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Abstract

This research focuses on the problem of semantic data fusion. Although various

solutions have been developed in in the research communities focusing on databases

and formal logic, the choice of an appropriate algorithm is non-trivial because the

performance of each algorithm and its optimal configuration parameters depend on

the type of data, to which the algorithm is applied. In order to be reusable, the fusion

system must be able to select appropriate techniques and use them in combination.

Moreover, because of the varying reliability of data sources and algorithms performing

fusion subtasks, uncertainty is an inherent feature of semantically annotated data

and has to be taken into account by the fusion system. Finally, the issue of schema

heterogeneity can have a negative impact on the fusion performance.

To address these issues, we propose KnoFuss: an architecture for Semantic Web

data integration based on the principles of problem-solving methods. Algorithms

dealing with different fusion subtasks are represented as components of a modular ar-

chitecture, and their capabilities are described formally. This allows the architecture

to select appropriate methods and configure them depending on the processed data.

In order to handle uncertainty, we propose a novel algorithm based on the Dempster-

Shafer belief propagation. KnoFuss employs this algorithm to reason about uncertain

data and method results in order to refine the fused knowledge base. Tests show that
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these solutions lead to improved fusion performance.

Finally, we addressed the problem of data fusion in the presence of schema hetero-

geneity. We extended the KnoFuss framework to exploit results of automatic schema

alignment tools and proposed our own schema matching algorithm aimed at facili-

tating data fusion in the Linked Data environment. We conducted experiments with

this approach and obtained a substantial improvement in performance in comparison

with public data repositories.
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Chapter 1

Introduction

This chapter provides a brief introduction to the thesis. It includes the motivation

for the work, a brief overview of the approach and the main research questions the

thesis focuses on. It also contains the definitions of the important terms we use and

outlines the structure of the dissertation.

17



18

1.1 Motivation

The amount of information accessible online is constantly growing. According to

[46], the total amount of digitised information increases by a factor of 10 every five

years, and in 2007 it amounted to 281 exabytes (281 billion GB). In parallel, the

heterogeneity of information also rises: relevant information about the same topic is

distributed over increasing number of sources. These factors present new challenges

for applications which need to handle this data, as more and more automation is

needed for data management.

Even if we consider the level of a single enterprise and its needs, pieces of informa-

tion can be stored in internal databases, corporate reports, e-mail threads, spread-

sheets, etc., not counting relevant information from the public domain accessible via

the Web. The ability to locate and access all information relevant to his/her work is

essential for an employee to perform tasks efficiently and make correct decisions.

This is even more challenging on a Web scale, given the number of sources that

must be taken into account, the dynamic aspects of information, which make it

become obsolete with time, and the contradictory viewpoints expressed by different

sources. While popular Web search engines, such as Google, can perform well on

standard search tasks, there are many tasks which require viewing information to be

combined from multiple sources in order to address a user need. For instance, an

individual needs to keep track of all information available about him/her on the Web

to manage the risks of identity theft [105].

Semantic Web technologies have been proposed as a way to make this growing
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amount of information more manageable by describing it in a standardised machine-

processable format and by using shared identifiers (URIs) to encode entities [7].

However, although the standard data format makes integration easier to perform

automatically, this process is still not trivial as several issues need to be solved. In

particular, it is necessary to identify coreferent individuals describing the same real-

world entity but having different URIs, to process potential inconsistencies, and to

handle provenance and reliability of information from each source.

Data integration has long been recognised as an important research problem in

different communities such as databases [40, 36, 126], logic-based AI [65, 68], and

XML data [58, 123]. Commonly recognised challenges, which have to be dealt with,

include schema-level and data-level heterogeneity. While in the Semantic Web com-

munity a considerable amount of work has focused on schema-level heterogeneity [38],

data-level issues have received less attention. However, with the recent emergence

of the Linking Open Data initiative1 and the growing amount of RDF2 data being

published, data integration issues have acquired much more importance.

In all these communities multiple algorithms have been developed to deal with

each of the data integration subproblems (e.g., string similarity [21] and machine-

learning techniques [8] to identify coreferences; logical reasoning [69] and provenance

analysis [82] to handle inconsistencies; mathematical frameworks such as Bayesian

probability theory and Dempster-Shafer belief functions [91] to reason about un-

certainty; etc.). However, the task of fusing semantic data structured according to

1http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
2http://www.w3.org/RDF/
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RDFS3 and OWL4 ontologies has its specific characteristics, which must be consid-

ered when adapting existing methods or developing new ones. Unlike in relational

datasets, data instances do not always have a strict structure, classes are organised

into hierarchies, and ontological axioms allow different kinds of constraints and re-

strictions to be defined. Also for any of the data-level problems listed above the

choice of an optimal algorithm is non-trivial: there is no single algorithm, which is

the best for all possible domains and use case scenarios. Given that even within a

single domain there may be a variety of types of data, the fusion process requires us-

ing a flexible workflow to select appropriate algorithms, configure their parameters,

use them in combination, and aggregate their results.

This research was performed in the context of the X-Media project5. The project

focuses on the topic of corporate knowledge management using large-scale informa-

tion extraction and Semantic Web technologies to organise information contained in

various documents. In this scenario, a corporate ontology is populated both auto-

matically and manually using information from different sources and documents (see

Fig. 1.1). Thus, while there is no schema-level heterogeneity, the data-level issues

are crucial. These issues include coreference resolution (recognizing the cases when

different sources refer to the same real-world entities and unifying the URIs of such

instances) and inconsistency resolution (processing the cases when the sources con-

tain conflicting information). The data, which have to be integrated, are often noisy:

automatic extraction algorithms do not have 100% quality, human editors make oc-

casional mistakes, data become obsolete with time and, finally, the sources may have

3http://www.w3.org/TR/rdf-schema/
4http://www.w3.org/TR/owl-features/
5http://www.x-media-project.org/
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Figure 1.1: Fusion in the corporate knowledge management scenario as assumed in
the X-Media project

genuinely contradictory views. The output of the coreferencing methods is also not

fully reliable. Thus, performing fusion of semantic data in the presence of noise in a

corporate knowledge management scenario was our initial motivation.

As our work continued, we also considered more generic fusion scenarios, in par-

ticular, fusion of Linked Data repositories published on the Web. Linked Data is

defined as “a term used to describe a recommended best practice for exposing, shar-

ing, and connecting pieces of data, information, and knowledge on the Semantic Web

using URIs and RDF”6. This best practice was widely adopted, and multiple RDF

repositories have been published on the Web (Fig. 1.2). Coreference links between

entities (RDF individuals) in different datasets constitute a major added value: these

links allow combining data about the same individuals stored in different locations.

6http://en.wikipedia.org/wiki/Linked Data
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Figure 1.2: The Linking Open Data cloud diagram (March 2009).
From http://www4.wiwiss.fu-berlin.de/bizer/pub/lod-datasets 2009-03-05.html.
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Due to large volumes of data which have to be processed, these links cannot be pro-

duced manually, so automatic techniques have to be employed. Addressing the data

fusion problems in this scenario is the focus of the second part of the thesis. In both

these scenarios the fusion is assumed to be performed in an off-line mode. Therefore,

we did not focus on the performance of our techniques in terms of time and memory

cost.

1.2 Approach

This dissertation explores the knowledge fusion problem in the context of Semantic

Web data and uses the problem-solving methods approach [83, 41] as a base for con-

structing the fusion architecture. This approach provides a framework for organizing

alternative algorithms solving primitive fusion subtasks into a library, defining their

configuration parameters, and using them in combination. The capabilities and do-

main assumptions of the algorithms are formally described using the fusion ontology,

which enables the automated selection and invocation of algorithms, combining their

results, and passing them to the next stage in order to conduct these subtasks in

sequence.

An essential component of the architecture is the exploitation of uncertainty man-

agement to reason about the reliability of pieces of data and the output of methods

dealing with fusion subtasks. Our approach employs Dempster-Shafer theory of ev-

idence in combination with ontological reasoning to aggregate the uncertainty of

different factors. This aggregated uncertainty is then used to make decisions about

the data being integrated and refine it.
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This approach is used to address a number of research questions.

1.3 Research questions

The general research problem addressed in this dissertation is:

How can we perform effective data-level fusion of semantically annotated

data generated from different sources?

This problem includes several more specific questions:

1. How should algorithms performing fusion subtasks be used in combination to

implement the semantic data fusion workflow?

2. How can we support the reusability of fusion algorithms across domains?

3. How can we exploit axioms defined in domain ontologies to improve the perfor-

mance of fusion algorithms?

4. What kind of uncertainty management framework is suitable for fusion?

5. How can we exploit uncertainty and provenance information to improve the

fusion performance?

6. What is the impact of ontology schema heterogeneity on the data fusion process?

Note, that since we assume an off-line fusion scenario, the question of optimising the

time performance is outside the scope of this thesis. Effectiveness in our case refers

only to the quality of the fusion output.
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1.4 Definition of terms

Most of the terms will be defined in the course of the thesis as needed. In this section

we give only the main terms, which are used throughout the dissertation and are

important for understanding the narrative.

The term fusion is used in several domains of AI and computer science by many

authors and sometimes with different interpretations. In a survey paper [12] fusion

is defined as “conjoining or merging information that stems from several sources and

exploiting that conjoined or merged information in various tasks such as answering

questions, making decisions, numerical estimation, etc.” This is an informal and

very generic definition. This dissertation considers a more specific knowledge fusion

scenario: fusion of semantic data represented in RDF and structured according to

standard Semantic Web ontology languages (RDFS and OWL). This dissertation

discusses fusion of actual RDF datasets rather than fusion of query results. Each

RDF dataset consists of two components: an ontological schema and RDF data

instances. Further we refer to the ontological schema (TBox in the description logic

terminology) as the ontology and to the RDF data instances (ABox) as the knowledge

base.

1.5 Structure of the dissertation

Chapter 2 reviews the literature on the fusion problem, especially in the domain of

database integration and in the Semantic Web community. Common workflows used

by existing fusion systems are analysed, the stages of the fusion process are outlined,

and the existing approaches to tackling each stage are reviewed.
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Chapter 3 presents the proposed knowledge fusion architecture based on the use of

problem-solving methods, which supports dynamic integration of algorithms handling

different subtasks od the fusion problem. This chapter mainly deals with questions

1, 2, and 3 stated above.

Chapter 4 describes our approach for resolving data inconsistencies using un-

certainty management. The approach combines ontological reasoning and formal

uncertainty management using the Dempster-Shafer theory of evidence.

Chapter 5 describes how this approach can be used to complete the fusion process

by refining the decisions made by the algorithms at earlier stages of the process.

Chapters 4 and 5 jointly address questions 4 and 5.

Chapter 6 describes the results of experiments we performed with the KnoFuss

framework.

In Chapter 7 we consider the scenario in which we have to deal with both schema

and data heterogeneity in the data fusion process. We discuss an extension of the

KnoFuss architecture we developed to deal with this problem and we also discuss

the impact that schema heterogeneity has on the data fusion stage. In addition,

we propose a novel schema-matching algorithm which aims at facilitating the data

fusion process in the Linked Data environment. Thus, this chapter mainly addresses

question 6.

Finally, Chapter 8 summarises the main contributions of the study and outlines

directions for future work.



Chapter 2

Related work

In this chapter we give an overview of the body of related work relevant to the

fusion problem. We start with the description of the data integration problem in

the database domain. Then, we give an overview of both the approaches developed

in the area of formal logic and the more recent ones which deal with Semantic Web

data. Finally, we describe existing architectures, which combine different algorithms

to tackle fusion problems, and discuss their limitations.

27



28

2.1 The knowledge fusion problem: formulation

and relevant areas

A survey paper [12] defines fusion at the most general level as “conjoining or merging

information that stems from several sources and exploiting that conjoined or merged

information in various tasks such as answering questions, making decisions, numerical

estimation, etc.”. Imperfections associated with the information being fused result

in potential problems, which must be dealt with during the fusion process. Defective

aspects of information have been classified in six categories [12]:

• Ambiguity.

In general, ambiguity refers to cases where information has no clear meaning

and can be interpreted in different ways. In particular, this includes ambiguous

identity, where it is not clear what item a piece of information refers to and

whether two pieces of information describe the same entity.

• Uncertainty.

The uncertainty problem occurs when there is not sufficient information to

determine whether a certain statement is true or false.

• Imprecision.

The content of a statement may be imprecise with regard to its “granularity”

when it allows a range of values rather than a precise value (e.g., a numeric

value “between 25 and 30” or date “1981”, when an exact date is required).

• Vagueness.

This aspect is similar to imprecision but refers to the language vagueness of
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predicate definitions and quantifiers. For instance, terms such as “young”,

“high”, “cheap” primarily define fuzzy constraints rather than exact values.

• Inconsistency.

An inconsistency occurs in cases where all available information cannot be si-

multaneously true, violating some of the domain constraints.

All these issues are interrelated, so none of them can really be treated completely

in isolation from the others. For instance, ambiguity, where it is unknown whether

two descriptions are about the same entity or not, occurs in the case when the de-

scriptions are similar but at the same time contain some contradictions making them

inconsistent. If in this case it is impossible to make a decision with a full confidence,

then the issue of uncertainty is introduced, and so on. Existing approaches found in

the literature do not address all aspects mentioned above with the same degree of

attention but rather focus on some particular issues.

Probably the most significant research effort concerning data integration has been

performed in the database community. The main problem considered there is identity

ambiguity: finding records which describe the same entity in different databases.

The inconsistency issue is less emphasised and refers to the specific problem of value

inconsistency, where such identical records have different values for the same field.

In contrast, the area of formal logic regards inconsistency as the most important

fusion problem, given that more expressive axioms can be defined than in database

schemas, and more complex inconsistency patterns are possible. The research studies

in this area usually abstract from ambiguity issues and assume them to be solved

and symbols to be non-ambiguous. In some sense these research directions converge
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and are both relevant when we have to deal with Semantic Web data. On the one

hand, datatype properties can cause similar data heterogeneity problems as are found

in relational databases. On the other hand, popular ontological schema definition

languages (like OWL-DL) are based on the principles of description logic and make

capture of complex cases of inconsistency possible.

2.2 Data integration in the database domain

The data integration problem has been studied within the database domain for a long

time, and the two top-level integration problems identified for databases [66, 94, 81]

still remain relevant for Semantic Web data:

1. Schema conflicts. These conflicts are caused by different representation struc-

tures used by different sources to describe the same type of data.

2. Data conflicts. Data conflicts represent discrepancies between records in merged

databases.

Two major causes of data conflicts include:

• Different representations of the same data.

• Incorrect data.

Different representations of the same data make it hard to identify overlapping data

in different sources and lead to the occurrence of duplicate records referring to the

same real-world entity. A special integration stage is usually used to identify such

duplicate records and merge them. This task is known as record linkage, corefer-

ence resolution (or coreferencing), or object identification and involves generating
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mappings : correspondences between pairs of records considered equivalent1. The oc-

currence of wrong data (either incorrect or obsolete) also leads to the appearance of

conflicting values when data from different sources is merged.

2.2.1 Record linkage

The problem of record linkage was recognised a long time ago and was initially de-

fined in [84]. A seminal paper by Fellegi & Sunter [40] formalised the problem and

described a generic model for a solution algorithm. In its classic form, the problem is

formulated as follows. There are two files (lists of elements) A and B and the task is to

classify pairs in a product space A×B into two sets: M = (a, b); a = b, a ∈ A, b ∈ B

(set of matched pairs) and U = (a, b); a 6= b, a ∈ A, b ∈ B (set of non-matched pairs).

Given that each real-world entity a or b is described using records α(a) and β(b), the

classification decision is based on a comparison of two records expressed as a vector

function γ(α(a), β(b)) = γ(a, b) (distance function). A decision is represented in the

form of a linkage rule d(γ) = P (A1|γ), P (A2|γ), P (A3|γ);
∑3

i=1 P (Ai|γ) = 1, where Ai

denote specific decisions: A1-positive link, A3-positive non-link and A2-possible (un-

certain) link. Then the authors propose a probabilistic model introducing conditional

probabilities m(γ) = Pγ[α(a), β(b)]|(a, b) ∈M =
∑

(a,b)∈M Pγ[α(a), β(b)]·P [(a, b)|M ]

and u(γ) (similar for (a, b) ∈ U). The obtained value m(γ)/u(γ) is used to make a de-

cision about the equivalence of two entities by comparing it with thresholds Tµ, such

that if m(γ)/u(γ) > Tµ then P (A1|U) < µ, and Tλ, such as if m(γ)/u(γ) < Tλ then

1Note that we use the term mapping to refer to a correspondence between a pair of data instances

(database records or RDF individuals). This is different, for example, from [38] where such corre-

spondences are called mapping rules, and the term mapping denotes a set of mapping rules.
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P (A3|M) < λ, where µ and λ are desired error levels. The challenges in this model

include calculating m(γ) and u(γ), threshold values Tµ and Tλ, and the form of the

comparison function γ. Subsequently many approaches were proposed to determine

these parameters.

In the method proposed by Fellegi & Sunter together with their model, com-

ponents of the vector γ = (γ1, γ2, ..., γK) are the results of pairwise field values

comparison, which are assumed to be mutually statistically independent. This as-

sumption allows calculating m(γ) and u(γ) using the Näıve Bayes approach. In [124]

an approach using the general expectation maximisation algorithm was suggested for

calculation of m(γ) and u(γ), which does not require conditional independence of γi.

Subsequently, newly developed machine learning techniques were applied to the

record linkage problem as alternatives to the Fellegi-Sunter method. In particular,

[20] experimented with supervised algorithms such as binary decision trees, linear

discriminant analysis and “vector quantisation”, which is a more general version

of the nearest neighbour algorithms. Other applications of the adaptive learning

approach include support vector machines [9] and conditional random fields [77].

In addition to different methods for calculating the decision rule over the vec-

tor distance function, another challenge included measuring each component of the

vector γ, i.e., similarity between field values. Most approaches consider field val-

ues as strings and try to measure similarity between two string values2. One of the

earliest approaches was the edit distance (or Levenshtein distance) [72], where the

2String similarity indicates a similarity of representation between two character strings and does not

imply any similarity of meaning between two strings.
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distance between two string values depends on the number of edit operations (in-

sert/delete/replace), which need to be applied to characters, in order to transform

one string into another. Subsequent studies proposed several improvements of the

edit distance function taking into account regularities occurring in real-world text

data. For example, the affine gap metric [122] introduced additional edit operations

(open gap and extend gap), which improved the performance when dealing with trun-

cated or abbreviated strings. The Smith-Waterman distance [112] further developed

the affine gap metric by reducing the cost of mismatches at the beginning and at the

end of strings. The Jaro distance [61] uses a different distance calculation function,

which takes into account the number of common characters, the number of transpo-

sitions and the lengths of both strings. The Jaro-Winkler metric [125] adjusts this

function to give higher weights to prefix matches. In another algorithm proposed

by Monge and Elkan [80] the matching is performed at the level of atomic strings

(substrings delimited by punctuation symbols) rather than at the level of characters.

All above-listed metrics have their advantages and disadvantages and there is no op-

timal distance measure. For example, the Monge-Elkan metric performs best over

long multi-word strings, but does not capture small differences caused by mistypes;

Jaro and Jaro-Winkler distances were specifically developed for comparing peoples’

names in the census domain and so on. Thus, choosing an appropriate field matching

technique has to take into account the domain and data features of the task at hand.

The classical Fellegi-Sunter model assumes that all attributes which are relevant

for determining the equivalence of two instances are contained in the attribute vector.

This assumption does not hold for scenarios where the relevant data are distributed
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between different instances, which are related to each other. Approaches which anal-

yse relations between data instances of different classes have received significant at-

tention in recent years. In order to make a decision about whether two instances

refer to the same entity, these approaches analyse other instances belonging to the

neighbourhood graphs of two instances in question and mappings between them.

One algorithm which focuses on exploiting links between data objects for per-

sonal information management was proposed in [32], where the similarities between

interlinked entities are propagated using dependency graphs. The MOMA system [117]

employs a set of matching algorithms (or matchers). Among them there is a neigh-

bourhood matcher, which considers mappings between related entities. RelDC [17]

proposes an approach based on analysing entity-relationship graphs to choose the

best pair of coreferent entities in the case where several options are possible. The

authors of these algorithms reported a good performance on evaluation datasets and,

in particular, a significant increase in the performance achieved by the analysis of

relations between entities. Given the nature of Semantic Web data, where relevant

data properties (fields) are likely to be distributed between several individuals and the

number of attached properties (columns) is not fixed, relation analysis is especially

important for coreference resolution.

Alternative record linkage approaches try to involve additional knowledge, not

represented explicitly in records and field values. For instance, in [29] the authors

propose the use of domain knowledge in the form of profilers: specific restrictions

constraining instances of certain concepts. Such profilers are used to eliminate incor-

rectly created equivalence mappings, which are inconsistent with available domain

knowledge. For instance, if a person “Mike Smith” with the age “9” is considered
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equivalent to a person “Mike Smith” with the salary “200K”, such a mapping can

be eliminated if there is a corresponding profiler rule about people, restricting such

combinations of age and salary. Soccer, proposed by Shen et al [107], takes into ac-

count characteristics of the sources, from which the records to be matched originate.

In particular, the semantic ambiguity of a source is taken into account, i.e., whether

there are duplicate records referring to the same real-world entity inside the source.

This allows adjusting the record linkage procedure: for less ambiguous data sources,

where duplicates are unlikely to appear, a more “relaxed” matcher is used, which re-

quires less evidence to decide that two records can be matched. A more“conservative”

one (or just a more restrictive threshold value for the same matcher) can be used for

sources containing a high proportion of ambiguous records. Again, considering Se-

mantic Web data, which (i) can be distributed across many sources and (ii) may

define more sophisticated data constraints, it is even more important to involve do-

main and provenance knowledge into the coreference resolution procedure than for

the traditional database integration problem.

2.2.2 Inconsistency resolution

While major research efforts have concentrated on resolving schema-level conflicts,

data-level conflicts have received comparatively less attention in the database re-

search community. Among the first practical database integration systems which

considered resolving data value conflicts were TSIMMIS [89] and HERMES [1]. These

systems advocated the use of mediators - special software modules that are adjusted

for integrating information from specific data sources. A conflict resolution strategy

was hard-coded in the implementation of a specific mediator. This can be regarded as
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a disadvantage of the mediator-based approach since the integration of a new source

required implementing a new mediator to process it.

A more generic approach was proposed in the Fusionplex system described in

[82]. This system considers a set of factors including provenance of conflicting pieces

of data, such as timestamp, source access cost, or source priority, and the content

itself. So it is possible to define conflict resolution rules, which, for instance, select

among two conflicting values the most recent one, the one coming from a more reliable

source, an average between the two, etc.

The Humboldt-Merger system [11] follows a similar approach and outlines several

conflict handling functions such as “Choose”, “Vote”, “Average”, “Median”, etc.

This system allows the user to use these functions to define SQL queries that perform

fusion over the returned values.

The authors of the KRAFT architecture [92] considered a special case of combining

information from distributed on-line data sources. The challenge here involves achiev-

ing the fusion of knowledge expressed as constraints against an object data model

rather than data records themselves. The architecture looks to solve a constraint

satisfaction problem using data from multiple sources. In the described scenario,

the data sources provide information about different PC components, which must

be combined according to the user’s requirements. KRAFT implements a multi-agent

framework, where different types of agents collect user requirements and constraints

from different data providers, combine them and use them to select necessary com-

ponents from providers so that the configured system satisfies the user needs.

Several approaches assume that the degree of uncertainty associated with data

values is provided explicitly in the form of probabilities. These approaches do not
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actually resolve conflicts but provide an answer in the form of a probability distribu-

tion. In [74] the authors propose to use the Dempster-Shafer theory of evidence to

resolve value conflicts. The method assumes that attribute values in conflicting sets

have attached belief functions and calculates the resulting belief distribution among

conflicting values by combining these functions. An alternative Probabilistic Data

Model approach [4] uses probability theory as an uncertainty management formal-

ism and proposes a special probabilistic relational algebra. The difference between

these approaches is essentially the same as the difference between the underlying

formalisms: probability theory assigns probabilities only to atomic values while the

Dempster-Shafer theory allows belief function assignment over sets of values (with-

out specifying whether elements of a set are equally probable or not). In the area of

XML data integration a data fusion algorithm described in [58] proposes to resolve

inconsistencies by means of uncertainty representation formalisms such as probability

theory, possibility theory and the Dempster-Shafer theory of evidence.

Value conflicts, which are handled by most of the algorithms described above, are

relevant for the Semantic Web data as well: in OWL terms, they represent violations

of functionality or cardinality restrictions imposed on properties. However, given the

richer structure that can be defined in ontologies, such conflicts constitute only a

limited subset of possible situations leading to inconsistencies in the semantic data

fusion scenario. Thus, such methods, although they can be adapted in the RDF data

context, are insufficient and new specific methods must be developed for semantic

data. These new methods, however, can still benefit from many of the foundational

techniques embedded in the database conflict resolution algorithms. In particular,

this applies to established uncertainty representation formalisms, such as probability
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theory and the Dempster-Shafer theory of evidence.

2.3 Logic-based approaches

The primary problem which arises when fusing knowledge bases containing informa-

tion expressed in formal logic is inconsistency [18]. In classical logic it is impossible

to reason over inconsistent knowledge bases because, by definition, an inconsistent

knowledge base becomes trivial: any formula can be inferred from it, thus making

reasoning useless. This feature is known as the principle of explosion. One possible

approach to allow reasoning about inconsistent information is to weaken classical

logic. Paraconsistent logic [23] rejects the principle of explosion, thus accepting the

presence of inconsistencies. However, as a consequence, it has reduced inferencing

capabilities: for instance, the disjunctive syllogism ((α ∨ β) ∧ ¬α) → β does not

hold. Another compromise approach modifying classical logic is to use multi-valued

logic, such as a four-valued Belnap logic [5], which allows one of four values to be

assigned:“true”, “false”, “unknown” or “both” (it is employed, for instance, in [57]).

Alternatively, modal logics [79] provide another way of reasoning with inconsistent

information because they formalise the notions of possibility and necessity. Without

adopting an alternative formalism, reasoning with inconsistent data is still possible

if the inconsistent parts of information are circumvented. For example, minimally

inconsistent subsets of information can be isolated using a diagnostic procedure [96]

and not taken into account during reasoning.

Such mechanisms make it possible to reason about data containing inconsisten-

cies but do not provide a way to resolve them. Additional data analysis is needed to
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fix inconsistencies. Similarly to inconsistency resolution approaches listed in section

2.2.2, this analysis may take into account the fused data itself (object-level informa-

tion), additional meta-level provenance information, and domain information. The

authors of [69] define several logical properties, which a fusion operator should satisfy.

As stated in [51], every fusion operator that satisfies these properties corresponds to

a family of pre-orders on interpretations, which allow distinguishing between “more

desirable” and “less desirable” interpretations of a merged knowledge base. Hence it

can be used to select beliefs which should be weakened or deleted in order to make

the merged knowledge base consistent. The authors distinguish two classes of fusion

operators: majority and arbitration. Majority operators, as their name suggests, aim

to resolve conflicts according to the opinion of the majority, while arbitration ones

try to find a compromise solution which maximally satisfies all conflicting pieces of

data. In general, a major distinguishing property for a logic-based fusion algorithm

is the way it imposes an ordering over possible outcomes. Meta-level information, in

particular provenance, is crucial to establish this ordering.

With respect to description-logic knowledge bases, the techniques proposed in

[103] and [64] employ Reiter’s hitting set tree diagnosis algorithm [96], which produces

diagnoses. These are sets of axioms whose removal would restore consistency to

knowledge bases. Choosing between diagnoses then can be done based on additional

factors such as minimality (how many axioms have to be removed), axiom relevance

(how many other axioms will affect the deletion of a particular one), and others.

A weakening operator proposed in [93] weakens concept subsumption axioms (C v

D)weak = (Cu¬{a1}u· · ·u¬{an}), where n is the number of individuals to be removed
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from C, and assertion axioms φweak =


∀R.(C t {b1, · · · , bn})(a) ifφ = ∀R.C(a)

>(a) or φ otherwise

Thus, when possible, the approach tries to list exceptions explicitly rather than to

delete an axiom.

In summary, logic-based fusion approaches have focused on inconsistency resolu-

tion rather than the coreference resolution issue. They assume that they are dealing

with symbolic information represented in a formal logic-based language and focus on

inconsistencies caused by logical inferencing. In contrast, the techniques developed

in the database community put more emphasis on data representation issues relevant

to conflicts (e.g., different formats of textual values, varying precision of numeric

data, etc.). Both kinds of problems are relevant for semantic data. On the one hand,

semantic data is usually represented in a logic-based language such as OWL, and

more complex patterns of inconsistencies can arise than value conflicts. On the other

hand, given that the semantic annotations are extracted automatically from natural

language sources or raw data, this information is not purely symbolic because of the

availability of datatype properties, whose values may be formatted differently, con-

tain typos or measurement errors. Thus, in the semantic data fusion scenario formal

logic-based methods can be seen as complementary to the database inconsistency

resolution algorithms but are not sufficient when used in isolation.

2.4 Information integration in the Semantic Web

The nature of Semantic Web data makes research conducted both in the database

community and in the area of formal logic relevant to the semantic data integration
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problem. On the one hand, despite a different structure (graph vs table), RDF

describes real-world entities in a way similar to relational databases: an individual

(record) can be a subject or object of a number of instantiated properties (fields).

Many basic techniques developed or applied in the database domain are reused in the

Semantic Web context. These include string similarity distance measures [39, 62],

machine learning algorithms [31], probabilistic techniques [15], etc. On the other

hand, ontological languages such as OWL are based on the principles of formal logic.

They allow definition of more kinds of constraints and interdependencies between

pieces of data than it is possible when using a database schema.

2.4.1 Ontology matching

Semantic Web research has so far been primarily concentrated on the schema-level

information integration (ontology matching) [38]. Ontologies have been often con-

sidered as a whole: data-level problems have been mostly treated as auxiliary and

usually tackled together with schema-level matching. The primary reason was that,

until the emergence of the Linked Data initiative (section 1.1), there was a lack of

substantial volumes of semantic data covering overlapping domains, and, therefore,

there was no specific need to focus on the data-level integration issues.

One classification of ontology matching approaches [110] divides them into two

major categories with regard to their granularity:

• Element-level ones analyse schema concepts and data instances in isolation but

not relations between them.

• Structure-level ones focus on relations between entities and the ontology as a
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whole.

In the database community work discussed in section 2.2.1, the Fellegi-Sunter

model [40] and its subsequent applications belong to the element-level category, while

recent relation-analysis algorithms [111, 32, 63] operate at the structure level.

With respect to input interpretation [38], the methods can be classified into:

• Syntactic, which consider the structure of input data.

• External, which exploit auxiliary resources in order to interpret the input.

• Semantic, which use formal reasoning techniques.

Most of the commonly used techniques for instance matching belong to the first

group. At the element level these again include string similarity techniques, im-

plemented by such ontology matching systems as COMA [28], OLA [39], Falcon-AO

[62], QOM [34] and others. A second group of syntactic element-level algorithms is

constraint-based: these algorithms use internal structure of entity definitions, such

as key properties and domain restrictions. In particular, they assume that objects are

more likely to match if objects related to them also match and, conversely, mappings

which contradict existing knowledge contained in one of the matched ontologies are

unlikely to be accurate [30]. Syntactic approaches at the structure level treat matched

ontologies as graphs and try to match these graphs (e.g., [78, 34], etc.).

External reference resources used in ontology matching include language databases

such as WordNet [127] and external ontologies [2, 100]. However, since these resources

mostly describe general knowledge (concept-level rather than instance-level), their use

for instance matching is limited.



43

Semantic techniques concentrate on logical reasoning about matched ontologies.

They reason about the original ontologies combined with the initial set of mappings.

This reasoning helps to validate candidate mappings, revoke incorrect ones and pos-

sibly infer new ones [13, 47].

As was already pointed out, most ontology matching systems concentrate on

schema alignment, but they also introduce some novel techniques addressing seman-

tic data integration. Classical database record linkage algorithms primarily rely on

element-level syntactic methods. More recent ones combined these with structure-

level syntactic techniques. Ontology matching tools, in addition, could exploit richer

ontological structure descriptions drawing on semantic methods. These semantic

techniques are valuable for the semantic data fusion problem.

