
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

4-21-2015

Searching and Sorting Algorithms Searching and Sorting Algorithms

Richard Alexander Beckwith Johnson

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Johnson, Richard Alexander Beckwith, "Searching and Sorting Algorithms" (2015). Electronic Theses and
Dissertations. 1157.
https://digitalcommons.memphis.edu/etd/1157

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1157&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1157?utm_source=digitalcommons.memphis.edu%2Fetd%2F1157&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

SEARCHING AND SORTING ALGORITHMS

by

Richard A. B. Johnson

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Mathematical Sciences

The University of Memphis

May 2015

ACKNOWLEDGEMENTS

First, and above all, I would like to thank my supervisor Professor Béla

Bollobás. Without him I would never have had the opportunity to even embark on

this PhD in the first place. His continual support, both academic and

extra-curricular, over the past four years has allowed me to visit many other

institutions, introduced me to a huge variety of colleagues to collaborate with and

interesting problems to work on. The results contained in this dissertation are all

due to his relationships formed from his introductions, and represent a small subset

of the things he has helped me to achieve. I would also like to thank Professor Paul

Balister who has always provided me with an open ear regarding any mathematical

questions I had, frequently helping me to see to the heart of a problem almost

instantly.

I am also very indebted to Gabriella Bollobás for her endless hospitality. She

has always welcomed all of us into her home, made us feel very comfortable and

looked after us with any problems we have. She has helped me to grow as an

individual as much as Béla has as a mathematician, and I am very grateful for that.

I am also very grateful to Tricia Simmons, who began helping me even before I

arrived in Memphis. She has been a pillar of support to all of Béla’s students over

the years, and we all know how special she is to all of us.

One of the most wonderful things about the past four years has been joining the

family of Béla’s students, both current and past. The twin groups of the Memphis

and Cambridge students work very closely together, and I have enjoyed getting to

know, work with and enjoy the company of, each and every one of them. I would

like to individually thank two in particular, Tomas Juškevičius and Micha l

Przykucki. They have always shown me unending support, sympathised with my

difficulties and even occasionally offered useful advice. Away from the department I

would like to thank Stacey, Steph, Jess, Mansi and Kirstin for their support.

ii

Moving to a foreign country away from your family and friends can be a very

stressful undertaking, and you helped to significantly reduce the disruption I felt.

I am very lucky to have discovered my friends in the Hash House Harriers, who

have always been more than willing to drop whatever they were doing in search of a

fun new area of town to explore, or just to share in a few pints. Above all it was

through them that I met Cailin, who has been amazing through the final stages of

this PhD. She makes me smile every day, and I look forward enormously to her

accompanying me on my next adventure.

Finally I owe a debt of gratitude, as ever, to my long-suffering parents and

sister, who have had to endure another four years of my frequent needs for places to

stay in England, financial assistance and moral support. I promise this is the last of

my overseas adventures, and I look forward to finally coming home and spending

more time with you all.

iii

ABSTRACT

Johnson, Richard A. B. Ph.D. The University of Memphis. May 2015.
Searching and Sorting Algorithms. Major Professor: Béla Bollobás, Ph.D.

This dissertation analyses two combinatorial questions that involve algorithmic

solutions. First we consider the Robber Locating Game, a pursuit-evasion game

introduced by Seager in 2012. This game is a variant of the renowned Cops and

Robbers game; in this variant the robber does not disclose his location to the cop,

and her aim is merely to locate rather than capture him. Although he moves around

the graph as normal on his turns, on her turns she picks any vertex freely and asks

how far he is from her probed vertex. We call a graph locatable if there is a possible

cop strategy that will always locate the robber in finitely many moves, and

non-locatable otherwise.

In this dissertation we consider how much subdivision of a graph is necessary to

make it locatable, establishing exact bounds in the case of complete and complete

bipartite graphs, and a general n/2 + 1 bound for all finite graphs. We also consider

subdividing infinite graphs, exhibiting a sufficient subdivision function for the cases

where subdividing them can make them locatable. Finally we close with a series of

results about the game, including the relationship between locatability number and

maximum degree and showing that every locatable graph is 4-colourable.

In the second part we consider how a user can determine the ordering of a

well-ordered set of elements, when he initially does not know the ordering but is

given a scale. This scale takes k elements and returns the tst1 , t
nd
2 , . . . , t

th
s of them

according to this ordering. We show that he cannot determine the complete

ordering, since he cannot order the initial and final segments. Apart from this

restriction we outline algorithms to enable the user to determine the ordering in

both the online and offline cases. We show that in the online case he can determine

the ordering in O(n log n) queries, and in the offline case in O(nk−(t−1)) queries,

which we show is the best possible order of the number of queries.

iv

TABLE OF CONTENTS

Chapter Page

Acknowledgements ii

List of Figures vi

Introduction 1

I The Robber Locating Game

1 Formal Description of the Robber Locating Game 8

2 Preliminary Results 20

3 Subdivisions of finite graphs 27
Complete graphs 28
Bipartite graphs 37
General graphs 43

4 Subdividing Infinite Graphs 48

5 Location Number and Maximum Degree 60

6 Subgraph Characterisations 69

7 Locatability and Colourability 73

II Sorting Algorithms

1 Introduction to Sorting Algorithms 81

2 Online Algorithms 83
Singleton Output Scales 83
Multiple output instruments 87

3 Offline Algorithms 93
Singleton Output Scales 93

Recursive Algorithm 94
Adjacency algorithm 101

Multiple Output Scales 104

v

LIST OF FIGURES

Figure Page

1.1 Sample moves on a pair of connected triangles 13

2.1 Response and movements sets for Lemma 6 24

4.1 r and a possible location for r′ 55

5.1 Logarithmically-locatable graph with a high degree vertex 62
5.2 Binary tree with 4 layers 67

6.1 Double-net and Rooted double-net 70
6.2 Response and movements sets for Lemma 28 70

7.1 K4 with edges replaced by pairs of chains of diamonds, linked by a
single edge 76

7.2 Di, Di+1 and a pendant edge for Lemma 33 77

2.1 First two layers of the grouping process 85

vi

INTRODUCTION

This dissertation discusses two different combinatorial questions that both have

algorithmic solutions. In the first part we analyse a variant of the classic Cops and

Robbers problem, an example of a Pursuit and Evasion game. Pursuit and evasion

games on graphs have been widely studied. The most standard example is the Cops

and Robbers game, an instance of which is a graph G together with a fixed number

of cops. The cops take up positions on vertices of G and a robber then starts on any

unoccupied vertex. The cops and the robber take turns: the robber chooses either

to remain at his current vertex or to move to any adjacent vertex, and then the cops

simultaneously make moves of the same form. The game is played with perfect

information, so that at any time each of the players knows the location of all others.

The cops win if at any point one of them is at the same location as the robber. The

cop number of a graph is the minimum number of cops required for the cops to have

a winning strategy. Early results on this game include those obtained by

Nowakowski and Winkler [9], who describe the graphs of cop number 1, and Aigner

and Fromme [1], who show that every planar graph has cop number at most 3.

Perhaps the most important open problem in this area is Meyniel’s conjecture (see

Frankl [5]), that the cop number of any n-vertex connected graph is at most O(
√
n).

This has been shown to be true up to a log(n) factor for random graphs by

Bollobás, Kun and Leader [2], following which Luczak and Pra lat improved the

error term [8]. More recently, several variations on the game have been analysed by

Clarke and Nowakowski [4].

Our aim in this dissertation is to study the Robber Locating game, introduced

in a slightly different form by Seager [10], and further studied by Carraher, Choi,

Delcourt, Erickson, and West [3]. In this game the robber initially occupies a

vertex, without disclosing which it is to the cop. For ease of reading we shall refer to

the cop as female and the robber as male. Each round consists of a move for the

1

robber, in which he either moves to an adjacent vertex or stays where he is, followed

by a probe of any vertex by the cop. When the cop probes a vertex she is told the

current distance to the robber. In this setting the cop is not on the graph herself,

and can probe vertices without restriction; she wins if at any point she is able to

determine the robber’s current location. We say that a graph is locatable if a

strategy allowing her to do so in finite time exists and non-locatable otherwise.

The default view of this game has two significant weaknesses. The first is that it

seems that the cop will clearly win eventually with probability 1 on a finite graph

against a robber who has no knowledge of her future moves, simply by probing

random vertices until she hits the current location of the robber. The second is that

no possible winning robber strategy can exist, since it must prescribe a starting

vertex, and then any cop strategy that begins by probing that vertex would locate

him. As such in this dissertation we open by presenting an alternative version of

this game, in which the robber occupies a subset of the vertices, and the cop wins if

she can reduce this subset to a singleton. As we shall show these games are so

closely related that they are almost functionally equivalent from the cop’s

perspective, and hence we adopt this alternative view without losing touch with the

default game. It does however allow us to define winning robber strategies, and to

show that any non-locatable graph has a winning robber strategy. We follow this

with a chapter in which we show some simple results about the Robber Locating

Game, which are included mostly for completeness rather than because they are

particularly insightful. The real content of this dissertation begins in Chapter 3.

In [3] Carraher, Choi, Delcourt, Erickson, and West analysed the Robber

Locating Game with subdivisions in mind, and showed that subdividing any finite

graph sufficiently many times yields a locatable graph. Given a graph G and a

positive integer m, we write G1/m for the graph obtained by replacing each edge of

G by a path of length m through new vertices. Each such path is called a thread,

2

and an original vertex in G1/m is a vertex that corresponds to a vertex of G. We

denote the path between original vertices vi and vj by vi · · · vj. The span of an

original vertex consists of all the vertices at distance less than m from it; this set

includes the vertices along the threads leaving that vertex, but not the far endpoints

of those threads.

In [3] the authors proved a general sufficient bound on the amount of

subdivision required to make a finite graph locatable, phrased partially in terms of

the metric dimension of the graph. The notion of metric dimension was introduced

independently by Slater [12], and by Harary and Melter [7]. The metric dimension

of G, denoted µ(G), is the size of the smallest set S of vertices such that for every

x, y ∈ V (G) with x 6= y there is some z ∈ S with d(x, z) 6= d(y, z). In [3] the authors

proved that G1/m is locatable provided

m > min{n(G), 1 + max{µ(G) + 2µ(G),∆(G)}}

Further they showed that for a complete bipartite graph Ka,b, m > max{a, b} is

sufficient for K
1/m
a,b to be locatable. They asked if this was necessary – in Chapter 3

we show that in fact m > (min{a, b}− 1) is necessary and sufficient if min{a, b} > 4,

and m > min{a, b} is necessary and sufficient if min{a, b} 6 3, classifying all

subdivided complete bipartite graphs. They also conjecture that their bound is

tight for complete graphs, i.e. that K
1/m
n is locatable if and only if m > n. We show

that in fact, except for a few small values of n, the actual threshold is n/2. We then

extend this to show that, for all finite graphs, subdividing by n/2 + 1 is sufficient to

make a graph locatable, a bound that is tight for small complete graphs.

We then extend this approach in Chapter 4 to consider subdividing infinite

graphs. We show that any infinite graph with any vertices of infinite degree, or

infinitely many components, is not locatable and since these properties are

preserved under subdivisions, no subdivision of such a graph can be locatable.

3

However, given an infinite graph not having one of those properties, we show that

there exists a subdivision function that makes it locatable. We note that, although

this function is not necessarily uniform, in the case of regular infinite graphs it is

uniform, and provided that the underlying graph has bounded degree then

uniformly subdividing by the maximum also gives a valid uniform subdivision that

makes the graph locatable.

We then move to more general results about the Robber Locating Game. In

Chapter 5 we ask if it is possible to bound the time that the cop will take to locate

the robber on a locatable graph in terms of the maximum degree. Unsurprisingly

(as we show in Chapter 4) the robber can always survive for log ∆ turns. We believe

that this is the correct lower bound, and as evidence towards this we give a graph

on which he can be located in log ∆ + log(log ∆) + 2 = O(log ∆) turns. We also

show that no upper bound is possible by exhibiting a family of graphs with bounded

degree, which are locatable, on which the robber can survive for arbitratily long.

We close the section on the Robber Locating Game with two chapters inspired

directly by Seager’s initial paper, [10]. In this paper she asked if a forbidden

subgraph characterisation of locatable graphs was possible, i.e. if it was possible to

give a family of graphs H such that the locatable graphs are exactly those not

containing a member of H as a subgraph. In Chapter 6 we show that this is not

possible by exhibiting a locatable graph that contains an unlocatable induced

subgraph. Finally in Chapter 7 we consider the relationship between locatability

and colourability, and show that all locatable graphs are 4-colourable. We also show

that this is tight by exhibiting a locatable graph that is not 3-colourable. In both of

these final two chapters we include the no-backtrack condition that Seager originally

included: this states that the robber cannot move to the vertex that the cop most

recently probed. Although her initial paper included this, neither the followup by

Carraher, Choi, Delcourt, Erickson, and West [3] or Seager [11] do, and we consider

4

it to be a slightly unnatural condition. This is included in Chapter 6 since the

question posed by Seager included it, and in Chapter 7 we also include a note on

how the results change if this condition is dropped.

In the second part of this dissertation we consider an unrelated problem about a

sorting algorithm. Consider a set of ordered elements {x1, . . . , xn} and a user who

does not know the ordering but wishes to establish it. There are many similar such

problems, often phrased in terms of a number of coins with distinct weights, and a

person who wishes to sort them. The user is allowed access to a weighing scale that

accepts k of them as input and returns a subset of size s containing the

tst1 , t
nd
2 , . . . , t

th
s elements. We would call such a scale a (k, t1, . . . , ts) scale, and in the

special case when k = 2 we call it a binary scale. We investigate what such a scale

can tell the user about the ordering, and how quickly he can determine this

information.

Clearly the user cannot discover the complete ordering, as he cannot determine

the ordering of the first t1− 1 elements or the final (n− ts) elements. Additionally if

the scale is symmetric (in the sense that the elements that it returns are symmetric

around the midpoint of k i.e. t1 = k − ts, t2 = k − ts−1 etc) then the ordering cannot

be fully determined for the remaining elements, as the results of any query would be

the same if the ordering was reflected. Aside from these restrictions, everything else

about the ordering can be determined, as we show. We consider both online

algorithms, in which the user can decide which set to query next based on previous

results, and offline algorithms in which he must specify all his queries initially before

receiving any results. In the former case we achieve a general bound of O(n log n)

queries, which was already well known in the binary case, but with a better leading

constant for large k. In the offline case we establish two algorithms that can

determine the ordering, both in O(nk−(t−1)) queries, which is the best possible order.

The former works by fixing a small set of reference elements and requesting all the

5

queries involving that set. From these results it recursively builds up the results of

any query involving any subset of these reference elements, and thus establishes how

to find the results of any query. From that point the online algorithms can be

applied to determine the ordering. The second algorithm is more direct, and relies

on establishing the adjacencies of elements in the ordering and hence deducing as

much about it as is possible. We discuss both algorithms for the singleton output

(s = 1) and multiple output (s > 1) cases, arguing in favour of using the adjacency

based algorithm especially in the multiple output case.

The work on the Robber Locating Game is all joint work with Sebastian Koch

of Cambridge, and additionally with John Haslegrave of Sheffield for Chapter 3.

The work on the Scales algorithms is all joint with Gábor Mészáros of Central

European University.

6

Part I

The Robber Locating Game

CHAPTER 1

FORMAL DESCRIPTION OF THE ROBBER LOCATING GAME

The original presentation of the game considers the robber as occupying a single

vertex, whose location is unknown to the cop, and which she wishes to determine.

He initially picks a vertex to start on, and then at each round proceeds as follows.

First she picks a vertex to probe, and he tells her his distance from the probed

vertex. If following this she can work out his location then she wins the game.

Otherwise he can then move to an adjacent vertex or remain still. This concludes a

round of the game. He wins the game if he can evade being located indefinitely.

There is one additional complication, which was included by Seager in her original

paper [10], the no backtrack condition, which states that the robber cannot move to

the vertex just probed by the cop. This was however not included in the later

papers by Carraher, Choi, Delcourt, Erickson, and West [3] or Seager’s followup

paper [11]. We shall in general not include this condition, to simplify the description

of the game and to follow what appears to be the current popular consensus. The

exceptions to this are Chapters 6 and 7, where we need it in order to answer the

questions posed by Seager exactly. However otherwise it does not feature in our

analysis.

Formally a strategy for the robber specifies where he will begin, and on each

turn where he will move (which may depend on the previous probe vertices and

answers he has given the cop). Equally a strategy for the cop consists of an initial

choice of vertex to probe, and then subsequent choices depending on the answers

that the robber gives. Given strategies for both players either the cop locates the

robber after finite time, or she does not – in the former case we say that the cop

wins, and in the latter we say that the robber wins if both players use those

particular strategies.

We say that a strategy for the cop is a winning strategy if it beats all possible

8

robber strategies. This is a property of the strategy, which is again a property of the

underlying graph. Hence we can define a graph as locatable if there exists a winning

strategy for the cop, or non-locatable otherwise. Winning strategies for the robber

are not possible, since a robber strategy formally includes his choice of starting

vertex, and for any choice of starting vertex there is a trivial cop strategy

(repeatedly probing that vertex on each turn) that locate him on the first probe.

Further if the cop is allowed to probe randomly then the game is essentially

trivial, since picking probe vertices uniformly at random from the vertex set is a

simple strategy that works almost surely on any finite graph. In order to counteract

both these problems, we present an alternative version of the game, which we call

the Power Set version, that has the following advantages:

1. it forbids random strategies, clearly defining the criteria for winning strategies.

2. it gives rise to an algorithm that determines if a graph is locatable or

non-locatable in this version of the game in finite time on any finite graph.

3. in the absence of a winning strategy for the cop it gives a winning strategy for

the robber.

4. it better captures how the game is analysed in practice.

As we shall see later there is an obvious coupling between the two versions of

the game, which gives rise to a natural bijection between winning strategies for the

cop in each. Hence a graph that’s locatable for the Power Set version of the game is

also locatable for the default Robber Locating game, and vice versa. Thus

locatability is preserved as you move between the different versions. Hence when we

describe a graph as locatable, or non-locatable, we do not need to specify which

version of the game we are talking about.

In our alternative version we allow the robber to occupy a subset of the vertex

set rather than a single vertex. This would correspond to the set of vertices that the

9

cop knows he must be contained within in the original game. If it is ever a singleton

vertex then that corresponds to the cop locating him, and we say that the cop wins.

Otherwise if he can avoid ever being in a singleton then we say he wins, since this

corresponds to there always being some uncertainty as to his position.

We use Rt to represent the set that he occupies after the tth probe but before

his tth move, and Mt to represent the set of vertices that the robber occupies after

his tth move. The Rt are called the response sets and the Mt are called the

movement sets, since the game plays as follows. Initially he occupies M0 = V , the

entire vertex set, since his start position could be any vertex in the graph. The cop

then picks a probe vertex, and his response determines a subset of M0, namely R1,

his first response set. If this is a singleton set then she has located him. Otherwise

he can then move to the closed neighbourhood of R1, which is thus the first

movement set M1. The game then continues as such for each subsequent probe.

It is straightforward to write recurrence relations for how the game progresses.

Let the cop’s probe at time t be denoted by pt. The robber’s response can either be

described by a distance dt or directly by the set Rt that is created by this response.

For clarity, and to better establish the coupling with the original game, formally we

define the game as him returning this distance and say Rt is determined by his

response, although practically, with abuse of notation, in our later analysis we shall

often shorten this to just say he responds with Rt. With this notation in mind, we

can define how the game progresses as follows:

M0 = V (1.1)

Rt = {v ∈Mt−1 : d(v, pt) = dt} (1.2)

Mt = Rt ∪ {v ∈ V : d(v,Rt) = 1} (1.3)

10

We can now give a more explicit definition of a robber strategy, since the robber

only needs to consider the set of vertices that he was previously known to be in

(Li−1) and the probe vertex. Further, we can give an explicit description of what

constitutes strategies for the cop and robber. Note that the game is effectively

memoryless, the current state of the game is entirely encapsulated by the current

value of Mt. Hence a cop strategy consists of specifying, for each possible value of

Mt ⊂ V , which vertex to probe next, and a robber strategy consists of specifying,

for each possible value of Mt and choice of probe vertex which distance to return.

