from the source dataset is compared to each tuple in the
target dataset which results in the set D of coreferent tuple pairs. For example, let
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us consider that tuple tS in row 2 in Table 3.1 is compared to tuple tT in row 2
in Table 3.2. First, the values of the matched attributes (by MV ) are compared in
sequence, e.g. the value “Saint Bavo” of the attribute “Name” in tS is compared
by the alphanumerical matcher to the following values in tT w.r.t. the matchings
m1, m2 and m3 in Table 3.6: “Church” (of the attribute “Type”), “Sint-Bavokerk”
(of the attribute “POI”) and “Church Sint-Bavokerk” (of the concatenation of the
attributes “Type” and “POI”). This comparison results in d.MV which contains all
the attributes matchings m ∈ MV , namely d.m ∈ d.MV (with associated PTVs
d.m̃ which form a multiset d.M̃V ) for the particular tuples tS and tT , e.g. d.m̃1

= (0,1), d.m̃2 = (1,0.12), d.m̃3 = (1,0.16), etc. Next, the matching type for each
d.m ∈ d.MV for particular tuples is derived: d.m1.type is an “unknown” match-
ing (no common tokens), d.m2.type is a “full” matching (all tokens are common),
d.m3.type is a “source is part of target” matching (all tokens from the source are
common, but not all from the target), etc. Next, the PTVs in d.M̃V are aggre-
gated by the Sugeno integral with equal weights w = 1/15 (calculated by Equa-
tion 3.12). This results in a single PTV d̃ that equals (1,0.5) which reflects the
possibility that the two given tuples tS and tT are coreferent.

Finally, the detected coreferent tuple pairs D are sorted by d̃, and the PH .n (in
our case 3) most coreferent tuple pairs are returned. Namely, the pairs of tuples
from rows 2, 4 and 5 of Tables 3.1 and 3.2 are returned as the 3 most coreferent
tuple pairs and are used to establish the final schema matching, what is discussed
in the next section.

Table 3.6 Example of the vertical schema matching MV .

Matching m Source Target
m1 Name Type
m2 Name POI
m3 Name Type, POI
m4 Name, Category Type
m5 Lon. Geo2
m6 Lat. Geo1
m7 Category Type
m8 Key Id
m9 Address ZipCode
m10 Address Street
m11 Address City
m12 Address ZipCode, Street
m13 Address ZipCode, City
m14 Address Street, City
m15 Address ZipCode, Street, City
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3.5.2 Step 2: Schema matching

The n most coreferent tuples pairs of D detected in the previous step and the
vertical schema matching MV established in the first phase of our approach are
used to infer the final horizontal schema matching M . Our novel approach is
implemented by Algorithm 3.6, which works as follows. First of all, for each
matching m ∈ MV , the cardinality cardm of this matching is calculated (lines
2-6 in Algorithm 3.6). This cardinality is the number of coreferent tuple pairs
whose values of attributes m.A′S and m.A′T are coreferent. Hereby coreference
is considered if µp̃(F ) of d.m̃ is lower than µp̃(F ) of the predefined threshold
PH . ˜thrDup = (0.5,0.5) w.r.t. Equation 1.17.

Next, if a particular matching m returns most of the coreferent tuple pairs (line
7 in Algorithm 3.6), i.e. m.cardm/|D| is greater than the predefined threshold
PH .thrMajority, then m is added to the final schema matching M (line 8 in
Algorithm 3.6). Next, the propositions evaluated using PTVs of the matching m
across all coreferent tuple pairs of D (i.e., ∀d ∈ D : d.m̃) are aggregated by the
Sugeno integral. This results in a possibility degree m̃ (PTV), which expresses the
uncertainty of that matching m ∈ M (line 9 in Algorithm 3.6) [37, 38, 94] (see
Section 1.4.4) and is used to resolve schema matching conflicts in the next phase
which is described in Section 3.6. More specifically, the aggregation operator for
matching m ∈M is defined by the Sugeno integral for PTVs, where:

• P = {pi} is a set of propositions stating coreference of attributes m.A′S
and m.A′T across all coreferent tuple pairs of D, represented by D[m] =

{di.m},

• P̃ is the set of PTVs corresponding to the above-mentioned propositions,
represented by D̃[m] = {di.m̃},

• the fuzzy measure γT is defined by:

γT (Q) =

k∑
j=1

wj , Q ⊆ P,Q = {p1, . . . , pk} (3.14)

where wj is the weight of the jth duplicate dj , computed by:

wj =
1

|D|
. (3.15)

These weights are equal for each PTV dj .m̃ and depend on the number of
coreferent tuple pairs.

• the fuzzy measure γF is defined by

γF (Q) =

{
1 if Q = P
0 otherwise (3.16)
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what is implied by condition (1.26) is that for each Q which is a subset of P
(see Section 2.3.3.4).

Finally, the matching types of the matching m ∈ M across all coreferent tu-
ple pairs D are unified by the method unifyType in line 10 in Algorithm 3.6. This
method returns for eachm ∈M the most popular matching type across all corefer-
ent tuple pairsD. In the case of indistinguishable matching types, i.e. if maximum
frequency of matching type for matching m ∈ MV over all coreferent tuple pairs
of D is not unique, the matching type with the predefined lowest coverage level is
selected (see Section 3.3.1). For example, if full matching (with coverage level 1)
and inclusion matching (with coverage level 0.5) types are specified for the same
number of coreferent tuple pairs then inclusion matching type is selected. The
unified matching types are used to resolve schema matching conflicts in the next
phase in Section 3.6.

Algorithm 3.6 HORIZONTALMATCHINGALGORITHM

Require: Coreferent tuple pairs D, Schema Matching MV , Parameters PH
Ensure: Schema Matching M

1: for all Matching m ∈MV do
2: for all Coreferent tuple pair d ∈ D do
3: if d.m̃ > PH . ˜thrDup then
4: cardm ← cardm + 1
5: end if
6: end for
7: if cardm/|D| > PH .thrMajority then
8: M ←M ∪m
9: m̃← aggregate(D̃[m])

10: m.type← unifyType(D[m].type)
11: end if
12: end for

Example

Let us consider the coreferent tuple pairs inD which were detected in the previous
step. The set D of coreferent tuples pairs consists of 3 pairs, each composed of
rows 2, 4, 5 from Tables 3.1 and 3.2. The matching cardinality cardm is calculated
for each matching m ∈MV in Table 3.6. For example, the cardm of the matching
m10 = {“Address”; “Street”} equals 2 because only the attribute values of two
tuple pairs are coreferent for the threshold PH . ˜thrDup equal to (0.5, 0.5). More
specifically, the value “Stoopkensstraat 24, 3320 Hoegaarden” is similar to “Stoop-
kensstraat 24”, and “Kleine Gentstraat 69, 9051 St-Denijs-Westrem” is similar to
“Kleine Gentstraat 69”. The certainty as to their similairty is expressed for both of
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them by a PTV (1,0.33). The similarity of values “Sint-Baafsplein, 9000 Ghent”
and “Sint-Baafsplein” is expressed by a PTV (1,0.5), but this does not exceed
the threshold. In contrast, cardm of the matching m15 = {“Address”; “Street”,
“City”, “ZipCode”} is equal to 3, because the attribute values of all coreferent tu-
ple pairs are coreferent. This confirms that the concatenation of attributes makes
sense.

Next, if cardm of m satisfies the majority condition in line 7 of Algorithm 3.6,
then the matchingm is added toM . The predefined threshold PH .thrMajority =
0.3 and |D| = 3, thus if cardm of m is greater than 0.9, then m is considered as a
matching in M . This means that M contains only matchings which are confirmed
by at least one coreferent tuple pair. Matchings m4, m9 and m11 in Table 3.6
are not included in M because they do not satisfy this condition. Next, the PTVs
for matching m across all coreferent tuple pairs D are aggregated by the Sugeno
integral. For the matchingm10, the PTVs (1,0.33), (1,0.5), (1,0.33) are aggregated
with equal weights w = 1/|D| = 1/3 to a single PTV equal to (1,0.33). This PTV
reflects the possibility that the attributes “Address” and “Street” are coreferent.
Finally, the matching types of the matching m ∈ M across all coreferent tuple
pairs D are unified by the method unifyType. For the matching m10, the unified
matching type is “t is part of s” (target is part of source) because the matching type
of all considered coreferent tuple pairs is “t is part of s”.

This gives us the schema matching M in Table 3.7 with conflicts, i.e. for some
of the attributes more than one matching is established, e.g. m10-m15 in Table 3.7.
These conflicts are resolved in the next phase “Conflict resolution”.

Table 3.7 Example of the schema matching M with conflicts.
Matching m Source Target cardm typem m̃

m1 Name Type 1 t is part of s (1,0.67)
m2 Name POI 1 has a common part (1,0.5)
m3 Name Type, POI 1 has a common part (1,0.6)
m5 Lon Geo2 2 full matching (1,0.33)
m6 Lat Geo1 2 full matching (1,0.33)
m7 Category Type 1 full matching (1,0.67)
m8 Key id 3 full matching (1,0)
m10 Address Street 2 t is part of s (1,0.33)
m12 Address ZipCode, Street 3 has a common part (1,0.03)
m13 Address ZipCode, City 1 has a common part (1,0.5)
m14 Address Street, City 3 t is part of s (1,0.12)
m15 Address ZipCode, Street, City 3 s is part of t (1,0.12)

3.6 Phase III: Conflict resolution
The goal of the last optional phase of our novel schema matching approach is to
resolve conflicts. The schema matching M contains conflicts if there exists more



3-28 COREFERENCE DETECTION IN SCHEMA BASED ON COREFERENT DATA

than one matching m ∈ M for any attribute aS ∈ AS or aT ∈ AT . In other
words, the schema matching is not unique if there exists alternative matchings for
a particular attribute aS or aT , which are called conflicting attributes. These con-
flicts are resolved by the method resolveConflicts in line 3 of Algorithm 3.1, which
is based on the following a set of heuristic rules. The general motivation is that
repeated matchings across many coreferent tuples, matchings donated with large
PTVs (certain matchings), matchings which represent the same concepts (high
coverage level), and one-to-many matchings are preferable.

The rule execution order depends on the user to fine-tune the method. The
proposed order below is only one possible combination of these rules to show the
application of them to establish correct unique schema matching. Moreover, the
conflict resolution is an optional phase, thus, this phase can be omitted which may
give alternative matchings for considered schema attributes.

3.6.1 Rule I

First, rule I is applied. It states that a matching which has larger cardinality, i.e.,
is repeated by the larger number of coreferent tuples, than alternative matchings is
preferable and it works as follows.

Let Malt
a ⊆ M be the set of alternative matchings for the conflicting attribute

a ∈ AS or a ∈ AT , cardm be the largest cardinality of the cardinalities of all
malt ∈Malt

a , and the parameter PC .w is an integer number to relax the condition.
Then each alternative matching malt ∈ Malt

a is removed if satisfies the following
equation:

malt.cardm < cardm − PC .w (3.17)

For instance, let us consider the schema matching M in Table 3.7 which is
not unique. The attributes “Name” and “Address” from the source, and “Type”,
“POI”, “Street”, “City” and “ZipCode” from the target are matched by more than
one matching m ∈M and are hence conflicting attributes. According to rule I and
PC .w = 0, only the alternative matchings m10 and m13 of the conflicting attribute
“Address” from the source are removed, because their cardm is equal to 2 and 1,
respectively, and is smaller than the largest cardinality (3) of the other alternative
matchings.

3.6.2 Rule II

Next, if M is still not unique, then rule II is applied. It states that matching which
has more data in common (covers more the same concept) than alternative match-
ings is preferable and it works as follows.

Let Malt
a ⊆ M be a set of alternative matchings for the conflicting attribute

a ∈ AS or a ∈ AT , and let typem be the matching type with the highest cov-
erage level of the matching types of all malt ∈ Malt

a (see definition of matching
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types and their predefined coverage levels in Section 3.3.1). Then each alternative
matchingmalt ∈Malt

a which is not assigned the matching type typem is removed.
For instance, consider the schema matching M in Table 3.7 after the applica-

tion of rule I. According to rule II, the alternative matchings m1 and m3 of the
conflicting attribute “Type” from the target are removed because their matching
type “target is part of source” and “has a common part” have a lower coverage
level, (0.5) and (0.3), respectively, than the alternative matching m7 which is a
“full matching” with associated coverage level (1.0). Analogously, the alternative
matching m12 is removed.

3.6.3 Rule III

Next, if the matching M is still not unique, then rule III is applied which is based
on the (un)certainty of a matching. This means that a matching which is donated
with the larger PTV than alternative matchings is preferable and it works as fol-
lows.

Let Malt
a ⊆ M be a set of alternative matchings for the conflicting attribute

a ∈ AS or a ∈ AT , and m̃ is the largest PTV of the PTVs of all malt ∈ Malt
a .

Then each alternative matchingmalt ∈Malt
a which is not donated with the largest

PTV m̃ is removed.
For instance, consider schema matching M in Table 3.7 after the application

of rule II. According to rule III, no alternative matching is removed because the
alternative matchings m14 and m15 are assigned a PTV (1, 0.12).

3.6.4 Rule IV

Finally, if M is still not unique, then rule IV is applied which considers two cases.
Let Malt

a ⊆ M be a set of alternative matchings for the conflicting attribute
a ∈ AS or a ∈ AT , and cardll (cardls) is the largest local cardinality (the num-
ber of matched attributes) (the smallest local cardinality, respectively) of all local
cardinalities cardlm of all malt ∈ Malt

a (see Section 3.3.1). On the one hand,
if each malt ∈ Malt

a is not a “full” matching, then each alternative matching
malt ∈ Malt

a which is not assigned the largest local cardinality cardll is removed.
On the other hand, if each malt ∈ Malt

a is a full matching, then each alternative
matching malt ∈ Malt

a which is not assigned the smallest local cardinality cardls
is removed.

The idea behind this resolution is simple. If alternative matchings are “full”
matchings then it might be redundant to match more attributes, and vice versa. If
alternative matchings are not “full” matchings then it might be desirable to match
more attributes.

For instance, consider the schema matching M in Table 3.7 after the applica-
tion of rule III. According to rule IV, the alternative matching m14 of the conflict-
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ing attribute “Address” from the source is removed because its local cardinality
cardlm is equal to 2 and is different from the largest local cardinality (3) of the
alternative matching m15, and both matchings are not “full” matchings.

The final schema matching M without conflicts is presented in Table 3.8.

Table 3.8 Example of the final schema matching M without conflicts.
Matching m Source Target cardm typem m̃

1 Name POI 1 has a common part (1,0.5)
2 Lon Geo2 2 full matching (1,0.33)
3 Lat Geo1 2 full matching (1,0.33)
4 Category Type 1 full matching (1,0.67)
5 Key id 3 full matching (1,0)
6 Address Street, City, ZipCode 3 s is part of t (1,0.12)

Moreover, if there are still some conflicts, it may mean that the alternative
matchings are equivalent and the particular attribute(s) in the source have more
than one corresponding attribute(s) in the target.

3.7 Evaluation and discussion

In this section we describe an experimental evaluation of our method which shows
the influence of the parameters and the benefits of using content data (compared to
schema information-only-based methods). Moreover, our technique is compared
to DUMAS [19], an approach which uses duplicates and information retrieval tech-
niques to establish a schema matching.

3.7.1 Datasets

To illustrate the proposed approach we consider different real-world datasets, re-
spectively, containing information about ‘compact discs’, ‘restaurants’ and ‘points
of interest’.

Compact disc (CD) data are contained in two datasets which are defined in
two schemas (also being used in Chapter 24). As a reminder, the first schema is
extracted from FreeDB5 and consists of 8 leaf schema elements (here called at-
tributes). The second schema is extracted from Discogs6 and consists of 24 leaf
schema elements, of which 6 have been identified manually as being coreferent
with the FreeDB schema elements. The truly coreferent schema elements are pre-
sented in Table 3.9 and act as the ground truth for our experiments. The FreeDB

4The schemas are slightly different because the schema of extracted data has been changed since
Dec 12, 2011

5FreeDB, http://www.freedb.org/
6Discogs, http://www.discogs.com/data/
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dataset contains 124 tuples which are extracted from the CD dataset7, while the
Discogs dataset contains 132 tuples which are extracted from Discogs8. The num-
ber of coreferent tuples in these datasets is equal to 33, which are detected manu-
ally.

Table 3.9 True coreferent attribute (schema elements) paths of datasets.
Discogs vs FreeDB R1.Fodor vs R1.Zagat R2.Fodor vs R2.Zagat RouteYou (R) vs Google (G)
/discs/disc/id Fodor/id Fodor/id R/id
/cddb/disc/did Zagat/id Zagat/id G/id
/discs/disc/artists/name Fodor/name Fodor/name R/internalName
/cddb/disc/artist Zagat/name Zagat/name G/name,G/vicinity
/discs/disc/title Fodor/street Fodor/street,Fodor/city R/name
/cddb/disc/dtitle Zagat/street Zagat/street-city G/name
/discs/disc/styles/style Fodor/city Fodor/telephone R/lon
/cddb/disc/genre Zagat/city Zagat/telephone G/lng
/discs/disc/genres/genre Fodor/telephone Fodor/type R/lat
/cddb/disc/category Zagat/telephone Zagat/type G/lat
/discs/disc/year Fodor/type R/category
/cddb/disc/year Zagat/type G/type

Restaurant data are represented by two famous datasets [9]. One dataset stems
from the on-line guide ‘Zagat’, while the other dataset stems from the on-line
guide ‘Fodor’. Zagat contains 331 tuples and Fodor contains 533 tuples, where
112 coreferent tuples are counted (i.e. 112 restaurants occur in both lists). These
datasets are defined in two pairs of schemas, called R1 and R2, respectively. Both
schemas of the first pair R1 consist of 6 attributes, of which all 6 have been iden-
tified manually as being coreferent, i.e. each attribute in the Fodor schema corre-
sponds to exactly one attribute in the Zagat schema, and vice versa. More specif-
ically, 6 one-to-one matchings are established. The Fodor schema in the second
schemas pair R2 is identical to the Fodor schema in the first schema pair R1. But
the Zagat schema in the second schemas pair R2 consists of 5 attributes, of which
the attribute “street-city” is a concatenation of the attributes “street” and “city”.
Thus, each of the 4 attributes in the Fodor schema corresponds to exactly one at-
tribute in the Zagat schema, and the concatenation of the attributes “street” and
“city” in the Fodor schema corresponds to the attribute “street-city” in the Za-
gat schema. So, four one-to-one matchings and one one-to-many matching are
present. The truly coreferent schema elements are also presented in Table 3.9 and
act as ground truth for our experiments.

Points of interest data are represented by two datasets which are defined in two
schemas. The first dataset is made available by the Belgian company RouteYou9,
which is an on-line provider of cycling routes. In order to support their routing
algorithms, RouteYou manages a database with POIs (see also the Introduction

7http://hpi.de/naumann/projects/repeatability/datasets/cd-datasets.html
8Discogs, http://www.discogs.com/data/
9http://www.routeyou.com
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Chapter). This database is defined by a schema which consists of the attributes
latitude, longitude, POI name, POI category, POI internal name (which is a copy
of the POI name extended by location information) and the language in which
the name and category are given. An important characteristic of the given POI
database is that data is mostly contributed by independent users of the website.
Hereby, a user can pinpoint a location on the map, type in the name of the POI
he/she wants to add and associate one of the predefined POI categories to it. From
the complete POI database, we inferred one dataset by selecting tuples in English
and in a specific area: the center of Ghent. This resulted in the RouteYou dataset
which consists of 136 tuples. The second dataset contains 945 tuples which were
extracted from the Google Maps database and are related to the same specific area.
The tuple extraction has been done using the Google Places API6. The resulting
dataset is defined by a schema which consists of the attributes id, name, vicinity,
lat, lng, googleId and type, of which 6 have been identified manually as being
coreferent with the attributes of the RouteYou dataset.

Table 3.10 contains a summary of all datasets considered in the experiments.
The number of attributes in the data varies between 5 and 24 (column 2 in Ta-
ble 3.10), while the number of truly coreferent attributes varies between 5 and 6
(column 5 in Table 3.10). The number of detected coreferent tuple pairs varies
between 33 and 112 (column 4 in Table 3.10), while the number of tuples varies
between 124 and 945 (column 3 in Table 3.10).

Table 3.10 Real-world datasets.
Datasets # attributes # tuples # dup # coreferent attr.
S: CD.FreeDB 8 124

33 6
T: CD.Discogs 24 132
S: R1.Fodor 6 533

112 6
T: R1.Zagat 6 331
S: R2.Fodor 6 533

112 5
T: R2.Zagat 5 331
S: POI.RouteYou 9 136

51 6
T: POI.Google 7 945

3.7.2 Evaluation setting

To determine the quality of our approach, we compared its result against the man-
ually derived results from Table 3.9. Based on the standard confusion matrix, we
will consider the following three sets. The first set, denoted as B, contains the truly

6Google Places, http://developers.google.com/places/
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coreferent objects which are discovered by our approach, i.e., so-called true pos-
itives. The second set, denoted as A, contains truly coreferent objects which are
not identified, i.e., so-called false negatives. The last set, denoted as C, contains
objects which are falsely identified as coreferent, i.e., so-called false positives.

Precision is defined as the fraction of truly coreferent objects among all objects
classified by a given algorithm as being coreferent:

Precision =
|B|

|B|+ |C|
. (3.18)

Recall is another important quality measure which in our case can be defined
as the fraction of true positive objects among all coreferent objects present in a test
dataset:

Recall =
|B|

|A|+ |B|
. (3.19)

Figure 3.5 Mean precision and recall over all datasets in function of PV .thrStats
and PM .thrOverlap equal to 0.3.

3.7.3 Experiment: Configuration of parameters of the vertical
matcher

Goal. Our vertical matching algorithm 3.2 in Section 3.4 employs the param-
eters PV .thrStats and PV .thrOverlap. PV .thrStats specifies the threshold
above which statistical properties of attribute domains are considered as similar.
PV .thrOverlap specifies the percentage of the domains overlap. This experiment
evaluates the impact of these parameters on the precision and recall of the estab-
lished vertical schema matching.

Procedure. For the parameter PV .thrStats, a range from 0 to 1 with a step
equal to 0.01 is considered. For the parameter PV .thrOverlap, a range from 0 to
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Figure 3.6 Mean precision and recall over all datasets in function of PV .thrOver-
lap and PM .thrStats equal to 0.9.

1 with a step equal to 0.1 is considered. Mean recall and precision for each value
of PV .thrStats and PV .thrOverlap over all datasets are calculated. Statistical
matcher is executed before the lexical matcher, thus, the overlap threshold does
not have to be considered.

Result. Figure 3.5 shows the mean precision and recall over all datasets for the
different values of the parameter PM .thrStats (uninterested results are omitted).
For PM .thrStats values between 0.08 and 0.96 the statistical comparison of con-
tent data gives the highest precision of matching. In this case, precision is more im-
portant than recall because non matched truly coreferent attributes can be matched
by the lexical matcher. Besides that, the criteria of the statistical matcher are strict
(all properties have to be similar) because statistical information may mislead the
matcher, i.e., there can exist domains which have similar properties but may de-
scribe non coreferent attributes. We choose PM .thrStats equal to 0.9 for the
further evaluations.

Figure 3.6 shows the mean precision and recall obtained over all datasets for
different values of the parameter PM .thrOverlap in the lexical matcher. For
PM .thrOverlap values equal to 0.3 and 0.4 the lexical comparison of content
data gives matchings with the highest precision and recall. The established match-
ings are the basis to detect coreferent tuple pairs, which in turn are used to derive
the final schema matching, thus, the method has to derive as many as possible
matchings at the expense of precision - the non coreferent matchings are elimi-
nated by the horizontal matcher. Thus, PM .thrOvelap equal to 0.3 is selected
for the further evaluations, because the smaller percentage of domain terms that
overlap is easier to satisfy.

The combination of the matchings which are established by statistical and lex-
ical matchers gives an average precision equal to 0.58 and recall equal to 0.79 over
all datasets for PM .thrStats equal to 0.9 and PM .thrOvelap equal to 0.3.
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Figure 3.7 Mean precision and recall over all datasets for different
PH .thrMajority in function of PH .n before conflicts resolution.

3.7.4 Experiment: Configuration of parameters of the horizon-
tal matcher

Goal. The goal of this experiment is to show the impact of the number PH .n of
coreferent tuple pairs, which is the basis to establish the schema matching, and the
parameter PH .thrMajority of our horizontal matching algorithm in Section 3.5
on the precision and recall of the established schema matching. PH .thrMajority

is a threshold which specifies that a matching is considered as a correct matching
by the horizontal matcher.

Procedure. For the parameter PH .n, a range from 1 to 10 is considered. For
the parameter PH .thrMajority, values 0.25, 0.5, 0.75 and 1 are considered.
PH .thrMajority equal to 0.25 (0.5, 0.75 or 1) means that if any vertical match-
ing m ∈ MV between the particular attributes is repeated by a quarter (two quar-
ters, three quarters or all, respectively) of detected coreferent tuple pairs then m
is added to the set M of horizontal matchings. The mean precision and recall for
each value of PH .thrMajority and PH .n over all datasets are calculated.

Result. Figure 3.7 shows the mean precision and recall over all datasets for dif-
ferent values of the parameters PH .thrMajority and PH .n.
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Setting PM .thrMajority to 0.5 or 0.75, and PH .n to 5 or 6 is sufficient
to establish the schema matching with high precision and recall. More corefer-
ent tuple pairs (PH .n greater than 6) do not increase the precision significantly
or can even decrease the recall for a large value of PH .thrMajority, because
PH .thrMajority equal to 1 forces that a particular matching has to be confirmed
by all the selected coreferent tuple pairs. However, this may be unrealistic and dif-
ficult to satisfy. Besides that, our horizontal matcher is based on the n most coref-
erent tuples pairs so using many coreferent tuple pairs may result in coreferent
tuples pairs having assigned low certainty (because the values of some attributes
may not be coreferent). Thus, it is recommended to use only a few coreferent tuple
pairs but then those that are assigned the highest certainty and PM .thrMajority

between 0.5 and 0.75.

Figure 3.8 Mean precision and recall over all datasets for different
PH .thrMajority in function of PH .n after conflicts resolution.

3.7.5 Experiment: Conflict resolution

Goal. The goal of this experiment is to show the impact of the conflict resolution
step of our approach (of Section 3.6) on the quality of the final schema matching.
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Procedure. Like in the previous experiment, a range from 1 to 10 is consid-
ered for the parameter PH .n; for the parameter PH .thrMajority, values 0.25,
0.5, 0.75 and 1 are considered. The mean precision and recall for each value of
PH .thrMajority and PH .n over all datasets are calculated after conflict resolu-
tion, and these are compared with the mean precision and recall before conflict
resolution which have been calculated in the previous experiment and the results
are shown in Figure 3.7.

