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M. Musegaas ∗† P.E.M. Borm ∗ M. Quant∗

June 23, 2015

Abstract

In this paper minimum coloring games are considered. We characterize the type
of conflict graphs inducing simple or three-valued simple minimum coloring games.
We provide an upper bound on the number of maximum cliques of conflict graphs
inducing such games. Moreover, a characterization of the core is provided in terms
of the underlying conflict graph. In particular, in case of a perfect conflict graph the
core of an induced three-valued simple minimum coloring game equals the vital core.

Keywords: minimum coloring games, simple games, three-valued simple games
JEL classification number: C71, C44

1 Introduction

Consider a set of agents who all need access to some type of facility, but some agents
might be in conflict. All facilities are similar, but if two agents are in conflict, they
cannot have access to the same facility. The total costs are linearly increasing with the
number of facilities used, so the aim is to find the minimum number of facilities that
can serve all agents. This problem can be modelled by an undirected graph, called the
conflict graph, in which the vertices represent the agents. Two vertices are adjacent if
and only if the corresponding agents are in conflict. Next, we color all vertices in such a
way that any two adjacent nodes receive different colors. Finding the minimum number
of facilities such that every agent has non-conflicting access to some facility, is equivalent
to finding a coloring of this conflict graph that uses the smallest number of colors. This
combinatorial optimization problem is known as the minimum coloring problem. A survey
on minimum coloring problems can, for example, be found in Randerath and Schiermeyer
(2004) and Pardalos, Mavridou, and Xue (1999). An application of the minimum coloring
problem is, for example, scheduling courses at secondary schools, where some courses are
compulsory and other courses are electives. Courses can be scheduled in any order, but
pairs of courses are in conflict in the sense that they can not be assigned to the same time
slot if there is a student who has chosen both courses.

Assuming that in the initial situation no agents share facilities, optimal cooperation
in sharing facilities between non-conflicting agents will lead to minimal joint costs. To

∗CentER and Departement of Econometrics and Operations Research Tilburg University, P.O. Box
90153, 5000 LE Tilburg, The Netherlands
†Correspondence to: m.musegaas@tilburguniversity.edu
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analyze how to divide the minimal joint costs among the agents, Deng, Ibaraki, and
Nagamochi (1999) introduced minimum coloring games. A minimum coloring cost game
can be seen as an example of a combinatorial optimization or operations research game.
In a combinatorial optimization game, the value of each coalition is obtained by solving
a combinatorial optimization problem on the corresponding substructure. A survey on
operations research games can be found in Borm, Hamers, and Hendrickx (2001).

In Deng et al. (1999) the existence of core elements is investigated for the more general
class of combinatorial optimization cost games where the value of a coalition is defined by
an integer program. They showed that such games have a non-empty core if and only if
the associated linear program has an integer optimal solution. Moreover, in case of bipar-
tite conflict graphs, they characterized the core of the induced minimum coloring games
as the convex hull of the characteristic vectors of the edges in the conflict graph. Deng,
Ibaraki, Nagamochi, and Zang (2000) studied total balancedness of minimum coloring
games and other combinatorial optimization games. They showed that a minimum col-
oring game is totally balanced if and only if the underlying conflict graph is perfect. In
Okamoto (2003) concave minimum coloring games are characterized in terms of forbidden
subgraphs. Moreover, for this case an explicit formula of the Shapley value is provided.
In Bietenhader and Okamoto (2006) core largeness, extendability, and exactness of mini-
mum coloring games are considered. Okamoto (2008) characterized the core of minimum
coloring games on perfect conflict graphs as the convex hull of the characteristic vectors of
the maximum cliques in the conflict graph, which is a generalization of the result by Deng
et al. (1999). Additionally, Okamoto (2008) also investigated the nucleolus, the compro-
mise value and the Shapley value of a minimum coloring game. The most recent work
on minimum coloring games is by Hamers, Miquel, and Norde (2014). They provided a
necessary and sufficient condition for a conflict graph such that the induced minimum
coloring game has a population monotonic allocation scheme.

The minimum coloring games studied in the works above are cost games. However, if
we assume that in the initial situation no agents share facilities, i.e., every vertex has its
own color, then cooperation in sharing facilities between non-conflicting agents will lead
to cost savings. In this paper we define minimum coloring games as cost savings games
instead of cost games and we focuss on conflict graphs inducing coalitional cost savings
that are only 0 and 1, or 0, 1 and 2. Games for which the only possible values for a
coalition are 0 and 1 are called simple. Simple games are introduced by Von Neumann
and Morgenstern (1944) and further studied by Shapley and Shubik (1954). Games for
which the only possible values for a coalition are 0, 1 and 2 are called three-valued simple.
The class of three-valued simple games is a natural extension of the class of simple games.
Three-valued simple games are introduced and studied by Musegaas, Borm, and Quant
(2015).

