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coloring games

H. Hamers∗ S. Miquel† H. Norde∗

February 17, 2011

Abstract

For the class of minimum coloring games (introduced by Deng et
al. (1999)) we investigate the existence of population monotonic al-
location schemes (introduced by Sprumont (1990)). We show that a
minimum coloring game on a graph G has a population monotonic al-
location scheme if and only if G is (P4, 2K2)-free (or, equivalently, if
its complement graph Ḡ is quasi-threshold). Moreover, we provide a
procedure that for these graphs always selects an integer population
monotonic allocation scheme.

Keywords: Minimum coloring game, population monotonic allocation scheme,
(P4, 2K2)-free graph, quasi-threshold graph.

JEL-code: C71

1 Introduction

Minimum coloring problems deal with situations where the agents present
are interested in having access to some facility but can be involved in conflict.
Conflicts between agents are modeled by an undirected conflict graph in which
two agents are connected if and only if they are in conflict. Agents who are
in conflict can not have access to the same facility and the problem is to find
the minimum number of facilities that can serve all agents, or, equivalently,
to find the chromatic number of the conflict graph.

The cost allocation problem arising from such a situation can be tackled
using cooperative game theory. A corresponding cooperative game is con-
structed where the value of any coalition of agents is equal to the chromatic
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†Departament de Matemàtiques, Universitat de Lleida, Spain. Financial support by
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number of the conflict subgraph induced by this coalition. For this cooperative
coloring game the existence of core elements, i.e. cost allocation vectors which
are such that no group of agents has an incentive to deviate, is investigated.
Deng et al. (1999) did this job for the more general class of combinatorial
optimization games. They showed that such games have core elements if and
only if an associated linear program has an integer optimal solution.

Combinatorial optimization games, and hence in particular minimum col-
oring games, can be viewed as examples of so-called operations research games
(OR games for short). OR games can be classified via the nature of the un-
derlying operations research problem. It can be, for example, a scheduling
problem (cf. Curiel et al. (1989)), linear production problem (cf. Owen
(1975)), inventory problem (cf. Guardiola et al. (2009)) or a network problem
(cf. Curiel et al. (1992)). A survey on OR games can be found in Borm et al.
(2001).

For OR games arising from network problems, which include the minimum
coloring games, a line of research exists in which properties of the OR game are
characterized by properties of the underlying network (graph). For example,
Granot et al. (1999) showed that a graph is weakly Eulerian (respectively
weakly cyclic) if and only if the induced Chinese postman game is balanced
(respectively submodular). Herer and Penn (1995) showed that graphs which
are obtained as a 1-sum ofK4 and outerplanar graphs characterize submodular
Steiner-traveling salesman games. Okamoto (2003) showed that minimum
vertex cover games are submodular if and only if the underlying graph is
(K3, P3)-free, i.e., no subgraph is isomorphic to K3 or P3.

For the subclass of minimum coloring games it seems impossible to charac-
terize balancedness in terms of properties of the underlying graph. Deng et al.
(2000) succeeded however in providing a nice characterization of the somewhat
smaller collection of minimum coloring games that are totally balanced: a min-
imum coloring game on a graph is totally balanced if and only if the graph
is perfect. Totally balancedness is an attractive property that states that the
game, together with all its subgames, has a core element. Okamoto (2003a)
characterized the core of a minimum coloring game on a perfect graph as the
convex hull of the characteristic vectors of maximum cliques of the graph.

Despite its attractiveness, totally balancedness does not guarantee in all
situations the existence of a reasonable allocation. Consider for example the
very simple 3-person conflict graph G1 in Figure 1 and its associated minimum
coloring game. It is straightforward to see that (1, 1, 0) is the only core element
in this minimum coloring game, as {1, 2} is the only maximum clique in perfect
graph G1. So agent 3 does not have to pay at all and is rewarded for not being
in conflict with any of the other two agents. Now suppose that agents 1, 2
and 3 consider the possibility of cooperation with agents 4 and 5, who are in
conflict with agent 3 and with each other but not with agents 1 and 2 (see
graph G2 in Figure 1). In order to establish cooperation it seems reasonable to
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Figure 1: Graph G1 and the extended graph G2.

require that all agents should benefit in this new cooperative situation. Hence
agents 1, 2, 4 and 5 are willing to pay 1 unit at most and agent 3 still does
not want to pay anything. However, the minimum coloring game associated
with G2 only has one core element, namely (0, 0, 1, 1, 1) ({3, 4, 5} is the only
maximum clique in G2). In this core element agent 3 has to pay 1 unit! In
spite of the fact that this 5-person minimum coloring game is totally balanced
it lacks a form of dynamic stability. As soon as new agents enter the scene,
some agents already present may have disadvantage of it.

The problem with the minimum coloring game onG2 is that it is impossible
to find core elements in the game and all its subgames in a monotonic way.
It is the existence of such monotonic schemes that leads to a stable setting
in situations where the set of agents may increase over time. Such monotonic
schemes were introduced for any cooperative game by Sprumont (1990) as
population monotonic allocation schemes (pmas-es for short).