Denoting a cop strategy by SC and a robber strategy by SR, strategies are hence

finite maps of the following forms:

SC : P(V)→ V (1.4)

SR : P(V)× V → N (1.5)

With these definitions in mind, we shall now prove that this alternative version

satisfies the Claims 1 - 4 above. The first is well illustrated by considering playing

the game on a complete graph, Kn. Previously on each turn probing a vertex chosen

uniformly at random gave each probe a uniform 1/n success probability. In this

game however the robber can always return distance 1, and thus Rt = V \ {pt} at

every time step. Provided n > 3 this never locates him, and so a random strategy

no longer works.

The second claim we shall show explicitly in the following theorem, which

outlines the algorithm.

Theorem 1. There is an algorithm that can determine for any graph G if G is

locatable or non-locatable.

Proof. The algorithm works by creating an auxiliary graph on the state space of the

game. We construct this auxiliary graph H as follows. The vertices represent the

11

state space of the game, so are subsets of the original vertex set. Hence

V (H) = P(V (G)). Our edges will represent the possible outcomes for probes by the

cop. Given that the robber at some point is in set M if the cop probes vertex p then

he can choose which distance he returns from {1, . . . , diam(G)}. Let L(M, p, d)

represent the layer of set M at distance d from p, so

L(M, p, d) = {v ∈M : d(v, p) = d} (1.6)

There are two possible outcomes, either |L(M, p, d)| ≤ 1, in which case the cop

immediately wins, or |L(M, p, d)| > 1, in which case the robber could return this set

and then move to its closed neighbourhood. Let us denote the closed neighbourhood

of L(M, p, d) by N [L(M, p, d)]. Then for each d ∈ {1, . . . , diam(D)} we construct an

edge from M to either the empty set (which we interpret as a winning state for the

cop) or N [L(M, p, d)] accordingly. We would have a set of such edges for each

p ∈ V (G), one for each choice of probe vertex. We suggest that it would be a good

idea to colour such edge sets according to the probed vertex, using |V (G)| colours.

Doing this for all p ∈ V (G),M ⊂ V (G) gives the edges of H.

For the purpose of illustration we include a sample construction in Figure 1.1.

Initially the cop does not know where the robber is, so he occupies the entire vertex

set. We illustrate this by shading the entire graph. On her first turn we illustrate

the results of her probing vertex v1. If he answers 0, 1, 2, or 4 this would locate him,

so his possible answers are 3 and 5. If he answers 3 this corresponds to response set

{v4, v5}, and thus movement set {v3, v4, v5, v6}, as illustrated on the right. From

there, a probe at v4 locates him. If his initial response had been 5 then this would

correspond to response set {v7, v8, v9}, and thus movement set {v6, v7, v8, v9}. We

illustrate this on the left. From there, she probes vertex v7. His only response that

does not result in being trivially captured is distance 2, corresponding to response

12

v1 v2

v3

v4

v5 v6

v7

v8

v9

v1 v2

v3

v4

v5 v6

v7

v8

v9

v1 v2

v3

v4

v5 v6

v7

v8

v9

v1 v2

v3

v4

v5 v6

v7

v8

v9

Cop Wins

1 1

7
4

8

Figure 1.1: Sample moves on a pair of connected triangles

set {v8, v9} and next movement set {v6, v8, v9}. Then a probe at v8 locates him.

Given the graph H we can track the game played on G in a very simple fashion

by coupling the game played on G to one played on H. At time t = 0 the robber

sits on the vertex A0 = V (G). At time t the cop chooses a vertex pt to probe. The

robber then returns dt. In this new interpretation this is the same as the cop

specifying a colour pt of edges that she wants to restrict the robber to, and then the

robber choosing which of those edges to move along. Hence any strategy for the cop

will consist of specifying which vertex she would probe for each vertex set the

robber might be in, and a strategy for the robber will consist of saying which edge

he would take in each such case.

13

We now wish to establish which are the cop-good and robber-good sets, i.e.

states from which the cop or robber respectively has a winning strategy. We say

that a set is 0-resolvable if it is a singleton or the empty set, and 1-resolvable if it is

not 0-resolvable and there exists a probe vertex p with the property that

|L(M, p, d)| ≤ 1 for all d. We extend this definition recursively to say that a set is

k-resolvable if it is not l-resolvable for any l < k and there exists some probe vertex

p with the property that L(M, p, d) is l-resolvable for some l < k for all d. Hence a

set is k-resolvable if there is some choice of p such that all the outneighbours of that

set in colour p are resolvable in fewer than k steps. Generalising this concept we can

say that a set is resolvable if there exists some k ∈ N such that the set is

k-resolvable. We note that any resolvable set naturally gives rise to a winning

strategy for the cop starting from that set, as she inductively selects the probe

vertices sequentially that take the robber to sets that are resolvable in fewer queries

until she forces the robber into a set that is 1-resolvable, and hence locates him.

Hence any resolvable set is cop-good.

We equally want to establish what a robber-good set is in this game. In the

original game a winning strategy for the robber consisted of a strategy that enabled

the robber to evade capture indefinitely. As there are only a finite number of vertex

sets, this is equivalent to finding a strategy that would enable him to travel round a

cycle, for any possible choices made by the cop. Noting that there are only 2n vertex

sets this is the same as saying that a set M is robber-good if, for all possible choices

of p1, . . . , p2n there is a choice of distances d1, . . . , d2n such that the sequences

R1, . . . , R2n and M1, . . . ,M2n , formed by carrying out that set of probes with those

answers, does not contain any response sets of size 1, and hence does not result in

the robber being caught. As this forms a family of 2n+1 sets that the robber passes

through (including his starting set), and the power set of V (G) contains 2n sets by

the pigeonhole principle this family must contain a repeated set. If this is true for

14

all choices of {pi} then we conclude that the robber can specify a strategy that

evades capture for any choices of {pi}, and thus a winning strategy from the set A.

We can thus recursively build up all cop-good sets in the graph. Note that a set

being k-resolvable requires it to have a (k − 1)-resolvable neighbour (by the greedy

nature of the labelling). Also note that the process by which sets are labelled

cop-good is monotonically increasing, and so terminates if for any k we cannot find

any k + 1-resolvable sets. At this point the remaining sets are all labelled robber

good. Thus the initial state V will either be robber-good or cop-good. This

determines the locatability or otherwise of the game.

It remains to show that this algorithm runs in finite time. Indeed, we shall give

an upper bound on the time in terms of the order n of G.

Observation 2. The above algorithm runs in O(n32n) steps.

Proof. Let G be a graph on n vertices with diameter D. Consider the algorithm we

describe above for determining if a set is resolvable. It runs as follows:

1. Draw a graph H whose vertices are elements of the power set of V (G).

2. Draw and label the edges for the graph.

3. Label the singletons and the empty set as 0-resolvable sets.

4. Recursively establish whether each set is k-resolvable for each k, starting from

k = 1.

5. Once everything has either been labelled in step 4 or some k was found such

that the graph contains no k-resolvable steps, we terminate labelling the sets

as cop-good and call all remaining sets robber-good.

Stages 1, 3 and 5 take 2n, n+ 1 and 2n steps respectively with little possible

room for improvement, so we shall concentrate on stages 2 and 4.

15

Stage 2 requires finding L(M, p, d) for all possible values of M, p and d. This

can be made easier by first constructing a layered copy of G for each v ∈ G which

partitions G according to the distance from v. We call this copy Gv. If done by a

breadth first search this takes at most n+ e(G) = O(n2) steps for each choice of v,

and hence we can complete this in O(n3) steps. We then proceed as follows. Given a

vertex M ∈ V (H) and a probe vertex p ∈ V (G) it then takes |M | steps to partition

M into {L(M, p, d) : d ≥ 0}, by just seeing which layer of Gp each vertex from M is

in. Obtaining the N [L(M, p, d)] sets from the L(M, p, d) sets requires at most 2e(G)

steps, as each edge can be used at most twice. Hence this stage takes the following

number of steps, noting that e(G) = O(n2) which we need for the last line.

Steps taken ≤ O(n3) +
∑

M⊂V (G)

∑
p∈V (G)

(
|M |+ 2e(G)

)
= O(n3) +

∑
M⊂V (G)

n
(
|M |+ e(G)

)
≤ O(n3) +

∑
M⊂V (G)

n
(
n+ e(G)

)
= O(n3) + 2nn2 + 2nne(G)

= O(n32n)

Hence Stage 2 takes at most O(n32n) steps to complete.

Stage 4 would naively take in the worst case 22n · n ·D steps, as for each of the

possible 2n values for k we would check each of the 2n vertices to see if it is

k-resolvable, which requires checking for each of the n possible values for p each of

the D possible outneighbours in that colour. To improve this we note that it suffices

to only look at the in-neighbours of sets that we have just labelled as k-resolvable

when looking for (k+ 1)-resolvable sets. This will require up to e(H) possible checks

in total, as we shall check each vertex at most once for each edge leaving it. In order

16

to check a vertex efficiently the authors suggest keeping track of how many

out-neighbours of each colour it has that have not yet been labelled as k-resolvable

for some k. This could be established initially in e(H) steps by tallying up the

number of neighbours the vertex had after stage 2 in each colour and associating a

n-length array with each vertex that stores this information. Then when a vertex is

labelled as k-resolvable in stage 4 decreasing the array of its in-vertices by one in

the appropriate colour will maintain the count of how many unresolved neighbours

it has left in each colour class. Then a vertex is labelled (k + 1)-resolvable if this

process results in the count in any colour reaching zero when a neighbour is labelled

k-resolvable. This process will take 2e(H) steps; e(H) to establish the counters and

e(H) to then find the resolvable sets, as maintaining the arrays requires at most one

step for each edge in the graph. As each vertex in H has n colours of outgoing

colours, each going to at most D possible sets, e(H) ≤ 2n · n ·D and hence stage 4

will take at most 2 · 2n · n ·D steps. However as D 6 n this is at most 2 · n2 · 2n

stage 2 remains the most time-consuming stage.

Overall this algorithm uses at most

2n +O(n32n) + n+ 1 + 2n22n + 2n = O(n32n) steps as required.

It is also worth noting that this algorithm actually reveals an optimal strategy

for the cop, by construction, as it specifies the minimal number of probes needed to

locate the robber from any set A ⊂ V (G). We now turn our attention to the

complementary claim, that in the absence of a winning strategy for the cop this

gives a winning strategy for the robber. This is now immediate though – since the

graph H partitions the sets into robber-good and cop-good sets, the robber just

picks a distance on each turn that ensures he moves to another robber-good set.

Hence in the absence of a winning strategy for the cop, which corresponds to the

state corresponding to V being resolvable, we get a winning robber strategy. Hence

for any graph that is non-locatable there exists an explicit winning robber strategy.

17

A natural question to consider next is whether or not an algorithm could be

found that takes fewer steps in general. We note that the longest step is stage 2,

and thus any improvement to the method suggested here would give one immediate

improvement. Such improvements however will not be able to bring the overall

algorithm to o(2n) as it always labels every cop-good set in stage 4. This can be

seen from the fact that for cop-win graphs it terminates when the initial state V (G)

is labelled as k-resolvable for some k, but then if V (G) is k-resolvable then every

subset is at most k-resolvable, and hence all of the 2n subsets must have been

examined and also labelled. In general though for cop-win graphs it is not necessary

to label every subset, as it suffices to find any (or ideally a minimal) path from the

initial state to singletons that the cop can force the robber down. Hence in practice

there may be alternative algorithms that can take advantage of this to determine if

a graph is cop-win or robber-win in shorter time. If these also did not require

drawing the entire edge set of H, or could find a faster way to do so, then they

could improve step 2 and thus our algorithm.

One problem with such strategies arises when considering stars however. A star

has the property that a probe at the central vertex only tells the cop that the

robber is not there, and prevents the robber from moving, while a probe at any leaf

would also reveal if the robber was at the central vertex or not, and also eliminates

that chosen leaf. Thus any strategy that only consists of probing leaves is easily

shown to be strictly better than one which involves any probes at the central vertex.

By symmetry all leaves are equivalent, and hence every optimal strategy is

equivalent - they all just consist of probing the leaves in some order. Any such

strategy will take n− 2 turns to locate the robber, and along the way can pass

through any given subset of the leaves as potential positions for the robber (by

making those the last that the cop probes). Hence any set can lie on a minimal path

in H from V (G) to the set of 0-resolvable sets, and thus a complete algorithm will

18

need to examine all such sets to check for optimality. Hence we suspect that any

algorithm that determined if G was cop-win or robber-win in time o(2n) will not

find all optimal strategies for the underlying graph. However in general it is of more

interest to determine some viable strategy in reasonable time than it is to find the

provably optimal one, so any such result would still be of interest.

As this algorithm is in general time consuming we will not use it to show that

any given graph is locatable or non-locatable. We shall instead give direct strategies

in this dissertation. We shall however use this power-set version of the game almost

exclusively, allowing the robber to occupy sets rather than individual vertices. This

will simplify our descriptions of both players’ strategies throughout this dissertation;

hence the rest of this document can be taken as a proof of our fourth claim that this

interpretation better captures how the game is analysed in practice.

19

CHAPTER 2

PRELIMINARY RESULTS

In this chapter we give some results about the Robber Locating Game that,

although important, are sufficiently straightforward that someone new to the game

would normally take them on faith. We do not consider this chapter essential

reading to the rest of this dissertation, but include it purely for completeness.

We open with a simple observation that two natural assumptions about the

game are justified. It seems clear that, given a graph G, if the robber has a winning

strategy in which he is restricted to only moving within a certain subset of the

vertices then the graph is non-locatable. We shall actually show two slightly subtly

different versions of this statement. First we shall show that if he has a winning

strategy that begins with him starting from a subset of the vertex set then the

graph is non-locatable. Then we shall show that he can arbitrarily restrict himself

to subsets, and if he can still find a winning strategy on a subset then the graph is

non-locatable. Together these justify the standard intuition that if a player can win

despite them being in some way restricted then they can also win with this

restriction removed.

Lemma 3. Let G be a graph and A ⊂ V (G) be a subset of the vertex set of G.

Consider the restricted robber game in which he must begin in A instead of V and

can only move within A, although the cop can probe anywhere in V . If SR is a

winning robber strategy for the restricted game then there exists a winning robber

strategy for the unrestricted game.

Proof. We shall apply an easy coupling argument. When asked to play the

unrestricted game on G the robber creates a copy of the graph, G′, on which he

plays according to SR. He gives the same response distances to probes in both

games. This results in him creating a set of movement sets M ′
1,M

′
2, . . . and response

20

sets R′1, R
′
2, . . . in the restricted game played on G′, and movement sets M1,M2, . . .

and response sets R1, R2, . . . in the unrestricted game played on G. But it is clear

by construction that the sets in the restricted game are always subsets of the sets in

the unrestricted game. Hence as the response sets in the restricted game always

have size at least 2, so do the response sets in the unrestricted game, and thus this

resulting strategy is a winning robber strategy in the unrestricted game.

The following simple corollary gives a sufficient condition for proving that a

robber strategy exists, by defining it on a suitable family of subsets. The only small

technical detail, which follows immediately from the above lemma, is that when

specifying robber strategies we can arbitrarily discard possible vertices that he could

have moved to. This will in general simplify the descriptions of these strategies

significantly. In the statement of the corollary a pair (Ri,Mi) is a valid pair of a

response set and a movement set if Mi is the movement set resulting from response

set Ri, i.e.

Mi = {v ∈ V : d(v,Ri) 6 1} (2.1)

Corollary 4. Let G be a graph, and let R1, . . . , Rk and M1, . . . ,Mk be subsets of

the vertices such that the pair (Ri,Mi) is a valid pair of a response set and a

movement set for all 1 6 i 6 k. Further let |Ri| > 2 for each 1 6 i 6 k.

If for each i ∈ [k] and for every v ∈ V there exists a response that the robber

can give from the set Mi that returns either a set Rj or a superset of some Rj, then

the graph G is non-locatable.

Proof. The assertion follows immediately by a similar coupling argument. The

robber considers a restricted game in which he is only allowed to return response

sets taken from {R1, . . . , Rk}, and is only allowed to move to sets in {M1, . . . ,Mk}.

He couples this with an unrestricted game played on the graph G. Again it is clear

21

inductively that, if he gives the same distance responses in both games, then the

sets he occupies in the restricted game will always be subsets of the sets he occupies

in the unrestricted game. Since by assumption the response sets of the restricted

game always have size at least 2, those in the unrestricted game do so as well.

Hence the distance responses given by this strategy result in the cop being unable to

locate the robber, and thus the graph is unlocatable.

One may also consider a slightly weaker restricted game in which the robber is

obliged to begin in a certain set A ⊂ V but can then move freely around the graph.

The same proof as above however shows that this also obeys the same property that

being able to win this weaker restricted game implies that the robber can win the

normal game. Hence when considering robber strategies it is sufficient to consider

strategies in which he restricts himself to beginning inside, or only moving within,

subsets of the vertices.

We also get the following immediate corollary about the time that the robber

can survive for. Following Seager [10] we define the location number of a locatable

graph to be the minimum number of probes needed to guarantee locating the

robber, or equivalently the maximum time that a robber can survive for before

being located. Extending this to all graphs we define it as infinite for unlocatable

graphs, making the following corollary valid for all graphs, not just locatable ones.

Corollary 5. Let G be a graph and A ⊂ V (G) be a subset of the vertex set of G.

Then if the robber can survive for at least k probes in any of these restricted games

on G, then the location number of G in the unrestricted game is at least k.

Proof. Again the robber couples a play of the unrestricted game with the restricted

game. Since he can survive for at least k probes in the restricted game, there is no

strategy that locates him in fewer than k probes in the restricted game. But as his

movement sets and response sets in the restricted game are subsets of those in the

22

unrestricted game, this implies that there is no strategy that locates him in fewer

than k probes in the unrestricted game as well.

The next result we need in Chapter 5. We define a (finite) binary tree, denoted

Tk, as a rooted tree with each vertex having 2 children in the layer below until you

reach the leaves at distance k from the root. It is naturally partitioned into layers,

with the tth layer (denoted Lt) consisting of the vertices at distance t from the root

– hence Tk contains k + 1 layers, {L0, L1, . . . , Lk}. The following result shows that

these trees are non-locatable

Lemma 6. A binary tree with at least 5 layers is non-locatable.

Proof. We shall show this for T4, after which the full assertion is clear due to the

uniqueness of paths between vertices on trees. The proof essentially relies on

defining 5 response sets and movement sets which the robber will move between.

We illustrate these in Figure 2. This figure first shows T4 with each vertex labelled

clearly, to let us refer to them in this proof, and then the five subsets we shall make

use of, in each case with the response set shown by a bold circle around the relevant

vertices, and the corresponding movement set by background shading of the set.

Thus for example R1 = {v4, v5} and M1 = {v2, v4, v5, v8, v9, v10, v11}.

We shall now outline the robber’s strategy dependent on the previous movement

set that he was in. We shall refer to the intuitive notation of the parent of a vertex

vi being the penultimate vertex on the unique path from v1 to vi, and a child of vi

as either of vi’s neighbours that is not its parent. To ease notation we shall define

two sets of vertices for each choice of v, which we think of intuitively as the vertices

above or below v. The former we denote by Cabove
v , and define formally as the set of

all vertices w for which the unique path from w to v passes through v’s parent. For

technical reasons we also include v in Cabove
v , even though it wouldn’t actually fit

the above definition. The latter we denote by Cbelow
v , and comprises the compliment

23

v1

v2 v3

v4 v5 v6 v7

v8 v9 v10 v11 v12 v13 v14 v15

v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31

R1 and M1 R2 and M2 R3 and M3

R4 and M4 R5 and M5

Figure 2.1: Response and movements sets for Lemma 6

of Cabove
v , except that again we include v in Cbelow

v . Hence the set above below v

contains all the vertices for which the unique path from them to v passes through

one of v’s children, but again with v in Cbelow
v . With these definitions in mind, we

now present the robber strategy. We present a strategy on the 5 pairs of response

and movement sets which suffices to show that T4 is non-locatable by Corollary 4.