In this paper we investigate two features of simple and three-valued simple minimum
coloring games. First, we characterize the type of conflict graphs inducing such games.
For this characterization, a distinction is made between perfect and imperfect conflict
graphs, and the concept of maximum clique is used. We show that simple minimum
coloring games are always induced by perfect graphs, while three-valued simple minimum
coloring games can be induced by both perfect and imperfect graphs. In particular,
there is only one type of imperfect conflict graphs inducing three-valued simple minimum
coloring games. We also provide an upper bound on the number of maximum cliques for
conflict graphs inducing simple or three-valued simple games. Second, we characterize the
core in terms of the underlying conflict graph for these games. This characterization is
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also based on the concept of maximum clique. Since simple minimum coloring games are
always induced by perfect graphs, the characterization of the core is readily derived. We
show that for three-valued simple minimum coloring games induced by imperfect conflict
graphs, the core is empty. On the other hand, for three-valued simple minimum coloring
games induced by perfect conflict graphs, we show that the core equals the vital core, as
introduced by Musegaas et al. (2015).

The organization of this paper is as follows. Section 2 recalls basic definitions from
graph theory and formally introduces minimum coloring games. In Section 3 simple
minimum coloring games are investigated. Finally, Section 4 analyzes three-valued simple
minimum coloring games.

2 Minimum coloring games

In this section we recall basic definitions from graph theory and formally define minimum
coloring games. We also provide a survey of game-theoretic characteristics of minimum
coloring games and in particular recall the characterization of the core of minimum col-
oring games associated to perfect conflict graphs.

Let G = (N,E) be an undirected graph G, represented by a pair (N,E), where N =
{1, . . . , n} is a set of vertices and E ⊂ {{i, j} | i, j ∈ N, i 6= j} is a set of edges. The graph
G is called complete if E = {{i, j} | i, j ∈ N, i 6= j}, that is every two vertices are adjacent.
Kn denotes the complete graph on n vertices. For S ⊂ N , the subgraph of G induced by
S is the graph G[S] = (S,ES) where ES = {{i, j} ∈ E | i, j ∈ S}. The complement of G
is the graph G = (N,E) where E = {{i, j} | i, j ∈ N, i 6= j, {i, j} 6∈ E}. In this paper we
only consider graphs that are connected on N , i.e., every pair of vertices is linked via a
sequence of consecutive edges in E. However, note that it still might happen that some
induced subgraph G[S] is not connected on S via ES. For conflict graphs, {i, j} ∈ E is
interpreted as i and j being in conflict.

A coloring of G is a mapping γ : N → N such that γ(i) 6= γ(j) for every {i, j} ∈ E.
The natural numbers assigned to the vertices correspond to the colors assigned to the
vertices. A minimum coloring of G is a coloring γ that uses the smallest number of
colors, i.e., a coloring for which |{γ(i) | i ∈ N}| is minimal. The number of colors in
a minimum coloring is called the chromatic number of G and is denoted by χ(G). The
problem of finding a minimum coloring of a conflict graph (N,E) is called a minimum
coloring problem.

The chromatic number of a conflict graph is strongly related to the concept of a clique,
where a clique in G is a set S ⊂ N such that G[S] = K|S|. A maximum clique of G is a
clique S of the largest possible size, i.e., a clique for which |S| is maximal. The number
of vertices in a maximum clique is called the clique number of G and is denoted by ω(G).
We denote the set of all maximum cliques in G by Ω(G), i.e.,

Ω(G) =
{
S ⊂ N | G[S] = Kω(G)

}
.

Note that all vertices in a maximum clique are mutually adjacent and therefore they each
must receive a different color in a minimum coloring, so

χ(G) ≥ ω(G), (1)

for any conflict graph G.

3



With N a non-empty finite set of players, a transferable utility (TU) game is a function
v : 2N → R which assigns a number to each coalition S ∈ 2N , where 2N denotes the
collection of all subsets of N . The value v(S) denotes the highest joint monetary payoff
or cost savings the coalition S can jointly generate by means of optimal cooperation
without any help of the players in N\S. By convention, v(∅) = 0. Let TUN denote the
class of all TU-games with player set N .

If we assume that initially every vertex has its own color, then the minimum coloring
of G results in optimal cost savings for N as a whole. To tackle the allocation problem
of these cost savings one can analyze an associated TU-game vG to a minimum coloring
problem with conflict graph G = (N,E), where the set of players is the set of vertices.
For a coalition S ⊂ N , v(S) reflects the maximal cost savings this coalition can generate,
i.e., the number of colors that are saved with respect to the initial situation where |S|
colors were used. Hence, the value of coalition S is obtained by solving the minimum
coloring problem with conflict graph G[S]. Correspondingly, the minimum coloring game
vG ∈ TUN induced by the conflict graph G = (N,E) is defined by

vG(S) = |S| − χ(G[S]),

for all S ⊂ N .
In the following, we give an example of a minimum coloring game and discusses the

concepts of clique number and chromatic number.

Example 2.1. Consider the conflict graph G = (N,E) with N = {1, . . . , 5} as depicted
in Figure 1. Note that Ω(G) = {{1, 3, 5}, {1, 4, 5}, {2, 4, 5}}, so using (1) we have χ(G) ≥
ω(G) = 3. Consider the following coloring of G with three colors given by the function
γ : N → {1, 2, 3} with

γ(1) = γ(2) = 1,

γ(3) = γ(4) = 2,

γ(5) = 3.