In this paper we characterize the class of minimum coloring games with
a pmas. Our main result is that a minimum coloring game has a pmas if
and only if the underlying conflict graph is (P4, 2K2)-free. The collection of
(P4, 2K2)-free graphs is well-known in graph theory: these are the graphs
that are complements of (P4, C4)-free graphs, which are also known as quasi-
threshold graphs or comparability graphs of arborescence orders (see Wolk
(1962, 1965)). Yan et al. (1996) studied the class of quasi-threshold graphs in
more detail and showed that they can be recognized in linear time (hence the
same holds for (P4, 2K2)-free graphs as well). Our characterization result is in
the same spirit as the result of Deng (2000). Also the results of Bietenhader
and Okamoto (2006) perfectly fit in this context. For minimum coloring games
on perfect graphs they show that exactness, extendability and largeness of the
core are all equivalent to the statement that every clique in the conflict graph
is contained in some maximum clique. The properties exactness, extendability
and largeness of the core are not related with the property of having a pmas,
even not in the special case of minimum coloring games. For example con-
sider perfect graph G3 (see Figure 2) which is (P4, 2K2)-free but which does
not have the property that every clique is contained in a maximum clique, and
perfect graph G4 where the opposite statements are true. Okamoto (2003b)
characterized the much smaller class of concave or submodular minimum col-
oring games by complete multipartiteness of the underlying graph. Concave
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Figure 2: Graphs G3 and G4.

games always admit pmas-es (see Sprumont (1990)) and complete multipartite
graphs are indeed instances of (P4, 2K2)-free graphs.

This paper is organized as follows. Section 2 is a preliminary section
introducing the relevant concepts of game and graph theory. In section 3 the
class of quasi-threshold graphs and the complementary (P4, 2K2)-free graphs
are discussed in detail. An alternative description of the class of (P4, 2K2)-
free graphs is provided using the concept of ‘degree consistency’. Section 4
contains the main results of this paper. Here we prove that every minimum
coloring game has a pmas if and only if the underlying graph is (P4, 2K2)-free.
Moreover, in case the graph is (P4, 2K2)-free we provide a description of the
complete set of pmas-es and we present a procedure that always selects an
integer pmas.

2 Preliminaries

In this section we present some concepts and results from game theory and
recall some notions from graph theory.

2.1 Game Theory

A cooperative (cost) game is a tuple (N, c) where N = {1, 2, ..., n} is the set of
agents, and c : 2N → R its characteristic (cost) function, with the convention
that c(∅) = 0. Here c(S) is interpreted as the total cost coalition S ∈ 2N

faces when fulfilling their objectives. A game (N, c) is called monotonic if
c(S) ≤ c(T ) for all S, T ∈ 2N with S ⊂ T . The core of a cost game (N, c) is
the set

C(c) :=
{

x ∈ R
N |

∑

i∈N

xi = c(N) and
∑

i∈S

xi ≤ c(S) for all S ∈ 2N\{∅}
}

.

If x ∈ C(c), then no coalition S ∈ 2N\{∅} has an incentive to split off from
the grand coalition N if x is the proposed vector of cost shares. A game (N, c)
is called balanced if C(c) 6= ∅ and totally balanced if the core of every subgame
is nonempty, where the subgame corresponding to some coalition T ∈ 2N\{∅}
is the game (T, cT ) with cT (S) = c(S) for all S ∈ 2T .
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By introducing population monotonic allocation schemes Sprumont (1990)
shifted the attention from allocation vectors for the grand coalition only to
allocation schemes. Such schemes provide an allocation vector for any coali-
tion. Given a cost game (N, c), the table x = (xS,i)S∈2N\{∅},i∈S is said to be a
population monotonic allocation scheme (pmas for short) if the following two
conditions hold:

1. efficiency : for all S ∈ 2N\{∅} we have
∑

i∈S xS,i = c(S);

2. monotonicity : for all S, T ∈ 2N\{∅} with S ⊂ T and for all i ∈ S we
have xS,i ≥ xT,i.

A pmas provides for every coalition a core element in the corresponding sub-
game in a monotonic way. The collection of all pmas-es of (N, c) is denoted
by P (N, c). The following proposition shows that pmas-es of monotonic, non-
negative games are always nonnegative.

Proposition 1. Let (N, c) be a monotonic game and let x ∈ P (N, c). Then
xS,i ≥ 0 for every S ∈ 2N\{∅} and i ∈ S.

Proof. Let S ∈ 2N\{∅} and i ∈ S. If |S| = 1 then xS,i = c(S) ≥ c(∅) = 0 by
efficiency. If |S| > 1 then

xS,i = c(S)−
∑

j∈S\{i}

xS,j

≥ c(S)−
∑

j∈S\{i}

xS\{i},j

= c(S)− c(S\{i})

≥ 0,

where the first inequality follows from the fact that x satisfies monotonicity,
the second inequality from the fact that (N, c) is monotonic and the equalities
from the fact that x satisfies efficiency.

A very simple game is the unit game (N, 1) defined by 1(S) = 1 for every
S ∈ 2N\{∅}. It is straightforward to see that this game admits a pmas. The
collection of pmas-es of (subgames 1T of) this unit game play an important
role later on, when describing pmas-es of coloring games. Next proposition
describes the collection of integer pmas-es of 1T . For this we need the concept
of ‘orders’. An order on T ∈ 2N\{∅} is a bijection from T to {1, . . . , |T |}.
The collection of all orders on T is denoted by ΣT .

Proposition 2. Let T ∈ 2N\{∅}.

(i) Let σ ∈ ΣT . Define the scheme yσ = (yσS,i)S∈2T \{∅},i∈S by

yσS,i =

{

1 if σ(i) > σ(j) for all j ∈ S\{i}
0 otherwise

(1)

for every S ∈ 2T\{∅} and i ∈ S. Then yσ ∈ P (T, 1T ).
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(ii) If y ∈ P (T, 1T ) and y is integer-valued, then there exists an order σ ∈ ΣT

such that y = yσ.