2.4.2 Semantic data integration

Until recently, the Semantic Web community has concentrated efforts on the schema

matching problem. Now, with a constantly increasing amount of RDF data being

published according to the Linked Data standards, the problem of instance-level in-

tegration is gaining importance. Dealing with RDF data sources distributed over the

Web requires solving a fundamental problem of representing and managing informa-

tion about URIs referring to identical entities. There are different possibilities, and

several proposals have been put forward within the research community.

The standard OWL language defines the owl:sameAs property, which denotes full

equivalence between individuals: URIs linked by this property become mutually in-

terchangeable. This property is widely used to connect identical individuals in the

Linked Data repositories. It has been argued that using this property for identity



44

representation for Semantic Web data on a global scale leads to several problems [60].

First, two URIs connected by the owl:sameAs predicate become indistinguishable,

which may lead to the distortion of information if they were used in different con-

texts originally. For instance, one URI can denote “Russia” in a historical context

(thus including Novgorod Republic, Kievan Rus’, Grand Duchy of Moscow, Russian

Empire, and USSR) while another may refer to the Russian Federation, a legal entity

in existence since 1991. Second, technical efficiency problems may arise because an

application gathering information about an entity may need to crawl the Semantic

Web by following all owl:sameAs links from a single URI recursively until all routes

are explored.

The OKKAM project [14] proposes a solution based on a centralised Entity Name

System (ENS) for the Semantic Web. This ENS issues and maintains absolute URIs

for all entities on the Semantic Web. In this scenario the user (or the client applica-

tion) must query an ENS service for a suitable URI for an entity, instead of creating

a local URI. In response the ENS either returns an existing URI or generates a

new one. While potentially providing a central authority for identity and corefer-

ence resolution issues occurring on the Semantic Web, the OKKAM scenario also leads

to some new problems and complications. These include difficulties with capturing

context-dependent differences in the usage of the same URI in different sources. Also

making irrevocable coreference decisions relying on automatic coreference resolution

techniques can lead to errors. Not least there is the issue of persuading all semantic

data providers to use the ENS service.

An alternative approach to ENS called the Consistent Reference Service (CSR)

architecture was outlined in [60]. This approach proposes to maintain locally created
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synonymous URIs but to store synonymity information in special CSR knowledge

bases separately from the actual data. These CSR knowledge bases are assumed to

be constructed by data providers themselves for their data repositories. Equivalent

URIs (both internal for the data source and external) are grouped together into sets

called “coreference bundles”, which also may specify a canonical URI for an entity.

This approach is possibly safer than a centralised one: local URIs are preserved,

which leaves the client application a choice whether to treat them as equivalent or

to reject the synonymity asserted by the CSR. Hence context-dependency can be

preserved: a single CSR only specifies that URIs are considered equivalent in the

context assumed by the CSR owner. Other CSRs can define different equivalence

sets for the same URIs.

A particularly interesting approach is idMesh [22], where maintenance of links

constitutes a complementary stage of the link discovery process: the system combines

coreference links into graphs and considers their impact on each other to reason about

their correctness and reliability of their sources.

Given the amount of data to be handled on a Web scale, the need for automatic

coreference resolution techniques is recognised in the Semantic Web community [14],

[49], [43]. Among the existing systems, Sindice [118] implements a straightfor-

ward method for coreference resolution by utilizing explicitly defined key properties

(owl:inverseFunctionalProperty). Individuals which have equivalent values for such

properties are considered equivalent. The approach yields high precision, but can

only be applied to a limited subset of data where such properties are defined ex-

plicitly and have values in a standard format. Other tools implement approximate

matching techniques similar to those created in the database integration and ontology
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matching domains. SILK [120] employs different string-based distances and provides

a configuration language to specify the metrics to use, thresholds and aggregation

mechanisms for specific datasets. All these parameters have to be manually defined

by the user. In this way, SILK can be seen as an adaptation of the classical Fellegi-

Sunter model designed for database record linkage (section 2.2.1). As such, it has the

same limitations, in particular, it ignores relevant types of evidence: the structure of

the semantic data graph and knowledge defined in the ontology.

HMatch [43] was initially designed for the schema matching task and later incorpo-

rated data integration capabilities. This made the tool applicable to knowledge bases

using different ontologies. First, HMatch produces schema-level mappings and then

uses them to compare corresponding properties. Descriptions of individuals are repre-

sented as graphs containing relevant assertions about them. The algorithm calculates

similarities between datatype property values of two individuals and then calculates

the aggregated similarity between individuals using the Dice coefficient method:

sim(i1, i2) =
similarproperties

totalproperties
=

2 ∗m
n1 + n2

,

where n1, n2 are the total numbers of compared properties of i1 and i2 and m is

the number of pairs of properties whose values were found similar3. RDF-AI [75]

concentrates on the data-level issues which occur when combining datasets using the

same schema. The algorithm builds on string (Monge-Elkan) and linguistic (Word-

Net) similarity measures to calculate similarities between literal property values, and

then invokes an iterative graph matching algorithm akin to similarity flooding [78]

3Here, as in the case of string similarity, the term “similarity” primarily refers to the similarity of

representation of two individuals and not to the similarity of the meaning. In the following chapters

we also use the term “similarity” in this sense when referring to the similarity between individuals.
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to calculate a distance between individuals. These algorithms involve more complex

coreference resolution techniques than SILK. However, these tools do not address the

inconsistency resolution problem.

2.5 Fusion systems combining different methods

Since there is no single best algorithm for all domains, and a method can have different

optimal configuration parameters when applied to different data, it is often the case

that one system employs several methods. The survey of ontology matching systems

given in [38] shows that the majority of currently available state-of-the-art ontology

matching systems employ a combination of several basic algorithms. Here we only

discuss a few of them to illustrate common approaches to method combination.

COMA [28] features parallel composition of matchers of several types:

• Simple matchers including several standard element-level string similarity match-

ers and a constraint-based one, which checks the compatibility of datatypes.

• Hybrid matchers, which use a fixed combination of simple matchers. For ex-

ample, NamePath is an element-level matcher, which compares elements’ long

names, including the names of all superconcepts.

• Reuse-oriented matchers, which exploit mappings created by the system when

applied to different (but similar) ontologies.

Each invoked matcher produces a similarity value; these values are aggregated after-

wards. The system has several aggregation strategies like Min, Max and Average,
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and evaluation results had shown that the Average strategy [28] led to the best per-

formance.

oMap [115] includes string similarity matchers, a Naive Bayes classifier operating

on instance data (all text properties of instances belonging to a class are taken as a

bag of words), and a structural classifier, which uses OWL definitions of ontological

entities to propagate initial similarities produced by other matchers. Here matchers

can be sequenced: the structural matcher requires an initial set of similarities as

input.

Some frameworks implement specific strategies to adjust parameters depending

on the use case. Falcon-AO [62] contains two modules: LMO (Linguistic Matching for

Ontologies) and GMO (Graph Matching for Ontologies). The first uses a combination

of string similarity over entity names and set similarity over sets of terms from entities’

contexts. The second views ontologies as graphs, represents similarity between two

entities as a linear combination of similarities between adjacent entities, and solves

the resulting system of equations. The components are invoked in sequence (first

LMO, then GMO) and the reliability of the output of both modules is estimated from

the linguistic and structural compatibility of ontologies. Linguistic compatibility is

measured from the number of mappings with high similarity produced by LMO and

the size of ontologies. Structural compatibility compares the occurrences of built-in

standard RDF, RDFS, and OWL properties.

While Falcon-AO has a rigid structure with two components, some frameworks

implement a more flexible approach, where the configuration parameters of an exten-

sible library of methods can be adjusted. The FOAM framework [33], primarily designed

for schema-mapping, includes a special configuration architecture APFEL [35], which
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learns optimal parameters of matching methods by exploiting user feedback. eTuner

[70] aims at the same goal but constructs an artificially distorted version of the on-

tology to be mapped. The mappings between the original ontology and its distorted

version (known in advance) are used as a gold standard for the learning algorithm,

which produces the configuration parameters for atomic methods.

The systems listed above were designed for the schema-matching problem. MOMA

[117] is a recent adaptation of COMA [28] specially developed to handle instance-level

coreferencing. The system also employs an extensible library of matching methods,

each conforming to a uniform interface, invokes them separately and combines their

results afterwards in a way similar to COMA, but focuses on the instance coreferencing

problem.

The ILIADS system [119] combines schema-matching and instance-level matching

in an iterative workflow, where a schema-matching stage is followed by an instance-

matching one and vice versa. In this way results obtained at one stage provide

additional evidence for the next one by applying logical inferencing to discover new

mappings.

In our view, there is still a significant need to adjust existing approaches for the

Semantic Web data integration task. First, as we said, most of the ontology matching

systems primarily focus on the schema-level matching and are not optimised for deal-

ing with data-level issues [38]. In particular, schema-level matching systems, which

employ a combination of individual matching techniques, try to select the optimal al-

gorithms’ parameters for a pair of ontologies (e.g., [70, 62]). Data-level coreferencing

requires more fine-grained tuning: optimal decision models for individuals belong-

ing to different classes of the same ontology might vary. We will summarise these
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limitations, which have to be addressed, in the next section.

2.6 Limitations of existing approaches

As already pointed out, Semantic Web data combine features of both relational

databases and symbolic logical knowledge bases, and these research communities con-

tributed to the study of the fusion problem as well as the Semantic Web community

itself.

In all these domains techniques were developed which could be adopted to address

semantic data fusion. These techniques complement each other because they address

different subtasks of the fusion problem (coreference resolution and inconsistency

handling) and rely on different kinds of evidence (attribute similarity, graph similarity,

ontological axioms, etc.). Because of this, the need to use different techniques in

combination was recognised, and tools combining different methods were developed.

However, several issues, which are important for the semantic data fusion task, were

not addressed by existing tools.

First, existing tools target either the coreference resolution problem or the in-

consistency handling one but do not address them in combination. However, these

subtasks are not independent because the errors made at one stage can influence

the other. For example, an inconsistency can arise because some property of an in-

dividual was incorrectly extracted or because properties belonging to two different

individuals were incorrectly assigned to the same individual by a coreference resolu-

tion algorithm. Since both noisy data and incorrect coreferencing may contribute to

inconsistencies, it also makes sense to consider the degrees of uncertainty introduced
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by both these factors together. This is impossible in approaches in which coreferenc-

ing and inconsistency resolution are completely separated, which we call the subtasks

interdependency limitation.

Second, as mentioned in section 2.5, the data-level integration problem has a dif-

ferent problem granularity from the schema-level one. While in the existing systems

the methods are selected and configured once for each pair of input datasets, this

is not sufficient for the data fusion task. Different methods can be optimally suited

for different parts of datasets, and the same method may require different configu-

ration settings for different types of data. For instance, if we need to fuse datasets

containing scientific publications, we need to deal with authors’ names and paper

titles. While, for example, the Jaro-Winkler similarity measure was specially devel-

oped for comparing person names, it is not optimally suited for paper titles. Thus,

a coreference resolution algorithm employing string distance metrics will need to be

configured differently for individuals of these two classes.

In the next section we will discuss how we have chosen to address these limitations.

2.7 Addressing the limitations

As we discussed, there is a multitude of complementary methods which can be ap-

plied to perform data fusion. They rely on different kinds of evidence which can be

relevant to a different extent depending on the application scenario. For example,

inconsistency handling techniques drawing on formal logic (section 2.3) can be more

useful if the domain ontology has the OWL-DL expressivity than if it is represented

in RDFS. Some methods are generic while others can be developed for a specific
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domain. It is not feasible to specify in advance the whole range of methods needed

to perform data fusion in all domains and use case scenarios. In order to maximise

the reusability of our system, we decided to implement it as an extendable modular

architecture where alternative, mutually complementary methods can be included,

configured, and invoked depending on the application scenario.

To address the first limitation, the architecture has to tackle both fusion subtasks

which we mentioned: coreference resolution and inconsistency handling. However,

since these subtasks are mutually dependent, the architecture needs to ensure that

no information is lost when passing the results of one stage to another one. In

particular, an inconsistency resolution method should be able to know which parts of

data were affected by the coreference resolution methods and to estimate, how reliable

the output of these methods is. We addressed this problem by employing uncertainty

reasoning: confidence weights are assigned both to the data statements (estimating

the reliability of sources and extractors) and to the decisions made by algorithms

(estimating the reliability of their output). The reliability measures assigned to data

statements indicate the degree of confidence that information extracted from a specific

source (e.g., web-site or database) is correct with respect to the real world. The

reliability of methods’ output indicate the degree of confidence that a decision made

by an algorithm is correct (e.g., a decision about the identity of two individuals or

about the optimal resolution of a conflict). These confidence weights are available to

make decisions at the later stages of the workflow.

In order to overcome the problem of granularity limitation, the architecture had

to be designed in a way that allows the fusion algorithms to be configured depend-

ing on the type of data they process. Thus, the architecture must be able to utilise
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information from the domain ontology at the method configuration stage. Because

of that, we used the problem-solving method approach for the architecture design.

Different fusion subtasks and methods are formally described in terms of our fusion

ontology, and method configuration parameters can be linked to specific concepts of

the domain ontology: thus, for example, we can specify that a coreference resolu-

tion method should use the Levenshtein string distance for individuals of unknown

types, the Monge-Elkan distance applied to the label for the foaf:Document individ-

uals, and the Monge-Elkan distance over the label, venue and publication year for

foaf:Document individuals which are also of the type sweto:Publication.

We designed the core version of our KnoFuss architecture to deal with these

limitations to perform data fusion in the corporate knowledge management scenario

studied within the X-Media project (see section 1.1). This scenario assumes that no

schema-level heterogeneity is present, and therefore only data-level issues (coreference

resolution and inconsistency resolution) have to be solved. After we implemented

and tested this core version, we looked at the more generic data integration scenarios

involving schema heterogeneity. This was motivated by the recent appearance of

the Linked Data publishing standard and the need to perform coreference resolution

between Linked Data repositories. To deal with this scenario, we extended the core

version of the architecture to include schema matching methods and, in addition,

implemented our own schema matching algorithm, which draws on pre-existing partial

sets of Linked Data coreference links to assist the data fusion process.
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2.8 Summary

In this chapter we discussed the existing work relevant to the semantic data fusion

problem. We observed that Semantic Web data combine features of both relational

databases and symbolic logical knowledge bases. The information integration problem

has been studied in both these domains and multiple approaches have been developed.

The main relevant perspectives in the database research on data integration include:

• the use of attribute similarity measures for record linkage;

• the use of provenance for inconsistency resolution.

Research in formal logic reasoning contributed valuable inconsistency handling tech-

niques. These techniques have been adopted in Semantic Web research [38], [64], and

novel ones emerged to exploit the semantic structure defined by standard ontological

languages. However, because until recently the semantic data were not available in

large volumes and instance-level fusion was not required, these ontology matching

methods primarily focus on schema-level integration.

Directly applying these algorithms to the data fusion problem, however, can lead

to a number of problems, in particular:

• Database record linkage systems are well suited to handle the coreference res-

olution issue, but they do not take account of specific properties of ontological

data, such as hierarchical relations between classes and specific data restrictions

defined by the OWL language axioms.

• Inconsistency handling strategies based on formal logic do not take account of

coreference resolution results. These results can introduce additional noise to
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the resulting knowledge base and have to be analysed.

• Ontology schema matching tools make use of semantic relations defined by

ontologies, but do not consider instance-level matching in detail (e.g., the dif-

ferences in problem granularity are ignored).

• Recently, tools supporting semantic data integration at the level of individu-

als have begun to appear but they do not handle the whole range of fusion

subproblems. Most of them only focus on the coreference resolution stage.

Hence, we can conclude that for each fusion subtask there is a range of possible

approaches, and that the relevant algorithms can be mutually dependent, since the

output of one can serve as input for another. The consequences of these are:

• It is important to have an architecture to manage the fusion process. The

architecture should support the flexible combination of relevant methods to

produce a fusion workflow that is optimally suited to the specific kind of data

at hand.

• Uncertainty can be present both as a result of imperfect data and also as a

result of incorrect decisions made by intermediary algorithms. Hence, it makes

sense to consider the uncertainty of both these factors together, which is impos-

sible in cases where coreferencing and inconsistency resolution are completely

separated.

The following chapters describe how we have sought to handle these issues. Chap-

ter 3 describes the design of our proposed architecture supporting the combination

of different methods. Chapters 4 and 5 are dedicated to the problem of handling
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uncertainty and describe our approach which combines formal uncertainty modelling

with logical reasoning.



Chapter 3

KnoFuss architecture

This chapter deals with the design of the KnoFuss architecture. First, a brief descrip-

tion of the architecture is provided. After that, the chapter outlines the architecture

requirements for fusing RDF data coming from different sources. Then, the design

approach based on problem-solving methods is introduced, and we discuss how this

approach can help to meet these requirements. We will then describe how the Kno-

Fuss architecture organises the problem-solving method library using the fusion on-

tology to describe method specifications and to guide method selection and execution.

Finally, we describe how the architecture assists the configuration of problem-solving

methods for specific domains using machine learning.

The material presented in this chapter contributed to the conference paper:

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2008). Integra-

tion of semantically annotated data by the KnoFuss architecture. 16th Inter-

national Conference on Knowledge Engineering and Knowledge Management

(EKAW 2008), Acitrezza, Italy.

57



58

3.1 Introduction

As was discussed in Chapter 2, there is a range of existing algorithms which tackle

different data fusion subtasks: e.g., record linkage algorithms resolving coreferences

between individuals (section 2.2.1) and different logical reasoning mechanisms dealing

with inconsistencies in the integrated knowledge bases (section 2.3). Since there is no

single best approach suitable for all domains and scenarios, existing data integration

systems commonly use different basic algorithms in combination. However, as was

pointed out in section 2.5, existing systems combining different data integration algo-

rithms have their limitations. One of them is the granularity issue: different subsets

of data may require different configurations of methods to process them even within

the same fusion session. Another limitation concerns the interdependencies between

fusion subtasks, which cannot be captured if these subtasks are tackled in isolation.

For instance, an inconsistency resolution algorithm processing a merged knowledge

base can benefit from knowing both about the quality of original data and about the

quality of the output of the coreference resolution algorithm which was employed to

merge identical individuals.

In order to address these limitations we developed an architecture called KnoFuss,

which focuses on the instance-level integration of data structured according to OWL

ontologies. In this chapter we discuss the core version of the architecture, which

works under the assumption that data to be merged are already structured according

to the same OWL ontology. This is a valid assumption, for instance, in the corporate

knowledge management scenario (section 1.1). The architecture takes as input two

knowledge bases: the target knowledge base, which contains the original data, and
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the source knowledge base, which contains some new data to be integrated. As an

output the architecture produces an updated version of the target knowledge base,

into which the data from the source knowledge base are merged.

KnoFuss carries out two main subtasks of the knowledge fusion process:

• Coreference resolution. This stage focuses on discovering individuals in two

knowledge bases which represent the same real-world entities. The output of

this stage is a set of mappings between such coreferent individuals.

• Knowledge base updating. At this stage the system makes decisions about the

resulting state of the merged knowledge base: which statements can be di-

rectly inserted into the target knowledge base and which should be modified

or removed. In order to perform this subtask the architecture analyses data

interdependencies, e.g., inconsistencies caused by contradictory statements.

Each of these subtasks can be performed by different methods, both generic and

domain-dependent. In order to support the selection of optimal methods depending

on the domain, the architecture considers the basic techniques for each fusion subtask

as problem-solving methods. Each method represents a separate module, formally

described in terms of its inputs, outputs, and applicability conditions while its internal

behaviour is hidden from the system. The main components of the architecture are:

• A library of problem-solving methods, containing algorithms dealing with atomic

tasks.

• A fusion ontology, describing the information needed to guide the fusion process.

The capabilities of the methods are formally described using the fusion ontology,

which is itself represented in OWL and provides two kinds of knowledge structures:
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• Descriptors of problem-solving methods, tasks and application contexts. This

information is used to select and configure methods.

• Intermediate knowledge structures. These structures represent meta-level de-

scriptors of the methods’ inputs and outputs (e.g., mappings between individ-

uals and sets of conflicting statements).

The fusion process is performed by the system as follows. The system receives as its

input a source RDF knowledge base, containing new data to be integrated. Then all

tasks of the fusion process (coreference resolution and knowledge base updating) are

performed in sequence and produce as a result a set of statements to be integrated

into the target knowledge base. Execution of each subtask is controlled by a generic

workflow, which (i) selects appropriate methods, (ii) invokes the methods and collects

their output and (iii) combines the output of methods filtering out redundancies.

The rest of the chapter is organised as follows. In the first part of the chapter

we discuss the design approach based on the problem-solving methods and motivate

our choice of this approach for the architecture design. Section 3.2 outlines the main

requirements, which had to be taken into account when designing the framework.

In section 3.3 we discuss the relevant work in the area of problem-solving method

libraries, in particular, the principles which we found relevant to the fusion context.

Section 3.4 discusses how the requirements have been addressed by applying an ap-

proach based on problem-solving methods.

In the second part of the chapter we discuss different aspects of the architecture in

more detail. Section 3.5 deals with the decomposition of the generic fusion task into

smaller subtasks, which can be executed by problem-solving methods. Section 3.6
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describes the main concepts of our fusion ontology, which provides the specifications

of problem-solving methods and the auxiliary data structures used in the fusion

workflow. Section 3.7 describes the standard procedure used by the architecture to

tackle fusion subtasks and illustrates the procedure with an example. In section 3.8

we discuss how the problem-solving methods can be configured for specific domains

using machine learning and how the architecture exploits the domain ontology to

achieve that. Finally, section 3.9 summarises our contribution.

3.2 Challenges and requirements

The task of fusing semantic data imposes a number of requirements, which a fusion

architecture has to satisfy.

The first requirement is the reusability one. In order to be adjustable to different

use cases the architecture has to be reusable across domains: no domain-specific

knowledge should be hard-coded in the design of the architecture. Instead, the system

must be capable of using two kinds of external knowledge needed to resolve fusion

tasks: domain knowledge in the form of a domain ontology and problem-solving

knowledge encoded inside problem-solving methods.

Second, efficient selection and configuration of algorithms, and aggregation of

their results are necessary. Handling fusion even in a specific domain requires dealing

with various types of data and instances of different classes. This motivates the gran-

ularity requirement: different algorithms can be employed with varying configuration

parameters even within one fusion session, when fusing data belonging to a single

domain.
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Third, developing optimal techniques for each type of data and fine-tuning them

for the maximal performance requires significant human effort, which might not be

feasible in many scenarios. In order to achieve flexibility, the system has to be able

to employ techniques at different levels of generality, using domain-specific meth-

ods when available or alternatively adjusting generic methods to a specific domain.

We call this the method-domain adjustment requirement. The granularity and the

method-domain adjustment requirements address the problem granularity limitation

of existing systems, which was outlined in section 2.6.

Fourth, there is the uncertainty management requirement. The data to be inte-

grated may originate from multiple sources of varying reliability. Some sources may

contain incorrect or obsolete data. Additionally, this noise in data may influence au-

tomated algorithms handling separate fusion subtasks (e.g., coreference resolution)

and cause them to produce incorrect results and introduce additional noise. Hence, in

order to evaluate the validity of any fact in the integrated knowledge base, provenance

of data has to be taken into account, and, in particular, the degree of uncertainty

associated with data statements and problem-solving methods’ decisions has to be

explicitly represented.

The fifth requirement, closely related to the previous one, is the dependency pro-

cessing requirement. Together, these requirements address the subtasks interdepen-

dency limitation mentioned in section 2.6. The methods handling different subtasks

of the fusion workflow depend on each other as well as on the quality of the origi-

nal data sources. At the later stages of the fusion workflow it should be possible to

analyse the interdependencies between the data statements and the decisions made

at the earlier stages.
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Thus, the architecture has to preserve the provenance of information created during

its workflow and to allow reasoning about it.

3.3 Related work

In Chapter 2 we discussed the need for a reusable fusion architecture, which could use

several alternative methods in combination for handling fusion subtasks. The require-

ments outlined above include reusability across domains. Problem-solving methods

(PSMs) have been proposed as a flexible means of constructing knowledge-based sys-

tems, which specifically focuses on these issues [16, 104]. Problem-solving methods

are reasoning components that can tackle specific tasks and can be reused across

applications [41]. The knowledge modelling approach which describes a knowledge-

based system in terms of tasks and methods was proposed in [16]. Informally, “a task

defines what needs to be achieved (a declarative functional specification), and a PSM

how it has to be achieved (an operational specification)” [6]. This decoupling allows

the system designer to specify alternative ways to solve the same problem by intro-

ducing several methods for a single task. Methods can define complete procedures for

achieving a task’s goal or introduce several lower-level subtasks, which in turn can be

performed by their own methods, thus leading to task-subtask hierarchies. Libraries

of methods can be used in two ways:

• At design time by a system designer constructing a knowledge-based system for

a specific domain.

• At run time by a system, which automatically selects and invokes appropriate

methods to perform a task in a specific context.
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While initially many approaches primarily focused on the first of these options [104,

88], in our case both are relevant. First, if a system is configured to be used in a spe-

cific domain, the designer might need to adjust existing domain-dependent methods

to be included into the library or to reconfigure some generic methods’ parameters

to accommodate domain-specific features. However, the second option is more im-

portant in our scenario: automated run-time method selection and invocation. As

pointed out in the previous section, even in a single domain the fusion process may

need to deal with various types of data, for which different methods may be optimal.

Thus, methods have to be selected at run time depending on input data. Automated

selection and invocation of problem-solving methods at run time requires these to

be described formally in terms of their applicability to tasks, input-output data flow

and additional assumptions about data. Benjamins and Pierret-Golbreich [6] outline

four types of assumptions:

• Epistemological assumptions. These include the domain knowledge needed by

a method as its input and in turn can be divided into two subtypes:

– Availability assumptions, referring to existence of facts and instances re-

quired to fill input roles in input data.

– Property assumptions, which include features of input data as a whole. For

instance, in the data fusion context the ontological reasoner Pellet1 can be

used to detect inconsistencies in the knowledge base under assumption that

the knowledge base is compatible with the OWL-DL language standard.

Property assumptions cannot be verified by a simple existence check but

1http://clarkparsia.com/pellet/
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may require more complex reasoning.

• Pragmatic assumptions. Requirements related to the external environment, in

which the system operates (e.g., a method can be invoked only under Windows,

or it can require the Java 1.6 virtual machine).

• Teleological assumptions. These assumptions are related to the goal to be

achieved. Unlike the previous two types, if these assumptions do not hold,

the method can still be applied, but its ability to achieve the goal, the cor-

rectness and completeness of its solution are not guaranteed. For instance, a

coreference resolution method which compares key properties assumes that all

individuals have values for these key properties. If this assumption does not

hold, then the solution produced by the method will be incomplete.

In the fusion scenario, all types of assumptions are relevant. For example, an epis-

temological assumption for a coreferencing algorithm may select only individuals of

a particular class as its input. Pragmatic assumptions may concern implementation

details (e.g., a method may require a workstation with the Windows operating system

and the .NET framework). Given that many relevant algorithms are statistical, it

means that the goal may not be achievable for every input and mistakes are possible,

which is an example of a teleological assumption. For instance, coreference resolu-

tion methods based on string similarity metrics only produce complete and correct

solutions if all identical individuals have sufficiently similar values for their datatype

properties, and these values are non-ambiguous and represented in the same format.

The principle of using specific adaptor structures to refine the method’s description

and match it to the goal at hand allows these assumptions to be specified in a flexible
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way. In our designed architecture we defer implementation-specific issues to actual

methods and do not consider pragmatic assumptions at the level of methods. How-

ever, epistemological and teleological assumptions need to be taken into account.

Another important feature of the PSM library approach is the use of ontologies to

describe the capabilities of the system’s components and the use of reasoning to guide

the method selection and invocation process. These principles have been taken into

account when designing the fusion architecture.

There are several proposed problem-solving method libraries, which use formal

descriptions of methods and their assumptions to guide the method selection. Here

we list a few of them.

EXPECT [116] uses a description logic-based representation called Loom to repre-

sent methods’ capabilities. Capability descriptors define the actions of a method and

its input and output roles, thus covering availability assumptions from the above list.

Role-filler objects are specified using a shared domain ontology. The ontology defines

hierarchical relations between concepts and allows the system to match a generic

method with a specific goal.

PRODIGY [44] introduces statistical method invocation making use of methods’ past

performance. The PRODIGY system deals with the problem of choosing an appropriate

search engine for a given problem. Thus, the time cost of the chosen method is crucial

for the task and defines an important teleological assumption: in order to be valuable,

the goal must not just be achieved but be achieved within a reasonable time frame.

The selection mechanism estimates for each method the expected gain, based on both

the expected reward for solving the task at hand and the past performance of the

method (percentage of failures and time cost), and then selects a method on the basis
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of these metrics.

TMDA (Task-Method-Domain-Application) [83] defines an ontology describing task-

method structures and allows the specification of applicability conditions (episte-

mological assumptions) in the form of logical expressions, which must hold for the

method. Both problem-solving method descriptors and domain knowledge are ex-

pressed using ontologies and complex reasoning can be performed to validate the

expression.

UPML (Unified Problem-solving Method description Language) [42] describes a

language and a specific ontology for describing problem-solving method libraries.

Special adaptor structures are used to refine the problem-solving method descriptions

and match them to tasks. Different kinds of assumptions are defined:

• preconditions, which specify constraints imposed on a method’s input (these

correspond to epistemological availability assumptions in the list above);

• assumptions, which describe constraints related to all available context knowl-

edge (epistemological property assumptions);

• additional postconditions, which describe properties that apply to a methods’

output;

These conditions can be defined both at the level of methods themselves and at the

level of adaptors. The system allows the flexible refinement of a method’s description

depending on the task at hand.

When developing our KnoFuss architecture, we reused several design patterns of

problem-solving method library organisation, which were relevant for the semantic

data fusion application scenario. Our design was primarily inspired by TMDA [83] and
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UPML [42]. The definitions of the main concepts of our fusion ontology (task and

method descriptors) were based on the corresponding concepts in TMDA, in particu-

lar, we adopted the task decomposition modelling pattern and the relations which

associate methods with tasks. Like in TMDA, the fusion ontology uses two properties

for determining the applicability of a method: one (Tackles) to specify the subtask

within the workflow, to which the method can be applied, and another (Selection

criterion) to provide more fine-grained applicability conditions. The usage of special

adaptor structures (the Application context concept in the fusion ontology) which

associate a method with a specific application domain was adopted from the UPML

library description. Also, similar to PRODIGY [44], the KnoFuss architecture takes

into account the performance of a method: the estimated reliability of the method’s

output is used to make decisions at the later stages of the workflow and to resolve

conflicts caused by this output. However, when designing the fusion ontology to be

used in our KnoFuss architecture, we had to extend the high-level knowledge struc-

tures defined in TMDA and UPML, adjust them to the needs of the fusion task, and

define additional, fusion-specific knowledge structures. These will be discussed in

more detail in section 3.6.

3.4 Design rationale

The primary reason for the choice of problem-solving methods as a foundation for the

design of the fusion architecture was the reusability requirements outlined in section

3.2: the architecture needs to be adjustable to different domains and has to han-

dle different types of entities. By definition, problem-solving methods represent the
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reasoning components of knowledge-based systems that can be reused across applica-

tions. The approach based on problem-solving methods makes it possible to abstract

from implementation, domain, and task aspects [41] and to describe these aspects for-

mally, which contributes to the reusability. Reusability across tasks is not relevant in

our case because it applies only to high-level methods, which represent generic reason-

ing strategies suitable for achieving different goals (e.g., the Propose&Revise method

has been applied to parametric design [83] and scheduling [95]). While there exist

such generic methods, which in particular can be applied to fusion subtasks (e.g., K-

nearest-neighbour classification can be refined for the instance coreference resolution

task), this study considered a restricted set of tasks and therefore task-independence

of methods was outside its scope. Thus, we are interested in two dimensions of method

specifications [41]: problem-solving strategies and domain knowledge assumptions.