We may conclude that this coloring γ is a minimum coloring of G and χ(G) = 3. As a
consequence, the value of the grand coalition N is given by

vG(N) = 5− χ(G) = 2.

For coalition {1, 2}, the induced subgraph G[{1, 2}] contains no edges and thus only
one color is needed to color the vertices, i.e., χ(G[{1, 2}]) = 1. Hence, the value of coalition
{1, 2} is given by

vG({1, 2}) = 2− χ(G[{1, 2}]) = 1.

The game vG is given by

vG(S) =


2 if {1, 2, 3, 4} ⊂ S,

1 if {1, 2} ⊂ S or {2, 3} ⊂ S or {3, 4} ⊂ S, and {1, 2, 3, 4} 6⊂ S,

0 otherwise,

for all S ⊂ N . 4
A game v ∈ TUN is called monotonic if

v(S) ≤ v(T ),

for all S, T ∈ 2N with S ⊂ T . Minimum coloring games are integer valued nonnegative
monotonic games as is seen in the following proposition.
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Figure 1: The conflict graph of Example 2.1

Proposition 2.1. Let G = (N,E) be a graph. Then, vG is integer valued, nonnegative
and monotonic.

Proof. Integer valuedness and nonnegativity of vG are straightforward consequences of
the definition. As for monotonicity, let S, T ∈ 2N with S ⊂ T . Note that if a minimum
coloring for G[S] uses χ(G[S]) colors, then at most |T\S| additional colors are necessary
for a minimum coloring of G[T ], i.e., χ(G[T ]) ≤ χ(G[S]) + |T\S|. As a consequence,

vG(S) = |S| − χ(G[S]) ≤ |S| − χ(G[T ]) + |T\S| = |T | − χ(G[T ]) = vG(T ).

The core C(v) of a game v ∈ TUN is defined as the set of all allocations x ∈ RN such
that

∑
i∈N xi = v(N) (efficiency) and

∑
i∈S xi ≥ v(S) for all S ⊂ N (stability). Hence,

the core consists of all possible allocations of v(N) for which no coalition has an incentive
to leave the grand coalition. Consequently, if the core is empty, then it is not possible to
find a stable allocation of v(N).

Okamoto (2008) characterized the core of minimum coloring games induced by perfect
conflict graphs, where a graph G = (N,E) is called perfect if

ω(G[S]) = χ(G[S]),

for all S ⊂ N . If a graph is not perfect, then it is called imperfect.

Theorem 2.2 (cf. Okamoto (2008)). Let G = (N,E) be a perfect graph. Then, 1

C(vG) = Conv
({
eN\S | S ∈ Ω(G)

})
.

Chudnovsky, Robertson, Seymour, and Thomas (2006) characterized perfect graphs.
This characterization uses the notation of cycle graphs, where a cycle graph Cn is a graph
G = (N,E) for which there exists a bijection f : {1, . . . , n} → N such that

E = {{f(i), f(i+ 1)} | i ∈ {1, . . . , n− 1}} ∪ {f(1), f(n)} .

An odd cycle graph is a cycle graph Cn where n is odd.

Theorem 2.3 (cf. Chudnovsky et al. (2006)). A graph is perfect if and only if it does
not contain an odd cycle graph of length at least five, or a complement of such graph, as
an induced subgraph.

1For S ∈ 2N\{∅} , the characteristic vector eS ∈ RN is defined as

eSi =

{
1 if i ∈ S,

0 otherwise,

for all i ∈ N .
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Example 2.2. Reconsider the conflict graph G = (N,E) in Figure 1. Since G does not
contain an odd cycle graph of length at least five, or a complement of such graph as an
induced subgraph, we know from Theorem 2.3 that G is a perfect conflict graph. Since
the set Ω(G) of maximum cliques is given by

Ω(G) = {{1, 3, 5}, {1, 4, 5}, {2, 4, 5}} ,

it follows from Theorem 2.2 that

C(vG) = Conv({(0, 1, 0, 1, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0)}). 4

3 Simple minimum coloring games

In this section we consider simple minimum coloring games. First, we characterize the
type of conflict graphs inducing minimum coloring games that are simple. After that, we
consider in more detail these conflict graphs and analyze the core of the induced minimum
coloring games.

Recall that a game v ∈ TUN is called simple if

(i) v(S) ∈ {0, 1} for all S ⊂ N ,

(ii) v(N) = 1,

(iii) v is monotonic.

Let SIN denote the class of all simple games with player set N . The following theorem
gives a necessary and sufficient condition, in terms of the chromatic number, for a conflict
graph to induce a simple minimum coloring game.

Theorem 3.1. Let G = (N,E) be a graph. Then, vG ∈ SIN if and only if χ(G) = n− 1.

Proof. (“⇒”) Let vG ∈ SIN . Then, vG(N) = 1 and consequently χ(G) = n − vG(N) =
n− 1.
(“⇐”) Let χ(G) = n − 1. Then, vG(N) = n − χ(G) = 1. According to Proposition 2.1
vG is integer valued, nonnegative and monotonic, so in particular vG(S) ∈ {0, 1} for all
S ⊂ N , which implies vG ∈ SIN .