1. M1: The cop’s next probe will either be in Cabove
v2

, Cbelow
v4

or Cbelow
v5

. In the

former two cases the cop’s probe vertex will be equidistant to v10 and v11, and

the robber can return this distance, giving response set R2 and thus moving to

M2. The final case of Cbelow
v5

is effectively the same as Cbelow
v4

by symmetry, so

24

in all three cases the robber can return something equivalent to R2 and thus

move to M2.

2. M2: If the cop’s next probe is in Cabove
v5

then it is equidistant to R2, so the

robber can return this distance and thus move back to M2. Otherwise without

loss of generality by symmetry we may assume her probe is in Cbelow
v10

, in which

case it is equidistant to a set equivalent to R3, so the robber can return this

set and move to M3.

3. M3: Again if the cop’s probe is in Cabove
v5

then it is equidistant to R2, so the

robber can return this distance and thus move back to M2. Otherwise it is

Cbelow
v10

or in Cbelow
v11

. In either case, then it is equidistant to a set equivalent to

R4 so the robber can return this set and thus move to M4.

4. M4: If the cop’s next probe is in Cabove
v2

, then it is equidistant to set R1, so the

robber can give this response and move to M1. Otherwise it’s in Cbelow
v4

or

Cbelow
v5

. In either case, then it is equidistant to a set equivalent to R5 so the

robber can return this set and thus move to M5.

5. M5. If the cop’s next probe is in Cabove
v5

then it is equidistant to set R2, so he

can give this response and thus move back to M2. Otherwise it’s in Cbelow
v10

or

in Cbelow
v11

. In either case he can give a response that equidistant to a set

equivalent to R4, and hence move to a set equivalent to M4.

Thus by giving appropriate responses the robber can cycle between these 5 sets,

or sets equivalent to them, for any choices of probes by the cop, and hence avoid

location indefinitely.

The next lemma we require for our chapter on infinite graphs. Essentially it

shows that attaching too simple a pendant structure to a non-locatable graph

cannot help the cop.

25

Lemma 7. Let H be a non-locatable graph, and let G contain an induced subgraph

H ′ which is isomorphic to H with only one edge connecting H ′ to G \H ′ in G.

Then G is non-locatable.

Proof. The result follows almost immediately from Lemma 3. The robber again

couples the game on G with a copied game on H, and commits to being restricted

to H ′ in G. Note that by Lemma 3 a winning strategy under this restriction implies

that G is non-locatable. Let v be the vertex in H ′ that connects to the rest of the

graph G. On each turn the cop either probes a vertex in H ′ or in the complement of

H ′ in G. If the cop probes a vertex in H ′ then the robber considers the cop to have

probed the corresponding vertex in H, and plays according to his winning strategy

in H, returning the prescribed distance to the cop. If the cop probes a vertex in G

then the robber imagines that the cop probed v, and returns whatever distance

would be prescribed by his winning strategy in H plus the distance from v to the

probed vertex in G. This ensures that the movement and response sets in H ′ that

he occupies will be the same as those he occupies in the game on H, and since his

strategy is a winning strategy on H it is thus also a winning strategy on H ′, and

thus G is non-locatable.

26

CHAPTER 3

SUBDIVISIONS OF FINITE GRAPHS

The work in this chapter is all joint work with Sebastian Koch of Cambridge

and John Haslegrave of Sheffield. Following Carragher, Choi, Delcourt, Erickson

and West [3], given a graph G and a positive integer m, we write G1/m for the graph

obtained by replacing each edge of G by a path of length m through new vertices.

This notation is chosen to compare with graph powers, in which Gk is the graph

formed from G by adding edges between all pairs of vertices whose distance in G is

at most k. Thus although
(
G1/m

)m 6= G, and
(
Gm
)1/m 6= G,

(
G1/m

)m|G, the graph

induced by the original vertex set of G in
(
G1/m

)m
, is equal to G. Each such path is

called a thread, and an original vertex in G1/m is a vertex which corresponds to a

vertex of G. We denote the thread linking two vertices vi and vj by vi · · · vj. The

span of an original vertex consists of all the vertices at distance less than m from it,

which includes the vertices along the threads leaving that vertex, but not the far

endpoints of those threads.

In [3] the authors show that subdividing any finite graph sufficiently many times

yields a locatable graph, and show that it is always sufficient to subdivide each edge

by a factor of min{n− 1,max{µ(G) + 2µ(G),∆(G)}, where µ(G) is the metric

dimension of G. The notion of metric dimension was introduced independently by

Slater [12], and by Harary and Melter [7]. The metric dimension of G is the size of

the smallest set S of vertices such that for every x, y ∈ V (G) with x 6= y there is

some z ∈ S with d(x, z) 6= d(y, z). We shall however not focus on this concept, we

concentrate on the other half of the inequality, the upper bound of n− 1. As well as

this general bound (which they conjecture to be necessary for a complete graph)

they show that for a complete bipartite graph Ka,b, m > max{a, b} is sufficient for

K
1/m
a,b to be locatable, and conjecture that this is also necessary.

Our first main results show that both of these conjectures are false. In fact we

27

shall establish the exact thresholds for m which make K
1/m
n and K

1/m
a,b locatable.

This is slightly complicated in the former case since although the threshold is

generally n/2, there are some small counterexamples. As such we state our theorem

for n ≥ 14 to avoid these, and shall address them specifically when we come to

present the proof.

Theorem 8. Let n > 14. Then K
1/m
n is locatable if and only if m > n/2.

For the complete bipartite case, the bounds of [3] can be improved to be

phrased in terms of the smaller of the bipartite graph’s vertex classes

Theorem 9. The graph K
1/m
a,b is locatable if and only if

m >

 min{a, b} − 1 if min{a, b} > 4

min{a, b} if min{a, b} 6 3
(3.1)

Further we can extend the method used in the above proofs to show an

improved lower bound on sufficient subdivision to make a graph locatable, which is

asymptotically the same as these and hence essentially optimal

Theorem 10. Let G be any graph on n vertices. Then G1/m is locatable if

m > n/2 + 1.

3.1 Complete graphs

We shall present the proof for Theorem 8 in full detail, and then refer to it in

the proofs of the other two results as they are very similar. To show Theorem 8 we

shall present the two halves of the statement separately. We begin with the proof

that the graph is non-locatable for m < n/2. This will rely on the robber being able

to move between original vertices without being located by the cop.

28

Theorem 11. Let m < n/2. Then K
1/m
n is non-locatable.

Proof. We prove this by giving an explicit strategy for the robber that achieves the

following: assuming at some time he could be in a set of two original vertices, then

we claim he can either remain in this pair of original vertices, or reach another pair

without being located, and hence he can evade capture indefinitely. We denote the

set of original vertices {v1, . . . , vn}.

Let us first assume that following a probe by the cop (which we shall refer to as

the 0th probe) the robber reveals that he could be in the pair of original vertices

{v1, v2} (relabelling if necessary), but that the cop does not know his location. After

this he can move to anywhere in N [v1] ∪N [v2]. Firstly we shall separately consider

the result of the cop’s first probe, which can be in one of two places.

1. If the cop’s probe was equidistant to v1 and v2 then the robber can claim to

have remained in {v1, v2}, and thus still be in N [v1] ∪N [v2] after the probe. If

the cop always probes vertices that are equidistant from v1 and v2 then the

robber can repeat this, evading capture indefinitely.

2. If the cop’s probe was not equidistant to v1 and v2 then it was on a thread

incident to at least one of them. Let us call the vertex she probes here p.

Without loss of generality we may assume both that this probe is her first

probe (ignoring any that were equidistant to {v1, v2} and came before it), and

that it is in the span of v1. Following this probe the robber will now adopt his

motivating strategy of moving towards a new original vertex. He can thus

return the distance d(v1, p) + 1, claiming that he was at v1, and so moved to

the neighbourhood of v1 at the previous step. He will then continue moving

down some thread towards another original vertex. Given that the robber now

commits to follow this strategy the cop only needs to determine his

destination before he reaches it. We shall show that this is not possible by

29

keeping a count of how many threads the cop has not yet eliminated. This

first probe only eliminates the thread that p is on, so following it the cop

knows that the robber was at distance 1 (and is now at distance 2) from v1

and is moving along one of n− 2 possible threads.

Each subsequent probe can eliminate at most 2 threads for the robber, since

probing anywhere inside a thread from v1 eliminates only that thread and probing

inside vi · · · vj eliminates only v1 · · · vi and v1 · · · vj. The robber can then remove

those from his possible destinations and continue moving away from v1. Hence after

t steps the robber is at distance (t+ 1) from v1 and at most 2t− 1 threads have

been eliminated. After the (m− 1)st step the robber reaches the remaining possible

original vertices that he could have been heading towards. There were initially n− 1

threads that he could have been heading down, and so after (m− 1) steps he could

be inside any of at least n− 1− (2(m− 1)− 1) = n− 2m+ 2 > 3 threads leaving v1.

There are two possible scenarios to consider. Firstly, if as described above, the

cop eliminates 2 threads on every probe except the first, then she would be unable

to determine if the robber had gone halfway down a thread (pausing at the first

near midpoint for a step if m is odd) and then returned to v1. Hence in this case

after the (m− 1)st probe the robber could move to any of at least 4 original vertices

(those at either end of the uneliminated threads). If the cop did check to see if the

robber turned around she would have to do so by probing on a vertex on a thread of

v1, and this would only eliminate one thread on that turn. This would mean she

would eliminate one fewer thread, leaving him at least 4 threads he could be inside

after (m− 1) steps and thus at least 4 original vertices he could reach. In either

case he can move into a set of at least 4 original vertices. The next probe by the cop

must lie on some thread between at most 2 of them, so at least 2 will be equidistant

to the next probe. The robber can now claim to have moved into that pair, and so

can reach another pair of original vertices as required. Repeating this process lets

30

him avoid capture indefinitely.

We now turn our attention to the bound for a graph to be locatable. We shall

show that if m > n/2 + 1 then the cop can follow a simple strategy to locate the

robber, which proceeds in three stages. This argument can be improved in the third

stage to also cover the situation where m = dn/2e provided that m > 7 (i.e.

n > 14), so we include both of these conditions in the following theorem.

Theorem 12. The subdivided graph K
1/m
n is locatable if either of the following

conditions holds

1. m > n/2 + 1

2. m ∈ {n/2, (n+ 1)/2} and m > 7

Proof. Our strategy for the cop runs in three stages. In the first stage she forces the

robber to move to an original vertex, although she does not attempt to control

which. In the second stage she narrows down the set of original vertices that he

could be in to a set of size 2. In the final stage she locates him. Either of the two

conditions for the theorem will suffice for Stages 1 and 2, in Stage 3 her strategy

will vary slightly according to which condition is satisfied.

In Stage 1 the cop probes all the original vertices in any order until she either

gets an answer equal to m or finds two original vertices at distance less than m from

the robber. If she gets an answer equal to m then she knows he has entered an

original vertex, and moves to Stage 2. If this does not happen then he must have

remained inside a single thread. When probing either end of it she would get an

answer less than m, and by noting which two original vertices this occurs on she can

identify which thread he is inside, and locate him. Thus either the robber is located

or the cop moves to Stage 2.

In Stage 2 the cop wishes to narrow down the set of possible original vertices

the robber could be in to a set of size 2. She will do this by eliminating candidates,

31

so let us now re-order the original vertices as v1, . . . , vn such that v1 is the last

original vertex that she probed in Stage 1 – hence the robber is known not to be at

v1 at the start of Stage 2. Throughout she will track the candidates she has

eliminated by maintaining a counter r which is the index of the last vertex that she

eliminated. Hence we set r = 1 initially, and throughout this stage having

eliminated the vertices up to vr she will be trying to eliminate vr+1 and thus

increment r. We can assume throughout that r < (n− 2), as once she has

eliminated vn−2 there are only two vertices left, and she can proceed to Stage 3.

To eliminate vr+1 the cop begins by probing this vertex, which can give one of

five possible responses. Three of these cases are simple to deal with:

1. The distance is 0. The cop has found the robber and wins the game.

2. The distance is m− 1. The cop then knows that the robber was at an original

vertex of higher index, and that he has left it, moving towards vr+1. The cop

can now force the robber to return to the original vertex that he came from by

alternately probing vr+1 and the remaining original vertices with indices

higher than r + 1 in order. If the robber moves to vr+1 the cop will detect this

and thus locate him easily, and if he does not return then she will eventually

find the vertex he came from, and thus locate him. Hence he must return,

which she will detect when she gets distance m. Along this process she will

potentially eliminate not just vr+1 but possibly many more candidates – she

proceeds by setting r to the highest index that she has eliminated, and

probing the next original vertex.

3. The distance is m. The cop concludes that the robber is still at an original

vertex of higher index than (r + 1). She increases r by 1, and repeats the

process by probing the next original vertex.

4. The distance is m+ 1. This is the most complicated case to deal with. The

32

cop now concludes that the robber was at an original vertex of higher index,

say vi, and has left it moving towards another original vertex, say vj. She now

has two situations to consider. If j 6 r then identifying vj before he reaches it

will let her force him back into vi as in case (ii) above. If j > r (and thus

j > r + 1 as if j = r + 1 then the distance would have been m− 1 which was

case (ii) above), then she is less concerned with finding vj, it suffices for her to

force him to either vi or vj, as then she can continue with the above process

having eliminated all the original vertices up to vr+1 as required. She will

therefore address these situations sequentially.

Firstly the cop establishes whether j > r by checking all the vertices in

v1, . . . , vr to see if they are the destination for the robber. Ideally on each turn

she would check two possible destinations by probing the midpoints of the

threads linking the first r original vertices. In general she will not be able to

do this for the first step, but she can begin by probing v1 which eliminates

that as a destination.

(a) If the robber announces distance m then he has returned to vi, and the

cop can continue Stage 2 with vr+1 eliminated.

(b) If the robber gives distance m+ 1 then he is still at distance 1 from vi,

and the cop can continue to probe through the set {v2, . . . , vr} until he

moves in either direction or she eliminates all of them – in the latter case

we move to the next paragraph which outlines what to do once they have

all been eliminated.

(c) If at some point the robber answers m+ 2 then the cop knows he was not

heading to the vertex just probed but has moved to the second layer of

vertices from vi. From this point she can eliminate two vertices from

{v2, . . . , vr} at each step by either probing midpoints if m is even or

33

near-midpoints if m is odd. Either way she can tell whether he moves

back towards vi, in which case she moves back to probing single vertices

once he gets back to the first layer to identify the exact moment he

returns to vi, or keeps eliminating pairs if he does not. If he continues to

head away from vi, then by eliminating two vertices at each step she can

eliminate 2(m− 3) + 1 before he reaches another original vertex. But as

m > (n− 1)/2 and there were only at most n− 3 original vertices in

{v1, . . . , vr} this leaves at most two such vertices that he can reach. If

there is only one vertex then by probing it directly she can determine if

he has reached it (in which case she locates him), or if he remains inside

the thread between it and vi, in which case she can force him back to vi

by alternately probing vj and the remaining original vertices. If he could

have reached a pair, by probing a vertex on the thread between these last

two vertices she can distinguish if he is in this pair, allowing her to move

to Stage 3 if he is. Hence if he tries to move towards {v1, . . . , vr} she will

either locate him, move to Stage 3 or force him back into vi.

Thus having established that the robber was not moving towards

{v1, . . . , vr} it remains for her to deal with the situation where j > r. If he left

the vi · · · vj thread either by reaching vi during the above probes or vj on the

last probe, the cop will detect this when vi or vj is reached, allowing her to

repeat Stage 2 having eliminated vr+1. If he has not left this thread she can

then probe the original vertices with indices higher than r + 1 to eliminate

those directly until she finds either of vi or vj – in which case she would

proceed as in Case (ii) to force him into the other end of the thread, and

repeat Stage 2 with more vertices eliminated.

34

5. The distance is 1. This is the final case to consider. In this case the cop has

found the original vertex that the robber was at, and he has moved 1 away

from it. The strategy here is very similar to case 4: she first makes sure that

he is not moving towards {v1, . . . , vr}, making sure to note if he returns to vi,

and then afterwards continues checking the remaining vertices in pairs.

Carrying out the same analysis shows that in most cases he will be located

when he returns to vi, the only case when he is not is when he either moves

halfway down a thread towards {vn−2, vn−1, vn} and then moves back to vi or

goes all the way to vn. But as this is the only case where the cop does not

locate him directly if it occurs she will know, and thus be able to move to

Stage 3 knowing he is at either of vi or vn.

We now move to Stage 3, which starts after the cop makes some probe and

knows the robber is at one of two original vertices. We shall label them as {a, b},

and note that he can move to the neighbourhood of them before the cop’s first

probe in Stage 3. For her first probe the cop probes the vertex at distance 1 from a

on the a · · · b thread. This allows her to distinguish whether the robber was at a or b

before, and whether he is inside the a · · · b thread now or another one. The cop wins

immediately unless the robber answers distance 2 or distance m, in which case he

has left the initial vertex he was at and moved towards an initial vertex other than

a or b. Without loss of generality we shall assume he was at a and is thus now

moving to one of the other (n− 2) possible locations, noting that this first probe

reveals him to be at distance 1 from a.

The cop’s strategy now reduces to finding which thread the robber is inside

before he can reach the other end of it, being sure to note if he returns to a. The

second probe varies according to whether m is even or odd. If m is even then the

cop probes a midpoint of a thread between two original vertices that have not been

eliminated yet, whereas if it is odd then the cop probes a neighbour of a

35

near-midpoint, say the vertex on the c · · · d thread that is distance 3 further from d

than c. In either case we can distinguish whether the robber is heading to that pair

or not – the one slightly complicated case is if m is odd and he responds with

(m− 1)/2 +m in which case he could have remained at distance 1 from a or be

distance 2 from a heading specifically towards d. If following this probe the robber

uses the fact that he could have been distance 2 from a to move to the vertex

distance 3 from a the cop will notice on her next probe and locate him. In this case

the cop can therefore assume that the robber is at distance 1 and effectively

eliminate c from the possible destinations, doing so without him having moved

closer to another original vertex so effectively for free. Thus the cop’s second probe

can always eliminate two possible destinations for the robber – and by probing at

midpoints if m is even or near-midpoints if m is odd this also holds for the

subsequent probes.

After t probes the robber will be within distance t of a, and the cop will have

eliminated 1 + 2(t− 1) possible destinations. If condition 1 was satisfied (i.e.

m > n/2 + 1) then after (m− 1) probes there are no possible destinations left –

hence he cannot reach another original vertex and so would be located. If

alternately condition 2 was satisfied (i.e. m ∈ {n/2, (n+ 1)/2} and m > 7 then after

m− 1 probes there are only at most three original vertices left that he could be

moving between, two possible destinations (which we shall refer to as v and w) and

a. Including the possibility that he turned around at the midpoint or near-midpoint

(according to the parity of m), and assuming at each step he continued to move (as

otherwise it is easier to locate him), this means that following the (m− 1)st probe

he is either distance 0, 1, 2, (m− 2), (m− 1) or m from a inside either the a · · · v

thread or the a · · ·w thread. However, in this case he can be located by probing the

vertex at distance 2 from v along the a · · · v thread, provided m > 7, so hence he

can be located even in this worst case scenario, completing the proof.

36

This answers the question of when K
1/m
n is locatable or non-locatable for all but

a small number of cases, namely K
1/2
3 , K

1/2
4 , K

1/3
5 , K

1/3
6 , K

1/4
7 , K

1/4
8 , K

1/5
9 , K

1/5
10 ,

K
1/6
11 and K

1/6
12 . These cases can be checked directly – note that K

1/2
3 = C6 which

Carraher, Choi, Delcourt, Erickson and West showed in [3] is non-locatable. We

omit the details of the case checking, which was carried out exhaustively, and

summarise them in the table below. An ‘L’ indicates that the graph in question is

locatable, and an ‘N’ that it is non-locatable. To aid legibility we have shaded the

non-locatable cases, and included a line alone the n/2 bound for m. This highlights

that the general rule is the K
1/m
n is locatable if and only if m > n/2, aside from a

few counterexamples.