Proof. (i) First, let’s check efficiency. For every S ∈ 2T\{∅} there is precisely
one k ∈ S such that σ(k) > σ(j) for all j ∈ S\{k}. Hence

∑

i∈S y
σ
S,i = 1 =

1T (S).
Now we check monotonicity. Let S, S ′ ∈ 2T\{∅} with S ⊂ S ′ and i ∈ S. In
order to show that yσS,i ≥ yσS′,i it is sufficient to show that yσS′,i = 1 implies
yσS,i = 1, as yσ is {0, 1}-valued. So, assume yσS′,i = 1. Then σ(i) > σ(j) for all
j ∈ S ′\{i}. Hence σ(i) > σ(j) for all j ∈ S\{i} and therefore yσS,i = 1.
(ii) Let y ∈ P (T, 1T ) be integer-valued. According to Proposition 1 scheme y
is nonnegative. Nonnegativity, efficiency, and the fact that y is integer-valued
together imply that y is {0, 1}-valued.
There is a unique i ∈ T with yT,i = 1. Denote this agent by i1. If |T | > 1
there is a unique i ∈ T\{i1} with yT\{i1},i = 1. Denote this agent by i2. If
|T | > 2 there is a unique i ∈ T\{i1, i2} with yT\{i1,i2},i = 1. Denote this agent
by i3, etcetera. In this way we get an exhaustive sequence i1, . . . , i|T | of agents
in T . Now define σ ∈ ΣT by σ(ik) = |T | + 1 − k for every k ∈ {1, . . . , |T |}.
We will show that y = yσ.

Let S ∈ 2T\{∅} and i ∈ S. Let k∗ be the minimal number in {1, . . . , |T |}
such that ik∗ ∈ S and let S∗ = {ik∗ , ik∗+1, . . . , i|T |}(= T\{i1, i2, . . . , ik∗−1}).
Clearly S ⊂ S∗. If i = ik∗ we have σ(i) > σ(j) for every j ∈ S\{i} and
hence yσS,i = 1. Moreover, we have 1 = yS∗,ik∗ = yS∗,i ≤ yS,i ≤ y{i},i = 1 and
therefore also yS,i = 1. So, yS,i = yσS,i. If i 6= ik∗ we have σ(ik∗) > σ(i) and
hence yσS,i = 0. Since 1 = yS∗,ik∗ ≤ yS,ik∗ ≤ y{ik∗},ik∗ = 1 we get yS,ik∗ = 1.
Since y is {0, 1}-valued we must have by efficiency that yS,i = 0. Again we
get yS,i = yσS,i. So y = yσ.

For every cooperative game the collection of pmas-es constitute a bounded
polyhedral set and can hence be ‘computed’ as the convex hull of its extreme
points. In the special case of unit (sub)games (T, 1T ) it is easy to see that the
schemes xσ are extreme points of P (T, 1T ) for every σ ∈ ΣT . If |T | ≤ 3 one
can show that all extreme points are obtained in this way. If |T | ≥ 4 however,
this is unfortunately not the case, as the following example illustrates.

Example 3. Consider the game (N, 1) where N = {1, 2, 3, 4}. Let x =
(xS,i)S∈2N\{∅},i∈S be the scheme, given by the following table:
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S 1 2 3 4
{1} 1 − − −
{2} − 1 − −
{3} − − 1 −
{4} − − − 1
{1, 2} 0.5 0.5 − −
{1, 3} 0.5 − 0.5 −
{1, 4} 0.5 − − 0.5
{2, 3} − 0.5 0.5 −
{2, 4} − 0.5 − 0.5
{3, 4} − − 0.5 0.5
{1, 2, 3} 0 0.5 0.5 −
{1, 2, 4} 0 0.5 − 0.5
{1, 3, 4} 0 − 0.5 0.5
{2, 3, 4} − 0.5 0.5 0
{1, 2, 3, 4} 0 0.5 0.5 0

Clearly, x ∈ P (N, 1) and x is not integer-valued, so there is no σ ∈ ΣN with
x = xσ. In order to show that nevertheless x is an extreme point of P (N, 1)
write x = 1

2
y + 1

2
z with y, z ∈ P (N, 1). We will show that x = y = z.

According to Proposition 1 schemes y and z are taking nonnegative values
only. Hence we have 0 ≤ yS,i ≤ 1 and 0 ≤ zS,i ≤ 1 for all S and i. Therefore
xS,i = yS,i = zS,i for all S and i with xS,i ∈ {0, 1}. Let a = yN,2, then
yN,3 = 1 − a (recall that yN,1 = yN,4 = 0). Since x{2,3,4},2 = xN,2 we get
1
2
(y{2,3,4},2 − yN,2) +

1
2
(z{2,3,4},2 − zN,2) = 0 and hence y{2,3,4},2 = yN,2 = a

(and z{2,3,4},2 = zN,2). The same argument yields yS,2 = yN,2 = a for all
S ∈ 2N with 2 ∈ S and S 6= {2} and yS,3 = 1 − a for all S ∈ 2N with 3 ∈ S
and S 6= {3}. Using efficiency we get y{1,3},1 = y{3,4},4 = y{1,3,4},4 = a and
y{1,2},1 = y{2,4},4 = y{1,2,4},4 = 1 − a. Since x{1,4},4 = x{1,2,4},4 = x{1,3,4},4 we
get y{1,4},4 = y{1,2,4},4 = y{1,3,4},4. So a = 1− a and hence a = 1

2
. We conclude

that y = x (and hence z = x). ⊳

2.2 Graph Theory

An (undirected) graph is a pair (N,E) where N is a finite vertex set and E
is the edge set which is a subset of the collection of 2-element subsets of N .
Edges will be denoted by ij instead of {i, j}. If G = (N,E) is a graph and
S ∈ 2N\{∅} the subgraph of G induced by S is the graph G[S] = (S,ES)
where ES = {ij ∈ E : i ∈ S, j ∈ S}. The complement of G = (N,E) is the
graph Ḡ = (N, Ē) where Ē = {ij : i, j ∈ N, i 6= j, ij /∈ E}.