Complete separation of the two is impossible due to the interaction problem [76]:

a problem-solving method and its specific variants cannot be constructed indepen-

dently of assumptions about the available domain knowledge. These assumptions are

not necessarily satisfied by all potential domains. For example, a rule-based corefer-

ence resolution method assumes that for individuals of a specific class in the ontology

there exists a set of key attributes, which unambiguously describe its identity, while

adaptive machine-learning algorithms assume that there exist enough training exam-

ples, for which the truth value is known. This issue is also strongly connected with

the granularity and method-domain adjustment requirements: the same method can

be reused in different domains, but its assumptions may differ and its behaviour may

need tuning. Providing such methods with more information about the domain is
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valuable for improving their performance but at the same time restricts their appli-

cability and limits their reusability. Thus, domain and implementation specifications

of methods cannot be separated and the architecture has to provide a mechanism

for expressing the interdependencies between these two kinds of descriptions. In the

KnoFuss architecture the application context concept is used for this purpose.

3.5 Task decomposition

Different subtasks which have to be handled in the fusion process were outlined in

Chapter 2. Here we describe the task decomposition, which has been realised in

the fusion architecture (see Fig. 3.1). As we mentioned in Chapter 2, the high-

level distinction between schema-level and instance-level issues has been common in

the literature for a long time [66, 81]. In our approach we accept this view and

decompose the fusion task into ontology integration and knowledge base integration.

We distinguish three main subtasks of the ontology integration task:

1. Preprocessing responsible for syntactic transformation (e.g., from DAML to

OWL)

2. Ontology matching responsible for the creation of mapping rules

3. Instance transformation performing actual translation so that instances in both

source and target knowledge bases are structured according to the same ontol-

ogy

For the core version of the KnoFuss framework, we assume that we are dealing with

datasets structured according to the same ontology, so actual ontology integration is
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Figure 3.1: Decomposition of the fusion task into subtasks

outside its scope. We will discuss the scenario involving ontological heterogeneity in

Chapter 7. The core KnoFuss implementation contains methods covering the second

step of the fusion process: knowledge base integration. Coreference resolution, the

first step of the process covers the instance ambiguity issue: identifying individuals

referring to the same entity in two knowledge bases. In the classical theory developed

for databases [40] this process is performed by comparing sets of attributes attached

to individuals. Most existing algorithms [36] follow this theory. A typical coref-

erence resolution algorithm makes its decision about equivalence of two individuals

based on (i) a set of attributes (or features), which are considered relevant, and (ii)

a decision model, which compares attribute values and produces an answer about

whether or not two individuals should be merged. In some trivial cases both these

components are known in advance: for instance, for individuals of a certain type a pri-

mary key consisting of several properties may be defined. In the general case special

data analysis is required to select relevant features and machine-learning algorithms

are used to find parameters of decision models. These procedures can be separated
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from the actual decision-making regarding the identification of equivalent individu-

als. Thus, the coreference resolution task is decomposed into three main subtasks:

feature selection, model training and object identification. After discovering potential

mappings between individuals believed to be identical, the next step is to analyse

the resulting knowledge base (assuming that the mappings are applied and mapped

individuals are merged) and consider interdependencies between pieces of data and

restrictions defined in the ontology. These interdependencies, in particular, include

violations of ontological restrictions. Such violations may indicate a disagreement

between sources, a wrong piece of data, or an erroneous mapping created by a coref-

erence resolution method. Other ontological axioms may provide positive evidence

for reinforcing coreference mappings: e.g., if two individuals linked via a functional

property both have potential coreference mappings with another pair of individuals

linked via the same property, then both coreference mappings should be reinforced.

Analysis of such dependencies is necessary to decide what should be the final state

of the integrated knowledge base: which new data statements should be inserted or

removed, which coreference mappings should be applied or revoked, and how the de-

grees of confidence should be modified. This is the main goal of the knowledge base

updating task. The first step in this process is dependency identification. Its goal is to

localise sets of data statements and schema-level axioms, which influence each other.

The second step is dependency processing, where these dependency sets are analysed

and refined: e.g., erroneous mappings removed, confidence values associated with be-

liefs in conflicting statements updated, etc. After the dependency analysis task these

refinements and coreference mappings are applied to knowledge bases and the data

from the source knowledge base are merged into the main knowledge base.
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3.6 Fusion ontology

As described before, the workflow of the architecture involves selecting appropriate

methods for each particular task, invoking these methods and handling their results

(in particular, combining them where necessary and passing them to the following

stages). While the internal implementation of methods is hidden from the architec-

ture, the architecture itself is responsible for method selection and handling results.

In order to achieve this, the architecture must be able to compare the capabilities of

different methods, invoke them with different parameters, aggregate their results, and

pass them to the next stage of the workflow. The fusion ontology defines knowledge

structures supporting these functionalities.

The fusion ontology provides two kinds of knowledge structures:

• Descriptors of problem-solving methods, tasks and application contexts. This

information is used to select and configure methods. Here, the task corresponds

to a particular stage of the fusion workflow (e.g., coreference resolution). The

descriptor of a method specifies the task it tackles, the conditions in which it can

be applied and the default configuration parameters. The application context

represents a configuration of a method adjusted for a specific domain. We will

discuss these structures in sections 3.6.1, 3.6.2, and 3.6.3 respectively.

• Auxiliary knowledge structures. These structures represent meta-level descrip-

tors of the methods’ inputs and outputs (e.g., mappings between individuals,

sets of conflicting statements). These structures are primarily used to pass

methods’ results to the following stages of the workflow. We will discuss these

in section 3.6.4.
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Table 3.1: Task descriptor example

Task Coreference resolution

Inputs
SourceKnowledgeBase :type KnowledgeBase;
TargetKnowledgeBase :type KnowledgeBase;

Outputs
MergeSets :type list of MergeSet - Set of
possible mappings between instances of source and
target knowledge bases

3.6.1 Tasks

Tasks represent the required capabilities of methods, in particular, the types of inputs

and outputs. Each method subscribed to a task has to satisfy the requirements

defined in the task description. For example, Table 3.1 shows the descriptor for

the coreference resolution task. It specifies that each coreference resolution method

should take as input two knowledge bases (row 2) and return a set of mappings

between individuals which the method considers identical (row 3).

Some of the tasks can be further decomposed so that each subtask is processed by

its own methods. Such complex tasks are tackled using special task decomposition

problem-solving methods. These do not refer to any implementation but instead de-

fine a sequence of subtasks for a task they handle. The high-level task decomposition

is pre-defined in the ontology as shown in Fig. 3.1. However, this task hierarchy can

be further expanded by defining task decomposition methods handling tasks at the

bottom-level of the hierarchy. Alternative decompositions are possible too: in that

case several task decomposition methods will be defined to handle one complex task.

At any level of the hierarchy, it is possible that not all tasks need to be handled. For

instance, the feature selection subtask of the coreferencing task is not needed in the

case where a set of relevant attributes for a particular class is known. Such situations

are handled by defining pre-conditions of tasks: if a pre-condition is not satisfied,
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then the method selection for the task is not performed and the task is skipped.

3.6.2 Problem-solving methods

Problem-solving methods encapsulate the reasoning steps and the types of knowl-

edge needed to perform a task [42]. As already said, each subtask can be performed

by different methods, both generic and domain-dependent (e.g., using key attributes

or machine-learning models for coreferencing, hand-tailored rules or formal ontology

diagnosis for conflict detection). Existing approaches to building knowledge-based

systems distinguish between task decomposition problem-solving methods, which de-

compose a task into subtasks, and primitive problem-solving methods (or inferences)

that perform actual reasoning steps [42, 83, 104]. In our architecture the task decom-

position is represented as a hierarchy of tasks (see section 3.6.1).

While the internal reasoning of primitive problem-solving methods is hidden from

the architecture, a method descriptor has to provide information needed by the archi-

tecture to perform method selection. This information includes the competence of a

method (the task it handles and additional constraints restricting its input), the link

to its implementation, and the quality of its output (the degree of confidence that the

output provided by the method is correct). The inputs and outputs of a method are

defined by the task it tackles. Additional restrictions are specified by a selection cri-

terion, which represents the most generic application domain of a method. Since our

architecture assumes that the data are represented in RDF, we use a SPARQL query

to define the selection criterion. The reliability measure of a problem-solving method

represents a degree of confidence that a decision made by the method is correct. It

is expressed as a number between 0 (indicating that the output of the algorithm
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Table 3.2: Coreference resolution method descriptor example

Method Label-based Jaro-Winkler matcher
Tackles Coreference resolution

Selection criterion
SELECT ?uri WHERE {
?uri rdfs:label ?label }

Reliability 0.9

Description
A generic method, which performs matching based on the
label similarity measured using Jaro-Winkler metrics.

Implementation
org.xmedia.fusion.objectidentification.
JaroWinklerSimMetricsObjectIdentificationMethod

Parameters
Threshold 0.87
Attributes rdfs:label

does not give any information about the correct answer) and 1 (indicating that the

maximal likelihood of a correct decision). The exact interpretation of this value (e.g.,

as a probability measure or Dempster-Shafer belief measure [106]) is not defined at

the level of architecture: it is only used to indicate relative preference. However,

depending on the actual methods used, this measure can have precise formal inter-

pretation: e.g., our dependency resolution algorithm described in Chapter 5 operates

under the assumption that the reliability value represents a positive belief measure

in the Dempster-Shafer theory. Finally, a method descriptor specifies additional pa-

rameters required by the method and their default values. An example of such a

descriptor of the Jaro-Winkler string-similarity coreferencing method is presented in

Table 3.2. First, the descriptor specifies that the method tackles the coreference res-

olution task (row 2). It means that the method takes as its input two knowledge

bases and returns a set of mappings between individuals as its output, as was de-

fined in the corresponding task descriptor (Table 3.1). Then, the descriptor contains

the most general selection criterion for the method (row 3): a SPARQL query that

selects individuals which the method can process. The architecture runs this query
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during the method selection stage, and the method is selected for invocation only if

the query returns results. In our example, the method is applicable to any individual

which has a value for the rdfs:label property. The reliability of the method (row 4)

denotes the estimated quality of method’s output. This score is interpreted as the

Dempster-Shafer belief mass [106] assigned to each method’s output (in this example,

to each coreference mapping produced by the method). The method is invoked using

the reference to the method implementation (row 6). Our architecture assumes this

to be the name of a Java class available on the system’s class path.

Apart from these standard parameters, the method descriptor also contains method-

specific parameters. These parameters are not pre-defined in the fusion ontology and

are defined by the creator of the method. In our example, the method decides whether

two individuals refer to the same entity by measuring average Jaro-Winkler similarity

between their attributes. In the most general case it measures the similarity between

the labels of individuals (row 9) and compares it with the threshold 0.87 (row 8). It

accepts that two individuals are the same if the Jaro-Winkler similarity value between

their labels is higher than the threshold.

3.6.3 Application contexts

While some methods (e.g., rule-based ones) are hand-tailored for a specific domain,

other methods can be applied to different types of data. However, reusing a method

in a different domain might require reconfiguring it. The concept of application con-

text represents such a link between the problem-solving method and the domain

(similar to the PSM-Domain concept in [42] and the Application concept in [83]).

Application contexts specify the parameters of a method when applied to a specific
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Table 3.3: Application context example

Method Label-based Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE {
?uri rdf:type opus:Publication .
?uri rdfs:label ?label . }

Linked to class opus:Publication
Reliability 0.95
Parameters
Threshold 0.93
Attributes rdfs:label, opus:year

domain. These parameters override the default values defined in the method de-

scriptor. Domains are interpreted as class definitions in the domain ontology and

described with SPARQL queries (further narrowing the generic applicability range

defined in the method descriptor). An example of an application context for the Jaro-

Winkler string similarity method applied to individuals of the class opus:Publication

describing scientific publications in the SWETO-DBLP ontology is given in Table

3.3. In this example the context is related to the label-based Jaro-Winkler matcher

described in Table 3.2. However, while the method is applicable to any individual

with the rdfs:label property, the application context is only relevant for the individ-

uals of the class opus:Publication (row 3). The context specifies that the method

produces, on average, more reliable mappings for this subset of individuals (row 4)

than for the whole set of individuals to which the method can be applied (row 4 in

Table 3.2). For opus:Publication individuals our example method compares not only

labels but also publication years (row 7) and requires that the average Jaro-Winkler

similarity for both pairs of attributes exceeds the threshold 0.93 (row 6). In this way,

application context objects allow methods to be fine-tuned to different parts of the

datasets and address the granularity problem discussed in section 2.6.
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3.6.4 Auxiliary structures

Auxiliary structures represent results produced by methods solving intermediate tasks

in the workflow. They are used as inputs to other methods together with the factual

data contained in the source and the target knowledge bases. They usually contain

references to objects from the source and target knowledge bases but are not copied

into the main knowledge base. The structures defined in the ontology include:

• Object context models. Existing coreferencing algorithms determine whether

two individuals represent the same entity based on their contexts - sets of rel-

evant attributes. An object context model represents such a set of attributes.

The decision models of some coreferencing algorithms (e.g., weighted string sim-

ilarity) are independent from actual sets of attributes. Also special algorithms

for attribute selection (such as information gain or relief [55]) do not require

knowledge about the internal reasoning of coreferencing algorithms.

• Atomic mappings. These are candidate mappings produced by coreference reso-

lution algorithms. Each atomic mapping contains references to two individuals

believed to be identical and the attached belief estimation (a number between

0 and 1).

• Coreference clusters. These are sets of multiple individuals believed to be iden-

tical, which are created by the architecture as a post-processing of the corefer-

encing task. Coreference clusters may aggregate several atomic mappings.

• Dependency sets. Sets of coreference mappings and data statements may be

interdependent with respect to available domain knowledge. Special cases of

dependencies are inconsistencies occurring in cases, where several statements
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violate a restriction, or functionality dependencies, where a mapping between a

pair of individuals implies a mapping between a pair of related individuals.

• Training examples. As pointed out in section 2.2.1, many existing algorithms

view coreference resolution as a special case of classification or clustering and

use machine-learning techniques to train decision models. Training examples

contain available training data for such algorithms. Like an atomic mapping,

each training example contains references to two individuals believed to be

identical, however, this mapping is accepted as correct. Training examples are

stored permanently by the architecture in a separate repository.

With regard to the life-cycle there are two kinds of auxiliary structures: temporary

and permanent. Temporary structures are application-dependent, describe the actual

data being fused, and are relevant only during a single fusion session. Such structures

include atomic mappings, coreference clusters and dependency sets. Temporary in-

stances are deleted after the fusion session is completed. Permanent structures are

application-independent and can be relevant to different fusion sessions. However,

they can be domain-dependent and contain references to schema-level entities of a

domain ontology. Permanent structures include, for instance, object context models

and training examples.

3.6.5 Fusion ontology: summary

The fusion ontology represents a fundamental component of the KnoFuss architec-

ture, which allows the system to satisfy the requirements specified in section 3.2 and,

consequently, overcome the limitations outlined in section 2.6. Relations between
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domain knowledge and problem-solving knowledge are specified at the level of the

respective ontologies, which allows them to be easily redefined for a new applica-

tion scenario and helps to achieve reusability. Application context structures allow

methods to be applied with different configuration settings depending on the type of

data, which addresses the granularity requirement. In the same way, while method

descriptors specify the most generic applicability conditions for methods, applica-

tion contexts allow these conditions to be narrowed for a specific domain. In this

way, the method-domain adjustment requirement is realised. Uncertainty degrees

are represented formally via methods’ reliability weights and then can be assigned

to the methods’ output structures such as atomic mappings. In this way, the prove-

nance of the methods’ decisions is preserved and can be utilised at the later stages of

the workflow. This allows the uncertainty management and dependency processing

requirements to be satisfied.

Instantiations of the fusion ontology concepts represent the configuration of the

KnoFuss architecture for a specific use case scenario. The architecture utilises this

information during its task handling workflow.

3.7 Task handling workflow

The system starts each atomic task by selecting appropriate methods. Method se-

lection is performed in two phases. First, the system pre-selects all methods which

can potentially be applied to a domain with the help of method descriptor objects

defined by the fusion ontology.

All applicable methods are identified by running the SPARQL queries specified as



82

selection criteria. A method descriptor defines the most general conditions, in which

the method can be applied, together with the default configuration parameters. In

the example case in Table 3.2 these include just the threshold and the set of relevant

attributes; other algorithms may involve more complex decision models.

After the set of applicable methods is selected, the system tries to determine the

optimal parameters of the algorithm given the data to which it is applied. It is often

the case that the same method can be applied to a wide range of data instances: for

example, string similarity coreferencing algorithms are applicable to any individual,

which have string properties. However, the performance of an algorithm and its op-

timal settings may differ when it is applied to individuals of different classes. For

instance, when the Jaro-Winkler string similarity algorithm is used to find identical

scientific papers, it must have a higher threshold than when it is applied to disam-

biguate the authors of the papers. Paper titles have generally longer string length

and more consistent format, while people’s names allow initial abbreviations and ti-

tles (like Dr., Prof.), which require the algorithm to be more “tolerant”. Thus, as

was argued in section 3.2, a more fine-grained method configuration is needed. Ap-

plication contexts can be organised hierarchically (Fig. 3.2) following the taxonomy

defined by the domain ontology. Thus, there can be, for instance, a configuration for

journal articles, which use more specific features than the generic publication coref-

erencing. By default each application context corresponds to one class in the domain

ontology.
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Figure 3.2: Method selection using hierarchical application contexts

3.7.1 Method invocation and handling results

After the system has selected applicable methods and picked the best configuration

parameters known for them, it proceeds with method invocation. All methods from

the selected set are invoked in sequence, and their results, structured according to

the fusion ontology, are added to the source knowledge base. In cases where the

results of methods conflict, those produced by the most reliable method are retained.

An object representing the result of a method preserves a reference to the method

descriptor. Thus, the reliability of the method’s output is considered to be the same

as the reliability of the method itself in the context in which it was invoked. Then

the source knowledge base together with the accumulated intermediate information

is passed to the next stage.
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Figure 3.3: Class hierarchy in the SWETO-DBLP ontology

3.7.2 Example

To illustrate, let us consider a simple scenario handling the Object identification stage

when fusing data from the scientific publication domain structured according to the

SWETO-DBLP ontology2. This extends the FOAF ontology3 describing basic data

about people and defines additional classes and properties to describe publications,

as shown in Fig. 3.3. In this example, we assume that we need to fuse the datasets

shown in tables 3.4 and 3.5.

The method library contains the following two methods:

• The rule-based matcher: this matcher considers two instances as equivalent if

they have exactly equal values for their key properties. Its parameter is the list

of key properties for a class of individuals.

• The Jaro-Winkler matcher: a fuzzy string similarity matcher, which compares

property values of two instances using the Jaro-Winkler distance metrics. If

more than one property is considered relevant, the result is calculated as an

average over all properties. If the resulting similarity is above the threshold,

2http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus august2007.rdf
3http://xmlns.com/foaf/spec/
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Table 3.4: Source dataset for the example scenario

Local name Type
Properties

Name Value
Person1 foaf:Person foaf:name Enrico Motta

foaf:mbox e.motta@open.ac.uk
Person2 foaf:Person foaf:name Dnyanesh Rajpathak
Pub1 opus:Article rdfs:label A Generic Library of Problem Solving Methods

for Scheduling Applications
opus:year 2006
opus:journal name IEEE Transactions on Knowledge and Data

Engineering
opus:volume 18
opus:number 6
opus:author Person2

Person1
...

Pub2 opus:Article in Proceedings rdfs:label A Generic Library of Problem Solving Methods
for Scheduling Applications

opus:year 2003
opus:book title K-CAP
opus:author Person2

Person1
...

Pub3 opus:Book rdfs:label Reusable Components for Knowledge Modelling
opus:year 1999
opus:isbn 1-58603-003-5

Table 3.5: Target dataset for the example scenario

Local name Type
Properties

Name Value
PersonA foaf:Person foaf:name Prof. Enrico Motta

foaf:mbox e.motta@open.ac.uk
PersonB foaf:Person foaf:name Dnyanesh Rajpathak
PubA opus:Article rdfs:label A Generic Library of Problem Solving Methods

for Scheduling Applications
opus:year 2006
opus:journal name IEEE Trans. Knowl. Data Eng.
opus:volume 18
opus:number 6
opus:author Person2

Person1
...

PubB opus:Article in Proceedings rdfs:label A Generic Library of Problem Solving Methods
for Scheduling Applications

opus:year 2003
opus:book title K-CAP 2003
opus:author Person2

Person1
PubC opus:Book rdfs:label OCML: Reusable Components for Knowledge

Modeling: Case Studies in Parametric Design
Problem Solving

opus:year 1999
opus:isbn 1-58603-003-5
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two individuals are considered equivalent.

All individuals of the class foaf:Person have the property foaf:name, which contains

the full name of a person. However, the full name can be written in different ways

and may be not unique (two people may have the same name), thus, it can only be

used for fuzzy matching, which reduces precision. In contrast, the foaf:mbox property,

describing a personal e-mail address, can be used as a key property. However, it does

not guarantee good recall: the same person may be described in different datasets

with different e-mails and in many cases the e-mail address is not known.

There is a similar case with individuals of the type opus:Publication: there is a

key property opus:isbn, which is not always available. Alternatively, a publication

can be identified by the set of its other properties, such as the title (opus:title), the

publication year (opus:year), and the venue (opus:venue).

The application contexts for the methods can be defined as shown in Table 3.6.

At the method selection step both methods are pre-selected as applicable. The rule-

based matcher is applicable because one Person individual in the source knowledge

base (Person1) has a foaf:mbox specified and one of the publications (Pub3) is a

book with the ISBN. Both string similarity matchers can be used because foaf:name

and rdfs:label properties are instantiated. However, their configuration settings and

reliability will be different. Thus, at the invocation step the rule-based matcher

method is invoked twice: once applying application context AC1 for the class Person

and once for the class Publication (application context AC2). The Jaro-Winkler

string similarity method is invoked four times, because each application context is

relevant. Application context AC3 is used for the individuals Person1 and Person2;

AC5 is used for Pub1; AC6 is relevant for Pub2. For Pub3, since there is no context
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Table 3.6: Application contexts for the example scenario

No Descriptor
AC1 Rule-based matcher - Person

Method Rule-based matcher

Selection criterion
SELECT ?uri WHERE { ?uri rdf:type foaf:Person .
?uri foaf:mbox ?mbox . }

Linked to class foaf:Person
Reliability 1.0
Parameters
Attributes foaf:mbox

AC2 Rule-based matcher - Publication
Method Rule-based matcher

Selection criterion
SELECT ?uri WHERE { ?uri rdf:type opus:Publication .
?uri opus:isbn ?isbn . }

Linked to class opus:Publication
Reliability 1.0
Parameters
Attributes opus:isbn

AC3 Jaro-Winkler matcher - Person
Method Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE { ?uri rdf:type foaf:Person .
?uri foaf:name ?name . }

Linked to class foaf:Person
Reliability 0.90
Parameters
Threshold 0.98
Attributes foaf:name

AC4 Jaro-Winkler matcher - Publication
Method Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE { ?uri rdf:type opus:Publication .
?uri rdfs:label ?label . }

Linked to class opus:Publication
Reliability 0.90
Parameters
Threshold 0.97
Attributes rdfs:label, opus:year

AC5 Jaro-Winkler matcher - Article
Method Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE { ?uri rdf:type opus:Article .
?uri rdfs:label ?label . }

Linked to class opus:Article
Reliability 0.98
Parameters
Threshold 0.90
Attributes rdfs:label, opus:year, opus:journal name, opus:volume, opus:number

AC6 Jaro-Winkler matcher - Article in Proceedings
Method Jaro-Winkler matcher

Selection criterion
SELECT ?uri WHERE {
?uri rdf:type opus:Article in Proceedings .
?uri rdfs:label ?label . }

Linked to class opus:Article in Proceedings
Reliability 0.95
Parameters
Threshold 0.92
Attributes rdfs:label, opus:year, opus:book title
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Table 3.7: Method invocation results in the example scenario

Method Context Output
Rule-based matcher Person Person1≡PersonA

Publication Pub3≡PubC
Jaro-Winkler Person Person2≡PersonB

Article Pub1≡PubA
Article in Proceedings Pub2≡PubB
Publication Pub1≡PubB
Publication Pub2≡PubA

defined for the class Book, the generic context for the class Publication (AC4) is used

instead. The results obtained after all the methods are invoked are shown in Table

3.7.

The rule-based matcher produced two mappings as its result. The mapping

Person1 ≡ PersonA was produced because these individuals had the same value

“e.motta@open.ac.uk” for the key property foaf:mbox. The mapping Pub3 ≡ PubC

was obtained because of identical values for the opus:isbn property. The Jaro-Winkler

matcher returned one mapping between foaf:Person individuals (Person2 ≡ PersonB)

which had equivalent names (‘Dnyanesh Rajpathak’) and four mappings between

opus:Publication individuals with equivalent titles. The results produced by the dif-

ferent methods complement each other: identical individuals recognised by their pri-

mary keys could not be discovered by the Jaro-Winkler matcher because their string

comparison scores were below their respective thresholds. However, the Jaro-Winkler

method introduced two erroneous mappings as well: Pub1 ≡ PubB and Pub2 ≡

PubA. Given that individuals merged in this way belong to two disjoint classes (Arti-

cle and Article in Proceedings), these erroneous mappings will lead to an inconsistent

knowledge base. Correcting such mistakes will be discussed in Chapter 5.
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3.8 Using the class hierarchy to learn optimal

method parameters

Context-dependent method configuration allows fine-grained tuning of methods for

specific types of data. However, it also requires more effort to assign optimal pa-

rameters for all categories of data in the dataset. Assigning them manually is a task

requiring significant user effort, especially in cases where the domain ontology con-

tains individuals of many different classes. Moreover, it is possible that individuals

of several classes share enough common features to the extent that optimal param-

eters for them are the same. Thus, the architecture has to include a mechanism for

assigning configuration parameters in an optimal way in order to reduce manual user

effort and maximise the reusability of the system. In order to achieve reusability,

the generated application contexts must cover the widest possible domain while at

the same time specify the best possible configuration settings for all subsets of the

covered domain.

A common approach to determine optimal parameters of an algorithm automati-

cally involves using machine-learning techniques (e.g., see APFEL[35] and eTuner [70]

for the schema matching task). Machine learning can be used to generate optimal

parameters for a method applied to a specific class of individuals and to estimate its

reliability. But, in order to train a method to match individuals of a certain class,

sufficient training examples are needed. Obtaining these for each ontological class is

not always feasible.

In order to maximise the reuse of available training data, the KnoFuss architecture

allows the ontological class hierarchy to be exploited for finding optimal parameters
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Figure 3.4: Reusing training examples to train a generic model for a superclass.

Figure 3.5: Combining training examples to train a model for a superclass.

as well as for selecting appropriate methods. This is especially relevant for the coref-

erence resolution stage.

Ontological schemata can be exploited in two ways to manage a limited set of

training data and assist the learning mechanism:

• Training examples belonging to a subclass can be used to learn a generic decision

model for its superclass (Fig. 3.4).

• Training examples belonging to different subclasses of the same superclass can

be combined together (Fig. 3.5).

Let’s assume that in the ontology O we have a class C and its subclasses C1...Cn:

∀Ci.(Ci v C)|i = 1...n
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For each class a subset of individuals Di is available. In other words, if we have an

interpretation I of the ontology O, then we have:

∀Di.(Di ⊆ CI
i )|i = 1...n

For some individuals in Di we also know correct identity relations:

Ti ⊆ Di|i = 1...n

Pairs of these individuals constitute training sets Si:

Si
.
= (Ti × Ti)|i = 1...n

where pairs of coreferent individuals serve as positive examples and pairs of non-

coreferent individuals constitute negative examples. Let fi represent a set of poten-

tially relevant attributes for each class Ci (e.g., this may include all properties within

a certain range r). The learning algorithm takes as input a set of training examples

S and relevant attributes f and produces a decision model hi(Si, fi):

hi(Si, fi) : (x; y)→ P (x ≡ y)

where x and y belong to the class Ci and P (x ≡ y) is a probability that the individuals

x and y are equivalent.

Now, suppose, we only have training instances for a subset of classes C1...Cn, i.e.,

∀Sj.(|Sj| > 0)|j = 1...m,m < n

∀Sk.(|Sk| = 0)|k = m+ 1...n

It means that it will not be possible to generate decision models for a range of

subclasses Ck v C|k = m+ 1...n, because of the lack of training examples.



92

During the configuration phase we train the learning algorithm to produce m+ 1

decision models: one model hj(Sj, fj) for each Cj where j ≤ m and one model for

the superclass C:

hoverall(
m⋃
j=1

Sj,

n⋂
i=1

fi)

The learning algorithm for the superclass C will take as input the union of all training

sets S =
⋃m
j=1 Sj. The set of relevant features will only contain the features of the

class C: f =
⋂n
i=1 fi. Obtained decision models are linked to relevant application

context descriptors.

Thus, during the execution phase the architecture will be able to select the decision

model for instances of a specific class in the following way:

• Use either hoverall or hj for individuals of Cj where j = 1...m

• Use hoverall for individuals of Ck where k = m...n

The dilemma in the first case for each class Cj concerns the choice between the

model hoverall and the model hj. In the general case, the model hoverall is produced

having more training examples (because |
⋃m
j=1 Sj| ≥ |Sj|) but less features (because

|
⋂n
i=1 fi| ≤ |fi|).

This choice can be made based on the estimated accuracy of each decision model.

In the case of coreference resolution task, the accuracy can be measured using the

standard F-measure which combines precision p and recall r (F = (1+α)pr
αp+r

). Each

learned model is evaluated on a set of test examples. The algorithm is included into

the library of matching methods and each learned model is described as a separate

application context. The reliability of the algorithm in each context is assigned

according to the achieved accuracy on the test set. In the case where two models
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hoverall and hj were applied and produced conflicting results, the result produced by

a model with a greater reliability is chosen.

This approach, however, can be used only under the assumption that each prop-

erty is used with the same meaning for all subclasses of its domain class. For example,

a generic property rdfs:label can be used for individuals of any class (i.e., owl:Thing,

if we consider an OWL knowledge base) but have different meaning in each case: per-

son’s full name, document’s title or the name of a geographic object. Despite using

the same property as the predicate, each of these attributes has its specific representa-

tion features and format. An algorithm trained for the most generic class (owl:Thing

in OWL knowledge bases) using only training examples belonging to one subclass

(e.g., people) is likely to suffer from overfitting: it may not be able to generalise and

to identify correctly coreferent individuals belonging to classes not represented in the

training data.

The experiments we performed to validate this procedure of using an ontological

class hierarchy for method configuration are described in Chapter 6.

3.9 Summary

In this chapter we presented the design of the architecture we developed to handle

the fusion process. The material presented in this chapter was published in [87].

The architecture allows several different methods to be combined for the same task

and methods for different subtasks to be combined into a workflow, which was the

goal specified in the research question 1: “How should algorithms performing fusion

subtasks be used in combination to implement the semantic data fusion workflow?”
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Combination of algorithms is used in many existing integration systems developed

both in the database and the Semantic Web communities (see section 2.5), however

these systems do not take into account specific requirements of the semantic data

fusion task:

• Schema matching systems do not have the required granularity and do not

allow different methods and different configuration parameters to be selected

for subsets of the knowledge base being considered.

• Database integration systems do not take into account features of semantic data

and axioms defined in domain ontologies

Our solution to the problem was an approach based on problem-solving methods. Dif-

ferent algorithms handling subtasks of the fusion process are represented as problem-

solving methods and have their capabilities and configuration parameters described

formally using the fusion ontology. The architecture selects appropriate methods and

combines them into a workflow based on these descriptors.

The second research question considered was question 2: “How can we support

the reusability of fusion algorithms across domains?” In order to maximise reusability

of methods, and the system as a whole, application contexts are defined as adaptor

structures linking a method and a domain. Thus, for the same method different

configuration parameters, selection criteria and estimated reliability can be defined

depending on the domain to which it is applied.