Number of vertices, n

S
u
b

d
iv

is
io

n
am

ou
n
t,
m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2
3
4
5
6
7
8
9
10

N N N N N N N N N N N N N N N N N N
N N N N N N N N N N N N N N N N N N

N N N N N N N N N N N N N N N
N N N N N N N N N N N N

N N N N N N N N N N N
N N N N N N N N

N N N N N N
N N N N

N N

L L
L L
L L L L L
L L L L L L L L
L L L L L L L L L
L L L L L L L L L L L L
L L L L L L L L L L L L L L
L L L L L L L L L L L L L L L L
L L L L L L L L L L L L L L L L L L
L L L L L L L L L L L L L L L L L L L L

3.2 Bipartite graphs

We now turn our attention to complete bipartite graphs. In this setting we are

able to determine the winning player on K
1/m
a,b for any a, b, and m. Throughout this

section we shall write A and B for the sets of original vertices in K
1/m
a,b

corresponding to the two vertex classes of Ka,b, with |A| = a and |B| = b. Recall

that we are trying to show an improved form of the result of [3], namely that K
1/m
a,b

is locatable if and only if

37

m >

 min{a, b} − 1 if min{a, b} > 4

min{a, b} if min{a, b} 6 3
(3.2)

We shall prove this through several lemmas for the various parts. First, we show

the claims on non-locatable graphs. Observe that if m = 1 and min{a, b} > 2 then

the graph is non-locatable, as for each probe the robber can claim to be in the other

part of the graph, and hence can never be located. We first show that K
1/m
a,b is

non-locatable if min{a, b} > 4 and m 6 min{a, b} − 2 in Lemma 13. This leaves one

final case, K
1/2
3,b for b > 3, which we shall cover in Lemma 14.

Lemma 13. If min{a, b} > 4 and m 6 min{a, b} − 2 then K
1/m
a,b is non-locatable.

Proof. We shall prove the stronger statement that the robber wins even if he is

required to be at an original vertex for every mth probe, alternating between A and

B, so that he is in A at the time of the kmth probe for every even k. We show that,

provided the cop has not won after the kmth probe, the robber can ensure that she

has not won by the (k + 1)mth probe. For ease of writing, we assume that k is even.

Suppose that the robber is at u ∈ A for the kmth probe, but that the kmth

probe does not locate him uniquely. We show that, no matter which vertices the cop

probes, there are two possible threads for the robber to travel along between the

kmth and (k + 1)mth probes, which the cop is unable to distinguish between, so that

she will not be able to win by time (k + 1)m. Suppose her (km+ l)th probe (for

some 1 6 l 6 m) is at vertex z, which is inside the thread x · · · y for some x ∈ A and

y ∈ B. For each v ∈ B, write wv,l for the vertex on the thread u · · · v at distance l

from u. If x 6= u then for any v 6= y we have

d(z, wv,l) = min{d(z, x) + 2m− l, d(z, y) +m+ l}

Equally if x = u then, again for any v 6= y, we have d(z, wv,l) = d(z, x) + l.

38

Suppose that for each l with 1 6 l 6 m the answer consistent with the robber being

at any one of the vertices wv,l for v 6= y is received from the (km+ l)th probe. Then

each probe eliminates at most one of the threads leaving u, and since m probes have

been made, and m 6 min{a, b} − 2, at least 2 remain, so the cop has not yet

won.

Next we complete the classification of the non-locatable subdivided complete

bipartite graphs by showing that for any b > 3, K
1/2
3,b is non-locatable. This is the

remaining non-locatable graph from Theorem 9

Lemma 14. If b > 3, K
1/2
3,b is not locatable

Proof. Suppose that after the cop’s tth probe there are two possible locations for the

robber which are both in A or both in B, say u and v with u, v ∈ A. We show that

the robber can ensure that there are still two possible locations, both in A or both

in B, either after the (t+ 1)st probe or after the (t+ 2)nd. If the (t+ 1)st probe is

equidistant from u and v this is trivial, as the robber can return the distance to u or

v. If the (t+ 1)st probe is u or v then all neighbours of u will be equidistant, so the

robber can claim to be at one of them. Any vertex in A is equidistant from all

vertices in B, and any other vertex is equidistant from all but one of the vertices in

B, so no matter what vertex the cop chooses for her (t+ 2)nd probe, there will be at

least b− 1 > 2 vertices in B at the same distance from it. By this point the robber

can have reached any of these without being caught. The only remaining case is for

the (t+ 1)st probe to be at a vertex which is adjacent to either u or v, say the

vertex w between u and x with x ∈ B. Let y and z be two other vertices in B. The

midpoints of the threads u · · · y, u · · · z and v · · ·x are all at distance 2 from w, so if

the robber has moved to one of these the cop cannot determine which. Then no

matter which vertex the cop probes at time t+ 2, some two of x, y and z are at the

same distance, and so the robber can ensure there are two possible locations in B

39

after this probe.

This concludes the proofs for the non-locatable half of the assertion of Theorem

9. Next we show that in all other cases K
1/m
a,b is locatable. Note that the cop can

win on the star K1,b by probing leaves in turn, and in general probing the vertices of

degree 1 will also locate the robber on K
1/m
1,b for any b > 1 and any m > 1. Hence

K
1/m
1,b is locatable for any b > 1 and any m > 1. This covers the case min{a, b} = 1.

Next we deal with the case min{a, b} = 2.

Lemma 15. The graph K
1/m
2,b is locatable for any b > 2 and for any m > 2.

Proof. We begin with the case m = 2. Write x and y for the two vertices in A. Let

the cop start by probing x. If she receives the answer 2 the robber is in B. If the

answer is 0 or 4 she has won. If it is 1 or 3 she knows that the robber is adjacent to

x or y respectively.

Now we show that the cop can win from a position in which she knows that the

robber is in a particular subset of the neighbourhood of x (or, equivalently, if she

knows the robber is in a particular subset of the neighbourhood of y), and she can

win from a position in which she knows that the robber is in a fixed subset of B.

We prove both simultaneously by induction on the size of the subset, k. In each case

if k = 1 she has already won.

If the robber was just at one of k neighbours of x, the cop probes one of the k

adjacent vertices of B. If the answer is at most 2 then the robber is caught. If the

answer is 3 then he is known to be at one of k − 1 neighbours of x and if it is 4 he is

known to be at one of k − 1 vertices of B; in either case we are done by induction.

If the robber was just at one of k vertices in B, the cop probes one of these. An

answer of 2 is impossible, and if the answer is 1 then she can win by next probing x.

If the answer is 4 then she knows the robber is at one of k − 1 vertices of B, and we

are done by induction. If the answer is 3 then she probes x next; now if the answer

40

is 0 or 4 she has won, and if it is 1, 2, or 3 she has reduced to one of k − 1 vertices

adjacent to x, in B, or adjacent to y respectively, so we are done by induction for

the case m = 2.

If m > 2 the same argument works, except that the cop differentiates between

answers that are less than or greater than m at the first step, to determine if the

robber is on a thread from x or y. The remaining proof continues in the same

manner, with the cop just tracking which threads the robber could be on, until the

cop knows which thread he is on or locates him passing through an endpoint.

Assuming the former, when m = 2 she would be done here, as threads only have 1

interior vertex, if m > 2 she requires one additional probe at either endpoint of it to

locate him.

Finally we deal with the case min{a, b} > 3. Again we present this is a slightly

different way from that in Theorem 9 – note that the following statement covers

both K
1/m
3,b for m > 3 and K

1/m
a,b for min{a, b} > 4 and m > min{a, b} − 1.

Lemma 16. Let min{a, b} > 3. If m > min{a, b} − 1 and m > 3 then K
1/m
a,b is

locatable.

Proof. Suppose a 6 b. Again we give a two-stage winning cop strategy. In the first

stage we show that the cop can win or establish that the robber is in B, and in the

second stage we show that she can win once she knows that the robber is in B.

In the first stage, the cop probes vertices in A in turn until she receives an

answer of m (indicating that the robber is in B) or less than m. This must

eventually happen, since if the robber does not reach B he must remain nearer one

particular vertex in A than any other, and when the cop probes this vertex she will

get an answer of less than m. In this case write x for the vertex in question. Once

the cop has found x, the robber cannot leave his current thread without moving

either to x or to some vertex in B, so the cop then probes vertices in B until she

41

receives an answer of 2m (indicating that the robber is in B) or at most m (in

which case she can determine his location).

In the second stage we show that the cop may win from a position where the

robber is known to be in a fixed subset of B, by induction on the size of the subset,

k. This is true for k = 1 as she has already won. If k > 1 then write B′ for the set

of k vertices in question. The cop starts by probing the vertex adjacent to B′ inside

the thread x · · · y for some x ∈ A and y ∈ B′. The possible answers are

1. 0 if the robber is at the probed vertex,

2. 1 if he is at y,

3. 2 if he is at some other neighbour of y,

4. 2m− 2 if he is on another thread leading to x,

5. 2m− 1 if he is at a vertex of B′ other than y,

6. 2m if he is inside a thread which does not include x or y.

Since m > 3, these cases are all different. An answer of 0 or 1 is an immediate

win for the cop, and after an answer of 2m− 1 she wins by the induction

hypothesis. After an answer of 2m− 2 the cop probes vertices of B′ until either she

receives an answer of at most m, winning, or she receives an answer of 2m, in which

case she knows the robber is at one of at most k − 2 vertices of B′ and she wins by

the induction hypothesis.

After an answer of 2 or 2m, the robber must be inside a thread which does not

reach x. The cop now probes vertices of A, other than x, in turn, until she receives

an answer of 2m, m, or less than m. One of these must eventually happen since

either the robber reaches one end of the thread he is currently inside, or he remains

in the same thread until such time as the cop probes its end in A.

42

1. If the answer 2m occurs first, the cop knows that the robber has reached some

vertex u ∈ A which is neither x nor one she has probed since the robber left B.

Since the robber has taken at least m steps to reach A, she has probed at least

m− 1 vertices in A, and together with x she has eliminated at least m > a− 1

vertices of A, so there is only one possibility and the robber is caught.

2. If the answer m occurs first then the robber is at a vertex of B′, and, since the

cop knows whether or not this is y, she has either caught the robber or

reduced to a set of k − 1 vertices, so wins by the induction hypothesis.

3. If an answer less than m occurs first, say when probing u, then the cop has

won if that answer is 0, or if the robber was initially known to be inside a

thread meeting y. Otherwise, she knows that the robber is inside some thread

u · · · v for v ∈ B′ \ {y}; now she proceeds by probing vertices of B′ \ {y} in

turn until she receives an answer of at most m (in which case she has won) or

of 2m (in which case she knows that the robber is at some vertex in B′ \ {y},

and so wins by induction).

This concludes our classification of subdivided complete bipartite graphs. If

min{a, b} > 4 then K
1/m
a,b is locatable if and only if m > min{a, b} − 1, whereas if

min{a, b} 6 3 then K
1/m
a,b is locatable if and only if m > min{a, b}.

3.3 General graphs

We now turn our attention to the advertised main result, that any graph G is

made locatable by subdividing the edges by a factor of n/2 + 1. We do not claim

that this is always necessary – for example G may already be locatable without any

subdivision – but it does form a tight upper bound since, for example, K4 does

43

require subdivision by a factor of at least 3 to be locatable. This therefore

constitutes an optimal generally sufficient subdivision condition. Note that, as we

are only showing that this level of subdivision is sufficient, we only need to give a

cop strategy that works on G1/m for all m > n/2 + 1.

Proof. Let I be a largest independent set in G, let M be the vertex set of a largest

matching in V \ I, and let X be the remaining vertices, such that V is partitioned

into I, M and X. With slight abuse of notation, let I, M and X also refer to the

original vertices in G1/m corresponding to I, M and X in G; since we shall work

exclusively in G1/m this distinction should not be confusing. We give a cop strategy

that achieves the following:

1. forces the robber to enter an original vertex and reveals when he does so;

2. forces the robber to enter I and reveals when he does so;

3. locates the robber once he is known to be in I before he can pass through

another original vertex.

We shall present a strategy that works for m > |X|+ |M |
2

+ 1, which it is simple

to show is at most equal to n/2 + 1 since |X| 6 |I| as X must also be an independent

set. We shall assume that m is even, and hence the edges in the matching behind M

have midpoints, for clarity – if not, replace the word ‘midpoint’ with ‘near midpoint’

in the proof below and make the same adjustments as in the proof of Theorem 12.

First, the cop can force the robber to enter some original vertex by probing all

of them in turn. If he does enter an original vertex he will return a distance that is

a multiple of m, and thus the cop will know he has done so, allowing her to move to

Step 2. If he does not then he remains on some vi · · · vj thread, and since when she

probes either vi or vj she will receive a response less than m she will determine both

vi and vj, and hence locate him. Thus to avoid being detected in Step 1 he must

move to an original vertex, allowing the cop to move to Step 2.

44

At the beginning of Step 2 the cop knows that the robber was in an original

vertex, which may or may not have been in I. We give a strategy for her which

would locate him if he had started in I, and if not forces him to enter I. This

strategy is very simple – she probes the midpoint of each edge in the matching that

gave rise to M , and then each vertex in X. We claim this works by separately

considering what he may have done during this process – note that he can only

reach another original vertex at the earliest following the final probe by the choice

of m, so throughout these probes he remains in the span of the original vertex he

occupied at the beginning on Step 2

1. The robber began Step 2 at vertex vi ∈ X. At some point the cop would

probe vi, and hence receive a response at most m− 1, locating vi. At this

point he must be on a thread from vi to some vj, which could be in M , X or

I. She then continues probing through the rest of the midpoints of M and the

set X, as per the above, and then repeats these probes in the same order. In

order for him to reach another original vertex he will need to move m times,

but he cannot try to reach another original vertex in M or X since if he tried

to do so he would be located.

Indeed if the robber’s intended destination was in X, say vj, then he

would need m moves to reach vj but the above probes would ensure that vj

was probed twice, at least one of which probes was after vi had been probed

(telling the cop which thread he was on) and at most m− 1 probes apart,

preventing him from leaving that thread. If his destination was in M then

essentially the same occurs, since probing the midpoint would inform the cop

he was heading to one of that pair, and then she can use an extra probe at one

of them to locate him in that pair when he reached it. If he returns to vi

during the m− 1 probes following when it was first probed she will get an

answer divisible by m (possibly plus m/2 if she just probed a midpoint), and

45

hence know he is at some original vertex. Since he cannot have reach another

other original vertex in this time, he must have returned to vi, and thus this

will locate him.

The only way he can avoid being located would be if he headed for a

vertex in I. She will know this is the case if she completes her second set of

probes without locating him. To force him to enter I she can then

alternatingly probe vi with a vertex from I until she has checked all of I. This

prevents him from being able to return to X, and would locate him if he did

not enter I, thus forcing him to enter I – again which will be detected by a

probe returning a distance that is a multiple of m.

2. The robber began Step 2 at a vertex vi ∈M . The analysis proceeds in

essentially a similar way – the cop will find a pair containing vi when she

probes the midpoint of the associated edge in M . She then proceeds with the

same set of probes as before, which if he was heading to a vertex in M ∪X

locates him, or if he returns to vi, and hence she concludes that he is on a

thread heading to some vertex in I. Again she can then force him into I in a

similar fashion.

The remaining case is that he started at some vertex in vi ∈ I. In this case, the

above analysis shows that he cannot reach another vertex in M ∪X, and hence he

must either remain in the span of a vertex in I. The remaining strategy is treated

very similarly in Steps 2 and 3, the cop can then repeat this set of m− 1 probes,

following each by a probe at a different vertex in I. Since she eliminates all the

destinations every m steps, he cannot leave the span of I, and so must remain in the

span of a single vertex in I throughout this process. Hence at some point she will

probe vi, and thus determine it. Now locating him is trivial, since he cannot remain

on a single thread (or else he will be identified when she checks the original vertex

46

at the far end of it during the next m− 1 probes), he cannot leave the thread

through M ∪X since every destination is checked every m− 1 steps, and he cannot

return to I or else she will get an answer consistent with being on an original

vertex, and thus locate him. Hence he will be located, showing that G1/m is

locatable if m > n/2 + 1.

In fact it is clear from the proof that our result is in general slightly stronger

than n/2 + 1, since the bound for m is phrased in terms of the actual structure of

the graph. Specifically it is derived from the largest independent set and the size of

the largest matching in the remainder. Hence for a general graph this may in fact

give a bound smaller than n/2 + 1, but in the complete case it is tight.

47

CHAPTER 4

SUBDIVIDING INFINITE GRAPHS

The work in this chapter is all joint work with Sebastian Koch of Cambridge.

For infinite graphs, defining the concept of locatability is a little more complicated.

Recall that we define a graph to be locatable if the cop has a strategy that locates

the robber in finite time, and non-locatable if the robber has a strategy that avoids

being located indefinitely. Further recall that we have taken a slightly different view

of the game from the standard, in which the robber does not occupy a single vertex

but a set of vertices, and in which in order to locate him the cop must reduce his set

of vertices to a singleton. This means that infinite graphs behave slightly differently

to finite graphs. For example, although a finite graph with no edges is trivially

locatable (the cop just needs to probe through the vertex set, as the robber cannot

move), this question is a little more complicated even in the infinite countable case.

The default view of the game would say that this graph was locatable, but with no

defined location number, since for any starting position of the robber the cop will

eventually probe that vertex, locating him, but for any k the robber can avoid being

detected by time k by starting in any vertex not in the cop’s first k probes. We find

this analysis somewhat unsatisfying, and note that in our version this graph would

be (we believe fairly) non-locatable, since a valid strategy for the robber is to

continually give the response ∞ indicating that he is not in any vertex yet probed.

At all times this would mean that there were still vertices that he could be in, so the

cop would never locate him.

This illustrates some of the complexity of considering the game on infinite

graphs. In this chapter we analyse the game more closely, showing that there are

some simple obstructions to a graph being locatable. We then extend the work of [3]

on finite graphs to show that, for any infinite graph not being trivially non-locatable

by virtue of falling foul of one of these obstructions, there exists a suitable

48

subdivision function that turns it into a locatable graph. This is the main result

that we shall work towards.

Theorem 17. Let G be an infinite graph with countably many vertices, each of

finite degree, in finitely many components. Let

s : E(G)→ N, xy 7→ 2 max{d(x), d(y)} (4.1)

Then G1/s is locatable.

This theorem obviously implies the main obstructions to a graph being

locatable, namely the existence of a vertex of infinite degree, uncountably many

vertices or infinitely many components. As these are preserved under taking

subdivisions, the following lemmas suffice to show that no subdivision of these will

be locatable either.

We begin with a simple lemma which shows that the robber can always hide for a

certain amount of time in the neighbourhood of a vertex. This will yield the infinite

degree result as a simple corollary.

Lemma 18. Let G be an finite graph that contains a vertex of degree ∆. Then the

robber cannot be located before at least log ∆ probes have taken place.

Proof. We give a strategy that enables the robber to hide for at least log ∆ steps i.e.

that ensures that for at least log ∆ steps he has at least two vertices he could be at.

Let our vertex of degree ∆ be v – we call it the central vertex – with closed

neighbourhood N [v] = N(v) ∪ {v}. At time 0 the robber could be anywhere on the

graph, so he could be anywhere in N [v]. In fact we prove a slightly stronger result

by showing that even if the robber restricts himself to N [v] throughout the whole

game he can remain undiscovered for at least log ∆ steps. This then implies the

result we need by a simple argument, given for reference as Lemma 5 in Chapter 2.

49

We claim that at each timestep the robber can claim to be in a set at least half

the size of the set he was in before until he is captured. We show this by an

inductive argument. Based on the assumption that before the tth timestep the

robber is in a set of size |Mt−1| inside N [v], after the tth probe he can be in a set of

size at least |Mt−1|
2

inside N [v]. Let us assume that the cop probes pt at time t, and

let d = d(pt, v) be the distance between the probe vertex and the central vertex.

