

warwick.ac.uk/lib-publications

Original citation:
Haslegrave, John, Johnson, Richard and Koch, Sebastian. (2016) Subdivisions in the Robber
Locating game. Discrete Mathematics, 339 (11). pp. 2804-2811.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/80033

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42623755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/80033
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Subdivisions in the Robber Locating game

John Haslegrave1, Richard A. B. Johnson2, Sebastian Koch3

April 1, 2016

Abstract

We consider a game in which a cop searches for a moving robber on a
graph using distance probes, which is a slight variation on one introduced
by Seager. Carragher, Choi, Delcourt, Erickson and West showed that
for any n-vertex graph G there is a winning strategy for the cop on the
graph G1/m obtained by replacing each edge of G by a path of length m, if
m > n. They conjectured that this bound was best possible for complete
graphs, but the present authors showed that in fact the cop wins on K

1/m
n

if and only if m > n/2, for all but a few small values of n. In this paper we
extend this result to general graphs by proving that the cop has a winning
strategy on G1/m provided m > n/2 for all but a few small values of n;
this bound is best possible. We also consider replacing the edges of G
with paths of varying lengths.

1 Introduction

Pursuit and evasion games on graphs have been widely studied, beginning with
the introduction by Parsons [11] of a game where a fixed number of searchers
try to find a lost spelunker in a dark cave. The searchers cannot tell where the
target is, and aim to move around the vertices and edges of the graph in such
a way that one of them must eventually encounter him. The spelunker may
move around the graph in an arbitrary fashion, and in the worst case may be
regarded as an antagonist who knows the searchers’ positions and is trying to
escape them.

The best-known variant is the classical Cops and Robbers game, introduced
by Quillot [12], and independently in a paper of Nowakowski and Winkler [10]
(where it is attributed to G. Gabor). Unlike the Lost Spelunker game, Cops
and Robbers is played with perfect information, so that at any time each of
the agents knows the location of all others. A fixed number of cops take up
positions on vertices of a connected graph and a robber then starts on any
unoccupied vertex. The cops and the robber take turns: at his turn the robber
may move to any adjacent vertex or remain where he is, and at their turn all
cops simultaneously make moves of this form. The cops win if at any point one
of them reaches the robber’s location. On a particular graph G the question is
whether a given number of cops have a strategy which is guaranteed to win, or

1University of Sheffield, Sheffield, UK. j.haslegrave@cantab.net
2University of Memphis, Memphis TN, USA. rabjohnson@gmail.com
3University of Cambridge, Cambridge, UK. sk629@cam.ac.uk

1

whether there is a strategy for the robber which will allow him to evade capture
indefinitely. The cop number of a graph is the minimum number of cops that
can guarantee to catch the robber.

Early results on this game include those obtained by Nowakowski and Win-
kler [10], who categorised the graphs of cop number 1, and Aigner and Fromme
[1], who showed that every planar graph has cop number at most 3. An im-
portant open problem is Meyniel’s conjecture, published by Frankl [5], that the
cop number of any n-vertex connected graph is at most O(

√
n) – this has been

shown to be true up to a log(n) factor for random graphs by Bollobás, Kun
and Leader [2], following which Luczak and Pra lat improved the error term [9].
More recently several variations on the game have been analysed by Clarke and
Nowakowski (e.g. [4]).