Proposition 3.3 provides an upper bound on the number of maximum cliques for
conflict graphs inducing simple games. This proposition also states that conflict graphs
inducing simple games are perfect. In the proof of this proposition we use the following
lemma, which gives the clique number and the chromatic number for odd cycle graphs of
length at least five and their complements. The proof of this lemma is straightforward
and therefore omitted.

Lemma 3.2. Let k ∈ N with k ≥ 2. Then, ω(C2k+1) = 2, χ(C2k+1) = 3, ω(C2k+1) = k
and χ(C2k+1) = k + 1.

Proposition 3.3. Let G = (N,E) be a graph. If vG ∈ SIN , then 2

2Note that these are only sufficient conditions and not necessary conditions. Consider for example the
conflict graph in Figure 4 in Section 4.1. This conflict graph is perfect and has two maximum cliques.
However, this conflict graph does not induce a simple game because the value of the grand coalition in
the induced minimum coloring game is 2.

6



(i) G is perfect,

(ii) |Ω(G)| ≤ 2.

Proof. Let vG ∈ SIN . Then, according to Theorem 3.1, χ(G) = n− 1.

Part (i): Suppose that G is not perfect. Then, according to Theorem 2.3, there exists an

S ⊂ N such that G[S] = C2k+1 or G[S] = C̄2k+1 with k ≥ 2. Then, using Lemma 3.2, we
have

vG(S) = |S| − χ(G[S]) = 2k + 1− 3 = 2k − 2 ≥ 2 > vG(N)

in case G[S] = C2k+1, or

vG(S) = |S| − χ(G[S]) = 2k + 1− (k + 1) = k ≥ 2 > vG(N),

in case G[S] = C̄2k+1, which both contradict monotonicity of vG. Hence, G is perfect.

Part (ii): Since G is perfect (see part (i)) and vG is simple, we have ω(G) = χ(G) = n−1.
Suppose |Ω(G)| > 2 and let k, l and m be three distinct vertices such that N\{k}, N\{l}
and N\{m} are maximum cliques of G. Since G[N\{k}] = Kn−1 and G[N\{l}] = Kn−1,
we have

{{i, j}|i, j ∈ N, i 6= j}\{k, l} ⊂ E.

Moreover, since G[N\{m}] = Kn−1 and {k, l} ⊂ N\{m}, we have {k, l} ∈ E. This
implies G = Kn which contradicts χ(G) = n− 1. Hence, |Ω(G)| ≤ 2.

Due to the fact that conflict graphs are assumed to be connected on N , we may
conclude from Theorem 3.1 that a conflict graph inducing a simple game has at least
three vertices. Moreover, from the previous proposition in combination with Theorem 3.1
we may conclude that a conflict graph G = (N,E) inducing a simple game has at least
one and at most two maximum cliques of size n− 1. So, there are two classes of conflict
graphs on n vertices inducing a simple game. The first class consists of the conflict graphs
with one maximum clique of size n − 1. Note that this class consists of n − 3 different
conflict graphs (up to isomorphism)3, because the vertex that is not in the maximum
clique is adjacent to at least one vertex (because G is assumed to be connected on N)
and at most n − 3 vertices (because otherwise there are two maximum cliques). For an
illustration with six vertices, see Figure 2(a), (b) and (c). The second class consists of the
conflict graphs with two maximum cliques of size n − 1. Note that this class consists of
a unique conflict graph (up to isomorphism), namely the conflict graph with exactly one
pair of vertices not being adjacent. For an illustration with six vertices, see Figure 2(d).
Hence, for given n ≥ 3, there are n − 2 different conflict graphs (up to isomorphism) on
n vertices inducing a simple game.

Using Theorem 2.2 and Proposition 3.3, one derives the following description of the
core for simple minimum coloring games.

Corollary 3.4. Let G = (N,E) be a graph and let vG ∈ SIN .

(i) If Ω(G) = {N\{i}}, then
C(vG) = e{i}.

3Two graphs G = (N,E) and G′ = (N ′, E′) are called isomorphic if there exists a bijection f : N → N ′

such that {u, v} ∈ E if and only if {f(u), f(v)} ∈ E′.
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Figure 2: All conflict graphs (up to isomorphism) on six vertices inducing a simple game

(ii) If Ω(G) = {N\{i}, N\{j}} with i 6= j, then

C(vG) = Conv
({
e{i}, e{j}

})
.

Example 3.1. Consider the conflict graph G = (N,E) in Figure 2(a), (b) or (c). Since
Ω(G) = {{2, 3, 4, 5, 6}} and vG ∈ SIN , it follows from Corollary 3.4 that

C(vG) = {(1, 0, 0, 0, 0, 0)} .

Next, consider the conflict graph G = (N,E) in Figure 2(d). Since

Ω(G) = {{2, 3, 4, 5, 6}, {1, 3, 4, 5, 6}} ,

and vG ∈ SIN , it follows from Corollary 3.4 that

C(vG) = Conv ({(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)}) . 4

4 Three-valued simple minimum coloring games

In this section we characterize the type of conflict graphs inducing three-valued simple
minimum coloring games. For this, a distinction is made between perfect and imperfect
conflict graphs. After that, we characterize the core in terms of the underlying conflict
graph for these games.