We first deal with the following special situation. If there exists w ∈Mt−1 such

that d(pt, w) = d, the robber can claim to have been in v, and spread to all of N [v]

in his next step, which trivially satisfies the inductive claim. Hence we can disregard

this possibility in what follows, and without loss of generality we may assume that

the cop chooses a probing vertex such that, if possible, for all w ∈Mt−1, we have

d(pt, w) 6= d. Thus by the triangle inequality, we have that for all

w ∈Mt−1, d(pt, w) ∈ {d− 1, d+ 1}.

We now consider separately three cases for the probing location pt.

1. pt = v: In this case, all vertices in Mt−1 are at distance 1. The robber returns

distance 1, and can in particular remain anywhere inside Mt−1. Thus

Mt−1 ⊆Mt, and so |Mt| > |Mt−1| > |Mt−1|
2

as required.

2. pt ∈ N(v): By the above observation no vertices in Mt−1 can be at distance 1

(and clearly only the probing vertex can be at distance 0), hence at least

|Mt−1| − 1 of them are at distance 2. As |Mt−1| > 2, if the robber returns

distance 2 the inductive step is satisfied again.

3. pt ∈ V (G) \N [v]: All vertices in N [v] can only be at distances in

{d− 1, d, d+ 1}. By the above observation we may assume that there is none

at distance d, hence Mt−1 can be partitioned into two parts according to

whether the vertices lie at distance d− 1 or d+ 1. The robber can return

whichever distance corresponds to the larger set, which will contain at least

50

half the vertices.

Thus the inductive step holds, and hence, as at each stage the robber can

remain in a set of size at least half that he was in before it will take the cop at least

log ∆ steps to locate him, regardless of her strategy.

This gives rise to the following simple corollary.

Corollary 19. Let G be an infinite graph that contains a vertex of infinite degree.

Then G is non-locatable.

Proof. Note that the proof of Lemma 18 is based on the idea that after every probe

the robber can always hide in a set inside the neighbourhood of the central vertex of

at least half the size of the set he was in before. In this case, inductively this means

he can always hide in an infinite set, as he is in an infinite set initially and at every

probe he can give an answer that preserves an infinite set for him to remain in.

Thus the robber can hide indefinitely in this infinite neighbourhood.

Lemma 20. Let G be an infinite graph with infinitely many components. Then G

is non-locatable.

Proof. The proof is very similar to that in Lemma 19. As the graph has infinitely

many components, the robber can form a winning strategy by always returning the

distance ∞, claiming to be in the components which the cop has not yet probed.

Since the cop can only probe finitely many vertices, and thus components, in finite

time, the robber will always have some vertices that he could claim to be in, hence

this is a winning strategy for the robber.

These two results combine to give us the following theorem, which shows that

any uncountable graph must be non-locatable.

Corollary 21. Let G be an infinite graph with uncountably many vertices. Then G

is non-locatable.

51

Proof. Any graph with uncountably many vertices must either have a vertex of

infinite degree or infinitely many components, hence the result follows from Lemmas

19 and 20.

Because of Lemmas 19, 20 and Corollary 21, throughout the rest of this section

we only consider infinite graphs on countably many vertices in finitely many

components where all degrees are finite. In fact, as for the finite case, we may as

well only consider connected graphs, since the cop can determine in fixed finite time

which component the robber is on and then restrict to only playing on that

component. We now wish to dismiss the possibility that given a fixed graph G there

is always some number m(G) such that if we subdivide each edge m times we obtain

a locatable graph, as in the finite case. The following lemma shows that this is not

true in general for infinite graphs.

Lemma 22. There exists an connected infinite graph G with countably many

vertices and all vertex degrees finite such that for any integer m the graph G1/m is

non-locatable.

Proof. We prove this by explicitly giving such a graph. Ideally we would just

consider the graph consisting of disjoint unions of complete bipartite graphs Kt,t for

all t ∈ N>4. It is clearly countably infinite, as it consists of a countable union of

finite graphs, and all vertex degrees are finite as required. However it consists of

infinitely many components. To circumvent this, consider a one-way infinite path

with vertices v1, v2, . . ., and attach to each vi a pendant copy of Ki,i, in which each

vi is adjacent to only one vertex in the copy of Ki,i. This now only has one

component, and is still an infinite graph with countably many vertices and all

vertex degrees finite as required. This will be the graph G that we shall work with.

Now let m ∈ N be any integer. G1/m contains a copy of H := K
1/m
m+2,m+2 with

only one edge from this to the rest of the graph. In Lemma 13 we show that

52

K
1/m
m+2,m+2 is not locatable (for m 6 2 – for m = 1 it contains a copy of K4). G1/m

will contain such an induced graph, and thus by Lemma 7 G1/m here is

non-locatable. As m was chosen arbitrarily the result follows.

We now come to our main result, that for infinite graphs that do not satisfy one

of the conditions above, it is possible to make them locatable by sufficiently – not

necessarily uniformly – subdividing the edges. We shall show this for an explicit

function for the subdivisions that has the advantage of giving a uniform upper

bound on sufficient subdivision for a graph of bounded degree.

We shall prove Theorem 17 by presenting an explicit strategy for the cop, in

which she always probes original vertices. Our proof is inductive, and in essence

runs as follows. The cop picks a vertex v1 ∈ V (G) arbitrarily to probe first,

receiving answer D1. She then compares D1 to d(v1), and adopts one of two

approaches. If D1 6 d(v1)/2 + 1 she can locate him before he can move through any

original vertex other than v1. If D1 > d(v1)/2 + 1 she carries out a sequence of

probes that either locate him directly, or includes a probe at some other original

vertex v2 which gives a response less than D1. She then repeats the argument

starting from v2, and continues until some probe at an original vertex vi yields a

distance at most d(vi)/2 + 1. As distances must always be non-negative integers and

there cannot be an infinite decreasing sequence of non-negative integers, this

strategy must locate him.

We shall begin with a simple result, which shows that consecutive probes at

endpoints of a thread either eliminate the possibility that the robber is on that

thread or locate him. As we will make use of this fact at several points in our cop

strategy we present it as a separate Lemma.

Lemma 23. Let G, s and G1/s be as in the statement of Theorem 17. Let v and w

be original neighbours in G1/s. Then, if the cop makes consecutive probes at v and

w and the robber is on the v · · ·w thread when the second probe is carried out, this

53

locates the robber.

Proof. Without loss of generality let the first probe be at v and the second be at w.

Let the distance returned by the probes at v and w be Dv and Dw respectively. Let

r be the unique vertex at distance Dw from w along the v · · ·w thread – note that

this is unique by the choice of s. The only way that the cop could not then conclude

the robber was at r would be if there was some other possible location r′ at distance

Dw from w for the robber. Hence r and r′ must have some vertex inside their

respective closed neighbourhood at distance Dv from v. We show by contradiction

that no such r′ can exist.

First, we eliminate one straightforward situation. If either v or w is of degree 1

then the probe at that vertex locates the robber immediately. Hence we may

assume that they are both of degree at least 2. As r′ is not on the v · · ·w thread

there must be another original vertex u that either lies on a shortest path from r′ to

w or from r′ to v; we assume the former, and note that the argument is symmetrical

in the other case. We illustrate this case in Figure 4.1 to make it easier to follow the

following calculations. We have

d(v, r′) + d(r′, w) = d(v, u) + d(u,w)

> 2d(v) + 2d(w)

> 2 max{d(v), d(w)}+ 4.

Note moreover that d(v, r′) 6 Dv + 1 and d(r′, w) 6 Dw + 1. Hence

Dv +Dw > d(v, r′) + d(r′, w)− 2

> 2 max{d(v), d(w)}+ 2.

54

But by the fact that r is at distance Dw from w along the v · · ·w thread and a

vertex from its closed neighbourhood is at distance Dv from v, we deduce that

Dv +Dw 6 2 max{d(v), d(w)}+ 1. Combining these inequalities gives

2 max{d(v), d(w)}+ 1 > 2 max{d(v), d(w)}+ 2, yielding a contradiction.

v w

u

r

r′

Dv

Dv

Figure 4.1: r and a possible location for r′

We now proceed by outlining the winning strategy for the cop and begin by

addressing the situation where she probes some original vertex v and receives and

answer which is at most d(v)/2 + 1. We present this as a separate lemma, in order

to refer to it in the proof of the main theorem.

Lemma 24. Let G, s and G1/s be as in the statement of Theorem 17. If a probe at

any vertex v of G returns an answer at most d(v)/2 + 1, then the cop can locate the

robber before he passes through another original vertex.

Proof. Let us refer to the probe which the cop carried out at v, with associated

distance at most d(v)/2 + 1, as the 0th probe, so that the following one will be the

first. Let k be the degree of vertex v to ease notation, and denote the k original

neighbours of v as b1, . . . , bk. Let m be such that the robber’s initial location is on

the v · · · bm thread. The cop’s strategy has her carry out probes working through

the original neighbours in some fixed order (say according to their index), some of

55

them followed by another probe at v. The result of the probe at v determines how

many original neighbours she probes afterwards before probing v again. If the

robber gives an answer of 1 or 2 she only probes a single original neighbour before

returning to v, otherwise she probes two original neighbours. We claim that this

strategy locates the robber if he remains on the v · · · bm thread and show that he

cannot leave this thread without being located.

To show that the robber is located if he remains on the thread, note that

eventually the cop will have probed every original neighbour of v. Further, as she

probes v at least at every third step, this probe is either directly followed or directly

preceded by a probe at v. Hence by Lemma 23 if the robber remains on the v · · · bm

thread he is eventually caught.

Next, we show that the robber cannot leave the v · · · bm thread. To do so he

would have to either pass through v or bm. In the former case, assume he is in v at

time t. Note that if the robber is within 2 steps of v the cop probes v at every other

step. Hence she must probe v either at time t or time t− 1. If the cop probes v at

time t the robber is located. Thus we assume that she probes v at time t− 1 and

thus received answer 1. Let bi be the original neighbour of v she probes at time t.

Thus by Lemma 23 the robber is located by her probe at bi.

To see that the robber cannot leave the v · · · bm thread by passing through bm

requires us to count the total number of probes made. The calculations differ only

slightly depending on whether k is even or odd. We present those when k is odd,

but the case when k is even is essentially identical. Let k = 2q + 1. Recall that the

robber starts at distance at most bd(v)/2 + 1c = q + 1 away from v. To simplify the

calculation assume that k > 5 so that this initial distance is at least 3. The

remaining small cases are easily verified by hand. First the cop carries out q sets of

3 probes, each consisting of a pair of original vertices followed by a probe at v. This

takes 3q turns. After this and his following move the robber can at most be at

56

distance 4q + 2 from v. But as d(v) = k = 2q + 1, the v · · · bm thread has length at

least 4q + 2. Hence the robber has possibly reached bm, but not passed through.

The cop only has one remaining original vertex to check, namely bk, which she

probes on her next and final turn. The robber cannot leave the v · · · bm thread

during this process, and so is located by this strategy using Lemma 23 as soon as

the two endpoints have been probed consecutively.

We now proceed to the proof of Theorem 17. We follow the proof outline given

above, detailing a strategy that makes use of Lemma 24 as a sub-strategy if any

probe finds that the robber is close enough to the probed vertex.

Proof of Theorem 17. Consider the following strategy for the cop, consisting of

always probing original vertices, starting from an original vertex v1 picked

arbitrarily. Let the distance returned be D1. If D1 is at most d(v1)/2 + 1 then the

cop has a winning strategy by Lemma 24, so we may assume that D1 > d(v1)/2 + 1.

We give a sequence of probes that fall into one of the following situations.

1. A probe at another original vertex bi that gives a response at most d(bi)/2 + 1.

2. A probe at another original vertex that gives a response less than D1.

Labelling this vertex as v2 and the distance from it as D2 the cop begins her

strategy anew from v2.

This suffices to locate the robber since the cop cannot find an infinite sequence

v1, v2, . . . with associated decreasing distances D1 > D2 > . . . and hence the second

situation cannot arise infinitely often. Thus she must at some point encounter the

first situation. When this happens, the cop switches to the strategy outlined in

Lemma 24 to locate the robber directly.

The cop’s strategy begins by partitioning the original neighbourhood of v1 into

two sets. Let A1 comprise the original neighbours that are at most distance D1

57

away from v1, and B1 comprise the original neighbours that are further than D1

from v1. As the robber begins at distance D1 from v1, then one of the two following

cases must hold.

(a) There exists some a ∈ A1 such that a lies on a shortest path from v1 to the

robber. Hence D1 = d(v1, a) + d(a, r), where r is the position of the robber.

(b) The robber is on a thread between v1 and some vertex in B1.

The cop begins by investigating possibility (a). To do this, she probes the

vertices in A1 in any order. This takes at most d(v1) steps, and since a lies on a

shortest path from v1 to the robber’s initial position, a is initially at least 2d(v1)

closer to the robber than v1. Hence when she probes a she receives a distance that

is at most D1 + d(v1)− d(v1, a) < D1, satisfying condition (ii) above. Note that it is

possible that some vertex a′ ∈ A1 probed earlier already gives a response less than

D1, so this strategy may not find a itself, but this does not matter for our analysis.

Thus having carried out these probes the cop knows that initially case (b)

occurred and the robber was on a thread between v1 and one of its original

neighbours in B1. Let k be the size of B1, and let us label the vertices in B1 as

{b1, . . . , bk}. Without loss of generality we may assume that k = d(v1) i.e. that

A1 = φ. The cop’s strategy now has her carry out sets of probes, which we denote

by P1, . . . , Pk+1. Each of the Pi consists of (k + 1) probes, k at the vertices in B1 in

order according to their index, with v1 inserted in the ith place. Hence P1 consists of

probing v1, b1, . . . , bk, P2 is b1, v1, b2, . . . , bk etc.

Note that, by construction, if the cop carries out these sets of probes then the

following two conditions are fulfilled – firstly the cop probes each vertex in

{v1} ∪B1 at least at every (k + 2)nd step, and secondly that for every b ∈ B1 at

some point she probes v1 and then immediately b. The former ensures that, if the

robber passed through either v1 or some b ∈ B1, he would then be located by

58

Lemma 24 as he would have to be within distance k/2 + 1 of it either when it was

last probed, or when it next is. The second condition ensures that, if the robber

remains inside a single thread, even when far enough away from all original vertices

to not allow the cop to apply Lemma 24, he will be located, using Lemma 23.

59

CHAPTER 5

LOCATION NUMBER AND MAXIMUM DEGREE

The work in this chapter is all joint work with Sebastian Koch of Cambridge. In

her original paper, Seager [10] defined the location number of a locatable graph as

the minimum number of probes needed to guarantee locating the robber. In

Chapter 1 we outlined an algorithm that determines this for any graph, but the

question remains of whether or not in general it can be bounded by some natural

graph parameters. In this chapter we seek bounds in terms of the maximum degree

of the graph (denoted ∆(G) or just ∆ where the underlying graph is clear), in other

words whether we can say that a locatable graph with maximum degree ∆ always

takes at least f(∆) steps to locate the robber, and, at most g(∆) steps. We have

already seen that any graph has location number at least log ∆ in Chapter 4 as

Lemma 18, our main result in this chapter is that this looks to be the correct lower

bound. We show this by exhibiting graphs with location number

log ∆ + log(log ∆) + 2, which is clearly dominated by the log ∆ term. We also show

that no upper bound is possible in terms of the maximum degree by exhibiting

locatable graphs with maximum degree 3 that have unbounded location number. As

an aside, we also give an example of a graph with maximum degree three which is

non-locatable, hence showing that it is not even possible to tell purely from knowing

about the maximum degree of a graph whether or not it is locatable.

We shall begin with the lower bound, and Theorem 25 showing that

f(∆) 6 log ∆ + log(log ∆) + 2, where both logarithms are in base 2. We then

investigate the family of truncated binary trees, which have maximum degree 3, and

show that they are non-locatable, but that sufficiently subdivided members of this

family are locatable, still have maximum degree 3 and have arbitrarily large location

numbers. We begin with the first lower bound result.

60

Theorem 25. For infinitely many ∆ there exist graphs with a vertex of degree ∆

with locatability number at most log ∆ + log(log ∆) + 2.

Proof. We shall prove this by a constructive example, which shall consist of a star

with ∆ leaves, augmented by adding vertices and edges until a graph is reached

which is locatable in at most log ∆ + log(log ∆) + 2 steps.

Intuitively we want to add log ∆ new vertices, and join them to the leaves of the

star according to the binary expansions of the indicies of the leaves. Then, provided

the robber stayed still, the cop could probe these log ∆ new vertices, and by

analysing which gave her distance 1 she could work out the binary expansion of the

leaf the robber was hiding in, and thus locate him. This will not however work

directly as in practice the robber can move, which requires us to modify this

technique a little.

In practice, we construct our graph as follows. Let ∆ = 22k for some k ∈ N. We

choose this ∆ so that all the numbers in this proof shall be integers. Begin with a

star of degree ∆ around a central vertex v with leaves l0, . . . , l∆−1. Add log ∆ new

isolated vertices, which we call the first control vertices, labelled c1, . . . , clog ∆.

Connect the first control vertices to the leaves according to the binary expansions of

the indices of the leaves, i.e. for all 0 6 i 6 ∆− 1 and 1 6 j 6 log ∆ connect vi to cj

if the jth position in the binary expansion of i is a 1. Now repeat this process by

creating k = log(log ∆) new isolated vertices, which we call the second control

vertices, labelled d1, . . . , dk, and connect the second control vertices to the first

control vertices according to the latter’s binary expansions. Thus for all

0 6 i 6 log ∆ and 1 6 j 6 log ∆ connect ci to dj if the jth position in the binary

expansion of i− 11 is a 1. We then subdivide each edge 4 log ∆ times. For

illustration, an example of this graph in the case k = 2 is shown in 5.1. We say that

two original vertices are connected directly if they were neighbours in the

1The additional factor of -1 here is for technical reasons since really you want these indices to
run from 0 to log ∆− 1.

61

unsubdivided graph i.e. if the shortest path between them does not pass through

any other original vertex.

v

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16

d1 d2

c1 c2 c3 c4

Figure 5.1: Logarithmically-locatable graph with a high degree vertex

Having described the graph, our next task is to present the strategy for the cop.

We start with a sketch of the idea. The cop begins by probing v to establish where

the robber begins, and then tries to locate him before he can move too much. If he

begins near the central vertex then she does this by probing the first control vertices

– this shall identify which v · · · li thread he is on, and thus locate him. If he begins

near a leaf then she first again probes the first control vertices to determine which

leaf it is, checks to see if he is above or below it and, if the latter, probes the second

control vertices to locate him. The case where he begins near a first control vertex is

essentially similar, and the final case where he begins near a second control vertex is

even simpler since she can probe all the first and second control vertices before he

can leave the span of the second control vertex he began near.

62

Now we describe the strategy in detail. As outlined in the previous paragraph,

the cop begins by probing the vertex v and her strategy splits into four cases

according to the initial response d1 of the robber.

1. d1 6 2 log ∆. Note that provided the cop does not take more than 2 log ∆

steps in this case the robber cannot pass through any of the leaves. As her

initial probe was the central vertex he cannot be there, so he must be on some

v · · · li thread. It will suffice for her to find out the value of li, thereafter

locating him is trivial. She does this by probing the control vertices in log ∆

steps. Note that the central vertex is at distance 8 log ∆ from the first control

vertices, and no other vertex in the span of it is, so if he returns to v he will

return this response and thus be located. Further as she has uses log ∆

probes, the robber cannot have passed through a leaf, hence he remains in the

same span throughout this first set of probes. We now claim that a probe at a

control vertex cj reveals whether or not cj is connected directly to li or not,

since in the former case it will give a response smaller than 8 log ∆, and in the

latter case it will give a response larger than 8 log ∆. Hence having completed

the log ∆ probes at the first control vertices she knows the value of li. If

necessary she can use one final probe at v now to locate him, in total using at

most log ∆ + 2 probes as required.