Result. Figure 3.8 shows the mean precision and recall over all datasets after
conflict resolution. Conflict resolution helps to significantly increase the mean
precision from 0.8 to 0.92 at the expense of the mean recall which decreases from
0.67 do 0.6 over all values of PH .n and PH .thrMajority and over all datasets.
However, for the recommended values of the parameters in Table 3.11, namely
PH .n equal to 6 and PH .thrMajority equal to 0.75 (see previous experiments),
the precision increases after conflict resolution from 0.89 to 1 at the expense of the
recall which only decreases from 0.65 do 0.61 over all datasets.

3.7.6 Experiment: Results comparison

Goal. The goal of this experiment is to compare our novel content data-based
schema matching approach with DUMAS [19] (see Section 3.2).

Procedure. For both approaches, respectively, precision and recall are calculated
and compared over each pair of datasets. Our approach is configured with the pa-
rameters chosen based on the previous experiments and shown in Table 3.11. Our
approach is evaluated on various datasets, thus, these parameters can be considered
as universal so can work also for other datasets. The parameters of the available
implementation of DUMAS10 cannot be changed. We assume that the parameters
are optimal and universal.

Table 3.11 Parameters set up of our approach.

Parameter Value
PV .thrStats 0.9
PV .thrOverlap 0.3
PH .n 6
PH .thrMajority 0.75

10https://hpi.de/naumann/projects/repeatability/algorithms/dumas-duplicate-based-matching-of-
schemas.html
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Result. The precision equals 1 over all datasets for both approaches, thus, it is
omitted. However, Figure 3.9 shows the recall over each pair of datasets separately
for DUMAS and our approach, respectively. For each pair of datasets the recall of
our approach is slightly higher than the recall for DUMAS. The average recall of
our approach equals 0.68, while the average recall of DUMAS equals 0.57. This
means that our technique correctly detects more matchings between corresponding
schema elements than DUMAS.

Figure 3.9 Recall for DUMAS and our approach.

3.7.7 Benefits of using content data

Content data-based schema matching approaches are able to establish semantical
matchings of corresponding schema elements in those situations where the schema
information-only-based methods can be ineffective. For example, a schema match-
ing method which is based only on element names, such as the Paths Matcher de-
scribed in Chapter 2, is not able to create a matching if the names of coreferent
attributes are synonyms. This means that content data add additional information
about the particular attribute which can be used to better infer the semantics of the
attribute and, as a consequence, create a matching between coreferent attributes.
Moreover, attribute names may even mislead the schema matching methods which
are only based on schema information. For example, let us consider the com-
pact disc datasets which are used in our evaluation. The attribute “genre” in the
Discogs dataset represents the general music category, such as “rock”, “pop”, etc.,
and it corresponds to the attribute “category” in the FreeDB dataset. However,
the schema of FreeDB dataset also contains an attribute “genre” which can mis-
lead the schema information-based matching method because it represents a more
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specific music style, such as “hard rock”, and, it is corresponding to the attribute
“style” in the schema of Discogs dataset. This and similar issues can be over-
come using content data what we show in the above experiments. Thus, content
data are a powerful and valuable source of information which can be used to con-
siderably improve schema matching. In contrast, approaches which are based on
schema information only can establish matchings of attributes which are not coref-
erent based on the content data, e.g., “id” attributes. The combination of these two
schema matching methods can be valuable and effective but it is out of the scope
of this work.

3.8 Conclusions

In this chapter, a content data based schema matching algorithm has been proposed
as a way to construct proper matching between corresponding schema elements of
heterogeneous datasets. The algorithm is especially useful in cases where finding
the correspondences between the schema elements based on schema information
only is difficult or impossible. Our novel technique employs possibilistic truth
values, to express certainty of matchings, similarities etc., and fuzzy integers, to
express cardinalities of sets of true propositions based on the certainty of their truth
expressed using PTVs. This allows us to explicitly cope with the (un)certainty of
semantical one-to-one and one-to-many schema matchings which are set up by
our novel techniques in an automated fashion. As a consequence, solutions to the
attribute granularity problem and the data coverage problem are proposed. The
behaviour of the novel schema matching algorithm has been evaluated on several
real life datasets, thus providing us with a valuable insight into the influence of the
different parameters. Moreover, it has been shown what are the advantages of the
proposed approach compared with a schema matching approach based on schema
information only.

The novel techniques presented here constitute an answer to the second re-
search question of this thesis which concerns the semantical matching of corre-
sponding schema elements of heterogeneous datasets using content data. This
means that our techniques are able to establish a matching of schema elements by
not using element names. Indeed, element names can in some cases be confusing,
e.g. when they are synonyms. Instead, in our techniques coreference in the con-
tent of the data sources is used to derive the meaning of the schema elements under
consideration. However, checking the content data can also be insufficient because
the same information can be represented in different ways. Some knowledge base
is necessary to resolve this problem. Nevertheless, in many cases it is unfeasible
to use a predefined knowledge base during coreference detection because such a
knowledge base might not exist. Hence, constructing such a knowledge base in a
dynamic way is an important aspect of improving the detection of coreferent ob-
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jects. In the next chapter the dynamic construction of a knowledge base, based on
the content of the data sources is studied.



4
Dynamical construction of a

knowledge base: a partial order
relation on the domains of attributes

The following publications have been based on the contents of this chapter:

• M. Szymczak, A. Bronselaer, S. Zadrożny, and G. De Tré, “Dynamical con-
struction of binary relations in coreference detection,” 31st Annual Meeting
of North American Fuzzy Information Processing Society, IEEE, Proceed-
ings. pp. 100-–106. Berkley, USA 2012,

• Bronselaer, A., Szymczak, M., Zadrożny, S. & De Tré, G. “Dynamical Order
Construction in Data Fusion,” Information Fusion. (Under review)

4.1 Introduction

In this chapter, dynamical construction of a partial order relation on the domain
of an attribute. Such as a relation reflects a notion of generality and is meant as a
knowledge base to support coreference detection. More precisely, the Dynamical
Order Construction (DOC) algorithm is specified. The DOC algorithm is investi-
gated closely in terms of different generality measures, which are used to form this
relation, and its application for coreference detection. An experimental evaluation
of our method confirms its effectiveness compared to the usage a fixed and prede-
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fined taxonomy and provides some suggestions as to the choice of its parameters
values.

4.1.1 Problem illustration

As a running example throughout this chapter, we consider a relational database
of Points Of Interest (POIs) used already in the previous chapters. Table 4.1 shows
a sample of these POIs. Provided that the tuples between horizontal lines shown
in Table 4.1 have been detected as coreferent tuples (duplicates), the first step in
the construction of an order relation is projecting these tuples over their category
attribute. These values, namely “Tower”, “Hist. Bld.”, “Monument”, “Restaurant”,
“City”, “POI” and their taxonomical connection are the candidate elements and
basis for the construction of the order relation. These elements can be ordered as
follows. “POI” is the most general and contains three sub elements, “Monument”,
“Restaurant” and “City”. “Monument” is specialized by “Hist. Bld.” which in turn
has sub element “Tower”.

Table 4.1 Example of coreferent POIs.

name lon. lat. category
Belfry 3.725098 51.053552 Tower
Belfry 3.724837 51.053555 POI
Belfrey 3.724911 51.053653 Monument
Korenlei 2 3.720472 51.055569 Hist. Bld.
Korenlei 2 3.720472 51.055568 Restaurant
Ghent 3.715449 51.025529 City
Gent 3.715449 51.025529 POI
Castle 3.721106 51.056984 Monument
Castle 3.721100 51.056981 POI

A number of problems occur that deserve attention:

• How to construct an order relation?

• How can a dynamically constructed order relation improve coreference de-
tection?

4.1.2 Contributions

With respect to the problems given above and in Chapter 1 in case of semanti-
cal comparison where attributes values are compared using external knowledge
(e.g., ontology, taxonomy), the following important contributions are made by this
chapter. An algorithm is proposed for the construction of an order relation in an au-
tomated fashion over the domain of a selected attribute (called category attribute).
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The input for this algorithm is a list of coreferent tuples (i.e., tuples that mutually
describe the same entity). The order relation obtained can be used to improve de-
tection of coreferent tuples, which is shown in this chapter, and also to fuse data
which is investigated in Chapter 5. The correctness of the constructed order rela-
tion strongly depends on the quality of given coreferent tuples what is guaranteed
by a multiplicity cut operator which filters misleading data. This approach has
the advantages that there is no need for a priori taxonomical knowledge on the
attribute domain and that the order relation automatically adapts to the values in
the dataset.

4.1.3 Outline

The remainder of this chapter is structured as follows. Related work is described in
Section 4.2. Next, in Section 4.3, it is explained how a semantical knowledge base
in the form of an order relation ≤a, can be constructed. To this aim, an algorithm
for Dynamical Order Construction (DOC) is introduced. The important features
of this algorithm are pointed out and the parameters are discussed. In Section 4.4
an experimental study of the proposed methods and techniques is reported and
supported by careful statistical analysis. Moreover, the impact of an order relation
on the coreference detection is evaluated. Finally, Section 4.5 summarizes the
most important contributions of this chapter.

4.2 Related work

There is a large body of work on the automated construction of ontologies from
textual documents. Weng et al. use formal concept analysis to assemble the dif-
ferent levels of ontological concepts [95]. Lee et al. adopt the use of a Chinese
Part-Of-Speech tagger to extract concepts from Chinese text documents based on
grammatical analysis [96]. Dahab et al. adopt semantical patterns for concept
and relationship identification [97]. Semantical patterns are hereby defined as
“a generic format for natural language expression”. Liu et al. build an ontol-
ogy from a set of keywords rather than from a textual document [98]. Therefore,
the set of keywords is first enriched by using a general purpose knowledge base
(Probase). Then, multi-branch clustering is used to obtain a taxonomy. The tech-
nique introduced in this chapter differs from these techniques in several ways.
First, like Liu et al. in [98], we do not consider textual documents from which an
ontology/taxonomy should be inferred. Instead, we consider a range of values for
a specific attribute in a database. Second, unlike existing techniques, we do not
rely on an external knowledge base. Instead, the observation that different values
of the same attribute are used interchangeably to describe a property of an entity,
forms the basis for knowledge inference.
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4.3 Dynamical order relation construction

In this section, a method of Dynamical Order Construction (DOC) is proposed to
(re)construct taxonomical knowledge for an attribute a ∈ R. More specifically, an
order relation ≤a is constructed based on the observation of coreferent data.

Remark. It is noted that such an order relation ≤a is more general than
what is usually understood as a taxonomy. Indeed, while a taxonomy is sometimes
assumed to be equivalent to a tree, a (partial) order relation is equivalent to a
directed graph. In order to maintain the notion of a tree, a structural constraint
to enforce the “single-parent” requirement is necessary. However, such a priori
constraints might imply more non-comparable values and thus more ties e.g. upon
data fusion time. In order to minimize the number of non-comparable values,
a priori assumptions on the order relation are avoided. It is pointed out that non-
comparable values still might exist, because ≤a is a partial order relation. As
such, non-comparable values will be processed by a tie-breaking mechanism.

4.3.1 Generative multirelation

As already mentioned, the construction of≤a relies on observed coreferent tuples,
i.e., multiple tuples representing the same entity. We thus start by defining the
concept of coreferent tuples more formally.

Definition 9 (∆-partition). Let R be a relation with schema R and let ∼ be an
equivalence relation onRwhere t1 ∼ t2 means that t1 and t2 are coreferent tuples.
A ∆-partition {∆i}i=1..m (denoted E) is a subset of non-singleton equivalence
classes of∼, i.e., comprises sets of tuples fromR such that each set ∆i contains at
least two tuples and all of them are mutually coreferent, and such that two tuples
from two different sets are not coreferent.

A ∆-partition is usually generated by an Entity Resolution algorithm. In Ta-
ble 4.1, the horizontal lines between tuples indicate a ∆-partition E consisting of
four sets of coreferent tuples. The first set contains three coreferent tuples that de-
scribe the Belfry in Ghent, while the other three sets each contain two coreferent
tuples that describe respectively a restaurant called Korenlei 2, the city of Ghent
and castle. Let us now assume that there exists an attribute a ∈ R for which we
want to construct an order relation ≤a. We do so by first constructing a multirela-
tion that models all observed coreferent tuple pairs of values for attribute a.

Definition 10 (Generative multirelation). Consider a relation R with schema R
for which a ∆-partition E = {∆i}i=1..m is given. For a ∈ R, the generative
multirelation Ga is a binary multirelation over dom(a) such that for all (v1, v2) ∈
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dom(a)× dom(a):

Ga(v1, v2) = Ga(v2, v1) =

= |{(t1, t2) | t1 6= t2 ∧ ∃it1, t2 ∈ ∆i ∧ t1[a] = v1 ∧ t2[a] = v2}| . (4.1)

The generative multirelation Ga is a multirelation for which the multiplicity
of a couple of values (v1, v2) is equal to the number of coreferent tuple couples
(t1, t2) such that (t1[a], t2[a]) = (v1, v2). It can be written as a weighted graph
with a subset of dom(a) being the set of nodes, a subset of dom(a) × dom(a)

being the set of edges and the weights of an edge equal to Ga(v1, v2).

Figure 4.1 Generative multirelation Ga for attribute a = “category” of the ∆-
partition in Table 4.1.

Figure 4.1 shows the generative multirelation Ga for attribute “category” of
the ∆-partition in Table 4.1 as such a weighted graph. For an attribute a, the
generative multirelation Ga provides an insight in the interchangeability of values
from dom(a). More specifically, it can be inferred how many times a value v
can be considered as “coreferent” with another value v′. Intuitively, if there exist
many such values v′, then v must represent a very general concept, because it
can be linked (in the sense of duplication) to many other values. However, if
there exist few values v′, then v represents a rather specific concept because it
is used solely in a specific context. As such, the generality of a value can be
approximated by the number of neighbors it has in Ga. In addition, if a value has
many neighbors, it must have a high frequency as well. Thus, the frequency of
a value in the dataset/database might as well be an approximation of generality.
In the next section we will propose three measures to approximate generality and
evaluate them experimentally in Section 4.4. With such measures at hand, it is
possible to infer an order relation ≤a from Ga, such that ≤a orders values from
dom(a) based on their suspected generality. However, making such an inference
brings along two problems that need handling:

• Constraints. The requirement to create a partial order ≤a implies that the
minimal constraints for such a relation must be met. We recall that a partial
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order relation is reflexive, antisymmetric and transitive. The transformation
from the generative multirelation Ga to the order relation ≤a should take
these constraints into account.

• Robustness. The input for construction of ≤a is a ∆-partition, which is in
turn output of an Entity Resolution algorithm. Consequently, a ∆-partition
may contain errors and the construction of ≤a should be robust to these
errors.

Remark. At this point, an assumption on the data can be stated. In the above
explanation, the detection of interchangeability relies on repetition of values. The
DOC method therefore relies on the assumption that the attribute, for which an
order relation is constructed, has a low number of unique values.

4.3.2 Transformation into an order relation

We will now introduce a general strategy for the inference of ≤a from Ga. This
strategy uses the multiplicity cut operator to derive a regular, binary relation from
Ga. As explained in Section 1.4.2, the k-cut of Ga is denoted (Ga)k and is a
regular relation that maintains only those couples with multiplicity larger than or
equal to k. Given the fact that the multiplicity of a couple is equal to the number of
observations in the data, multiplicity filtering offers a sense of robustness to errors
in the ∆-partition. This statement will be verified experimentally in Section 4.4.

After application of the k-cut, the next step is to transform (Ga)k into a par-
tial order relation. Therefore, (Ga)k must be made reflexive, antisymmetric and
transitive. While making a relation reflexive is trivial, making it antisymmetric
and transitive is not. On the contrary, the way in which antisymmetry is defined,
determines to a large extent the correctness of our order relation. Therefore, we
explain in detail our approach to these transformations.

Let us assume that (Ga)k is reflexive or at least transformed into a reflexive
relation. We note that, for any (v1, v2) ∈ dom(a)2, we have that Ga(v1, v2) =

Ga(v2, v1) (Definition 10). Therefore, (Ga)k is by definition symmetric. This
means that, for any (v1, v2) ∈ (Ga)k, we must either remove (v1, v2), (v2, v1)

or both, in order to make the resulting relation antisymmetric. In order to decide
which couple should be removed from the relation, recall that ≤a should provide
a notion of generality. This means that v1 ≤a v2 if v2 is more general than v1. As
such, the decision on which couple to remove should be driven by an estimate of
the generality of both values. Such a measure of generality is denoted as λ and we
propose three different measures that are evaluated experimentally in Section 4.4.

A very simple notion of generality is obtained by inspecting multiplicity (i.e.,
frequency). The first measure of generality is therefore given by the number of
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occurrences of each value within the ∆-partition. Formally:

∀v ∈ dom(a) : λ1(v) =

(⊕
∆∈E

∆JaK

)
(v). (4.2)

where
⊕

denotes the union operation for multisets; cf. section 1.4.2.
This estimation relies on the assumption that a value of a is more general if it

is often “confused” with other values, which is measured by the fact that it occurs
in many equivalence classes ∆.

The second measure of generality is given by the number of unique values to
which a given value v is related in Ga. We can write that:

∀v ∈ dom(a) : λ2(v) = |{v′ | Ga(v, v′) > 0}| . (4.3)

This second measure estimates the generality of a value v in terms of the num-
ber of unique values v′ to which v is observed equivalent, i.e., v and v′ occur as
the projections over a of two tuples in the same equivalence class ∆i. Note that
the symmetric construction of Ga implies that we do not need to check whether
(v′, v) ∈ Ga.

A potential weakness of measures λ1 and λ2 is their dependency on the parti-
tion E . More specifically, because λ1 and λ2 depend on E , it can be suspected that
the quality of the generated ≤a varies in terms of E . In order to further investigate
this, a third measure of generality is considered that does not depend on E . This
measure is established by adopting a similar notion as for λ1, but E is generalized
to the whole relation R. As such, we have that:

∀v ∈ dom(a) : λ3(v) = (RJaK) (v). (4.4)

where RJaK (in general RJAK, A is a singleton {a}) is a multi-projection which is
defined as follows.

Definition 11 (Multi-Projection). LetR be a relation with schemaR and consider
attributes A ⊆ R. The multi-projection of R over A is a multiset of tuples RJAK
such that:

RJAK(t) =

{
0 if t /∈ R[A]
|{t′ : t′ ∈ R ∧ t′[A] = t}| otherwise (4.5)

Definition 11 states that the multi-projection of a relationR contains the tuples
from the regular projection possibly with multiplicity greater than 1. Consider
the relation shown in Table 4.1 and let a be attribute “category”, then RJaK is
characterized by:

RJaK(Tower) = 1, RJaK(Hist. Bld.) = 1,
RJaK(POI) = 3, RJaK(Restaurant) = 1,
RJaK(Monument) = 2, RJaK(City) = 1.
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In this multiset, values “Monument” and “POI” occur respectively two and three
times.

Table 4.2 shows the different measures of generality applied to attribute a =

“category” of the ∆-partition in Table 4.1. Note the difference for value “Tower”,
which occurs only once, but can be linked to two different values.

Table 4.2 Different generality measures λ applied to attribute a = “category” of
the ∆-partition in Table 4.1.

Value λ1 λ2 λ3

POI 3 3 3
Monument 2 2 2
City 1 1 1
Hist. Bld. 1 1 1
Restaurant 1 1 1
Tower 1 2 1

In this example, λ1 and λ3 provide the same result because the ∆-partition
comprises the whole relation. However, it is important to note that the difference
between λ1 and λ3 is subtle. Whereas λ1 is based on the principle that a value
v is general if it is probable to be “confused” with other values in the sense of
duplication, λ3 simply states that a value is general if it occurs a lot. The indepen-
dence of E thus comes with the downside that measuring generality by means of
λ3 seems less justified. In addition, λ1 relates its estimate of “confusion probabil-
ity” to frequency of values, while λ2 actually measures the number of values with
which a given value v is confused. It is therefore to be expected that λ2 will be
the best measure of generality. In Section 4.4, the (dis)advantages of the proposed
measures will be investigated experimentally in order to obtain a better evaluation
of their usefulness.

Either of the proposed measures for generality can be used to ensure antisym-
metry. After transformation of (Ga)k into an antisymmetric relation, the final
task at hand is to ensure transitivity. This can be done by calculating the tran-
sitive closure of the relation. The transitive closure of a binary relation B is its
minimal superrelation that is transitive and is denoted as B+. In literature, this
problem has been studied extensively [99–102] and we will not elaborate on these
results. It suffices to say that we adopt Warren’s algorithm within the scope of this
work [101].

Algorithm 4.1 presents the pseudo-code for the DOC algorithm. The strategy
to transform Ga into an order relation has the advantage that it attempts to infer
only those orderings that are clearly observed in the data (i.e., the ∆-partition).
Removal of couples from or addition of couples to (Ga)k is caused by structural
constraints for obtaining an order relation. From that perspective, it can be as-
sumed that ≤a is a reasonable approximation of a generality ordering. On the
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downside, it is to be expected that ≤a can not compare all values if k used for
k-cut becomes large.

Algorithm 4.1 DYNAMICALORDERCONSTRUCTION

Require: Ga, k, λ
Ensure: An order relation ≤a

1: Ord← (Ga)k
2: for all v ∈ dom(a) do
3: add(v, v)
4: end for
5: for all (v, v′) ∈ Ord | v 6= v′ do
6: if λ(v) > λ(v′) then
7: remove(v, v′)
8: else if λ(v) < λ(v′) then
9: remove(v′, v)

10: else
11: remove(v′, v)
12: remove(v, v′)
13: end if
14: end for
15: ≤a← Ord+

16: return ≤a

Figure 4.2 shows the result of applying the DOC algorithm to the generative
multirelation from Figure 4.1 with λ = λ1 and k = 1. The order relation is shown
as directed graph with the understanding that edges depart from the more general
values and end in the more specific values. For the sake of clarity we are using here
the Hasse diagram of the relation. Note that for “Restaurant” and “Hist. Bld.”, the
λ1(.) values are equal, implying that they are removed from the order relation.

Figure 4.2 Order relation ≤a derived from Ga from Figure 4.1 for k = 1 and λ1.
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4.4 Evaluation and discussion
In this section, an experimental evaluation of the proposed techniques is presented.
The accuracy, stability and impact of the order relation on the coreferent tuples
detection are evaluated. Moreover, improvement of the ground truth taxonomy is
proposed.

4.4.1 Datasets

Throughout the several experiments, seven datasets are used. The first dataset is
the famous ‘restaurant’ dataset [9], which contains two lists of restaurants. One
list of restaurants stems from the on line guide ‘Zagat’, while the other list stems
from the on line guide ‘Fodor’. The union of these two lists counts 864 tuples,
where 112 coreferent tuples are counted (i.e. 112 restaurants occur in both lists).
Within the context of our experiments, the attribute of interest is the type of the
restaurant, which specifies the cuisine that can be found in the restaurant.

Six other datasets are real-life datasets made available by the Belgian company
RouteYou1, which is an on line provider of cycling routes2. As a reminder, in
order to support their routing algorithms, RouteYou manages a database with POIs
(see also the Introduction Chapter). Data stored about a POI comprises latitude,
longitude, POI name, POI category and the language in which name and type
are given. An important characteristic of the given POI-database, is that data is
mostly contributed by independent users of the website. Thus, many coreferent
POIs are inputted, because there is no verification at input time whether the new
POI is already in the database. From the complete POI database, we infer six
datasets by partitioning according to the ‘language’ attribute. Within the context
of our experiments, the attribute of interest is the category of POI, which provides
a rudimentary classification of the POI.

The details of the used datasets are shown in Table 4.3. Table 4.3 shows the
name and the number of tuples in the dataset. In addition, the number of found
coreferent tuple clusters is reported. The coreferent tuples detection algorithm
described in [103] is used. Finally, Table 4.3 also reports the number of sets of
coreferent tuples that are non-trivial, that is for which ∆JaK contains at least two
distinct values.

In Table 4.4, the distribution of the sizes of ∆ are shown for optimally relaxed
comparison operator. As mentioned already, the majority of the cases involves
only two coreferent tuples. There is a small number ∆ with three coreferent tuples,
and cases with more than three coreferent tuples are very rare.

Because the attribute of interest in each of the datasets is the ‘category’ at-
tribute, some more details on this attribute are made available. In Table 4.5, the

1http://www.routeyou.com
2A part of this dataset is also used in Chapter 3
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Table 4.3 Dataset details.
Dataset # tuples ∆ found ∆ non-trivial
R-NL 495651 3063 1724
R-EN 436616 1790 1349
R-FR 428163 2130 1463
R-DE 401176 1495 1324
R-ES 398451 1441 1312
R-IT 397137 1438 1311
Restaurant 864 112 71

Table 4.4 Distribution of |∆| for all datasets.

Dataset 2 3 4 5 6 7
R-NL 2916 130 16 0 0 1
R-EN 1775 13 2 0 0 0
R-FR 1867 258 3 1 0 1
R-DE 1487 7 1 0 0 0
R-ES 1437 4 0 0 0 0
R-IT 1434 4 0 0 0 0
Restaurant 112 0 0 0 0 0

number of unique values for attribute ‘category’ is given per dataset. Two obser-
vations are important. First, in Section 4.3, it is mentioned that the DOC method
assumes a low number of unique values for the attributes on which it operates.
It can be verified that this assumption is met. Secondly, it can be seen that the
number of unique values is varying over the datasets.

Table 4.5 Unique value count for attribute ‘category’.

Dataset # Unique Values for ‘category’
R-NL 169
R-EN 104
R-FR 81
R-DE 57
R-ES 49
R-IT 47
Restaurant 37

In each of the datasets considered here, the ‘category’ value has a typical “long
tail” distribution, meaning that few values occur many times, while most values
occur very few. Figure 4.3 shows such a typical distribution for the ‘category’
attribute in the R-ES (RouteYou-ES) dataset. Plots for other datasets are omitted
here as it is confirmed that they are similar.
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Figure 4.3 Typical distribution of values for attribute ‘category’ (dataset R-ES).

4.4.2 Comparison with taxonomical ground truth

Goal. In this experiment, the accuracy of the DOC method is evaluated by com-
paring its result with a ground truth taxonomy. The influence of parameters k and
λ is investigated, i.e., k specifies the k-cut of the generative multirelation Ga and
is a regular relation that maintains only those couples with multiplicity larger than
or equal to k, λ is a generality measure.

Procedure. For each of the seven datasets, the DOC method is applied on the
‘category’ attribute. The DOC method (Algorithm 4.1) has three input parameters.
The generative multirelation Ga, a measure for generality λ and a cutoff threshold
k. The first parameter, i.e., a relation Ga is constructed for each dataset as de-
scribed in Section 4.3, based on the found coreferent tuples. The parameters λ and
k are ranged over a set of alternatives in order to investigate their influence. For
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λ, the three measures proposed in Section 4.3 are considered. For cutoff threshold
k, a range going from 1 to 20 is considered. The order relation generated by the
DOC method is compared to ground truth in the form of a reference taxonomy.
For the six RouteYou datasets, such a reference taxonomical structure for POI cat-
egories was provided by a company expert. For the Restaurant dataset, a reference
taxonomy was downloaded from the Zagat website34.