Musegaas et al. (2015) defined a game v ∈ TUN to be three-valued simple if

(i) v(S) ∈ {0, 1, 2} for all S ⊂ N ,

(ii) v(N) = 2,

(iii) v is monotonic.

Let TSIN denote the class of all three-valued simple games with player set N . The
following theorem gives a necessary and sufficient condition, in terms of the chromatic
number, for a conflict graph to induce a three-valued simple game.

Theorem 4.1. Let G = (N,E) be a graph. Then, vG ∈ TSIN if and only if χ(G) = n−2.4

4Note that Theorem 3.1 and Theorem 4.1 can be generalized for a more general class of integer valued,
nonnegative and monotonic games.
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Proof. (“⇒”) Let vG ∈ TSIN . Then, vG(N) = 2 and consequently χ(G) = n− vG(N) =
n− 2.
(“⇐”) Let χ(G) = n − 2. Then, vG(N) = n − χ(G) = 2. According to Proposition 2.1
vG is integer valued, nonnegative and monotonic, so in particular vG(S) ∈ {0, 1, 2} for all
S ⊂ N , which implies vG ∈ TSIN .

From now on, we distinguish between two classes of conflict graphs inducing three-
valued simple minimum coloring games: perfect conflict graphs (Section 4.1) and imperfect
conflict graphs (Section 4.2). For both classes, we consider in more detail the structure
of these conflict graphs and the cores of the induced minimum coloring games.

4.1 Three-valued simple minimum coloring games induced by
perfect conflict graphs

In this section we consider three-valued simple minimum coloring games induced by per-
fect conflict graphs. We show that for these games the core equals the vital core, intro-
duced by Musegaas et al. (2015).

We start with providing an upper bound on the number of maximum cliques for perfect
conflict graphs inducing three-valued simple games.

Proposition 4.2. Let G = (N,E) be a perfect graph. If vG ∈ TSIN , then |Ω(G)| ≤ 4.5

Proof. Let vG ∈ TSIN . Then, using Theorem 4.1, χ(G) = n − 2. Hence, due to the fact
that G is assumed to be connected on N , we have n ≥ 4. Moreover, since G is perfect, we
have ω(G) = χ(G) = n−2, so at least two pairs of vertices are not adjacent in G. Without
loss of generality we can assume that either {1, 2} 6∈ E and {3, 4} 6∈ E, or {1, 2} 6∈ E and
{2, 3} 6∈ E. Therefore, we distinguish between the following two cases:

(a) Assume {1, 2} 6∈ E and {3, 4} 6∈ E. Then the sets of vertices that can possibly form
a maximum clique are

{T ⊂ N | |T | = n− 2, {1, 2} 6⊂ T, {3, 4} 6⊂ T}.

Therefore, a maximum clique is of the form

N\{i, j},

with i ∈ {1, 2} and j ∈ {3, 4}. Hence, there are only four sets of vertices that can
possibly form a maximum clique, i.e., |Ω(G)| ≤ 4.

(b) Assume {1, 2} 6∈ E and {2, 3} 6∈ E. Since N\{2} cannot form a clique, we know
that there exists a pair of vertices {i, j} ⊂ N\{2} with i 6= j and {i, j} 6∈ E. Hence,
without loss of generality we can assume that {1, 3} 6∈ E, {3, 4} 6∈ E or {4, 5} 6∈ E
(the last case is only possible if n ≥ 5).
If {3, 4} 6∈ E, then we are back to case (a) and thus |Ω(G)| ≤ 4.

5Note that this is only a sufficient condition and not a necessary condition. Consider for example the
conflict graphs in Figure 2 in Section 3. All conflict graphs are perfect and have at most two maximum
cliques. However, none of the conflict graphs induces a three-valued simple game because the value of
the grand coalition in every induced minimum coloring game is 1.
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On the other hand, if {4, 5} 6∈ E, then the sets of vertices that can possibly form a
maximum clique are

{T ⊂ N | |T | = n− 2, {1, 2} 6⊂ T, {2, 3} 6⊂ T, {4, 5} 6⊂ T}.

Therefore, a maximum clique is of the form

N\{2, j},

with j ∈ {4, 5}. Hence, there are only two sets of vertices that can possibly form a
maximum clique, i.e., |Ω(G)| ≤ 2.
Finally, if {1, 3} 6∈ E, then the sets of vertices that can possibly form a maximum
clique are

{T ⊂ N | |T | = n− 2, {1, 2} 6⊂ T, {1, 3} 6⊂ T, {2, 3} 6⊂ T}.

Therefore, a maximum clique is of the form

N\{i, j},

with i 6= j and {i, j} ⊂ {1, 2, 3}. Hence, there are only three sets of vertices that can
possibly form a maximum clique, i.e., |Ω(G)| ≤ 3.

As one can see, in both cases |Ω(G)| ≤ 4.

Due to the fact that conflict graphs are assumed to be connected on N , we may con-
clude from Theorem 4.1 that a conflict graph inducing a three-valued simple game has at
least four vertices. Moreover, from the previous proposition we may also conclude that
a perfect conflict graph G = (N,E) inducing a three-valued simple game has at most
four maximum cliques of size n − 2. Figure 3 depicts all perfect conflict graphs (up to
isomorphism) on four vertices inducing a three-valued simple game. All conflict graphs
have a clique number of two. The conflict graph in Figure 3(a) has four maximum cliques
and the conflict graphs in Figure 3(b) and (c) have three maximum cliques.