2. 2 log ∆ < d1 6 6 log ∆. In this case the robber is in the span of one of the

leaves, and within 2 log ∆ of that leaf. We denote the leaf he is in the span of

by li. Again so long as the cop doesn’t take more than 2 log ∆ steps to locate

him he must thus remain in the span of li. First the cop uses log ∆ steps to

identify li as in the above case by probing the first control vertices, since again

responses less than 8 log ∆ correspond to the probed first control vertex being

connected directly to li and responses greater than 8 log ∆ correspond to the

probed first control vertex not being connected directly to li. Hence after

63

these log ∆ probes she knows which leaf is li. She now probes v once to

discover if he is on a v · · · li path (signified by a response less than 4 log ∆ and

locating him), at li (signified by a response of 4 log ∆ and again locating him)

or on some li · · · cj thread (signified by a response of more than 4 log ∆). In

this final case she just needs to determine the value of cj, which she does by

probing the second control vertices in the same way as she probed the first

control vertices to determine li. Again during this process he cannot return to

li, or else she will detect this by a response of either 8 log ∆ or 16 log ∆

(depending on the length of the path beteen the probed second control vertex

and li). Otherwise responses of less than 8 log ∆ mean the probed second

control vertex is connected directly to cj, all other responses mean the probed

second control vertex is not connected directly to cj. Hence at the end of these

log(log ∆) probes she will know cj, and hence locate him. At most this takes

log ∆ + log(log ∆) + 2 probes as required.

3. 6 log ∆ < d1 6 10 log ∆. In this case the robber is in the span of one of the

first control vertices, which we denote as cj. This proceeds simiarly to the

above, the cop first probes the second control vertices, using log(log ∆) probes,

to determine the value of cj. She then probes v to determine if he is on a

li · · · cj thread or a cj · · · di thread. In the former case she then probes all the

first control vertices to determine the value of li, and thus locates him, in the

latter case she probes all the second control vertices to see which gives a

response of less than 4 log ∆, which thus determines the value of di and locates

him. At most this would thus take log ∆ + log(log ∆) + 2 probes as required.

4. 10 log ∆ < d1. This means that the robber is initially in the span of one of the

second control vertices. In this case the cop can first probe the second control

vertices to determine which it is, which will be signified by a response of at

64

most 4 log ∆. At this point she knows he must be on some ci · · · dj thread, and

she knows dj. Now she can probe all the first control vertices to discover ci

and thus locate him, noting that he cannot leave this thread through ci as he

doesn’t have enough time to reach it, and cannot do so through dj since doing

so would return a response of a multiple of 4 log ∆, thus revealing he was at dj

and locating him. At most this would thus take log ∆ + log(log ∆) + 1 probes,

also fulfilling our requirements.

Lemmas 18 and 25 together give the order of magnitude of a general lower

bound for locatability number for finite graphs, based on the maximum degree. At

the same time, they leave us with an open problem, namely to determine the precise

value of f(∆). We believe that the correct answer is actually log ∆, since this is the

answer in the above if the robber started close to the central vertex, which is the

vertex of highest degree. It is possible that a better construction exists that could

be put into place below the leaves that would allow him to be located more quickly

if he was far from the central vertex.

Next, we show that, in contrast to the lower bound just established, there is no

upper bound for the locatability number in term of the maximum degree ∆. We

prove this using subdivided binary trees. A binary tree, denoted Tk, is a rooted tree

with each vertex having 2 children in the layer below until you reach the leaves at

distance k from the root. It is naturally partitioned into layers, with the tth layer

(denoted Lt) consisting of the vertices at distance t from the root – hence Tk

contains k + 1 layers, {L0, L1, . . . , Lk}. We include an illustration of T3 in Figure

5.2a. It is a simple exercise to check that a binary tree with at least 5 layers is

actually non-locatable, as we show in Chapter 2, Lemma 6. However, note that

subdividing such a tree shall result in a tree with the same maximum degree i.e.

maximum degree 3, and shall eventually result in a locatable graph (this being the

65

major motivation of the work of [3], and equally our results in Chapter 3). Hence a

sufficiently subdivided binary tree shall still have maximum degree 3 and be

locatable. However such trees may have arbitrarily large location number as the

following result shows.

Lemma 26. The graph T
1/m
k has location number at least k for all values of m.

Proof. We present a strategy for the robber, in which he hides in the leaves of the

graph. Let the shadow of a vertex be the set of leaves that are descended from it –

thus formally a leaf w is in the shadow of v if v lies on the (unique) path from w to

the root vr. Further, with slight abuse of notation, let the tth layer of the subdivided

tree still consist of the original vertices that were at distance t from the root before

it was subdivided – so now they are those vertices at distance mt from the root. We

claim that, inductively, in response to the cop’s tth probe, the robber can claim to

be anywhere in the shadow of a tth level vertex for 1 6 t < k. Thus as these

shadows all contain at least two elements for t < k the robber survives the first

k − 1 probes, and the locatability number of T
1/m
k is at least k.

For the cop’s first probe let a1 and b1 be the children of the root vr. Let A1 and

B1 be vertex sets defined as follows: A1, respectively B1, is the vertex set containing

a1, respectively b1, and all of its descendants. This partitions the vertex set of T
1/m
k

into {vr} ∪ A1 ∪B1. Note that the set of leaves in A1 comprises the shadow of a1,

and every vertex in this set is equidistant to any fixed vertex in {vr} ∪B1. The

same holds with b1 in the place of a1 and A1 and B1 reversed, by symmetry. Hence

the robber can claim to be in the shadow of a1 if the cop’s first prove is in

{vr} ∪B1, or in the shadow of b1 if the cop’s first probe is in A1. This fulfils the

base case of the induction.

Now assume that the claim was true at time t < k, and consider the (t+ 1)st

probe. Let vt ∈ Lt be the vertex whose shadow the robber claimed to have been in

at time t and let at and bt be vt’s children. Consider the components of the graph

66

inducted by deleting the vertex vt. There are at most three components, one for

each child of vt and one corresponding to the parent (which does not exist if vt was

the root). Let us label them At, Bt and Ct as illustrated in Figure 5.2b, where At

and Bt are the components containing at and bt respectively. Note that every vertex

in the shadow of at is equidistant to any fixed vertex in {vt} ∪Bt ∪ Ct, and every

vertex in the shadow of bt is equidistant to any fixed vertex in At.

Having described this perspective on the structure of the tree we next outline

the robber’s strategy – similarly to the base case, if the cop’s next probe is in

{vt} ∪Bt ∪ Ct he claims to be in the shadow of at, otherwise he claims to be in the

shadow of bt. This fulfils the inductive condition, and thus completes the proof.

At Bt Ct

vr vr

vt

at bt

a) T 4
2 b) Example partition

Figure 5.2: Binary tree with 4 layers

Note that this result held for all values of m, and hence it holds for m being

very large. But m being very large essentially restricts the robber to not being able

to move – certainly if m is much larger than k then the robber must remain in the

span of a single original vertex throughout these k probes. A little case analysis

67

shows that this actually results in him being located within the k probes, and hence

the location number for T
1/m
k is k for large enough m. Hence it is not possible to

give an upper bound for the location number in terms of the maximum degree, since

graphs exist with maximum degree 3 of unbounded location number.

68

CHAPTER 6

SUBGRAPH CHARACTERISATIONS

The work in this chapter is all joint work with Sebastian Koch of Cambridge. In

her inaugural paper on the Robber Locating Game, [10], Seager shows that any

graph containing K4 as a subgraph, or K3,3 as an induced subgraph, is

non-locatable. She also asked if a forbidden subgraph characterisation of locatable

graphs might be possible, i.e. if being locatable might be hereditary (preserved

under taking induced subgraphs) or even monotone (preserved under taking any

subgraphs). Our result in this chapter is that surprisingly it is not even hereditary.

Theorem 27. The graph property of being locatable is not hereditary.

We shall show this by an explicit example. We shall include the no-backtrack

condition in this chapter since Seager included it in her original paper, to most

accurately answer the question posed. This condition states that the robber cannot

move to the vertex just probed by the cop, which shall be used in Lemma 29 to

limit the robber’s movements. The question of whether or not locatability might be

hereditary remains open if you drop this condition.

Consider the pair of graphs shown in Figure 6.1. The first, which we call the

double-net, is a C3 with two pendant edges on each vertex. We label the vertices on

the cycle a, b and c. The second, which we call the rooted double-net, is obtained by

taking a double-net and linking the two leaves that were adjacent to a by a path of

length 2 through a new vertex, which we label r. Clearly the double-net is an

induced subgraph of the rooted double-net, so the following two lemmas suffice to

show the result.

Lemma 28. The double-net is non-locatable.

Proof. To prove this, we describe a winning strategy for the robber on the

double-net which restricts him to one of three pairs of response/movement sets.

69

a

b c

a

b c

r

Double-net Rooted double-net

Figure 6.1: Double-net and Rooted double-net

a

b c

a

b c

a

b c

R1 and M1 R2 and M2 R3 and M3

Figure 6.2: Response and movements sets for Lemma 28

This suffices to show that the double-net is non-locatable by Lemma 4 in Chapter 2.

Consider the three sets which we illustrate in Figure 6.2. In each case we show the

response sets with solidly coloured vertices, and the resulting movement set with a

shaded background. As will be outlined in the strategy below the set R3 will be

returned following a probe at b, hence b /∈M3 by the no backtrack condition.

Similarly R1 may be a response following a probe at a, so again a /∈M1. By Lemma

3 we may assume that the robber begins in M1. We shall give a strategy that

ensures that he can always remain in one of these three sets, or a set equivalent to

one of them by symmetry. At points the robber may have the option instead to

70

move to a superset of one of these, but by Lemma 4 we may ignore this and restrict

him to only moving between these sets. Our strategy splits as follows according to

the movement set he is in when the cop makes a probe.

1. M1: If the cop probes a or a leaf adjacent to a the robber can return distance

1 or 2 respectively, giving response set R1 again and so remaining in M1. By

symmetry the remaining cases are a probe at b, or a leaf adjacent to b.

Following a probe at a leaf adjacent to b the robber can respond 2, giving a

response set equivalent to R2 and hence moving to M2. Following a probe at b

the robber can respond 1, giving response set R3 and hence moving to M3.

2. M2: If the cop’s next probe is in any leaf, or in one of {a, b, c}, the robber can

return distance 2 or 1 respectively, corresponding to a response set equivalent

to R1 and thus moving to M1.

3. M3: If the cop’s next probe is at a, or a leaf adjacent to a, then the robber can

return distance 2 or 3 respectively. This doesn’t quite give response R1,

instead the response set consists of the leaves of b and c, but it still allows the

robber to move to M1, so is equivalent for our purposes. If the cop’s next

probe is at b, or a leaf adjacent to b, then the robber can return distance 1 or

2 respectively. This returns a response set containing a set equivalent to R1,

and so he can move to M1. If her next probe is at c then he can return

distance 1, returning a set equivalent to R3 and so remaining in M3. Finally if

her probe is at a leaf adjacent to c he can return distance 2, corresponding to

a response set equivalent to R2 and moving to M2.

Since this shows there are a finite number of response sets and movement sets,

such that from any movement set for any choice of probe vertex he can move to

another, then by Corollary 4 the double-net is non-locatable.

71

Lemma 29. The rooted double-net is locatable.

Proof. We show this by describing a winning strategy for the cop on the rooted

double-net. Let her first three probes be the two leaves adjacent to b, followed by a

probe at b itself. By the no-backtrack condition, and the fact that b is the unique

vertex at distance 1 from its adjacent leaves, this ensures that after this third probe

he cannot be in any of these three probed vertices. Next she probes r. The robber

cannot respond with 0, 2 or 3 as each of these correspond to a unique vertex in the

remaining set that he occupies. Hence he must return either distance 1 or 4. In

either case he then moves to an induced path on three vertices, so can be located in

a single additional probe.

This shows that a general forbidden subgraph characterisation of locatable

graphs is not possible.

72

CHAPTER 7

LOCATABILITY AND COLOURABILITY

The work in this chapter is all joint work with Sebastian Koch of Cambridge. In

this section we consider the relationship between locatability and chromatic

numbers. Recall that the chromatic number of a graph is the minimal k ∈ N such

that there exists a partition of V (G) into k sets with no edge contained in any part.

It is referred to as the chromatic number as it can also be phrased as follows: We

call a function c : V (G)→ [l] a colouring function with l colours if no edge receives

the same colour for both of its end points. We say a graph is l-colourable if it is

possible to find a colouring function with l colours, and then we define the

chromatic number of a graph as the minimal k for which it is k-colourable. We shall

show that every locatable graph has chromatic number at most 4 (although clearly

it can also be less), and that this result is tight by exhibiting a locatable graph that

is not 3-colourable.

As in Chapter 6 we include the no-backtrack condition in this chapter, since this

is work that was done early on when the main extant paper included this condition.

If you drop this condition then these results can be improved to be essentially

trivial, as we shall summarise at the end of this chapter.

We begin with the result that every locatable graph is 4-colourable.

Theorem 30. Every locatable graph is 4-colourable.

We shall show this by proving that every graph that is not 4-colourable must be

non-locatable by showing that it must contain a small subgraph which the robber

can hide in. Specifically we shall show that it must contain an induced subgraph

with minimum degree 4, and that the robber can avoid being located while

remaining in this subgraph.

73

Lemma 31. Let G be a graph that is not 4-colourable. Then G contains an

induced subgraph H such that H has minimum degree at least 4.

Proof. Let H be a minimal induced subgraph of G such that H is not 4-colourable.

We show by contradiction that H has minimum degree at least 4, by assuming that

∃x ∈ H such that degx(H) < 4. Then by the choice of H, H \ {x} is 4-colourable.

But then as x has at most 3 neighbours, then it is also possible to colour x using

one of these 4 colours, and hence H would be 4-colourable, a contradiction. Hence

no such x exists, and hence H is an induced subgraph of G with minimum degree at

least 4.

We now introduce the concept of a hideout graph. A hideout graph H is a graph

such that any graph G containing H as a subgraph (not necessarily induced) is

non-locatable. For example, Seager shows in [10] as Proposition 2.3 that K4 is a

hideout graph. We shall now show that any graph with minimum degree 4 is a

hideout graph, which shall suffice to essentially complete the proof.

Lemma 32. Let H be a graph with minimum degree 4. Then H is a hideout graph.

Proof. Let G be a graph containing a copy of H. We present an inductive proof in

which the robber restricts himself to remaining within H and can still avoid being

located. Assume that he has survived until time t− 1, hence before the tth probe he

is in a movement set Mt−1 ⊂ H. Let x ∈Mt−1 be any vertex in this set. and let pt−1

be the cop’s probe at time t− 1. Since x ∈ H it has degree at least 4, so

N [x] \ {pt−1} is a subset of Mt−1 of diameter at most 2 with at least 4 vertices in it.

Denote this set by Mx. Let pt be the cop’s probe at time t, and let d be the distance

from pt to Mx. Then every vertex in Mx is at either distance d, d+ 1 or d+ 2, hence

this probe partitions Mx into at most 3 sets. As it has 4 members, at least 2 are

equidistant, giving the robber a response he can return that avoids being located at

time t. Hence by induction he can avoid being located indefinitely.

74

With these results in mind, the proof of Theorem 30 is straightforward.

Proof. (Proof of Theorem 30): We prove this by contradiction. Let G be a graph

that is not 4-colourable. Then by Lemma 31 it contains an induced subgraph H

with minimum degree 4. By Lemma 32 H is a hideout graph, and thus G is

non-locatable. Thus any locatable graph must be 4-colourable.

This result is tight in that there exist graphs which are locatable and have

chromatic number 4, so not all locatable graphs are 3-colourable. To show this we

give an explicit example in Figure 7.1. This graph is essentially a subdivided K4,

except that instead of replacing edge with paths we have replaced them with chains

of what we call diamonds, copies of C4 with an extra edge across the middle. These

chains, each of which consists of 8 diamonds, then has an extra edge added in the

middle linking the 4th and 5th diamonds. We refer to the original vertices, i.e.

those of degree 6, as the corner vertices.

These chains are what leads to this graph being both locatable and not

3-colourable. First, we shall show that if the cop knows that the robber is on a

certain chain then she can ‘push’ him along it, forcing him to leave it through either

end. It will follow immediately that if she pushes him towards the middle edge of a

chain then she can locate him. Then to show that the graph is locatable all we need

to show is that she can find out which chain he is on, which is straightforward.

Finally to show that it’s not 3-colourable we shall use the fact that if the graph is

3-coloured then the end vertices of a chain must be the same colour, and show that

no such colouring can exist. We begin with the result on the cop being able to push

him down chains.

Lemma 33. If the robber is known to be inside a specific chain of diamonds, the

cop can force him to exit the chain through either end. Further, if this chain ends in

a pendant edge then this will locate him.

75

v1 v2

v3v4

Figure 7.1: K4 with edges replaced by pairs of chains of diamonds, linked by a single
edge

Proof. Let D1, . . . , Dk be k diamond subgraphs such that they form a chain. Let

v0, . . . , vk be the tip vertices of these diamonds, so that vi = Di ∩Di+1 for 1 6 i < k,

and v0, vk are the remaining tip vertices of D1 and Dk respectively. We shall give an

explicit strategy for the cop that allows her to force him to leave the chain through

her choice of v0 or vk.

First let the cop probe one endvertex of the chain. If he returns an even

distance this means he is occupying a (unique) tip vertex, and hence locates him.

Thus be must return an odd distance, 2i− 1, which means he is in the two girdle

vertices in Di. We therefore can begin from the position where the robber occupies

Di. It suffices to show that the cop can force him to move to Di+1, since repeating

this will force him into vk, fulfilling one requirement, and by symmetry this can be

adapted to instead force him into v0.

To ease notation we label the vertices of Di and Di+1 as per Figure 7.2. The

cop’s strategy now runs as follows. First she probes vi−1, forcing the robber to

return distance 1 to avoid being located. Hence his first response set is {a, b}, and

his next movement set is thus {a, b, vi}. She then probes a, again forcing him to

76

vi−1

a

b

vi

c

d

vi+1 e

Figure 7.2: Di, Di+1 and a pendant edge for Lemma 33

return distance 1 corresponding to response set {b, vi} and his second movement set

is {vi−1, b, vi, c, d}. Finally probing vi−1 again forces him to return distance 3

corresponding to {c, d}, and his third movement set is {vi, c, d, vi+1} = Di+1. Thus

in three probes she moves him from Di to Di+1. Hence she can move him through

the chain to vk, or to v0 by flipping these probes symmetrically, satisfying our first

claim.

The second claim then follows immediately. The cop first uses the above

technique to push the robber towards the single edge in the middle. Note that when

pushed from one diamond to the next the robber occupies a set equivalent to

{vi−1, b, vi, c, d}. But when this same set of probes is carried out pushing him right

from Di+1 then he will occupy the set {vi, d, vi+1, e}, and then a probe at vi will

locate him.

Lemma 34. The graph illustrated in Figure 7.1 is locatable.

Proof. We show this by outlining a simple strategy for the cop. With slight abuse of

notation we refer to the chains of diamonds linking corner vertices as threads, since

they will form similar roles to the actual path-like threads in other proofs. The cop

first seeks a corner vertex which the robber is at most 10 away from by probing

them in turn, stopping when she finds one. We can see that this shall succeed since

he must begin on some thread, and since she probes the endpoints of that thread at

most 3 steps apart he must be within distance 10 of one end when she probes it.

Call this corner vertex vi. She now seeks the other end of that thread by probing

the other three corner vertices, alternating these with a probe back at vi to prevent

77

him passing through vi by the no back-track condition. As this takes at most 5

probes she will find the other end of the thread before he can leave it. She now

knows that he is on a particular vi · · · vj thread, and has just probed vj. Hence she

knows exactly where he is on this thread, and hence by Lemma 33 can push him

towards the middle edge and thus locate him.

Thus we have shown that this graph is locatable. It remains to show that it is

not 3-colourable.

Lemma 35. The graph illustrated in Figure 7.1 is not 3-colourable.

Proof. This is immediate by an application of the pigeonhole principle. Assume

there is a valid 3-colouring of this graph. Then two of the corner vertices must

receive the same colour. Consider the chains of diamonds linking these two vertices.

