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Abstract

In this paper we introduce the class of simple combinatorial optimisation cost games, which
are games associated to {0, 1}-matrices. A coalitional value of a combinatorial optimisation game
is determined by solving an integer program associated with this matrix and the characteristic
vector of the coalition. For this class of games, we will characterise core stability and totally
balancedness. We continue by characterising exactness and largeness. Finally, we conclude the
paper by applying our main results to minimum colouring games and minimum vertex cover
games.
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1 Introduction

A combinatorial optimisation game is a cooperative game associated to a {0, 1}-matrix and a
cost vector. A coalitional value of a combinatorial optimisation game is determined by solving
an integer program associated with the matrix, the cost vector, and the characteristic vector of
the coalition. The class of combinatorial optimisation games, first introduced in [3], includes, for
example, maximum flow games, maximum matching games, minimum vertex cover games and
minimum colouring games. In [3] it is shown that the core of a combinatorial optimisation game
is non-empty if and only if the outcome of the integer program associated with the grand coalition
is equal to the outcome of its relaxation. Using this result, [3] studies algorithmic aspects of the
core of several subclasses of combinatorial optimisation games. In the follow-up paper [4], totally
balancedness of combinatorial optimisation games is considered.

The class of minimum colouring games, a subclass of combinatorial optimisation games, is
studied in [1] and [8]. The latter paper shows that the core of a minimum colouring game coincides
with the convex hull of the characteristic vectors of maximum cliques, in case the underlying graph
is perfect. Besides that, that paper studies well-known one-point solution concepts as the nucleolus,
the τ -value and the Shapley value.

A characterisation of core stability of minimum colouring games on the class of perfect graphs
is one of the main results of [1]. In cooperative game theory, characterising core stability is a
notoriously difficult problem. Only a few classes of games with stable cores are known. These
classes include convex games ([9]), chain-component additive games ([11]) and assignment games
([10]). Besides the characterisation of core stability, [1] also considers related concepts as exactness,
extendibility and largeness. These concepts are shown to be equivalent on the class of perfect
graphs.
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In this paper we introduce the class of simple combinatorial optimisation cost games. The
word simple here refers to the fact that we only consider situations with the cost vector consisting
of ones only. For this class of games, we will characterise core stability in terms of the core.
Subsequently, we characterise totally balancedness in terms of the underlying matrix. In particular
we show that a simple combinatorial optimisation cost game is totally balanced if and only if
the transpose of its underlying matrix is perfect. We continue by characterising exactness and
largeness in terms of properties of the underlying matrix. We conclude the paper by applying
our main results to minimum colouring games and minimum vertex cover games. For the class of
minimum colouring games we are able to prove the main results of [1] in an alternative short way.
Finally, we characterise core stability and totally balancedness of minimum vertex cover games,
and we show that largeness, extendibility and exactness are equivalent for these games.

The remainder of this paper is organised as follows. In Section 2 we recall some elementary
concepts from cooperative game theory. In Section 3 we introduce simple combinatorial optimisa-
tion cost games, and we present our main results. In Sections 4 and 5 we apply our main results
to the classes of minimum colouring games and minimum vertex games, respectively.

2 Preliminaries

A transferable utility cost game, or game for short, (N, c) consists of a finite player set N and a
map c : 2N → R assigning to each coalition S ⊆ N a cost c(S). By assumption, c(∅) = 0. For each
S ⊆ N , the subgame (S, cS) is the game with player set S and cS(T ) = c(T ) for each T ⊆ S. The
core of a game (N, c), denoted by C(c), consists of the allocations of c(N) such that no coalition
has an incentive to split off from the grand coalition. Formally, C(c) = {x ∈ R

N :
∑

i∈N xi =
c(N),

∑

i∈S xi ≤ c(S) for each S ⊆ N}. The core of a game can be empty. A game with a non-
empty core is called balanced. A balanced game is totally balanced if all its subgames are balanced as
well. The imputation set is the set I(c) = {x ∈ R

N :
∑

i∈N xi = c(N), xi ≤ c({i}) for each i ∈ N},
and the upper core is given by U(c) = {x ∈ R

N :
∑

i∈S xi ≤ c(S) for each S ⊆ N}. Obviously,
C(c) ⊆ I(c) and C(c) ⊆ U(c).