1

2

3

4

(a)

1

2

3

4

(b)

1

2

3

4

(c)

Figure 3: All perfect conflict graphs (up to isomorphism) on four vertices inducing a
three-valued simple game

Musegaas et al. (2015) analyzed the core of three-valued simple games. In particular,
by introducing the concepts of vital players, primary vital players and secondary vital
pairs, they defined the vital core for the class of permissible three-valued simple games.
The vital core was shown to be a subset of the core for every permissible three-valued
simple game. We summarize the relevant notions and results from Musegaas et al. (2015),

10



and show that for the class of three-valued simple games induced by perfect conflict graphs,
the core and the vital core coincide.

For v ∈ TSIN , the set of vital players is defined by

Vit(v) =
⋂
{S ⊂ N | v(S) = 2} .

Hence, the vital players are those players who belong to every coalition with value 2. It
is shown that only three-valued simple games that are permissible can have a non-empty
core, where a game v ∈ TSIN is called permissible if the following two conditions are
satisfied:

(i) Vit(v) 6= ∅,

(ii) v(N\Vit(v)) = 0.

For a permissible game v ∈ TSIN , the reduced game vr ∈ TSIVit(v) is defined by

vr(S) = v(S ∪ (N\Vit(v))),

for all S ⊂ Vit(v). Note that a reduced game is also a three-valued simple game and
allows for only one coalition with value 2, namely the grand coalition Vit(v). Interestingly,
the core of a permissible three-valued simple game equals the core of the corresponding
reduced game, when extended with zeros for all players outside the set of vital players.
For a permissible game v ∈ TSIN , the set of primary vital players of v is defined by

PVit(v) =
⋂
{S ⊂ Vit(v) | vr(S) ∈ {1, 2}}

and the set of secondary vital pairs of v by

SVit(v) = {{i, j} ⊂ Vit(v)\PVit(v) | i 6= j, {i, j} ∩ S 6= ∅ for all S with vr(S) = 1}.

Hence, the primary vital players are the vital players who belong to every coalition with
value 1 or 2 in vr. Similarly, the secondary vital pairs are the pairs of vital players, who
are not primary vital players, such that for every coalition with value 1 or 2 in vr, at least
one player of such a pair belongs to the coalition. The vital core V C(v) of a permissible
game v ∈ TSIN is defined by

V C(v) = Conv({2e{i} | i ∈ PVit(v)}
∪ {e{i,j} | i ∈ PVit(v), j ∈ Vit(v)\PVit(v)}
∪ {e{i,j} | {i, j} ∈ SVit(v)}).

For a permissible game, the vital core is a subset of the core as is seen in the following
theorem.

Theorem 4.3 (cf. Musegaas et al. (2015)). Let v ∈ TSIN be permissible. Then,

V C(v) ⊂ C(v).

The following theorem provides a characterization of the vital core for three-valued
simple games induced by perfect conflict graphs.

11



Theorem 4.4. Let G = (N,E) be a perfect graph. If vG ∈ TSIN , then

V C(vG) = Conv
({
eN\S | S ∈ Ω(G)

})
.

Proof. Let vG ∈ TSIN . Then, using Theorem 4.1 and the fact that G is perfect, we have

ω(G) = χ(G) = n− 2.

In this proof we denote the intersection of all maximum cliques in G by ΩG, i.e.,

ΩG =
⋂
{S | S ∈ Ω(G)}.

We divide the proof into proving the following four statements:

(i) Vit(vG) = N\ΩG,

(ii) vG is permissible,

(iii) PVit(vG) = ∅,

(iv) SVit(vG) = {N\S | S ∈ Ω(G)}.

Note that if the statements (i) - (iv) all hold, then it immediately follows from the defi-
nition of the vital core that

V C(vG) = Conv
({
eN\S | S ∈ Ω(G)

})
.

Part (i): [Vit(vG) = N\ΩG]
(“⊂”) Let i ∈ ΩG, i.e., i belongs to every maximum clique of G. This implies that if
vertex i is removed, then the clique number decreases with one. Therefore,

vG(N\{i}) = n− 1− χ(G[N\{i}]) = n− 1− ω(G[N\{i}])
= n− 1− (ω(G)− 1) = n− 1− (χ(G)− 1) = n− 1− (n− 3) = 2,

where the second and the fourth equalities follow from the fact that G is perfect. Hence,
there exists an S ⊂ N\{i} such that vG(S) = 2, so i 6∈ Vit(vG).
(“⊃”) Let i ∈ N\ΩG, i.e., there exists a maximum clique of G to which i does not
belong. This implies that if vertex i is removed, then the clique number does not change.
Therefore,

vG(N\{i}) = n− 1− χ(G[N\{i}]) = n− 1− ω(G[N\{i}])
= n− 1− ω(G) = n− 1− χ(G) = n− 1− (n− 2) = 1,

where the second and the fourth equalities follow from the fact thatG is perfect. Moreover,
from monotonicity of vG it follows that vG(S) ≤ 1 for all S ⊂ N\{i}, so there does not
exist an S ⊂ N\{i} with v(S) = 2. As a consequence, for all S ⊂ N with v(S) = 2 we
have i ∈ S and thus i ∈ Vit(vG).

