305 research outputs found

    Subdivisions in the Robber Locating Game

    Get PDF
    We consider a game in which a cop searches for a moving robber on a graph using distance probes, which is a slight variation on one introduced by Seager. Carragher, Choi, Delcourt, Erickson and West showed that for any n-vertex graph GG there is a winning strategy for the cop on the graph G1/mG^{1/m} obtained by replacing each edge of GG by a path of length mm, if mnm \geqslant n. They conjectured that this bound was best possible for complete graphs, but the present authors showed that in fact the cop wins on K1/mK^{1/m} if and only if mn/2m \geqslant n/2, for all but a few small values of nn. In this paper we extend this result to general graphs by proving that the cop has a winning strategy on G1/mG^{1/m} provided mn/2m \geqslant n/2 for all but a few small values of nn; this bound is best possible. We also consider replacing the edges of GG with paths of varying lengths.Comment: 13 Page

    Cops and Invisible Robbers: the Cost of Drunkenness

    Get PDF
    We examine a version of the Cops and Robber (CR) game in which the robber is invisible, i.e., the cops do not know his location until they capture him. Apparently this game (CiR) has received little attention in the CR literature. We examine two variants: in the first the robber is adversarial (he actively tries to avoid capture); in the second he is drunk (he performs a random walk). Our goal in this paper is to study the invisible Cost of Drunkenness (iCOD), which is defined as the ratio ct_i(G)/dct_i(G), with ct_i(G) and dct_i(G) being the expected capture times in the adversarial and drunk CiR variants, respectively. We show that these capture times are well defined, using game theory for the adversarial case and partially observable Markov decision processes (POMDP) for the drunk case. We give exact asymptotic values of iCOD for several special graph families such as dd-regular trees, give some bounds for grids, and provide general upper and lower bounds for general classes of graphs. We also give an infinite family of graphs showing that iCOD can be arbitrarily close to any value in [2,infinty). Finally, we briefly examine one more CiR variant, in which the robber is invisible and "infinitely fast"; we argue that this variant is significantly different from the Graph Search game, despite several similarities between the two games

    Characterizations of k-copwin graphs

    Get PDF
    AbstractWe give two characterizations of the graphs on which k cops have a winning strategy in the game of Cops and Robber. One of these is in terms of an order relation, and one is in terms of a vertex ordering. Both generalize characterizations known for the case k=1

    Hyperopic Cops and Robbers

    Get PDF
    International audienceWe introduce a new variant of the game of Cops and Robbers played on graphs, where the robber is invisible unless outside the neighbor set of a cop. The hyperopic cop number is the corresponding analogue of the cop number, and we investigate bounds and other properties of this parameter. We characterize the cop-win graphs for this variant, along with graphs with the largest possible hyperopic cop number. We analyze the cases of graphs with diameter 2 or at least 3, focusing on when the hyperopic cop number is at most one greater than the cop number. We show that for planar graphs, as with the usual cop number, the hyperopic cop number is at most 3. The hyperopic cop number is considered for countable graphs, and it is shown that for connected chains of graphs, the hyperopic cop density can be any real number in [0, 1/2]

    Spartan Daily November 1, 2011

    Get PDF
    Volume 137, Issue 35https://scholarworks.sjsu.edu/spartandaily/1089/thumbnail.jp

    Spartan Daily, November 3, 1982

    Get PDF
    Volume 79, Issue 46https://scholarworks.sjsu.edu/spartandaily/6959/thumbnail.jp

    Searching and Sorting Algorithms

    Get PDF
    This dissertation analyses two combinatorial questions that involve algorithmic solutions. First we consider the Robber Locating Game, a pursuit-evasion game introduced by Seager in 2012. This game is a variant of the renowned Cops and Robbers game; in this variant the robber does not disclose his location to the cop, and her aim is merely to locate rather than capture him. Although he moves around the graph as normal on his turns, on her turns she picks any vertex freely and asks how far he is from her probed vertex. We call a graph locatable if there is a possible cop strategy that will always locate the robber in finitely many moves, and non-locatable otherwise.In this dissertation we consider how much subdivision of a graph is necessary to make it locatable, establishing exact bounds in the case of complete and complete bipartite graphs, and a general (n/2 + 1) bound for all finite graphs. We also consider subdividing infinite graphs, exhibiting a sufficient subdivision function for the cases where subdividing them can make them locatable. Finally we close with a series of results about the game, including the relationship between locatability number and maximum degree and showing that every locatable graph is 4-colourable.In the second part we consider how a user can determine the ordering of a well-ordered set of elements, when he initially does not know the ordering but is given a scale. This scale takes k elements and returns the t_1, t_2, ..., t_s of them according to this ordering. We show that he cannot determine the complete ordering, since he cannot order the initial and final segments. Apart from this restriction we outline algorithms to enable the user to determine the ordering in both the online and offline cases. We show that in the online case he can determine the ordering in O(n log n) queries, and in the offline case in O(n^{k-t+1}) queries, which we show is the best possible order of the number of queries

    The Police Response to Active Shooter Incidents

    Get PDF
    There have been many active shooter incidents in the United States since Columbine, and police agencies continue to modify their policies and training to reflect the lessons that are learned from each new tragedy. This report summarizes the state of the field as of 2014. The Police Executive Research Forum conducted research on these issues and held a one-day Summit in Washington, D.C., in which an overflow crowd of more than 225 police chiefs and other officials discussed the changes that have occurred, and where they are going from here
    corecore