Now let (N, c) be a game and let x, y ∈ I(c). Then x is said to dominate y via S ⊆ N if
xi < yi for each i ∈ S and

∑

i∈S xi ≥ c(S). Intuitively, S will not agree to allocation y since the
reachable allocation x is strictly better for each member of S. The core of (N, c) is called stable if
each imputation outside the core is dominated by a core element via some coalition. A game (N, c)
is said to be exact if for each S ⊆ N there is an x ∈ C(c) with

∑

i∈S xi = c(S). The core of (N, c)
is large if for each y ∈ U(c) there is an x ∈ C(c) with y ≤ x. The game (N, c) is called extendible

if each core element of each subgame can be extended to a core element, i.e. if for each S ⊆ N and
y ∈ C(cS) there is an x ∈ C(c) with xi = yi for each i ∈ S.

In [6] it is shown that largeness of the core is sufficient for extendibility and that extendibility
on its turn is sufficient for core stability. Also observe that totally balanced extendible games are
exact.

3 Simple combinatorial optimisation cost games

In this section we present our main results. First we introduce simple combinatorial optimisation
cost games, and then we continue with characterising core stability in terms of a core property.
Subsequently, we characterise totally balancedness in terms of the underlying matrix and use this
result to characterise exactness. The final result of this section is a characterisation of largeness.

Let A be a {0, 1}-matrix, with its row set indexed by N , its column set indexed by M , and each
row and each column containing at least one non-zero entry. Let w : M → R be a weight vector on
the columns of A. The combinatorial optimisation cost game, as introduced in [3], associated with
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A and w is defined by

c(S) = min{wx : Ax ≥ 1S , x ∈ {0, 1}M}

for each S ⊆ N . In this paper we will only consider situations with w = 1M . The associated games
are referred to as simple combinatorial optimisation cost games. The following result is due to [3].

Theorem 3.1 ([3]) Let A be a {0, 1}-matrix with its row set indexed by N , its column set in-
dexed by M , and each row and each column containing at least one non-zero entry. Let (N, c)
be its associated simple combinatorial optimisation cost game. Then C(c) 6= ∅ if and only if
min{

∑

i∈M xi : Ax ≥ 1N , x ∈ {0, 1}M} = min{
∑

i∈M xi : Ax ≥ 1N , x ≥ 0}. In case the core is non-
empty, z ∈ C(c) if and only if z is an optimal solution of the dual of min{

∑

i∈M xi : Ax ≥ 1N , x ≥ 0}.

The previous theorem included a description of the core of simple combinatorial optimisation cost
games. The next lemma gives a description of the nonnegative part of the upper core.

Lemma 3.1 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed by M ,
and each row and each column containing at least one non-zero entry. Let (N, c) be its associated
simple combinatorial optimisation cost game. Then U(c) ∩ R

N
+ = {x ≥ 0 : xA ≤ 1M}.

Proof: Obviously U(c) ∩ R
N
+ ⊆ {x ≥ 0 : xA ≤ 1M} since the columns of A can be seen as

characteristic vectors of coalitions with cost equal to 1. So it remains to show {x ≥ 0 : xA ≤
1M} ⊆ U(c) ∩ R

N
+ . Let x ≥ 0 be such that xA ≤ 1M . Let S ⊆ N . Let M ′ ⊆ M be an index set of

columns minimising the cost of S, i.e. c(S) = |M ′| and A1M ′ ≥ 1S . With abuse of notation, let Aj

be the coalition whose characteristic vector is the j-th column of A, for each j ∈ M ′. Then,
∑

i∈S

xi ≤
∑

j∈M ′

∑

i∈Aj

xi ≤
∑

j∈M ′

1 = |M ′| = c(S).

The first inequality is satisfied because x ≥ 0, and the second because xA ≤ 1M . We conclude that
∑

i∈S xi ≤ c(S) for each S ⊆ N , and therefore x ∈ U(c). 2

In the upcoming part of this section we will characterise core stability of simple combinatorial
optimisation cost games. Before we state and prove our characterisation, it is convenient to prove
two lemmas. The first lemma uses a concept called essential extendibility and shows that this
concept yields a sufficient condition for core stability of any cost game. The second lemma provides
a necessary condition for core stability. We first introduce essential extendibility.

Let (N, c) be a cost game. A coalition S ⊆ N , S 6= ∅, is called essential for (N, c) if for each
proper partition P of S it is satisfied that

∑

W∈P c(W ) > c(S). The set of essential coalitions of
(N, c) is denoted by E . A game (N, c) is said to be essential extendible if for each S ∈ E and each
y ∈ C(cS) there is an x ∈ C(c) with yi = xi for each i ∈ S. So if (N, c) is extendible, then it is
essential extendible as well. The following lemma states that essential extendibility is sufficient for
core stability.