To enhance the process of assigning these parameters the domain ontology is

used. Ontological subsumption relations are exploited to adjust method parameters

depending on the type of data, to which a method is applied. Class hierarchy defined
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in the domain ontology is used both for determining appropriate parameters of a

method using training data and selecting an appropriate context for method invoca-

tion depending on input data. In this way ontological axioms are exploited to assist

fusion algorithms, which was the focus of the question 3: “How can we exploit axioms

defined in domain ontologies to improve the performance of fusion algorithms?”



Chapter 4

Inconsistency resolution using

Dempster-Shafer belief

propagation

This chapter describes our approach to the inconsistency resolution problem. Data

to be fused are extracted from several sources with varying reliability. Data state-

ments can contradict each other and render the fused knowledge base inconsistent.

These inconsistencies need to be resolved. Our approach uses the Dempster-Shafer

theory of evidence with description logic reasoning to localise and resolve inconsis-

tencies. The chapter first presents a review of related work motivating the choice

of the Dempster-Shafer theory of evidence as an uncertainty representation frame-

work. Then, we discuss three stages of our inconsistency handling algorithm: (i)

an inconsistency detection procedure using Reiter’s hitting set tree algorithm, (ii) a

set of rules translating an inconsistent OWL subontology into a belief propagation

network, and (iii) a belief propagation procedure.

96
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The material presented in this chapter contributed to a workshop paper which

was later extended to a book chapter:

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2007). Using the

Dempster-Shafer theory of evidence to resolve ABox inconsistencies. Workshop:

Uncertainty Reasoning for the Semantic Web, 6th International Semantic Web

Conference (ISWC 2007), Busan, Korea.

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2008). Using

the Dempster-Shafer theory of evidence to resolve ABox inconsistencies. In:

Uncertainty Reasoning for the Semantic Web I, Eds: Paulo C.G. da Costa,

Claudia d’Amato, Nicola Fanizzi, Kathryn B. Laskey, Ken Laskey, Thomas

Lukasiewicz, Matthias Nickles, Mike Pool.
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4.1 Introduction

Automatic information extraction algorithms do not produce 100% correct output,

which may lead to inconsistencies in the extracted knowledge base. Errors can also

be introduced by human editors: e.g., a publication venue of a paper given on an

author’s web-site can be mistyped. Information extracted from different sources can

be genuinely contradictory. Finally, when information from different sources is fused

together, the identity problem has to be resolved: individuals referring to the same

real-world entities must be linked or merged. Automatic matching algorithms can

also produce errors, which lead to knowledge base inconsistencies. Processing incon-

sistencies during fusion is important not only because these affect logical reasoning,

but also because each inconsistency normally indicates either a possible error in the

data or a divergence of views between information sources. For example, the popular

DBLP1 web-site maintaining information about research publications in the computer

science domain, contains a record describing the following publication:

Diana Maynard, Valentin Tablan, Kalina Bontcheva, Hamish Cunningham: Rapid customization

of an information extraction system for a surprise language. ACM Trans. Asian Lang. Inf. Process.

2(3): 295-300 (2003).

This paper was produced within the context of the AKT project2. However, the

web-site of the AKT project itself gives the following information about the paper:

Maynard, Dr Diana and Tablan, Mr Valentin and Bontcheva, Dr Kalina and Cunningham, Dr

Hamish (2004) Rapid customization of an Information Extraction system for surprise languages.

Special issue of ACM Transactions on Asian Language Information Processing.

If the publication year is defined as a functional property in the ontology, then fusing

these two records will lead to an inconsistent knowledge base. Different publication

1http://dblp.uni-trier.de
2http://www.aktors.org/akt/
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years may indicate that either one of the sites provides incorrect information or even

that there are two papers with the same title publishing in different years. Knowing

how the data was constructed by both web-sites is helpful for resolving this conflict:

in the case of DBLP information is gathered from the original electronic records of

publication venues (journals and proceedings), while the authors manually entered

data into the AKT web-site. The possibility of a human error such as mistype in the

second case makes AKT data less reliable. An optimal inconsistency resolution deci-

sion in the fused knowledge base will be to remove the value from the AKT web-site

(2004). Because both data and fusion methods’ decisions can be imperfect, the fusion

process has to deal with uncertain information. In order to analyse the causes of a

conflict and propose a solution (in a simple variant, a ranking of conflicting state-

ments, or a set of statements which should be considered “wrong”), it is important

to measure this uncertainty and reason about it. There are different ways to obtain

the necessary uncertainty measurements, for example:

• Extraction algorithms can often estimate the reliability of their output by at-

taching confidence values to the generated statements [59] (an example of a

large-scale dataset providing these measures is YAGO 3).

• Degrees of trust can be assigned to different information sources based on ex-

perts’ evaluations.

• The quality of the output of automatic matching algorithms can be measured

using precision/recall measures over some gold standard evaluation set.

3http://www.mpi-inf.mpg.de/yago-naga/yago/
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Each case of inconsistency occurring during fusion can be caused by several uncer-

tain factors concerning both the data statements themselves and/or fusion decisions.

Hence, techniques are needed both to represent these uncertainty values in a consis-

tent quantitative way, and also to reason about these factors in an integrated way.

There are several existing formalisms for uncertainty reasoning which propose solu-

tions to these problems.

In particular, most of the ongoing research in the field of applying uncertainty

reasoning to the Semantic Web focuses on fuzzy logic and probabilistic approaches

[24]. Of the defective aspects of information listed in section 2.1 (ambiguity, uncer-

tainty, imprecision, vagueness, inconsistency), fuzzy logic was designed to deal with

the representation of vagueness and imprecision. In our data fusion scenario we are

dealing with knowledge bases structured using standard OWL ontologies: i.e., the

classes and properties are not vague. The main issue is the one of uncertainty, where

we need to assess the likelihood that a statement is true or false. The probabilistic

approach is more appropriate for dealing with such problems, however, it still has a

limitation. As stated in [56], axioms of the probability theory are implied by seven

properties of belief measures. One of them is completeness, which states that “a

degree of belief can be assigned to any well-defined proposition”. However, this prop-

erty cannot be ensured when dealing with confidence degrees assigned by extractors,

because they do not always carry information about the probability of a statement

being false. The Dempster-Shafer theory of evidence [106] presents a formalism that

helps to overcome this problem. It allows belief measurements to be assigned to sets

of propositions, thus explicitly specifying degrees of ignorance. In order to apply

this formalism to the task of semantic data fusion we need to cover the gap between
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the logic reasoning over OWL axioms, which operates with description logic knowl-

edge bases, and the uncertainty reasoning, which operates with belief propagation

networks. Our approach includes three components:

1. An inconsistency detection and localisation procedure, which uses crisp logical

reasoning and the diagnosis algorithm described in [96].

2. An approach to uncertainty reasoning using valuation networks [109].

3. A set of translation rules for building valuation networks from OWL-DL sub-

ontologies, which we consider our primary contribution.

In the following sections we describe the algorithm for resolving conflicts using the

Dempster-Shafer belief propagation approach in more detail.

4.2 Related work

There are several studies dealing with inconsistency handling in OWL ontologies,

among others [53] and [64]. The general algorithm for the task of repairing inconsis-

tent ontologies consists of two steps:

• Ontology diagnosis : finding sets of axioms, which contribute to inconsistency;

• Repairing inconsistencies : changing/removing the axioms most likely to be

erroneous.

Choosing the relevant axioms for change and removal is a non-trivial task. Existing

algorithms working with crisp ontologies (e.g., [64]) utilise criteria such as syntactic

relevance (how often each entity is referenced in the ontology), impact (the impact
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on the ontology from removing the axiom should be minimised), and provenance

(preferring the removal of axioms originating from less reliable sources). The lat-

ter criterion is especially interesting for the automatic ontology population scenario

since extraction algorithms do not extract information with 100% accuracy. A study

described in [54] specifies an algorithm which utilises the confidence value assigned

by the extraction algorithm. The strategy employed there is to order the axioms

according to their confidence values and to add them incrementally, starting from

the most certain one. If adding an axiom leads to an inconsistency, then a minimal

inconsistent subontology is determined and the axiom with the lowest confidence is

removed from it. A disadvantage of such a technique is that it does not take into

account the impact of an axiom (i.e., when an axiom violates several restrictions, it

has higher impact and so this factor should be taken into account during the rank-

ing process). Moreover, it does not consider the importance of redundancy: if the

same statement was extracted from several sources, this should increase its reliability.

Using an established formalism for uncertainty representation and reasoning would

provide a more sound approach to capture these factors, rank potentially erroneous

statements, and resolve inconsistencies.

As we said earlier, in the Semantic Web domain the studies on uncertainty rea-

soning are mostly focused on two formalisms: probability theory and fuzzy logic.

Existing implementations of fuzzy description logic [113, 114] are based on the no-

tion of a fuzzy set representing a vague concept. The uncertainty value in this context

denotes a membership function µF (x) which specifies the degree to which an object x

belongs to a fuzzy class F . Probabilistic adaptations of OWL-DL include Bayes OWL

[27] and PR-OWL [25]. However, as we discuss below, neither of these formalisms
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fully reflects the properties of the problems we are dealing with in the fusion scenario.

A framework for choosing an appropriate uncertainty handling formalism was

presented in [56]. The framework is based on the seven properties of belief measure-

ments:

1. Clarity : Propositions, to which belief a degree of belief can be attached, are

well-defined (non-vague).

2. Scalar continuity : In order to represent a degree of belief, a single real number

is both necessary and sufficient.

3. Completeness : Any well-defined proposition can be assigned a degree of belief.

4. Context dependency : The belief assigned to a proposition can be influenced by

the belief in other propositions.

5. Hypothetical conditioning : The belief in a conjunction of propositions can be

calculated from the belief in one proposition and the belief in the other propo-

sition using some function which assumes that the first proposition is true.

6. Complementarity : The belief in a proposition is a monotonically decreasing

function of the belief in a negation of the proposition.

7. Consistency : The belief in propositions which have the same truth value must

be equal.

As discussed in [56], it has been proven that accepting all seven properties logically

necessitates the axioms of probability theory. Alternative formalisms allow some

properties to be weakened. Fuzzy logic deals with the case in which the clarity
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property does not hold, i.e., when concepts and relations are vague. In our fusion

scenario we are dealing with OWL ontologies which contain crisp concepts and prop-

erties. Thus, at the data level the corresponding class and property instantiation

statements can be either true or false: a confidence value attached to a type assertion

ClassA(Individual1) denotes a degree of belief that the statement is true in the real

world rather than the degree of inclusion of the entity Individual1 into a fuzzy con-

cept ClassA. A special case involves instance equivalence and distinction relations:

owl:sameAs and owl:differentFrom. Vagueness can be present for such relations even

if both subject and object individuals are described in terms of crisp ontologies. For

example, in the knowledge base containing cooking recipes it is possible to have two

recipes for the same dish which differ in the quantity of one ingredient. Such individ-

uals can be seen as “equivalent to a certain degree”, which would violate the clarity

property. However, given that we are dealing with a common shared ontology, we

assume that there exists a common individual identity criterion among the users of

this ontology. This criterion may be represented in the ontology or exist as an implicit

user agreement. In other words, we assume that, when given complete information

about two individuals, it is possible to say with certainty whether these individuals

represent the same entity or two distinct entities. With this assumption, we can

state that the clarity property holds in our scenario and the fuzzy interpretation is

inappropriate for our case.

Although a probabilistic interpretation of the extraction algorithm’s confidence

is more suitable, it may lead to a potential problem. If we interpret the confidence

value c attached to a statement returned by an extraction algorithm as a Bayesian

probability value p, we, at the same time, introduce a belief that the statement is false
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with a probability 1− p. However, the confidence of an extraction algorithm reflects

only the belief that the document supports the statement and does not itself reflect

the probability of a statement being false in the real world. Moreover, while statistical

extraction algorithms [73] are able to assign a degree of probability to each extracted

statement, rule-based algorithms [19, 129] can only assign the same confidence value

to all statements extracted by the same rule based on the rule’s performance on some

evaluation set. Any extraction produced by a rule with a low confidence value in this

case will serve as negative evidence rather than simply lack of evidence. This issue

becomes particularly important if the reliability of sources is included in the analysis:

it is hard to assign the conditional probability of a statement being false given that

the document supports it. It means that the completeness property does not always

hold.

The Dempster-Shafer theory of evidence [106] allows weakening of the complete-

ness property. Belief can be assigned to sets of alternative options rather than only

to atomic elements. In the case of binary logic, it means that the degree of ignorance

can be explicitly represented by assigning a non-zero belief to the set {true;false}. On

the other hand, the theory still allows the Bayesian interpretation of confidence to be

used, when it is appropriate (in this case the belief assigned to the set {true;false}

is always set to 0). This chapter presents an algorithm for resolving inconsistencies

by translating the inconsistency-preserving subset of an ontology into the Dempster-

Shafer belief network and choosing the axioms to remove on the basis of their plau-

sibility value.

Alternative approaches to uncertainty representation, which have not been applied

so far to ontological modelling, include probability intervals [26] and higher-order
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probability [45]. However, the first of these approaches uses min and max operators

for aggregation, which makes it hard to represent cumulative evidence, while the

second focuses on resolving different kinds of problems (namely expressing probabil-

ity estimations of other probability estimations). There are also other approaches

to belief fusion in the Semantic Web (e.g., [99] and [85]). These studies deal with

the social issues associated with representing trust and provenance in a distributed

knowledge base and focus on the problem of establishing the certainty of statements

asserted by other people. These approaches, however, do not focus on resolving the

inconsistencies and just deal with direct conflicts (i.e., statement A is true vs state-

ment A is false). Moreover, they do not take into account ontological inference and

mutual influence of statements in the knowledge base. Hence, they can be considered

complementary rather than alternative to the approach described here.

4.3 The Dempster-Shafer belief theory

The Dempster-Shafer theory of evidence differs from Bayesian probability theory

because it allows beliefs to be assigned not only to atomic elements but to sets of

elements as well. The basis of Dempster’s belief distribution is the frame of discern-

ment (Ω) - an exhaustive set of mutually exclusive alternatives. A belief distribution

function (also called mass function or belief potential), m(A), represents the influence

of a piece of evidence on subsets of Ω and has the following constraints:

• m(�) = 0 and

•
∑

A⊆Ω m(A) = 1
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m(A) defines the amount of belief assigned to the subset A. When m(A) > 0, A is

referred to as a focal element. If each focal element A contains only a single element,

the mass function is reduced to a probability distribution. Mass can also be assigned

to the whole set Ω. This represents the uncertainty of the piece of evidence about

which of the elements in Ω is true. In our case each mass function is defined on a

set of variables D = {x1, ..., xn} called the domain of m. Each variable is Boolean

and represents an assertion in the knowledge base. For a single variable we can

represent the degree of support Sup(x) = m({true}) and the degree of plausibility

Pl(x) = m({true}) + m({true; false}). Plausibility specifies how likely it is that

the statement is not false and aggregates the degree of support with the degree of

ignorance (m({true; false})). Using plausibility it is possible to select from a set of

statements the one to be removed.

4.4 Description of the algorithm

In this section we present our algorithm for handling data-level inconsistencies. The

algorithm assumes (i) that the data structure is defined using an OWL-DL ontology,

(ii) that the ontological schema is consistent and (iii) that belief scores are available

for data statements.

The algorithm consists of four steps:

1. Inconsistency detection.

At this stage a subontology is selected containing all axioms contributing to an

inconsistency. This step is performed using Reiter’s diagnosis algorithm [96].

2. Constructing a belief network.
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At this stage the subontology found at the previous step is translated into a

belief network. We developed a set of rules, which translate OWL-DL axioms

into corresponding nodes of the belief network.

3. Assigning mass distributions.

At this stage mass distribution functions are assigned to nodes. We assign

initial belief distributions for nodes based on the restrictions imposed by the

corresponding OWL-DL axioms.

4. Belief propagation.

At this stage uncertainties are propagated through the network and the confi-

dence degrees of ABox statements are updated. This propagation is performed

using the axioms for belief propagation in valuation networks formulated in

[109]

The updated confidence degrees can be used to make decisions about each case of

inconsistency. There are several possible options: e.g., resolve the inconsistency by

removing the statement with the lowest plausibility (or support), or preserve all

conflicting statements but use the confidence degrees to provide their ranking to the

user.

4.4.1 Illustrating example

In order to illustrate our algorithm, we develop an example from the banking do-

main. We consider an ontology describing credit card applications, which defines two

disjoint classes of applicants: reliable and risky. In order to be reliable, an applicant
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has to have UK citizenship and evidence that (s)he was never bankrupt in the past.

For example, the TBox contains the following axioms:

T1: RiskyApplicant v CreditCardApplicant

T2: ReliableApplicantv CreditCardApplicant

T3: RiskyApplicant v ¬ ReliableApplicant

T4: ReliableApplicant≡ ∃ wasBankrupt.Falseu∃ hasCitizenship.UK

T5: > v≤ 1 wasBankrupt (wasBankrupt is functional)

The ABox contains the following axioms (with attached confidence values):

A1: RiskyApplicant(Ind1): 0.7

A2: wasBankrupt(Ind1, False): 0.6

A3: hasCitizenship(Ind1, UK): 0.4

A4: wasBankrupt(Ind1, True): 0.5

As given, the ontology is inconsistent: the individual Ind1 belongs to both classes

RiskyApplicant and ReliableApplicant4, which are disjoint, and the functional prop-

erty wasBankrupt has two different values. If we choose to remove the axioms with

the lowest confidence values, it will require removing A3 and A4. However, incon-

sistency can also be repaired by removing a single statement A2, and the difference

between the confidence degrees of A2 and A4 is small. The fact that A2 leads to

the violation of two ontological constraints should increase the likelihood that it is

incorrect. In order to select between these options (A2 vs A3 and A4), we need to

capture adequately the mutual impact of confidence degrees of conflicting statements

and to decide whether the plausibility value of a combination A3+A4 is higher than

the plausibility value of A2.

4The latter is inferred from A2, A3, and T4
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4.4.2 Inconsistency detection

The task of the inconsistency detection step is to retrieve all minimal inconsistent

subontologies (MISO) of the ontology and combine them. As defined in [53], an

ontology O′ is a minimal inconsistent subontology of an ontology O, if (i) O′ ⊆ O

and O′ is inconsistent and (ii) for all O′′ such that O′′ ⊂ O′ ⊆ O, O′′ is consistent.

A general algorithm for diagnosis was proposed by Reiter in [96]. The algorithm

deals with diagnosing first-order logic systems. A system is described as

(SD,COMPONENTS,OBS)

where

• SD, the system description, is a set of first-order sentences;

• COMPONENTS, the system components, is a finite set of constants;

• OBS, an observation of the system, a set of first-order sentences describing the

state of the system.

If the system is behaving incorrectly, it means that the observation OBS contradicts

the desired system behaviour, which assumes that all components behave correctly

(AB(ci) - unary predicate interpreted as “abnormal”):

SD ∪ {¬AB(c1), · · · ¬AB(cn)}|ci ∈ COMPONENTS

In other words, the following expression is inconsistent:

SD ∪ {¬AB(c1), · · · ¬AB(cn)} ∪OBS

By definition [96], “a diagnosis for (SD, COMPONENTS, OBS) is a minimal set

∆ ⊆ COMPONENTS such that
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SD ∪OBS ∪ {AB(c)|c ∈ ∆} ∪ {¬AB(c)|c ∈ COMPONENTS −∆} is consistent.”

Thus, a diagnosis is the smallest set of such components that the assumption about

their abnormal behaviour together with the assumption about the correct behaviour

of other components will be consistent with both the system description and the

observation. A diagnosis can be found by identifying minimal conflict sets within the

system. A conflict set for (SD, COMPONENTS, OBS) is a set {c1, · · · ck} such

that

SD ∪OBS ∪ {¬AB(c1), · · · ,¬AB(ck)} is inconsistent.

A conflict set is minimal if none of its subsets is a conflict set for (SD, COMPONENTS,

OBS). A system may have more than one conflict set: either there are several com-

ponents causing abnormal behaviour or a single one, which leads to several conflicts.

Thus, to resolve all conflicts, a diagnosis needs to contain at least one component

from each conflict set. Such a set containing elements from several other sets is called

a hitting set. For a collection of sets C a hitting set for C is a set

H ⊆
⋃
S∈C S

such that

H ∩ S 6= � for each S ∈ C.

Reiter’s algorithm [96] is aimed at finding all diagnoses by building a hitting set tree.

The nodes of the tree are labeled with conflict sets. A node n labeled with a non-

empty set Σ has outgoing edges labeled with elements of the set σ ∈ Σ connecting

the node n with its successors nσ. The label for nσ is such a conflict set S that

S ∩H(nσ) = �,
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where H(nσ) contains all edge labels on the path from the root node to nσ. In other

words, a node is labeled by a random conflict set, which remains in the system if the

components from H(nσ) were removed from it. So, eventually, in the process of tree

building, each conflict set becomes resolved (by removing one of its elements), and

the system becomes consistent (leaf nodes are marked with empty sets). Each path

from the tree root to one of its leaves represents a diagnosis for the system. The tree

is built breadth-first and the algorithm defines several rules which control pruning

of the tree and optimise the diagnosis process. Reiter’s algorithm ensures that all

diagnoses and all minimal conflict sets are found.

Considering a specific case of ABox conflicts in a DL knowledge base, OWL axioms

play the role of components of the system. It is easy to see that MISOs, as defined

above, represent minimal conflict sets for the knowledge base. Implementing the

diagnosis procedure for a DL knowledge base requires using a specific reasoner capable

of identifying a minimal conflict set in an inconsistent ontology. The OWL reasoner

Pellet [64] is able to return an inconsistent subontology for the first encountered

inconsistency in the ontology. To calculate all MISOs O′1, ..., O
′
n in the ontology we

employ Reiter’s hitting set tree algorithm as described above.

After all conflict sets were identified, the next step involves constructing belief

networks from each set. If there exist two subontologies O′i and O′j such that O′i ∩

O′j 6= �, then these two subontologies are replaced with O′ = O′i ∪ O′j. For our

illustrating example, the conflict detection algorithm is able to identify two conflict

sets in this ontology: the first, consisting of {T3, T4, A1, A2, A3} (individual Ind1

belongs to two disjoint classes), and the second {T5, A2, A4} (individual Ind1 has

two instantiations of a functional property). The statement A2 belongs to both sets
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and therefore the sets are merged.

4.4.3 Constructing belief networks

The networks for propagation of Dempster-Shafer belief functions (also called valua-

tion networks) have been described in [109]. By definition the valuation network is

an undirected graph represented as a 5-tuple:

{Ψ, {ΩX}X∈Ψ, {τ1, ..., τn}, ↓,⊗}

where

• Ψ is a set of variables,

• {ΩX}X∈Ψ is a collection of state spaces,

• {τ1, ..., τn} is a collection of valuations (belief potentials of nodes),

• ↓ is a marginalisation operator,

• ⊗ is a combination operator (see subsection 4.4.5 for the description of opera-

tors).

In our case Ψ consists of ABox assertions, and every {ΩX}X∈Ψ = {0; 1} and {τ1, ..., τn}

are created using the rules given below. The operators are used for propagation of be-

liefs and are described in the following subsections. The network contains two kinds

of nodes: variable nodes corresponding to explicit or inferred ABox assertions and

valuation nodes representing TBox axioms. Variable nodes contain only one variable,

while valuation nodes contain several variables.

To construct a valuation network we developed a set of rules for translating an incon-

sistent subontology into a belief propagation network (Table 4.1). We consider this
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set of rules to be a novel contribution. OWL-DL TBox axioms specify how the truth

value of one statement influences the truth values of other statements. This influence

can be either positive (if it is true that an individual belongs to a subclass then it

is true that it belongs to a superclass as well) or negative (if an individual already

has one value for a functional property, it cannot have a different one). Translation

rules capture these mutual influences and represent them as a set of network nodes

and links between them. Each rule has as its precondition the existence of a certain

OWL-DL axiom and the existence of other nodes in the belief network. Each rule cor-

responds to one particular type of OWL-DL axioms: for instance, rule 2 corresponds

to a property instantiation statement and rule 1 represents a functional property re-

striction. The output of each rule includes adding one or more new nodes into the

network and adding links between nodes.

Rules 1 and 2 directly translate each ABox statement into a variable node. Other

rules process TBox axioms and create two kinds of nodes: one valuation node to

represent the TBox axiom and one or more variable nodes to represent inferred state-

ments. Such rules only fire if the network already contains variable nodes for ABox

axioms, which are necessary to make the inference. For example, a rule processing

the class equivalence axiom (Rule 4) is interpreted as the following: ‘if there is a node

N1 representing the type assertion I ∈ X and an owl:equivalentClass axiom X ≡ Y ,

then:

• Create a node N2 representing the assertion I ∈ Y ;

• Create a node N3 representing the axiom X v Y ;

• Create links between N1 and N3 and between N3 and N2.’
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Table 4.1: Belief network construction rules

N Pre-conditions Nodes to create Links to create
1 I ∈ X N1 : I ∈ X
2 R(I1, I2) N2 : R(I1, I2)
3 N1 : I ∈ X, X v Y N2 : I ∈ Y , N3 : X v Y (N1,N3),(N3,N2)
4 N1 : I ∈ X, X ≡ Y N2 : I ∈ Y , N3 : X ≡ Y (N1,N3),(N3,N2)
5 N1 : I ∈ X, X v ¬Y N2 : I ∈ Y , N3 : X v ¬Y (N1,N3),(N3,N2)

6 N1 : I ∈ X, X u Y N2 : I ∈ X u Y , N3 : X u Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

7 N1 : I ∈ X, X t Y N2 : I ∈ X t Y , N3 : X t Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

8 N1 : I ∈ X, ¬X N2 : I ∈ ¬X, N3 : ¬X (N1,N3),(N3,N2)

9
> v≤ 1R, N1 : R(I, o1),

N3 : > v≤ 1R (N1,N3),(N2,N3)
N2 : R(I, o2)

10
> v≤ 1R−, N1 : R(I2, I1), N3 : > v≤ 1R− (N1,N3),(N2,N3)
N2 : R(I3, I1)

11 R ≡ R−, N1 : R(I1, I2) N2 : R ≡ R−, N3 : R(I2, I1) (N1,N2),(N2,N3)
12 R ≡ Q, N1 : R(I1, I2) N2 : R ≡ Q,N3 : Q(I1, I2) (N1,N2),(N2,N3)
13 R v Q,N1 : R(I1, I2) N2 : R v Q, N3 : Q(I1, I2) (N1,N2),(N2,N3)
14 R ≡ Q−,N1 : R(I1, I2) N2 : R ≡ Q−, N3 : Q(I2, I1) (N1,N2),(N2,N3)

15
Trans(R), N1 : R(I1, I2),

N3 : Trans(R), N4 : R(I1, I3)
(N1,N3),(N2,N3),

N2 : R(I2, I3) (N3,N4)

16
≤ 1.R, N1 : R(I1, o1),

N3 :≤ 1.R, N4 : I ∈≤ 1.R
(N1,N3),(N2,N3),

N2 : R(I1, o2) (N3,N4)

17
≥ 1.R, N1 : R(I1, o1),

N3 :≥ 1.R, N4 : I ∈≥ 1.R (N1,N3),(N2,N3)
N2 : R(I1, o2)

18
= 1.R, N1 : R(I1, o1),

N3 : I ∈= 1.R (N1,N3),(N2,N3)
N2 : R(I1, o2)

19
∀R.X, N1 : R(I1, I2),

N3 : ∀R.X, N4 : I1 ∈ ∀R.X
(N1,N3),(N2,N3),

N2 : I2 ∈ X (N3,N4)
20 ∀R.o1, N1 : R(I1, o1), N2 : ∀R.o1, N3 : I1 ∈ ∀R.o1 (N1,N2),(N2,N3)
21 ∀R.o1, N1 : R(I1, o2), N2 : ∀R.o1, N3 : I1 ∈ ∀R.o1 (N1,N2),(N2,N3)

22
∃R.X, N1 : R(I1, I2),

N3 : ∃R.X, N4 : I1 ∈ ∃R.X
(N1,N3),(N2,N3),

N2 : I2 ∈ X (N3,N4)
23 ∃R.o1, N1 : R(I1, o1), N2 : ∃R.o1, N3 : I1 ∈ ∃R.o1 (N1,N2),(N2,N3)

24
∃R.> v X, N1 : R(I1, I2),

N3 : ∃R.> v X (N1,N3),(N2,N3)
N2 : I1 ∈ X

25
> v ∀R.X, N1 : R(I1, I2),

N3 : > v ∀R.X (N1,N3),(N2,N3)
N2 : I2 ∈ X
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If a rule requires creating a node, which already exists in the network, then the

existing node is used.

In our example, we can apply the rules in the following order:

1. Rule 1 to the statement A1 to create the variable node N1: (RiskyAppli-

cant(Ind1))

2. Rule 2 to the statements A2, A3, A4 to create the variable nodes N2: hasC-

itizenship(Ind1, UK), N3: wasBankrupt(Ind1, False), N4: wasBankrupt(Ind1,

True)

3. Rule 5 to the node N1 and the axiom T3 to create the variable node N5:

ReliableApplicant(Ind1) and the valuation node N6: RiskyApplicant v ¬ Reli-

ableApplicant

4. Rule 12 to the node N5 and the axiom T4 to create the valuation node N7: Re-

liableApplicant≡ ∃ wasBankrupt.Falseu∃ hasCitizenship.UK and the variable

node N8: Ind1 ∈ ∃ wasBankrupt.Falseu∃ hasCitizenship.UK

5. Rule 23 to the node N2 and the axiom T4 to create the valuation node N9:

hasCitizenship.UK and the variable node N10: Ind1 ∈hasCitizenship.UK

6. Rule 23 to the node N3 and the axiom T4 to create the valuation node N11:

wasBankrupt.False and the variable node N12: Ind1 ∈wasBankrupt.False

7. Rule 6 to the node N10 and the axiom T4 to create the valuation node N13: ∃

wasBankrupt.Falseu∃ hasCitizenship.UK and add connections (N10, N13) and

(N12, N13) (already existing nodes are reused instead of creating new connec-

tions)



117

Figure 4.1: Belief network example (Exp1 = ∃ wasBankrupt.Falseu∃ hasCitizen-
ship.UK, Exp2 =∃ hasCitizenship.UK, Exp3 =∃ wasBankrupt.False)

8. Rule 9 to nodes N3 and N4 to create the valuation node N14: Functional (was-

Bankrupt) and connections (N3, N14) and (N4, N14)

The resulting valuation network is shown in Fig. 4.1

4.4.4 Assigning mass distributions

After the nodes are combined into the network, the next step is to assign the mass dis-

tribution functions to the nodes. There are two kinds of variable nodes: (i) nodes rep-

resenting statements supported by the evidence and (ii) nodes representing inferred

statements. Initial mass distribution for the nodes of the first type is assigned based

on their extracted confidence. If a statement was extracted with a confidence degree c,

it is assigned the following mass distribution: m(True) = c,m(True;False) = 1− c.

It is possible that the same statement is extracted from several sources. In this case,

multiple pieces of evidence have to be combined using Dempster’s rule of combination.