Part (ii): [vG is permissible]
Since ω(G) = n − 2, we know that N cannot be a maxium clique and thus ΩG 6= N .
Hence,

Vit(vG) = N\ΩG 6= ∅.

12



Moreover, since ΩG is the intersection of all maximum cliques in G, we know that ΩG

forms a clique as well and thus χ(G[ΩG]) = |ΩG|. As a consequence,

vG(N\Vit(vG)) = vG(ΩG) = 0.

This implies that vG is permissible.

Part (iii): [PVit(vG) = ∅]
Since Vit(vG) = N\ΩG, we know that for every vital player there exists a maximum clique
of G to which this player does not belong. As a consequence, for i ∈ Vit(vG), we have

χ(G[N\{i}]) = ω(G[N\{i}]) = ω(G) = n− 2,

where the first equality follows from the fact that G is perfect and the second equality
follows from the fact that there exists a maximum clique of G to which i does not belong.
Therefore,

vGr (Vit(vG)\{i}) = vG(Vit(vG)\{i} ∪ (N\Vit(vG))) = vG(N\{i})
= n− 1− χ(G[N\{i}]) = n− 1− (n− 2) = 1,

for all i ∈ Vit(vG). As a consequence,

PVit(vG) =
⋂{

S ⊂ Vit(v) | vGr (S) ∈ {1, 2}
}
⊂
⋂{

Vit(vG)\{i} | i ∈ Vit(vG)
}

= ∅.

Part (iv): [SVit(vG) = {N\S | S ∈ Ω(G)}]
(“⊃”) Let S ∈ Ω(G). Since ω(G) = n − 2, we can denote N\S = {i, j} with i 6= j.
Note {i, j} ∩ ΩG = ∅ and thus {i, j} ⊂ Vit(vG). Moreover, since PVit(vG) = ∅, we have
{i, j} ⊂ Vit(vG)\PVit(vG). Suppose {i, j} 6∈ SVit(vG), then it follows from the definition
of secondary vital pairs that there exists a T ⊂ Vit(vG)\{i, j} with vGr (T ) = 1. Since
T ⊂ Vit(vG)\{i, j}, we have

(T ∪ ΩG) ⊂ ((Vit(vG)\{i, j}) ∪ ΩG) = N\{i, j} = S.

Moreover, since S forms a maximum clique in G, we have χ(G[T ∪ ΩG]) = |T ∪ ΩG| and
thus

vGr (T ) = vG(T ∪ (N\Vit(vG))) = vG(T ∪ ΩG) = |T ∪ ΩG| − χ(G[T ∪ ΩG])

= |T ∪ ΩG| − |T ∪ ΩG| = 0,

which contradicts vGr (T ) = 1. Hence, {i, j} ∈ SVit(vG).
(“⊂”) Let {i, j} ∈ SVit(vG) and suppose N\{i, j} does not form a maximum clique in G,
i.e., ω(G[N\{i, j}]) < n− 2. Then,

vGr (Vit(vG)\{i, j}) = vG((Vit(vG)\{i, j}) ∪ (N\Vit(vG))) = vG(N\{i, j})
= (n− 2)− χ(G[N\{i, j}]) = (n− 2)− ω(G[N\{i, j}])
> (n− 2)− (n− 2) = 0,

where the penultimate equality again follows from the fact thatG is perfect. Consequently,
using the fact that a reduced game allows for only one coalition with value 2, namely the
grand coalition Vit(vG), we have vGr (Vit(vG)\{i, j}) = 1 which contradicts the assumption
that {i, j} ∈ SVit(vG).
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Example 4.1. Consider the perfect conflict graph G = (N,E) with N = {1, . . . , 6} as
depicted in Figure 4. Since Ω(G) = {{1, 3, 5, 6}, {1, 4, 5, 6}} and vG ∈ TSIN , it follows
from Theorem 4.4 that

V C(vG) = Conv ({(0, 1, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0)}) . 4

1

2

3

4

5

6

Figure 4: The conflict graph of Example 4.1

Combining Theorem 2.2 and Theorem 4.4, it immediately follows that for three-valued
simple minimum coloring games induced by perfect conflict graphs the core equals the
vital core.

Corollary 4.5. Let G = (N,E) be a perfect graph. If vG ∈ TSIN , then

C(vG) = V C(vG).

4.2 Three-valued simple minimum coloring games induced by
imperfect conflict graphs

In this section we consider three-valued simple minimum coloring games induced by im-
perfect conflict graphs. First, we characterize this type of conflict graphs, after that we
show that the induced minimum coloring games always have an empty core.

Note that all imperfect graphs have at least five vertices, because it must contain an
odd cycle graph of length at least five, or a complement of such graph as an induced
subgraph (cf. Theorem 2.3). The following theorem provides a necessary and sufficient
condition for an imperfect conflict graph to induce a three-valued simple game. For this
theorem, we use the notion of a dominating vertex. A vertex i ∈ N is called dominating
in G if {j | j ∈ N, {i, j} ∈ E} = N\{i}, i.e., if i is adjacent to every other vertex.

