11 research outputs found

    Simple Combinatorial Optimisation Cost Games

    Get PDF
    In this paper we introduce the class of simple combinatorial optimisation cost games, which are games associated to {0, 1}-matrices.A coalitional value of a combinatorial optimisation game is determined by solving an integer program associated with this matrix and the characteristic vector of the coalition.For this class of games, we will characterise core stability and totally balancedness.We continue by characterising exactness and largeness.Finally, we conclude the paper by applying our main results to minimum colouring games and minimum vertex cover games.Combinatorial optimisation game;core stability;totally balancedness;largeness;exactness

    Monotonic Stable Solutions for Minimum Coloring Games

    Get PDF
    For the class of minimum coloring games (introduced by Deng et al. (1999)) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont (1990)). We show that a minimum coloring game on a graph G has a population monotonic allocation scheme if and only if G is (P4, 2K2)-free (or, equivalently, if its complement graph G is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.Minimum coloring game;population monotonic allocation scheme;(P4;2K2)-free graph;quasi-threshold graph

    Simple Combinatorial Optimisation Cost Games

    Get PDF
    In this paper we introduce the class of simple combinatorial optimisation cost games, which are games associated to {0, 1}-matrices.A coalitional value of a combinatorial optimisation game is determined by solving an integer program associated with this matrix and the characteristic vector of the coalition.For this class of games, we will characterise core stability and totally balancedness.We continue by characterising exactness and largeness.Finally, we conclude the paper by applying our main results to minimum colouring games and minimum vertex cover games.

    Simple and Three-Valued Simple Minimum Coloring Games

    Get PDF

    On core stability and extendability

    Get PDF
    This paper investigates conditions under which the core of a TU cooperative game is stable. In particular the author extends the idea of extendability to find new conditions under which the core is stable. It is also shown that these new conditions are not necessary for core stability.core stability, stable core, extendability

    Monotonic Stable Solutions for Minimum Coloring Games

    Get PDF
    For the class of minimum coloring games (introduced by Deng et al. (1999)) we investigate the existence of population monotonic allocation schemes (introduced by Sprumont (1990)). We show that a minimum coloring game on a graph G has a population monotonic allocation scheme if and only if G is (P4, 2K2)-free (or, equivalently, if its complement graph G is quasi-threshold). Moreover, we provide a procedure that for these graphs always selects an integer population monotonic allocation scheme.

    Algorithmic and complexity aspects of simple coalitional games

    Get PDF
    Simple coalitional games are a fundamental class of cooperative games and voting games which are used to model coalition formation, resource allocation and decision making in computer science, artificial intelligence and multiagent systems. Although simple coalitional games are well studied in the domain of game theory and social choice, their algorithmic and computational complexity aspects have received less attention till recently. The computational aspects of simple coalitional games are of increased importance as these games are used by computer scientists to model distributed settings. This thesis fits in the wider setting of the interplay between economics and computer science which has led to the development of algorithmic game theory and computational social choice. A unified view of the computational aspects of simple coalitional games is presented here for the first time. Certain complexity results also apply to other coalitional games such as skill games and matching games. The following issues are given special consideration: influence of players, limit and complexity of manipulations in the coalitional games and complexity of resource allocation on networks. The complexity of comparison of influence between players in simple games is characterized. The simple games considered are represented by winning coalitions, minimal winning coalitions, weighted voting games or multiple weighted voting games. A comprehensive classification of weighted voting games which can be solved in polynomial time is presented. An efficient algorithm which uses generating functions and interpolation to compute an integer weight vector for target power indices is proposed. Voting theory, especially the Penrose Square Root Law, is used to investigate the fairness of a real life voting model. Computational complexity of manipulation in social choice protocols can determine whether manipulation is computationally feasible or not. The computational complexity and bounds of manipulation are considered from various angles including control, false-name manipulation and bribery. Moreover, the computational complexity of computing various cooperative game solutions of simple games in dierent representations is studied. Certain structural results regarding least core payos extend to the general monotone cooperative game. The thesis also studies a coalitional game called the spanning connectivity game. It is proved that whereas computing the Banzhaf values and Shapley-Shubik indices of such games is #P-complete, there is a polynomial time combinatorial algorithm to compute the nucleolus. The results have interesting significance for optimal strategies for the wiretapping game which is a noncooperative game defined on a network

    Algorithmic and complexity aspects of simple coalitional games

    Get PDF
    Simple coalitional games are a fundamental class of cooperative games and voting games which are used to model coalition formation, resource allocation and decision making in computer science, artificial intelligence and multiagent systems. Although simple coalitional games are well studied in the domain of game theory and social choice, their algorithmic and computational complexity aspects have received less attention till recently. The computational aspects of simple coalitional games are of increased importance as these games are used by computer scientists to model distributed settings. This thesis fits in the wider setting of the interplay between economics and computer science which has led to the development of algorithmic game theory and computational social choice. A unified view of the computational aspects of simple coalitional games is presented here for the first time. Certain complexity results also apply to other coalitional games such as skill games and matching games. The following issues are given special consideration: influence of players, limit and complexity of manipulations in the coalitional games and complexity of resource allocation on networks. The complexity of comparison of influence between players in simple games is characterized. The simple games considered are represented by winning coalitions, minimal winning coalitions, weighted voting games or multiple weighted voting games. A comprehensive classification of weighted voting games which can be solved in polynomial time is presented. An efficient algorithm which uses generating functions and interpolation to compute an integer weight vector for target power indices is proposed. Voting theory, especially the Penrose Square Root Law, is used to investigate the fairness of a real life voting model. Computational complexity of manipulation in social choice protocols can determine whether manipulation is computationally feasible or not. The computational complexity and bounds of manipulation are considered from various angles including control, false-name manipulation and bribery. Moreover, the computational complexity of computing various cooperative game solutions of simple games in dierent representations is studied. Certain structural results regarding least core payos extend to the general monotone cooperative game. The thesis also studies a coalitional game called the spanning connectivity game. It is proved that whereas computing the Banzhaf values and Shapley-Shubik indices of such games is #P-complete, there is a polynomial time combinatorial algorithm to compute the nucleolus. The results have interesting significance for optimal strategies for the wiretapping game which is a noncooperative game defined on a network.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Core Stability of Minimum Coloring Games

    No full text
    In cooperative game theory, a characterization of games with stable cores is known as one of the most notorious open problems. We study this problem for a special case of the minimum coloring games, introduced by Deng, Ibaraki & Nagamochi, which arises from a cost allocation problem when the players are involved in conflict. In this paper, we show that the minimum coloring game on a perfect graph has a stable core if and only if every vertex of the graph belongs to a maximum clique. We also consider the problem on the core largeness, the extendability, and the exactness of minimum coloring games. As a consequence, we show that it is coNP-complete to decide whether a given game has a large core, is extendable, or is exact
    corecore