They both start in the same colour, and hence the vertices at either end of the

central edge must also be this colour. But then the central edge is monochromatic,

contradicting our assumption that the 3-colouring was valid.

We now consider what happens if we remove the no-backtrack condition.

Firstly, note that without this condition Lemma 32 can be improved to show that

any subgraph with minimum degree 3 is now a hideout graph, since the entirety of

N [x] shall be inside Mt−1. Lemma 31 also holds with 4 replaced by 3, or indeed any

other positive integer. Hence combining these means that without the no-backtrack

condition, every locatable graphs is 3-colourable. Showing that this is tight is then

straightforward – to do so you just need to exhibit a graph that is locatable but not

2-colourable. Any sufficiently large odd cycle (at least 7 vertices suffices) will do for

this. Hence without the no-backtrack condition similar results can be obtained, but

they are arguably less interesting.

78

Part II

Sorting Algorithms

CHAPTER 1

INTRODUCTION TO SORTING ALGORITHMS

The work in this section is all joint work with Gábor Mészáros of Central

European University. Our aim in this section is to study the following question.

Assume a user has an ordered set of n elements in which the ordering is fixed but

not known (for example distinguishable but unmarked coins of unknown distinct

weights), and that he wishes to determine the ordering. We denote this base set X,

containing elements x1, x2 . . . xn. He is given a scale that accepts as input a k-set of

elements and returns a fixed subset of them according to the ordering, for example

it might return a subset of size s that contains the tst1 , t
nd
2 , . . . , t

th
s elements. We

would call such a scale a (k, t1, . . . , ts) scale, and wish to know what one can

determine about the ordering of the elements from repeated use of such a scale. We

shall refer to the process of using the scale on a k-set as querying that set. These

have been previously studied in the case where k = 2, in which case they are known

as binary scales.

Clearly you cannot completely discover the ordering, as you cannot determine

the ordering of the first t1 − 1 elements or the final (n− ts) elements. Let us call

these sets S for the initial segment and L for the final segment. Additionally if the

scale is symmetric (in the sense that the elements that it returns are symmetric

around the midpoint of k i.e. t1 = k − ts, t2 = k − ts−1 etc) then the ordering cannot

be fully determined for the remaining elements, as the results of any query would be

the same if the ordering was reflected. We therefore ignore this case, and assume

assymmetric instruments in general. We also assume that the scale returns an

unordered set, {t1, . . . , ts}, rather than an ordered one. This is because we show

that even with an unordered set you can recover the full ordering of the elements;

an ordered output would be strictly stronger, and so also able to do the same.

This section is structured as follows. In Chapter 2 we consider online

81

algorithms, where the sets submitted to future queries can depend on past results.

Beginning with the case s = 1, i.e. where the scales output a single element, we

show that it is possible to determine the ordering of the elements (excluding the

ordering of S and L) in O(n log n) time, the same order of bound as in the binary

case. We give this constant explicitly, showing that it is an improvement over the

binary case. We also investigate the case where s > 1, and give an explicit

algorithm for determining the ordering in this case.

In Section 3 we consider offline algorithms, where all the queries must be

specified in advance and then the full set of results are returned simultaneously.

This could be applicable in a situation wherein queries have to be sent to a

laboratory to run overnight. Obviously this requires more queries in general. In the

case where s = 1, i.e. where we are using a (k, t)-scale, we outline an algorithm that

works in O(nk−(t−1)) queries, and show that this is the best possible order. This

algorithm relies heavily on a recursive approach, determining the results of queries

that have not been carried out from those that have. We also outline an alternative

algorithm that works in a similar amount of time, but works directly, determining

the ordering of the elements using an adjacency based argument. In the case s > 1

the recursive approach can often still be applied, but the calculations involved get

more complicated and require more detailed case analysis. However the adjacency

argument continues to work, giving us a general offline algorithm that works when

the scale outputs an unordered set.

82

CHAPTER 2

ONLINE ALGORITHMS

In this section we consider online algorithms, where the user is given the result

of each query as he requests it, and on that basis selects the next set of k elements

that he wants to query. As highlighted in the introduction, these scales cannot in

general determine the full ordering of the element set, as the first and last segments

of the ordering will never be returned by any query, and so no query can determine

their order. We refer to these segments as S and L respectively, and in each case

shall highlight which elements they comprise. The remaining elements we denote

X ′, and note that there are at least n− (k − 1) of them, which we call n′.

We begin by considering a singleton-scale, which returns a singleton output.

2.1 Singleton Output Scales

The classical version of this question is the binary scale which accepts as input

two elements and returns the smaller. We consider more general (k, t) scales,

accepting k elements and returning the tth smallest. To ease notation throughout

this section we shall assume that t 6 k/2, i.e. it lies in the first half of the queried

set. If t > k/2 then the following analysis still holds, inverting the roles of S and L

and making occasional other minor adjustments to the calculations.

We describe an algorithm that works in O
(
n′ log n′

)
queries to determine the

ordering of the element set. This algorithm works by first determining S and L (in

Stages 1 and 2), and then using them to iteratively determine the ordering by

repeatedly determining the smallest element among the remaining unsorted

elements (in Stage 3). Stage 3 shall take the longest, it is this stage that takes

O
(
n′ log n′

)
time to run, while Stage 1 is linear in n′ and Stage 2 is independent of

n′, taking a number of queries that is just a function of k. Hence the combination of

83

the three works in O
(
n′ log n′

)
queries as required.

Stage 1.1. Determine the elements that comprise S ∪ L.

Method: Note that these elements are precisely those that shall not be returned by

any query. Hence they can be identified by eliminating all the others. The user

repeatedly picks a k-set from those that he has not yet eliminated, and eliminates

whatever is the output. Each time he does this it eliminates 1 more element. He

continues doing so until he cannot find another k-set, which occurs when there are

k − 1 elements left. But note that S ∪ L is always contained within the remaining

elements, and there are k − 1 elements in S ∪ L, so it is exactly the remaining

elements at this point.

Stage 1.2. Partition S ∪ L into S and L, and if possible identify which is which.

Method: Pick an arbitrary set from the eliminated elements, which we denote

a1, . . . , ak−1 where the index respects the ordering of the elements. For each element

in S ∪ L query it taken together with {a1, . . . , ak−1}. If it was in S this will return

at−1 and if it was in L it will return at. Although the user does not know which is

which, he can partition S ∪ L into S and L according to which response he gets. He

can further keep count of how often each comes up, as he will receive at−1 |S| times,

and at |L| times. If |S| 6= |L| then this further identifies S and L – the only time

this won’t work is when |S| = |L|, which occurs when t = k/2, which means that the

underlying scale is symmetric. Hence by the end of Stage 1.2 in the case of an

asymmetric instrument the user knows S and L, and if the instrument is symmetric

then he has identified the set {S, L} but does not know which is which.

Stage 1.3. Use S to determine the order of the remaining elements.

Method: First, let us assume that our instrument is asymmetric, and hence the user

knows S before starting this Stage – at the end we shall address what is done in the

symmetric case. In this stage the user shall repeatedly use S to determine the

84

smallest element of a subset of k′ := k − (t− 1) elements by querying them taken

together with S. If he wishes to find the smallest element of a smaller set he takes it

together with S and supplements it with elements from L until he has k elements

allowing him to query it. In both cases as S takes up the first t− 1 elements of the

queried set, it will return the next largest which is the smallest of the subset he is

trying to check.

The user now take the remaining n′ elements and partitions them into as many

sets of size k′ as possible, with a remainder set of at most k′ elements, which we

shall call level 1 sets. He then groups the level 1 sets into sets of size k′ (again as far

as possible, with perhaps a deficient remainder set) to get level 2 sets, so a level 2

set consists of k′ sets each of k′ elements. He continues this process until all the n′

elements are in a single set - we denote the level where this occurs as d, where

d = logk′ n
′This effectively creates a d-dimensional grid of sets. We illustrate this

grouping for the first two layers in Figure 2.1.

L2

L1

L1L1

L2

L1

L1L1

L2

L1

L1L1

Figure 2.1: First two layers of the grouping process

At the first step he queries all the level 1 sets, establishing which is the smallest

element of each. He then ‘checks’ each level 2 set in turn by querying the smallest

element of each level 1 set inside it to find the smallest element in each level 2 set.

Continuing in this manner he can establish the smallest element in every level r set

for all 1 ≤ r ≤ d, and hence the smallest element in the level d set. But the level d

85

set contains everything, so he has found the smallest element in the remaining n′

elements. He now wants to remove this element and find the next smallest. Note

that this only requires him to check/query the level 1, 2, . . . , d sets that the previous

smallest was in, as the others are unaffected. Repeating n′ times therefore

determines the order of the remaining elements.

This completes the analysis of the asymmetric case. If the instrument is

symmetric, then recall as discussed earlier that the user would only at best be

looking to determine the ordering or its reflection, since he would not be able to

distinguish these with any query. If his instrument is symmetric though the main

difference is that at the start of Stage 1.3 he wouldn’t know which set was S and

which was L. However he can arbitrarily assume either one is S, and carry out

Stage 1.3 under that assumption. If he was correct he will get the correct ordering,

if incorrect he will get the reflection, and given that he cannot distinguish these

with a symmetric instrument anyway that therefore gives him the best possible

information he could gather about the ordering.

It remains to show that this method only uses O
(
n′ log(n′)

)
queries. Stage 1.1

requires one query for each element in X \ (S ∪ L), so uses n− (k − 1) queries.

Stage 1.2 requires one query for each element in S ∪L, so uses (k− 1) queries. Thus

together Stages 1.1 and 1.2 use a total of n queries.

Stage 1.3 takes longer, this is where the extra log factor comes in. The first run

through of the levels in which the user finds the smallest value in each set takes this

many queries

d∑
i=1

⌈
n′

(k′)i

⌉
6 dn′

Having completed these queries, and thus found the smallest element in the set

X \ (S ∪L), the user then needs to carry out d additional queries for each remaining

element. Hence he requires at most d(n′ − 1) remaining queries – in practice he may

86

require slightly less as when he gets some levels with only 1 element he doesn’t need

to continue to query them.

Hence in total this algorithm required at most the following number of queries

n+ 2dn′ = n+ 2n′ logk′(n
′) = O

(
n′ log n′

)
.

2.2 Multiple output instruments

We now turn our attention to scales that return multiple elements. These

accept as input k elements from X and return a set of size s containing the tst1 ,

tnd
2 . . . tths elements. We refer to such a scale as a (k, t1, . . . , ts) scale.

In this case we shall outline an algorithm that works in similar stages to the

singleton output case, although in each case more work shall be needed to achieve

the same ends. We shall again make use of the initial and final segments, which

with slight abuse of notation we again denote by S and L. This time however S

consists of the first t1 − 1 elements, and L of the final k − ts elements. Together

they therefore comprise a set of k − 1− (ts − t1) elements. It is possible if n is small

compared to k that there can be other elements that the user cannot distinguish the

order of. If, for example, we consider a (7, 2, 6) instrument on 8 elements then none

of {x1, x4, x5, x8} will ever included in an output, so as well as the initial and final

segments we have a middle segment that is indistinguishable. However in our case

we think of n as being arbitrarily large compared to k; indeed we consider the

asymptotics as n→∞, and if n > 2k then no such middle set of indistinguishable

elements can exist.

Stage 2.1. Determine the elements that comprise S ∪ L.

Method: Again, as in the singleton case, S ∪ L comprise the elements that are never

in the output of any query. So the user can begin by repeatedly querying

uneliminated elements, and discarding the elements contained in the outputs. In the

87

singleton case, this worked until there were k − 1 elements left, and these comprise

exactly S ∪ L. In this case however the user can only eliminate elements until he

has k − s left, and in general S ∪ L have k − 1− (ts − t1) elements. These are the

same if ts − t1 = s− 1, which occurs if the numbers t1, t2 . . . , ts are consecutive. In

that case Stage 2.1 terminates at this point.

If t1, . . . , ts are not consecutive then the user has a little more work to do. After

carrying out the above he has k − s candidates left for S ∪ L, which contains S ∪ L

and some extra elements which he wishes to eliminate. To do so we use an inductive

approach. Specifically we shall show that if we have a set of k − a candidates for

a < s, {c1, . . . , ck−a} that contains at least 1 element not in S ∪ L then we can

eliminate 1 more. This clearly suffices to eliminate all those not in S ∪ L. Note that

if we query {ci} along with a set of size a, as we get at least a outputs they must

either consist exactly of the a additional elements, or include and thus eliminate an

additional candidate. So to achieve the inductive aim, pick any set of (2a− 1)

already eliminated elements, which we denote {e1, . . . , e2a−1}, and carry out all the(
2a−1
a

)
queries involving a of the additional elements along with the candidates. Let

x be an element in {ci} not in S ∪ L, and note that by the pigeonhole principle

either at least a of the {ei} are lower than x in the ordering, or at least a of them

are greater – without loss of generality we assume the former, and relabelling if

necessary we assume that the set {e1, . . . , ea} is among them. Hence when we query

{c1, . . . , ck−a, e1, . . . , ea}, all of L and x are greater than all of the additional

elements, hence the tthr element cannot be one of the additional elements and so

must lie in the {ci}, eliminating it. This process can continue until the remaining

candidates are exactly S ∪ L, after this point there does not exist any

x ∈ {c1, . . . , ck−a} \ (S ∪ L). Hence this process ends exactly with S ∪ L being

identified.

Stage 2.2. Partition S ∪ L into S and L, and if possible identify which is which.

88

Method: We take exactly the same approach as in the singleton case. Pick any set

of size k − 1 taken from X \ (S ∪ L), which we denote a1, . . . , ak−1. The user carries

out the |S ∪ L| queries consisting of this reference set taken with one element from

S ∪ L. If the element from S ∪ L was in S then this returns {at1−1, . . . , ats−1}, while

if it was in L it returns {at1 , . . . , ats}. Although the user cannot immediately

distinguish these they are clearly distinct, so he can partition S ∪ L into S and L

according to the multiplicites of the responses.

In the singleton case the user could also determine which of these sets was S

and which was L in the assymmetric case, since that implied they would be of

different sizes. This is more complicated in the multiple-output situation, since you

could have t1 + ts = k + 1, giving |S| = |L|, but still have an assymetric instrument

as a result of some other elements in the output. In practice it doesn’t matter which

is which, and so for the moment we do not address the question of how to

distinguish them in this algorithm. One of the referees kindly submitted a neat

solution though, which we shall present separately at the end of this section.

Stage 2.3. Use S to determine the order of the remaining elements.

Method: If S and L are of different sizes, then the following works: Let S ′ be the set

of the first ts − 1 elements of X, noting that this includes S. If the user can identify

S ′ then he can reduce our scale to a (k′, 1) scale by insisting on always including S ′

in any query – this fills up the first ts − 1 slots of the scale, and means that it will

always return some subset of S ′ (easily ignored) along with the smallest element of

the remainder. Defining X ′ as X \ S ′ he can then use this (k′, 1) scale to sort X ′ \ L

in O
(
n log n

)
steps as per Stage 1.3 of the singleton output algorithm. This sorts

the majority of X (assuming as always that n is large compared to k. To sort the

remaining elements in S ′ \ S is then straightforward since the user will have

identified the final k elements of X, so can create an (k′′, k′′) instrument by

including k − t1 elements of X. This can be used to sort the remaining elements.

89

It just remains therefore to say how to find S ′. If t1 − 1 divides ts − 1 then S ′ is

easy to find by repeatedly removing the smallest elements from X. In Stages 2.1

and 2.2 we outlined how to identify S i.e. the smallest t1 − 1 elements in X. By

removing these and repeating the process the user can identify the next t1 − 1

elements repeatedly until he has found the first ts − 1 elements. If t1 − 1 does not

divide ts − 1 then the same process can be applied, except that when the user needs

fewer than t1 − 1 more elements at the end to top off S ′, he leaves in some of the

previous t1 − 1 set that he removed so that he requires something of the correct size.

If S and L are of the same size then at the end of Stage 2.2 the user has

partitioned S ∪ L into sets A and B, which are S and L but he doesn’t know which

is which. We suggest the following: he makes an arbitrary assignment, claiming that

A is S. Discarding this and repeating Stages 2.1 and 2.2 on the remaining X \ A

elements will return two more sets, A′ and B. Note that this will be the same B as

before, so he can identify A′ and discard it again. Continuing in this manner he will

eventually find a set that is either S ′ or L′, as above. He can assume this is S ′, and

use it to form what he thinks is an (k′, 1) instrument. Using this he can sort the

remaining elements as above, and come up with an ordering for X. This ordering

will either be correct, or exactly the reverse of the correct ordering if his initial

theory that A was S was wrong. He can check which of these is true if he had an

asymetric instrument by carrying out any query of k elements taken from

X \ (S ∪ L), and seeing if the answer agrees with his opinion on what the ordering

is. If it does not, he simply reverses the ordering.

If now remains to analyse how long this shall take. Stage 2.1 takes
⌈
n−(k−s)

s

⌉
queries initially to get down to k − s elements. To get from there to S ∪ L involves

removing at most k elements, and removing each takes at most
(

2k−1
k

)
queries, so in

total this takes at most (2k)k+1 queries. Stage 2.2 then takes

|S ∪ L| = k − 1− (ts − t1) queries. Hence between them Stages 2.1 and 2.2 take in

90

total a linear number of queries in n with an additional number of queries that is

solely a function of k. As we consider the situation where n is large and k is small

and fixed, this is effectively a linear number of queries in n.

Stage 2.3 takes as most k runs of Stages 2.1 and 2.2 to identify S ′, which is

therefore still linear in n. Having identified S ′ it then takes O
(
n log n

)
steps to sort

the set X ′. The final sorting of the remanent, and the extra query in the case where

S and L are the same size, clearly only take a number of steps that is a function of

k, hence overall this algorithm also runs in time O
(
n log n

)
as required.

As promised, we now consider how to distinguish S from L in the case of an

assymetric instrument in Stage 2.2. This is based on a suggestion from Prof. Paul

Balister of Memphis. Let p be the smallest index that makes the instrument

non-symmetric, in the sense that only one of the pth and (k + 1− p)th elements are

in the output. Without loss of generality we shall assume it is the case that the pth

is in the output and its reflection (inside the scale) is not, to ease notation. We

define S1 = S, L1 = L and X1 = X \ (S ∪ L), similarly to before, and then

recursively define Si, Li and Xi to be the initial, final and middle segments of Xi−1

respectively. Hence for any index i X is thus composed of
⋃i
j=1 Sj ∪

⋃i
j=1 Lj ∪Xi.

Note that given that Stages 2.1 and 2.2 determined {S, L} from X, they can be

repeated to determine {Si, Li} and Xi from Xi−1. Hence the user can build up as

many pairs of sets as he wants, all of which form the initial and final segments of

the remainder of the full set, provided n is sufficiently large.

We use this idea to show how to find S and L. First the user determines Si and

Li for all 1 6 i 6 p+ k − 2. He can then identify Sp by querying a set containing

one element from each of the sets in the pairs {S1, L1}, {S2, L2}, . . ., {Sp−1, Lp−1}, a

single element from one of the sets in {Sp, Lp} and then balancing elements from Xp

to fill out the instrument. If the element he picked from {Sp, Lp} was from Sp then

it will be in the output, if it was from Lp then it won’t, enabling him to identify Sp

91

and Lp. He can then repeat this to {Sp+1, Lp+1}, {Sp+2, Lp+1}, . . ., {Sp+k, Lp+k},

and thus identify exactly the sets Sp, Sp+1, . . . , Sp+k−2. Now identifying S is simple,

since he just needs to take one element from one of {S, L}, and query it along with

k − 1 elements, taken one each from Sp, Sp+1, . . . , Sp+k−2. The result of this query

will determine if the element from {S, L} was from S or L merely by looking at

which of the other elements was returned, and hence he can identify which set is S

and which is L. As p is at most k/2, if he wished to do this it would require at most

3k/2 additional runs of Stages 2.1 and 2.2, which is still therefore linear in n and so

would not materially affect the running time of the algorithm for large n.