Lemma 3.2 ([11]) Let (N, c) be essential extendible. Then C(c) is stable.

The next lemma is helpful in order to characterise core stability as well.

Lemma 3.3 Let (N, c) be a game. If C(c) is stable, then for each i ∈ N there is a y ∈ C(c) with
yi = c({i}).
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Proof: We prove the lemma by contradiction. Assume that C(c) is stable, but that i ∈ N is
such that yi < c({i}) for each y ∈ C(c). Let y ∈ argmax{xi : x ∈ C(c)}. Let j ∈ N\{i},
ε = c({i}) − yi > 0 and define z ∈ R

N by

zl =







yl, if l ∈ N\{i, j};
yi + ε, if l = i;
yj − ε, if l = j.

Since zi = yi + ε > yi and because yi is the maximum that is allocated to i in any core allocation,
z 6∈ C(c). Observe that z ∈ I(c) since zk ≤ 1 for each k ∈ N and

∑

k∈N zk = c(N). Since C(c)
is stable, there is an S ⊆ N and a w ∈ C(c) with

∑

l∈S wl = c(S) and wl < zl for each l ∈ S.
Obviously, i ∈ S, j 6∈ S and S\{i} 6= ∅. Indeed, coalitions not containing i are satisfied with z,
since these coalitions are already satisfied with y. This implies that i ∈ S. Similarly, coalitions
containing j are satisfied with z since these are satisfied with y. So, j 6∈ S. Finally, because
zi = c({i}), it follows that S 6= {i}. Now note that

c(S) =
∑

k∈S

wk =
∑

k∈S\{i}

wk + wi ≤
∑

k∈S\{i}

wk + yi <
∑

k∈S\{i}

zk + yi =
∑

k∈S\{i}

yk + yi ≤ c(S).

The first equality holds because
∑

k∈S wk = c(S). The first inequality is satisfied because xi ≤ yi

for each x ∈ C(c). The strict inequality is because w dominates z via S, which implies wk < zk for
each k ∈ S. The third equality is because zk = yk for each k ∈ S\{i}. The last inequality is due to
y ∈ C(c). 2

Now we are ready to state and prove our characterisation of core stability of simple combinatorial
optimisation cost games.

Theorem 3.2 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed
by M , and each row and each column containing at least one non-zero entry. Let (N, c) be its
associated simple combinatorial optimisation cost game. The following assertions are equivalent:

1. For each i ∈ N there is a y ∈ C(c) with yi = 1;

2. (N, c) is essential extendible;

3. C(c) is stable.

Proof: We only show 1 ⇒ 2. The implication 2 ⇒ 3 is proved in Lemma 3.2 and 3 ⇒ 1 follows
from Lemma 3.3 by using that c({i}) = 1 for each i ∈ N .

Assume that 1 is satisfied. Let S ∈ E . Then c(S) = 1. By assumption, for each i ∈ S there is a
yi ∈ C(c) with yi

i = 1. Since c(S) = 1, and y ≥ 0 for each y ∈ C(c) it follows that yi
j = 0 for each

j ∈ S\{i}. Now let x ∈ C(cS) and construct z =
∑

i∈S xiy
i. Since xi ≥ 0 and yi ∈ C(c) for each

i ∈ S, it follows that z ∈ C(c). Now note that z extends x. 2

From Theorem 3.2 we can conclude that exactness is a sufficient condition for core stability of
combinatorial optimisation cost games.

Corollary 3.1 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed
by M , and in each row and each column at least one non-zero entry. Let (N, c) be its associated
simple combinatorial optimisation cost game. If (N, c) is exact, then its core is stable.
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Proof: If (N, c) is exact, then for each i ∈ N there is an x ∈ C(c) with xi = c({i}) = 1. Hence,
(N, c) satisfies the first assertion of Theorem 3.2 and we conclude that C(c) is stable. 2

In the upcoming part of this section we will characterise exactness of simple combinatorial op-
timisation cost games. It is convenient to first study totally balancedness, and to introduce the
concepts of totally dual integrality and perfect matrices.