Evaluation metrics. In the context of this experiment, two order relations ≤a
(generated by DOC) and≤ref (ground truth taxonomy) are compared. On the one
hand, a comparison of the order relations as a whole is performed. For that pur-
pose, the order relations are considered as sets of pairs and are compared as such
with the well-known Tversky index [104]. For two sets X and Y , the assymetrical
Tversky index [104] is given by:

Tve(X,Y ) =
|X ∩ Y |

|X ∩ Y |+ α · |X 	 Y |+ β · |Y 	X|
(4.6)

where α and β are positive real-valued parameters of the index, 	 is the set dif-
ference. Because the DOC method does not aim at constructing an order relation
over the complete domain of an attribute a, but rather focuses on those values
that appear as coreferent tuples, we want to measure the extent of inclusion of
X =≤a in Y =≤ref . Such an inclusion measure is obtained by setting α = 1 and
β = 0. Indeed, choosing these values for α and β simplifies the Tversky index to
| ≤a ∩ ≤ref |/| ≤a |.

This measure is minimal if≤a and≤ref are disjoint and is maximal if≤a⊆≤ref .
In the following, we refer to this index as the Tversky Inclusion (TI) index. If
≤a is considered a knowledge base from which assertions on pairs of values
(x, y) ∈ dom(a)2 can be made, then the TI index provides a global evaluation
of ≤a. However, because the DOC method produces ≤a with the intention of
fusing coreferent values in a ∆-partition E (see next Chapter 5), it is also inter-
esting to provide a more local evaluation. Hereby, “local” means to only evaluate
those assertions that are relevant to the task of fusing values in E . Let us con-
sider a ∆-partition E as introduced in Section 4.3. Let us begin with noting that
an assertion is trivial if it resembles x ≤a x, due to the fact that ≤a is reflexive.
In our evaluation, we consider only non-trivial assertions. For (x, y) ∈ dom(a)2

such that x ≤a y, three cases can be considered. In the first case, the assertion is
confirmed by the ground truth, meaning that x ≤ref y. In this case, the assertion
by ≤a is considered correct. In the second case, the assertion is falsified by the
ground truth, meaning that y ≤ref x. In this case, the assertion by ≤a is consid-
ered wrong or erroneous. In the third case, the ground truth makes no assertion

3http://www.zagat.com
4This data was removed on line from the Zagat website after the redesign on 29th of July, 2013.
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about x and y. In this case, the assertion by ≤a is non confirmed. For non con-
firmed assertions, it is unknown whether they are correct or not. Therefore, we
treat them as a separate case. Casting these cases into Boolean logic sentences,
we have that an assertion is correct if (x ≤a y) ∧ (x ≤ref y), an assertion is er-
roneous if (x ≤a y) ∧ (y ≤ref x) and finally, an assertion is non confirmed if
(x ≤a y) ∧ ¬ (x ≤ref y ∨ y ≤ref x). This leads us to the following three local
evaluation metrics:

COR (E ,≤a,≤ref ) =

∑
∆∈E #corr. assertions∑

∆∈E #assertions

ERR (E ,≤a,≤ref ) =

∑
∆∈E #err. assertions∑

∆∈E #assertions

NCF (E ,≤a,≤ref ) =

∑
∆∈E #non conf. assertions∑

∆∈E #assertions
.

It can be verified logically that an assertion is either correct, erroneous or non
confirmed. Therefore, we have that the sum of COR, ERR and NCF is always 1.

Results and discussion. Figure 4.4 shows the mean TI indices over all seven
datasets, for different measures of generality λ and in function of the cut-off thresh-
old k. As explained in Section 4.3, parameter k serves as a way to filter erroneous
information (i.e., errors made by Entity Resolution, errors in the data...). More
specifically, k indicates the minimal number of times a connection between values
needs to be observed, before an assertion on those values is done. Figure 4.4 illus-
trates that a larger value for k implies a higher inclusion of≤a in≤ref (the ground
truth). As such, higher values of k indeed filter out non confirmed or erroneous
information. Of course, by increasing k, the total number of assertions decreases,
meaning that higher k leads to a smaller, but more correct relation. The mean
number of assertions over all seven datasets, for different measures of generality λ
and in function of k is shown in Figure 4.5. From this figure, it can be learned that
the number of assertions decreases rapidly if k grows. Interestingly, for smaller k,
the number of assertions is minimal if generality is measure by λ2, which is also
the measure for which most assertions are correct. From Figures 4.4 and 4.5 it can
be concluded that k should be chosen sufficiently low to assure enough assertions,
but choosing k = 1 might introduce some false assertions. In practice, if the Entity
Resolution algorithm is sufficiently trustworthy, k = 1 or k = 2 is a good choice.

The difference between the measures of generality (Section 4.3) is analyzed
by means of statistical testing. For each value of k, it is tested whether there is
a significant difference between the λ. Because the sequence of TI indices over
the seven datasets is not distributed normally, non-parametrical tests for compar-
ison of related samples are used. More specifically, a Friedman test [105] and a
Kendall’s W test [106] are performed to analyze the differences between the three



CHAPTER 4 4-15

Figure 4.4 Mean TI indices Tve(≤a,≤ref ) over all datasets for different λ in
function of k.
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λ. Both tests are applied on weighted TI indices with the number of non-trivial
cases (Table 4.3, rightmost column), to account for the differences in dataset sizes.

The results of the statistical analysis on the TI indices are shown in Table 4.6,
where the mean ranks (MR) for each λ are shown, paired with Kendall’s W and
the statistical significance of the hypothesis that there is a difference between the
three measures. From these results, we learn that the mean rank of the TI index
for λ2, is always better than the mean ranks of the TI indices for λ1 and λ3. For
k < 18, there is a significant difference (p-value 0.05) between the three measures.
Next, Wilcoxon tests [107] are performed in which the differences between two
measures are analyzed. From this additional test, it is concluded that for k ≤ 17,
the TI index for λ2 is significantly greater than the TI index for λ1, which is in turn
greater than the TI index for λ3.

An even more detailed insight in the accuracy of the DOC method is ob-
tained by quality assessment of assertions. Therefore, the local evaluation metrics
COR, ERR and NCF are calculated for each of the seven datasets. The mean
COR (E ,≤a,≤ref ) over all datasets in function of k and λ are shown in Fig-
ure 4.6. It can be seen that the ratio of correct assertions increases in function of
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Figure 4.5 Mean number of assertions over all datasets for different λ in function
of k.
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increasing k, which confirms the conclusions drawn from analyzing the TI indices.
In order to assess the differences between the different measures of generality, the
results are again analyzed by means of Friedman and Kendall’s W testing. The null
hypothesis in each of these tests postulates a significant difference among λ1, λ2

and λ3. The results of the tests are shown in Table 4.7. It can be seen that there is a
difference between the different λ (p-value 0.05) for k ≤ 17. For k = 1, Kendall’s
W equals 1, implying that λ2 is strictly better than λ1 and λ3 on all datasets. Addi-
tional Wilcoxon tests are performed to compare the three λ pairwise. As a result,
the differences between λ1 and λ2 on the one hand, and λ1 and λ3 on the other
hand, are significant for k ≤ 17. In summary, the statistical analysis of COR

confirms the analysis of the TI indices.

The mean NCF (E ,≤a,≤ref ) over all datasets in function of k and λ are
shown in Figure 4.7. The results of statistical analysis of NCF are omitted here
as they completely confirm the previous analyses. The combination of the results
from Figures 4.6 and 4.7 provide us with some interesting and important insights.
First, the sum of NCF and COR is approximately 1 for all λ and for all k. As
a result, the ratio of erroneous assertions must be approximately 0. Although the
plot for ERR is omitted here, it is confirmed that the maximal measure for ERR
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Table 4.6 Friedman mean rank (MR) and Kendall’s W on TI indices for different
λ in function of k.

k MR λ1 MR λ2 MR λ3 Sig. W
1 1.99 3 1.01 0.000 0.992
2 1.84 2.99 1.17 0.000 0.859
3 2.31 2.68 1.01 0.000 0.923
4 2.22 2.68 1.09 0.000 0.842
5 2.12 2.68 1.19 0.000 0.759
6 2.32 2.58 1.09 0.000 0.850
7 2.32 2.58 1.09 0.000 0.850
8 2.32 2.58 1.09 0.000 0.850
9 2.32 2.58 1.09 0.000 0.850
10 2.32 2.58 1.09 0.000 0.850
11 2.17 2.43 1.40 0.000 0.555
12 2.02 2.27 1.71 0.000 0.280
13 2.02 2.27 1.71 0.000 0.280
14 2.02 2.27 1.71 0.000 0.280
15 2.02 2.27 1.71 0.000 0.280
16 2.02 2.27 1.71 0.000 0.280
17 2.02 2.27 1.71 0.000 0.280
18 2 2 2 - -
19 2 2 2 - -
20 2 2 2 - -

is 0.0065 over all λ and all k. This result shows that the DOC method, regardless
of k and λ, delivers an order relation from which very few erroneous assertions
with respect to coreferent tuples detection and fusion of coreferent values in E are
implied.

Secondly, the results provide a first experimental indication that the DOC
method is preferential over a predefined and static taxonomy, e.g., in the context of
fusion. The support for this claim lies in the following explanation. The assertions
evaluated by COR and NCF in Figures 4.6 and 4.7, are assertions required during
the fusion of coreferent tuples. In other words, an assertion on two values x and
y is only evaluated if at some point, x and y need to be sorted during fusion of
values of attribute a. From this point of view, the results show that for k = 1 and
λ2, more than 10% of the assertions made by ≤a are not made by the ground truth
≤ref and are at the same time not falsified by ≤ref . Assertions that are not made,
imply a higher risk of tie breaking. Because of the importance of this claim, it will
be further investigated in Chapter 5, where ≤a is evaluated on its usability in the
task of fusion.
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Figure 4.6 Mean correct assertions COR(E ,≤a,≤ref ) over all datasets for differ-
ent λ in function of k.
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Conclusion. This experiment showed that parameter k can be used to control
the quality of ≤a in terms of correct and non confirmed assertions. However, k
should be chosen sufficiently low to guarantee that enough assertions are made.
There appears to be a consistent trend in the accuracy of the different measures
of generality, yielding λ2 as the best measure. The statistical significance of the
differences between the various λ fades with increasing k. It is shown that the
assertions made by a DOC generated ≤a, are either correct or non confirmed with
respect to a ground truth taxonomical structure, but hardly ever falsified.

4.4.3 Stability under varying E
Goal. In this experiment, the stability of DOC is evaluated under varying E .

Procedure. For each of the seven datasets, E is randomly sampled without re-
placement in order to create subsets of the original partition. More specifically,
clusters are randomly left out of the original partition in order to obtain a reduced
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Table 4.7 Friedman mean rank (MR) and Kendall’s W on COR (E ,≤a,≤ref ) for
different λ in function of k.

k MR λ1 MR λ2 MR λ3 Sig. W
1 2 3 1 0.000 1
2 2 2.99 1.01 0.000 0.992
3 2.22 2.68 1.09 0.000 0.842
4 2.22 2.68 1.09 0.000 0.842
5 2.22 2.68 1.09 0.000 0.842
6 2.32 2.58 1.09 0.000 0.850
7 2.32 2.58 1.09 0.000 0.850
8 2.32 2.58 1.09 0.000 0.850
9 2.32 2.58 1.09 0.000 0.850
10 2.32 2.58 1.09 0.000 0.850
11 2.17 2.43 1.40 0.000 0.555
12 2.02 2.27 1.71 0.000 0.280
13 2.02 2.27 1.71 0.000 0.280
14 2.02 2.27 1.71 0.000 0.280
15 2.02 2.27 1.71 0.000 0.280
16 2.02 2.27 1.71 0.000 0.280
17 2.02 2.27 1.71 0.000 0.280
18 2.02 2 2 - -
19 2.02 2 2 - -
20 2.02 2 2 - -

partition with approximately the same distribution of values as the original one.
Sample sizes range from 10% up 100% of the original partition, in steps of 10%.
For each sample, the DOC method is applied and evaluated. For each sample size,
the procedure is repeated 100 times in order to obtain mean evaluations. Evalua-
tion is done w.r.t. the same ground truth as in Section 4.4.2. In this experiment, k
is assigned a fixed value: cases k = 1 and k = 5 are inspected.

Evaluation metrics. Local evaluation metrics NCF, COR and ERR (Section 4.4.2)
are used to evaluate the obtained order relations.

Results and discussion. The experiment differentiates the seven datasets into
two categories, which are discussed below. The first category includes four datasets:
R-NL, R-EN, R-FR and R-DE. On each of these datasets, the stability experiment
resulted in similar observations. Therefore, the discussion is limited to dataset R-
NL. For this dataset, the mean correct assertions over all 100 samples in function
of the sample size, are shown in Figure 4.8 (k = 1) and Figure 4.9 (k = 5). The
whiskers indicate the standard deviation of COR over the samples.

It can be observed from Figures 4.8 and 4.9, that for both k = 1 and k = 5,
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Figure 4.7 Mean non-confirmed assertions NCF(≤a,≤ref ) over all datasets for
different λ in function of k.

0,00

0,05

0,10

0,15

0,20

1 3 5 7 9 11 13 15 17 19

N
C

F(
Ԑ,

 ≤
a,

 ≤
re

f)

k

ʎ1

ʎ2

ʎ3

the variance in correct assertions is high for small samples. This is especially
the case for λ2. However, the mean percentage of correct assertions tends to be
higher for smaller samples, than for bigger samples. This can be explained by the
typical skew distribution of values (Figure 4.3). Due to this distribution, the more
difficult cases corresponding to low frequent values, are likely to be filtered out. As
such, a smaller sample size yields a slightly higher percentage of correct assertions.
Despite this large variance, the four datasets under consideration are characterized
by the fact that the mean ERR(E ,≤a,≤ref ) ≈ 0, with standard deviation close to
zero. This is observed for all λ and for all sample sizes. The implication thereof is
that the non-stability of the DOC method does not result in erroneous assertions for
these datasets. The opposite is observed for datasets R-ES, R-IT and restaurant, in
particular for λ1, as exemplified in Figure 4.10 for R-ES (k = 1). The cause of this
large amount of erroneous assertions can be understood by recalling the histogram
for R-ES ‘category’ values in Figure 4.3. It can be observed in this histogram that
two values together account for 90% of the data. This implies that many assertions
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Figure 4.8 Mean correct assertions COR(E ,≤a,≤ref ) over 100 samples for dif-
ferent λ in function of sample size where k = 1.
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will involve these two values. However, it can also be seen that their frequencies
are close to each other, implying that their frequency rank can switch easily in a
sample. Because this frequency rank is precisely the basis of λ1, there is a high
probability that assertions about these two values are erroneous in the context of a
sample. In this sense, λ3 is a more stable alternative for λ1, because of the usage
of frequency ranking on the whole dataset.

Conclusion. It is investigated to what extent DOC is stable if the number of clus-
ters reduces, while maintaining the distribution of coreferent tuples. It is shown
that λ1 and λ2 become unstable for very small partitions (i.e., large variance). For
λ2, the ratio of erroneous assertions remains low under unstable conditions. For
λ1, this is not the case and a significant amount of erroneous assertions is observed.
Finally, λ3 is found to be a stable measure of generality.
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Figure 4.9 Mean correct assertions COR(E ,≤a,≤ref ) over 100 samples for dif-
ferent λ in function of sample size where k = 5.
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4.4.4 Impact on the coreferent tuples detection

Goal. In the last experiment, an impact of an order relation ≤a generated by the
DOC method on the detection of coreferent tuples is evaluated. The influence of
the parameter k is investigated.

Procedure. First of all, for each of the seven datasets, the DOC method is ap-
plied to the ‘category’ attribute which gives the order relation ≤a. Next, the given
∆-partition E is an input for this experiment (as a reminder, coreference of tuples
in ∆-partition is based on values of all attributes except the ‘category’ attribute). In
this experiment, for each ∆i in ∆-partition E , tuples in ∆i are considered as coref-
erent tuples if and only if their values of the ‘category’ attribute are considered as
coreferent. Thus, values of the ‘category’ attribute are compared by two different
coreference measures in order to investigate their influence on the coreferent tu-
ples detection. Two coreference measures are investigated. For the first measure,
denoted as ≈, values of the ‘category’ attribute are compared without any addi-
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Figure 4.10 Mean erroneous assertions ERR(E ,≤a,≤ref ) over 100 samples for
different λ in function of sample size where k = 1.
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tional knowledge and only similarities between lexical forms of these values are
considered. They are compared by edit (Levenshtein) distance method [12] which
is defined as the minimal number of edit operations which are needed to transform
one string into another. The Levenshtein distance based approach employs prede-
fined threshold (equal 0.5) on the normalized number of edit operations needed, to
decide if the coreference occurs. The second measure claims that two values are
coreferent if there exists a relation between them in the order relation ≤a.

Evaluation metrics. The quality in this experiment is evaluated using two stan-
dard measures of recall and precision, and the ground truth is the reference order
relation ≤ref . The precision is a fraction of detected real coreferent tuples among
all detected tuples, the recall is a number of detected real coreferent tuples divided
by the number of all real coreferent tuples in ∆-partition E . The real coreferent tu-
ples are tuples of which the ‘category’ attribute values exist in the reference order
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relation ≤ref . Thus, the following two evaluation metrics are used:

PRE (E , ./,≤ref ) =

∑
∆∈E #detected real coreferent tuples∑

∆∈E #all detected tuples

REC (E , ./,≤ref ) =

∑
∆∈E #detected real coreferent tuples∑

∆∈E #all real coreferent tuples

where ./ is the ≈ coreference measure or the ≤a-based measure respectively.

Results and discussion. Figure 4.11 and 4.12 show mean precision and recall of
the coreferent tuples detection over all seven datasets, in function of the cut-off
threshold k. Like in the previous experiments, higher values of k indeed filter out
incorrect information. Of course, by increasing k, the total number of detected
coreferent tuples decreases, meaning that higher k leads to less, but more correct
coreferent tuples. From Figure 4.11, it can be learned that the first and the second
coreference measure gives almost the same precision. However, recall which is
presented in Figure 4.12 is definitely much more better for ≤a-based coreference
measure than for the ≈ coreference measure. It can be concluded that the order
relation ≤a has strong advantages over string based comparison method in the
coreferent tuples detection of tuples with categorical attribute.

Figure 4.11 Mean precision PRE (E ,≤a,≤ref ) and precision syntax
PRE (E ,≈,≤ref ) over all datasets in function of k.
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Figure 4.12 Mean recall REC (E ,≤a,≤ref ) and recall syntax REC (E ,≈,≤ref )
over all datasets in function of k.

4.4.5 Concluding remarks

It has been shown that parameter k can be used to steer the quality of the generated
order relation. For low k, a “larger” order relation is produced, usually containing
a certain amount of non-confirmed assertions. For higher k, those non-confirmed
assertions are filtered out. Three measures of generality λ have been tested. It is
found that λ2 provides the order relation with highest quality, followed by λ1 and
λ3 in that order. If the partition size becomes very small, λ1 and λ2 can shown
unstable behavior, while λ3 is more resilient to small partition sizes. In addition,
λ3 provides more assertions.

4.5 Conclusions
In this chapter, the novel Dynamical Order Construction (DOC) algorithm has been
proposed as a way to construct a proper order relation, which is either unknown
or difficult to obtain, in an automated fashion, upon observing the coreferent data.
Novel generality measures to specify the order, which are based on the frequency
of values, are closely investigated. The behaviour of the DOC algorithm has been
evaluated widely on several real life datasets, gaining us with valuable insight in
the influence of the different parameters of our approach. Moreover, is was shown
how the proposed approach has benefits with respect to a fixed taxonomy and
string based comparison method in the coreferent tuples detection of tuples with
categorical attribute.

On the one hand, the DOC algorithm constitute an answer to the first part of
third research question which concerns dynamically constructed knowledge base
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and its impact on the detection of coreferent tuples. On the other hand, the next
chapter responds to the second part of third research question. Namely, the impact
of the DOC algorithm on the data fusion in homogeneous and heterogeneous data
collection is studied. More specifically, the novel balanced fusion function for
attributes of which the values can be sorted by means of an order relation that
reflects a notion of generality is proposed.



5
Dynamically constructed order relation

in data fusion

The following publications have been based on the contents of this chapter:

• A. Bronselaer, M. Szymczak, S. Zadrożny, and G. De Tré, “Dynamical order
construction in data fusion,” Information Fusion. (Under review)

5.1 Introduction

In this chapter, we investigate fusion functions for attributes of which the values
can be sorted by means of an order relation that reflects a notion of generality. It
is shown that providing such an order relation a priori, let alone keeping it up-to-
date, is a costly operation. Therefore, the Dynamical Order Construction (DOC)
algorithm, which is proposed in the previous chapter, is used in the context of
data fusion. Such order relations can be immediately deployed in a framework of
selectional fusion functions, which are fusion functions that adopt the sort-and-
select principle. These fusion functions are investigated closely in terms of their
selection strategies and tie breaking mechanisms. An experimental evaluation of
our method shows the influence of the parameters and the benefits with respect to
using a fixed and predefined taxonomy.
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5.1.1 Problem illustration

In the past decades, the handling of coreferent data has gained a lot of attention
in the literature [108]. Usually, a solution to the problem of coreferent data com-
prises two distinct steps: (i) detection and (ii) fusion. The first step deals with
the question “Are two descriptions referring to the same entity?” and has been the
topic of much research throughout the past decades [2]. The second step deals with
the question “How can coreferent descriptions be combined?”. Hereby, there are
several possibilities in how the result of such a combination must look like [109]:
it could be a single description or a set of descriptions that contains as little redun-
dant information as possible. In addition, there are several ways in how the result
of fusion is used: it could be used to replace coreferent information in the database
(possible using data lineage to link back to original value) or it could be stored in a
table/view where it can be retrieved later on, for example to support coreferent free
query results. Within the scope of this chapter, a contribution is made in solving
the fusion step by proposing a novel fusion function that combines multiple de-
scriptions into a single description using the dynamically generated order relation
which has been proposed in the previous chapter.

As a running example throughout this chapter, we consider again a relational
database of Points Of Interest (POIs). Provided that the tuples between horizon-
tal lines shown in Table 4.1 have been detected as coreferent tuples, the next step
in data cleansing is to combine them into one tuple that best represents the in-
formation about the referred location. As we will formalize in the following and
we mention in the Introduction Chapter 1, this is usually done by projecting the
tuples over their attributes and processing each attribute separately. For the POI
name, a selection function which chooses the most frequent name or the longest
name can be considered. For longitude and latitude, a possible solution is to apply
median function. However, for the POI category, finding a representative value is
less trivial, what we mention in the Introduction Chapter 1, because POI category
variations are caused by subjectivity. In this setting, the taxonomical connection
between the values of POI category can be used as a basis for fusing them. In order
to deploy such a strategy, a number of challenges occur that deserve attention:

• How do we cope with the fact that, in many cases, the taxonomical structure
that connects the values of an attribute is not known to the fusion function?

• How do we induce a fusion function from a generated taxonomical struc-
ture?

• Should the fusion be biased towards more specific or more general informa-
tion?

• How to proceed with the cases where there is no explicit information on
general-specific relation between a pair of values?
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Within the remainder of this chapter, these questions shall be answered by
developing a framework for fusion functions in which order relations can be gen-
erated automatically by the DOC algorithm that is proposed in Chapter 4.

5.1.2 Contributions

With respect to the problems given above, the following important contributions
are made by this chapter. An application of the DOC algorithm (see Chapter 4)
is proposed to support fusion of coreferent values for an attribute of which values
may need semantical comparison and can be sorted by means of an order relation
that reflects a notion of generality. Our approach has the advantages that there is no
need for a priori taxonomical knowledge on the attribute domain and that the order
relation automatically adapts to the values in the dataset. Moreover, in the context
of data fusion a new strategy for selection is proposed called balanced selection
and, in that context, tie breaking is studied. The behavior and (dis)advantages of
our methods are experimentally investigated and validated on real life datasets.

5.1.3 Outline

The remainder of this chapter is organized as follows. In Section 5.2, an extensive
overview of work related to the topic of this chapter is provided. Next, in Sec-
tion 5.3, a framework of fusion functions is introduced in order to formalize the
problem that is studied here. In Section 5.4, the usage of the DOC method, which
has been presented in Chapter 4, in the context of fusion functions is investigated
and selection strategies are evaluated. Hereby, a discussion on the role of tie break-
ing is given. In Section 5.5, an experimental study of the proposed methods and
techniques is reported. Finally, Section 5.6 summarizes the most important contri-
butions of this chapter.

5.2 Related work
In the past decades, the problem of fusing coreferent data in (relational) databases
has been studied by many authors. In the first place, a number of authors consider
the usage of relational operators in order to remove redundant data. Legaria et
al. [110, 111] use the “union”-operator followed by removal of subsumed tuples.
Yan et al. [112] propose the “match join”-operator which is a combination of union
and join. Greco et al. [113] have investigated a similar approach. Bleiholder et
al. [109] have proposed the “fuse by”-clause as an extension of the SQL syntax to
support redundancy removal operations. Further development of that approach is
reported in [114–116].

Apart from the usage of relational operators, some authors have been investi-
gating stand-alone integration systems. Bilke et al. [117] and Naumann et al. [13]
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have proposed an integrated system (HumMer) that allows the semi automated in-
tegration of heterogeneous data sources. It uses three steps of data integration:
schema matching, duplicate detection and data fusion. In their work, they mention
several functions for resolving inconsistencies that can be interpreted in terms of
fusion functions discussed later in this chapter. Motro et al. [118] have approached
the problem of data fusion as a multi-dimensional optimization problem. In their
framework called FusionPlex, Motro et al. propose to use a utility function that is
a linear combination of six metadata dimensions in order to tackle the problem of
data fusion. Whereas the approach by Motro et al. assumes the data to be stored in
a relational database, other approaches weaken this assumption and also consider
semi-structured data by providing a data transformation layer (wrappers) [119].

Some authors have investigated the use of taxonomies and/or ontologies in the
scope of data integration. In [120], a classification of possible semantical conflicts
in (heterogeneous) databases is presented. Lu et al. [28] have investigated the au-
tomated construction of arithmetic-based conversion functions for numerical data.
In their work, Lu et al. adopt correlation analysis for conflict detection and linear
regression for conflict resolution. The resulting conversion functions are shown to
allow for a mapping between different monetary rating systems. The initial frame-
work of conversion functions is further developed in [121], where context aware-
ness is taken into account in order to enhance the conversion functions. Ram et
al. [122] have developed SCROL: a standard ontology to facilitate semantic trans-
lations between heterogeneous databases. Such an ontology allows to detect both
data level conflicts (e.g., representation, precision...) and schema level conflicts
(naming conflicts, entity identifier conflicts...). A similar approach has been inves-
tigated by Liu et al. [123]. In [124], the usage of ontologies is studied to support
conflict resolution in query languages for heterogeneous databases. Bleiholder et
al. [109] consider the selection of the most general and the most specific value as
two of their conflict resolution strategies. They mention explicitly the usage of an
ontology to infer a ranking of values to be fused. Dong et al. [14, 125] and Berti
Equille et al. [126] have investigated the impact of source dependence on data fu-
sion. Their work focusses on “choosing a proper one” among multiple sources
that need to be integrated. For further readings on the usage of ontologies in data
integration, the reader is referred to the overview paper by Wache et al. [127].