Nodes created artificially during network construction are only used for propa-

gating beliefs from their neighbours and do not contain their own mass assignment.
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Table 4.2: Belief distribution functions for valuation nodes

N Node type Variables Mass distribution
1 X v Y I ∈ X, I ∈ Y m({0;0}, {0;1}, {1;1})=1
2 X ≡ Y I ∈ X, I ∈ Y m({0;0},{1;1})=1
3 X v ¬Y I ∈ X, I ∈ Y m({0;0},{0;1},{1;0})=1
4 X u Y I ∈ X, I ∈ Y , I ∈ X u Y m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1
5 X t Y I ∈ X, I ∈ Y , I ∈ X t Y m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
6 ¬X I ∈ X, I ∈ ¬X m({0;1},{1;0})=1
7 > v≤ 1R R(I, o1), R(I, o2) m({0;0},{0;1},{1;0})=1
8 > v≤ 1R− R(I2, I1), R(I3, I1) m({0;0},{0;1},{1;0})=1
9 R ≡ R− R(I1, I2), R(I2, I1) m({0;0},{1;1})=1
10 R ≡ Q R(I1, I2), Q(I1, I2) m({0;0},{1;1})=1
11 R v Q R(I1, I2), Q(I1, I2) m({0;0},{0;1},{1;1})=1
12 R ≡ Q− R(I1, I2), Q(I2, I1) m({0;0},{1;1})=1

13 Trans(R) R(I1, I2), R(I2, I3), R(I1, I3)
m({0;0;0},{0;0;1},{0;1;0},{0;1;1},
{1;0;0},{1;0;1},{1;1;1})=1

14 ≤ 1.R R(I1, o1), R(I1, o2), I1 ∈≤ 1.R m({0;0;1},{0;1;1},{1;0;1},{1;1;0})=1
15 ≥ 1.R R(I1, o1), R(I1, o2), I1 ∈≥ 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
16 = 1.R R(I1, o1), R(I1, o2), I1 ∈= 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;0})=1
17 ∀R.X R(I1, I2), I2 ∈ X, I1 ∈ ∀R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
18 ∀R.o1 R(I1, o1), I1 ∈ ∀R.o1 m({0;0},{1;0},{1;1})=1
19 ∀R.o1 R(I1, o2), I1 ∈ ∀R.o1 m({0;0},{0;1},{1;0})=1
20 ∃R.X R(I1, I2), I2 ∈ X, I1 ∈ ∃R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
21 ∃R.o1 R(I1, o1), I1 ∈ ∃R.o1 m({0;0},{1;1})=1
22 ∃R.> v X R(I1, I2), I1 ∈ X m({0;0}, {0;1}, {1;1})=1
23 > v ∀R.X R(I1, I2), I2 ∈ X m({0;0}, {0;1}, {1;1})=1

Valuation nodes represent the TBox axioms, specify how variable nodes influence

each other, and are used to propagate beliefs through the network. For crisp OWL

ontologies only mass assignments of 0 and 1 are possible. The principle for assign-

ing masses is to assign the mass of 1 to the set of all combinations of variable sets

allowed by the corresponding axiom. Table 4.2 shows the mass assignment functions

for OWL-DL T-Box axioms5. These rules together with the rules from Table 4.1

constitute the core part of our approach.

5For nodes allowing multiple operands (e.g., intersection or cardinality) only the case of two operands

is given. If the node allows more than two children, then the number of variables and the distribution

function are adjusted to represent the restriction correctly
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In our example we assign distributions to the variable nodes representing extracted

statements based on the extractor’s confidence values:

• N1:(m(1)=0.7, m({0;1})=0.3)

• N2:(m(1)=0.4, m({0;1})=0.6)

• N3:(m(1)=0.6, m({0;1})=0.4)

• N4:(m(1)=0.5, m({0;1})=0.5)

The valuation nodes obtain their distributions according to the rules specified in

Table 4.2:

• N6: m({0;0},{0;1},{1;0})=1 (rule 3, variables N1, N5)

• N7: m({0;0},{1;1})=1 (rule 2, variables N5, N8)

• N9: m({0;0},{1;1})=1 (rule 21, variables N2, N10)

• N11: m({0;0},{1;1})=1 (rule 21, variables N3, N12)

• N13: m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1 (rule 4, variables N10, N12, N8)

• N14: m({0;0},{0;1},{1;0})=1 (rule 7, variables N3, N4)

4.4.5 Belief propagation

The axioms for belief propagation have been formulated in [109]. The basic operators

for belief potentials are marginalisation ↓ and combination ⊗. Marginalisation takes a

mass distribution function m on the domain D and produces a new mass distribution

on the domain C ⊆ D.

m↓C(X) =
∑

Y ↓C=X

m(Y )
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For instance, if we have the function m defined on the domain {x, y} as m({0; 0}) =

0.2, m({0; 1}) = 0.35, m({1; 0}) = 0.3, m({1; 1}) = 0.15 and we want to find a

marginalisation on the domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and m(1) =

0.35 + 0.15 = 0.5. The combination operator is represented by Dempster’s rule of

combination:

m1 ⊗m2(X) =

∑
X1∩X2=X m1(X1)m2(X2)

1−
∑

X1∩X2=�m1(X1)m2(X2)

Belief propagation is performed by passing messages between nodes according to the

following rules:

1. Each node sends a message to its inward neighbour (towards the root of the

tree). If µA→B is a message from A to B, N(A) is a set of neigbours of A and

the potential of A is mA, then the message is specified as a combination of

messages from all neighbours except B and the potential of A:

µA→B = (⊗{µX→A|X ∈ (N(A)− {B})⊗mA})↓A∩B

2. After a node A has received a message from all its neighbours, it combines all

messages with its own potential and reports the result as its marginal.

As the message-passing algorithm assumes that the graph is a tree, it is necessary to

eliminate loops. All valuation nodes constituting a loop must be replaced by a single

node with the mass distribution equal to the combination of mass distributions of its

constituents. Once the graph does not contain loops, any node can be selected as the

root one. The marginals obtained after propagation for the nodes corresponding to

initial ABox assertions will reflect updated mass distributions. After the propagation

we can remove the statement with the lowest plausibility from each of the MISOs

found at the diagnosis stage.
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In our test example we can select the node N6 as a root (any other node would

be appropriate as well), then process inward messages and finally produce marginals

starting from the root node and proceeding towards the leaves of the tree. The first

steps of the process will look like the following:

• N1 → N6: variable N1, belief (m(1)=0.7, m({0;1})=0.3)

• N4 → N14: variable N4, belief (m(1)=0.5, m({0;1})=0.5)

• N14 → N3:

– extending the domain of the message from N4 to the domain of N14: vari-

ables N3, N4, belief (m({0;1},{1;1})=0.5, m({0;0},{0;1},{1;0},{1;1})=0.5)

– combining N14 own distribution with the message from N4: variables (N3,

N4), belief m({0;1})=0.5· 1=0.5, (m({0;0},{0;1},{1;0})=0.5· 1=0.5

– obtaining the marginal for N3: variable N3, belief m(0) = 0.5, m({0; 1}) =

0.5

• N3 → N11: variable N3, belief m(0)= 0.4·0.5
1−0.6·0.5 ≈ 0.29, m(1)= 0.6·0.5

1−0.6·0.5 ≈ 0.43,

m{0;1}= 0.4·0.5
1−0.6·0.5 ≈ 0.29

• N11 → N12: variable N12, belief m(0)≈ 0.29, m(1)≈ 0.43, m{0;1}≈ 0.29

• N12 → N13: variable N12, belief m(0)≈ 0.29, m(1)≈ 0.43, m{0;1}≈ 0.29

• N2 → N9: variable N2, belief m(1)=0.4, m({0;1})=0.6

• N9 → N10: variable N10, belief m(1)=0.4, m({0;1})=0.6

• N10 → N13: variable N10, belief m(1)=0.4, m({0;1})=0.6
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Table 4.3: Support and plausibility values for the example scenario

Statement
Before propagation After propagation

Support Plausibility Support Plausibility
A1: RiskyApplicant(Ind1) 0.70 1.0 0.66 0.94
A2: wasBankrupt(Ind1, False) 0.60 1.0 0.35 0.58
A3: hasCitizenship(Ind1, UK) 0.40 1.0 0.32 0.80
A4: wasBankrupt(Ind1, True) 0.50 1.0 0.33 0.65

• . . .

Continuing in this way, we obtain the following Dempster-Shafer plausibility val-

ues for ABox statements: Pl(A1)=0.94, Pl(A2)=0.58, Pl(A3)=0.8, Pl(A4)=0.65 (see

Table 4.3). In order to make the ontology consistent, it is sufficient to remove from

both conflict sets an axiom with the lowest plausibility value (A2). In this example,

we can see how the results using Dempster-Shafer belief propagation differ from the

Bayesian interpretation. Bayesian probabilities, in this case, are calculated in the

same way as Dempster-Shafer support values. If we use confidence values as prob-

abilities and propagate them using the same valuation network, we will obtain the

results: P(A1)=0.66, P(A2)=0.35, P(A3)=0.32 and P(A4)=0.33. In this scenario,

we would remove A3 and A4 because of the negative belief bias. Also we can see that

all three statements A2, A3 and A4 will be considered wrong in such a scenario (the

resulting probability is less than 0.5). The Dempster-Shafer approach provides more

flexibility by making it possible to reason about both support (“harsh” queries) and

plausibility (“lenient” queries).

4.4.6 Implementation

We have implemented the algorithm described above to be used within the KnoFuss

architecture. The inconsistency detection stage was implemented as a method for
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the dependency identification task in the KnoFuss workflow (Fig. 3.1). The network

construction and belief propagation stages constituted a single method for the depen-

dency resolution task. Both methods were implemented in Java6 using the OWL-API

library7 to work with OWL axioms and the Pellet reasoner8 to perform ontological

diagnosis for the inconsistency detection. Due to the time complexity of the proce-

dure, its use is primarily intended for the scenarios where fusion is performed off-line,

as we assumed in Chapter 1. As described in section 4.4, the algorithm includes four

steps:

• Inconsistency detection.

• Constructing a belief network.

• Assigning mass distributions.

• Belief propagation.

Inconsistency detection is performed using Reiter’s diagnosis algorithm and the on-

tological reasoner Pellet, which computes atomic conflict sets. The latter is based

on the tableaux algorithm with a number of optimisations9. However, in the gen-

eral case this algorithm still has an exponential complexity. The Reiter’s algorithm

implements breadth-first tree search which also has an exponential time complexity

with respect to the depth of the tree. Constructing a belief network and assigning

mass distributions involve the application of rules to OWL axioms and have linear

complexity. The belief propagation procedure in valuation networks also has linear

6http://java.sun.com
7http://owlapi.sourceforge.net/
8http://clarkparsia.com/pellet/
9http://www.mindswap.org/papers/PelletJWS.pdf
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complexity with respect to the number of edges of the graph: each message passes

each edge once in each direction. However, Dempster’s rule of combination, which

combines beliefs at each node, also has an exponential time complexity with respect

to the size of the frame of discernment Ω. Again, in the worst-case scenario when

all nodes are included in loops, they have to be replaced with a single node with the

frame of discernment including all elements from initial nodes. Thus, although in

most real use cases we can expect conflict sets to be of small size (e.g., only three

axioms in a common case of a functional property value conflict), in the worst-case

scenario (e.g., involving many transitive properties) the effects of the exponential

complexity can be significant.

4.5 Summary

In this chapter, we described how the Dempster-Shafer theory of evidence can be

used for dealing with ABox-level inconsistencies produced by inaccurate information

extraction and human errors. Based on our analysis of related approaches (section

4.2) we selected the Dempster-Shafer formalism as an answer for the research question

4: “What kind of uncertainty management framework is suitable for fusion?”

Then, we described the algorithm, which uses the structure defined by the on-

tology to propagate and update initial beliefs of ontological statements (ABox asser-

tions) and, subsequently, resolve inconsistencies by selecting assertions most likely

to be incorrect. This algorithm contributes to answering the research question 5:

“How can we exploit uncertainty and provenance information to improve the fusion

performance?”



Chapter 5

Refining instance coreferencing

results using belief propagation

In Chapter 3 we outlined the fusion workflow (section 3.5) and formulated the depen-

dency processing requirement (section 3.2), which stated the need to analyse interde-

pendencies between data statements and decisions made at the earlier stages of the

workflow. The knowledge base updating task in the workflow is aimed at performing

this analysis. This chapter describes a novel method we have developed for tackling

this task. The method uses the Dempster-Shafer theory of evidence for reasoning

about and refining the results of the coreference resolution stage of the workflow.

Hence, this method further develops the belief propagation approach described in

Chapter 4. The method takes as input a set of candidate mappings between in-

dividuals produced by coreference resolution methods and refines this set, deleting

some mappings likely to be incorrect and inferring new mappings implied by exist-

ing ones. Specifically, we take into account coreference mappings, data statements,
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and additional information about the features of sources and mutual influence be-

tween mappings when constructing a belief network, and we re-estimate the validity

of mappings using belief propagation.

This chapter is based on the following publication:

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2008). Refining

instance coreferencing results using belief propagation. 3rd Asian Semantic

Web Conference (ASWC 2008), Bangkok, Thailand.
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5.1 Introduction

In Chapter 3 we described the KnoFuss framework and outlined its workflow, which

focuses on two main fusion problems: coreference resolution and inconsistency resolu-

tion. In Chapter 4 we presented a method based on the valuation network framework

[108], which uses belief propagation to resolve inconsistencies occurring when two

knowledge bases are fused. This method takes the results of the coreference reso-

lution stage as input, identifies cases when inconsistency occurs, updates the belief

values of ABox statements contributing to the conflict, and selects and deletes the

least reliable statements. The scope of this initial method was limited by its task:

it only considers situations in which there is a logical inconsistency, and it can only

provide negative evidence, where one statement indicates that some other statements

are incorrect. This negative evidence can be used to delete some statements from the

resulting knowledge base. In this chapter we present a generalised method which ex-

tends the belief propagation framework and uses additional information to refine and

improve the results of the coreference resolution stage. We consider three relevant

factors:

• Ontological schema restrictions. Constraints and restrictions defined by the

schema (e.g., functionality relations) may provide both negative and positive

evidence. In the latter case one statement reinforces other statements providing

further information that they are correct. For instance, having two individuals

as objects of a functional property with the same subject should reinforce a

mapping between these individuals. The reverse also applies: the fact that

two potentially identical individuals belong to two disjoint classes should be
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considered as negative evidence.

• Coreference mappings between other entities (context mappings). Even if there

is no explicit functionality restriction defined for an ontological property, rela-

tions between individuals may still reduce ambiguity: the fact that two similar

individuals are both related to a third one may strengthen the confidence of

the mapping.

• Provenance data. Knowledge about the quality of data may be used to assign

confidence values to class and property assertions. This is important when

we need to judge whether a mapping, which violates the domain ontology,

is incorrect or the conflict is caused by a data statement. Knowledge about

the “cleanness” of a source (e.g., whether duplicates occur in a given source)

provides additional evidence about potential mappings.

In the previous chapter we considered the uncertainty degrees of the data statements

in merged knowledge bases. The new factors listed above also require dealing with

uncertainty. Mappings are created by attribute-based matching algorithms, which do

not provide 100% precision. Different ontological relations have different impact as

evidence for mappings: if two similar foaf:Person individuals are both connected to a

sweto:Publication individual via a sweto:author relation, this provides much stronger

evidence supporting an identity mapping, than if they were related to a tap:Country

individual #USA via a #citizenOf relation. All these kinds of uncertainty have to

be captured and managed. The basic algorithm presented in chapter 4 has to be

significantly extended to handle a more general task.
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5.2 Refining coreference mappings

The method receives as its input a set of candidate mappings between individuals

in source and target knowledge bases. In order to perform belief propagation, these

mappings, along with relevant parts from both knowledge bases, must be translated

into valuation networks. Building a large network from complete knowledge bases

is both computationally expensive and unnecessary, as not all triples are valuable

for analysis. Hence, we select only relevant triples considering only statements and

axioms which mutually influence each other. First, as in Chapter 4, these include the

statements which, when taken together, lead to a conflict. Moreover, we include into

the analysis the statements which can provide positive evidence and reinforce the

belief values of some owl:sameAs mappings: these include instantiations of explic-

itly defined functional and inverse functional properties, but also other “influential”

properties which provide implicit evidence (we will discuss such properties in section

5.2.2). Conflicts are detected by selecting all statements in the neighbourhood of

potentially mapped individuals and checking their consistency with respect to the

domain ontology (to this purpose we use the Pellet OWL reasoner with the explana-

tion service). If the reasoner finds an inconsistency, all statements which contribute

to it are considered relevant.

Then, belief networks are constructed by applying the rules defined in [86] and

the extended set described in section 5.2.1, and initial beliefs are assigned to variable

nodes. For each owl:sameAs variable node a belief value is determined according

to the precision of the corresponding coreferencing algorithm which produced the

owl:sameAs mapping. A coreference resolution algorithm can produce two kinds of
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mappings: “probably correct” ones, exceeding the optimal similarity threshold for the

algorithm (the one, which maximised the algorithm’s F-measure performance), and

“possibly correct” ones with similarities below the optimal threshold, but achieving

at least 0.1 precision. Each variable node representing a class or property assertion

receives its initial belief score based on its attached provenance data: the reliability

of its source and/or its extraction algorithm. After that the beliefs are updated using

the belief propagation procedure described in Chapter 4, and for each mapping a

decision about its acceptance is taken.

The most significant part of the algorithm is network construction. At this stage

we exploit the factors listed in section 5.1. In the following subsections we describe

how this is done in more detail.

5.2.1 Exploiting ontological schemata

Logical axioms defined by a schema may have both positive and negative influence

on mappings. First, some OWL axioms impose restrictions on the data. If creat-

ing an owl:sameAs relation between two individuals violates a restriction, the con-

fidence of the mapping should be reduced. Second, object properties defined as

owl:FunctionalProperty and owl:InverseFunctionalProperty allow us to infer equiva-

lence between individuals. Finally, having an owl:sameAs relation between a pair of

individuals may directly contradict an owl:differentFrom relation between the same

individuals. When we developed our initial algorithm, we considered the situation

after the instance coreference resolution decisions have been applied and tried to find

and resolve inconsistencies in an already fused ontology. Thus, the original set of

rules described in Chapter 4 does not allow reasoning about uncertain coreference
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Table 5.1: Extended belief network construction rules

N Axiom Pre-conditions Nodes to create Links to create

1 sameAs I1 = I2
N1 : I1 = I2

(variable)

2 differentFrom
I1 6= I2 N1 : I1 6= I2

(variable)

3 sameAs
N1 : I1 = I2 (variable), N3 : I1 = I2 (N1,N3),(N2,N3),
N2 : R(I2, I3) (valuation), (N3,N4)

N4 : R(I1, I3)

4 differentFrom
N1 : I1 = I2 (variable), N3 : I1 6= I2 (N1,N3),(N2,N3)
N2 : I1 6= I2 (variable) (valuation)

5
Functional > v≤ 1R, N1 : R(I3, I1),

N4 : > v≤ 1R
(N1,N4),(N2,N4),

Property N2 : R(I3, I2), N3 : I1 = I2 (N3,N4)

6
InverseFunctional > v≤ 1R−, N1 : R(I1, I3),

N4 : > v≤ 1R−
(N1,N4),(N2,N4),

Property N2 : R(I2, I3), N3 : I1 = I2 (N3,N4)

resolution decisions and is insufficient for reasoning about coreference relations. To

resolve this issue, we developed an extended set of rules, which allow us to process

the subontologies containing uncertain owl:sameAs relations and reason about them.

In this section, we present this novel set of additional rules. Table 5.1 contains the

translation rules and Table 5.2 lists the additional belief assignment functions for

corresponding valuation nodes.

The owl:sameAs axiom and its opposite, owl:differentFrom, are special in com-

parison with others, which we considered in Chapter 4. While they belong to the

ontology ABox and represent relations between instances, they also define schema-

level rules, which allow new statements to be inferred. To capture this situation,

each owl:sameAs statement leads to the creation of two types of nodes. First, for an

owl:sameAs statement we create a variable node in the belief propagation network

and assign its support value (usually, according to the estimated precision of the

algorithm which produced it) (rule 1). Then, this node is used as a pre-condition

for inferring new statements: if one individual from a pair linked by the owl:sameAs
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relation is a subject or an object of a statement, then the statement holds for another

individual as well. This is captured by rule 3, which creates a owl:sameAs valuation

node and a variable node corresponding to the inferred statement. owl:differentFrom

creates a variable node as well (rule 2), but it is connected to the network only if

there is already a owl:sameAs variable node corresponding to the link between the

same individuals.

Another change concerns owl:FunctionalProperty and owl:InverseFunctionalProperty

axioms. Their interpretation is changed in comparison with the interpretation in sec-

tion 4.4.3. Chapter 4. After applying coreference resolution decisions to a knowledge

base, when an individual had different property values for a functional property, only

two possibilities were considered: that either one of the statements is incorrect. How-

ever, when reasoning about coreferencing results, a third option can be considered:

that two values are in fact the same. Rules 5 and 6 refer to this issue. To avoid

spurious owl:sameAs relations being inferred, we use a restriction: valuation nodes

corresponding to functional and inverse functional property axioms can only be linked

to already existing owl:sameAs nodes. In this way, they can only increase similarity

between individuals, which were already considered potentially equal. Otherwise the

functionality node is treated as in Chapter 4: as a strict constraint violated by two

property assertion statements. Belief distribution functions are assigned using the

same principle as in Chapter 4: all belief mass (1) was assigned to a set of all possible

combinations of variable truth values, except for those forbidden by the corresponding

ontological axiom.

To illustrate the work of the algorithm we will use an example with datasets from

the citations domain. One dataset (DBLP) contains an individual Ind1 describing
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Table 5.2: Extended belief distribution functions for valuation nodes

N Axiom Node type Variables Mass distribution

1 sameAs I1 = I2 I1 = I2, R(I1, I3), R(I2, I3)
m({0;0;0}, {0;0;1},
{0;1;0}, {0;1;1},
{1;0;0}, {1;1;1})=1

2 differentFrom I1 6= I2 I1 = I2, I1 6= I2 m({0;1},{1;0})=1

3
Functional

> v≤ 1R R(I3, I1), R(I3, I2), I1 = I2

m({0;0;0}, {0;0;1},
Property {0;1;0}, {1;0;0},

{1;1;1})=1

4
Inverse

> v≤ 1R− R(I1, I3), R(I2, I3), I1 = I2

m({0;0;0}, {0;0;1},
Functional {0;1;0}, {1;0;0},
Property {1;1;1})=1

the following paper:

D. Corsar, D. H. Sleeman. Reusing JessTab Rules in Protege. Knowledge-Based Systems 19(5).

(2006) 291-297.

Another one (EPrints) also contained a paper Ind2 with the same title:

Corsar, Mr. David and Sleeman, Prof. Derek. Reusing JessTab Rules in Protege. In Proceed-

ings The Twenty-fifth SGAI International Conference on Innovative Techniques and Applications of

Artificial Intelligence (2005), pages pp. 7-20, Cambridge, UK.

This illustrates a common case where the same group of researchers first publishes

their research results at a conference and then submits the extended and revised pa-

per to a journal. An attribute-based coreferencing algorithm (Jaro-Winkler similarity

applied to the title) with a good overall performance on the dataset (precision about

0.92 and F-measure about 0.94) incorrectly considered these two papers identical.

However, a mapping between these individuals violated two restrictions: the individ-

ual belonged to two disjoint classes simultaneously and had two different values for

the functional property year. The inconsistencies were detected by the conflict detec-

tion algorithm, which produced two sets of relevant statements: {owl:sameAs(Ind1,
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Figure 5.1: Example of a belief network including a coreference relation. The num-
bers show the support before propagation and, in brackets, support and plausibility
after propagation. Ind1 and Ind2 represent two papers with the same title: the jour-
nal article and the conference paper respectively. The owl:sameAs link between them
(Ind1=Ind2 ) has a high initial support (0.92), but violates two ontological restric-
tions: disjointness between journal and conference articles (left part of the graph) and
functionality of the publication year property (right). As a result, after propagation
it receives both low support and low plausibility.

Ind2); Article(Ind1); Article in Proceedings(Ind2); owl: disjointWith(Article, Ar-

ticle in Proceedings)} and {owl:sameAs(Ind1, Ind2); year(Ind1, 2006); year(Ind2,

2005); owl: FunctionalProperty(year)}. Since these sets share a common state-

ment (sameAs link), they are translated into a single valuation network (Fig. 5.1).

Although in our example the initial support of the mapping was higher than the sup-

port of both statements related to Ind2 (Article in Proceedings(Ind2) and year(Ind2,

2005)), after belief propagation the incorrect owl:sameAs mapping was properly

recognised and received the lowest plausibility (0.21).

5.2.2 Influence of context mappings

Belief propagation for properties explicitly defined as functional is a trivial case,

which can be handled by direct application of the rules defined in tables 5.1 and

5.2. However, properties which allow multiple values are also valuable as a means

to narrow the context of matched individuals and increase similarity between them.

We have to estimate the impact of the relation and model this in the network. As
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shown in Table 5.2 (row 1), by default the valuation node for the owl:sameAs relation

is defined in such a way that the belief in I1 = I2 is completely independent from

a strong belief for both R(I3, I1) and R(I3, I2). The functionality axiom represents

an opposite scenario: having a belief 1.0 for both R(I3, I1) and R(I3, I2) implies

the belief 1.0 for I1 = I2. The actual strength of influence for a property may lie

between these extreme cases. In order to utilise such links the network construction

algorithm receives for each relevant property a vector < n1, n2 >, where n1 and

n2 determine the impact of the link in the forward (subject to object) and reverse

(object to subject) directions respectively. The impact in the two directions may

be different: having two people as first authors of the same paper strongly implies

their equivalence, while having the same person as the first author of two papers

with a similar title does not increase the probability of two papers being the same.

The owl:sameAs valuation node, combining variables I1 = I2, R(I2, I3), R(I1, I3) will

receive two belief assignments instead of one: m({0;0;0}, {0;0;1}, {0;1;0}, {1;0;0},

{1;1;1})=n1 and m({0;0;0}, {0;0;1}, {0;1;0}, {0;1;1}, {1;0;0}, {1;1;1})=1− n1. One

possible way to determine coefficients < n1, n2 > is to learn them from training data.

Also, some relevant relations may be implicit and undefined in the ontology. For

instance, the same group of people may be involved in different projects. If the

link between a project and a person is specified using a property akt:has-project-

member, when two knowledge bases describing two non-overlapping sets of projects

are combined, the relations between people cannot be utilised. In order to capture

these implicit relations we can add artificial properties, which connect individuals

belonging to the same sets, into the ontology. Co-authorship analysis, commonly

used in the citation matching domain, is a special case of this scenario. In Fig. 5.2a
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Figure 5.2: Examples of belief networks illustrating different evidence types: (a) the
usage of artificial set membership relations (section 5.2.2) and (b) processing com-
peting mappings knowing that a source does not contain duplicates (section 5.2.3).
The numbers show the belief before propagation and belief and plausibility after
propagation.

an example of the use of co-authorship relations is shown. Two people, “Webber,

B. L.” and “Bard, J. B. L.”, are co-authors of a paper mentioned in the source

knowledge base. The same people are also mentioned as co-authors of a different

paper in the target knowledge base, but under different names (“Bonnie L. Webber”

and “Jonathan Bard”). Although the string similarity-based coreference resolution

method was able to find an equivalence between “Webber, B. L.” and “Bonnie L.

Webber” with a high degree of confidence (0.84), it assigned a low confidence to the

mapping between “Bard, J. B. L.” and “Jonathan Bard” (0.16). However, in our

tests, co-authorship relation had a strong impact (n1 = 0.95, n2 = 0.95), and we

were able to reinforce the mapping between “Bard, J. B. L.” and “Jonathan Bard”:

resulting support value was 0.84.
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5.2.3 Provenance data

The estimated reliability of a source is directly used at the starting stage when ini-

tial beliefs are assigned to variable nodes representing class and property assertions.

Thus, if a violation of a functional restriction is caused by a property assertion with

a low belief, its impact will be insufficient to break the owl:sameAs link. Another

important factor is the knowledge about duplicate individuals in a knowledge base.

For instance, one knowledge base (AGROVOC) contains an individual fao:arlington.

If we match AGROVOC against the UTexas geographical ontology, which contains

two individuals “arlingtonVa” and “arlingtonTx”, two pairs will be matched. Al-

though the similarity of one pair is slightly greater than another one, both values are

above the threshold and both these individuals can potentially be matched to the first

individual. However, knowing that this particular knowledge base does not contain

duplicates, allows us to add a corresponding owl:differentFrom variable node into

the network (Fig.2b). Updating beliefs allows us to reject one of the two competing

options.

5.3 Summary

In this chapter we described the generalisation of the Dempster-Shafer belief propa-

gation algorithm to the problem of refining coreference resolution results. The goal of

the algorithm is to capture and utilise the interdependencies between pieces of data

in order to make decisions about what information should be put into the knowledge

base. These decisions are made based on the measured and updated uncertainty of

pieces of data. The initial version of the algorithm presented in Chapter 4 took into
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account only one type of interdependencies (logical inconsistency) and only one source

of uncertainty (confidence assigned to data statements). Statements contributing to

a logical inconsistency provided mutual negative evidence. In this chapter we have

shown how the algorithm can be extended by considering other patterns of interde-

pendencies in data and another source of uncertainty: decisions made by algorithms

at the earlier stages of the fusion workflow (coreference resolution). This method

further contributes to answering the research question 5: “How can we exploit un-

certainty and provenance information to improve the fusion performance?”



Chapter 6

Evaluation

In this chapter we describe the results of experiments we have performed to test

the framework and the algorithms described in previous chapters. First, the use of

application contexts to aid machine learning algorithms for coreference resolution is

tested (see Chapter 3). Then, the results of these experiments are used to test the

inconsistency resolution approach described in Chapter 4 and the more generic belief

propagation approach described in Chapter 5.

139
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6.1 Introduction

Experiments were carried out to demonstrate the applicability of the following as-

pects:

• The architecture and the problem-solving method selection approach, in partic-

ular, using the class hierarchy for method configuration as described in section

3.8. This approach was proposed as a contribution to addressing research ques-

tion 3: “How can we exploit axioms defined in domain ontologies to improve

the performance of fusion algorithms?”

• The applicability of the belief propagation algorithm for inconsistency resolu-

tion and coreference refinement. First, these tests were needed to check the

suitability of the Dempster-Shafer formalism as an answer to research question

4: “What kind of uncertainty management framework is suitable for fusion?”.

Second, we wanted to verify the appropriateness of belief propagation based on

valuation networks as a means to address question 5: “How to exploit uncer-

tainty and provenance to improve fusion performance?”

A common way of measuring the quality of data fusion is calculating precision and

recall measures by comparing the results obtained automatically with a manually

constructed gold standard. So selecting appropriate datasets was the primary issue

when we prepared the evaluation setup. In order to test the aspects we were interested

in, the datasets had to possess several features.

First, the datasets had to cover the same domain and have overlapping sets of

instances. From these overlapping sets we needed to construct the actual gold stan-

dards to measure precision and recall. At the same time, the datasets need to use
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different URI assignment schemes and, preferably, use different literal formats to de-

scribe individuals referring to the same entities, so that the coreference resolution

stage did not become trivial.

Second, we needed a domain ontology with certain properties to be used by the

datasets. In particular, in order to perform the first part of the tests we needed to

have at least two classes with a common superclass and both of these classes needed

to have individuals attached to them. To perform the second part of the tests, the

ontology needed to contain restrictions which could lead to inconsistencies and be

used to detect them.

Third, there was the need for initial belief assignments to test inconsistency res-

olution and coreference refinement using belief propagation. These were not directly

important for the first part of our tests: usage of the class hierarchy for method con-

figuration. However, these tests involved the coreference resolution stage of the fusion

process and the results obtained at this stage could be reused for the coreference re-

finement stage. For this reason, it made sense to use the same datasets for both parts

of the tests. Because the goal of belief propagation is to reveal incorrect statements,

the datasets needed to contain sufficient errors to provide illustrative examples.

Finally, to create the gold standard, we needed to be able to determine ourselves

which statements were incorrect, so some highly specialist datasets were not suitable.

Also, the identity of individuals had to be non-ambiguous and it had always to be

possible to decide whether any two individuals were equivalent or not.

Because of this last requirement, we have chosen the domain of scientific publica-

tions: on each conflict it is relatively simple to find out manually, which statement

or which coreferencing link is incorrect. We tried to select datasets constructed in
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different ways so that we could rank the reliability of their data. Thus, one of our

datasets was constructed automatically from reliable sources (DBLP), one was auto-

matically created using information extraction from text (Rexa) and another one was

manually created by the authors of papers (AKT EPrints). Initial belief functions

were assigned according to this provenance information as well as manual checking of

annotations. These datasets contained publications of two different disjoint categories

(journal articles and conference papers), which had a common superclass representing

generic publications. We translated all these datasets according to a common domain

ontology (SWETO-DBLP) and used them in both parts of our tests.

Additionally, for the second part of our tests we used a common Cora dataset,

created as a benchmark in the database community. However, this does not satisfy

all of the above requirements: different publication subtypes are not distinguished

and the provenance of different statements is not preserved. Hence, we had to assume

that all statements have the same reliability. Thus, this dataset could only be used

to test the coreference refinement procedure.