Let B be a matrix whose row set is indexed by M and whose column set is indexed by N ,
and let b ∈ R

M
+ . The linear system Bx ≤ b, x ≥ 0 is totally dual integral if the linear program

max{cx : Bx ≤ b, x ≥ 0} has an integral dual solution for all c ∈ Z
N for which it has an optimal

solution.
Let A be a {0, 1}-matrix with its row set indexed by M , its column set indexed by N , in

each row and each column at least one non-zero entry. Then A is called perfect if the polytope
{x ≥ 0 : Ax ≤ 1M} has only integral extreme points. The following theorem is a well-known
characterisation of perfect matrices.

Theorem 3.3 ([7]) Let A be a {0, 1}-matrix with its row set indexed by M , its column set indexed
by N , and in each row and each column at least one non-zero entry. The following assertions are
equivalent:

1. A is perfect;

2. the linear system Ax ≤ 1M , x ≥ 0 is totally dual integral;

3. max{cx : Ax ≤ 1M , x ≥ 0} is an integer for each c ∈ {0, 1}N .

The following theorem easily follows from Theorem 3.3.

Theorem 3.4 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed
by M , and in each row and each column at least one non-zero entry. Let (N, c) be its associated
simple combinatorial optimisation cost game. Then (N, c) is totally balanced if and only if AT is
perfect.

Proof: First we show the ”if”-part. Assume that AT is perfect. According to Theorem 3.3,
the linear system xA ≤ 1M , x ≥ 0 is totally dual integral. So max{cx : xA ≤ 1M , x ≥ 0} has
an integral optimal dual solution for each c ∈ Z

N . In particular, max{cx : xA ≤ 1M , x ≥ 0}
has an integral optimal dual solution for each c ∈ {0, 1}N . This implies that min{

∑

i∈M xi :
Ax ≥ c, x ≥ 0} = min{

∑

i∈M xi : Ax ≥ c, x ∈ {0, 1}M} for each c ∈ {0, 1}N . Or equivalently,
min{

∑

i∈M xi : Ax ≥ 1S , x ≥ 0} = min{
∑

i∈M xi : Ax ≥ 1S , x ∈ {0, 1}M} for each S ⊆ N . Since
each subgame of a simple combinatorial optimisation cost game is again a simple combinatorial
optimisation cost game, it follows according to Theorem 3.1 that (S, cS) is balanced for each S ⊆ N .
So (N, c) is totally balanced.

It remains to show the ”only if”-part. Assume that (N, c) is totally balanced. Then Theorem
3.1 implies that min{

∑

i∈M xi : Ax ≥ 1S , x ≥ 0} = min{
∑

i∈M xi : Ax ≥ 1S , x ∈ {0, 1}M} for each
S ⊆ N . So max{

∑

i∈S xi : xA ≤ 1M , x ≥ 0} = min{
∑

i∈M xi : Ax ≥ 1S , x ≥ 0} is an integer
for each S ⊆ N . This implies that max{cx : xA ≤ 1M , x ≥ 0} is an integer for each c ∈ {0, 1}N .
According to Theorem 3.3, AT is perfect. 2

Using Lemma 3.1 and Theorem 3.4 it is straightforward to show that totally balanced simple
combinatorial optimisation cost games have integral cores. Indeed, if (N, c) is totally balanced,
then AT is perfect. This means that each extreme point of {x ≥ 0 : xA ≤ 1M} is integral. Because
{x ≥ 0 : xA ≤ 1M} = U(c) ∩ R

N
+ and because C(c) is a facet of U(c) ∩ R

N
+ , each extreme point of

C(c) is integral as well.
We proceed this section with a characterisation of exactness, but first we need one more lemma.
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Lemma 3.4 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed by M ,
and in each row and each column at least one non-zero entry. Let (N, c) be its associated simple
combinatorial optimisation cost game. If (N, c) is exact, then for all y ∈ {0, 1}N with yA ≤ 1M

there is a z ∈ C(c) ∩ {0, 1}N with y ≤ z.

Proof: Let (N, c) be exact. Let y ∈ {0, 1}N be such that yA ≤ 1M . Since (N, c) is a simple
combinatorial optimisation cost game, it follows that

∑

i∈N yi ≤ c(N). If
∑

i∈N yi = c(N), then,
according to Lemma 3.1, y ∈ C(c) and we are done. So assume that

∑

i∈N yi < c(N). We will
show that there is a w ∈ {0, 1}N with wA ≤ 1M ,

∑

i∈N wi =
∑

i∈N yi + 1 and y ≤ w. A recursive
argument then provides the z ∈ C(c) ∩ {0, 1}N with y ≤ z.