In this paper we consider the Robber Locating game, introduced in a slightly
different form by Seager [13] and further studied by Carragher, Choi, Delcourt,
Erickson and West [3]. Like the Lost Spelunker game, the focus is on locating
a hidden target, but, like Cops and Robbers, the target is a robber who moves
around the vertices in discrete steps. There is a single cop, who is not on the
graph but can probe vertices and receive information about how far away the
robber is (in terms of the normal graph distance) from the vertex probed. For
ease of reading we shall refer to the cop as female and the robber as male.
The robber initially occupies any vertex. Each round consists of a move for the
robber, in which he may move to an adjacent vertex or stay where he is, followed
by a probe of any vertex by the cop. The cop then wins immediately if she is
able to determine the robber’s current location from the results of that probe
and previous ones. This game may be viewed as a variant of the Sequential
Locating game, also studied by Seager [14], with the difference between the
two being that in the Robber Locating game the target can move about the
graph; in both games the choice of probe made may depend on the results
of previous probes. If we instead require all the probes to be chosen at once
(with a stationary target), we recover the Graph Locating game, independently
introduced by Slater [16] and by Harary and Melter [6].

In games with a stationary target, the searcher can guarantee to win eventu-
ally, simply by probing every vertex, and the natural question is the minimum
number of probes required to guarantee victory on a given graph G. For the
Graph Locating game, this is the metric dimension of G, written µ(G). In the
Robber Locating game, by contrast, it is not necessarily true that the cop can
guarantee to win in any number of probes. Consequently the primary question
in this setting is whether, for a given graph G, the cop can guarantee victory
in bounded time on G, or equivalently whether she can catch a robber who has
full knowledge of her strategy. We say that a graph is locatable if she can do
this and non-locatable otherwise.

In the game as introduced by Seager there was an additional rule that the
robber cannot move to the vertex probed in the previous round (the no-backtrack
condition). Carragher et al. considered the game without this restriction, as do
we, and Seager also considered the version without the no-backtrack rule for
trees [15]. A similar game in which the searcher wins only if she probes the
current location of the target and receives no information otherwise, but the
target must move at each turn, was recently analysed by one of the authors [7].

The main result of Carragher et al. [3] is that for any graph G a sufficiently
large equal-length subdivision of G is locatable. Formally, write G1/m for the

2

graph obtained by replacing each edge of G by a path of length m, adding
m − 1 new vertices for each such path. Carragher et al. proved that G1/m is
locatable whenever m > min{|V (G)|, 1 + max{µ(G) + 2µ(G),∆(G)}}. In most
graphs this bound is simply |V (G)|, and they conjectured that this was best

possible for complete graphs, i.e. that K
1/m
n is locatable if and only if m > n.

The present authors [8] showed that in fact K
1/m
n is locatable if and only if

m > n/2, for every n > 11. In this paper we show that the same improvement
may be obtained in general: provided |V (G)| > 23, G1/m is locatable whenever

m > |V (G)|/2. This bound is best possible, since K
1/m
n is not locatable if

m = (n − 1)/2, and some lower bound on |V (G)| is required for it to hold,

since K
1/5
10 is not locatable [8]. These results, and those of Carragher et al.,

fundamentally depend on taking equal-length subdivisions; in the final section
of this paper we show that an unequal subdivision is also locatable provided
every edge is subdivided by at least a certain amount.

2 Subdivisions and maximal matchings

Recall that G1/m is the graph obtained by replacing each edge of G with a path
of length m through new vertices. Each such path is called a thread, and a
branch vertex in G1/m is a vertex that corresponds to a vertex of G. We write
u · · · v for the thread between branch vertices u and v. We use “a vertex on
u · · · v” to mean any of the m + 1 vertices of the thread, but “a vertex inside
u · · · v” excludes u and v.

Our basic strategy to locate the robber on sufficiently large equal-length
subdivisions of G is to ensure the following.

(1) Whenever the robber is at a branch vertex, the probe we make reveals that
fact.

(2) If the robber ever spends r turns without visiting a branch vertex, we es-
tablish which thread he is inside and then can win on the next turn, where
r depends only on G.

(3) If, when the robber visits a branch vertex, there is more than one possibility
for his location, we can ensure that by the next time he is at a branch vertex
we reduce the set of possibilities to a simpler set.