In the following sections we describe both parts of our tests. First, section 6.2

covers the tests of the context-dependent method configuration technique. Then, sec-

tion 6.3 discusses the evaluation of our Dempster-Shafer belief propagation approach.

Each section contains a description of the experimental setup and a discussion of the

results.



143

6.2 Context-dependent method configuration

When designing our architecture described in Chapter 3, we formulated the gran-

ularity requirement, which stated that a method could be invoked with different

parameters for different types of data. The goal of this was to allow the method’s

settings to be optimised for a specific subset of data from the knowledge base. One of

the ways to obtain optimal parameters is the use of machine learning techniques. In

section 3.8 we discussed how to use the class hierarchy defined in the domain ontology

in order to manipulate the set of available training instances and produce optimal

method configuration parameters. Our experiments described in this section were

performed to validate this method configuration procedure, in particular, combining

training instances from different subclasses to generate a generic decision model for

a superclass.

6.2.1 Experimental setup

In our tests we compared the performance of coreference resolution algorithms when

applied to instances of classes at different levels of the class hierarchy. In particular,

we were interested in the quality of coreference resolution as well as the robustness

of the obtained decision models. In order to test the system, we used the following

datasets from the domain of scientific publications:

• AKT EPrints archive1. This dataset contains information about papers pro-

duced within the AKT research project.

1http://eprints.aktors.org/
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• Rexa dataset2. The dataset extracted from the Rexa search server, which was

constructed at the University of Massachusetts using automatic IE algorithms.

• SWETO DBLP dataset3. This is a publicly available dataset listing publications

from the computer science domain.

The SWETO-DBLP dataset was originally represented in RDF. Two other datasets

(AKT EPrints and Rexa) were extracted from the HTML sources using specially

constructed wrappers and structured according to the SWETO-DBLP ontology (Fig.

6.1). The ontology describes information about scientific publications and their au-

thors and extends the commonly used FOAF ontology4. Authors are represented as

individuals of the foaf:Person class and a special class sweto:Publication is defined

for publications as an extension of the class foaf:Document. We consider two relevant

datatype properties used for sweto:Publication individuals: the standard rdfs:label

property expressing the title of a publication and sweto:year denoting the publica-

tion year. Several subclasses are defined for the generic class sweto:Publication to

describe different types of publications. We considered two of them as they were

represented in all three datasets: sweto:Article, which includes journal publications,

and sweto:Article in Proceedings, which includes publications in conference proceed-

ings. Additional properties were defined for individuals of these classes to store the

publication venue: sweto:journal name and sweto:volume for journal articles and

sweto:booktitle for articles in proceedings.

Experiments were performed with the following matching algorithms:

2http://www.rexa.info/
3http://lsdis.cs.uga.edu/projects/semdis/swetodblp/august2007/opus august2007.rdf
4http://xmlns.com/foaf/spec/
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Figure 6.1: SWETO-DBLP ontology: class hierarchy and restrictions

• Jaro-Winkler metrics directly applied to the label.

• L2 Jaro-Winkler applied to the label.

• Average L2 Jaro-Winkler over the properties of the class Publication.

• Average L2 Jaro-Winkler over all available properties.

• Adaptive learning clustering algorithm employing TF-IDF and N-gram metrics

[97].

The Jaro-Winkler algorithm was used as a representative of string matching algo-

rithms: it outperformed Levenshtein on our dataset during the preliminary tests and

was specifically designed to work with peoples’ names, which were part of our data.

L2 Jaro-Winkler is a mixture of string similarity and set similarity measures: it to-

kenises both compared values, then each pair of tokens is compared using the standard

Jaro-Winkler algorithm and the maximal total score is selected. It is able to work

in cases when the order of words in a multi-word string value is not important for

establishing their identity (e.g., “Enrico Motta” and “Motta, Enrico”). We assumed
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that the algorithms did not have any domain-specific knowledge, so such common

techniques as analysing co-authors to disambiguate a person were not used. The

links between papers and authors were not exploited either. The process was struc-

tured as follows. First, we trained each algorithm to recognise matching individuals

of each direct class (Person, Article and Article in Proceedings). For this, a subset

of available individuals of each class was selected as the training set, and a decision

model was learned from this training set (for the string similarity techniques the only

parameter of the model was the optimal threshold). Then, we ran the algorithms

with the learned parameters and measured their performance. Then, we combined

the individuals of classes Article and Article in Proceedings and performed the same

tests for their superclass Publication. In this case, the training set was larger, but

only the properties common for individuals of both classes were available.

6.2.2 Experimental results

The results of our tests are given in Table 6.1. As a performance metric we used

the commonly employed F1 measure, which combines precision and recall. In the

coreference resolution task, as in the generic classification task, the precision is defined

as p = tp
tp+fp

, where tp is the number of true positives (correct mappings returned by

the algorithm), and fp is the number of false positives (mappings returned by the

algorithm, but not correct). Accordingly, the recall is defined as p = tp
tp+fn

, where fn

is the number of false negatives (correct mappings which were not discovered by the

algorithm). The F1 measure calculated as F1 = 2pr
p+r

.

We performed tests for each class and each method 5 times, each time randomly

selecting 1/3 of individuals belonging to a class as a training set. In Table 6.1 we give
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Table 6.1: Test results: coreference resolution.

No Datasets Article Article in Publication Person
Proceedings

F1 σ F1 σ F1 σ F1 σ
AKT/Rexa
1 Direct Jaro-Winkler (label) 0.92 0.09 0.85 0.03 0.87 0.01 0.29 0.01
2 L2 Jaro-Winkler (label) 0.89 0.07 0.9 0.01 0.9 0.01 0.84 0.01
3 L2 Jaro-Winkler (label+year) 0.9 0.06 0.92 0.02 0.93 0.03
4 L2 Jaro-Winkler (all) 0.48 0.11 0.74 0.03
5 Clustering 0.69 0.39 0.85 0.043 0.82 0.045
AKT/DBLP
6 Direct Jaro-Winkler (label) 0.87 0.05 0.94 0.01 0.93 0.02 0.10 0.04
7 L2 Jaro-Winkler (label) 0.66 0.1 0.52 0.03 0.55 0.01 0.63 0.03
8 L2 Jaro-Winkler (label+year) 0.88 0.07 0.88 0.01 0.89 0.02
9 L2 Jaro-Winkler (all) 0.24 0.06 0.54 0.03
10 Clustering 0.75 0.16 0.9 0.03 0.83 0.09
Rexa/DBLP
11 Direct Jaro-Winkler (label) 0.9 0.04 0.91 0.01 0.92 0.01 0.90 0.03
12 L2 Jaro-Winkler (label) 0.7 0.03 0.7 0.01 0.7 0.01 0.72 0.04
13 L2 Jaro-Winkler (label+year) 0.93 0.02 0.88 0.05 0.89 0.01
14 L2 Jaro-Winkler (all) 0.89 0.02 0.89 0.02
15 Clustering 0.86 0.04 0.89 0.01 0.89 0.03

the average value of the F1 measure for 5 tests and its standard deviation. While

the average value of the F1 measure represented the quality of the output produced

by the algorithm, the standard deviation indicated the robustness of the decision

model. Given the same amount of training data, a more robust learning algorithm

is more likely to produce a decision model which achieves a certain quality of the

output mappings. Smaller standard deviation indicated that the number of training

individuals was sufficient for the learning algorithm to converge and the model was

closer to the optimal one. Robustness is an important feature of the model because

it allows estimating the quality of the method’s output when the method is reused.

Thus, in case of similar precision/recall performance of two models, a more robust

model is preferable.

In all our sets the majority of the Publication individuals belonged to the class

Article in Proceedings, while there were fewer Article individuals. The results in-

dicate that a decision model over the combined dataset (Publication) was usually

more robust (had smaller standard deviation) in comparison with the class with few
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training instances (Article). As expected, the gain in robustness was greater for the

more sophisticated machine learning clustering algorithm (rows 5, 10, 15) because

it required more training examples to learn an optimal decision model. Two factors

influenced the performance of the generic model learned from the combined set of

training examples. On the one hand, analysing more training data allowed better

classification accuracy to be achieved. Again, this factor was more relevant when

the class Article did not have sufficient individuals for the model to converge (rows

5, 10). On the other hand, sometimes the performance was lower due to spurious

mappings between instances belonging to different classes, when an Article individual

was mapped to an Article in Proceedings one. This latter problem can be handled at

the dependency processing stage, because such mappings lead to an inconsistency.

In general, we can summarise that the method configuration mechanism out-

lined in section 3.8 provides more flexibility in comparison with the generic scenario

(one set of parameters for the whole knowledge base, as in schema matching tools):

method configuration can be optimised for each specific type of data, and for each

class more appropriate methods and configuration settings can be selected. For ex-

ample, it is possible to use the L2 Jaro-Winkler metric for Person individuals and

the direct Jaro-Winkler one for publications, and to select between a generic model

for all publications and two different models for Article and Article in Proceedings

individuals.

However, there are also important factors which limit the methods’ reuse. First,

in order to reuse coreferencing methods between classes linked into a hierarchy we

have to assume that the properties significant for identifying the objects are inherited.

While this is a common pattern, which holds in our scenario, it may not be the case in
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all ontologies. Second, encoding mismatches between different datasets (mentioned

in section 7.2) can limit the reuse of a method if they are not known in advance.

For instance, a pair of labels “Sleeman, Derek” in EPrints and “Derek Sleeman” in

DBLP could not be captured by the direct Jaro-Winkler algorithm, which performed

best for the pair Rexa/DBLP.
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6.3 Exploiting data interdependencies using belief

propagation

6.3.1 Experimental setup

In order to test the belief propagation mechanism the same datasets were reused

together with the output of coreference resolution algorithms. Three constraints

were added into the SWETO-DBLP ontology:

• Classes opus:Article and opus:Article in Proceedings were stated as disjoint.

• The property opus:year (the year of publication) was defined as functional.

• The object property author connecting a publication with a set of authors was

defined as functional.

Also, two variations of another common testbed dataset called Cora were included

into consideration. These were:

1. Cora(I) dataset5. A citation dataset used for machine learning tests.

2. Cora(II) dataset. Another version of the Cora dataset used in [32].

The Cora(I) dataset was created at the University of Massachusetts for the purpose

of testing machine-learning clustering algorithms. It contains 1295 references and is

deliberately noisy: e.g., the gold standard contains some obviously wrong mappings6.

5http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz
6For instance, two papers by N. Cesa-Bianchi et al. “How to use expert advice. 25th ACM Symposium

on the theory of computing (1993) 382-391” and “On-line prediction and conversion strategies.

Eurocolt’93 (1993) 205-216” were considered the same in Cora(I).



151

We translated this dataset into RDF using the SWETO-DBLP ontology. The authors

of Cora(II) [32] translated the data from Cora(I) into RDF according to their own

ontology and cleaned the gold standard by removing some spurious mappings, so

the results achieved on Cora(I) and Cora(II) are not comparable. The data and the

gold standard mappings in Cora(II) are significantly cleaner than in Cora(I). Also

in Cora(II) all Person individuals were initially considered different while in Cora(I)

individuals with exactly the same name were assigned the same URI, which led to a

significant difference in the number of individuals (305 vs 3521) and, consequently,

in performance measurements. In our tests we tried to merge each pair of datasets

from AKT/Rexa/DBLP and to find duplicates in the Cora datasets (i.e., the same

dataset played the role of both the source and the target knowledge base). Given

that neither Cora dataset distinguishes between journal and conference articles, we

represented publication venues (specific journal issues or conference proceedings) as

individuals, and defined relations between papers and venues as functional. Also the

Cora(II) ontology described pages as two integer properties pageFrom and pageTo,

which allowed us to add a functionality restriction on them as well.

A priori belief masses were assigned based on information available about the

datasets. It was known that the AKT EPrints archive was created by the authors

themselves, who entered the data about their publications manually. The Rexa

dataset was extracted using automatic IE algorithms (the authors reported extrac-

tion accuracy of 0.97 and coreferencing accuracy “in the 90s”7.) However, sometimes

the information was incorrectly reported in the sources (e.g., when it was extracted

from a citation in a third-party publication), which lowers the actual quality of the

7http://www.rexa.info/faq
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data. The DBLP dataset was primarily constructed using the data reported in the

proceedings and journal contents, which makes it a more reliable source.

A priori mass assignment was performed in the following way. First, the data-

sources were ranked according to our confidence in their quality (DBLP > Rexa >

EPrints). As a rough clue to ranking the sources according to quality, the coreference

quality of the papers’ authors was used. Cases where the same author was referred

to in the same dataset using different labels were considered as an error and the per-

centage of correct individuals was calculated (for EPrints this percentage was 0.46,

for Rexa 0.63 and for DBLP 0.93). Then, we treated the class assignments as more

reliable than datatype property assignments because the IE algorithms used by Rexa

and the HTML wrappers sometimes made errors by assigning the wrong property

(e.g., venue instead of year) or by assigning the borders of the value incorrectly (e.g.,

dropping part of the paper’s title). Finally, for the Rexa dataset we had additional

information: each paper record had a number of citations indicating the number of

sources referring to the paper. We estimated the dependency between the reliabil-

ity of records and the number of citations by randomly selecting a subset of paper

records and manually counting the number of “spurious” records, which contained

some obvious error (e.g., like assigning the name of the conference as paper title).

We randomly selected 400 records for each value of the hasCitations property from

0 to 5 and counted the number of spurious records. If the total number of papers for

some interval was lower than 400, then we selected all available records in the inter-

val. Based on these reliability assignments, we adjusted the reliability of datatype

property assignments for the Rexa dataset.
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Table 6.2: Initial belief mass assignment

Dataset Class assertions Datatype assertions
DBLP 0.99 0.95

Rexa 0.95
0.81 (<2 citations)
0.855 (>2 citations)

EPrints 0.9 0.85
Cora(I & II) N/A 0.6

For Cora datasets we did not have the provenance of sources, from which each

citation was extracted. Publications in the Cora datasets were not further classified

into journal and conference articles, so class assertions were not relevant. Knowing

that the data in the Cora datasets were noisy, beliefs were assigned in such a way that

a disagreement on a single property value was not sufficient to break the mapping

(initial support of 0.6 was used). This led us to assign belief masses to the statements

from each source as shown in Table 6.2. Of course, such confidence estimation was

subjective, but we cannot expect it to be precise in most real-life scenarios, unless

the complete gold standard data is available in advance. Additionally, in order to

test the conflict resolution performance of the algorithm in a situation where the

quality of one of the data sources is low and to see the patterns of the inconsistency

resolution process, we introduced additional noise into our datasets. We did it in the

following way: for one of the datasets in the pair (the smaller one, EPrints or Rexa

depending on the case) we randomly mutated 40% of rdf:type assertions (changing

from Article to Article in Proceedings and vice versa) and opus:year assertions (by

+ or -1). The support belief mass of all statements in the dataset was proportionally

reduced: the values in the rows 2 and 3 in Table 6.2 were multiplied by 0.6. We

did not perform these tests with Cora(I) and Cora(II) because for them we only had

the gold standard for coreference resolution and did not know for sure which data
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statements were correct in case of a data value conflict.

For attribute-based coreferencing we used string similarity measures applied to a

paper title or person’s name. In particular, we used Jaro-Winkler and Monge-Elkan

metrics applied to whole strings or tokenised strings (L2 Jaro-Winkler). An initial

belief mass distribution for each owl:sameAs relation was assigned according to the

precision of the algorithm which produced it.

In the following two subsections we discuss the results of these tests. First, we fo-

cus on the capability of the belief propagation algorithm to find the correct resolution

of the conflict causing inconsistency. Thus, we only considered AKT/Rexa/DBLP

datasets for which we knew not only the correct coreference mappings, but also

correct and erroneous data statements. This allowed us to measure how well the

algorithm was able to resolve conflicts and how often it was able to determine which

statements or coreference mappings were incorrect. Moreover, we only considered

the cases of an ontological inconsistency, where some disjointness or functionality

restriction was violated. As a result, we only took into account individuals of the

class sweto:Publication, for which these restrictions had been defined.

Second, we considered the capability of the algorithm to improve the quality

of the coreference resolution stage and only focused on the quality of coreference

mappings before and after the refinement. At this stage we were able to consider

both Cora datasets and individuals of the class foaf:Person: for these individuals the

belief propagation algorithm could exploit positive evidence (inferring new mappings),

rather than negative evidence (violation of ontological restrictions). Thus, subsection

6.3.3 also subsumes the results reported in subsection 6.3.2, but focuses on different

aspects and describes more tests.
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Table 6.3: Test results: inconsistency resolution

No
Matching Total Matching Conflicts Conflict Matching
algorithm clusters precision found resolution precision

(before) accuracy (after)
EPrints/Rexa

1 Jaro-Winkler 88 0.95 9 0.61 0.97
2 L2 Jaro-Winkler 96 0.88 13 0.73 0.92

3
Jaro-Winkler

88 0.95 55 0.92 0.95
(mutated dataset)
EPrints/DBLP

4 Jaro-Winkler 122 0.92 12 0.83 0.99
5 L2 Jaro-Winkler 217 0.39 110 0.9 0.84

6
Jaro-Winkler

122 0.92 84 0.91 0.92
(mutated dataset)
Rexa/DBLP

7 Jaro-Winkler 305 0.9 21 0.73 0.94
8 L2 Jaro-Winkler 425 0.55 149 0.87 0.82

9
Jaro-Winkler

305 0.9 213 0.94 0.9
(mutated dataset)

6.3.2 Experimental results: inconsistency resolution

We measured the quality of inconsistency resolution by comparing the resulting rank-

ing produced after the belief propagation with the “correct” conflict resolution. A

conflict was considered correctly resolved if the genuinely incorrect statements got

the lowest belief after propagation. In cases where a conflict set contained several

incorrect statements and only some of them were correctly recognised, we assigned

a reduced score to such a conflict (e.g., 0.33 if only one statement out of three was

properly recognised as wrong). Incorrect statements which received low support but

were plausible counted as 0.5 of a correct answer. The results we obtained are given

in Table 6.3. Since the inconsistency resolution procedure only utilised negative types

of evidence, in the table we only give the changes of precision. Since in our use case

the conflicts occurred because of incorrect data, applying high-precision matching
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algorithms to the original datasets resulted in very small numbers of conflicts. Thus,

the results obtained in such experiments (rows 1, 2, 4, 7) only illustrate common

cases rather than provide reliable quantitative evaluation. As was expected, the al-

gorithm’s performance was better in “trivial” cases when the wrong statement had an

a priori support significantly lower than the statements with which it was in conflict.

This was the most frequent pattern in the experiments with low-precision matching

algorithms (rows 5, 8) and artificially distorted datasets (rows 3, 6, 9). In more

complex cases, if the conflict set contained a correct statement with a lower support

than the actual wrong statement, the algorithm was still able to resolve the conflict

correctly if additional evidence was available. One typical cause of such a conflict

was the situation mentioned in section 5.2.1 when the same authors first presented a

paper in a conference and after that published its extended version in a journal. For

instance, a belief network built for such a case is shown in Fig. 6.2a. The individual

Ind1 represents a journal article published in 2006, and the individual Ind2 repre-

sents a conference paper published in 2005. The Jaro-Winkler coreference resolution

algorithm, which achieved a precision of 0.92, identified these papers as potentially

equal, so we added an owl:sameAs link between Ind1 and Ind2. This link allows

two new statements to be inferred: InProc(Ind1) stating that Ind1 is a paper in

proceedings and year(Ind1, 2005) stating that its publication year is 2005. Thus, the

owl:sameAs mapping leads to the violation of two ontological restrictions: disjoint-

ness between journal and conference articles. While each conflict separately would be

resolved by removing the assertions related to Ind2 (In Proc(Ind2) and year(Ind2,

2005) in the Fig. 6.2a, because they have lower initial support than Ind1=Ind2 ),

cumulative evidence allowed the algorithm to recognise the actual incorrect sameAs
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link (Ind1=Ind2 ). A similar situation occurred when one instance (Ind1 ) was con-

sidered similar to two others (Ind2 and Ind3 ), but only one of the sameAs links

(e.g., Ind1=Ind2 ) led to the inconsistency (e.g., disjoint axiom violation). In that

case the existence of the correct sameAs link (Ind1=Ind3 ) increased the support of

the corresponding class assertion and again caused the wrong link (Ind1=Ind2 ) to

be removed. However, in cases where the incorrect statement was considered a priori

more reliable than the conflicting ones and the evidence was not sufficient, the algo-

rithm made a mistake. For instance, the conflict in Fig. 6.2a was resolved wrongly

when the dataset containing Ind2 was artificially distorted. Although the statements

involved in the conflict were not affected by the distortion, the initial support of the

Ind2 assertions was significantly lower (0.51 instead of 0.9), which was insufficient to

break the sameAs link.

The capabilities of the Dempster-Shafer representation were important in cases

where the a priori support of some statements was low. For instance, using L2

Jaro-Winkler similarity for the EPrints/DBLP datasets achieved a very low precision

(0.39). In such cases the plausibility allows us to distinguish the cases where a state-

ment is considered unreliable because of insufficient evidence from those where there

is sufficient evidence against it. For instance, Fig. 6.2b shows such a case. A record in

the EPrints dataset describing a conference paper was linked to two different papers

in the DBLP dataset. One of the links was incorrect. After belief propagation the

support values of both links were still below 0.5. However, the evidence against the

incorrect link was significantly stronger, so its plausibility was low (0.02) while the

plausibility of the correct link remained high (0.99).
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Figure 6.2: Examples of belief networks constructed during evaluation. The num-
bers show the support before propagation and (in brackets) support and plausibility
after propagation.
a) An incorrect sameAs mapping Ind1=Ind2 violates two restrictions: disjointness
between journal and conference articles (left part of the graph) and functionality of
the publication year property (right).
b) Influence of the Dempster-Shafer plausibility: correct sameAs relation Ind1=Ind3
(bottom) has low support but high plausibility because it does not contribute to
the inconsistency while an incorrect one (Ind1=Ind2 ) with the same initial support
receives both low support and low plausibility after propagation.
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Table 6.4: Test results: coreference refinement

Dataset No
Matching sweto:Publication
algorithm Before After

Precision Recall F1 Precision Recall F1

EPrints/Rexa
1 Jaro-Winkler 0.950 0.833 0.887 0.969 0.832 0.895
2 L2 Jaro-Winkler 0.879 0.956 0.916 0.923 0.956 0.939

EPrints/DBLP
3 Jaro-Winkler 0.922 0.952 0.937 0.992 0.952 0.971
4 L2 Jaro-Winkler 0.389 0.984 0.558 0.838 0.983 0.905

Rexa/DBLP
5 Jaro-Winkler 0.899 0.933 0.916 0.944 0.932 0.938
6 L2 Jaro-Winkler 0.546 0.982 0.702 0.823 0.981 0.895

Cora(I) 7 Monge-Elkan 0.735 0.931 0.821 0.939 0.836 0.884
Cora(II) 8 Monge-Elkan 0.698 0.986 0.817 0.958 0.956 0.957

foaf:Person
EPrints/Rexa 9 L2 Jaro-Winkler 0.738 0.888 0.806 0.788 0.935 0.855
EPrints/DBLP 10 L2 Jaro-Winkler 0.532 0.746 0.621 0.583 0.921 0.714
Rexa/DBLP 11 Jaro-Winkler 0.965 0.755 0.846 0.968 0.876 0.920
Cora(I) 12 L2 Jaro-Winkler 0.983 0.879 0.928 0.981 0.895 0.936
Cora(II) 13 L2 Jaro-Winkler 0.999 0.994 0.997 0.999 0.994 0.997

6.3.3 Experimental results: coreference refinement

In these tests we measured the quality of coreference resolution before and after belief

propagation. The results of the tests are shown in the Table 6.4. As expected, in

almost all cases the refinement procedure led to an improvement in overall perfor-

mance expressed by the F1-measure. For sweto:Publication instances (rows 1, 2, 4,

6, 7, 8) the recall has decreased: the algorithm incorrectly resolved some inconsis-

tencies, which in fact occurred due to incorrect data statements. The decrease was

slight for AKT/Rexa/DBLP datasets and more significant for Cora where the de-

gree of noise was higher. However, in all cases this decrease was accompanied by an

increase in precision. For foaf:Person individuals, the effect of belief propagation pri-

marily influenced recall: links between instances reinforced the potential mappings,

which would otherwise be rejected. Because Cora(II) contained less formatting er-

rors than Cora(I), there were very few “dubious” mappings produced during initial

coreferencing, and belief propagation was not able to catch them.

Considering our results in context, we can compare the results obtained for Cora

(I) and Cora(II) datasets with the results reported by the authors of other coreference
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resolution tools. We found that our resulting F1 measure obtained for Cora(I) pub-

lications (row 7) was higher than the results reported in [8] (0.867) and [90] (0.87),

but lower than in [97] (0.93). The main cause for the difference with the latter case

was the limited set of properties used: in order to minimise the number of attributes

processed by basic coreferencing methods, we only used the title comparison for deter-

mining candidate individuals in our tests. When we trained the algorithm described

in [97] using only the title, year, and venue attributes, it achieved the F1 measure

value of 0.88.

For Cora(II), the F-measure was similar to that reported for [32]: slightly higher

for publications (0.957 vs 0.954) while slightly lower for people (0.997 vs 0.999).

The difference is due to the fact that the authors of [32] used better similarity mea-

sures for the initial coreference resolution stage (reported precision for publications

0.985 without exploiting links), while exploiting data uncertainty in our approach

increased recall by allowing the impact of different types of contradictory statements

to be captured: e.g., if two papers were considered identical, but had different publi-

cation years, this inconsistency was not sufficient to break the mapping if there was

agreement on the venue name and pages.

Although there are several other publications where tests with the Cora dataset

were reported, we found that their results are not comparable with ours. This con-

cerns the algorithms proposed in [111] and [17], and [101], which used different ver-

sions of the Cora dataset where, in particular, more mappings were removed from

the gold standard so that the dataset contained 132 clusters [111] rather than 125 in

Cora(II), and papers with the same title and year were considered identical [101].
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However, the main advantage of our technique in comparison with existing tech-

niques is the ability to reason about uncertainty degrees of coreference mappings in

combination with the uncertainty values attached to data statements. This capabil-

ity could not be fully utilised in the tests with the Cora(I) and Cora(II) datasets,

because the provenance of data statements was not preserved, and we we could not

distinguish between “more reliable” and “less reliable” data statements. However,

this capability was valuable for the AKT-Rexa-DBLP testbed where the knowledge

about relative reliability of different data sources allowed the majority of conflicts to

be resolved correctly (Table 6.3 and rows 1-6 of Table 6.4).

6.4 Summary

Experiments described in this chapter consisted of two parts. First, we wanted to

check the usefulness of one of the aspects of the architecture: using the class hierarchy

to configure problem-solving methods.

When designing the architecture our intention was to make flexible method selec-

tion and configuration possible. Given that even within the same domain, depending

on the type of data, different methods can be optimal and optimal parameters for the

same method may vary, we needed to allow fine-grained configuration of methods to

be defined. This was achieved by specifying application contexts as adapters between

a method and an application domain and linking methods’ selection and configura-

tion parameters to corresponding application contexts (chapter 3). However, the need

to define optimal parameters for each method and type of data for each dataset, to
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which the method is applied, would make the system too complex and require poten-

tially excessive human effort. In order to reduce this effort, the architecture exploits

axioms defined in the domain ontologies, in particular the class hierarchy defined by

the rdfs:subClassOf axioms. Our tests have shown (i) how the class hierarchy can

be used in combination with machine-learning techniques to automatically determine

optimal parameters for coreferencing resolution method applied to instances of dif-

ferent classes and (ii) how it helps to find an optimal trade-off between specificity of

the data and scarcity of training examples. In particular, this has allowed the meth-

ods to produce more robust decision models by combining training instances from

different subclasses. In this way, these findings contribute to answering the research

question 3: “How can we exploit axioms defined in domain ontologies to improve the

performance of fusion algorithms?”.

Moreover, we performed tests to examine the capabilities of our belief propagation

algorithm exploiting the Dempster-Shafer uncertainty representation and the valua-

tion networks framework for uncertainty propagation. In Chapter 4, we proposed to

use the Dempster-Shafer formalism because it was more appropriate for the specific

needs of the knowledge fusion task than popular alternative options. Our tests have

shown how specific representation capabilities of the Dempster-Shafer approach were

useful in the conflict resolution task (see subsection 6.3.2). In particular, using two

belief values (support and plausibility) to express the confidence degree of a state-

ment helped to distinguish between insufficient positive evidence and strong negative

evidence and thus be able to judge about correctness of statements with low initial

support (e.g., example in Fig. 6.2b). These results justified our choice of the formal-

ism as an answer to question 4: “What kind of uncertainty management framework
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is suitable for fusion?”

The tests have shown that the belief propagation algorithm was able to resolve

correctly the majority of conflicts resulting from coreferencing errors and spurious

data (subsection 6.3.2) and improved the quality of the set of coreference mappings

produced by the architecture (subsection 6.3.3). Thus, the algorithm provides a so-

lution to research question 5: “How can we exploit uncertainty and provenance to

improve the fusion performance?” Our approach exploits uncertainty and provenance

in combination with ontological knowledge and mutual interdependencies between

data statements. One feature of the approach is the possibility to reason about un-

certain data and uncertain coreference resolution results in combination. This feature

justifies our choice to represent uncertainty at the architecture level and express the

estimated reliability of methods together with their configuration parameters.



Chapter 7

Fusion in a multi-ontology

environment

In the previous chapters we discussed the problem of semantic data integration as-

suming that the data to be integrated are structured according to a single shared

ontology. This assumption holds in some scenarios, like corporate knowledge man-

agement, but is not valid on the Web scale. So, in this chapter we target the case

where the knowledge bases are structured according to different ontologies. First, we

describe our extension of the KnoFuss architecture aimed at incorporating ontology

matching techniques into the fusion workflow and the tests we performed with exist-

ing schema-matching tools. Then, we present our schema matching approach aimed

at enhancing the data-level coreference resolution in a special case of a multi-ontology

environment: the network of Linked Data repositories.

This chapter is based on the following publications:

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2009). Towards

data fusion in a multi-ontology environment. Workshop: Linked Data on the
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Web (LDOW 2009), 18th International World Wide Web Conference (WWW

2009), Madrid, Spain.

• Andriy Nikolov, Victoria Uren, Enrico Motta, Anne de Roeck (2009). Over-

coming schema heterogeneity between linked semantic repositories to improve

coreference resolution. 4th Asian Semantic Web Conference (ASWC 2009),

Shanghai, China.



166

7.1 Introduction

As was discussed before (section 2.2), the data integration process has to deal with

two top-level problems: resolving the schema-level and the data-level conflicts. Our

work has focused on the data-level issues, and the algorithms discussed in previous

chapters assumed that schema-level problems had already been resolved and the

knowledge bases to be integrated were structured according to the same ontology. A

significant amount of research has been carried out in the ontology matching area, and

many algorithms have been produced to resolve the schema-level integration problem

automatically (see section 2.4). On the Web at large, in particular, in the Linked

Data environment, the semantic heterogeneity of data is inevitable, which makes it

necessary for a data integration system to use results of automatic ontology matching

techniques. Although the usage of common schema ontologies such as FOAF, SKOS,

or Dublin Core is encouraged [10], existing datasets often employ their own schemas

or, in other cases, terms of common ontologies do not provide full information about

the data they describe and many important usage patterns remain implicit: e.g., in

DBLP1 a generic foaf:Person class in fact refers only to people related to computer

science.

These techniques do not guarantee 100% accuracy, and errors produced by them

may influence the quality of the data fusion stage. In this chapter we consider two

complementary approaches aimed at performing fusion in the presence of schema

heterogeneity that we have investigated.

The first approach extends the KnoFuss architecture making it possible to employ

automatic schema matching algorithms to process knowledge bases structured using

1http://www4.wiwiss.fu-berlin.de/dblp/
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different ontologies. This extension was implemented for the following reasons:

• To enable the usage of the KnoFuss architecture in a multi-ontology environ-

ment.

• To discover specific issues arising in multi-ontology data fusion in comparison

with the single-ontology case.