First define S = {i ∈ N : yi = 1}. Because yA ≤ 1M and y ≥ 0, we conclude from Lemma 3.1
that y ∈ U(c). Hence, |S| =

∑

i∈S yi ≤ c(S). By definition of (N, c), c(S) ≤ |S|. So, c(S) = |S|.
Because (N, c) is exact, there is an x ∈ C(c) with

∑

i∈S xi = c(S). So xi = 1 for each i ∈ S. If x

is integral, then x ∈ C(c) ∩ {0, 1}N , y ≤ x and we are done. So assume that x is not integral. Let
i ∈ N be such that 0 < xi < 1. Clearly, i 6∈ S. Now define x̄ ∈ R

N by x̄j = xj if j ∈ S ∪ {i} and
x̄j = 0 otherwise. Furthermore define w ∈ {0, 1}N by wj = 1 if j ∈ S ∪ {i} and wj = 0 otherwise.

It follows from x ∈ C(c) that xA ≤ 1M . Hence, x̄A ≤ 1M as well. This implies that each column
of A has at most one non-zero entry in the rows associated with S ∪ {j}. Therefore, wA ≤ 1M .
Now note that w ∈ {0, 1}N is such that wA ≤ 1M ,

∑

i∈N wi =
∑

i∈N yi + 1 and y ≤ w. 2

We are now ready to prove our characterisation of exactness.

Theorem 3.5 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed
by M , and in each row and each column at least one non-zero entry. Let (N, c) be its associated
simple combinatorial optimisation cost game. The following assertions are equivalent:

1. (N, c) is exact;

2. AT is perfect and for each y ∈ {0, 1}N with yA ≤ 1M there is a z ∈ C(c)∩{0, 1}N with y ≤ z.

Proof: We only prove 2 ⇒ 1, since 1 ⇒ 2 follows from the combination of Theorem 3.4 (since
exact games are totally balanced) and Lemma 3.4.

Let S ⊆ N . Since AT is perfect, it follows from Theorem 3.4 that (N, c) is totally balanced.
Therefore, C(cS) 6= ∅. Let xS be an extreme point of C(cS) and extend xS to the vector x in R

N

by assigning zeros to the players in N\S. Note that x ≥ 0, xA ≤ 1M ,
∑

i∈S xi = c(S) and xi = 0
for each i ∈ N\S. Using Lemma 3.1, x is an extreme point of {y ≥ 0 : yA ≤ 1M}. Since AT is
perfect, we conclude that x is integral. According to our assumption there is a z ∈ C(c) ∩ {0, 1}N

with x ≤ z. Note that
∑

i∈S zi = c(S). So, (N, c) is exact. 2

We conclude this section with a characterisation of largeness of the core.

Proposition 3.1 Let A be a {0, 1}-matrix with its row set indexed by N , its column set indexed
by M , and in each row and each column at least one non-zero entry. Let (N, c) be its associated
simple combinatorial optimisation cost game. Then C(c) is large if and only if for all y ≥ 0 with
yA ≤ 1M there is a z ∈ C(c) with y ≤ z.

Proof: First we show the ”only if”-part. Assume that C(c) is large. Let y ≥ 0 be such that
yA ≤ 1M . According to Lemma 3.1, y ∈ U(c). Hence, there is a z ∈ C(c) with y ≤ z.

It remains to show the opposite direction. Assume that for all y ≥ 0 with yA ≤ 1M there is a
z ∈ C(c) with y ≤ z. Let y ∈ U(c). Since columns of A are characteristic vectors of coalitions with
cost equal to 1, we conclude that yA ≤ 1M . Now define ȳ by ȳi = max{0, yi} for each i ∈ N . We
will first show that ȳA ≤ 1M by contradiction. Suppose that i ∈ M is such that (ȳA)i > 1. Define
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T = {j ∈ N : Aji = 1} ∩ {j ∈ N : yj > 0}. Then
∑

j∈T yj =
∑

j∈T ȳj > 1 = c(T ). But this implies
that y 6∈ U(c), which is clearly a contradiction. Therefore ȳA ≤ 1M . Also note that ȳ ≥ 0. So by
assumption there is a z ∈ C(c) with ȳ ≤ z. Note that y ≤ z as well. 2

We conclude this section with several examples. The first example shows that largeness need not
be sufficient for exactness for the class of simple combinatorial optimisation cost games.

Example 3.1 Consider the matrix A and its associated simple combinatorial optimisation cost
game (N, c).