To the best of our knowledge, none of the above approaches relies on a knowl-
edge base (a taxonomy, an ontology or some other structure) that is constructed
dynamically without human intervention. There are some authors focussing on
the automated construction of ontologies but it is not applied for data fusion di-
rectly and they differ from the technique presented in this work in several ways as
described in Chapter 4.
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5.3 A Primer on fusion functions

In this section, a basic framework of fusion functions is described, thereby relying
on an existing definition of fusion functions. Within this framework, a formal
distinction between selectional and compositional fusion functions is made. It
is shown how compositional fusion functions are composed from atomic fusion
functions. Within the framework developed in this section, a formal description of
a novel selectional fusion function will be defined in 5.4.

5.3.1 The basic framework

In the remainder of this chapter, a relational database D = {R1, ..., Rn} with a
schema D = {R1, ...,Rn} is considered. Let us now assume that there exists a
relationR with schemaR for which coreferent tuples have been found (see formal
definition in the previous chapter in Section 4.3.1). Coreferent tuples are hereby
understood as two or more tuples that are copies or describe the same real world
entity in a different manner, where differences can originate from typographical er-
rors, lack of standardization, missing data... Obviously, the relation of coreference
among the tuples is an equivalence relation. In order to remove these coreferent tu-
ples from R, a fusion function is considered. The definition from [128] is adopted
here.

Definition 12 (Fusion Function [128]). Let R be a schema. A fusion function F

forR is defined by a function F :M(dom(R))→ dom(R) whereM(U) denotes
the space of all multisets defined on U .

For a schema R, a fusion function takes a multiset of tuples and maps that
multiset onto one tuple. Of course, very often the multisets of tuples in question
will be in fact regular sets but the generalization provided by the concept of mul-
tiset is at work when we consider fusion at the level of attribute values sets, as
discussed later on. Moreover, such a more general approach makes it also possible
to consider identical coreferent tuples originating from merging several databases.
In [128], it is noted that an important class of fusion functions is that of preserva-
tive fusion functions. These are defined as follows.

Definition 13 (Preservation [128]). LetR be a schema. A fusion function F forR
is preservative if and only if F(∆) ∈ ∆.

Informally, a preservative fusion function is bounded by the constraint that the
result must be chosen from the input multiset. In practice, two important classes
of fusion functions can be distinguished: selectional functions and compositional
functions.
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Selectional Fusion Functions. A selectional fusion function is a preservative1

fusion function that relies on the assumption that there exists a partial order over
dom (R), say ≤R, which allows to rank tuples in ∆. The value of a selectional
fusion function F is given by selecting a tuple on a fixed position after sorting.
Because ≤R is a partial order, there may be multiple sorted sequences that sat-
isfy ≤R. Therefore, tie breaking will be discussed in Section 5.4. The two most
common selection strategies are to take the minimal or the maximal tuple in ∆

according to the order ≤R.

Definition 14 (min-≤R Fusion Function). Let R be a schema and ≤R an order
over dom(R). A min-≤R fusion function F≤Rmin forR is defined by:

F (∆) = min
t∈∆

t. (5.1)

Definition 15 (max-≤R Fusion Function). Let R be a schema and ≤R an order
over dom(R). A max-≤R fusion function F≤Rmax forR is defined by:

F (∆) = max
t∈∆

t. (5.2)

Many well known fusion functions that are found in the literature can be cast
into this simple framework of selectional fusion functions by choosing a suitable
order ≤R. Some examples of such functions are most/least recent [13], subsump-

tion [110] and maximal utility [129]. As a side comment, note that F≤Rmax = F
≤−1
R

min

where ≤−1
R denotes the inverse relation of ≤R.

For instance, let us consider again 3 tuples in Table 4.1 which represent Bel-
fry of Ghent. The most (least) recent function will select the newest (oldest) tu-
ples depending on, e.g., the modification date. Whereas, the second tuple can be
chosen by the subsumption function because this method removes redundant in-
formation and “POI” can be considered as a generalization of others categories.
Finally, utility-based techniques combine different information and are based on
knowledge about the performance of the source data, including features such as
recentness, availability, cost and accuracy.

Compositional Fusion Functions. A compositional fusion function is based on
the principle of divide-and-conquer by fusing the values of each attribute sepa-
rately. The fused values for all the attributes are then composed into a final tuple.
A particularity is that fusion of attributes is based on the multi-projection (cf.,
Def. 11) rather than the classical relational projection. The multi-projection of an
attribute will be processed by means of an atomic fusion function.

1Mathematically seen, the class of preservative fusion functions is broader than the class of selec-
tional fusion functions.
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Definition 16 (Atomic Fusion Function).
LetR be a schema. For a ∈ R, an atomic fusion function Fa is defined as a fusion
function over one-attribute relational schema, i.e. R = {a}.

A fusion function Fa is called atomic because it operates on the lowest level
of the relational model (i.e., an attribute). In general, a distinction can be made
between (a) preservative and (b) non-preservative atomic fusion functions. Two
examples of the first type are coalesce fusion (random selection of a non-NULL

value) [129] and majority fusion [130] characterized by:

Fa (∆JaK) = arg max
v∈dom(a)

(∆JaK) (v). (5.3)

Examples of the latter case are average operators for numerical values and concate-
nation operators for character strings. With the concepts of ‘multi-projection’ and
‘atomic fusion function’ at hand, a compositional fusion function can be defined
as follows.

Definition 17 (Compositional Fusion Function).
Let R be a schema and let Fa be an atomic fusion function for a ∈ R. A compo-
sitional fusion function F forR is defined by:

F(∆) =

(
Fa1

(
∆Ja1K

)
, ...,Fak

(
∆JakK

))
. (5.4)

It can be seen that a compositional fusion function is not bound to be preser-
vative, as there is no guarantee that the composed tuple occurs in ∆.

5.3.2 Construction of atomic fusion functions

In the remainder of the chapter, we consider a compositional fusion function F

for a schema R. This means that, for each attribute a ∈ R, an atomic fusion
function Fa must be specified. In the remainder of this chapter, we restrict our-
selves to atomic fusion functions that are selectional (Section 5.3.1). This choice
is motivated by the properties possessed by such functions:

• Some attributes are represented using nominal or ordinal scales [131] al-
lowing for defining a rather limited number of meaningful operations. In
that case, an aggregation of input values becomes virtually infeasible and
choosing one of the input values seems the only valid strategy for fusion.

• Selectional fusion functions possess some nice mathematical properties such
as idempotence and self-identity [132] in the absence of ties.

• Using a selectional fusion function increases the a priori confidence that
the fused value is valid (i.e., it is observed in the database before fusion).



5-8 DYNAMICALLY CONSTRUCTED ORDER RELATION IN DATA FUSION

Moreover, if values in ∆ stem from different sources, the confidence in the
outcome can be linked to the confidence in the source of its origin.

• Selectional fusion functions cover a wide range of fusion functions that are
studied in the literature. For example, in their overview paper on data fu-
sion [133], Bleiholder and Naumann discuss different conflict resolution
functions for attribute values. It can be verified that most of these functions
fit the definition of a selectional fusion function as given here.

Despite the above mentioned advantages, the usability of a selectional fusion
function completely relies on the assumption that a relevant order relation ≤a is a
priori available. Obviously, the popularity of selectional fusion functions partially
stems from the fact that this assumption holds in many cases. As an example, for
date/time information, the natural ordering is usually a good and relevant order re-
lation. As another example, for (short) textual information, a reasonable (although
simple) heuristic could be that the information contained by a string is proportional
to the length of the string or the number of tokens in the string. In that case, a rel-
evant order relation is string length or token count. As yet another example, the
lexicographical order relation for short text labels might be a suitable candidate.

However, the case may be that a relevant ordering for the purpose of data fusion
is not available. As explained in Introduction Chapter 1, in some cases, the relevant
order should be inferred from a taxonomical structure that represents a generaliza-
tion/specialization relation. It often occurs that this taxonomy is unavailable at the
time of data fusion. This is caused by a variety of reasons:

• The simplest reason is that the taxonomy is simply not (explicitly) known. In
some cases, maintenance of a taxonomy can be an expensive operation for
the database administrator, so that no taxonomical structures are available
for utilization in data fusion.

• If there is a taxonomy at hand, it might be difficult to relate entries in this
taxonomy to values in the database. More specifically, if the available tax-
onomy is not used for inserting values in the database, there is a high prob-
ability that values stored in the database differ from the ones used in the
taxonomy.

• In some cases, data fusion operations deal with information that stems from
different sources. As an example, the famous “Restaurant” dataset [9] (Sec-
tion 5.5) features two lists of restaurants, taken from two on-line guides:
Fodor and Zagat. In both cases, the type of the restaurant is specified. How-
ever, only 25% of the type values occur in both lists. This indicates that
both restaurant guides use a different taxonomy to classify restaurants. In
such a case, fusion requires some kind of translation between both sources
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of values (for further studies on the translation in data fusion, namely value
mapping, the reader is referred also to Chapter 6 where an order relation is
used to established a semantical mapping between attributes values).

As a solution to these problems a method (namely the DOC algorithm) is pro-
posed in Section 4.3 to construct an order relation ≤a in a dynamical manner.
More specifically, if we are confronted with a data fusion problem in which one of
the attributes requires fusion based on a taxonomy then such a taxonomy is con-
structed automatically, based on the observed tuple coreferency. The advantages
of this method are clear: (i) the taxonomy is always known, (ii) contains solely
values that are observed in the data and (iii) dynamically translates values that
could stem from different taxonomies. In what follows, this method of automated
taxonomy construction shall be used in the context of selectional fusion functions.

5.4 Atomic DOC-driven fusion functions

In this section, the DOC method (see Section 4.3) is used to construct atomic
fusion functions. We hereby restrict ourselves to fusion functions that are preser-
vative (Definition 13). More specifically, a selectional fusion function will be con-
sidered, meaning that, next to the generated order relation, a suitable selection
strategy is needed.

First, some heuristics are provided that can aid in the recognition of attributes
for which DOC-driven fusion is suitable. Next, some selection strategies are dis-
cussed that bypass simple minimal or maximal selection. Finally, the problem of
tie breaking upon selection is discussed.

5.4.1 Recognition of suitable attributes

With the DOC method established, we are able to construct an order relation ≤a
to backbone an atomic fusion function Fa for an attribute a. In order to do so,
it should be clear that the DOC method can not be applied to every attribute. In
fact, the usage of a DOC-driven fusion function requires a specific type of at-
tributes. The fully automated recognition of such attributes is near to impossible.
However, some heuristics can be used to recommend or discourage the usage of a
DOC-driven function to a human supervisor. Below, a non-exhaustive list of such
heuristics is presented.

• Subjectivity. Perhaps the most important feature that an attribute must pos-
sess, is that its values provide an answer to a subjective question. An ex-
ample thereof is the “category” attribute for POIs (Table 4.1). Indeed, when
several persons are asked to provide the category of a POI, they might pro-
vide a different value because of a different opinion or view to the matter.
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The same is true for the category of a restaurant, the genre of a movie... De-
spite of the fact that it is a strong indicator, subjectivity is however difficult
to measure.

• Data structure. Useful information can be derived by inspecting the data
structure of an attribute. Typically, numerical and time/date data structures
are not suitable for DOC-driven fusion. Enumeration data or textual data
constrained by check constraints2 are usually more suitable candidates.

• Data statistics. Statistics of the data can provide useful information during
inspection of the attribute. For example, if an attribute has a very high per-
centage of unique values, the DOC method will not perform well, because it
explicitly relies on the differences in the frequency of values to construct an
order relation. In addition, attributes on which the DOC method performs
well, typically have values with a skew frequency distribution.

• General purpose ontologies. Regardless of which structure is best suited
for the actual fusion, a general purpose ontology like YAGO ( [134]) can
be used to (partially) detect some hierarchical connections between values
of an attribute a. Such connections are a strong indication that the DOC
method is applicable.

5.4.2 Selection strategies

Once we have established that an attribute a is suitable for DOC-driven fusion, a
selection strategy is needed in order to obtain a selectional fusion function for a.
Recall from Section 5.3 that a selectional fusion function adopts a sort-and-select
strategy to perform fusion. As explained in Section 5.3, selection is often done
by taking minima or maxima of the sorted sequence. Although these selection
strategies might be very simple, they can prove to be useful in an ensemble of
fusion functions. Such an ensemble for an attribute a considers several atomic
fusion functions Fa and adopts a voting procedure to take the final decision.

The principle of an ensemble is depicted in Figure 5.1. Hereby, the atomic
fusion function Fa consults M ground functions F(i)

a and computes a result by
performing a (weighted) vote on the results of them, where weights can express
preferences for particular ground functions. Assuming that the ground functions
are selectional, the idea of an ensemble is that simple selection strategies can be
used by the ground functions if M is sufficiently high and the ground functions
are chosen in a sensible way. A DOC-driven fusion function can then be chosen as
one of the ground functions, combined with other selectional functions that rely on

2A check constraint is a type of integrity constraint (e.g., in SQL) which specifies a requirement
that must be met by each row in a database table
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Figure 5.1 Ensemble fusion function for attribute a.
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source preferences [14, 125] or other order relations (e.g. based on ontologies). In
the remainder of the chapter, ensemble functions will not be investigated deeper.

In the case where we wish to construct a fusion function that solely relies on an
order relation generated by the DOC-method, a more advanced selection strategy
than simple minimal or maximal selection is desired. This is mainly caused by
the fact that selection is problem dependent. To clarify this, Figure 5.2 shows
three examples in which an order relation ≤a is represented as a directed graph.
The nodes of this graph correspond to values from dom(a). Edges depart from
the more general value and points towards the more specific value. For reasons
of clarity, the Hasse diagram is shown. In all three examples, the nodes that are
marked in bold indicate the values that need to be fused. In the leftmost panel of

Figure 5.2 Selection strategy is problem-dependent.

Figure 5.2, two values u and y need to be fused for which we know that y ≤a u. In
this case, two coreferent values are observed, where it can be inferred from≤a that
one is more general than the other. Minimization of information loss leads us to the
decision that the more specific value should be preferred here. In the center panel



5-12 DYNAMICALLY CONSTRUCTED ORDER RELATION IN DATA FUSION

of Figure 5.2, three values w, x and y need to be fused for which we know that
x ≤a w and y ≤a w. In this case, evidence is given that the concept in question
is a specialization of w, but it is unclear which one. In addition, choosing either x
or y, implies a certain information loss. Therefore, it might be better to select the
more general value in this second example, leading to the usage of max-≤a fusion
function. Finally, in the rightmost panel, a mixture of both previous examples
is observed. Choosing u implies an unnecessary loss of information, as there is
no ambiguity about the specialization of u. As a result, w should be the preferred
output over u. However, there is ambiguity about which specialization ofw should
be chosen. Therefore, in this third example, w should be selected as output of the
fusion function. Clearly, to obtain this behaviour, a more sophisticated selection
criterion is required than the ones introduced in Section 5.3.

In order to establish a selection criterion, a generalization of the strategies
explained in the examples of Figure 5.2 is used. In each of the examples, the most
specific value that was comparable to all other values, was chosen as result of the
fusion function. This criterion is formalized as follows.

Definition 18 (Totality). Let ≤a be a partial order relation over dom(a) and as-
sume S ⊆ dom(a). A value v ∈ dom(a) is called total w.r.t. S (denoted S |=≤a

v)
if and only if:

∀v′ ∈ S : v ≤a v′ ∨ v′ ≤a v. (5.5)

In words, a value v is total w.r.t. a set, if it can be compared with each value in
that set. With the concept of totality at hand, the strategy of the balanced selection
can be defined as below.

Definition 19 (Balanced selection). A selectional fusion function Fa is balanced
if it returns the minimal value v ∈ dom(a) w.r.t. ≤a, that is total w.r.t. ∆JaK.
Formally:

Fa (∆JaK) = min{v : v ∈ ∆JaK ∧∆JaK |=≤a
v}. (5.6)

Such a fusion function is denoted as F≤a
B .

It can be verified that the balanced fusion function yields the desired outcomes
for each of the examples shown in Figure 5.2. If we use balanced selection to fuse
the “category” attribute for clusters shown in Table 4.1 and using ≤a as shown in
Figure 4.2, we obtain the results as shown in the upper part of Table 5.1. For these
examples, there is no difference between balanced and minimal selection. For val-
ues “Hist. Bld.” and “Restaurant”, no decision can be made because these values
are incomparable. The lower part of Table 5.1 shows an example for which there
is a difference between minimal and balanced selection. Note that for this exam-
ple, the outcome for minimal selection is not entirely determined, because values
“Monument” and “City” are incomparable under ≤a. Therefore, both values are
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Table 5.1 Fusion results for ≤a from Figure 4.2 and coreferent tuples from Ta-
ble 4.1 with a =“type”.

∆JaK F≤a
B (∆JaK) F≤a

min (∆JaK)
{Tower, POI, Monument } Tower Tower

{Hist. Bld., Restaurant } Hist. Bld./
Restaurant

Hist. Bld./
Restaurant

{City, POI } City City
{Monument, POI } Monument Monument
{City, POI, Monument } POI Monument/City

possible outcomes in case of minimal selection. In case, of the balanced selection,
value “POI” is the only total value and is returned as result.

We can now show some interesting properties of the balanced selection.

Property 1. If all values in ∆JaK are total with respect to ∆JaK, then:

F≤a
B (∆JaK) = F≤a

min (∆JaK) . (5.7)

Proof. The proof follows immediately from the observation that, if all values in
∆JaK are total, the balanced selection selects the minimum from ∆JaK.

Property 1 shows that minimal selection is a special case of the balanced se-
lection. This is illustrated in the leftmost panel of Figure 5.2, where all values that
need to be fused are total and as such, the smallest one (i.e., y) is chosen. Prop-
erty 1 supports the following rule of thumb behind the balanced selection: “If the
most specific value is unambiguously defined, then that is the result of the fusion
function.”. Yet another way of putting it is that the balanced selection maintains a
balance between yielding specific information and information that is not falsified
by the knowledge at hand.

Property 2 (Uniqueness). If ∆JaK contains one or more total values with respect
to ∆JaK then F≤a

B (∆JaK) is unique.

Proof. The proof follows immediately from the observation that fusion selects the
minimum among all total values. This minimum is uniquely determined, because
total values can be mutually compared by definition and ≤a in Definition 18 is
assumed to be a partial order and thus antisymmetric.

Property 2 shows an important advantage of the balanced selection, namely
that it is uniquely determined. On the other hand, it reveals also an important
disadvantage, namely that it might be undefined. Indeed, it is possible that none of
the values that need to be fused is total. In that case, the set of total values in ∆JaK
is empty and the output of our fusion function remains unspecified. The following
section is devoted entirely to an in-depth study of this problem.
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5.4.3 Tie breaking

The problem with the proposed above balanced selection algorithm is the possible
lack of total values. In other words, the algorithm does not yield a result when for
each value in consideration, there exists another value to which it can not be com-
pared. Such incomparability is an intrinsic aspect of a partial order relation (if not,
it would be a total order relation). The problem where a partial order relation hin-
ders the accuracy of a function is widely known as tie breaking and occurs in many
disciplines (e.g., top-k queries [135, 136], social choice theory [137] ...). Within
the scope of data fusion, the problem of tie breaking is encountered with many
other selectional fusion functions. For example, when selecting the most recent
information or the shortest string, ties can very well be met. In these cases, ties are
usually handled by making a random choice between the candidate solutions. In
the current setting, the problem of tie breaking is investigated in more depth.

Let us begin with providing some examples. In Figure 5.3, three cases are
shown in which none of the values is total. As a result, application of the balanced
selection strategy yields no result. In the leftmost panel, a case is shown in which
two values are incomparable, but it is known that they are both a direct specializa-
tion of the same value (i.e., w). In the center panel, a similar case is shown, but
with the difference that one of the values is not a direct specialization of the com-
mon ancestor. In the rightmost panel, two values are shown that have no common
ancestor. A possible solution in any of these cases, is to resolve the incomparabil-
ity between two values (i.e., breaking the tie), in order to create at least one total
value.

Figure 5.3 Three examples of ties.

Before discussing possible solutions to the problem of tie breaking, let us first
discuss the interesting question: “Should ties always be broken?” This question
relates in a sense to the origin of ties. Let us clarify this with an example. In Ta-
ble 4.1, there are two coreferent tuples describing the restaurant “Korenlei 2”. For
each of these tuples, a different category is given. Suppose our order relation can



CHAPTER 5 5-15

make no comparison between “Hist. Bld.” and “Restaurant”. Then the balanced
selection will be undetermined. If the tie situation between these two values needs
to be resolved, a relevant question is whether there exist reasons to choose one of
these two values. Indeed, in a city like Ghent, it is common that restaurants are
located in historical buildings, making both category values equally reasonable
and simultaneously relevant. However, the data structure implies that each POI
should have at most one category, forcing us to make a choice. In addition, the
definition of fusion functions as given here (Section 5.3) also dictates that a single
value should serve as the output of fusion. The current example illustrates that this
assumption might not always hold.

Having this said, let us assume for the remainder of this section that a relevant
tie breaking decision does exist. In the discussion of tie breaking, two aspects
are of interest. On the one hand, given that two values x and y are incomparable
under ≤a, choosing one of them in the framework of Definition 19 is equivalent
to assuming x ≤a y or y ≤a x as additional input information. On the other
hand, if we consider that≤a is a (part of a) knowledge base, caution must be taken
when modifying this knowledge base. Breaking too many ties might render ≤a
less useful if tie breaking relies on strategies that are not sufficient trustworthy.
Both of these aspects are discussed below.

Let us first discuss the aspect of decision rules. Suppose two values x and y
have been identified that are incomparable under≤a and it is required to break this
tie. This means that either x ≤a y or y ≤a xmust be assumed. The choice usually
relies on heuristics. Four heuristics, three of them proposed in literature, are listed
below:

• Majority [130]. A first decision rule selects the value with the highest mul-
tiplicity in ∆JaK. Although this rule provides s a good heuristic, it is equiva-
lent to a random choice if |∆JaK| = 2. Unfortunately, for real datasets such
a case may prevail. For example, for the datasets used in Section 5.5, this is
the case in 97% of the identified coreferent tuple clusters.

• Source Preference [119, 125]. A second decision rule takes into account a
preference of sources and selects the value that stems from the must reliable
source.

• Random choice [129]. A third decision rule is to break the tie by making a
random choice.

• Structural Inference. Finally, a proposal done in this chapter, it to use the
structure of ≤a to break a tie. In that case, when two values are incompara-
ble, the tie is broken by deriving some statistics for both values from≤a. An
example thereof is to look at other values to which they can be compared. In
the center panel of Figure 5.3, it can be observed that v and y are both more
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specific than u. However, y is also more specific than w, which is in turn
more specific than u. If it can be assumed that the specificity is reflected in
the number of intermediate values, then y can be considered more specific
than v. Another heuristic could be to count the number of values that are
more specific than each of the tied values. The more values that have higher
specificity than v according to ≤a, the more general v becomes. Structural
inference has the advantage that more ties can be broken than other strategies
like majority, but the usefulness of structural heuristics depends completely
on the assumption that specificity can be derived from the structure some-
how. We shall evaluate tie breaking by structural inference in Section 5.5.

The second aspect that needs discussion is the extent to which ties are broken.
In order to explain this aspect, let us consider the example shown in the leftmost
panel of Figure 5.4.

Figure 5.4 Influence of tie breaking on balanced selection (dotted line indicates
broken tie).

In this example, four alternatives are given that need to be fused. It can be
verified that none of these values is total w.r.t. the set of alternatives. As a result,
the balanced selection is undetermined and tie breaking is required to find a solu-
tion. However, the important question that now occurs is: “Which ties should be
broken?”. Suppose we break the tie between v andw and suppose that the decision
rule asserts w ≤a v, then balanced selection will result in w (Figure 5.4, center
panel). Suppose that the decision rule asserts (in addition to the first assertion) that
y ≤a x, then balanced selection will result in y (Figure 5.4, rightmost panel).

On the one hand, it can be reasoned that balanced selection aims at selecting
information that is as specific as possible. In that reasoning, tie breaking should
focus at breaking ties between the most specific values. In the example shown in
Figure 5.4, this means that balanced selection should never select v nor w, because
they are less specific than x and y. On the other hand, it can also be reasoned that
balanced selection accepts only information that is not falsified. In that reasoning,
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the decision rule should be paired with a measure of confidence, and this confi-
dence should indicate a preference on which ties to break first. Such a measure
of confidence can be an implicit part of the decision rule (e.g. the preference of
a source, the multiplicity in the case of majority voting...), but can also be an in-
dependent mechanism. The example in Figure 5.4 illustrates that it is desirable to
maintain a balance between specificity and confidence upon tie breaking. It should
be taken into account that the requirement of a measure of confidence may intro-
duce some difficulties. Either it could be not so reliable or it could be cumbersome
to provide a measure of confidence explicitly. In that case, a better alternative is to
perform tie breaking only on the most specific values.

5.5 Evaluation and discussion

In this section, an experimental evaluation of the proposed techniques is presented.
The time complexity of the DOC method in the context of data fusion are evalu-
ated and the balanced selection strategy is compared with the minimal selection
strategy.

5.5.1 Datasets

Throughout the experiments, seven datasets are used which are detailed described
in Section Evaluation in Chapter 4. As a reminder, the first dataset is the famous
‘restaurant’ dataset [9], which contains two lists of restaurants. One list of restau-
rants stems from the on line guide ‘Zagat’, while the other list stems from the
on line guide ‘Fodor’. Six other datasets are real-life datasets made available by
the Belgian company RouteYou3, which is an on line provider of cycling routes.
Within the context of our experiments, the attribute of interest is the category of
the restaurant, which specifies the cuisine that can be found in the restaurant, or
the category of POI, which describes a function of the location.

5.5.2 Selection strategies

Goal. In this experiment, the DOC method is evaluated in terms of the behavior
of the fusion functions that rely on≤a. Therefore, two selection strategies are eval-
uated: min selection (i.e. most specific value) and balanced selection (i.e. the most
specific value that can be compared with all other values). These fusion functions
are compared with two alternatives: majority voting and selectional fusion based
on ground truth ≤ref (the same which is applied for experiments in Chapter 4).
By taking into account this last function, confirmation is sought for the benefit of
DOC over a fixed taxonomy.