For a graph G = (N,E) and a vertex i ∈ N the number dN(i) = |{j ∈
N\{i} : ij ∈ E}| denotes the number of adjacent vertices of i in G and is
called the degree of i in G. Similarly, for every S ∈ 2N\{∅} and i ∈ S the
degree of i in G[S] is denoted by dS(i).
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A graph G = (N,E) is complete if for all i, j ∈ N, i 6= j we have ij ∈ E. A
clique in G is an S ∈ 2N\{∅} such that G[S] is complete. A clique is maximum
if there are no cliques containing more elements. The clique number of a graph
G is the number of elements in a maximum clique in G. An independent set is
an S ∈ 2N\{∅} such that G[S] has no edges. An independent set is maximal
if it is not a strict subset of another independent set.

A directed graph (digraph) is a tuple (V,D), where V is the finite vertex
set and D ⊂ {(i, j) : i, j ∈ V, i 6= j} is a collection of directed arcs. A
rooted tree is a digraph (V,D) for which a special vertex r ∈ V (the root)
exists such, that for each vertex v ∈ V there is a unique directed path from
r to v. A rooted forest is a digraph which is a disjoint union of rooted trees.
If (V,D) is a rooted forest then for every v ∈ V there is a unique directed
path from some root to v. The collection of vertices on this path will be
denoted by P (v). The precedence relation (V,≺) on V is defined by v ≺ v′

if v ∈ P (v′) and v 6= v′. The set of followers of a vertex v ∈ V is the set
F (v) = {v′ ∈ V : v ≺ v′}. A vertex v is called a leaf if F (v) = ∅. If V ′ ⊆ V ,
then a vertex v ∈ V ′ is said to be maximal in V ′ if F (v) ∩ V ′ = ∅. For each
V ′ ⊆ V , max(V ′) = {v ∈ V ′ : v is maximal in V ′}.

3 Quasi-threshold and (P4, 2K2)-free graphs

In this section we first discuss the class of quasi-threshold graphs (see Yan et
al. (1996)), which were formerly known as comparability graphs of arbores-
cence orders (see Wolk (1962, 1965) who was the first to study this class
of graphs). Quasi-threshold graphs are defined in a constructive way: they
are the graphs that can be formed, starting from one-vertex graphs, by the
following operations:

1) adding a new vertex that is adjacent to all vertices of a quasi-threshold
graph;

2) taking the disjoint union of two quasi-threshold graphs.

In Yan et al. (1996) (in fact, already in Wolk (1965)) quasi-threshold graphs
are characterized by the fact that they are the graphs induced by a rooted
forest. To be more precise, if F = (N,D) is a rooted forest then the induced
graph G = (N,E) is the graph where ij ∈ E (i, j ∈ N, i 6= j) if and only if
there is a directed path in F from i to j or from j to i. This induced graph
G is quasi-threshold and all quasi-threshold graphs can be constructed in this
way. We refer to F as a rooted forest representation of G.

Example 4. Consider the rooted forest F = (N,D) in Figure 3. The cor-
responding quasi-threshold graph (N,E) is given by E = {12, 13, 14, 15, 16,
23, 24, 25, 34, 35, 78, 79, 89}. Note that interchanging the positions of 2 and 3
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Figure 3: The rooted forest of Example 4.

in F yields the same quasi-threshold graph. Also interchanging 7 and 8 (or 7
and 9 or 8 and 9) results in the same graph. ⊳

In this paper we need a slightly different rooted forest representation of quasi-
threshold graphs. Note that the rooted forest representation of the quasi-
threshold graph in Example 4 is not unique. This is due to the fact that
vertices exist that have exactly one direct follower. Interchanging such a
vertex with its direct follower yields another rooted forest representation of
the same graph. A solution to this non-unicity representation problem is to
merge such a vertex with its direct follower and repeat this action if necessary.
In this way a rooted forest results where ‘new’ vertices contain one or more
‘old’ vertices and where such ‘new’ vertices do not have exactly one direct
follower. The corresponding quasi-threshold graph has edges between ‘old’
vertices i and j (i 6= j) if and only if i and j are contained in the same ‘new’
vertex or if they belong to different ‘new’ vertices and there is a directed path
from one ‘new’ vertex to the other.

Example 5. Reconsider the rooted forest in Example 4. ‘Merging’ vertices 2
and 3 and vertices 7, 8 and 9 (in any of the two possible orders) leads to the
rooted forest in Figure 4. ⊳

1

2, 3

4 5

6

7, 8, 9

Figure 4: The adjusted rooted forest of Example 4.

On the other hand, consider a rooted forest F = (V,D) without vertices having
exactly one follower and where every vertex contains one or more agents.
Consider moreover the graph (N,E) where the vertex set N consists of all

9



agents present in F and where for every i, j ∈ N, i 6= j we have that ij ∈ E if
and only if i and j belong to the same vertex in V or if they belong to different
vertices and there is a directed path in F between these vertices. Then (N,E)
is a quasi-threshold graph and a ‘standard’ rooted forest representation of
(N,E) is obtained by replacing in F any vertex with more than one agent by
a directed chain containing all agents in the vertex in some arbitrary order.

All these observations lead to the following proposition.

Proposition 6. Let (N,E) be a graph. Then (N,E) is a quasi-threshold
graph if and only if a rooted forest F = (V,D) exists, and for every v ∈ V a
nonempty subset Mv of N , such that

i) F has no vertices with exactly one follower;

ii) (Mv)v∈V is a partition of N ;

iii) E = {ij : i, j ∈ N, i 6= j, v(i) = v(j) or there is a directed path in F
from v(i) to v(j) or vice versa}.
Here v(k) denotes, for every k ∈ N , the unique vertex v ∈ V with
k ∈ Mv.