A =

















1 0 1 1 0 0
1 0 0 0 1 1
1 0 0 0 0 0
0 1 1 0 1 0
0 1 0 1 0 1
0 1 0 0 0 0

















It is straightforward to check that the subgame ({2, 4, 5}, c{2,4,5}) is not balanced, since c({2, 4}) =
c({2, 5}) = c({4, 5}) = 1 and c({2, 4, 5}) = 2. So (N, c) is not exact as well. However, C(c) is large.
Indeed, let y ≥ 0 be such that yA ≤ 1M . Define z = (y1, y2, 1 − y1 − y2, y4, y5, 1 − y4 − y5). Note
that y ≤ z and that z ∈ C(c). According to Proposition 3.1, C(c) is large. 3

Example 3.1 in extremis shows that extendibility does not imply exactness (since largeness is
sufficient for extendibility). The next example shows that largeness and extendibility are not
equivalent.

Example 3.2 Consider the matrix A and the associated simple combinatorial optimisation cost
game (N, c).

A =

















1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

















The core of (N, c) is the convex hull of (1, 0, 0, 0, 0, 1), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 1, 0, 0). It is clear
that the core is not large, since (1

2
, 1

2
, 1

2
, 0, 0, 0) ∈ U(c) is not exceeded by a core element. However,

this game is extendible. Indeed, let S ⊆ N be such that C(cS) 6= ∅, and let x ∈ C(cS). First
suppose that c(S) = 1. Note that for all i ∈ S there is a zi ∈ C(c) with zi

i = 1 and zi
j = 0 for each

j ∈ S\{i}. Now note that z =
∑

i∈S xiz
i is a core element of (N, c) that extends x.

Now suppose that c(S) = 2. Then x can be extended to an element of C(c) by assigning zero
to the players outside S. 3

4 Minimum colouring games

In this section we consider minimum colouring games. In [1] core stability is characterised for
these games on the class of perfect graphs. Moreover, it is shown that largeness, extendibility and
exactness are equivalent on the class of perfect graphs and these concepts are characterised. In
this section we reprove their results using the results obtained in Section 3. First we recall some
elementary graph theory.
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Let G = (V, E) be a graph. A stable set is a subset of vertices inducing a graph with no edge.
A clique is a vertex set inducing a complete graph. A clique is a maximum clique if the graph does
not contain a clique of larger cardinality. The size of a maximum clique is denoted by ω(G). A
colouring of G is a map c : V → N such that c(u) 6= c(v) for each {u, v} ∈ E. A minimum colouring
is a colouring with minimum possible |c(V )|. The chromatic number χ(G) is the cardinality |c(V )|
of a minimum colouring c : V → N. For each S ⊆ V , the subgraph induced by S is the graph
G[S] = (S, ES), where ES = {{i, j} ∈ E : i, j ∈ S}. A graph is called perfect if ω(G[S]) = χ(G[S])
for each S ⊆ V .

Let G = (V, E) be a graph. The minimum colouring game as introduced in [3] is defined by
N = V and c(S) = χ(G[S]) for each S ⊆ N . Given a graph G, let M be the set of stable sets of G.
Furthermore, let A be the vertex-stable set incidence matrix of G. That is, Aij = 1 if vertex i is
in stable set j and Aij = 0 otherwise. Observe that c(S) = min{

∑

i∈M xi : Ax ≥ 1S , x ∈ {0, 1}M}
for each S ⊆ N . So minimum colouring games are simple combinatorial optimisation cost games.
The following result is due to [8].

Theorem 4.1 ([8]) Let G = (V, E) be a perfect graph. The core of a minimum colouring game
is the convex hull of the characteristic vectors of maximum cliques of G.

So minimum colouring games have non-empty cores in case the underlying graph is perfect. In
fact, since induced subgraphs of perfect graphs are again perfect, minimum colouring games are
totally balanced in case the underlying graph is perfect. In the remainder of this section we reprove
several results of [1], using the theory developed in Section 3. The first result is a characterisation
of core stability.

Theorem 4.2 ([1]) Let G = (V, E) be a perfect graph. The associated minimum colouring game
has a stable core if and only if each vertex belongs to a maximum clique of G.

The proof of this theorem is omitted since it is a straightforward combination of Theorems 3.2 and
4.1.

In the remainder of this section we reprove the characterisation of largeness, extendibility and
exactness obtained by [1]. It is convenient to use the following theorem of [2] and [5] dealing
with clique polytopes of perfect graphs. Here the clique polytope of a graph is the convex hull of
characteristic vectors of cliques.