Theorem 4.6. Let G = (N,E) be an imperfect graph. Then, vG ∈ TSIN if and only if
there exists an S ⊂ N such that G[S] = C5 and all vertices outside S are dominating.

Proof. (“⇐”) Let S ⊂ N be such that G[S] = C5 and let all vertices outside S be
dominating. Since all vertices in N\S are dominating, we have G[N\S] = K|N\S| and
thus χ(G[N\S]) = n − 5. Moreover, since each vertex in S is adjacent to each vertex in
N\S, we have

χ(G) = χ(G[N\S]) + χ(G[S]) = n− 5 + 3 = n− 2,

where the second equality follows from Lemma 3.2. Consequently, using Theorem 4.1, we
have vG ∈ TSIN .
(“⇒”) Let vG ∈ TSIN . Since G is not perfect, we know from Theorem 2.3 that there
exists an S ⊂ N such that G[S] = C2k+1 or G[S] = C̄2k+1 with k ≥ 2. Suppose k > 2.
Then, using Lemma 3.2, we have

vG(S) = |S| − χ(G[S]) = 2k + 1− 3 = 2k − 2 > 2,
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in case G[S] = C2k+1, or

vG(S) = |S| − χ(G[S]) = 2k + 1− (k + 1) = k > 2,

in case G[S] = C̄2k+1, which both contradict vG being a three-valued simple game. Hence,
k = 2 and thus G[S] = C5 or G[S] = C̄5. Since C5 and C̄5 are isomorphic to each other6,
and thus both graphs have the same clique and chromatic number, we can conclude that
G[S] = C5.

Now, suppose χ(G[N\S]) < |N\S| = n− 5. Then

vG(N) = n− χ(G) ≥ n− (χ(G[S]) + χ(G[N\S])) > n− (3 + n− 5) = 2,

which contradicts vG being a three-valued simple game. Hence, we may assume χ(G[N\S]) =
n − 5 and thus G[N\S] = K|N\S|. As a consequence, all players in N\S are mutually
adjacent, i.e.,

{j | j ∈ N\S, {i, j} ∈ E} = (N\S)\{i},

for all i ∈ N\S.
Next, suppose {i, j} 6∈ E for some i ∈ S and j ∈ N\S. Then, since there exists a

vertex in S that is not adjacent to a vertex in N\S, we have

vG(N) = n− χ(G) > n− (χ(G[S]) + χ(G[N\S])) = n− (3 + n− 5) = 2,

which again contradicts vG being a three-valued simple game. Hence, we may assume
that every player in N\S is adjacent to all players in S, i.e.,

{j | j ∈ S, {i, j} ∈ E} = S,

for all i ∈ N\S. Consequently,

{j | j ∈ N, {i, j} ∈ E} = N\{i},

for all i ∈ N\S, i.e., all vertices outside S are dominating.

The previous theorem implies that, for given n ≥ 5, the class of imperfect conflict
graphs on n vertices inducing a three-valued simple game consists of a unique conflict
graph (up to isomorphism), namely the conflict graph that contains C5 as an induced
subgraph and all other vertices being dominated. Figure 5 depicts all imperfect conflict
graphs (up to isomorphism) on five, six and seven vertices inducing a three-valued simple
game. For all these conflict graphs, the subgraph induced by {1, 2, . . . , 5} is the cycle
graph C5 and all other vertices are dominating.

Using Theorem 4.6, the clique number and the number of maxiumum cliques for
imperfect conflict graphs inducing three-valued simple games immediately follows, as is
stated in the following corollary.

6To see that C5 and C̄5 are isomorphic to each other, consider the graphs G = (N,E) and G′ = (N ′, E′)
with N = N ′ = {1, . . . , 5},

E = {{1, 2}, {1, 5}, {2, 3}, {3, 4}, {4, 5}},

and
E′ = {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}.

If one takes the bijection f : N → N ′ with f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 2 and f(5) = 4, then
{u, v} ∈ E if and only if {f(u), f(v)} ∈ E′.
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Figure 5: All imperfect conflict graphs (up to isomorphism) on five, six or seven vertices
inducing a three-valued simple game

Corollary 4.7. Let G = (N,E) be an imperfect graph. If vG ∈ TSIN , then ω(G) = n− 3
and |Ω(G)| = 5.

For three-valued simple minimum coloring games induced by imperfect conflict graphs,
the core is empty as is seen in the following theorem.

Theorem 4.8. Let G = (N,E) be an imperfect graph. If vG ∈ TSIN , then vG is not
permissible and thus C(vG) = ∅.

Proof. Let vG ∈ TSIN . Then, Theorem 4.6 implies that there exists an S ⊂ N such that
G[S] = C5. For i ∈ S, we have

vG(S\{i}) = 4− χ(G[S\{i}]) = 4− 2 = 2.

As a consequence,

Vit(vG) =
⋂
{S ⊂ N | vG(S) = 2} ⊂

⋂
{S\{i} | i ∈ S} = ∅,

so vG is not permissible. Since only three-valued simple games that are permissible can
have a non-empty core, we have C(vG) = ∅.
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