In the sequel we will refer to the triple (V,D, (Mv)v∈V ) as the rooted forest
representation of quasi-threshold graph (N,E).

Example 7. Reconsider the quasi-threshold graph (N,E) of Example 4. Let
F = (V,D) be the rooted forest with V = {a, b, c, d, e, f} as depicted in
Figure 5 and let Ma = {1}, Mb = {2, 3}, Mc = {4}, Md = {5}, Me = {6},
and Mf = {7, 8, 9}. Then (V,D, (Mv)v∈V ) is the rooted forest representation
of (N,E). ⊳

a

b

c d

e

f

Figure 5: The rooted forest of Example 7.

Yan et al. (1996) show that the class of quasi-threshold graphs coincides with
the class of (P4, C4)-free graphs, i.e. graphs which do not contain induced
subgraphs isomorphic to P4 or C4 (see Figure 6). Note that the comple-
ment of graph P4 is isomorphic to P4 and that the complement of graph C4

is isomorphic to 2K2 (again see Figure 6). This implies that the class of
graphs, obtained by taking complements of quasi-threshold graphs, coincides
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Figure 6: P4, C4 and 2K2.

with the class of (P4, 2K2)-free graphs. In fact, it is this class of graphs that
plays a central role in this paper. Obviously, the rooted forest representation
of a quasi-threshold graph can also be used to describe the complementary
(P4, 2K2)-free graph: edges exist (and only exist) between agents in different
vertices between which there is no directed path.

Corollary 8. Let (N,E) be a graph. Then (N,E) is a (P4, 2K2)-free graph if
and only if a rooted forest F = (V,D) exists, and for every v ∈ V a nonempty
subset Mv of N , such that

i) F has no vertices with exactly one follower;

ii) (Mv)v∈V is a partition of N ;

iii) E = {ij : i, j ∈ N, i 6= j, v(i) 6= v(j) and there is no directed path in F
from v(i) to v(j) or vice versa}.

Example 9. Reconsider the quasi-threshold graph (N,E) of Example 4 and
let G = (N, Ē) be the corresponding (P4, 2K2)-free graph. In G there are no
edges between agents i and j if and only if i and j belong to the same vertex
or to different vertices between which a directed path exists. Therefore the
only maximal independent subsets in G are I1 = {1, 2, 3, 4}, I2 = {1, 2, 3, 5},
I3 = {1, 6}, and I4 = {7, 8, 9} (the dotted sets in Figure 7).

1

2, 3

4 5

6

7, 8, 9

I1 I2

I3

I4

Figure 7: The maximal independent sets of the (P4, 2K2)-free graph G in
Example 9.

It is straightforward to see that the phenomenon observed in Example 9 is
true in general: if G is a (P4, 2K2)-free graph and (V,D, (Mv)v∈V ) is the
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rooted forest representation of G then all maximal independent sets in G are
generated by taking the union of all agents along directed paths in F = (V,D)
from some root to some leaf. Note moreover that, if the rooted forest F
consists of trivial singleton trees only, the corresponding graph G is in fact
complete multipartite.

The collection of (P4, 2K2)-free graphs can also be characterized via the
concept of ‘degree consistency’. Formally a graph G = (N,E) is called degree
consistent if for all i, j ∈ N , i 6= j with ij /∈ E we either have dS(i) ≤ dS(j)
for all S ⊂ N with i, j ∈ S, or dS(i) ≥ dS(j) for all S ⊂ N with i, j ∈ S.

Proposition 10. Let G = (N,E) be a graph. Then G is (P4, 2K2)-free if and
only if G is degree consistent.

Proof. First we show the ‘if’-part. Suppose that G is degree consistent, but
not (P4, 2K2)-free. Let S ∈ 2N be such that |S| = 4 and G[S] is either P4 or
2K2. Without loss of generality we can assume that S = {1, 2, 3, 4}, 12 ∈ E,
34 ∈ E, 13 /∈ E, 14 /∈ E, and 24 /∈ E (if 23 ∈ E then G[S] is P4, otherwise
G[S] is 2K2). Now consider i = 1, j = 4, T = {1, 2, 4}, and U = {1, 3, 4}. We
have dT (1) = 1 > 0 = dT (4) and dU(1) = 0 < 1 = dU(4), so G is not degree
consistent, a contradiction.
Now we show the ‘only-if’-part. Suppose that G is (P4, 2K2)-free and let
(V,D, (Mv)v∈V ) be its rooted forest representation. Let i, j ∈ N , i 6= j be
such that ij /∈ E. First assume that v(i) = v(j) = v∗. Now we have for all
k ∈ N\{i, j} that ik ∈ E iff v(k) /∈ P (v∗)∪F (v∗) iff jk ∈ E. So dS(i) = dS(j)
for every S ∈ 2N\{∅} with i, j ∈ S. Now assume that v(i) 6= v(j). Then
either v(i) ∈ P (v(j)) or v(j) ∈ P (v(i)). Without loss of generality assume
that v(i) ∈ P (v(j)). Now for all k ∈ N\{i, j} with ik ∈ E we have that
v(k) 6= v(i) and there is not a directed path between v(i) and v(k). But then
v(k) 6= v(j) and there is not a directed path between v(j) and v(k) as well.
So jk ∈ E. Consequently we have that dS(i) ≤ dS(j) for every S ∈ 2N\{∅}
with i, j ∈ S. So G is degree consistent.