3http://www.routeyou.com
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Procedure. For each of the seven datasets, the partition E of coreferent tuples is
considered. For each set of coreferent tuples ∆, a fusion function is applied to fuse
the ‘category’ attribute and it is verified if this result is uniquely determined, that
is: the solution exists (applicable for balanced selection) and is unique. As such,
the percentage of unresolved fusion operations indicate the percentage of cases in
which tie breaking is necessary. We evaluate selectional fusion supported by DOC
for two selection strategies: minimal and balanced. Note that we consider only
non-trivial cases, i.e. cases where there is only one possible value for category are
excluded. We compare the results of our approach with (a) a fusion function that
adopts the ground truth taxonomy for sorting and uses balanced selection and (b)
a fusion function that performs a majority vote.

Evaluation metrics. For all fusion functions, the ratio of coreferent tuple clus-
ters for which fusion is unresolved, is reported. A set of coreferent tuples ∆ has
unresolved fusion for attribute a, if F(∆JaK) has either no solution, or multiple
solutions. In addition, for the fusion functions relying on ≤a or ≤ref , we also re-
port the ratio of unresolved fusion operations for which there is at least one value
v ∈ ∆JaK that is missing in ≤. With this second metric, we measure the extent to
which an unresolved case is due to the fact that the knowledge base ≤ has insuf-
ficient information to make a decision. In case of ≤a generated by DOC, this can
be caused by increasing k. In case of the ground truth ≤ref , this can be caused by
the fact that the ground truth taxonomy contains (to some extent) other values than
those in the dataset.

Results and discussion. First, some summarized results are provided. Table 5.2
shows a comparison between the baseline methods and a balanced fusion function
supported by DOC with the measure for generality λ2 and the cutoff threshold k =

1 (see Chapter 4). This simple comparison yields some interesting observations.
First, it can be seen that majority voting yields a very high number of unresolved
fusion operations. This comes as no surprise if we recall that 97% of the cases
are characterized by |∆JaK| = 2 (Table 4.4). Because we consider only non-trivial
cases (i.e., not all alternatives are equal), most cases come down to two alternatives
with multiplicity 1, which yields a tie if we use majority voting. Second, there
are three datasets (R-NL, R-FR and Rest) for which using the taxonomy yields a
high number of unresolved fusion operations, whereas the DOC supported fusion
always yields a very low number of unresolved fusion operations.

Third, the knowledge base generated by DOC always contains all values that
are observed during fusion if k = 1. This is a direct result from the fact that
DOC builds ≤a by observing the values that needs to be fused. We can see that
for dataset ‘restaurant’, the number of unresolved fusion operations that are due to
some value(s) that are missing in ≤ref , is relatively high. This is caused by the
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Table 5.2 Comparison of % unresolved fusion operations. For ≤ref and F≤a
B , %

of cases with at least one missing value are shown between brackets.

Dataset ≤ref majority F≤a
B (λ2, k = 1)

R-NL 0.253 (0.007) 0.952 0.047 (0)
R-EN 0.070 (0.004) 0.997 0.024 (0)
R-FR 0.138 (0.009) 0.996 0.037 (0)
R-DE 0.057 (0.003) 0.998 0.020 (0)
R-ES 0.049 (0.003) 0.998 0.021 (0)
R-IT 0.048 (0.003) 0.998 0.020 (0)
Rest 0.380 (0.183) 0.986 0.042 (0)

fact that the dataset contains restaurants from two guides (Zagat and Fodor), while
the ground truth was downloaded from the Zagat website. Let us now study the
differences between (a) different selection strategies and (b) different measures of
generality. Figures 5.5 and 5.6 show the mean percentage of unresolved fusion op-
erations over all datasets for respectively minimal and balanced selection. Results
are shown for different λ and in function of k. The black dotted line indicates the
percentage of fusion operations in which at least one value does not occur in ≤a.
Inspection of the results in Figures 5.5 and 5.6 yields the following observations.
First, there appears to be a difference between different λ, which is an aspect that
is further investigated statistically below. Second, the difference between minimal
and balanced selection appears to be extremely small, which can be explained by
the fact that a majority of the cases involve only two alternatives, rendering the bal-
anced and minimal selectional strategy virtually equivalent. The impact of the se-
lection strategy is also further investigated statistically in the following. Third, as k
increases, the mean percentage of unresolved fusion operations increases strongly.
This is caused partially by the fact that a higher k implies filtering out values from
the generative multirelation (Section 4.3) as is shown by the increasing mean per-
centage of cases in which values are missing in ≤a (black dotted line). However,
the percentage of cases with missing values only explains a part of the unresolved
fusion operations. Increasing k also affects the ability to compare values that need
to be fused, despite the fact that these values are all present in≤a. For these cases,
proper tie breaking can resolve the fusion operation. This is investigated further
below.

In order to gain a more in-depth insight in the difference between the different
measures of generality, the same statistical analysis as performed in Section 4.4.2
is applied. That is, a Friedman test [105] and a Kendall’s W test [106] are per-
formed on weighted percentages of unresolved fusion operations, to verify whether
there is a significant difference between these measurements for different λ. The
null hypothesis is here that there is indeed a difference between different λ. Ta-
ble 5.3 shows the results of the tests in the case of minimal selection. It can be
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Figure 5.5 Mean percentage of unresolved fusion operations over all datasets for
F≤a

min for different λ in function of k.
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learned from these tests that there is a significant difference between the tested
measures of generality for k ≤ 17. As from k > 17, there is no difference between
the different measures. Interestingly, it is measure λ3 that provides the lowest per-
centage of unresolved fusion operations, followed by λ1 and λ2 in that order. As
done before, a Wilcoxon test for comparison of two related samples [107] is used.
As a result, it is found that the percentage of unresolved fusion operations is sig-
nificantly smaller for λ3 for k ≤ 17. If we pair these results with the results
from Section 4.4.2, it can be concluded that λ3 yields more assertions (there are
less cases in which the fusion is not resolved), but tends to yield a lower ratio of
correct assertions. The same statistical analysis is performed in the case of bal-
anced selection. Those results are omitted here because they completely confirm
the results that are found in the case of minimal selection.

At this point, it is found that there indeed are differences between the measures
of generality. However, because we are evaluating ≤a in terms of its usability to
support a fusion function, it is also interesting to investigate to what extent the se-
lection strategy has an influence on the percentage of unresolved fusion operations.
Because there are only two selection strategies, the Friedman test and Kendall’s
W test are skipped and we immediately perform a Wilcoxon test for two related
samples. The null hypothesis is that there is a significant difference between se-
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Figure 5.6 Mean percentage of unresolved fusion operations over all datasets for
F≤a

B for different λ in function of k.
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lection strategies. The Wilcoxon test shows that there is a significant difference
between the selection strategies for all tested λ if k ≤ 2. Under those conditions,
the balanced selection results in less unresolved fusion operations than minimal
selection. However, for k ≥ 3, no significant difference is measured between
both selection strategies. This rather small difference between selection strategies
can be explained by noting that almost all fusion operations are characterized by
|∆JaK| = 2. In that case, the minimal and balanced selection strategy behave
identically with respect to unresolved fusion operations.

A statistical comparison is done between ≤ref (reference taxonomy) and ≤a
(DOC). For each value of k, a Wilcoxon test is used to compare the percentages
of unresolved fusion operations obtained by using ≤ref with those obtained for
≤a under fixed selection and λ. Table 5.4 shows a summary of the results for
those tests. Hereby, a table entry containing “≤a” indicates a significant lower
percentage of unresolved fusion operations for the DOC method, while a table
entry containing “≤ref” indicates a significant lower percentage of unresolved
fusion operations for the reference taxonomy.

As can be seen from these results, no statistical difference is measured between
both selection strategies. For λ1 and λ2, the DOC method results in significantly
less unresolved fusion operations if k ≤ 3. For λ3, this is the case if k ≤ 11. In
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Table 5.3 Friedman and Kendall’s W results on % unresolved fusion operations
for minimal selection.

k MR λ1 MR λ2 MR λ3 Sig. W
1 2 3 1 0.000 0.998
2 2 2.99 1.01 0.000 0.992
3 2.22 2.68 1.09 0.000 0.842
4 2.22 2.68 1.09 0.000 0.842
5 2.22 2.68 1.09 0.000 0.842
6 2.32 2.58 1.09 0.000 0.850
7 2.32 2.58 1.09 0.000 0.850
8 2.32 2.58 1.09 0.000 0.850
9 2.32 2.58 1.09 0.000 0.850
10 2.32 2.58 1.09 0.000 0.850
11 2.17 2.43 1.41 0.000 0.555
12 2.02 2.27 1.71 0.000 0.280
13 2.02 2.27 1.71 0.000 0.280
14 2.02 2.27 1.71 0.000 0.280
15 2.02 2.27 1.71 0.000 0.280
16 2.02 2.27 1.71 0.000 0.280
17 2.02 2.27 1.71 0.000 0.280
18 2 2 2 - -
19 2 2 2 - -
20 2 2 2 - -

other cases, using a reference taxonomy yields less unresolved fusion operations.
These results provide more evidence for the statement that was made at the end
of Section 4.4.2, where it was claimed that using DOC might be preferred over
using a fixed taxonomy. Indeed, it is seen that, for low values of k, the DOC
method provides an order relation ≤a that yields significantly less unresolved fu-
sion operations than with≤ref . In addition, in Section 4.4.2, it is shown that these
additional assertions are in most cases not falsified by the ground truth. It is seen
also that if the measure of generality is λ3, the effect is also true for larger values
of k.

Finally, the occurrence of ties is further investigated. First, it should be noted
that, because DOC creates an order relation specifically based on the clusters that
need to be fused, there is a very low percentage of ties that needs to be broken if
k = 1 (Figures 5.5 and 5.6). This is again a motivation to choose k sufficiently
low. However, even for k = 2, there is already a significant increase in the num-
ber of ties. Therefore, the breaking of ties is investigated deeper here. Because
we have observed that only small differences exist between balanced and minimal
selection, we restrict ourselves to minimal selection in this discussion. For all the
mentioned datasets, we have evaluated to what extent ties can be broken. There-
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Table 5.4 Summary of Wilcoxon’s comparisons between % of unresolved fusion
operations for ≤a and ≤ref .

Minimal Balanced
k λ1 λ2 λ3 λ1 λ2 λ3

1 ≤a ≤a ≤a ≤a ≤a ≤a
2 ≤a ≤a ≤a ≤a ≤a ≤a
3 ≤a ≤a ≤a ≤a ≤a ≤a
4 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
5 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
6 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
7 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
8 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
9 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
10 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
11 ≤ref ≤ref ≤a ≤ref ≤ref ≤a
12 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
13 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
14 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
15 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
16 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
17 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
18 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
19 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref
20 ≤ref ≤ref ≤ref ≤ref ≤ref ≤ref

fore, for each tie that was not caused by a missing value (i.e. all values that cause
the tie are present in≤a), it was verified whether or not it could be broken. The tie
breaking mechanism used was structural inference with the heuristic of counting
the number of values in ≤a that are more specific than the tied values. Majority
voting was found to be useless due to the fact that most clusters contain only two
values and source preference was not an option as sources were not mentioned in
the RouteYou datasets.

Figure 5.7 shows the mean percentage of breakable ties over all datasets for
minimal selection and different λ in function of k. It can be seen that, first, for
increasing k a higher percentage of ties can be broken. This is due to the fact that,
on the one hand, there is a huge increase in the number of ties (Figure 5.5). On the
other hand, ≤a is still sufficiently large to break many of these ties. However, as
for k ≥ 3, the size of ≤a quickly drops and the number of ties grows less quickly,
leading to a decreasing percentage of ties that can be broken.

Conclusion. The DOC method is evaluated in terms of the number of fusion
operations it can not resolve uniquely. In the first place, it is found that the usage
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Figure 5.7 Mean percentage of breakable ties over all datasets for minimal selec-
tion and different λ in function of k.
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of a proper order relation outperforms majority fusion greatly in this respect. Still,
as k increases, more and more ties occur and a proper tie breaking mechanism is
required. Selectional inference can be used to some extent as such a mechanism.
Secondly, there are significant differences between the three λ. It is shown that
λ3 yields the least amount of unresolved cases, followed by λ1 and finally λ2.
Thirdly, few differences are found between the minimal and balanced selection.
Finally, if k is kept low, the order relation provided by DOC method outperforms
a fixed taxonomy with respect to the amount of unresolved fusion operations.

5.5.3 Execution time

Goal. In the last experiment, it is investigated to what extent the usage of the
DOC method introduces a computational overhead with respect to standard fusion
functions.

Procedure. The execution time necessary to perform all fusion operations on all
seven datasets is measured and summed. Hereby, it is assumed that k = 1 and λ =

λ2. In case of the DOC method, the time taken to construct ≤a is also measured
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and added to the total execution time. This procedure is repeated for 100 times,
so that mean execution times between different fusion function can be compared
with a one-way ANOVA test. The fusion functions taken into account are majority
fusion, coalesce fusion (i.e., random non-NULL value), two fusion functions with
a fixed reference taxonomy using resp. minimal and balanced selection and two
fusion functions based on DOC using resp. minimal and balanced selection.

Evaluation metrics. The mean execution time in milliseconds is used to compare
fusion functions.

Figure 5.8 Box plots for execution times (in ms) for six fusion functions.
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Results and discussion. It is confirmed by the Levene statistic that the variances
on the sequences are homogeneous, which is a required constraint to check before
using an ANOVA test. The ANOVA test shows that there is a strong significant dif-
ference between the six fusion functions. The differences are further investigated
with a Bonferroni post-hoc test [138] and a box plot is shown in Figure 5.8, where
the whiskers indicate the 95% confidence interval. The post-hoc test shows that
there is a mutual difference in execution time between all tested fusion functions,
except between majority fusion and coalesce fusion. The longest mean execution



5-26 DYNAMICALLY CONSTRUCTED ORDER RELATION IN DATA FUSION

time is measured for the balanced fusion function in combination with DOC, fol-
lowed by the fusion function with minimal selection in combination with DOC.
The majority fusion function and coalesce fusion function have the lowest exe-
cution time. In between, the fusion functions with reference taxonomy can be
found. Two important conclusions are drawn from these results. First, a fusion
function adopting the DOC method is an order of magnitude slower than trivial
fusion functions. The gain in accuracy thus comes with the cost of a decreasing
execution time. Second, surprisingly, an albeit small but significant difference was
found between the two tested selection strategies for the fusion function adopting
DOC. Indeed, the difference between fusion functions with reference taxonomy
and with DOC-based order relations shows that the dynamical construction of the
order relation by the DOC method contributes the most computational cost.

Conclusion. It is found that fusion functions adopting the DOC method for con-
struction of an order relation, are significantly slower than simple baseline fusion
functions. It is found that the balanced selection strategy implies a small additional
computational cost, but the largest computational cost is due to the DOC method.

5.5.4 Concluding remarks

It has been shown that parameter k can be used to steer the quality of the generated
order relation in the context of data fusion. A higher k implies an order relation that
yields more unresolved fusion operations upon deploying it in a selectional fusion
function. It is found, in the context of data fusion, that measure of generality λ3

provides more assertions, which translates into less unresolved fusion operations.
When deploying the order relation generated by the DOC algorithm in a fusion
function, few differences are measured between the minimal and the balanced se-
lection strategies (only for very low k). The usage of the balanced selection comes
with a small additional computational cost compared to minimal selection. It is
found that the usage of the DOC method implies a significant higher execution
time compared to baseline functions such as majority fusion and coalesce fusion,
as well as fusion functions that use a fixed taxonomy.

5.6 Conclusions

In this chapter, selectional fusion functions have been studied in the special case
where a proper order relation is either unknown or difficult to obtain. The Dynam-
ical Order Construction (DOC) algorithm has been used to construct such an order
relation in an automated fashion, upon observing the data that need to be fused. In
addition, a novel selection strategy called balanced selection has been introduced.
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Attention is hereby given to the problem of tie breaking. The behaviour of the se-
lection strategy has been evaluated widely on several real life datasets, gaining us
with valuable insight in the influence of the different parameters of our approach.
Moreover, it has been shown how the proposed approach has benefits compared to
a fixed taxonomy.

Thus, this chapter constitute an answer to the third research question which
concerns the impact of the dynamically constructed knowledge base on the data
fusion in homogeneous and heterogeneous data collections. However, in case of
heterogeneous data collections, an additional transformation (mapping) of values
in one data source into values in another data source can be desired to improve the
data fusion process. Therefore, novel techniques to establish semantical mappings
between values, which can be sorted by means of an order relation that reflects a
notion of generality, are proposed in the next chapter. However, the established
mappings are unambiguous, i.e. a value in the one source can be mapped to more
than one value in other source, thus the novel selection techniques are also pre-
sented for this mapping. It should be clear, that the selection techniques proposed
in this chapter differ from the selection methods presented in the next chapter as
follows. For the selection strategies used in data fusion presented in this chapter
the desired value is the most specific value that is comparable to all of the other
values. This is in contrast to the work presented in the next chapter, where the
desired mapping is a specific mapping for a particular object if such a mapping
exist or an equivalent mapping otherwise.
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ping of Attribute Values for Data Integration,” IEEE 2014 Conference on
Norbert Wiener in the 21st Century, NAFIPS Annual Meeting, Proceedings.
Boston, USA 2014.

6.1 Introduction

In this chapter, we present a novel approach for a specific part of the object map-
ping problem. Namely, we study automatic value mapping methods for attributes
whose values may need semantical comparison and can be sorted by means of an
order relation that reflects a notion of specialization-generalization hierarchy. We
also propose a novel algorithm that finds a specific mapping for an attribute value
of a particular object based on the onomastic information. An experimental eval-
uation of our method shows the benefits of using semantical mappers and partial
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Table 6.1 Examples of tuples extracted from dataset S.

Id Name Lon. Lat. Category

1 Selfstorage-Achel 5.47067 51.27678 storage

2 Campirama NV 3.25189 50.85282 campground

3 Cafe-Restaurant De Ster 4.05087 51.28177 cafe

4 Het Kouterhof 3.66512 51.03433 lodging

5 Borluut Bed Breakfast 3.65799 51.01888 lodging

6 Carlton Hotel 3.71395 51.03628 lodging

7 Snooz Inn 3.73304 51.05880 lodging

order relations as compared to a lexical mapper, and helps to understand the role
of the parameters.

6.1.1 Problem illustration

Let us consider two datasets as a running example in this chapter. They contain
tuples which provide geographical annotations for a map and pinpoint locations
of specific interest which are called points of interest (POIs). As a reminder, each
tuple is characterized by at least four attributes: “name”, “longitude”, “latitude”
and “category”. The attribute “name” identifies a specific POI, the “longitude” and
“latitude” give the geographic coordinates of the place, and the “category” speci-
fies the type or function of the location. The first dataset is shown in Table 6.1. Its
tuples are extracted from a Google database1, called the source S, with a known
partial order relation ≤Sac on the domain of the “category” attribute. Figure 6.1
presents a part of this relation. The most general concept is represented in the root
of the tree and its descendant nodes correspond to more specific concepts. For
instance, the concept “establishment” in Figure 6.1 is the most general concept
among the values of the attribute “category” of dataset S and has children cor-
responding to more specific structures (e.g., “lodging”, etc.). The second dataset
contains tuples extracted from the RouteYou dataset2, called the target T , also with
a known partial order relation ≤Tac on the domain of the “category” attribute. Ta-
ble 6.2 shows a few tuples extracted from the target dataset, while a part of the
order relation ≤Tac is presented in Figure 6.2. For instance, the concept “POI” in
Figure 6.2 is the most general concept among the values of attribute “category” of
dataset T and has children corresponding to more specific concepts (e.g., “Sup-
port”, “Accommodation”, “Shopping location”, etc.).

1Google, http://maps.google.com
2RouteYou, http://www.routeyou.com/
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Table 6.2 Example of tuples extracted from dataset T .

Id Name Lon. Lat. Category

1 Pakhuis Stokholm 4.66589 51.81835 Warehouse

2 Camping De Iembarg 7.11147 52.96790 Camp Site

3 Cafe Theatre 3.72201 51.04983 Restaurant

4 Het Kouterhof 3.66514 51.03437 Hotel

5 Borluut Bed Breakfast 3.65797 51.01893 Guest room

6 Hotel City Inn 9.36967 52.32978 Hotel

7 Santellone Resort 10.1663 45.55010 Hotel

Let us consider a data integration scenario in which tuples from a dataset S
have to be merged with tuples from a dataset T . Like we mentioned in the Intro-
duction, values of attributes such as “name”, “longitude” and “latitude” might be
merged without any additional processing. However, importing values of attributes
such as “category”, representing information on the type of point of interest, is less
trivial as they may often refer to the same concepts presented in a different way
in both datasets. For instance, the concept “accommodation” is represented by
the category “lodging” in the dataset S and by the categories “Accommodation”,
“Hotel”, “Guest Room” etc. in the dataset T . Therefore, for successful data inte-
gration, it may be crucial to create mappings of values of the category attributes
in the datasets S and T . Following intuition, the desired mapping is a mapping
between concepts at the same level of abstraction, e.g., for the above example that
mapping should be established between “lodging” and “Accommodation”. How-
ever, for a particular tuple in the source dataset, e.g. “Carlton Hotel” with the
category “lodging” in Table 6.1, there may exist a mapping which better expresses
the category of this particular tuple, e.g. “Hotel”. Thus, for successful data integra-
tion, it is crucial not only to establish mappings but also to select proper mappings
of values of the category attributes in the datasets S and T . Such mappings help
to maintain consistency and decrease the number of duplicates in the integrated
dataset, which has an extreme influence on data quality. This in turn decreases the
cost of database maintenance.

In our approach, on the one hand, explicit mappings are created by using pre-
defined mappers that are based on category descriptions which are compared using
information retrieval techniques. The category description is a textual description
of each category and is generated from the values of other attributes (such as the
“name” attribute) or extracted from an external source (e.g., World Wide Web).
Moreover, the certainty of each mapping is expressed by a possibilistic truth value
(PTV) and hence is based on fuzzy set and possibility theories [31, 35]. On the
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Figure 6.1 A part of the partial order relation ≤Sac for the category attribute from
the dataset S.

Figure 6.2 A part of the partial order relation ≤Tac for the category attribute from
the dataset T .

Figure 6.3 Example of mappings between categories of dataset A and dataset B.

other hand, the partial order relations and the explicit mappings are used to infer
implicit mappings.

As a consequence, one-to-many mappings are established, which means that
one category from the source dataset is mapped to one or more categories from the
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target dataset. The examples of mappings between categories forming hierarchies
shown in Figure 6.1 and Figure 6.2 are presented in Figure 6.3. The dotted arrows
indicate the mappings of categories from the source dataset to categories of the
target dataset, e.g., the mapping of “lodging” to “Hotel”. We make the following
three assumptions. First of all, the schema of each considered dataset contains
such an attribute that there exists a partial order relation defined on its domain.
Next, such an order relation is known in advance. Finally, we assume that the
schema matching between input datasets is established. Many problems have to
be addressed while devising such a mapping algorithm. The most important among
them are the following:

• How to create a mapping between categories from heterogeneous sources?

• How can a partial order relation be used to create a mapping between cate-
gories?

• Should the mapping be biased towards more specific or more general infor-
mation?

• How to select the proper mapping for each category?

• How to use the proper mapping for each tuple?

6.1.2 Contributions

With respect to the problems given above, the following research objectives are
dealt with in this chapter. Namely, the novel automatic mapping and selection al-
gorithms are proposed for attribute domains which are endowed with partial order
relations that reflect a notion of specialization-generalization hierarchy. The map-
ping algorithm creates one-to-many candidate mappings between semantically re-
lated values. To this aim, an extensible set of mappers are investigated that are
based on the constructed textual descriptions of considered values and employs
information retrieval techniques for further processing. The selection algorithm
reduces the mapping set to a set of one-to-one mappings, if possible, on the same
level of abstraction. It is based on the concept of majority (the frequency of map-
pings) and the balanced selection (the most specific category from the candidate
categories provided that the selected category is comparable to all other candidate
categories) over the candidate mappings set. In addition, we also propose an al-
gorithm to find a mapping specific for a particular object based on the onomastic
information. In each of these algorithms, the given specialization-generalization
hierarchy plays an important role which is also studied in this chapter. The estab-
lished semantical mappings help to maintain consistency of integrated data from
heterogeneous sources.
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6.1.3 Outline

The remainder of this chapter is organized as follows. In Section 6.2, an overview
of work related to the topic of this chapter is provided. Next, in Section 6.3
a framework of value mapping is introduced and the algorithm is briefly described.
Section 6.4, Section 6.5 and Section 6.6 contain the detailed description of applied
mapping functions (mappers) and mapping selection heuristics. Next, Section 6.7
presents the results of computational experiments. Finally, we conclude in Sec-
tion 6.8.

6.2 Related work

The problem of object mapping has been studied in different contexts such as
record linkage [3], duplicate detection [22, 139, 140], data integration [13] and
knowledge base construction [25]. Most of the previous works assume that val-
ues of corresponding attributes are drawn from the same domain or at least that
they bear some textual similarity that can be measured using a kind of the distance
(e.g. edit distance). Some approaches are based on statistical information process-
ing [24, 26, 28]. For instance, Kang et al. in [24] exploit a statistical model which
captures the co-occurrence of values of all attributes characterizing a dataset. Next,
constructed models are aligned assuming various matchings between the values of
a given attribute in both datasets. The alignment with the minimum distance be-
tween the aligned models is returned as the mapping. In [28] a strategy is presented
that uses statistical techniques to detect overlapping subsets of data present in dis-
parate sources, through which rules for data conversion may be extracted. In [27]
domain independent string transformations are proposed to syntactically compare
shared tuple attributes. The established mappings depend on the mapping rules,
which are determined by a mapping learner and supervised by the user. In con-
trast, in [23], mappings are based on non-overlapping correlated attributes using
a combination of profilers that contain the specific knowledge about what consti-
tutes a typical concept.

There is also a lot of work about semantic relatedness measures which differ
in the source of background knowledge. Thesaurus-based approaches are limited
in the vocabulary for which they can provide relatedness measures and they are
constructed manually, e.g., WordNet [57] and Roget [141], while corpus-based
techniques are based on the statistical analysis of large untagged document collec-
tions; e.g., LSA [59] relies on the tendency for related words to appear in similar
contexts. The last group contains approaches using Wikipedia. WikiRelate [142]
applies techniques that are used by WordNet. Namely, path-length measure is
employed, which takes into account the depth at which considered concepts are
found [143], what gives results similar in terms of accuracy to thesaurus-based
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approaches [58]. Instead of comparing vectors of term weights to evaluate the
similarity between queries and documents, ESA [144] compares weighted vectors
of the Wikipedia articles related to each term. On the other hand, WLM [58] is
based on Wikipedia’s hyperlink structure to define relatedness and is theoretically
cheaper and more accurate than ESA because textual content can be largely ig-
nored and is more closely tied to the manually defined semantics of the resource.

Moreover, there have been many studies on POIs. For instance, Choi et al.
in [145] investigated the problem of POI categorization based on the onomastic and
local contextual information using a training set. Namely, each POI is described
by a text, which is processed to infer the category of POI in contrast to our method,
where we propose mappings for categories of POIs from different databases.