Theorem 4.3 ([2],[5]) Let G = (V, E) be a graph and let A be its vertex-stable set incidence
matrix. Then G is perfect if and only if the clique polytope of G is determined by {y ≥ 0 : yA ≤
1M}.

Theorem 4.4 ([1]) Let G = (V, E) be a perfect graph. Let (N, c) be the associated minimum
colouring game. The following assertions are equivalent:

1. C(c) is large;

2. (N, c) is extendible;

3. (N, c) is exact;

4. Every clique of G is contained in a maximum clique.

Proof: The implication 1 ⇒ 2 is again due to [6], and 2 ⇒ 3 holds for all totally balanced games.
So we first prove 3 ⇒ 4. Assume that (N, c) is exact. Let V ′ ⊆ V be a clique of G and let
y ∈ {0, 1}N be the characteristic vector of this clique. Note that yA ≤ 1M . From Lemma 3.4
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it follows that there is a z ∈ C(c) ∩ {0, 1}N with y ≤ z. According to Theorem 4.1, z is the
characteristic vector of a maximum clique of G, say V ′′. Observe that V ′ ⊆ V ′′.

It remains to show 4 ⇒ 1. Assume that every clique of G is contained in a maximum clique.
Let A be the vertex-stable set incidence matrix of G and define P = {y ≥ 0 : yA ≤ 1M}. According
to Proposition 3.1 we need to show for each y ∈ P that there is a z ∈ C(c) with y ≤ z. Clearly, it
is sufficient to show for each extreme point y of P that there is a z ∈ C(c) with y ≤ z. So let y ∈ P

be an extreme point of P . According to Theorem 4.3, using the perfection of G, it follows that y is
an extreme point of the clique polytope of G. That is, y is the characteristic vector of a clique of
G. Let V ′ ⊆ V be this clique. By assumption, there is a maximum clique V ′′ ⊆ V containing V ′.
Let z be the characteristic vector of V ′′. Observe that y ≤ z. Theorem 4.1 implies that z ∈ C(c).
So C(c) is large. 2

5 Minimum vertex cover games

In this section we study minimum vertex cover games. Since minimum vertex cover games are simple
combinatorial optimisation cost games, we can apply the results obtained in Section 3 to these
games. In particular, we will characterise core stability and totally balancedness of minimum vertex
cover games in terms of the underlying graph. Furthermore we show that exactness, extendibility
and largeness are equivalent, and we characterise these concepts.

First we introduce minimum vertex cover games, as defined in [3]. Let G = (V, E) be a graph.
In the associated minimum vertex cover game (N, c), each edge represents a player, and the cost of
a coalition S ⊆ E is the cardinality of a minimum vertex cover of GS = (V, S). (A vertex cover is
a subset of the vertices such that each edge is adjacent to at least one vertex of this subset.) The
size of a minimum vertex cover is denoted by τ(G). A matching is a set of pairwise non-adjacent
edges. The size of a maximum matching is denoted by ν(G). Let A be the edge-vertex incidence
matrix of G. So Aij = 1 if edge i is incident to vertex j, and Aij = 0 otherwise. Formally, the
minimum vertex cover game (N, c) is given by N = E and

c(S) = min{
∑

i∈V

xi : Ax ≥ 1S , x ∈ {0, 1}V }

for each S ⊆ N . The following result is due to [3].

Theorem 5.1 ([3]) Let G = (V, E) be a graph, and let (N, c) be its associated minimum vertex
cover game. Then C(c) 6= ∅ if and only if τ(G) = ν(G). If C(c) 6= ∅, then an imputation is in the
core if and only if it is a convex combination of characteristic vectors of maximum matchings in
G. (So there is a one-to-one correspondence between maximum matchings and extreme points of
C(c).)

Using the results from the previous section it is straightforward to characterise core stability of
minimum vertex cover games.

Theorem 5.2 Let G = (V, E) be a graph, and let (N, c) be its associated minimum vertex cover
game. Then the following statements are equivalent:

1. G is bipartite and each edge is member of a maximum matching;

2. ν(G) = τ(G) and each edge is member of a maximum matching;

3. C(c) is stable.
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Proof: Implication 1 ⇒ 2 is immediate, since König’s matching theorem states that for each
bipartite graph G it holds that ν(G) = τ(G). The equivalence between statements 2 and 3 follows
from Theorems 3.2 and 5.1. It remains to show 2 ⇒ 1.