We should check that all this degree consistency-stuff is new

4 Pmas-es for minimum coloring games

A well known problem in graph theory is finding a minimum coloring of a
graph. Formally, a coloring of G = (N,E) is a mapping γ : N → N such
that γ(i) 6= γ(j) for every ij ∈ E, i.e. adjacent vertices get different colors. A
minimum coloring of G is a coloring γ that uses the smallest number of colors,
i.e. a coloring for which |{γ(i) : i ∈ N}| is minimal. This minimal number of
colors needed is called the chromatic number of G and is denoted by χ(G). Of
course, the clique number of a graph does not exceed its chromatic number.
A graph G = (N,E) is called perfect if the clique number of every induced
subgraph equals the chromatic number of that subgraph.
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Deng et al. (1999) introduced the class of minimum coloring games. If
G = (N,E) is a graph, then the minimum coloring game on G is the cost
game (N, cG) defined by cG(S) = χ(G[S]) for every S ∈ 2N\{∅}. Note that
minimum coloring games are nonnegative monotonic games as a minimum
coloring for a graph always induces a coloring for some subgraph.

First we show that a graph that induces a minimum coloring game with a
population monotonic allocation scheme must be a (P4, 2K2)-free graph.

Proposition 11. Let G = (N,E) be a graph and let (N, cG) be the corre-
sponding minimum coloring game. If P (N, cG) 6= ∅ then G is (P4, 2K2)-free.

Proof. Let x ∈ P (N, cG) and suppose that G is not (P4, 2K2)-free. Let S ∈ 2N

be such that |S| = 4 and G[S] is either P4 or 2K2. Without loss of generality
we can assume again that S = {1, 2, 3, 4}, 12 ∈ E, 34 ∈ E, 13 /∈ E, 14 /∈ E,
and 24 /∈ E. Note that cG({1, 2, 4}) = cG({1, 3, 4}) = 2 and cG({1, 3}) =
cG({1, 4}) = cG({2, 4}) = 1. By efficiency and monotonicity of x we get

4 = cG({1, 2, 4}) + cG({1, 3, 4})

= x{1,2,4},1 + x{1,2,4},2 + x{1,2,4},4 + x{1,3,4},1 + x{1,3,4},3 + x{1,3,4},4

≤ x{1,4},1 + x{2,4},2 + x{2,4},4 + x{1,3},1 + x{1,3},3 + x{1,4},4

= cG({1, 3}) + cG({1, 4}) + cG({2, 4})

= 3,

which yields a contradiction.

Now we are going to show that the reverse statement in Proposition 11 is true
as well. First we show that the rooted forest representation of a (P4, 2K2)-
free graph enables us to provide a simplified expression for the values of the
corresponding minimum coloring game.

Proposition 12. Let G = (N,E) be a (P4, 2K2)-free graph with rooted forest
representation (V,D, (Mv)v∈V ), and let (N, cG) be the corresponding minimum
coloring game. For every S ∈ 2N\{∅} we have cG(S) = |max(VS)|, where
VS = {v ∈ V : S ∩Mv 6= ∅}.

Proof. Let S ∈ 2N\{∅} and let max(VS) = {v1, v2, . . . , vl}. For every i ∈
{1, . . . , l} choose an agent si ∈ S ∩Mvi . For every i, j ∈ {1, . . . , l} with i 6= j
there is no directed path in (V,D) between vi and vj , so sisj ∈ E. Therefore
{s1, . . . , sl} is a clique in G[S] and hence χ(G[S]) ≥ l.
Now define γ : S → N by

γ(i) = min
{

k ∈ {1, . . . , l} : vk ∈ F (v(i)) ∪ {v(i)}
}

for every i ∈ S. We will show that γ is a coloring of G[S]. Let i, j ∈ S be
such that i 6= j and γ(i) = γ(j) = k∗. Then v(i) ∈ P (vk∗) and v(j) ∈ P (vk∗)
and, consequently, v(i) ∈ P (v(j)) or v(j) ∈ P (v(i)). So, either i and j belong
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to the same vertex in V , or they belong to different vertices between which a
directed path in (V,D) exists. So ij /∈ E and hence γ is a coloring of G[S]. It
is obvious that γ uses at most l colors, so χ(G[S]) ≤ l.
Altogether we conclude that cG(S) = χ(G[S]) = l.

Example 13. Consider the (P4, 2K2)-free graph G of Example 9 with rooted
forest representation depicted in Figures 4 and 5. Note that for S = {1, 2, 3, 7, 8}
we have VS = {a, b, f}, max(VS) = {b, f} and hence cG(S) = 2. In a similar
way we get, for example, cG({1, 6}) = 1 and cG(N) = 4.

Now we are able to present one of the main results of this paper: a graph
induces a minimum coloring game with a population monotonic allocation
scheme if and only if the graph is (P4, 2K2)-free.

Theorem 14. Let G = (N,E) be a graph and let (N, cG) be the corresponding
minimum coloring game. Then, P (N, cG) 6= ∅ if and only if G is a (P4, 2K2)-
free graph.

Proof. The ‘only-if’-part follows from Proposition 11. Now we prove the ‘if’-
part. Assume that G is a (P4, 2K2)-free and let (V,D, (Mv)v∈V ) be the rooted
forest representation of G. For each v ∈ V , select an order σv on Mv. Define
the {0, 1}-valued scheme x = (xS,i)S∈2N\{∅},i∈S by

xS,i =







1 if v(i) ∈ max(VS) and
σv(i)(i) > σv(i)(j) for every j ∈ (S ∩Mv(i))\{i}

0 otherwise,
(2)

for every S ∈ 2N\{∅} and i ∈ S.
We will show that x ∈ P (N, cG). First we show efficiency of x. For every
S ∈ 2N\{∅} we have

∑

i∈S

xS,i =
∑

v∈VS

∑

i∈S∩Mv

xS,i =
∑

v∈max(VS)

∑

i∈S∩Mv

xS,i

=
∑

v∈max(VS)