An object mapping problem can also be investigated in an ontology alignment
(OA) context. An ontology alignment system finds correspondence between con-
cepts in two ontologies being aligned [146]. Various matchers in OA systems pro-
duce similarity measures between concepts and rely on internal information (such
as labels, synonyms, instances and relationships) or external knowledge such as
a reference ontology. Systems like OLA [147], Imapper [148], SAMBO [149],
SAMBOdtf [150], ASMOV [151, 152], UFOme [153] or the method that is pre-
sented in [154] are based on a reference ontology(ies) as knowledge source(s) to
map concepts from aligned ontologies via concepts from that reference ontology.
These approaches extend string-based techniques by looking up synonyms for con-
sidered concepts in lexicons, such as WordNet [57], to improve the results of the
OA process. The mediating matcher with semantic similarity MMSS [155] differs
from current OA systems using a reference ontology in that it permits a wide va-
riety of semantic measures to be used within different reference ontologies to find
additional mappings between the considered ontologies.

In contrast to the above work, our method presented in this chapter suggests se-
mantical mappings for attributes values based on the data itself, extracted descrip-
tions from the World Wide Web and a given partial order relation on the domain
of considered attributes.

6.3 Mapping of categories

Before we continue to describe our method for mapping the values of category
attributes, first of all we should define the problem and consider different types of
mappings.

6.3.1 Problem definition

As a reminder (see Section 1.4), it is assumed that entities from the real world
are described as tuples which are characterized by a number of attributes a ∈ A.
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A schema R of a given dataset is identified by a non-empty and finite subset of
A. For each attribute a ∈ A, let dom(a) denote the domain of a (the set of
possible values for attribute a) and dom′(a) denote the subset of the domain of a
comprising values of a actually present in the dataset.

Two datasets are considered. The source dataset over the schema RS with a
set of attributes AS = {aS1 , . . . , aSn} is denoted as S, while the target dataset over
the schema RT with a set of attributes AT = {aT1 , . . . , aTm} is denoted as T . We
assume that the schema matching is known:

M : AS → AT (6.1)

Moreover, at least one category attribute aSC ∈ AS is distinguished with val-
ues cS ∈ dom(aSC) (called categories for short), and similarly its corresponding
(mapped) attribute is denoted by aTC ∈ AT with values cT ∈ dom(aTC). The
category attribute is an ordinal attribute [131] of which the values (categories) are
(partially) ordered by means of a generalization/specialization relation≤ac . In this
context we assume that in each partial order relation≤ac the most general category
called root exists for which all other categories are specializations (in contrast to
an order relation ≤a which is constructed by the DOC algorithm in Chapter 4 for
which this constraint does not hold). This assumption is commonly satisfied in
real-world datasets. Morever, ≤ac satisfies all other properties of ≤a, namely, it
is reflexive, antisymmetric and transitive (see Chapter 4). In other words, the set
of categories, namely dom(aSC) or dom(aTC), is an upper semilattice, because it is
a partially ordered set that has a least upper bound (supremum) for any nonempty
finite subset, i.e., for any set of values of the category attribute a supremum exist.

The one-to-many categories mapping is defined as follows.

Definition 20 (One-To-Many Category Mapping, ./1:n-mapping).
A pair (cS , {cT1 , . . . , cTp }) is called a one-to-many category mapping and it maps
a category cS ∈ dom′(aSC) to a nonempty subset of categories {cT1 , ..., cTp } ⊆
dom(aTC), called the candidate categories set, representing the coreferent cate-
gories of cS ∈ dom′(aSC) in dom(aTC): where dom′(aSC) is a subset of the domain
of the attribute aSC comprising values of aSC actually present in the dataset S. A
set of ./1:n-mappings will be denoted as γ1:n.

A ./1:n-mapping should be seen as an intermediate step towards determining
a one-to-one mapping which is defined below.

Definition 21 (One-To-One Category Mapping: ./1:1-mapping).
A pair (cS , cT ) is referred to as a one-to-one category mapping and maps a cat-
egory cS ∈ dom′(aSC) to exactly one category cT ∈ dom(aTC) representing its
coreferent category. A set of ./1:1-mappings will be denoted as γ1:1.
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Thus, our ultimate goal is determining a ./1:1-mappings for values of a cate-
gory attribute aSC and establishing a ./1:n-mapping is only the first step. In fact, a
./1:n-mapping (cS , {cT1 , . . . , cTp }) should be interpreted as a set of ./1:1-mappings
{(cS , cT1 ), . . . , (cS , cTp )}) sharing the same first element, cS .

In our approach we also use PTVs to express the (uncertainty about the) results
of a comparison (cf., Section 1.4.4). As a reminder, hereby, a PTV is a (normal-
ized) possibility distribution [31] defined over the set of Boolean values B [35].
In the context considered here, a PTV denoted as .̃/i1:1 expresses the uncertainty
about the validity of a ./1:1-mapping (cSi , c

T
i ).

6.3.2 Equivalent and non-equivalent mappings

Let us consider our exemplary datasets S and T shown in Fig. 6.1 and Fig. 6.2,
respectively. The mappings shown in Fig. 6.3 may be intuitively conceived. The
following subgroup may be distinguished among these mappings: (“movie the-
ater”, “Cinema”), (“campground”, “Camp Site”), (“car repair”, “Garage”). These
mappings are valid in both directions, i.e., from the dataset S to the dataset T and
inversely, because these categories represent coreferent information on the same
level of abstraction. These mappings are called equivalent mappings.

In contrast, mappings such as the one between the concepts “lodging” and
“Hotel” are asymmetric, in a sense. On the one hand, not every “lodging” is a
“Hotel”. Therefore “lodging” should be mapped to a more general concept than
“Hotel”. On the other hand, each “Hotel” is a “lodging”. These categories de-
scribe different levels of abstraction; they are not equivalent, i.e. “lodging” is a
more general concept than “Hotel” and “Hotel” is a specialization of “lodging”.
Therefore, these mappings are called non-equivalent mappings, which are further
divided into two subclasses. The first one, called generalized mappings, contains
mappings in which the target category is a generalization of the source category
and is a valid mapping but on a different level of abstraction. In contrast to that,
a mapping of which the target category is a specialization of the source category
is called a specialized mapping and it may be an invalid mapping, e.g., not each
“lodging” is “Hotel”; however, a strong semantical relation still exists between
those categories.

Due to the conditions described above, the direction of mapping has to be
considered during the data integration. In this chapter we consider directional
mappings from the source dataset S to the target dataset T .

6.3.3 Algorithm

Our novel method consists of three main phases: preprocessing, category mapping
and category selection. First algorithm, Algorithm 6.1 presented in Section 6.3.3.1,
detects coreferent categories and establishes, in general, one-to-many mappings
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Algorithm 6.1 CATEGORYMAPPINGALGORITHM

Require: Datasets S and T , Partial Order Relations ≤Sac and ≤Tac , Mappers M =
ME ∪MI

Ensure: A set of ./1:n-mappings γ1:n

1: γ1:n ← ∅
2: for all m ∈ME do
3: γ1:n ← γ1:n∪ m.getMappings(dom′(aSC),dom(aTC),S,T )
4: end for
5: for all m ∈MI do
6: γ1:n ← γ1:n∪ m.getMappings(γ1:n,≤Sac ,≤Tac )
7: end for

between them. Examples of such mappings are shown using dotted arrows in Fig-
ure 6.3. Finally, these mappings are further processed by Algorithm 6.2 presented
in Section 6.3.3.2, which yields one-to-one mappings. Such a processing as well
as classification of a mapping as being equivalent or non-equivalent may be needed
in data integration and will be studied in the following sections.

6.3.3.1 Category mapping

The Category Mapping Algorithm (CMA, Algorithm 6.1) creates mappings for
attributes equipped with a partial order relation that reflects a notion of generality.
Therefore, the datasets S (source) and T (target), a partial order relation (upper
semi-lattice) ≤Sac on the domain of the source category attribute aSC ∈ AS and
a partial order relation ≤Tac on the domain of the target category attribute aTC ∈
AT are assumed to be given. Moreover, an extensible set of mapping methods,
called mappers, are also given. These mappers are classified as explicit mappers
ME and implicit mappers MI and are described in detail in Section 6.4 and 6.5,
respectively. In the first step of the Algorithm 6.1 (lines 1-3), explicit mappings are
established which are based on instance data of the datasets or external sources.
In the second step (lines 4-6), implicit mappings are inferred which are based on
the explicit mappings and partial order relations ≤Sac and ≤Tac . These mappings
are produced by a method getMappings which is different for each mapper. The
output of the algorithm is a set γ1:n of ./1:n-mappings, stating the coreference of
categories.

The coreference of a pair of values is assumed to be a binary notion, i.e., two
values are coreferent or not. However, one may be uncertain if it does or does
not hold for a given pair of values. Thus, all the mappers associate a PTV with
each ./1:1-mapping they produce (remember that a ./1:n-mapping is just a set of
./1:1-mappings). This PTV denotes the uncertainty about the coreference. Each
mapping with a PTV equal or close to (1,0) is considered as holding with high
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confidence. In contrast, a mapping with PTV close to (0,1) or (1,1) means that
there is not enough information available to claim the coreference. Therefore, only
mappings associated with a PTV below a predefined threshold for the possibility
of false are taken into account (see Section 1.4.4).

6.3.3.2 Category selection

Next, the Category Selection Algorithm (CSA, Algorithm 6.2) selects for the cat-
egory cS ∈ dom′(aSC) of each tuple t ∈ S exactly one category cT ∈ dom(aTC)

based on the partial order relation ≤Tac defined on the domain of the category at-
tribute aTC from the target dataset T . Therefore, the input for the algorithm com-
prises the source dataset S, the domain of the category attribute aTC , the order
relation ≤Tac and the set γ1:n of ./1:n-mappings, which are established by Algo-
rithm 6.1. The objective of our algorithm is to select as many as possible true and,
if possible, equivalent ./1:1-mappings for tuples from the source S.

In the first step (lines 2-6 in Alg. 6.2), for each category cS from the source
the method selectDefaultMapping selects the best possible one-to-one mapping
(called default mapping) from the set γ1:n of ./1:n-mappings using the heuristics
which are described in Section 6.6. The best possible mapping means here that
the desired mapping is an equivalent mapping if there exists one, or is a non-
equivalent but the most specific one otherwise. Determining whether a mapping is
equivalent is based on the proposed heuristics. One of these heuristics is based on
the intuition that the most certain mapping or the most popular mapping is likely
to be equivalent. The others are based on the following idea. For instance, suppose
that the category “lodging” is mapped to “Hotel”, “Camp Site” and “Guest Room”
in Figure 6.3. Without extra information, we do not know whether “lodging” is
“Hotel”, “Camp Site” and “Guest Room”. Therefore, a partial order relation is
used to select a concept which generalizes all of these three categories, in this case
it is “Accommodation”.

In the second step (lines 7-13 in Alg. 6.2), for each object’s category from the
source the possible most specific category is selected, in the sense that the algo-
rithm first tries to find a mapping that is specific for the considered object (lines
8-9 in Alg. 6.2) and is called a specific mapping. For instance, let us consider the
object “Carlton Hotel” with the category “lodging” in Table 6.1. In the first step
the selectDefaultMapping method returns an equivalent default mapping (“lodg-
ing”, “Accommodation”). However, in the domain of the target category attribute
(dom(aTC)) there exists a specific category (“Hotel”) for this object and in fact this
category is contained in the name of the considered object. This allows to use the
mapping (“lodging”,“Hotel”) for this object. The high precision of this mapping is
ensured by selecting only that category which is in the relation with the target cate-
gory of the default mapping for the considered object’s category. For example, for
the considered object’s category “lodging” the target category of the default map-
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Algorithm 6.2 CATEGORYSELECTIONALGORITHM

Require: Dataset S, dom(aTC), Partial Order Relation ≤Tac , ./1:n-mappings γ1:n

Ensure: ./1:1-mappings γ1:1, Dataset S∗

1: γ1:1 ← ∅
2: for all cS ∈ dom′(aSC) do
3: ./1:n← getMapping(cS ,γ1:n)
4: ./1:1← selectDefaultMapping(./1:n,≤Tac )
5: γ1:1 ← γ1:1∪ ./1:1

6: end for
7: for all o ∈ S do
8: if existObjectSpecificMapping(o.name, dom(aTC)) then
9: o.cS ← getObjectSpecificCategory(o,dom(aTC))

10: else
11: o.cS ← getDefaultCategory(o.cS ,γ1:1)
12: end if
13: end for

ping is “Accommodation” which is in the relation ≤Tac with the detected category
“Hotel”. Moreover, if more than one category mapping exists for the particular
object then the selection mapping methods from the first step are applied.

If a specific mapping for the category of the particular object from the source
does not exist then the considered category is mapped according to the established
default mapping in the first step (line 11 in Alg. 6.2). Finally, the considered object
from the source is mapped to exactly one category from the target and can be later
imported to the target dataset.

It should be clear that the proper mapping for any object is not always an
equivalent mapping of the object’s category (e.g., the default mapping between
“lodging” and “Accommodation”). In some cases it is possible to establish a map-
ping which is more appropriate for the particular object, e.g., the specific mapping
between “lodging” and “Hotel”.

6.4 Explicit mappers
In this section the novel explicit mappers which establish explicit mappings of
the source and target categories using various information are defined. They are
used in Algorithm 6.1 presented in Section 6.3. Namely, a Definition mapper is
based on information extracted from an external source (e.g., World Wide Web).
A Lexical mapper is based on the lexical similarity of categories. A Description
mapper and Identification mappers are based on data about each category which
are extracted from the source or target datasets. These mappers are described in
the following subsections.
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The considered mappers (except Lexical mapper) are based on a textual de-
scription of each category value (called category description), which is constructed
from mapper-dependent information but in a similar way to that which is explained
below.

Category description. The generation of the category description is divided
into two phases: terms preprocessing and terms importance calculation.

Terms preprocessing. During the preprocessing phase, a representation in
the form of a set of words/terms is obtained for each category value in the fol-
lowing way. The starting point is a collection of relevant strings, e.g., values of
selected attributes, such as “name” in Tables 6.1 or 6.2, of all tuples belonging to
the same category in the source/target dataset. First, stop words are filtered out
from these strings. These are words such as “a”, “and” or “to” in English. A pop-
ular predefined set of stop words contains 527 words [156] and is used also in our
computational experiments. Second, special characters appearing in the strings,
i.e. dash, semicolon, dot etc., are replaced by white space, which gives a string of
terms. Third, the strings are split into terms where the splitter is the white space
character. Afterwards, each category is described by a set of terms which is further
preprocessed by applying an algorithm for suffix stripping. Terms are stemmed us-
ing the Porter stemmer [157]. For instance, terms “connection”, “connecting” and
“connections” are transformed to their stem which is “connect”.

Terms importance calculation. The result of the term preprocessing phase
is a clean and unified set of terms for each category value. The preprocessing
increases the quality of term’s importance calculation in the final phase of generat-
ing the category description which has a direct impact on the quality of mappings.
Namely, thanks to that, the true mappings have higher certainty. The importance of
each term is expressed by the tfidf [158, 159] (term frequency and inversed docu-
ment frequency) weighting scheme. This coefficient reflects that a term that occurs
often but not in many other descriptions tends to be more relevant and informative
than a term that appears in many descriptions. Tfidf combines the frequency of a
term t in a description d (t ∈ d) with a factor that discounts its importance with
its appearances in the whole description’s collection D of the single dataset, and
is defined by:

tfidf(t, d) = tf(t, d)× log |D|
df(t)

(6.2)

where tf(t, d) is the frequency of term t in the description d and is expressed by
Equation 6.3, |D| is the size of the whole descriptions collection and df(t) is the
number of descriptions in which term t occurs (term t occurs at least in one de-
scription).

tf(t, d) =
card(t, d)∑|d|
i card(ti, d)

(6.3)
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where card(t, d) is the number of occurrences of term t in a description d and is
divided by the sum of occurrences of all terms in description d to prevent a bias to-
wards longer documents. Moreover, tfidf weights are normalized as follows [158]:

tfidf∗(t, d) =
tfidf(t, d)√∑|d|
i tfidf(ti, d)2

(6.4)

where tfidf∗ is the normalized tfidf. The final category description is represented
as a set {(ti, tfidf∗i )i=1,...,n} that consists of unique terms ti with a normalized
associated weight tfidf∗i .

These methods are used in the next subsections where the explicit mappers are
defined.

6.4.1 Description mapper

The description mapper creates mappings based on the comparison of category de-
scriptions of the source and the target categories which are generated using values
of selected object attributes. This mapper works as follows.

First of all, the category description for each category from the source and the
target is constructed (see paragraph Category description in Section 6.4). To this
aim, objects from the dataset are grouped into clusters of the same category. For
each cluster, values of selected attributes are used to generate the category descrip-
tion. The selection of attributes can be done automatically by selecting all textual
attributes. For some attributes, such as “name”, stemming is not employed because
they contain many proper nouns which should be preserved in their original form.

Afterwards, constructed category descriptions of the source and target cate-
gories are compared in the pairwise manner. This comparison estimates the pos-
sibility that two given categories (their descriptions) are coreferent. The common
terms (with weights) of both descriptions are added to the intersection that is a sub-
set of common terms in both descriptions while the remaining terms (with weights)
are added to the subset called errors and have an influence on the computed possi-
bility that categories are (not) coreferent.

This mapper generates a PTV which expresses the uncertainty about the coref-
erence of the compared descriptions as described above. The possibility that a
proposition p, stating that two categories are coreferent, is true (µp̃(T )) and the
possibility that p is false (µp̃(F )) are calculated by the following equations:

µp̃(T ) =
possT

factor
(6.5)

µp̃(F ) =
possF

factor
(6.6)

where possT, possF and factor are obtained from:
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possT =

|intersection|∑
i=1

getTfidf(tfidf∗Si , tfidf∗Ti )

pow

(6.7)

possF =

|errors|∑
i=1

tfidf∗i (6.8)

factor = max(possT, possF ). (6.9)

Hereby, |intersection| denotes the number of common terms, and |errors| is the
number of the remaining terms present in the representation of the source and
target categories, tfidf∗Si (tfidf∗Ti ) are the weights of the common terms from the
description of the category from the source (the target respectively) and tfidf∗i are
the weights of the remaining terms from the description of the category from the
source or from the target.

On the one hand, possT is the sum of common terms weights (which are cal-
culated by the getTfidf method) and raised to the power pow which makes all
mappers comparable (the setting of this parameter is evaluated in Section 6.7.2.1).
We propose four different ways to calculate a combined tfidf of a source and a tar-
get term. They are also evaluated experimentally in Section 6.7.2.2 and are defined
as follows:

• the average of tfidf∗Si and tfidf∗Ti

getTfidf(tfidf∗Si , tfidf∗Ti ) =
tfidf∗Si + tfidf∗Ti

2
(6.10)

• the minimum of tfidf∗Si and tfidf∗Ti

getTfidf(tfidf∗Si , tfidf∗Ti ) = min(tfidf∗Si , tfidf∗Ti ) (6.11)

• the maximum of tfidf∗Si and tfidf∗Ti

getTfidf(tfidf∗Si , tfidf∗Ti ) = max(tfidf∗Si , tfidf∗Ti ) (6.12)

• the source preference which equals tfidf∗Si or tfidf∗Ti depending on the pre-
defined preference assigned to the source or the target dataset

getTfidf(tfidf∗Si , tfidf∗Ti ) = pref(tfidf∗Si , tfidf∗Ti ) (6.13)

On the other hand, possF is computed as the sum of the weights tfidf∗i of the
remaining terms (from errors that are found during comparison). Finally, factor is
the maximum of possT and possF and is used to normalize both possibilities. As
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a reminder, only if the PTV of a mapping of a category description of the source
and a category description of the target is such that its possibility of false is below
a predefined threshold then the mapping between considered categories is added
to γ1:n (see Sections 6.3.3.1 and 1.4.4).

For instance, consider categories “lodging” from the source and “Hotel” from
the target. Let the source dataset contain objects with category “lodging” as shown
in Table 6.1. A part of the description of “lodging” contains the following terms
with tfidf∗ shown: (“Hotel”, 0.85), (“Bed”, 0.22), (“Breakfast”, 0.22), (“Resort”,
0.08), (“Inn”, 0.03), (“Carlton”, 0.012), (“Borluut”, 0.006), etc. On the one hand,
the terms “Carlton” and “Borluut” get low weights because they appear infre-
quently in the tuples of the category “lodging” and, moreover, they are not spe-
cific for this category. On the other hand, the terms “Bed” and “Hotel” get higher
weights because they are specific terms for accommodation and they appear in
many objects of this category. Meanwhile, a part of the description of the target
category “Hotel” which is based on the names of objects from the target, shown in
Table 6.2, is the following: (“Hotel”, 0.96), (“Inn”, 0.14), (“Resort”, 0.08), (“Bed”,
0.01), (“Breakfast”, 0.01), (“Carlton”, 0.005), etc. Afterwards, these sets are com-
pared and the common terms are detected. Finally, the PTV of this mapping is
calculated using Equations (6.5) and (6.6) and equals (1,0.06) which supports high
confidence in the coreference of the considered categories.

Moreover, it should be clear that the mappings that are established by this
mapper do not depend on the category values themselves but depend on the co-
occurring values of other attributes. That feature allows the creation of many valu-
able mappings, e.g., between categories in different languages.

6.4.2 Definition mapper

In contrast to the previous mapper, this method is based on the extraction of ad-
ditional knowledge from an external source. More precisely, for each category
a textual description is extracted from the Web, in particular, from Wikipedia3.
The textual description is a webpage (e.g., for the category “lodging” it is a web-
page at the URL http://en.wikipedia.org/wiki/lodging) which is processed by such
a parser as JSoup HTML Parser4. Extracted texts are used to construct the cate-
gory description (see paragraph Category description in Section 6.4). Afterwards,
the category descriptions are compared in a pairwise manner and uncertainty as to
their matching is quantified as in case of the description mapper.

Description extraction. The extraction works as follows. First of all, for each
category a predefined number of paragraphs from a relevant Wikipedia web page
are extracted. Next, hyperlinks present in the extracted paragraphs are followed

3Wikipedia, http://www.en.wikipedia.org
4JSoup HTML Parser, http://www.jsoup.org
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and further paragraphs are extracted from the target web pages. This is continued
until the predefined reference level is reached. The reference level states the limit
of such a recursive hyperlink navigation. We set the reference level to 1 and the
number of extracted paragraphs to 2 based on experimental results (see details in
Section 6.7.2.3).

For instance, a part of the extracted textual description of category “lodging”
from the source dataset is the following (terms in bold refer to linked pages and
recursive extraction was executed for them):

Lodging (or a holiday accommodation) is a type of residential accommodation
(author’s note: refer to dwelling). People who travel and stay away from home for
more than a day need lodging for sleep, rest, safety, shelter from cold temperatures
or rain, storage of luggage and access to common household functions. Lodging is
done in a hotel, motel, hostel or hostal, a private home (commercial, i.e. a bed and
breakfast, a guest house, a vacation rental, or non-commercially, with members
of hospitality services or in the home of friends), in a tent, caravan/camper (often
on a campsite) (...)5.

While a part of the textual description of category “Accommodation” from the
target is the following:

Accommodation may refer to: a dwelling, a place of temporary lodging (...)6.
A dwelling (also residence, abode) is an important legal concept which defines a
self-contained unit of accommodation used by one or more households as a home,
such as a house, apartment, (...)7.

Category description. These texts are used to generate category descriptions
(see paragraph Category description in Section 6.4). As a reminder, first, the pre-
processing phase is applied which gets a unified set of terms. Namely, stop words
are filtered out, special characters are removed and the algorithm for stemming is
executed. Second, normalized tfidf∗ weights of each term are calculated by Equa-
tion (6.4). For example, a part of the description of “lodging” contains the fol-
lowing most important terms (their stems) with weights: (“lodg”, 0.3957), (“back-
pack”, 0.3359), (“hous”, 0.3051), (“room”, 0.2277), (“accommod”, 0.2257), (“res-
identi”, 0.099), (“facil”, 0.078), (“home”, 0.081), (“household”, 0.064), etc. While
a part of the description of the category “Accommodation” from the target is the
following: (“home”, 0.3977), (“lodg”, 0.3808), (“accommod”, 0.1458), (“house-
hold”, 0.1434), (“residenti”, 0.131), (“facil”, 0.041), etc.

Pairwise comparison. Finally, the category descriptions of under consider-
ation are compared and a PTV is returned which expresses (un)certainty about

5The text is extracted from the definition of the term “lodging” in Wikipedia, http://en.
wikipedia.org/wiki/Lodging

6The text is extracted from the definition of the term “Accommodation” in Wikipedia, http:
//en.wikipedia.org/wiki/Accommodation

7The text is extracted from the definition of dwelling in Wikipedia, http://en.wikipedia.
org/wiki/Dwelling
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the coreference of them. It is calculated like for the Description mapper in Sec-
tion 6.4.1 by Equations (6.5) and (6.6). For example, the descriptions comparison
of “lodging” and “Accommodation” returns the mapping with PTV equal (1,0.17).
The uncertainty about this mapping is low because the description of “Accommo-
dation” contains the description of “lodging”. Thus, the results confirm common
understanding that “lodging” is coreferent to “Accommodation”.

6.4.3 Identification mappers

The Identification mapper identifies a category from the target in the category de-
scription of a category from the source (type I) or vice versa, detects a category
from the source in the category description of a category from the target (type
II). The category description can be constructed like for the Description mapper
in Section 6.4.1 (then that mapper is called Category in description I or II) or like
for the Definition mapper in Section 6.4.2 (then that mapper is called Category in
definition I or II). Thus, we obtain four additional mappers. In what follows we
discuss the details of type I Identification mapper.

First of all, the category description dS for each category cS ∈ dom(aSC)

from the source is constructed. Next, all categories cT ∈ dom(aTC) from the
target are preprocessed by removing special characters and splitting it into single
terms. Moreover, if a category description is constructed using stemming then also
stemming is applied for this preprocessing of the all categories cT ∈ dom(aTC).
Afterwards, if all terms of any category cT are detected in the category description
dS of any category cS then the mapping (cS ,cT ) is added to the set γ1:n of ./1:n-
mappings, provided that the certainty of the mapping exceeds the threshold. The
detection of category terms is based on the low level string comparison method [8],
which is explained in Section 6.4.4. This technique has been chosen because of its
efficiency and ability to take into account misspellings and abbreviations. In the
literature a multitude of algorithms for string comparison has been proposed and
these may also be employed here. An example of an interesting survey concerning
string comparison in general is given in [2].

The low-level comparison method compares each pair of terms (a term of
the target category with a term of the source category description) and generates
PTVs which express the uncertainty about the coreference of the compared pairs
of terms. Afterward, each term of the considered target category is mapped to the
term from the source category description with the highest certainty about term
coreference and the highest tfidf∗ weight in case there exists more than one such a
term.