Assume that G = (V, E) is such that τ(G) = ν(G), and that each edge is member of a maximum
matching. We need to show that G is bipartite. To this end, let V ′ ⊆ V be a minimum vertex
cover, and define W = V \V ′. We show that the V ′ and W are independent sets, i.e. sets of vertices
for which the induced subgraph does not contain any edges, which proves that G is bipartite.

Let i, j ∈ W with i 6= j. If {i, j} ∈ E, then V ′ is not a vertex cover. Hence, {i, j} 6∈ E. We
conclude that W forms an independent set.

Let i, j ∈ V ′ with i 6= j. Suppose that e = {i, j} ∈ E. According to our assumption, there
is a maximum matching E′ ⊆ E containing e. So |V ′| = τ(G) = ν(G) = |E′|. Since |V ′| = |E′|,
e = {i, j} ∈ E′ and i, j ∈ V ′, it follows there is a {k, l} ∈ E′ with k, l 6∈ V ′. This implies that
{k, l} ∈ E for k, l ∈ W , contradicting that W is an independent set. So we conclude that {i, j} 6∈ E

for each i, j ∈ V ′, i 6= j. So V ′ is an independent set as well. 2

Totally balancedness of minimum vertex cover games is characterised in [4]. We include this
characterisation since it assists the proof of Theorem 5.4.

Theorem 5.3 ([4]) Let G = (V, E) be a graph, and let (N, c) be its associated minimum vertex
cover game. Then (N, c) is totally balanced if and only if G is bipartite.

As a final result we show that largeness, extendibility and exactness are equivalent on the class of
minimum vertex cover games. Moreover, we provide a characterisation of these concepts in terms
of the underlying graph.

Theorem 5.4 Let G = (V, E) be a graph, and let (N, c) be its associated minimum vertex cover
game. The following statements are equivalent:

1. C(c) is large;

2. (N, c) is extendible;

3. (N, c) is exact;

4. G is bipartite and each matching is contained in a maximum matching.

Proof: The implication 1 ⇒ 2 is proved in [6] for all games. So we first show 2 ⇒ 3. Assume
that (N, c) is extendible. In order to show that (N, c) is exact, it is sufficient to show that (N, c)
is totally balanced. First observe that extendibility of (N, c) is sufficient for core stability. This
implies according to Theorem 5.2 that G is bipartite. According to Theorem 5.3, (N, c) is totally
balanced.

We now prove the implication 3 ⇒ 4. Assume that (N, c) is exact. Then (N, c) is totally
balanced. According to Theorem 5.3, G is bipartite. It remains to show that each matching
is contained in a maximum matching. Let E′ ⊆ E be a matching, and let y ∈ {0, 1}E be its
characteristic vector. Let A be the edge-vertex incidence matrix of G. Then yA ≤ 1M . According
to Lemma 3.4, there is a z ∈ C(c) ∩ {0, 1}N with y ≤ z. Let E′′ ⊆ E be the matching whose
characteristic vector is z. According to Theorem 5.1 E′′ is a maximum matching containing E′.

It remains to show 4 ⇒ 1. Assume that G is bipartite and that each matching is contained in
a maximum matching. Define P = {y ≥ 0 : yA ≤ 1M}. According to Proposition 3.1 we need
to show for each y ∈ P that there is a z ∈ C(c) with y ≤ z. Clearly, it is sufficient to show for
each extreme point y of P that there is a z ∈ C(c) with y ≤ z. So let y ∈ P be an extreme
point of P . Since G is bipartite, it follows that y is integral. (Because G is bipartite if and only
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if its edge-vertex incidence matrix is totally unimodular.) That means that y is the characteristic
vector of a matching in G. Let E′ ⊆ E be this matching. By assumption, there is a maximum
matching E′′ ⊆ E with containing E′. Let z be the characteristic vector of E′′. Clearly, y ≤ z.
From Theorem 5.1 it follows that z ∈ C(c). 2

We conclude this section with an example that shows that for minimum vertex cover games core
stability is not equivalent to largeness, extendibility and exactness.

Example 5.1 Let G = (V, E) be given by V = {a, b, c, d, e, f} and E = {{a, d}, {a, f}, {b, d}, {b, e},
{c, e}, {c, f}}. Let (N, c) be its associated minimum vertex cover game. Note that C(c) is stable
since the graph is bipartite, and because each edge is part of a maximum matching. However, since
the matching {{a, d}, {c, e}} is not part of a maximum matching, it follows that C(c) is not large.
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