• To test the possible impact caused by inaccuracies introduced at the schema-

matching stage on the data-level fusion process.

• To research ways of reducing the impact of ontological heterogeneity.

As our second contribution, we propose an approach which performs schema

matching in order to improve instance coreference resolution. A novel feature of

the approach is its use of existing data-level coreference links defined in third-party

Linked Data repositories as background knowledge for schema matching techniques.

Using our algorithm, we were able find a substantial number of new coreference links

well beyond the set of original links which are published in Linked Data repositories.

The chapter is structured in the following way. In the first part of the chapter we

discuss additional challenges to the fusion process caused by schema heterogeneity

and describe our extension of the KnoFuss architecture aimed at dealing with it.

In section 7.2 we discuss how the problem of data integration in the presence of

schema heterogeneity is traditionally viewed and what kinds of schema mismatches

are described in the literature. In section 7.3 we discuss how these schema-level

mismatches influence the instance-level integration task. In section 7.4 we describe

how we extend the KnoFuss architecture presented in Chapter 3 to process data

repositories structured using different ontologies. Then, in section 7.5 we describe the
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experiments we conducted with the extended architecture using third-party ontology

matching tools as methods.

In the second part of the chapter we describe our proposed schema-matching

approach aimed at facilitating instance-level coreference resolution between Linked

Data repositories. Section 7.6 provides an overview of the schema heterogeneity

issues in the Linked Data environment and discusses how third-party repositories can

be utilised as background knowledge to resolve them. In sections 7.7 and 7.8 we

describe the stages of our algorithm in more detail, and in section 7.9 we describe

the experiments we conducted to validate our approach. Section 7.10 concludes the

chapter.

7.2 Related work: ontology mismatches

classification

The situation where the source and the target knowledge bases use different ontologies

makes it impossible for data integration methods to use the semantic data structure:

information in a knowledge base which uses an unknown ontology becomes meaning-

less. Only a limited set of methods, which do not use data structures, can be applied

directly to such datasets. These include, for instance, object identification methods

that originated in the natural language processing domain, which compare word sets

using set similarity measures. Most of the methods, including those considered in our

experiments, however, require a uniform view over data in both knowledge bases.

The problem of providing such a view originated in the database domain under the

term of data integration: combining data residing in different sources, and providing
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the user with a unified view of this data [71]. A typical data integration architecture

(e.g., assumed in [71], [81]) includes a global reference schema and a set of sources,

each structured according to its specific local schema. The global schema is connected

to each local schema via a set of mappings: correspondences which allow query

reformulation. There are two main approaches to mapping specification: Global-

as-View (GAV) and Local-as-View (LAV). In the GAV approach each construct in

the global schema is mapped to a view (query) over local schema constructs. The LAV

approach, in contrast, specifies each local schema construct as a query over global

schema constructs. Then, an inferencing mechanism is used to re-define atoms in the

global schema according to each local schema’s terminology. Thus, the GAV approach

is more efficient with regard to query processing: no logical inferencing is needed,

and a query specified in terms of the global schema is reformulated by replacing

the global schema terms with appropriate mapping views. On the other hand, it is

more demanding from the mapping construction point of view: the mapping views

contain references to all relevant sources and have to be changed each time a source

is changed.

Obtaining an adequate representation of mappings which allows correct data

transformation is a non-trivial problem due to ontology mismatches. A classifica-

tion framework of different types of mismatches between overlapping ontologies is

given in [67]. Assuming that ontologies are represented in the same language, the

framework distinguishes:

• Conceptualisation mismatches, which concern:

– Scope, when two classes seemingly representing the same concept do not



170

contain the same instances (e.g., the class PoliticalOrganization in TAP

ontology includes terrorist groups, while in SWETO it is meant to repre-

sent only legal organisations).

– Model coverage and granularity, when parts of the domain in one ontology

are not covered in another or covered with a different level of detail (e.g.,

in SWETO the class Company does not have subclasses while TAP and

DBPedia 3.2 distinguish between different types of companies).

• Explication mismatches, which are divided into:

– Modelling style mismatches, when the same domain is modeled using dif-

ferent paradigms (e.g., point vs interval logic for time representation) or

concept specification (e.g., splitting the subclasses of the same class in a

hierarchy according to different criteria).

– Terminological mismatches, when different terms are used to represent the

same entity (synonymy) or the same term represents different entities

(homonymy).

– Encoding mismatches, when the values at the data level have different

formats. This one has to be dealt at the data-level stage, so we do not

consider it in this chapter.

To represent the correspondences between ontologies correctly and overcome these

mismatches, mappings of varying degrees of complexity are required. In [102] common

correspondence patterns are introduced to represent such mappings (see Fig. 7.1).

For the most part, mapping patterns represent description logic relations. However,

current automatic ontology matching algorithms can only deal with a subset of the
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Figure 7.1: Correspondence patterns of ontology matching according to [102] (frag-
ment). A commonly used DisjointClass pattern is included.

various types of mismatches that may occur (primarily terminological). Indeed, most

of them are limited to one-to-one mappings [38]. Conceptualisation mismatches can

be partially represented using the Sub/Super-Class mappings instead of Equivalent-

Class. Some types of mismatches such as using different point vs interval logic time

representation paradigms cannot be handled automatically by any existing tool, to

our knowledge.

Given the limited capabilities of the ontology matching tools, we can expect that

some of the ontology mismatches will remain unresolved or partially unresolved at the

data integration stage. In the next section we discuss the impact of such mismatches

during the data integration process.
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7.3 Data-level impact of ontology mismatches

The first type of mismatches in the classification presented in [67] concerns conceptu-

alisation mismatches. For the coreference resolution stage, shared conceptualisation

allows the system to:

• consider individuals belonging to the same class as candidates for matching;

• estimate the likelihood of individuals being equivalent given available evidence

(e.g., having two people with the same name belonging to a specific class Se-

manticWebResearcher is much stronger evidence of equivalence than if they

only had a generic class Person in common).

The conceptualisation mismatches between two ontologies (in particular, scope mis-

matches) may reduce both recall and precision of coreference resolution algorithms.

For example, the class Company in SWETO does not include financial organisations

while its counterpart in TAP includes them. Thus, when the system tries to find,

for each company in TAP, coreferent individuals in SWETO having only the equiv-

alence relation between these classes, it will not find matching pairs for financial

organisations because they belong to a different class in SWETO. This factor de-

creases recall. On the other hand, the class ComputerScientist in TAP contains only

world-famous computer scientists while most researchers are classified according to

their place of work (e.g., CMUPerson, W3CPerson). ComputerScienceResearcher in

SWETO, which automatic tools often consider equivalent to tap:ComputerScientist,

has much wider coverage and includes everybody who contributed to a computer

science paper mentioned in the knowledge base. On the whole, labels in SWETO

are much more ambiguous than in TAP, and the danger of matching two unrelated
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individuals increases, which may affect precision negatively. The same happens when

there is no equivalence between classes but a Sub/Super-Class relation: the same

degree of similarity between individuals may provide much weaker evidence, which

makes it hard to estimate adequately the reliability of methods’ output. Another

area of impact involves disjointness relations. Disjointness between classes can be

used as evidence to consider some coreference mappings incorrect and delete them.

The scope mismatches can lead to errors when classes considered disjoint in one on-

tology are overlapping in another one (like in the case with PoliticalOrganization and

TerroristOrganization above): correct mappings can be deleted if they are perceived

as causing inconsistency. The granularity mismatches do not allow ontological con-

straints defined for classes at the lower levels of the hierarchy to be used if the other

ontology does not distinguish between these classes.

Among the explication mismatches, modelling style differences are the hardest to

solve automatically. Translation between paradigms is very much a domain-specific

problem, and common correspondence patterns are often not sufficient to align two

ontologies. In a simple example, if one ontology represents colours using a set of

pre-defined labels (red, yellow, black) and another one uses RGB encoding, it is

very hard to find similar values automatically: a hand-tailored matching procedure is

necessary. To our knowledge, no existing automatic ontology matching tool is capable

of dealing with different paradigms. For the case where subclasses of the same class

in two ontologies are split according to different criteria, no useful DL relations can

be established between them (apart from the fact that there may be some overlap).

Such differences can make any automatic data integration procedures intractable. If

these mismatches occur at the lower levels of the hierarchy, methods can operate
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only with information defined at a higher level. In the KnoFuss architecture terms it

means using the application contexts defined for the generic classes (section 3.6.3).

Terminological mismatches are the primary focus of most existing ontology match-

ing tools [38], which makes them the simplest to handle. They can be solved by

creating EquivalentClass and EquivalentAttribute correspondences.

Finally, encoding problems are not specific to the schema level and may occur

even if knowledge bases share the same ontology. These mismatches cause coreference

resolution problems as mentioned in the previous chapters. Thus, such problems do

not require additional attention when moving from single-ontology to multi-ontology

semantic data fusion.

7.4 Extending the KnoFuss architecture

The core KnoFuss architecture described in Chapter 3 focuses on the second stage

of the fusion process: knowledge base integration. The ontology integration step was

divided into three subtasks, which were assumed to be performed outside the scope of

the architecture: preprocessing, ontology matching and instance transformation (see

Fig. 3.1).

When extending the functionality of the architecture to cover the ontology integra-

tion stage we still assume that the knowledge bases to be integrated are represented in

the same common language (RDFS or OWL), which makes the preprocessing step un-

necessary. The two remaining subtasks, however, must be covered by the framework

(Fig. 7.2) and are explained in the following subsections.
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Figure 7.2: Fusion task decomposition incorporating schema matching.

7.4.1 Ontology matching

The ontology matching task involves the creation of mapping rules or alignments: sets

of correspondences between two ontologies [38]. The choice to make here concerns the

suitable mechanism for applying mappings (Global-as-View vs Local-as-View). In our

scenario, approximate mappings are produced automatically, which makes the GAV

approach preferable (no manual construction of mappings is required). In KnoFuss

terms, the target ontology serves as the global schema and the source ontology as

the local one in each fusion session. Thus, the system needs mappings to represent

each single term in the target ontology in the source ontology terms. The descriptor

of the ontology matching task is given in Table 7.1.

Considering correspondence patterns, data fusion needs both correspondences

between concepts (ClassCorrespondence) and correspondences between properties

(Attribute-Correspondence). Class mappings allow the relevant method application

contexts to be translated into the terms of the source ontology if they were initially

defined in terms of the target ontology. The attribute correspondences are needed

in order to retrieve properties relevant for coreference resolution in both knowledge
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Table 7.1: Ontology matching task descriptor

Task Ontology matching

Inputs
SourceOntology :type Ontology ;
TargetOntology :type Ontology ;

Outputs
Alignment :type list of MergeSet - Set of
possible equivalence, subsumption and
disjointness mappings between terms of source and
target knowledge base schema ontologies

bases. The equivalence and subsumption relations allow relevant concepts and prop-

erties in the source ontology to be found. The disjointness relations between concepts

are usable for the knowledge base updating stage, providing evidence for inconsistency

resolution. The architecture assumes that the ontology matching methods provide

their output in the standard Alignment API format [37]. After the results of the ontol-

ogy matching methods are obtained, the system utilises the DisjointClass mappings.

The system uses a simple algorithm to search for contradictory mappings: it finds

situations where two classes in different ontologies are connected via a Sub/Super-

Class mapping (created by ontology matching methods or inferred) and at the same

time are disjoint (again, directly or via inference). Such mappings are considered

conflicting. If the DisjointClass mapping has a higher confidence value, then the

contradictory Sub/Super-Class mapping (or the mapping from which it was inferred)

is removed from consideration.

7.4.2 Instance transformation

After the schema-level mappings are obtained, the next stage is instance transforma-

tion. At this stage the mappings are applied in order to allow the methods for the

coreference resolution and knowledge base updating stages to process the data from
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the source and the target repositories in a uniform way, as if they were structured

using the same ontology. In the KnoFuss architecture SPARQL queries are used as a

primary means of retrieving data: method applicability ranges, application contexts,

sets of relevant attributes are expressed in SPARQL. For example, in order to check

whether two individuals, one from the source knowledge base and one from the target

one, are coreferent, a coreference resolution method needs to retrieve for each indi-

vidual a set of relevant property values to compare (e.g., rdfs:label and sweto:year

for scientific publications in our experiments in Chapter 6). If both knowledge bases

share the same schema, this can be done by posting the same selection query to both

the source and the target knowledge bases. However, if the source ontology is different

from the target one, then the original query defined in terms of the target ontology

has to be reformulated to be applied to the source knowledge base. The queries

are translated into the terms of the source ontology using the available schema-level

mappings. In a simple case, if all mappings represent equivalence relations, and we

only have one-to-one mappings, this is done by replacing the target ontology terms

mentioned in the WHERE clause of a query with equivalent terms from the source

ontology. For example, if we use TAP as the source knowledge base and SWETO

testbed as the target one, and we have a method which is applicable to individuals

of the class sweto:City, the corresponding selection query will be the following:

SELECT ?uri WHERE {

?uri rdf:type sweto:City }

In a trivial case, if we have an EquivalentClass mapping with the class tap:City, the

query to the source ontology will be translated as
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SELECT ?uri WHERE {

?uri rdf:type tap:City }

Sometimes a term in the target ontology may correspond to several terms in the

source ontology, and the mappings may not cover existing schema mismatches ade-

quately. This happens when there are several candidate EquivalentClass mappings

provided by one or several ontology matching tools. In such situations we combine

these mappings and consider them as a single ClassUnion mapping. For instance,

when we consider the query

SELECT ?uri WHERE {

?uri rdf:type sweto:Computer Science Researcher }

the system tries to find all ClassCorrespondence mappings which include the class

sweto:Computer Science Researcher. In our example with the CIDER tool (see be-

low) these included EquivalentClass mappings with the classes tap: CMUPerson,

tap:ComputerScientist and tap:MedicalScientist.

Such a variety of potentially corresponding classes is caused by several existing mis-

matches between ontologies, in particular, terminological mismatches (Computer Science

Researcher vs ComputerScientist), modelling style mismatches (tap: CMUPerson

includes computer science researchers who worked in the CMU), and conceptualisa-

tion scope mismatches (tap: ComputerScientist represents only a subset of “world-

famous” researchers and tap:Medical-Scientist includes authors of medical AI expert

systems). From the strictly logical point of view, the only correct mapping would be a
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Sub-Super-Class mapping tap:ComputerScientist ⊆ sweto: Computer Science Researcher.

However, excluding other mappings would remove from consideration many TAP in-

dividuals which have their equivalent SWETO counterparts. In reality, rather than

strict logical relations, the data integration system needs information about partial

alignments between concepts to select individuals which may potentially be corefer-

ent. We can call this the OverlapClass correspondence pattern.2

Thus, the query from our example is translated into:

SELECT ?uri WHERE

{ {?uri rdf:type tap:CMUPerson}

UNION {?uri rdf:type tap:Computer Scientist}

UNION {?uri rdf:type tap:Medical Scientist}}

These pairs of queries assumed to be equivalent are then available at the later

stages of the workflow, which allows the system to operate in the same way as in a

single ontology case.

2In existing ontologies an example of a relation implementing this pattern is umbel:isAligned defined

in the UMBEL ontology (http://www.umbel.org/). However, by definition, it is only applicable to

internally defined UMBEL classes (umbel:SubjectConcept).
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7.5 Experiments with schema-level ontology match-

ing techniques

To test the KnoFuss architecture in a multi-ontology scenario, we used three public

knowledge bases:

• TAP [52]

• SWETO testbed [3]

• DBPedia 3.23

The DBPedia dataset was automatically extracted from Wikipedia articles and, in

version 3.2, was structured according to a specially designed ontology. All three

knowledge bases contain instances from several topics, and their schema ontologies

are shallow and cross-domain. We selected several overlapping domains of these

ontologies such as people, organisations, and geographic entities (Fig. 7.3, 7.4, 7.5),

and considered individuals belonging to classes describing these domains.

For the ontology schema matching, we used two third-party tools: CIDER [50]

and Lily [121]. Both have participated in the OAEI 2008 ontology alignment contest.

The functionality of CIDER includes a term similarity service: calculating similarity

metrics for a pair of concepts belonging to two different ontologies. We used this ser-

vice to calculate similarities between all pairs of concepts and then selected mappings

which exceeded the chosen threshold value. Lily was used as a “black box” tool: two

ontologies were provided as its input, the tool produced potential mappings, and we

filtered them further using a threshold. Thus, the alignment extraction stage [38] was

3www.dbpedia.org
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Figure 7.3: Class hierarchy of the relevant subset of the TAP dataset.

Figure 7.4: Class hierarchy of the relevant subset of the SWETO dataset.
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Figure 7.5: Class hierarchy of the relevant subset of the DBPedia dataset.

performed internally by Lily. The most important consequence of this was that Lily

applied a special filter ensuring that all correspondences are one-to-one, while from

CIDER we received a set of possible mappings for each class. In addition to those,

we used SCARLET [100] as a method for generating DisjointClass mappings. The

SCARLET service takes as its input two terms and tries to find relations between

them using other publicly available ontologies as background knowledge. Disjointness

was used to filter out conflicting equivalence relations with a low reliability. As coref-

erence resolution methods for instances, we used the same string similarity techniques

as in our single ontology scenario experiments (Jaro-Winkler and L2 Jaro-Winkler).

7.5.1 Test results

The test results are given in tables 7.2, 7.3 and 7.4. For each chosen class in the target

knowledge base (column 2) we performed instance coreference resolution trying to

find equivalent instances in the source knowledge base. For each class we performed

three tests using the same instance coreference resolution method (Jaro-Winkler or

L2 Jaro-Winkler), but three different schema alignments: one generated by CIDER,
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Table 7.2: Test results for instance coreferencing (TAP vs SWETO)

N Class Schema Instance Prec. Rec. F1 aligned concepts
(Target ontology) matcher matcher

1 Person actual L2 JW 0.29 0.92 0.44 Person
CIDER -”- -”- -”- -”-
Lily -”- -”- -”- -”-

2 Computer Science actual L2 JW 0.62 0.93 0.75 Computer Scientist, Medical Scientist
Researcher CMU Person

CIDER 0.62 0.93 0.75 -”-
Lily N/A Computer Science Research Project

3 Organization actual JW 0.80 0.56 0.66 Organization
CIDER -”- -”- -”- -”-
Lily -”- -”- -”- -”-

4 Company actual JW 0.76 0.66 0.71 Corporation
CIDER 0.82 0.56 0.66 Corporation, Country,

Conifer, ClothingBrand,
ComputerScientist

Lily 1 0.002 0.003 SoftwareCompany
5 City actual JW 0.87 0.93 0.90 City

CIDER 0.87 0.93 0.90 City, Territory
Lily 0.87 0.93 0.90 City

6 State actual JW 0.98 0.98 0.98 StateGeoRegion
CIDER 0.98 0.98 0.98 UnitedStatesState, UnitedStatesCity
Lily N/A

7 Country actual JW 0.95 0.92 0.93 Country
CIDER 0.87 0.88 0.88 Country, Continent, Corporation
Lily 0.95 0.92 0.93 Country

8 Place actual JW 0.79 0.92 0.85 Place
CIDER 0.79 0.92 0.85 Place, Plant, Employee
Lily N/A Continent

Avg actual 0.76 0.85 0.78
CIDER 0.76 0.84 0.76
Lily 0.49 0.42 0.37

one produced by Lily, and the gold standard obtained manually. Moreover, we added

the DisjointClass mappings produced by SCARLET to the alignments generated by

CIDER and Lily. The precision, recall and F1 measures for instance coreference

resolution in three cases are provided in columns 5, 6, and 74, and the list of source

ontology classes aligned to the target ontology class is given in column 8.

As could be expected, errors during schema matching are propagated and can

lead to significant distortions during instance coreference resolution. For instance,

in many tests involving CIDER, one target concept was aligned with several source

concepts, some of them irrelevant. This had a negative impact on precision when in-

dividuals from non-overlapping classes were compared and sometimes found identical

4The “-”-” sign means that the value is the same as in the previous row
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Table 7.3: Test results for instance coreferencing (TAP vs DBPedia)

N Class Schema Instance Prec. Rec. F1 aligned concepts
(Target ontology) matcher matcher

9 Company actual JW 0.91 0.63 0.75 Corporation
CIDER 0.93 0.60 0.73 Organization
Lily 1.00 0.002 0.003 EnergyCompany

10 University actual JW 0.98 0.86 0.92 University
CIDER -”- -”- -”- -”-
Lily -”- -”- -”- -”-

11 Organisation actual JW 0.98 0.76 0.86 Organization
CIDER 0.98 0.76 0.86 Organization, Brand, Magazine
Lily N/A

12 Athlete actual L2 JW 0.95 0.93 0.94 Athlete
CIDER -”- -”- -”- -”-
Lily -”- -”- -”- -”-

13 OfficeHolder actual L2 JW 0.92 0.95 0.93 Politician
CIDER N/A OfficeProduct
Lily N/A CMUPerson

14 Person actual L2 JW 0.78 0.93 0.85 Person
CIDER 0.77 0.93 0.84 Person, OperaOrganization,

Cartoon, Perennial, Fern
Lily 0.78 0.93 0.85 Person

15 City actual JW 0.82 0.69 0.75 City
CIDER 0.82 0.68 0.74 City, Country

Continent, Cuisine
Lily 0.82 0.69 0.75 City

16 Country actual JW 0.98 0.94 0.96 Country
CIDER 0.90 0.94 0.92 City, Country, Continent

Corporation, ComicStrip, Conifer
Lily 0.98 0.94 0.96 Country

17 Area actual JW 1.00 1.00 1.00 StateGeoRegion
CIDER N/A Garden
Lily N/A

18 Place actual JW 0.48 0.86 0.61 Place
CIDER 0.48 0.86 0.61 Place, CMUFace, CyberPlace
Lily N/A

Avg actual 0.88 0.86 0.68
CIDER 0.68 0.66 0.62
Lily 0.55 0.44 0.44

Table 7.4: Test results for instance coreferencing (SWETO vs DBPedia)

N Class Schema Instance Prec. Rec. F1 aligned concepts
(Target ontology) matcher matcher

19 Company actual JW 0.61 0.56 0.58 Company, Bank
CIDER 0.33 0.23 0.27 Complex, Company, Country
Lily 0.61 0.30 0.40 Company

20 Country actual JW 0.98 0.91 0.95 Country
CIDER 0.83 0.91 0.86 City, Country,

Conference, Company
Lily N/A County

21 City actual JW 0.96 0.74 0.84 City
CIDER 0.96 0.74 0.84 City, Country
Lily 0.96 0.74 0.84 City

22 Area actual JW 0.83 0.84 0.83 State
CIDER 0.17 0.84 0.28 Place
Lily N/A

23 Place actual JW 0.47 0.81 0.60 Place
CIDER 0.47 0.81 0.60 Place
Lily 0.47 0.81 0.60 Place

Avg actual 0.77 0.77 0.76
CIDER 0.55 0.71 0.57
Lily 0.41 0.37 0.44
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due to label similarity (e.g., some companies had names derived from country names).

In other cases, recall dropped when an EquivalentClass mapping was produced in-

stead of a ClassUnion mapping and some relevant concepts were omitted: e.g., in row

19 (Table 7.4) Lily considered the classes sweto:Company and dbpedia:Company as

equivalent while sweto:Bank instances were omitted from consideration. In general,

we can see that the one-to-one mapping restriction imposed by Lily improves the pre-

cision of the schema matching stage but leads to an “all-or-nothing” outcome at the

instance level: either two precisely corresponding classes were found, or completely

spurious pairs were produced, which did not allow instance coreferencing (e.g., Com-

puterScienceResearcher and ComputerScienceResearchProject). CIDER, in contrast,

had lower schema matching precision but better recall and, usually, led to better

performance at the data level: on average for all tests, the F1-measure dropped by

13% when using CIDER and by 41% when using Lily, in comparison with manual

schema matching.

7.5.2 Discussion

As a means to repair such errors, ontological constraints are extremely valuable in the

Coreference resolution task. Apart from the widely used owl:FunctionalProperty and

owl:InverseFunctionalProperty, which allow non-ambiguous instance identification,

restrictions providing negative evidence are also valuable for filtering out incorrect

mappings. These constraints include disjointness and datatype properties with cardi-

nality constraints. For example, knowing that Company is disjoint with Country (or

inferring that) would repair the schema matching problem in rows 4, 7, 16, 19 and 20.
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In the SWETO ontology, all individuals belong to only one class, thus making sib-

ling classes disjoint. In the TAP/SWETO tests we used this to produce disjointness

restrictions and filter out some spurious schema mappings produced by the CIDER

tool. As a result, for these tests the average precision drop obtained when using

CIDER was only 3% (from 78% to 75%). However, most ontologies do not define dis-

jointness relations explicitly, and even involving background knowledge did not help

to discover them: the SCARLET service in our tests discovered only one relevant Dis-

jointClass mapping (between the concepts University and Company), which could be

used for filtering out incorrect mappings for the class dbpedia:Organisation. Having

a special high-level reference ontology accessible on the Web where these constraints

are specified would be a significant source of information.

It is well recognised that label comparison cannot be considered sufficiently reli-

able evidence for coreference resolution. However, more complex algorithms utilizing

context data (additional properties and links between individuals) can only be applied

to datasets containing sufficiently overlapping data. It can be expected that many

data integration tasks on the Web scale will only be able to rely on instance names

and thus can only provide suggestions rather than generate owl:sameAs statements

carrying strong implications.

Since errors are inevitable in automatic coreferencing, provenance information

must be stored together with the produced coreference mappings, so that the user

application can decide whether to rely on them or not. One possible way to do so is

to extend the coreference bundles approach [60] to include for each URI a measure

of the system’s confidence in its inclusion into the set.

Although semantic heterogeneity (different meaning attached to similar resources)
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is primarily a schema-level knowledge modelling issue, it can cause problems at the

instance level as well. For instance, the TAP ontology contains a single individual

“Coca-Cola” for the Coca-Cola company, while SWETO contains several individuals

describing Coca-Cola branches in different countries. Clearly, these should not be

mapped as equivalent.

Finally, the use of instance-based ontology matching techniques [38] can be par-

ticularly promising in the context of the data fusion task. Hence, in the rest of the

chapter we will describe the schema matching approach we developed to assist data-

level coreference resolution of Linked Data repositories, which employs instance-based

ontology matching.

7.6 Facilitating coreference resolution in Linked

Data repositories: an instance-based approach

Instance-based ontology matching techniques operate in a “bottom-up” way and infer

schema-level mappings from the available instance coreference links. The advantage

of instance-level methods is their ability to provide valuable insights into the contents

and meaning of schema entities from the way they are used. This makes them suitable

for the data fusion scenario, because here there is a need to capture the actual usage

pattern of an ontological term rather than how it was intended to be used by an

ontology designer. In particular, this capability would help the system to deal with

conceptualisation mismatches: e.g., to recognise such relations as the one between

dbpedia:Company and sweto:Bank from the example above. At the same time, the

major obstacle for the use of instance-based ontology matching techniques is the
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need to have initial instance-level coreference mappings in the first place. Given

that in the data fusion scenario schema mappings are primarily needed to facilitate

instance-level coreference resolution, this dependency can lead to a “chicken and egg”

problem. However, in certain scenarios this problem can be resolved if a partial set

of instance-level mappings is available or can be easily obtained (e.g., using primary

key values). One such scenario concerns data fusion in the Linked Data environment,

where partial sets of instance-level links are indeed available.

Our approach focuses on inferring schema-level mappings between ontologies em-

ployed in Linked Data repositories. It uses instance-based ontology matching where,

in order to produce a mapping between two classes, the algorithm analyses the over-

lap between their sets of individuals. Below we give a short overview of existing

schema matching approaches similar to ours.

Among the existing approaches, instances of classes and relations are often con-

sidered as features when computing similarity between schema-level entities: e.g.,

CIDER [50] and RiMOM [128]. One particularly interesting approach, which uses

schema alignment and coreference resolution in combination, was introduced in the

ILIADS system [119]. ILIADS focuses on the traditional ontology matching scenario,

where two schemas have to be integrated, and performs schema-level and data-level

matching in a loop, where newly obtained instance-level mappings are used to im-

prove schema-level alignment and vice versa. This is similar to our approach where

schema-level matching is performed to enhance the instance coreferencing process.

However, unlike ILIADS, our approach was primarily motivated by the data-level

integration scenario and exploits information from many sources rather than only

two.
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The second relevant category of schema-matching techniques are those which

utilise external sources as background knowledge. An approach proposed in [2] per-

forms matching of two ontologies by linking them to an external third one and then

using semantic relations defined in the external ontology to infer mappings between

entities of two original ontologies. The SCARLET tool [100], mentioned above, em-

ploys a set of external ontologies, which it searches and selects using the Watson ontol-

ogy search server5. These approaches, however, only consider schema-level evidence

from third-party sources, while our approach relies on instance-level information.

Thus, our algorithm implements the following novel features, which we consider

our contribution:

• Use of data-level coreference links to and from individuals defined in third-party

repositories as background knowledge for schema-level ontology matching.

• Producing schema-level mappings suited for the needs of the instance corefer-

ence resolution process. In particular, our algorithm produces fuzzy mappings

representing degree of overlap between classes of different ontologies rather than

strict equivalence or subsumption relations.

The mappings between classes are primarily needed to identify which subsets of

two data repositories are likely to contain co-referring individuals, so that such subsets

can be processed by a coreference resolution algorithm afterwards. Let us consider an

example scenario, where deriving such mappings is problematic and hampers coref-

erence resolution (Fig. 7.6). Both DBPedia and DBLP datasets contain individuals

representing computer scientists. In many cases the same person is described in

5http://watson.kmi.open.ac.uk/WatsonWUI/
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Figure 7.6: DBPedia and DBLP: exploiting schema-level links with third-party
datasets. Solid arrows show existing owl:sameAs (=) and rdf:type links. Dashed
arrows represent discovered schema relations. The system identifies the subset of
dbpedia:Person instances, which overlaps with DBLP foaf:Person instances, as a
union of classes defined in YAGO.
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both repositories, but under different URIs. However, only a small proportion of

possible coreference links between them is available6. More links can be discovered

by performing automatic coreference resolution, but this task is complicated by two

issues:

• Datasets do not contain overlapping properties for their individuals apart from

personal names.

• Individuals which belong to overlapping subsets are not distinguished from

others because of the conceptualisation scope mismatch between correspond-

ing classes: in DBLP, all paper authors belong to the foaf:Person class, and

in DBPedia the majority of computer scientists is assigned to a generic class

dbpedia:Person. However, DBLP only contains information about computer sci-

entists, while in DBPedia computer scientists represent only a small proportion

of dbpedia:Person individuals. As a result, it becomes complicated to extract

the subset of people in DBPedia which can potentially be represented in DBLP.

Applying name comparison for all foaf:Person and dbpedia:Person individuals is likely

to produce many false positive results because of the ambiguity of personal names:

DBPedia contains many non-computer science people which have the same names as

DBLP paper authors. Before performing instance matching we need to narrow the

context and exclude from comparison individuals which are unlikely to appear in both

datasets. Since the actual schema ontologies used by the repositories, which have to

be connected, are not sufficiently detailed, then evidence data defined in other data

sources should be utilised.

6196 links in total in DBPedia 3.2 on 13/06/2009
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Figure 7.7: Obtaining owl:sameAs links by computing transitive closure

Instance-based ontology matching techniques are particularly suitable to infer

schema-level mappings in the Linked Data environment because of the availability

of data to exploit: Linked Data repositories are already connected by owl:sameAs

relations between individuals, although these sets of relations are often incomplete.

Sometimes this scenario is present in Linked Data repositories directly: for instance,

in the example shown in Fig. 7.6 DBPedia individuals are structured by the DBPedia

own ontology, but also have rdf:type links to the classes defined in the YAGO7 and

Umbel8 ontologies. However, more often such sets can be constructed by clustering

together individuals connected via existing owl:sameAs coreference links (see Fig.

7.7). Such transitive closure sets are likely to be incomplete because intermediate

datasets may not contain all individuals from their neighbours or because some links

on the path are not discovered, but they still can be used to derive relations between

classes.