Finally, this mapper generates a PTV which expresses the uncertainty about
the coreference of the compared categories. The possibility that a proposition p,
stating that two categories are coreferent, is true (µp̃(T )) and the possibility that p
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is false (µp̃(F )) are calculated by the following equations:

µp̃(T ) =
possT

factor
(6.14)

µp̃(F ) =
possF

factor
(6.15)

where possT, possF and factor are equal:

possT =

∑|intersection|
i=1 tfidf∗Si
|intersection|

(6.16)

possF = (1− possT )pow (6.17)

factor = max(possT, possF ) (6.18)

where |intersection| denotes the number of common terms and tfidf∗Si is a weight
of the common term from the description of the category from the source.

For instance, let us consider the categories “lodging” from the source and “Ho-
tel” from the target. First of all, the category description for the “lodging” cate-
gory is constructed like for the Description mapper (see Section 6.4.1). To this
aim, tuples from the source dataset (cf., e.g., Table 6.1) are grouped into clusters
of the same category. For each cluster values of tuple names are preprocessed (us-
ing such operations as stop words and special characters removal, cf., paragraph
Category description in Section 6.4) which gives a unified set of terms for which
normalized tfidf∗ weights are calculated by Equation (6.4). The part of the de-
scription of “lodging” contains the following terms with tfidf∗ (calculated for the
entire source dataset): (“Hotel”, 0.85), (“Bed”, 0.22), (“Breakfast”, 0.22), (“Re-
sort”, 0.08), (“Inn”, 0.03), (“Carlton”, 0.012), (“Borluut”, 0.006), etc. Next, the
target category “Hotel” is preprocessed (the same preprocessing is applied like for
the constructed category description) which gives a term “Hotel”. Finally, the term
“Hotel” of the target category is compared to each term in the description of the
source category “lodging” using a low-level string comparison method. In fact,
the description contains a term “Hotel” which is equal to the term of the target cat-
egory so the comparison gets PTV equal to (1,0). The weight of the detected term
equals 0.85. Therefore, using the above equations the uncertainty of the mapping
(“lodging”,“Hotel”) equals (1,0.03) for pow equal 2.

6.4.4 Lexical mapper

The Lexical mapper compares the categories from the source with categories from
the target and generates lexical mappings that are added to γ1:n if the certainty of
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a mapping exceeds a predefined threshold. For instance, a Lexical mapper creates
a mapping between the category “neighborhood” from the source and “Neigh-
bourhood” from the target. However, the vast majority of the mappings that are
established by this mapper are also suggested by other mappers, e.g. the Definition
mapper and the Identification mappers, what have been experimentally confirmed
in Section 6.7.2.5.

A one-level string comparison technique proposed in [8] (cf., also Section 2.3.3.2)
is used to compare the categories. As a reminder, this low level comparison method
estimates the possibility that two given strings are coreferent and is based on an
approximation of weak intersections. It uses the concept of a moving window to
construct the intersection of the two strings under comparison.

6.5 Implicit mappers

In addition to the explicit mappings, our method returns implicit mappings (lines
5-7 in Algorithm 6.1). We consider two types of implicit mappings. The first type
of implicit mapping (Implicit mapping I) is established when no explicit map-
ping exists for the specific category cS1 from the source. Let us assume that there
exists the closest more general concept cS2 in a partial order relation ≤Sac of the
considered category cS1 ∈ dom(aSC) for which there exists an explicit mapping
./1:n∈ γ1:n. More specifically, the closest more general concept cS2 is returned by
the balanced selection (see Section 5.4), which uses a partial order relation ≤Sac
and a set of all generalization of cS1 (including the root concept, see Section 6.3.1).
Thus, there exists only one the closest more general concept cS2 of cS1 , in the worse
case the balance selection will return the root category.

Then the implicit mapping for cS1 is thus each category of {cT1 , ..., cTj } ⊆
dom(aTC) such that {cT1 , ..., cTj } are the target categories to which cS2 is mapped
via ./1:n. It should be stressed that the quality of the implicit mappings depends
on the correctness of the explicit mappings and the partial order relation.

For instance, ≤Sac in Figure 6.1 contains the following pairs of elements: (“es-
tablishment”, “store”), (“store”, “florist”), where “establishment” is the most gen-
eral concept. Suppose that the set of already detected mappings contains the map-
ping (“store”, “Shop”). If the category “florist” is not mapped explicitly then the
algorithm returns an implicit mapping of “florist” to “Shop”.

Moreover, the set of mappings is extended by the second type of implicit map-
pings (Implicit mapping II) which work as follows. For each target category cTj
of a mapping (cSi ,cTj ), categories from the target partial order relation ≤Tac which
are generalizations of the considered category cTj are extracted. Next, mappings
between cSi and these extracted generalizations are established.

For instance, suppose that a mapping between “lodging” from the source and
“Hotel” from the target exists. Using the partial order relation shown in Fig. 6.2
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the generalizations of “Hotel” are the categories “Accommodation” and “POI”.
Thus, the mappings (“lodging”, “Accommodation”) and (“lodging”, “POI”) are
established.

6.6 Selection heuristics

A set of novel heuristics is considered to establish the set γ1:1 of the best possible
one-to-one category mappings (./1:1-mappings) from the set γ1:n of one-to-many
categories mappings (./1:n-mappings, one-to-one components of which are called
candidate mappings), using the partial order relation ≤Tac .

6.6.1 Uncertainty based mapping selection

This method selects a ./1:1-mapping for the particular source category which is
most certain with respect to the associated PTV. It applies the order relation on
PTVs (Equation 1.17). In case there exists more than one best mapping with the
same PTV then the Simple Balanced Mappings Selection is applied, which is de-
scribed below.

For instance, consider again the category “lodging” from the source and as-
sume that it is mapped to a category “Accommodation” with uncertainty (1,0.12)
and to a category “Hotel” with uncertainty (1,0.26). Considering the order relation
on PTVs the mapping (“lodging”,“Accommodation”) is selected.

6.6.2 The simple balanced mapping selection

This method is based on the balanced selection (see Section 5.4), which uses a
partial order relation, in our case ≤Tac . As a reminder, the balanced selection is the
most specific category from the candidate categories provided that the selected cat-
egory is comparable to all other candidate categories (that category is called total),
otherwise the balanced selection is unspecified. As a consequence, the heuristics
returns a mapping to the most specific total category if it exists or to a common
more general category of candidate categories from ≤Tac . For instance, consider
again the category “lodging” from the source and assume that it is mapped only to
the following candidate categories from the target in Figure 6.3:

• “Accommodation” and “POI”. They are total so the balanced selection is the
most specific category, “Accommodation”

• “Hotel”, “Guest Room”, “Accommodation” and “POI”. Then the balanced
selection is the category “Accommodation” because it is the most specific
total category
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• “Hotel” and “Guest Room”. Then the balanced selection is unspecified be-
cause these categories are not total. Thus, the “lodging” will be mapped
to “Accommodation” because it is the common closest more general cate-
gory of candidate categories in the order relation ≤Tac . More specifically,
the common closest more general concept is returned by the balanced se-
lection (see Section 5.4), which uses a partial order relation ≤Tac and a set
of all generalization of candidate categories (including the root concept, see
Section 6.3.1). Thus, there exists only one the common closest more general
concept, in the worse case the balance selection will return the root category.

• “Guest Room” and “POI”. They are total so the balanced selection chooses
the most specific category, “Guest Room”. However, that mapping is not
equivalent and may not be true in both directions.

6.6.3 The increasing threshold balanced mapping selection

This method is similar to the Simple balanced mapping selection described in Sub-
section 6.6.2 but with one difference which may help to avoid the situation where
the answer of the balanced selection is unspecified, i.e., if no category in the can-
didate set is total. With this method, categories from the candidate category set
are eliminated by iteratively increasing the threshold for the certainty of candidate
mappings (of candidate categories) until categories of the candidate set may be
fused using the balanced selection or the candidate set is empty. Next, the non-
empty reduced candidate set is used to select the proper mapping by the Simple
balanced mappings selection method in Subsection 6.6.2 or if the reduced set is
empty then a mapping to the common closest more general category of candidate
categories from ≤Tac is selected.

For instance, consider again the category “lodging” from the source and as-
sume that it is mapped only to the following candidate categories from the target
and only mappings associated with a PTV below a threshold equal to 0.6 for the
possibility of false are taken into account: “Restaurant” with uncertainty (1,0.52),
“Accommodation” (1,0.12), “Guest Room” (1,0.33) and “Hotel” (1,0.26). For
those candidate categories the balanced selection is unspecified because there is
no total category based on the order relation in Figure 6.3. Therefore, in the
next iteration the threshold for the certainty of candidate mappings is increased
(threshold equal to 0.5 for the possibility of false). That eliminates the “Restau-
rant” category from the candidate set. The reduced candidate set is used to select
the proper mapping by the Simple balanced mappings selection method, (“lodg-
ing”,“Accommodation”).
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6.6.4 The subset balanced mapping selection

This method also works like the Simple balanced mapping selection described in
Subsection 6.6.2 with one difference which again may help to avoid the situation
where the answer of the balanced selection is unspecified. Namely, the candidate
category set is split into subsets and a subset with the largest cardinality, of which
categories may be fused using the balanced selection, is used to select the proper
mapping by the Simple balanced mappings selection method of Subsection 6.6.2.
The criterion to split the candidate set into subsets is that a subset has to contain
at least one category that is total. However, in the worst case where each subset is
a singleton (a single element set), a mapping to the closest common more general
category of candidate categories from ≤Tac is selected. Moreover, if there exist
more than one subset with the largest cardinality, then these subsets are processed
separately by the Simple Balanced Mappings Selection. Afterwards, the obtained
results are fused again by the Simple balanced mappings selection.

This method (and the above heuristics) reduces the set of candidate categories
which helps to select a mapping that points to a category different than the most
general category in the partial order relation.

For instance, consider again the category “lodging” from the source and as-
sume that it is mapped only to the following candidate categories from the target:
“Restaurant”, “Accommodation”, “Guest Room” and “Hotel”. For those candidate
categories the balanced selection is unspecified because there is no total category
based on the order relation in Figure 6.3. However, the candidate set can be split
into two subsets that contain total categories. The first contains only “Restau-
rant” while the second consists of the other categories. Following the rules of this
heuristics the second subset is selected. Finally, the balanced selection selects the
most specific total category of it, i.e., “Accommodation”.

6.6.5 The most popular mapping selection

This heuristics selects the mapping for the particular source category based on
the frequency of mappings. A mapping between the source and target category
has a high frequency if it is established by many different mappers. In case of
indistinguishable mappings, i.e. equally frequent, the Simple Balanced Mappings
Selection is applied. In other words, this method reduces the ./1:n-mapping to a
./1:1-mapping of which the source category maps to the candidate target category
with the highest frequency.

For instance, consider again the category “lodging” from the source and as-
sume that it is mapped only to the following candidate categories from the target:
“Accommodation” by the Definition mapper; “Hotel” by the Description mapper;
“POI”, “Accom Shelter” and “Accommodation” (one more time) by the Implicit II
Mapper. Following the rules of this heuristics the mapping to “Accommodation”



6-24 SEMANTICAL MAPPING OF ATTRIBUTE VALUES IN DATA FUSION

is selected.

6.6.6 The combined mapping selection

The above methods are combined in the last heuristics, the Combined mapping
selection, whose details are presented in Algorithm 6.3. First of all, in lines 1-5,
the ./1:n-mapping is reduced to a ./′1:n-mapping preserving only those mappings
which are assigned the PTV (1,0). Next, three cases are considered.

Algorithm 6.3 COMBINEMAPPINGSELECTION

Require: Candidate ./1:n-mapping, Partial Order Relation ≤Tac
Ensure: ./1:1-mapping

1: for all Mapping ./1:1∈./1:n do
2: if .̃/1:1 = (1,0) then
3: ./′1:n←./1:1

4: end if
5: end for
6: if ./′1:n is ./1:1 then
7: return ./1:1

8: else if ./′1:n 6= ∅ then
9: ./′1:n← getMostPopular(./′1:n)

10: if ./′1:n is ./1:1 then
11: return ./1:1

12: else
13: ./1:1← getBalancedSubset(./′1:n,≤Tac )
14: if cT ∈./1:1 6= root then
15: return ./1:1

16: else
17: ./1:1← getBalancedInc(./′1:n,≤Tac )
18: return ./1:1

19: end if
20: end if
21: else if ./′1:n= ∅ then
22: ./1:1← getBalancedSubset(./1:n,≤Tac )
23: if cT ∈./1:1 6= root then
24: return ./1:1

25: else
26: ./1:1← getBalancedInc(./1:n,≤Tac )
27: return ./1:1

28: end if
29: end if

First, lines 6-7 in Algorithm 6.3, if the reduced ./′1:n-mapping is de facto ./1:1-
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mapping, i.e., the source category is mapped to exactly one target category, then
that mapping is selected.

Otherwise, lines 8-20 in Alg. 6.3, if the reduced ./′1:n-mapping is not empty
(line 8) then first of all the Most popular mapping selection heuristics (getMost-
Popular) of Section 6.6.5 is applied (line 9). The method getMostPopular reduces
the ./′1:n-mapping to a new ./′1:n-mapping of which the source category maps to
the candidate target category with the highest frequency (or categories if there ex-
ist more than one mapping with the highest frequency, in contrast to the original
implementation, which returns only one category). Next, if the new reduced ./′1:n-
mapping is a ./1:1-mapping, i.e., if the source category is mapped to exactly one
target category, then that mapping is selected (lines 10-11). Otherwise, the Sub-
set balanced mapping selection (getBalancedSubset) of Section 6.6.4 is applied
(line 13). The method getBalancedSubset gets the ./1:1-mapping and is selected
if it does not map to the root (lines 14-15). Otherwise, the Increasing threshold
balanced mapping selection (getBalancedInc) of Section 6.6.3 is applied and the
method getBalancedInc returns the ./1:1- mapping (line 17-18).

Otherwise, lines 21-29 in Algorithm 6.3, if the reduced ./′1:n-mapping is empty,
i.e., if the source category does not map to any target category with certainty
equal to (1,0), then the Subset balanced mapping selection (getBalancedSubset)
of Section 6.6.4 and the Increasing threshold balanced mapping selection (getBal-
ancedInc) of Section 6.6.3 are applied, like in the second case but using the input
candidate ./1:n-mapping.

6.7 Evaluation and discussion

In this section an experimental evaluation of our method shows the influence of the
parameters and the benefits of using semantical mappers and partial order relations
with respect to the Lexical mapper.

6.7.1 Datasets

The evaluation of our approach is conducted based on four real-world datasets.
The first and second dataset contain information about points of interest (POIs, see
Section 6.1). Within the context of the experiments, the attribute of interest is the
category of the POI, which specifies the type and/or function of the location. The
first dataset contains 193816 tuples, which are extracted from the Google Maps
database by the Google Places API6 (a part of this dataset is used in Chapter 3).
A partial order relation on the set consists of 98 categories and is constructed by
experts. The second dataset contains 436616 normalized tuples and a partial order

6Google Places, http://developers.google.com/places/
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Figure 6.4 Typical distribution of values for the category attribute (G dataset).

relation on the set of 502 categories, which are shared by RouteYou7 (it is the
R-EN dataset which is described in Section 2.4).

Two other datasets are restaurant datasets [9]. The on-line guides Zagat and
Fodor, which are also described in Section 2.4. As a reminder, like for the POI
datasets, the attribute of interest is the category of the restaurant, which specifies
the cuisine of the restaurant. Zagat contains 331 tuples and a partial order relation
on the set of 169 categories, which is downloaded from the Zagat website89. On
the other hand, Fodor contains 533 tuples and a partial order relation on the set of
32 categories, which is constructed by experts.

6.7.1.1 Values distribution

Values of the attribute “category” have a typical long tail distribution for each
dataset considered in this evaluation. This means that a few values occur many
times, while most values occur very seldom. That typical distribution for the cat-
egory attribute in the Google (G) dataset is shown in Figure 6.4. Plots for other
datasets are omitted because they are similar.

6.7.1.2 Test cases

Datasets of the same domains are pairwise compared and their categories are
mapped, namely POI datasets and restaurant datasets, respectively. Thus, in our
experiments we consider four test cases:

7RouteYou, http://routeyou.com/
8Zagat, http://zagat.com
9This data was removed from the Zagat website after redesign on 29 July 2013.
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• the categories of tuples from the Google dataset (the source, G) are mapped
to the categories of the RouteYou dataset (the target, R), called the G-R
dataset for short

• the categories of tuples from the RouteYou dataset (the source, R) are mapped
to the categories of the Google dataset (the target, G), called the R-G dataset
for short

• the categories of tuples from the Zagat dataset (the source, Z) are mapped to
the categories of the Fodor dataset (the target, F), called the Z-F dataset for
short

• the categories of tuples from the Fodor dataset (the source, F) are mapped
to the categories of the Zagat dataset (the target, Z), called F-Z dataset for
short

Remark. In addition to general POIs (which also exist in the RouteYou dataset,
e.g., touristic attractions or public places) the Google dataset also contains many
business locations, e.g., “lawyer” or “plumber”. In contrast, the RouteYou dataset
is a specialized dataset that is focused on route planning for outdoor activities.
Thus, we will not find business locations in the RouteYou dataset except those that
may be useful for a user, e.g., “bicycle shop” or “rent a bike company”. Whereas,
the main difference between the restaurant datasets is that the Zagat dataset is more
detailed than the Fodor dataset, namely Zagat contains more specialized categories
which do not exist in Fodor. Thus, the known taxonomy of Zagat’s categories is
larger and more complex.

Table 6.3 Datasets details

Datasets # eq. # gen. # spec. # all |dom′(aS
C)|

G-R 61 208 289 558 98

R-G 56 279 180 515 424

Z-F 26 160 61 247 59

F-Z 33 153 313 499 34

6.7.1.3 Real mappings

Considering the above datasets, it should be clear that not all categories are mapped.
The sets of possible real coreferent equivalent and non-equivalent mappings are
provided manually by experts for each dataset (test case), namely G-R, R-G, Z-F
and F-Z. For the datasets which are mapped reversely the mappings are differ-
ent because there are removed mappings of categories which do not exist in the
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Table 6.4 Datasets details: distribution of real category mappings without map-
pings to the root of the target.

Datasets # 1:1 trivial # 1:n non-trivial # non-mapped

G-R 17 (18%) 68 (69%) 13 (13%)

R-G 146 (34%) 115 (28%) 163 (38%)

Z-F 3 (5%) 52 (88%) 4 (7%)

F-Z 0 (0%) 34 (100%) 0 (0%)

source dataset (we mapped only the categories that were actually present in the
source dataset). Moreover, each category from the source can be mapped by Defi-
nition 20 to the most general category (according to the partial order relation ≤Tac )
of the target, called root, which in our case is “POI” in dataset R, “establishment”
in dataset G and “Specialties” in datasets F and Z. However, the objective of our
approach is to be more specific and to establish as many mappings different from
the mapping to the root as possible. Thus, we do not consider real mappings as
well as the detected mappings to the root to make our evaluation reliable.

Table 6.3 contains a summary of the real mappings sets. Columns 2-4 repre-
sent the number of equivalent, generalized and specialized real mappings for each
dataset, respectively. Column 5 (# all) contains a sum of them. The last column
(|dom′(aSC)|) shows the number of distinct categories from the source dataset,
which should be mapped to the target categories in each test case. However, not
all of them can be mapped because of a lack of a suitable (proper) category in the
target. Table 6.4 presents how many source categories are mapped only to one
target category (# 1:1 trivial), to more than one (# 1:n non-trivial) and any at all
(# non-mapped). In Figure 6.5 the detailed distribution of real ./1:n-mappings is
shown. The most popular are mappings with cardinality between 1 and 10. It
reveals that there exist many alternative mappings which makes the detection of
(proper) coreferent categories a challenging task.

Finally, tuples that are mapped by the 1:1 and 1:n real category mappings for
each dataset are reported in Table 6.5 in columns 4 and 5. Table 6.5 also contains
the number of all tuples (# tuples) and tuples with a category different from the root
(# tuples’) of the source dataset in each test case. Each dataset, besides the dataset
F , contains many tuples which are not mapped by any real category mapping. It
means that the target dataset does not contain corresponding category and confirms
the differences of datasets. Moreover, most of the tuples in each test case are
mapped by non trivial 1:n mappings. This confirms the need of selection heuristics.
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Figure 6.5 Distribution of cardinality of the real ./1:n-mappings for each dataset
(in the sense of “n” in 1:n).

Table 6.5 Datasets details: tuples mapped by real category mappings without map-
pings to the root of the target.

Datasets # tuples # tuples’ # 1:1 mappings # 1:n mappings

G-R 193816 91822 13165 64385

R-G 436616 399197 101681 207013

Z-F 341 341 19 307

F-Z 550 550 0 550

6.7.1.4 Evaluation metrics

The quality of our method is evaluated using two standard measures of recall and
precision. The precision is the fraction of detected real coreferent mappings among
all detected mappings; the recall is the number of detected real coreferent map-
pings divided by the number of all real coreferent mappings.

6.7.2 Category mapping

In this section the Category Mapping Algorithm 6.1 is evaluated in detail. First
of all, the parameters of the mappers are selected based on experimental results.
Next, the detected mappings by our method are compared to real mappings and
mappings generated only by a Lexical mapper (to show the advantages of using
our semantical mappers).
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Table 6.6 Calibrated pow parameter for the particular mapper

Mapper Parameter pow

Description 2.2

Definition 1.4

Category in Description 7

Category in Definition 9

6.7.2.1 Experiment: Calibrated pow parameter for the particular mapper

Goal. Our algorithm employs threshold to decide on category coreference, which
is set to 0.5 for µp̃(F ) of each mapper. As a reminder, if µp̃(F ) is lower than the
threshold then the coreference is declared (see Section 1.4.4).

In order to make the result of each mapper comparable (i.e. each mapper gets
a set of mappings with similar precision for the same threshold), we have to set
the parameter pow in Equation (6.7) of Description and Definition mappers and
also in Equation (6.16) of Identification mappers (it raises to the pow power a
component of equations which calculate possibility of mapping). The selection of
proper values for the parameter pow is experimentally confirmed in the following
experiment.

Procedure. For the parameter pow, a range from 1 to 20 is considered. The pa-
rameter pow for each mapper is set to get first of all mappings with high precision
and if possible also high recall for predefined threshold equal to 0.5. However,
the high recall for each mapper considered separately is of a minor importance be-
cause real mappings that are not detected by one mapper can be detected by others.
On the other hand, a high precision is extremely important because false positive
mappings are propagated by Implicit Mappers and they can significantly decrease
the quality of the final result.

Result. The value of the parameter pow for each mapper has been experimen-
tally confirmed based on the dataset G-R to make the results of all types of map-
pers comparable. Figure 6.6 shows precision and recall for different values of
the parameter pow for each mapper (uninterested results are omitted). Table 6.6
summarizes the selected values of pow for each mapper.

6.7.2.2 Experiment: Comparison of category description aggregation (cf.
Section 6.4.1)

Goal. In Section 6.4.1 different equations (6.10)-(6.13) to calculate the PTVs are
proposed. This experiment evaluates these calculations.
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Figure 6.6 Setup mappers threshold: parameter pow.

Table 6.7 Results of calculating PTV of mappings by different equations (6.10)-
(6.13).

./1:1-mapping Avg Max Min Pr. S Pr. T

storage - Warehouse (1,0.08) (1,0.02) (1,0.03) (1,0.02) (1,0.03)

restaurant - Road Rest. (1,0.28) (1,0.06) (1,0.12) (1,0.06) (1,0.11)

lodging - Hotel (1,0.26) (1,0.01) (1,0.02) (1,0.02) (1,0.11)

church - Place of Worship (1,0.30) (1,0.01) (1,0.02) (1,0.03) (1,0.12)

Procedure. The Description mapper and Definition mapper are executed in se-
quence with different possibility computations.

Result. Table 6.7 compares the uncertainty of the mappings detected in the G-R
dataset, the two mappings above the bar are detected by the Definition mapper, the
two mappings below the bar by the Description mapper. The calculation used are:
Average Tfidf (Equation 6.10) (column 3), Max Tfidf (Equation 6.12) (column
4), Min Tfidf (Equation 6.11) (column 5) and Source Preference (Equation 6.13)
(columns 6-7). The Average measure best captures the expert opinion (i.e. reason-
able uncertainty exists for not equivalent categories like “lodging” and “Hotel”).
Thus, it is selected for further evaluation.
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6.7.2.3 Experiment: Tuning of the definition mapper

Goal. In this experiment the influence of the number of extracted paragraph and
the reference level of the Definition mapper (see Section 6.4.2) on the uncertainty
of the detected mappings is presented.

Procedure. The number of the extracted paragraphs from an external source
(e.g., from Wikipedia article) and reference level are ranged over a set of alter-
natives in order to investigate their influence on the G-R dataset. For the number
of extracted paragraphs, a range from 1 to 5 is considered. For the reference level,
values 0 and 1 are considered. It gives us 10 test cases whose results are as follows.

Result. Figure 6.7 presents the precision of the test cases. The highest precision
is achieved for 2 paragraphs and reference level 1. Namely, 0.6 for equivalent map-
pings, 0.67 for equivalent and generalized mappings, and 0.98 for equivalent and
non-equivalent mappings. This reflects that, i.e. the most defining keywords, syn-
onyms or more general concepts are usually located at the beginning of a concept
definition which can also be observed by investigating references.

Figure 6.7 Parameters setup of the Definition mapper.

6.7.2.4 Experiment: Comparison to real mappings

Goal. In this experiment mappings detected by explicit and implicit mappers
(see Section 6.4 and 6.5) are compared to real mappings which are established by
experts (see details of evaluated datasets in Section 6.7.1).

Procedure. Our algorithm is applied to respectively detect mappings by each ex-
plicit mapper separately, by all explicit mappers together and by a combination of
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all explicit mappers and all implicit mappers. Established mappings are compared
to real mappings using precision and recall measures.

Result. Parts of the results are presented in Table 6.8 and 6.9 for the G-R and
F-Z datasets respectively (the R-G and Z-F datasets are omitted). Each mapping
consists of four values: the source category, the target category, the PTV and the
name of the mapper that produced the specific mapping. There can be distin-
guished equivalent mappings (i.e. “lodging” and “Accommodation”, “Barbeque”
and “BBQ”), generalized non-equivalent mappings (i.e. “church” and “Place of
Worship”, “Barbeque” and “American”) and specialized non-equivalent mappings
(i.e. “lodging” and “Hotel”, “Mexican” and “Spanish”).

Tables 6.10, 6.11, 6.12 and 6.13 present the quality measures of our approach
for equivalent mappings (column 2), equivalent and generalized non-equivalent
mappings (column 3) and equivalent and all non-equivalent mappings (column 4)
for G-R, R-G, Z-F and F-Z datasets respectively. Additionally, the last column in
these Tables contains recall and precision for any but not the most general map-
pings (Not Root). This column shows if there is at least one coreferent mapping
established for each category from the source which is not a mapping to the most
general category in the partial order relation ≤Tac . Thus, in this case the precision
and recall are calculated as follows. The precision is the number of distinct source
categories (different from the root) of detected real coreferent mappings divided
by the number of distinct source categories (different from the root) of all detected
mappings, the recall is the number of distinct source categories (different from the
root) of detected real coreferent mappings divided by the number of distinct source
categories (different from the root) of all real coreferent mappings.