92

CHAPTER 3

OFFLINE ALGORITHMS

We first turn our attention to offline algorithms. In this situation the user must

specify the full list of queries that he wishes to carry out in advance, and then

receives all the answers simultaneously afterwards. As we saw in Section 2, if the

user knows the results of all the possible queries then he can determine essentially

the full ordering (excluding S and L as before), since he can follow any of the online

algorithms, looking up the results of any query from his bank of known query

results. We concern ourselves with trying to minimise the number of queries that he

must request in order to determine this ordering.

We begin by considering a singleton-scale, which returns a singleton output.

3.1 Singleton Output Scales

In this case, as in the online section on singleton output scales, the user is given

a (k, t) scale that accepts a k-set as input and returns the tth smallest element.

Again for simplicity we assume that t 6 k/2, if not then similar analysis follows,

occasionally replacing the word ‘smallest’ with ‘largest’ and, where we have

comments about filling the scale from the lower elements, instead filling it from the

largest.

We first note a trivial lower bound, namely there if there is any t-set that is not

included in a query then there are some orderings that the algorithm would not be

able to distinguish. This is because if the missed t-set comprised the first t elements

of the ordering then no element of it would ever be included in the output of any

set. Thus the user would not be able to tell which t− 1 subset of it formed S, and

which element was the lowest element of X \ S. The same applies if there was a

k − (t− 1)-tuple that was not included in any query, since it could form the largest

93

k − (t− 1) elements, and then the user would not be able to tell which was the

largest element of X \ L. As t 6 k/2 by assumption, this second set is larger, and so

there are more possible k − (t− 1) tuples than there are t-tuples. Hence this forms

the restriction that we appeal to. Noting that there are
(

k
k−(t−1)

)
(k− (t− 1))-sets in

any query, and as there are
(

n
k−(t−1)

)
k − (t− 1)-sets in total, this means that all

algorithms must contain at least the following number of queries

(
n

k−(t−1)

)(
k

k−(t−1)

) = O(nk−(t−1))

We shall show that, in fact, there are algorithms that use this order of number

of queries. We offer two for consideration, one that relies on recursively deducing

the results of all possible queries, and thus the ordering, the second of which is

direct and relies on determining the adjacencies of the ordering. We begin with the

recursive algorithm.

3.1.1 Recursive Algorithm

Our algorithm works by fixing some set of r-elements, Y := {y1, . . . , yr}, and

requesting all the queries that involve Y and a (k − r) set from X \ Y . We shall

show that, provided r is not too large, then from this the user can deduce the result

of an arbitrary query containing any (r − 1)-subset of Y . If this holds then, by

induction, the user can deduce the result of any query, and hence the full ordering.

We prove this inductive claim by induction on r, beginning with the case r = 1.

Theorem 36. If y is a fixed element and the results of all queries including y are

known, then the result of a query on any set {a1, . . . , ak} can be deduced.

Proof. Note that the claim is trivial if y ∈ {a1, . . . , ak}, as this would mean that this

exact query had taken place. So let us assume that y /∈ {a1, . . . , ak}. We wish to

deduce the value of at from queries of the form {y, a1, . . . , ak} \ {ai} for 1 ≤ i ≤ k.

94

We shall split into 4 cases for y and 3 cases for ai in relation to at, and count how

often we get various responses. These are summarised in the following grid:

Response

Multiplicity y < at−1 y ∈ (at−1, at) y ∈ (at, at+1) y > at+1

ai < at t− 1 at at y at+1

ai = at 1 at−1 y y at+1

ai > at k − t at−1 y at at

Now, when performing these queries we get all the results from some column.

So if, for example y < at−1, then we get at (t− 1) times and at−1 (1 + (k − t)) times.

We can establish which column by looking at the multiplicities of the answers - if we

have two different answers with multiplicities (t− 1) and (k − t+ 1) then we are in

one of the first two columns, and if we get multiplicities t and (k − t) then we are in

one of the last two columns. Further if we get the answer y for some of our queries

we are in the middle two columns, if not we are in the outside columns. Thus we

can determine which column we are in. Now by taking the result with the

appropriate multiplicity ((t− 1) in the first two columns, and (k − t) in the latter

two) we can tell the value of at, as required. We can summarise these in the

following associated table:

Case Multiplicities Mult. of at

y < at (t− 1, k − t+ 1) t− 1

y > at (t, k − t) k − t

The general case is somewhat tricky to see, as the case analysis gets very

detailed. Instead, we present the case for r = 2, which covers most of the concepts

that we appeal to, and then explain how the argument changes for a general r. The

95

first key point is that just taking the queries involving x and y would not by itself

be enough, as the user will also need to know which is larger out of x and y. But

the following lemma gives a simple way to do that

Lemma 37. Assume that we have a asymmetric scale. Let z1, . . . , zk+1 be (k + 1)

fixed elements of our set. By querying all the
(
k+1
k

)
subsets of them we can find two

of them x and y such that neither x nor y are in S ∪ L and we know x < y.

Proof. Relabelling these reference elements according to the ordering, we note that

any query of a subset of them will either return zt or zt+1. As these are possible

responses to queries, neither can be a member of S or L so we take these as our x

and y. It remains to show that the user can identify which is the smaller, but it is

clear that the user will receive the answer zt (k + 1− t) times, and zt+1 (t) times,

enabling him to distinguish them if t 6= k+1
2

. But this must hold, otherwise the scale

would be asymmetric, which contradicts our assumption.

We now need the next requirement, that given x and y, two fixed elements of

the set such that the user knows that x < y, and all the queries involving this pair,

the user can determine the results of any possible query, and hence as much of the

ordering as could ever be possible.

Theorem 38. If x and y are two fixed elements such that x < y and the results of

all queries including x and y are known then the result of a query on any set

{a1, . . . , ak} can be deduced.

Proof. Note that by Theorem 36 it suffices to show that we can find the result of

any query involving x and an arbitrary set of other elements, {a1, . . . , ak−1}. We

shall proceed on this basis. Relabelling them we can refer to such a set as

{b1, . . . , bk}, noting that x is now one of the {b}, say bi. We wish to establish how to

find which is bt from a set of queries in which we replace each of the b apart from bi

by y. The results for these queries – depending on whether the bj that y replaces is

96

smaller than, equal to or larger than bt – are summarised in the following table -

note that now the multiplicities vary according to the position of x = bi:

Multiplicities Responses

x < bt x = bt x > bt y < bt−1 y ∈ (bt−1, bt) y ∈ (bt, bt+1) y > bt+1

bj < bt t− 2 t− 1 t− 1 bt bt y bt+1

bj = bt 1 0 1 bt−1 y y bt+1

bj > bt k − t k − t k − t− 1 bt−1 y bt bt

We can again combine multiplicities according to y < bt and y > bt. At first this

looks like it won’t let us differentiate options, as we get some situations with the

same multiplicities:

Case Multiplicities Mult. of at

y < bt

x < bt (t− 2, k − t+ 1) t− 2

x = bt (t− 1, k − t) t− 1

x > bt (t− 1, k − t) t− 1

y > bt

x < bt (t− 1, k − t) k − t

x = bt (t− 1, k − t) k − t

x > bt (t, k − t− 1) k − t− 1

However we can see that this doesn’t matter. Firstly the 2nd and 3rd rows of the

above table are impossible, as our initial assumption was that x < y, so we can

remove those. Secondly, we note that of the remaining 4 situations although 2 have

the same multiplicities, in either of those two cases we just take the solution with

multiplicity k − t and conclude that this is bt. Hence we can identify bt for any

arbitrary set of elements {b1, . . . , bk} such that x is one of them, and hence by

Theorem 36 we can determine the order of the full set.

97

We now give our method for the case r = 2. The user first picks a set of size

k + 1, and requests all the queries involving k of those – note that there are (k + 1)

of these. By Lemma 37 this will find him a pair x and y from this set such that he

knows x < y. He also considers all possible 2-tuples from this k + 1 set, and for each

pair requests all queries involving that pair. This means that, in particular, even

though he is carries out these queries offline he will know the results of all possible

queries involving x and y. In total this requires an additional (k + 1) +
(
k+1

2

)(
n−2
k−2

)
queries, which is of the same order as

(
n−2
k−2

)
, and hence O(nk−2). But by Theorem

38 from these he can deduce the result of any query involving just one of x and y,

and hence by Theorem 36 he can determine as much of the ordering as he could

have hoped.

As advertised, we shall not give the full explicit argument for general r, as the

analysis is tedious and not much more enlightening than the r = 2 case. We shall

instead explain how to modify the r = 2 case. The first part is simple enough -

carrying out all the possible probes on a k + 1 set guaranteed us a pair of elements

x, y such that we knew their internal ordering. In general, carrying out all the

probes on some (k + r − 1) set guarantees us a set of r elements which we can

completely order from these probes – this is simply seen by just taking those as our

whole universe and using any argument such as that outlined in the online cases.

The notation for the other part gets more involved. We require the following

statement by induction. Let {x1, . . . , xr} be our reference set which we know the

complete ordering of. We want to be able to say that we can deduce the value of

some query involving the first (r − 1) of the reference set and some set of elements

{a1, . . . , ak−r+1} by considering all the queries containing the full r elements of the

reference set and some (k − r) subset of the ai’s. Let us relabel the set

{x1, . . . , xr−1, a1, . . . , ak−r+1} as {b1, . . . , bk}, so that some of the b are taken from

x-elements and some from a-elements. We shall then consider all the queries in

98

which we replace one of the a-elements by xr. Note that when counting

multiplicities we must consider where bt lies relative to our reference set – i.e. how

many of them are below it, and whether or not one of them is bt. This gives rise to

the following table of multiplicities, we have omitted the right-hand four columns as

they are again the same as the above.

of reference set smaller than bt

(r − 1) < bt (r − 1) ≤ bt (r − 2) < bt (r − 2) ≤ bt · · ·

bj < bt t− r t− r + 1 t− r + 1 t− r + 2 · · ·

bj = bt 1 0 1 0 · · ·

bj > bt k − t k − t k − t− 1 k − t− 1 · · ·

of reference set smaller than bt

· · · 2 ≤ bt 1 < bt 1 = bt 0 < bt

bj < bt · · · t− 2 t− 2 t− 1 t− 1

bj = bt · · · 0 1 0 1

bj > bt · · · k − t− r + 3 k − t− r + 2 k − t− r + 2 k − t− r + 1

This then gives rise to the following table of multiplicities, where the lefthand

column again corresponds to the number of reference elements below or equal to bt.

99

Case Multiplicities Mult. of at

xr < bt

(r − 1) < bt (t− r, k − t+ 1) t− r

(r − 1) ≤ bt (t− r + 1, k − t) t− r + 1

(r − 2) < bt (t− r + 1, k − t) t− r + 1

...
...

...

1 < bt (t− 2, k − t− r + 3) t− 1

1 = bt (t− 1, k − t− r + 2) t− 1

0 < bt (t− 1, k − t− r + 2) t− 1

xr > bt

(r − 1) < bt (t− r + 1, k − t) k − t

(r − 1) ≤ bt (t− r + 1, k − t) k − t

(r − 2) < bt (t− r + 2, k − t− 1) k − t− 1

...
...

...

1 < bt (t− 1, k − t− r + 2) k − t− r + 2

1 = bt (t− 1, k − t− r + 2) k − t− r + 2

0 < bt (t, k − t− r + 1) k − t− r + 1

Again we can eliminate a large number of these situations. As we took xr to be

the maximum of the fixed reference elements, in the first half of this table all but

the top row disappear, since if xr is the largest and xr < bt then all the other (r− 1)

of them must also be less than bt. In the second half each multiplicity is repeated

twice, but we note that this doesn’t affect our analysis as this is coming from

separately counting the case where bt is one of our reference elements and where it

isn’t. This however doesn’t matter, as all we are interested in is the value of bt, and

either way we take the answer with the larger multiplicity (i.e. the second, as

t < k
2
), and so recover bt.

This works all the way down to r = t− 1. However when r = t this no longer

works, as you could be unlucky and pick as your fixed elements S together with the

100

smallest element left in the set. Then every probe would just give xr as it will be

the tth element of any query. This is equivalent to noting in the above analysis that

if all the first (r − 1) are less than bt then if xr < bt you’ll end up trying to pick the

element with multiplicity 0, which doesn’t exist. Hence in this case you won’t be

able to identify bt.

This matches the lower bound that we expect, so we conclude that this gives an

construction requiring
(
k+t−2
k

)
+
(
k+t−2
t−1

)
·
(
n−t+1
k−t+1

)
steps to sort the set,

(
k+t−2
k

)
to find

a fixed reference set of size (t− 1) that we can fully order and then
(
n−t+1
k−t+1

)
further

steps to carry out all possible queries with each possible set of (t− 1) fixed

elements. This is O(nk−t+1) as required.

3.1.2 Adjacency algorithm

The key concept behind the second algorithm that we present is that of knowing

which elements are next to which in the ordering. We begin with the following

observation, which states that this would be sufficient to determine the full ordering

of the element set.

Observation 39. Let X := {x1, . . . , xn} be a set of ordered elements, with the

ordering being fixed but unknown to a user. Assume that the user knows which

elements are adjacent to which others, i.e. he is given a map φ : X → X(2) such that

φ(xi) =


{xi−1, xi+1} i /∈ {1, n}

{x2} i = 1

{xn−1} i = n

Then the user can deduce the ordering of the element set, up to reflection.

Proof. Note that only 2 elements only have 1 neighbour, namely x1 and xn. Hence

the user can identify this pair easily. He picks one, and assumes it is x1. He then

proceeds iteratively – assume he has identified x1, . . . , xr up to some number

101

1 6 r < n. He finds xr+1 by seeking elements who have xr as a neighbour – there

are at most two, at most one of which is xr−1 which he has already identified if it

exists. He takes the other one as xr+1, and thus extends the ordering. He can repeat

this until he finally finds xn, and ends up either with the correct ordering or, if his

initial choice of x1 was incorrect, the reflection of it.

Hence it suffices to find a full list of the adjacencies to determine the ordering

up to reflection. Note that, having done so if the instrument is asymmetric then any

single query’s result will determine which of the two possible orderings the user has,

and if the instrument was symmetric then this would be the best he could have

hoped for anyway. As ever, a full list will not be possible, but he can try to find all

the adjacencies within X \ (S ∪ L). To do this the user will eliminate possible

adjacencies for each element until only the actual adjacencies remain – and then

appeal to the above observation to determine the ordering.

We suggest the following approach. Consider two elements from X \ (S ∪ L), x

and y where x and y are adjacent. If any query returns the response x and then the

same query is attempted with x replaced by y, then the second query must return

the element y. Alternatively consider the situation where we have three elements, a,

b and c, all taken from X \ (S ∪ L), with a < b < c, and as of yet the user does not

know anything about their adjacencies. Consider a query of the form

{x1, . . . , xk−2} ∪ {a, b} which returns the output a. This means that a query of

{x1, . . . , xk−2} ∪ {c, b}, with a replaced by c, cannot return a response of c since it

would pick up b first. Hence if he carries out these two queries he will know that a

cannot be adjacent to c - if it was by the first comment c would have had to be the

response of the second query. However the existence of b between a and c ensures

that the second query will not return c.

This motivates our approach – the user seeks a set of queries such that, for any

triple (a, b, c) such that all three lie in X \ (S ∪ L) with a < b < c he can find some

102

query containing a and b that returns a, and the same query with c replacing a. It

suffices to fix some reference set of size t− 1, which we call y1, . . . , yt−1, and take all

queries that contain these elements. If a, b, and c are all from X \ (S ∪ L), with

a < b < c, then as at most t− 1 of the fixed elements {yi} are less than a, the query

that consists of these reference elements, a, b, enough elements from S to ensure

that a is the tth smallest and the remaining elements from L will return a.

Provided that a and c are not in this fixed reference set, as we include all

possible queries containing the y1, . . . , yt−1, the user will also see the result of the

same query with a replaced by c, and will then be able to conclude that a is not

adjacent to c. He will be able to do this for all the remaining c in X \ (S ∪ L), and

thus be able to eliminate all of a’s non-neighbours. He will be left with a’s

neighbours, and thus be able to deduce them.

If a or c are in the reference set, then this will not work. However we can

circumvent this by carrying out three sets of queries, with disjoint fixed reference

sets each time. Then, for any non-adjacent pair a and c, one of the three sets of

queries must have neither a nor c in its reference set. Hence in at least one set of

queries the fact that a and c are not adjacent will be revealed. Since the user will

discover this for all the elements in X \ (S ∪ L) which are not adjacent to a, he will

be left with those that are, and thus will be able to determine the ordering using

Observation 39.

We note that this takes 3
(
n−(t−1)
k−(t−1)

)
, which is again O(nk−(t−1)) queries, but with

a much improved constant factor over the previous recursive structure. It is also

computationally less complicated, taking approximately n2 calculations to eliminate

all the non-adjacencies, and then a linear number of steps to rebuild the ordering,

while the previous method required potentially reconstructing all the
(
n
k

)
queries, a

considerably larger task.

103

3.2 Multiple Output Scales

The question now arises of which of these algorithms also works in the

Multiple-Output case, where the user is given a (k, t1, . . . , ts) scale as in the online

analogue, and asked to determine the ordering. The authors note that the recursive

algorithm was computationally and conceptually complicated even in the singleton

output case – although we suspect it is possible to also use it for multiple output

scales, the case analysis would make such an approach exceptionally tedious.

However the adjacency based algorithm works almost immediately with almost no

modifications. Since it just relies on showing that certain things would have to be

included in the output if certain adjacencies existed, the same remains true even if

the scale returns more elements. The only change required is that the fixed reference

set is of a different size – before it contained at most t members, now it must

contain at most the maximum of ts − 1 and k − t1 elements. This just ensures that

the fixed reference elements don’t take up so much of the scale that it’s possible for

every query containing them to only give an output consisting of members of the

reference set. That established, the same analysis as before works, and so such an

instrument can determine the ordering in at most the following number of queries

3 max

{(
n− (ts − 1)

k − (ts − 1)

)
,

(
n− (k − t1)

t1

)}

104

REFERENCES

[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math.

8 (1984), 1–11.

[2] B. Bollobás, G. Kun and I. Leader, Cops and robbers in a random graph, J.

Comb. Theory, Ser. B 103 (2013), 226 – 236.

[3] J. Carraher, I. Choi, M. Delcourt, L.H. Erickson and D.B. West, Locating a

robber on a graph via distance scans, Theoretical Comp. Sci. 463 (2012), 54–61.

[4] N. E. Clarke and R. J. Nowakowski, Cops, robber, and photo radar, Ars

Combin. 56 (2000), 97–103.

[5] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs,

Discrete Appl. Math. 17 (1987), 301–305.

[6] J. Haslegrave, An evasion game on a graph, Discrete Math. 314 (2014), 1–5.

[7] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin.

2 (1976), 191–195.

[8] T. Luczak and P. Pra lat, Chasing robbers on random graphs: Zigzag theorem,

Random Structures & Algorithms 37 (2010) 516 – 524.

[9] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete

Math. 43 (1983), 235–239.

[10] S. Seager, Locating a robber on a graph, Discrete Math. 312 (2012), 3265–3269.

[11] S. Seager, Locating a Backtracking Robber on a Tree, Theoretical Computer

Science (2014), to appear

[12] P. J. Slater, Leaves of trees, Proc. Sixth Southeastern Conf. Combin., Graph

Theory, Computing in Congressus Numer. 14 (1975), 549–559.

105

	Searching and Sorting Algorithms
	Recommended Citation

	Acknowledgements
	List of Figures
	Introduction
	I The Robber Locating Game
	Formal Description of the Robber Locating Game
	Preliminary Results
	Subdivisions of finite graphs
	Complete graphs
	Bipartite graphs
	General graphs

	Subdividing Infinite Graphs
	Location Number and Maximum Degree
	Subgraph Characterisations
	Locatability and Colourability

	II Sorting Algorithms
	Introduction to Sorting Algorithms
	Online Algorithms
	Singleton Output Scales
	Multiple output instruments

	Offline Algorithms
	Singleton Output Scales
	Recursive Algorithm
	Adjacency algorithm

	Multiple Output Scales