1 = |max(VS)| = cG(S),

where the second equality follows because xS,i = 0 when i ∈ S ∩ Mv such
that v /∈ max(VS) and the third equality follows because for any v ∈ max(VS)
the order σv ranks precisely one element in S ∩Mv on the first place. So, x
satisfies efficiency.
Now we check monotonicity of x. Let S, T ∈ 2N\{∅} with S ⊂ T and i ∈ S.
In order to show that xS,i ≥ xT,i it is sufficient to show that xT,i = 1 implies
xS,i = 1, as x is only taking values 0 and 1. So, assume xT,i = 1. Then
v(i) ∈ max(VT ) and σv(i)(i) > σv(i)(j) for every j ∈ (T ∩Mv(i))\{i}. But then
obviously v(i) ∈ max(VS) and σv(i)(i) > σv(i)(j) for every j ∈ (S ∩Mv(i))\{i}
and hence xS,i = 1. So x satisfies monotonicity.
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In the sequel of this section we focus on the structure of the complete set
of pmas-es P (N, cG) of the minimum coloring game (N, cG) corresponding to
(P4, 2K2)-free graph G. First we show that restricting the minimum coloring
game (N, cG) to some Mv, i.e. to a coalition of agents that are all contained
in the same vertex v of the associated rooted forest representation, yields a
unit game.

Proposition 15. Let G = (N,E) be a (P4, 2K2)-free graph with rooted for-
est representation (V,D, (Mv)v∈V ), let (N, cG) be the corresponding minimum
coloring game, and let v ∈ V . Then we have

i) cG(S) = 1 for every S ∈ 2Mv\{∅}, i.e. cGMv
= 1Mv

;

ii) if x ∈ P (N, cG), then y = (yS,i)S∈2Mv\{∅},i∈S, defined by yS,i = xS,i for
every S ∈ 2Mv\{∅} and i ∈ S, is such that y ∈ P (Mv, 1Mv

).

Proof. i) Let S ∈ 2Mv\{∅}. Clearly VS = max(VS) = {v}. According to
Proposition 12 we get cG(S) = |max(VS)| = 1.
ii) This is a straightforward consequence of the fact that x satisfies efficiency
and monotonicity, and the fact that the restricted game cGMv

is a unit game.

In the following proposition we show that if we choose, for every v ∈ V , a
pmas of the unit game (Mv, 1Mv

), this collection of pmas-es can be extended
in a unique way to a pmas of the corresponding minimum coloring game.

Proposition 16. Let G = (N,E) be a (P4, 2K2)-free graph with rooted forest
representation (V,D, (Mv)v∈V ) and let (N, cG) be the corresponding minimum
coloring game. Let yv ∈ P (Mv, 1Mv

) for every v ∈ V . Then there is a unique
x ∈ P (N, cG) such that xS,i = yvS,i for every v ∈ V , S ∈ 2Mv\{∅} and i ∈ S,
and this scheme x is given by

xS,i =

{

y
v(i)
S∩Mv(i),i

if v(i) ∈ max(VS)

0 if v(i) /∈ max(VS)
(3)

for every S ∈ 2N\{∅} and i ∈ S.

Proof. First we show that the scheme x, defined by (3), ‘extends’ the collection
of schemes (yv)v∈V . Let v ∈ V , S ∈ 2Mv\{∅} and i ∈ S. Then VS =

max(VS) = {v} and hence v(i) = v ∈ max(VS). Now xS,i = y
v(i)
S∩Mv(i),i

= yvS,i.

Now we show that the scheme x is a pmas of (N, cG). We start with efficiency.
Let S ∈ 2N\{∅}. Then

∑

i∈S

xS,i =
∑

v∈VS

∑

i∈S∩Mv

xS,i =
∑

v∈max(VS)

∑

i∈S∩Mv

xS,i

=
∑

v∈max(VS)

∑

i∈S∩Mv

yvS∩Mv,i =
∑

v∈max(VS)

1

= |max(VS)| = cG(S).
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In order to check monotonicity of x let S, T ∈ 2N\{∅} with S ⊂ T and let
i ∈ S. We distinguish between three cases. If v(i) ∈ max(VS) ∩ max(VT )

then xS,i = y
v(i)
S∩Mv(i),i

≥ y
v(i)
T∩Mv(i),i

= xT,i, using monotonicity of yv(i). If

v(i) ∈ max(VS) and v(i) /∈ max(VT ) then xS,i = y
v(i)
S∩Mv(i),i

≥ 0 = xT,i, us-

ing nonnegativity of yv(i) (due to Proposition 1). Finally, if v(i) /∈ max(VS)
and v(i) /∈ max(VT ) then xS,i = 0 = xT,i. We conclude that x ∈ P (N, cG).

We still have to prove unicity of x. Let z ∈ P (N, cG) be such that zS,i = yvS,i
for every v ∈ V , S ∈ 2Mv\{∅}, and i ∈ S. We have to show that z = x. Let
S ∈ 2N\{∅}. We will show that zS,i = xS,i for every i ∈ S. First we show
this for every i ∈ S such that v(i) ∈ max(VS), then for every i ∈ S with
v(i) /∈ max(VS).
Let v ∈ max(VS). LetW1 = V \(F (v)∪{v}) andW2 = V \F (v). Obviously v is
maximal inW2. Moreover, it is easy to see that if v′ 6= v is maximal inW2 then
v′ is maximal inW1 as well. Finally, if v

′ is maximal inW1 it has to be maximal
in W2 as well. For, if v′ were not maximal in W2 we must have v ∈ F (v′), as
W2 = W1 ∪ {v}. So, v′ is not a leaf in (V,D) and has, according to Corollary
8, at least two direct followers in (V,D). Therefore we can find a w ∈ V such
that w ∈ F (v′), and w /∈ F (v) ∪ {v}, i.e. w ∈ W1. This contradicts the fact
that v′ is maximal in W1. We conclude that max(W2) = max(W1) ∪ {v} and
hence |max(W2)| = |max(W1)|+ 1.