First of all, the recall and precision are calculated for explicit mappers in Ta-
bles 6.10, 6.11, 6.12 and 6.13 (above the bar). On the one hand, the Definition,
Category in Definition I/II and also Lexical mappers get equivalent mappings with
high precision and recall compared to the Description and Category in Descrip-
tion I/II mappers (column 2). On the other hand, all explicit mappers return high
precision but low recall for equivalent and non-equvalent mappings (column 4).
The high precision is important because these mappings are used by the implicit
mappers: any false positive mapping is propagated by the implicit mappers, which
degrades the overall result. Besides that, it is not crucial to detect all possible
coreferent mappings but it is sufficient if the algorithm creates at least one corefer-
ent mapping for each category that turns out to be the proper mapping (the selec-
tion of mappings is investigated in Section 6.7.3). The results in the last column
confirm that. For about half of the categories from the source in the G-R dataset
(one-third in the R-G dataset), at least one coreferent mapping is established that
is different from the root with a precision that equals to 1 (0.98 in the R-G, respec-
tively). Meanwhile the recall equals 0.58 for the Z-F dataset or even 0.79 for the



6-34 SEMANTICAL MAPPING OF ATTRIBUTE VALUES IN DATA FUSION

Table 6.8 Some results of the Category Mapping Algorithm: mappings of values
from the source and target datasets (G-R).

Category S Category T PTV Mapper

restaurant Eatery (1,0) Definition

restaurant Eat and Drink (1,0) ImplicitII

restaurant POI (1,0) ImplicitII

restaurant Road Restaurant (1,0.28) Definition

restaurant Road Restaurant (1,0.12) Category in definition

restaurant Hotel (1,0.37) Description

church church (1,0) Definition

church Place of Worship (1,0) ImplicitII

church POI (1,0) ImplicitII

church Place of Worship (1,0.3) Description

lodging Hotel (1,0.26) Description

lodging Hotel (1,0.03) Category in description

lodging Accomodation (1,0.12) Category in definition

lodging Accom Shelter (1,0.26) ImplicitII

lodging POI (1,0.26) ImplicitII

food Restaurant (1,0.29) Category in definition

food Eatery (1,0.29) ImplicitII

food Eat and Drink (1,0.1) ImplicitII

food POI (1,0.1) ImplicitII

meal delivery Restaurant (1,0.29) Implicit

meal delivery Eatery (1,0.29) ImplicitII

meal delivery Horeca (1,0.29) ImplicitII

meal delivery Eat and Drink (1,0.29) ImplicitII

meal delivery POI (1,0.29) ImplicitII

F-Z dataset with a precision that equals 1.
Next, recall and precision are calculated for the explicit and implicit mappings

combined. The implicit mappers decrease the precision for equivalent mappings
(column 2 below the bar in Tables 6.10, 6.11, 6.12 and 6.13) because they create
mainly non-equivalent mappings. Thus, for non-equivalent mappings (column 3
and 4), these mappers in particular increase the recall, e.g. the recall increases
from 0.18 to 0.41 for equivalent and generalized mappings of the G-R dataset in
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Table 6.9 Some results of Category Mapping Algorithm: mappings of values from
the source and target datasets (F-Z).

Category S Category T PTV Mapper

Barbeque BBQ (1,0.22) Category in description

Barbeque Cuisine (1,0.22) Implicit II

Barbeque American (1,0.22) Implicit II

Barbeque BBQ (1,0.43) Category in definition

Barbeque BBQ (1,0) Definition

Mexican Mexican (1,0) Definition

Mexican Mexican (1,0) Lexical

Mexican Mexican (1,0.07) Category in definition

Mexican Tex-Mex (1,0) Category in definition

Mexican Southwestern (1,0.01) Category in definition

Mexican Spanish (1,0.21 Lexical

Table 6.10 (column 3). Besides that, the recall of at least one coreferent mapping
that is different from the root (last column) is also increased at the expense of a
slight decrease in precision.

Table 6.10 Precision (P) and Recall (R) of established one-to-many mappings:
G-R dataset.

Mapper Eq. Eq. & Gen. Eq. & Non-eq. Not Root
P R P R P R P R

Description 0.14 0.03 0.29 0.01 0.64 0.02 0.78 0.08

Definition 0.60 0.48 0.67 0.12 0.98 0.08 1.00 0.33

Cat. in desc. I 0.71 0.08 0.86 0.02 1.00 0.01 1.00 0.08

Cat. in desc. II 0.60 0.15 0.67 0.04 1.00 0.03 1.00 0.13

Cat. in def. I 0.44 0.44 0.49 0.11 0.97 0.10 1.00 0.31

Cat. in def. II 0.67 0.39 0.81 0.11 0.92 0.06 1.00 0.34

Lexical 0.69 0.41 0.69 0.09 0.92 0.06 0.96 0.29

All 0.36 0.61 0.49 0.18 0.90 0.16 1.00 0.49

All w/o Lexical 0.36 0.57 0.50 0.18 0.93 0.16 1.00 0.47

All +Impl. 0.18 0.62 0.54 0.41 0.80 0.29 0.96 0.54
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Table 6.11 Precision (P) and Recall (R) of established one-to-many mappings:
R-G dataset.

Mapper Eq. Eq. & Gen. Eq. & Non-eq. Not Root
P R P R P R P R

Description 0.14 0.04 0.50 0.02 0.64 0.02 0.88 0.03

Definition 0.60 0.52 0.94 0.13 0.98 0.09 1.00 0.17

Cat. in desc. I 0.60 0.16 0.93 0.04 1.00 0.03 1.00 0.06

Cat. in desc. II 0.71 0.09 0.86 0.02 1.00 0.01 1.00 0.03

Cat. in def. I 0.67 0.43 0.81 0.09 0.92 0.06 0.91 0.12

Cat. in def. II 0.44 0.48 0.92 0.17 0.97 0.11 1.00 0.21

Lexical 0.69 0.45 0.92 0.10 0.92 0.06 0.97 0.13

All 0.36 0.66 0.79 0.24 0.90 0.18 0.98 0.31

All w/o Lexical 0.36 0.63 0.80 0.23 0.93 0.17 0.98 0.30

All +Impl. 0.13 0.70 0.69 0.63 0.74 0.44 0.83 0.59

Table 6.12 Precision (P) and Recall (R) of established one-to-many mappings: Z-F
dataset.

Mapper Eq. Eq. & Gen. Eq. & Non-eq. Not Root
P R P R P R P R

Description – – – – – – – –

Definition 0.86 0.92 0.93 0.14 1.00 0.11 1.00 0.44

Cat. in desc. I 1.00 0.04 1.00 0.01 1.00 0.01 1.00 0.02

Cat. in desc. II – – – – – – – –

Cat. in def. I 0.72 0.50 0.83 0.08 1.00 0.07 1.00 0.29

Cat. in def. II 0.68 0.65 1.00 0.13 1.00 0.10 1.00 0.44

Lexical 0.88 0.85 1.00 0.13 1.00 0.10 1.00 0.45

All 0.64 0.96 0.90 0.19 1.00 0.16 1.00 0.58

All w/o Lexical 0.64 0.96 0.90 0.19 1.00 0.16 1.00 0.58

All +Impl. 0.19 0.96 0.88 0.63 0.96 0.52 1.00 0.84

6.7.2.5 Experiment: Lexical vs semantical mappers

Goal. This experiment was conducted to show the advantages of using our se-
mantical explicit mappers over the Lexical mapper.
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Table 6.13 Precision (P) and Recall (R) of established one-to-many mappings: F-Z
dataset.

Mapper Eq. Eq. & Gen. Eq. & Non-eq. Not Root
P R P R P R P R

Description – – – – – – – –

Definition 0.86 0.72 0.93 0.14 1.00 0.06 1.00 0.71

Cat. in desc. I – – – – – – – –

Cat. in desc. II 1.00 0.03 1.00 0.01 1.00 0.01 1.00 0.03

Cat. in def. I 0.68 0.52 0.68 0.09 1.00 0.05 1.00 0.56

Cat. in def. II 0.72 0.39 0.89 0.09 1.00 0.04 1.00 0.47

Lexical 0.88 0.67 0.88 0.12 1.00 0.05 1.00 0.65

All 0.64 0.76 0.74 0.16 1.00 0.08 1.00 0.79

All w/o Lexical 0.64 0.76 0.74 0.16 1.00 0.08 1.00 0.79

All +Impl. 0.27 0.76 0.87 0.44 0.98 0.18 1.00 0.97

Procedure. First of all, mappings that are detected by explicit mappers (except
the Lexical mapper) are compared to mappings that are established only by the
Lexical mapper. Next, these mappings (i.e., mappings that are detected by explicit
mappers except the Lexical mapper) are compared to mappings that are established
by all explicit mappers.

Result. Rows 7-9 in Tables 6.10-6.13 present the results of this comparison. The
Lexical mapper gets slightly better results than other combined mappers only for
equivalent mappings (rows 7 and 9). This is understandable because the equivalent
mappings are mostly syntactically equal. However, for non-equivalent mappings
our other mappers get better results than the Lexical mapper (higher recall with
high precision).

In addition, most of the mappings that are established by the Lexical mapper
are suggested also by the other mappers, especially by the Definition mapper. In
general, we get almost the same result for mappings that are established by all
mappers with or without the Lexical mapper (rows 8 and 9). However, for equiv-
alent mappings the Lexical mapper slightly increases the recall, which makes it
worth using with our method.

6.7.3 Selection of mappings

In this section the Category Mapping Selection Algorithm 6.2 is evaluated in detail.
Namely, the reduction of the set γ1:n of ./1:n-mappings to the set γ1:1 of ./1:1-
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mappings is evaluated. ./1:n-mappings are established by explicit and implicit
mappers with parameters that are set based on the experimental results that are
reported in Section 6.7.2.

First of all, in Figure 6.8, the detailed distribution of detected ./1:n-mappings
is shown. The most popular mappings are those with a cardinality between 1 and
5, while the maximum cardinality does not exceed 11. This shows that many
alternative mappings still exist. This makes the detection of (proper) coreferent
categories a challenging task.

Figure 6.8 Distribution of cardinality of the detected ./1:n-mappings (in the sense
of “n” in 1:n).

6.7.3.1 Experiment: Object specific mappings selection

Goal. The object specific category mappings, which are established by the method
in line 6 of Algorithm 6.2, are evaluated in this experiment.

Procedure. The method is executed in sequence with the following datasets: G-
R, R-G, Z-F and F-Z.

Result. The results of this experiment are presented in the rows of group 3 in
Table 6.14. The tuples that are mapped with precision between 0.79 and 1, are
only 1.28%-2.55% of all tuples from the considered datasets. However, each of
these tuples is mapped with high precision to the category that is specific for the
considered object, i.e. a hotel with the category “lodging” is mapped to “Hotel”
or a car repair company with the category “establishment” is mapped to “Garage”,
etc.

Moreover, the remainder of the input tuples (namely between 72% and 97%
depending on the dataset) are mapped using the default category mapping selection
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heuristic from Section 6.6 (line 8 in Algorithm 6.2 and are evaluated in details in
the next experiment). More precisely, the number and percentage of mapped tuples
with a category different from the root are shown in Table 6.14 in the rows of group
4, while in the rows of group 5 tuples with a category equal to the root are mapped.
In total, 75%-99% of the tuples are mapped (the rows of group 2). The unmapped
tuples in the rows of group 6 (1%-25%) are tuples of which the category is not
mapped by any mapper.

Table 6.14 Results of tuples mapping.

Dataset G-R R-G Z-F F-Z

1 # all tuples 193816 436616 341 550

2 # all mapped tuples 144729 337063 297 545

% all mapped tuples 74.67% 77.20% 87.10% 99.09%

3 # tuples: Specific Mapping 4303 5585 8 14

% tuples: Specific Mapping 2.22% 1.28% 2.35% 2.55%

Precision: Specific Mapping 0.79 0.94 1.00 1.00

4 # tuples: Default Mapping 40576 294964 289 531

% tuples: Default Mapping 20.93% 67.56% 84.75% 96.55%

5 # tuples: Default Mapping Root 99850 36514 0 0

% tuples: Default Mapping Root 51.52% 8.36% – –

6 # not mapped tuples 49087 99553 44 5

% not mapped tuples 25.33% 22.80% 12.90% 0.91%

6.7.3.2 Experiment: Default mappings selection

Goal. A comparison of the selection heuristics that are proposed in Section 6.6
is the goal of this experiment.

Procedure. These heuristics are executed in sequence on the set γ1:n of ./1:n-
mappings, which are suggested by our mappers. This experiment is repeated for
each dataset, namely G-R, R-G, Z-F and F-Z.

Result. Table 6.15 presents the precision and recall for the heuristics used in our
experiments. In general the best result, i.e. a high precision with a high recall, was
found for three heuristics, namely uncertainty-based selection, popularity-based
selection and combined selection (see Sections 6.6.1, 6.6.5 and 6.6.6). The good
result of the popularity-based heuristics is due to a high number of mappers (and
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their quality) that are used in our approach. Meanwhile, the good result of the
uncertainty-based heuristics confirms the effectiveness of the uncertainty model
applied to our framework. Finally, the high quality of the results of the Combined
selection is understandable because this method relies mostly on the other winning
heuristics.

Table 6.15 Precision (P) and Recall (R) of mappings selection.

Dataset Heuristics Eq. Eq. & Gen. Eq. & Non-eq.
P R P R P R

G-R Simple 0.59 0.44 0.88 0.36 0.97 0.38

G-R Subset 0.47 0.51 0.69 0.40 0.90 0.51

G-R Incr. Thr. 0.59 0.60 0.83 0.45 0.93 0.49

G-R Uncertainty 0.65 0.71 0.73 0.43 0.90 0.51

G-R Popularity 0.65 0.71 0.84 0.49 0.96 0.54

G-R Combine 0.69 0.76 0.86 0.50 0.94 0.53

R-G Simple 0.18 0.55 0.70 0.55 0.75 0.50

R-G Subset 0.17 0.57 0.69 0.57 0.75 0.53

R-G Incr. Thr. 0.19 0.63 0.70 0.58 0.76 0.54

R-G Uncertainty 0.20 0.68 0.75 0.62 0.80 0.56

R-G Popularity 0.20 0.68 0.75 0.62 0.80 0.56

R-G Combine 0.20 0.68 0.74 0.61 0.78 0.55

Z-F Simple 0.43 0.73 1.00 0.80 1.00 0.80

Z-F Subset 0.46 0.81 1.00 0.84 1.00 0.84

Z-F Incr. Thr. 0.43 0.73 1.00 0.80 1.00 0.80

Z-F Uncertainty 0.54 0.96 1.00 0.84 1.00 0.84

Z-F Popularity 0.54 0.96 1.00 0.84 1.00 0.84

Z-F Combine 0.52 0.92 0.98 0.82 1.00 0.84

F-Z Simple 0.58 0.69 0.81 0.76 0.94 0.85

F-Z Subset 0.58 0.73 0.79 0.79 0.94 0.91

F-Z Incr. Thr. 0.58 0.69 0.81 0.76 0.94 0.85

F-Z Uncertainty 0.73 0.92 0.94 0.94 1.00 0.97

F-Z Popularity 0.73 0.92 0.94 0.94 1.00 0.97

F-Z Combine 0.73 0.92 0.94 0.94 1.00 0.97
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6.7.3.3 Experiment: Influence of mappings set

Goal. In this experiment the influence of the cardinality and quality of one-to-
many mappings on the mapping selection heuristics is evaluated. In other words,
it is studied how selection heuristics depend on the relaxed mapper threshold for
µp̃(F ).

Procedure. The Most popular selection method (see Section 6.6.5) is executed
for each dataset in sequence with a threshold for µp̃(F ) ranging from 0.1 to 0.9. A
more relaxed threshold returns more candidates and also decreases the quality of
mappings. The Most popular heuristics is selected because it is one of the methods
that gets the best results in our evaluation in Section 6.7.3.2.

Result. Figure 6.9 presents the recall and precision of the Most popular selection
heuristics for different thresholds for µp̃(F ) for datasets G-R and R-G. On the
one hand, the best results for equivalent mappings are obtained for a threshold
µp̃(F ) smaller than 0.2. It is understandable that in accordance to expertise the
equivalent mappings have the lowest uncertainty. On the other hand, this is not so
obvious for non-equivalent mappings. The best result are achieved for a threshold
value between 0.4-0.5. The other datasets, Z-F and F-Z, return good results for
any value of the threshold for µp̃(F ) (consider for example the threshold value
0.5 in the experiment in Section 6.7.3.2) because the one-to-many mapping sets
contain mappings with high certainty, i.e, for almost each category from the source
there exists at least one true positive mapping with uncertainty lower than (1,0.1).
In addition, it should be clear that a correct one-to-many mappings help to find
precise one-to-one mappings.

6.7.3.4 Experiment: Lexical vs semantical mappings

Goal. This experiment was conducted to show the advantages of using our se-
mantical explicit mappers (the Description, Definition, Identification mappers)
over the Lexical mapper in the context of mappings selection by our heuristics
in Section 6.6.

Procedure. First of all, the selection of mappings by the Most popular map-
pings heuristics is executed on the set of ./1:n-mappings, which are established
by semantical explicit mappers and next on the set of ./1:n-mappings, which are
suggested by the Lexical mapper. The results for each dataset (G-R, R-G, Z-F,
F-Z) are compared by precision and recall. The “Most popular” heuristics is again
selected because it is one of the methods that gets the best results in our evaluation
in Section 6.7.3.2.
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Figure 6.9 Influence of the set of mappings on Recall and Precision of the Most
popular selection heuristics for datasets G-R and R-G.

Result. Table 6.16 presents the result of this comparison. In general, the semanti-
cal mappers get mappings with high precision and higher recall (even twice higher
for the R-G dataset) than the Lexical mapper.

Table 6.16 Selection of mappings by the Most popular mappings heuristics on the
set of semantical explicit mappings (Sem. Explicit) and lexical mappings (Lexical):
Precision and Recall.

Dataset Mappings Eq. Eq. & Gen. Eq. & Non-eq.
P R P R P R

G-R Sem. Explicit 0.68 0.62 0.78 0.39 0.98 0.46

G-R Lexical 0.96 0.56 0.96 0.30 0.96 0.29

R-G Sem. Explicit 0.43 0.61 0.86 0.31 0.96 0.29

R-G Lexical 0.74 0.45 0.97 0.15 0.97 0.13

Z-F Sem. Explicit 0.75 0.92 1.00 0.58 1.00 0.58

Z-F Lexical 0.88 0.85 1.00 0.45 1.00 0.45

F-Z Sem. Explicit 0.73 0.92 0.94 0.94 1.00 0.97

F-Z Lexical 1.00 0.85 1.00 0.67 1.00 0.65
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6.8 Conclusions
With respect to the last research question in the Introduction Chapter, we present
a novel automatic method to establish semantical mappings between attribute val-
ues from different domains in heterogeneous data collections that can be sorted by
means of an order relation that reflects a notion of generality. This method applies
an extensible set of novel mappers that are based on the dynamically constructed
textual descriptions of considered values and employs information retrieval tech-
niques for further processing. Moreover, we have also shown how a known partial
order relation defined on the domain of considered attributes can be used to create
and select proper mappings.

Our approach generates a set of mappings where each value from the source
dataset is related to at least one value from the target dataset. In general, it pro-
duces alternative mappings for the same value. However, it may be crucial to
select exactly one value from the target for each value from the source. Thus, a
more sophisticated selection method than the method that is based on the lowest
uncertainty about mapping has to be investigated. For this purpose we proposed
novel selection heuristics which are based on the concept of majority (the fre-
quency of mappings) and the balanced selection (the most specific category from
the candidate categories provided that the selected category is comparable to all
other candidate categories) over the candidate mappings set. In addition, we also
proposed a novel algorithm that tries to find a mapping specific for the particular
object based on onomastic information. Our method can be easily applied for data
integration or interoperability tasks. The established semantical mappings help to
maintain consistency, decrease the number of coreferent tuples in the integrated
dataset and allow to apply fusion functions (e.g., those presented in the previous
chapter), which has an extreme influence on data quality. This in turn descreases
the cost of database maintenance.
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Overall conclusions

The dissertation dealt with the following research questions which were raised in
the Introduction Chapter.

Question 1: How does one establish schema matching based only
on the schema itself?

The novel XML schema matching algorithm which is based on schema informa-
tion only is proposed in Chapter 2 as a response to this research question. Our
technique is able to establish one-to-one matching of corresponding XML schema
elements of heterogeneous data sources comparing element names (steps) and their
sequences (paths) in an automatic fashion; thus it is a syntactical (lexical) schema
matching. This, in turn, may help to further decide on the coreference of XML
schemas. We treat coreference as a binary notion, i.e., two steps, paths or schemas
are either coreferent or not. However, we assume that the results of coreference
detection may be uncertain, which is represented by employing possibilistic truth
values (PTVs).

More specifically, we consider here three levels on which coreference is de-
tected. On the basic level, i.e. step level, the steps of any two paths are pairwise
compared to determine their coreference. All steps pairs of the two paths are asso-
ciated with PTVs, which are, in turn, aggregated to a single PTV which represents
coreference on the path level. However, not all steps in a path are equally important
with respect to coreference detection, thus, step weights are defined by the novel
heuristic and are used by the aggregation operator. The steps weights depend on
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the position of the steps in their respective paths and are set according to the rule
that two paths are more likely to be coreferent if they have more similar steps at
the end. Finally, on the schema level, the information on the paths’ coreference, as
it is also represented by PTVs, is aggregated to determine the coreference of the
two schemas. However, schema elements are not equally important when schemas
similarity (coreference/matching) is considered. Thus, a novel heuristics to derive
elements importance weights is proposed and used by the aggregation operator.
These heuristics are based on expert opinions that the most important element is
unique (occurs in the schema only once) and mandatory (occurs in the schema at
least once), and is also located closer to the root.

Question 2: How does one establish schema matching based on
content data?

The response to this research question is the novel schema matching algorithm
which is described in Chapter 3. In contrast to the above approach, this method
is based on content data only but also assumes that the results of coreference de-
tection may be uncertain, which is represented by employing possibilistic truth
values and fuzzy integers. More specifically, our novel approach is composed of
three phases. In the first phase the vertical schema matchings are established by a
statistical and lexical comparison of attribute domains, and the matchings are a ba-
sis for the second phase. Namely, the vertical matchings help to detect coreferent
tuples efficiently across heterogeneous data sources, and, in turn, the coreferent
tuples are used to derive the horizontal schema matchings. Finally, ambiguous
matchings are resolved in the third phase. Conflict resolution is based on the un-
certainty of matching and on the number of matched attributes, and also on the
idea that a matching which is repeated by many coreferent tuples is more certain
than a matching which is not frequent.

Contrary to the schema matching based on schema information only, these
techniques allow to establish a semantical matching between corresponding at-
tributes (schema elements in general), and to cope with attribute granularity and
data coverage problems. Namely, content data supply additional information about
the considered attributes, which helps to reveal their real meaning. In turn, a com-
parison of attribute values helps to detect coreferent attributes with different gran-
ularity (one-to-many matchings) across heterogeneous data sources, i.e. when the
same piece of information is represented by a different number of attributes in the
considered schemas; whereas the data coverage problem is identified by a compari-
son of the number of coreferent terms in the particular attribute domains. However,
the content data itself can also be insufficient because the same information can be
represented in different ways, e.g. there can be synonyms. Thus, some knowl-
edge base may be necessary to detect coreference and, thus, the construction of
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a knowledge base is an important aspect in improving the detection of coreferent
objects and is considered in the next research question.

Question 3: How can a dynamically constructed knowledge base
improve the detection of coreferent tuples and data fusion in ho-
mogeneous or heterogeneous data collections?

The novel techniques which are proposed in Chapters 4 and 5 are a response to this
research question. Namely, in Chapter 4 the novel Dynamical Order Construction
(DOC) algorithm is introduced and its impact on the detection of coreferent tu-
ples is investigated. More specifically, DOC constructs, using coreferent tuples
in homogeneous or heterogeneous data collections, a partial order relation over
the domain of an attribute, whose values may need a semantical comparison and
can be sorted by means of an order relation that reflects a notion of generality.
In Chapter 4 three novel heuristics are proposed to measure the generality of the
considered values. These heuristics depend on frequency (number of occurrences
of each value) and uniqueness (distinction of values in coreferent tuples or in the
considered dataset), and are evaluated in-depth on real-life datasets. Moreover, our
knowledge base construction has the advantage that it automatically adapts to the
values present in the dataset and that predefined taxonomical knowledge on the
attribute is not necessary.

DOC in the context of data fusion is studied in Chapter 5. Namely, the novel
approach to combine coreferent values of the considered attribute of an entity into
a single value is proposed. This technique is based on the new strategy for selec-
tion, called balanced selection, which adopts the sort-and-select principle. First,
values are sorted by using the generality relation and next the most specific value
that is comparable to all others is selected as a result of the fusion function. The
advantages and disadvantages of our methods are experimentally investigated on
large real-life datasets.

Question 4: How does one establish semantical mappings be-
tween the values of categorical attributes and what impact does
a partial order relation have on the data fusion of heterogeneous
data sources?

The novel techniques are proposed in Chapter 6 as a response to the last research
question. In contrast to the DOC algorithm, these methods are not based on coref-
erent tuples but on textual descriptions, which are compared using information
retrieval techniques to establish semantical mappings between the values of cate-
gorical attributes from different domains that can be sorted by means of an order
relation that reflects a notion of generality. The textual description is constructed
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from the values of other attributes and from a definition of the particular value
which is extracted from the World Wide Web. Thus, these mappings are called
explicit mappings and are derived by our novel explicit mappers. Moreover, we
also proposed novel implicit mappers which create additional mappings using ex-
plicit mapping and known partial order relations defined on the domain of the
considered attributes. Explicit and implicit mappings are called default mappings,
because they do not depend on the particular object. Besides this we also proposed
a novel algorithm which derives mappings specific for a particular object (tuple)
using onomastic information and partial order relations to guarantee high precision
of the mappings.

Our approach produces a set of one-to-many mappings between the coreferent
values of categorical attributes from different domains, i.e. any value from one
source can be mapped to more than one value in another source. However, it
may be crucial to reduce the set of one-to-many mappings to a set of one-to-one
mappings. In this case the uncertainty-based selection method can be insufficient.
Thus, in Chapter 6 some novel heuristics are proposed which select proper one-
to-one mappings. These are based on the concept of majority and supremum over
the candidate mappings set, and also on the balanced selection function defined in
Chapter 5 with partial order relations.

The novel techniques proposed here are evaluated in-depth on real-life datasets
and have the advantages that help to maintain consistency, detect coreferent tuples
in databases and allow to apply the fusion function, e.g., the balanced selection
function which is presented in Chapter 5. As a consequence, this helps to increase
data quality and to decrease the cost of database maintenance.
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