A crucial difference between the Linked Data environment and the traditional

7http://www.mpi-inf.mpg.de/yago-naga/yago/
8http://www.umbel.org/
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ontology matching scenario, which focuses on matching two ontologies, is the possi-

bility of using individuals and concepts defined in other repositories and links between

them as background knowledge. In our approach we exploit two types of background

knowledge:

• Schema-level evidence from third-party repositories.

• Data-level evidence from third-party repositories.

In the following subsections 7.6.1 and 7.6.2 we will describe these types of evidence

and briefly outline how they are used to produce schema-level mappings.

7.6.1 Schema-level evidence

In the example shown in Fig. 7.6 the problem with finding overlapping subsets of

DBLP and DBPedia is caused by insufficiently detailed classification of individuals

provided by the repositories’ ontologies. In this situation additional schema-level

information has to be introduced from external sources.

Individuals in DBPedia are connected by rdf:type links to classes defined in the

YAGO repository. The YAGO ontology is based on Wikipedia categories and provides

a more detailed hierarchy of classes than the DBPedia ontology. Our algorithm uses

this external ontology to identify the subset of DBPedia which overlaps with the

DBLP repository. The procedure involves the following steps:

1. Construct clusters of identical individuals from DBPedia and DBLP using ex-

isting owl:sameAs mappings. In this scenario each cluster corresponds to one

owl:sameAs link and contains two individuals: one from DBLP and one from

DBPedia.
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2. Connect these clusters to classes in the YAGO and DBLP ontologies respec-

tively. In the latter case only the class foaf:Person is involved. For example,

the cluster containing the individual dbpedia:Andrew Herbert is connected to

several YAGO classes (e.g., yago:MicrosoftEmployees, yago: BritishComputer-

Scientists and yago:LivingPeople) and to foaf:Person.

3. Infer mappings between YAGO classes and the foaf:Person class used in DBLP

using instance-based matching (see section 7.8). A set of overlapping YAGO

classes is produced as a result: e.g., mappings between foaf:Person and yago:

MicrosoftEmployees and between foaf:Person and yago: BritishComputerSci-

entists.

4. Run instance-level coreference resolution for individuals belonging to the mapped

classes to discover more coreference resolution links. For example, at this stage

we discover the link between the individual dbpedia:Charles P. Thacker belong-

ing to the class yago:MicrosoftEmployees and its DBLP counterpart, which did

not exist in the original link set.

7.6.2 Data-level evidence

Data-level evidence includes individuals defined in third-party repositories and coref-

erence links to and from them. The scenario shown in Fig. 7.8 illustrates the use

of this type of evidence. The LinkedMDB repository9 contains data about movies

structured using a special Movie ontology. Many of its individuals are also mentioned

in DBPedia under different URIs. Some of these coreferent individuals, in particular,

9http://data.linkedmdb.org/
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Figure 7.8: LinkedMDB and DBPedia: exploiting instance-level coreference
links with third-party datasets. Solid arrows show existing owl:sameAs (=) and
movie:relatedBook links. Dashed arrows connect sets containing potentially omitted
links.
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those belonging to classes movie:film and movie:actor, are explicitly linked to their

counterparts in DBPedia by automatically produced owl:sameAs relations. However,

for individuals of some classes, direct links are not available. For instance, there are

no direct links between individuals of the class movie:music contributor representing

composers, whose music was used in movies, and corresponding DBPedia resources.

Then, there are relations of the type movie:relatedBook from movies to related books

in RDF Book Mashup but not to books mentioned in DBPedia. Partially, such

mappings can be obtained by computing a transitive closure for individuals con-

nected by coreference links: obtaining all pairs of individuals which are connected

indirectly via a chain of coreference mappings. However, many links are missed in

this way because of the omission of an intermediate link in a chain (e.g., 32% of

movie:music contributor instances were not connected to corresponding DBPedia in-

stances). Again, such links can be discovered by comparing corresponding subsets of

LinkedMDB and DBPedia directly. To discover these subsets our approach computes

a transitive closure over existing mappings and combines co-referring individuals into

clusters. These clusters are used as evidence for the schema matching procedure to

derive schema-level mappings: in our example, we derive the correspondence between

movie:music contributor and dbpedia:Artist and the rdfs:range relation between the

property movie:relatedBook and the class dbpedia:Book. These mappings are used af-

terwards to perform coreference resolution over related subsets. In our workflow (see

Fig. 7.2) the ontology integration stage is performed in a “bottom-up” way exploiting

both schema-level and data-level evidence while the knowledge base integration stage

uses them in a “top-down” way. In sections 7.7 and 7.8 we will describe these two

main stages of the workflow in more detail.
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7.7 Inferring schema mappings: the “bottom-up”

stage

The process of inferring schema mappings starts by composing clusters of individuals

from different repositories. At this stage pairs of connected individuals belonging

to different datasets are retrieved. Then the system forms clusters of coreferent

individuals by computing transitive closures over available links.

These clusters represent the basic evidence, which we use to infer schema-level

mappings. For each individual in a cluster we extract its class assertions. We consider

that a cluster belongs to a certain class if at least one individual from this cluster

belongs to a class. At this stage classes which are used in different datasets are

always treated as different classes, even if they have the same URI. For instance, in

our example, the Movie ontology used in LinkedMDB and the Music ontology used

in Musicbrainz both extend the standard FOAF ontology. But we treat the class

foaf:Person in both these ontologies as two distinct classes: foaf:Person@Movie and

foaf:Person@Music. This is done in order to discover the actual usage pattern for

each class, which may implicitly extend its ontological definition.

At the next step we construct mappings between classes. As we said before,

instead of equivalence and subsumption the algorithm produces a special type of

relation, which we called #overlapsWith. Formally this relation is similar to the um-

bel:isAligned property10 and states that two classes share a subset of their individuals.

However, in our case, a quantitative assessment of the relation is necessary to distin-

guish between strongly correlated classes and merely non-disjoint ones. For instance,

10http://www.umbel.org/technical documentation.html
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the concept dbpedia:Actor denotes professional actors (both cinema and stage), while

the concept movie:actor in LinkedMDB refers to any person who played a role in a

movie, including participants in documentaries, but excluding stage actors. Because

of this, these classes are strongly correlated, but not equivalent. On the other hand,

the classes movie:actor and dbpedia:FootballPlayer only share a few instances (e.g.,

‘Vinnie Jones”) which, however, do not allow these classes to be defined as disjoint.

The #overlapsWith relation has a quantitative measure varying between 0 (mean-

ing the same as owl:disjointWith) and 1 (meaning that there is a rdfs:subClassOf

relation in one direction or both). We calculate similarities between classes based on

the sets of clusters assigned to them. Two criteria are used to produce the output

set of #overlapsWith relations between classes:

1. The value of the overlap coefficient compared to a threshold.

sim(A,B) = overlap(c(A), c(B)) =
|c(A) ∩ c(B)|

min(c(A), c(B))
≥ toverlap,

where c(A) and c(B) are sets of instance clusters assigned to classes A and B

respectively. The overlap coefficient was chosen as a similarity metric to reduce

the impact of dataset population sizes. If the first dataset is populated to a

lesser degree than the second one, then for most classes |c(A)| << |c(B)|. In

this case relatively small changes in |c(B)| would have a big impact on such

distance metrics as Jaccard score or Dice coefficient, while different values of

|c(A)| would not change the value significantly.

2. Choosing the “best match” mapping among several options. It is possible that

for the same class, A, several relations are produced, which connect it to classes
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at different levels of the hierarchy. For instance, we can have both overlap-

sWith(A, B) and overlapsWith(A, C), where B v C: e.g., the class movie:actor

from LinkedMDB can be matched either to the class dbpedia:Actor, or to its

superclass dbpedia:Person. In our scenario the relation with a more generic

class will always override the more specific one: it will mean that individuals

of A will have to be compared to individuals of C. Therefore, only one such

relation should be chosen, and the original overlap coefficient value cannot be

used as a criterion: if |c(A)| ≤ |c(B)|, then the relation sim(A,B) ≤ sim(A,C)

always holds. Selecting the relation with the more generic class will mean that

possibly more coreference resolution links will be discovered between individu-

als of A and C \B: for example, in our LinkedMDB-DBPedia example, we will

find relations between some movie:actor instances and DBPedia people who

participated in movies without being professional actors (e.g., General Mont-

gomery in the 1943 documentary “Desert Victory”). On the other hand, if the

overlap between A and C \ B is small and |C \ B| is big, then more erroneous

mappings can be produced and the damage to results quality due to the loss

of precision will be higher than a possible gain from recall increase: e.g., if we

align movie:actor with dbpedia:Person, we will potentially generate many incor-

rect mappings between namesakes. To make this decision we use the following

criterion:

(|A ∩ C| − |A ∩B|)/|A ∩ C|
(|C| − |B|)/|C|

≥ λ,

where λ reflects both the expected ratio of errors for the instance coreference

resolution algorithm and relative importance of precision comparing to recall.
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If the inequality holds, then overlapsWith(A, C) is chosen, otherwise overlap-

sWith(A, B) is preferred.

In our tests we used an additional restriction: pairs of classes (A,B) where either

|A| = 1, |B| = 1 or |A ∩ B| = 1 were ignored. This was done to filter out weak

overlap mappings such as the one between foaf:Person@DBLP and yago: People-

FromRuralAlberta, which led to noise at the instance-level matching stage.

The resulting schema-level mappings obtained by the system are reused at the

knowledge base integration stage of the KnoFuss workflow to produce coreference res-

olution links between individuals and improve the recall in comparison with existing

relations.

7.8 Exploiting inferred schema mappings for coref-

erence resolution: the “top-down” stage

The schema-level mappings obtained at the previous stage are used to identify sets of

individuals in different repositories, which are likely to contain equivalent individuals

not discovered before. These sets of relevant schema-level mappings are provided

as input to the instance transformation stage of the KnoFuss tool (Fig. 7.2). As

described in section 7.4.2, it uses schema mappings to translate SPARQL queries,

which select sets of individuals to be compared, from the vocabulary of one ontology

into the terms of another one. It is possible that a class in one ontology is found to

be connected to several classes in another ontology (not related via a rdfs:subClassOf

relation). Such mappings are aggregated into a single ClassUnion mapping. For

instance, in our DBLP example to select individuals from the DBLP dataset we use
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the following query:

SELECT ?uri WHERE

{ ?uri rdf:type foaf:Person}

To select potentially comparable individuals from the DBPedia repository this query

is translated into:

SELECT ?uri WHERE

{ {?uri rdf:type yago:AmericanComputerScientists}

UNION { ?uri rdf:type yago:GermanComputerScientists}

UNION { ?uri rdf:type yago:GoogleEmployees}

UNION... }

Using these translated queries individuals from both repositories are processed in the

same way as if they shared the same schema. The system can employ several basic

matching techniques, which can be selected and configured depending on the type of

data as described in [87].

To avoid redundancy and potential errors, individuals, which were already con-

nected either directly or indirectly via a third-party dataset, are excluded from anal-

ysis. The final set of instance-level mappings produced by the tool can then be added

to existing ones.

7.9 Evaluation

For our initial experiments we used three scenarios mentioned before:

1. Finding equivalence links between individuals representing people in DBPedia

and DBLP (auxiliary dataset: YAGO, gold standard size 1229).
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2. Finding equivalence links between movie:music contributor individuals in Linked-

MDB and corresponding individuals in DBPedia (auxiliary dataset: Musicbrainz,

gold standard size 942).

3. Finding movie:relatedBook links between movie:film individuals in LinkedMDB

and books mentioned in DBPedia (auxiliary dataset: RDF Book Mashup, gold

standard size 419).

Our goal was to check the applicability of our approach in general and, in particular,

the possibility to improve coreference resolution recall in comparison with already

existing links. Thus, all three scenarios were of relatively small scale so that both

precision and recall could be checked manually and the actual coreference resolution

was performed using simple label-based similarity (Jaro metric11). Test results (pre-

cision, recall and F1 measure) are given in the Table 7.5. For each scenario three sets

of results are provided:

• Baseline, which involves computing the transitive closure of already existing

links published in corresponding repositories.

• Results obtained by KnoFuss when applied to all comparable individuals (i.e.,

without discarding those already connected via existing links.

• Combined set of existing results and new results obtained by the algorithm.

As was expected, in all cases applying instance-level coreference resolution using

automatically produced class-level mappings led to improvement in recall due to the

11In the first two scenarios the metric was adapted for personal names, e.g., to match complete name

with initials
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Table 7.5: Test results for the instance-based schema matching algorithm

Dataset Test Precision Recall F1

DBPedia vs DBLP
Baseline 0.90 0.14 0.25
All individuals 0.95 0.88 0.91
Combined set 0.93 0.89 0.91

LinkedMDB vs DBPedia Baseline 0.99 0.68 0.81
(music contributors) All individuals 0.98 0.91 0.94

Combined set 0.98 0.97 0.98
LinkedMDB vs DBPedia Baseline 0.97 0.82 0.89
(books) All individuals 0.98 0.90 0.93

Combined set 0.96 0.97 0.96

discovery of previously missed mappings and to a better overall performance, as

measured by the F1-measure. In all cases, the best performance and F1-measure was

achieved by combining newly produced mappings with existing ones. It means that

the algorithms, which produced these sets of links, could generate complementary

results and no set of links was redundant.

Obviously, the precision of the combined set of links was lower than the precision

of the best algorithm in all three tests. In our tests this decrease was relatively small

and was compensated by the increase in recall. However, in cases where the same

data were already processed by algorithms of higher quality, the situation can be

different. It makes the issue of tracing provenance of existing links important, as

mentioned in section 7.8.

Considering the schema matching stage we found two factors which were poten-

tial causes of errors. The first factor was insufficient evidence. When only a small

number of existing coreference links are available as evidence, distinguishing between

“weakly overlapped” and “strongly overlapped” classes is problematic. For example,

in the DBPedia-DBLP scenario the class yago: FellowsOfWolfsonCollege,Cambridge
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received a higher overlap score with foaf: Person@DBLP than the class yago: Israeli-

ComputerScientists, which in fact was strongly overlapped. This happened because

for both of these classes there were only 2 evidence links available and the class yago:

FellowsOfWolfsonCollege,Cambridge contained fewer instances. At the coreference

resolution stage instances of such weakly overlapped classes caused the majority of

false positive mappings because of name ambiguity.

The second factor concerned the quality of the ontologies themselves and of the

class assertion statements. For instance, in the DBPedia dataset many musicians

were not assigned to an appropriate class dbpedia:MusicalArtist but instead were as-

signed to more general classes dbpedia:Artist or even dbpedia:Person. As a result the

“best fit” mappings produced by the algorithm did not correspond to the originally

intended meaning of classes, because this originally intended meaning was not fol-

lowed in the dataset (e.g., based on instance data the class movie:music contributor

was mapped to the class dbpedia:Artist instead of dbpedia:MusicalArtist). More seri-

ous issues involved instances being assigned to classes, which were actually disjoint

(e.g., the individual dbpedia:Jesse Ventura was classified as both a dbpedia:Person

and a dbpedia:TelevisionShow). While, in our scenarios, spurious schema mappings

caused by these errors were filtered out by the threshold, in other cases their impact

can be significant. Explicit specification of ontological constraints can help to deal

with such situations.
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7.10 Conclusion

As pointed out at the beginning of this chapter (section 7.1), we pursued four primary

goals when implementing the multi-ontology extension of the KnoFuss architecture:

• To make the use of the KnoFuss architecture in a multi-ontology environment

possible.

• To discover specific features of multi-ontology data fusion in comparison with

the single-ontology case.

• To test the possible impact caused by inaccuracies introduced at the schema-

matching stage.

• To discover possible ways of reducing the impact of ontological heterogeneity.

At a more general level, all these goals were related to research question 6: “What is

the impact of ontology schema heterogeneity on the data fusion process?”

In comparison with the single-ontology data fusion scenario adding the ontology

heterogeneity challenge results both in a decreased reliability of the methods’ outputs

and difficulties in the precise estimation of this decrease. For data-level coreference

resolution methods we assume that the performance of the method depends on some

common features of individuals belonging to a class: this assumption was the basis for

the use of application context structures in the KnoFuss architecture (section 3.6.3).

For ontology matching methods, even knowing the estimated quality of a method

(e.g., precision/recall in some test scenarios), it is hard to estimate whether it will

hold for a different pair of ontologies. Also, it is hard to measure precisely the impact

of a single ontology-level error at the data level. This impact can result in:
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• Erroneous widening or narrowing of the applicability range of integration meth-

ods (misaligned concepts).

• Providing noisy evidence for data-level methods (misaligned properties and on-

tological restrictions).

Finally, some ontological mismatches, such as those originating in different modelling

styles cannot be resolved fully automatically by currently existing tools and can make

data-level methods inapplicable.

We can outline several directions for assisting data fusion in the presence of schema

heterogeneity. First, given that the output is likely to be noisy it is necessary to

keep track of data integration decisions (such as instance coreference mappings or

statements considered incorrect) and their provenance.

Second, considering the limited capabilities of automatic ontology matching meth-

ods, the availability of trusted and reusable schema-level background knowledge is

important. Such reference knowledge bases are useful when they cover the gaps exist-

ing in common ontology matching scenarios. Among others, such reference knowledge

may include:

• Specifying rich semantic restrictions existing in a certain domain, e.g., disjoint-

ness relations, property cardinality and domain/range constraints. Often such

semantic restrictions are omitted by the authors of ontologies either in order

to reduce the reasoning or just because they are not needed in the intended

ontology use scenario.

• Covering common ontological mismatches which cannot be resolved automat-

ically. For instance, these can include transformation rules between different
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time modeling approaches and overlaps between subclasses of the same concept

divided according to different criteria (e.g., classifying historical artifacts from

China by centuries or by dynastic periods). In this way, a complex modeling

style mismatch can be reduced to a terminological one, which can be treated

automatically.

Third, sometimes existing automatic matching tools impose overly rigid restrictions

on their output because they aim to improve their precision. For instance, some

tools (including Lily from our tests) produce only one-to-one equivalence mappings

assuming that two different classes in one ontology cannot be considered equivalent

to the same class in another ontology. Thus, only the best candidate for equivalence

is selected and all others are filtered out. While this is a useful assumption for dealing

with terminological mismatches, it may miss important mappings in the presence of

conceptualisation and modelling style mismatches.

In order to address this issue and improve the performance of the schema match-

ing stage, we proposed an algorithm which uses instance-based schema matching

and exploits third-party data repositories as background knowledge. The tests of the

algorithm have shown a substantial improvement in the coreference resolution perfor-

mance in comparison with the existing mappings. In particular, the recall increased

because many previously omitted mappings have been discovered by KnoFuss.



Chapter 8

Contributions and future work

This chapter summarises the contributions of the thesis and outlines important direc-

tions for future work. We briefly discuss three topics where this dissertation provides

contributions and outline two directions, which we consider the most important for

future work: adaptation of the developed system for Web scale semantic data inte-

gration, and extension of the library of methods which the architecture can use.

208
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8.1 Summary of the research

As stated in Chapter 1, the general research question we have addressed was: “How

can we perform data-level fusion of semantically annotated data coming from different

sources?” This question includes the following six more specific research questions:

1. How should algorithms performing fusion subtasks be used in combination to

implement the semantic data fusion workflow?

2. How can we support the reusability of fusion algorithms across domains?

3. How can we exploit axioms defined in domain ontologies to improve the perfor-

mance of fusion algorithms?

4. What kind of uncertainty management framework is suitable for fusion?

5. How can we exploit uncertainty and provenance information to improve the

fusion performance?

6. What is the impact of ontology schema heterogeneity on the data fusion process?

These questions were formulated based on the review of related work described in

Chapter 2 and concern three main aspects:

• The design of an architecture combining different fusion algorithms.

• The development of methods for handling uncertainty in the fusion process.

• The analysis of the impact on the fusion process caused by schema heterogene-

ity.

In the following sections we summarise our contributions with respect to these three

aspects.
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8.2 Contributions of the research

Based on the research questions outlined in section 1.3, three main contributions can

be outlined. First, we have developed a data fusion architecture KnoFuss, which

allows the combination of different fusion algorithms to support flexible, domain-

independent integration of semantic data. Second, we have developed a novel algo-

rithm, which uses formal reasoning about uncertainty to refine fusion results. Third,

in order to cover the whole data fusion process in a multi-ontology environment, we

extended the KnoFuss architecture enabling it to use results from automatic ontology

matching tools.

8.2.1 Contribution 1

Chapter 3 concerns research questions 1-3 and describes the first contribution of this

dissertation:

• The KnoFuss architecture adopts the principles of problem-solving methods to

combine different algorithms performing various fusion subtasks into a workflow

in a flexible way. Appropriate methods are selected, based on their capabilities

and the data to be integrated, in order to maximise the quality of the output

data.

A major factor, which makes data-level fusion different from schema integration, is

the problem of granularity: the need to employ different methods and different con-

figuration parameters not only for different input datasets but for different types

of entities within the same dataset. This aspect had not been studied in existing

ontology matching systems. For this reason, in the KnoFuss architecture, a novel
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approach for organizing the library of methods is used. Method settings are speci-

fied depending on the data domain to which a method is applied, thus maximising

reusability of methods across domains. At the same time, the need to define optimal

parameters for methods for each specific class manually would require significant user

effort. To reduce this effort, the class hierarchy defined in the ontology is used to

assist in determining optimal settings for each class of entities and reuse the settings

for entities of related classes (e.g., those sharing the same superclass). A commonly

used approach to determine optimal configuration parameters is machine learning,

which normally requires training data to be available. Using a class hierarchy in

the system configuration allows machine learning algorithms to reuse and combine

training data instances belonging to different classes and to produce optimal decision

models. These features ensure a very flexible architecture where new methods can

be integrated into the system with minimal effort, and allow the data fusion process

to be adjusted for specific use case scenarios.

8.2.2 Contribution 2

Chapters 4 and 5 investigate research questions 4-5. Based on the analysis of the data

fusion problem requirements we proposed what we consider the second contribution

of this dissertation:

• Our algorithm for processing data interdependencies to improve data fusion

quality uses the Dempster-Shafer formalism [106] for uncertainty representation,

and valuation networks [108] for belief propagation. Interdependencies between

data statements and coreference mappings are localised, and translated into

belief propagation networks. The confidence degrees of logical statements are
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propagated through the network and updated. The updated confidence degrees

are used to refine the resulting knowledge base.

Most existing work in the domain of uncertainty reasoning for the Semantic Web

employs either fuzzy or probabilistic approaches. However, for the reasons explained

in section 4.2, these approaches are not optimal for the data fusion scenario. Fuzzy

reasoning deals with the problem of vagueness rather than the data reliability one.

The Bayesian interpretation of probability theory is in principle suitable, but its

restriction on having a single uncertainty value does not allow distinctions between

weak positive evidence and strong negative evidence to be made, which are relevant

for the knowledge fusion scenario. Thus, our answer to question 4 was the choice of the

Dempster-Shafer interpretation of uncertainty, which makes it possible to represent

ignorance and reason about it.

In order to reason about uncertain datasets, we developed a novel algorithm which

combines logical reasoning over ontological axioms with uncertainty reasoning over

uncertain data statements to update initial beliefs of statements, select statements

most likely to be incorrect, and reinforce others that are likely to be correct. A

distinctive feature of our algorithm is its capability to reason about uncertain data

statements and uncertain coreference resolution decisions in combination (Chapter

5). This led to an improvement in the overall fusion performance in our experiments

(Chapter 6).

8.2.3 Contribution 3

Chapter 7 considers research question 6. In order to perform data fusion in a multi-

ontology environment, the results of automatic ontology matching algorithms must
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be exploited. Hence, the third contribution of the thesis is the following:

• The analysis of possible ontology mismatches and their impact for data-level

fusion allowed us to discover several important factors (see below), which limit

the possibilities to reuse existing ontology alignment systems in combination

with data-level techniques. Additionally, we developed an extension of the

KnoFuss architecture for the multi-ontology fusion scenario and proposed a

novel schema-matching algorithm aimed at assisting the data fusion process in

the Linked Data environment.

The analysis of ontology mismatches and the tests we performed provide us with

several insights into the problem of overcoming semantic heterogeneity when per-

forming data fusion. First, the correspondence patterns based on description logic

relations (equivalence and subsumption), which are produced by most existing ontol-

ogy alignment tools, were found to be insufficient for the data fusion scenario, where

it is important to know the degree of overlap between classes in the ontology. Also,

when we applied automatically obtained schema mappings for data fusion, the recall

performance of the schema matching stage was found to be more important than

precision. To decrease the negative impact of incorrect schema mappings, ontological

restrictions, such as class disjointness, were found to be useful.

To address these issues we focussed on instance-based schema-matching tech-

niques and developed a novel schema-matching algorithm, which exploits pre-existing

instance coreference mappings published in third-party repositories as background

knowledge for schema matching. In contrast with existing schema matching tools,

which produce crisp schema mappings in the form of description logic axioms, our

algorithm produces fuzzy mappings between classes, which are more suitable for the



214

data-level fusion task.

8.3 Limitations and future work

In this section we will discuss the issues which we consider the main limitations of

our work, and the future work needed to overcome them.

8.3.1 Web-scale data integration

KnoFuss was initially developed for the enterprise knowledge management scenario

where semantic data are created by automatically annotating documents produced

inside a company. This scenario motivated several development assumptions such

as the availability of a single central repository, the possibility of measuring data

quality based on the reliability of corresponding information extraction algorithms,

etc. However, if we consider the scenario of fusing Semantic Web data (e.g., published

according to the Linked Data standard), these assumptions do not hold. Further work

is needed to make KnoFuss operable on a Web scale.

The first of such problems concerns schema heterogeneity. As discussed in Chap-

ter 7, different types of schema mismatches can have a negative impact at the data

fusion stage and are hard to overcome by automatic schema matching tools. The

straightforward approach, where schema matching and data matching are performed

sequentially, can lead to significant decrease in data fusion performance, primarily be-

cause of omissions of valuable schema-level mappings. Although the schema-matching

algorithm we proposed in Chapter 7 addresses this problem, its main limitation is

its dependency on pre-existing data-level mappings. A possible way to overcome this
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Figure 8.1: Iterative fusion workflow.

issue is to switch from a sequential to an iterative workflow, where schema- and data-

level integration steps are performed in a loop (Fig. 8.1), as in the approach proposed

in [119]. Implementing such a workflow will require redesigning and extending the

KnoFuss architecture in several directions, including:

• Incremental processing of data: at each iteration after each fusion subtask the

architecture has to consider what additional information has been produced

since the last iteration, what implications it has for generating new coreference

links, what methods will be useful at the next stage and whether the system

should stop.

• Advanced management of schema mappings: knowledge about mappings es-

tablished or rejected at one stage has to be reused at the next stage to refine

results of instance-level methods.

There are also infrastructural issues, which have to be taken into account in order to

make our system usable in a Web-scale data integration context. In particular, these

concern storing, publishing and maintaining both schema-level and data-level links.

Hence, there are several interesting directions that can followed, such as applying the
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coreference bundles approach [48] instead of maintaining sets of pairwise owl:sameAs

links, and integrating KnoFuss with the idMesh approach [22], which reasons about

sets of coreference links and their reliability.

Another consequence of dealing with data fusion on a Web scale is related to the

physical properties of published semantic data. Public Linked Data repositories are

primarily accessible as SPARQL endpoints, not as RDF dumps. While the architec-

ture itself uses SPARQL queries for data retrieval, some methods may need to view

the knowledge base as a whole to make decisions (e.g., schema matching algorithms

employing structure-level techniques). Additional pre-processing techniques would

be needed to collect from a repository all information needed by such methods (e.g.,

complete schema ontologies which describe data structure). Moreover, given the time

and traffic cost of posting a query to a remote repository, the fusion process would

have to be optimised to minimise the number of necessary queries. Such optimisa-

tion could include local caching of query results or even partial downloading of the

repository in advance. Arguably, the most important part of the system in need of

optimization is blocking for coreference resolution - i.e., selecting pairs of individuals

as candidates for matching. Given that datasets may contain thousands of individ-

uals, it is very time consuming to consider all possible pairs. In the original version

of KnoFuss blocking was performed using the Lucene index of the target knowledge

base: the enterprise knowledge management scenario assumed that fusion will con-

cern adding new data into the main repository, hence, creating and maintaining an

index of this repository was justified. This assumption does not hold for a Linked

Data fusion scenario, so the indexing approach may not be an optimal one: construct-

ing an index requires downloading of all data from one of the datasets in advance.
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Alternative blocking techniques must therefore be investigated.
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8.3.2 Populating the library of methods

When designing the architecture we did not focus on implementing complex methods

to handle all fusion subtasks. For example, for the coreference resolution stage we

primarily used popular string similarity matching techniques. This approach was

useful for experiments, as we were interested in the impact of specific factors on

the fusion process rather than in finding the best possible algorithm: for instance,

when testing the belief propagation algorithm for inconsistency resolution, coreference

errors were important as they provided illustrative examples. If basic coreference

resolution methods had better performance, it would require a much bigger test

dataset to see the impact of belief propagation. For wide practical usage, of course,

maximizing the quality of fusion output is essential and including the best available

methods is necessary, as well as having a wide range of applicable methods.

It will be interesting to investigate the role of machine learning algorithms for

fusion subtasks in the Linked Data environment. The major factor limiting their use

is the lack of training data. The KnoFuss architecture tries to minimise the amount

needed using the concept hierarchy (Chapter 3) and there are other techniques such

as active learning [98] which address the same goal, although they cannot solve the

problem completely. However, in the Linked Data scenario, coreference relations

between repositories are publicly available and can be used directly as training ex-

amples. There are several potentially limiting factors, such as the uncertain quality

of these links for different pairs of datasets and omitted coreference mappings, which

can be interpreted as negative examples. Hence, further work is necessary to study

the implications of training machine learning algorithms on Linked Data repositories.

Another important issue, which was considered external to the work described in
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this thesis, concerns the user involvement in the fusion process. The original archi-

tecture was designed as an intermediate module of the X-Media kernel system, which

had to process documents, extract semantic annotations and populate the corporate

knowledge base in an automated way. Thus, in the KnoFuss architecture, only lim-

ited user involvement is allowed for defining the method library and configuration

parameters. For a wider range of tasks, such as finding coreference links for a newly

published dataset, support for an interactive fusion process must be included. The

user must be able to check the results of the fusion process, correct them, select and

manipulate subsets of mappings, etc. These user’s activities can then in turn be

logged and used to update the decision models of machine learning methods.

8.4 Outlook

The research described in this thesis considers the problem of data fusion in the spe-

cific context of semantic data structured using ontologies. While the research on data

integration has a long history, the features of semantic data, such as its distributed

and uncertain nature, expressiveness of ontological languages, and varying reliability

of applicable algorithms, generate their own challenges, which require special consid-

eration. In our research we proposed several ways to address these challenges.

The design of the KnoFuss architecture takes into account the ontological struc-

ture of the data to select and configure fusion algorithms. At the same time the

architecture does not make any assumptions about a particular domain or a specific

ontology. Uncertainty degrees of data statements and fusion methods’ results are for-

mally represented at the architecture level and serve as evidence for taking decisions
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about fusion results. Uncertainty reasoning is combined with ontological inferencing

to process complex cases of interdependencies between data statements, coreference

mappings, and ontological restrictions to maximise the quality of the architecture’s

output.

This research work started by assuming a specific and restricted scenario of pop-

ulating a corporate knowledge base. Since then we have witnessed a rapid growth of

semantic data published on the Web, which makes the data fusion issue even more

important. While the data integration in the Linked Data scenario presents new

problems, the basic assumptions we incorporated in the design of KnoFuss still hold

and some of them are even emphasised: the range of domains is wider, information is

physically distributed, and the problem of uncertainty becomes more acute because

of the varying quality and origin of datasets.

The growing Linked Data environment provides perfect opportunities for apply-

ing and extending the work on data fusion. At the moment, the integration of newly

published datasets is usually performed on an ad-hoc basis: specific techniques are

used to find coreference relations with individuals from other data sources describing

overlapping topics. With the growing number of published data sources, the au-

tomation and the generalization of this procedure will be needed. The capabilities of

the KnoFuss architecture (in particular, its extendability) make it a suitable starting

point for an automatic Linked Data integration service.
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