Now, let T = ∪v′∈W1Mv′ and U = T ∪ (S∩Mv). We first show that S ⊂ U .
Let i ∈ S. If i ∈ Mv then obviously i ∈ U . On the other hand, if i ∈ Mv′ with
v′ ∈ VS and v′ 6= v then v′ /∈ F (v) ∪ {v} as v is maximal in VS. So v′ ∈ W1,
and hence i ∈ T ⊂ U . It is straightforward to see that VT = W1 and VU = W2.
Therefore

1 = cG(S ∩Mv) =
∑

i∈S∩Mv

zS∩Mv,i ≥
∑

i∈S∩Mv

zS,i

≥
∑

i∈S∩Mv

zU,i =
∑

i∈U

zU,i −
∑

i∈T

zU,i = cG(U)−
∑

i∈T

zU,i

≥ cG(U)−
∑

i∈T

zT,i = cG(U)− cG(T )

= |max(VU)| − |max(VT )| = |max(W2)| − |max(W1)| = 1.

Since all inequalities are in fact equalities we get
∑

i∈S∩Mv
zS,i = 1 and, more-

over, for all i ∈ S∩Mv we have zS,i = zS∩Mv,i = yvS∩Mv,i = xS,i. As v ∈ max(VS)
was selected in an arbitrary way we conclude that

∑

i∈S∩Mv
zS,i = 1 for all

v ∈ max(VS) and that zS,i = xS,i for every i ∈ S with v(i) ∈ max(VS).
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In order to complete the proof note that

cG(S) =
∑

i∈S

zS,i =
∑

v∈VS

∑

i∈S∩Mv

zS,i

=
∑

v∈max(VS)

∑

i∈S∩Mv

zS,i +
∑

v/∈max(VS )

∑

i∈S∩Mv

zS,i

=
∑

v∈max(VS)

1 +
∑

v/∈max(VS)

∑

i∈S∩Mv

zS,i

= |max(VS)|+
∑

v/∈max(VS)

∑

i∈S∩Mv

zS,i

= cG(S) +
∑

v/∈max(VS)

∑

i∈S∩Mv

zS,i.

So,
∑

v/∈max(VS)

∑

i∈S∩Mv
zS,i = 0. As z is nonnegative (Proposition 1) we

derive that zS,i = 0 = xS,i for all i ∈ S with v(i) /∈ max(VS).

Propositions 2 and 16 enable us to construct an integer pmas for a minimum
coloring game with a (P4, 2K2)-free graph as underlying graph. First we select
an order σv onMv for every v ∈ V and we let σ = (σv)v∈V denote the collection
of chosen orders. Then we define for every v ∈ V the {0, 1}-valued scheme
yv ∈ P (Mv, 1Mv

) by yv = yσv , where yσv is defined by (1). Now Proposition
16 states that a unique x ∈ P (N, cG) exists that ‘extends’ the collection of
schemes (yv)v∈V . We will denote this unique pmas by xσ. It is not difficult
to show that the collection of integer pmas-es of a minimum coloring game is
constituted by the collection of xσ’s.

Proposition 17. Let G = (N,E) be a (P4, 2K2)-free graph with rooted for-
est representation (V,D, (Mv)v∈V ), let (N, cG) be the corresponding minimum
coloring game, and let x ∈ P (N, cG).
Then x is integer-valued if and only if there is a collection of orders σ =
(σv)v∈V such that x = xσ.

Proof. First we prove the if-part. As xσ is defined by (3), it is obvious that it
is {0, 1}-valued as well. In fact, xσ is the same scheme as the one defined by
(2) in the proof of Theorem 14.
In order to show the only-if part assume that x is integer valued. Let v ∈ V .
According to Proposition 15 we have that the scheme yv = (yvS,i)S∈2Mv\{∅},i∈S,
defined by yvS,i = xS,i for every S ∈ 2Mv\{∅} and i ∈ S, is such that yv ∈
P (Mv, 1Mv

). As yv is integer-valued we can find, according to Proposition 2,
an order σv on Mv, such that yv = yσv . Now let σ = (σv)v∈V . As both schemes
x and xσ are pmas-es of (N, cG) that ‘extend’ the collection of schemes (yv)v∈V
we derive from Proposition 16 that x = xσ.

Now consider a special (P4, 2K2)-free graph G, namely one whose rooted for-
est representation (V,D, (Mv)v∈V ) is such that |Mv| = 1 for every v ∈ V .
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Obviously, P (Mv, 1Mv
) consists of one trivial element for every v ∈ V , and

this element is yσv , where σv is the trivial order on the singleton set Mv. Now
Propositions 16 and 17 together yield the following corollary.

Corollary 18. Let G = (N,E) be a (P4, 2K2)-free graph with rooted for-
est representation (V,D, (Mv)v∈V ), where |Mv| = 1 for every v ∈ V and let
(N, cG) be the corresponding minimum coloring game. Then (N, cG) has only
one pmas and this pmas is integer-valued.

According to Yan et al. (1996) quasi-threshold graphs, and hence (P4, 2K2)-
free graphs, can be found using a linear time recognition algorithm, that also
produces the rooted forest representation of these graphs. Population mono-
tonic allocation schemes can not be computed in linear time, for the simple
reason that there is an exponential number of coalitions present. Nevertheless,
the allocation to one coalition in a pmas, the grand coalition for example, can
of course be computed in linear time.
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