(1) and (2) above are sufficient to ensure that G1/m is locatable for sufficiently
large m, since if m > r the robber can only ever visit one branch vertex without
being caught, and we can eventually find which one it is. For smaller m the
robber may be able to visit several branch vertices, so to get a better bound we
need a way to progressively reduce the possibilities as in (3). This reduction is
not necessarily to a smaller set but we ensure that only a bounded number of
reductions can occur (and, by (2), each takes bounded time) before we reach
a singleton set. Note that the reduction occurs by the next time the robber is
at a branch vertex, even if this is because he stays at his current branch vertex
until the next turn.

To get a bound of close to |V (G)|/2, roughly speaking, our strategy is that
in between the robber’s visits to branch vertices we aim to eliminate possible

3

destinations in pairs. To do this we must probe inside threads, aiming to elimi-
nate both ends of the thread. This approach is simplified in the case of complete
graphs, analysed extensively in [8], by the knowledge that any pair of branch
vertices has a thread between them. In the general case we need some knowl-
edge of the structure of G. To that end we will, so far as this is possible, divide
the vertices of G into adjacent pairs. So we take a maximal matching in G, and
we will get a bound which depends on the size of that maximal matching.

Throughout this section, fix a connected graph G with n vertices, and let
M be a maximal matching. Write k for |M | and X for V (G) \ V (M); since
M is maximal, X is an independent set. Note that M must be maximal, i.e.
unextendable, but need not be a maximum-size matching.

Theorem 1. If m > k + 1 and m > 12, G1/m is locatable.

The bound m > k + 1 is best possible: K2k+1 has a maximal matching of

size k, but K
1/k
2k+1 is not locatable ([8], Theorem 3).

If m is odd, let t = (m− 1)/2. We use the word “midpoint” to refer to the
vertex at distance m/2 from each end of a thread if m is even, and either of the
two vertices at distance t from one end if m is odd. If m is odd, we also use
the term “off-midpoint” to refer to either vertex at distance t− 1 from one end
and t+ 2 from the other. Note that probing a branch vertex will establish the
robber’s exact distance to his nearest branch vertex (by considering the result
mod m). Probing a midpoint will also establish the robber’s exact distance to
the nearest branch vertex when m is even, but when m is odd it will only give
this distance within two consecutive possibilities. This uncertainty makes the
odd case significantly more complicated. In particular, note that point 1 above
can be assured by probing branch vertices and midpoints when m is even, but
only by probing branch vertices when m is odd. For this reason our strategy
reverts to probing branch vertices whenever it is possible, given the results of
previous probes, that the robber is at a branch vertex. (This is not necessary
when m is even, but we present a strategy which will work in either case rather
than considering the two cases separately.) For the remainder of this section we
assume that m > k + 1 and m > 12.

Before giving the proof of Theorem 1 we prove some preparatory lemmas.

Lemma 2. Suppose that, immediately following some probe, we know that the
robber is on a thread between u and a vertex in Z, where u is any specified vertex
and Z ⊆ X. Then there is a strategy that will, within |Z| steps and by the next
time the robber reaches a branch vertex, either win or identify that he is in Z.

Proof. We may ignore any vertices in Z which do not have threads leading to
u. Simply probe the remaining vertices of Z in turn. If the robber reaches
a branch vertex, we will identify whether it is the one just probed (distance
0), u (distance m), or some other vertex in Z (distance a higher multiple of
m, since no threads go between vertices in X). If he does not reach a branch
vertex within |Z| turns then we will have probed one end of the thread he is on
(identified by getting a result between 0 and m) and so located him (since the
other end is known to be u).

Lemma 3. Suppose that, immediately following some probe, we know that the
robber is adjacent to a branch vertex. Write x for the unknown branch vertex

4

he is adjacent to. Let v be any vertex and w1w
′
1, . . . , wk−2w

′
k−2 be a set of k− 2

edges of G. Then it is possible to make at most 2k−3 probes in such a way that

(i) if the robber is at a branch vertex for one of these probes, then the cop
identifies this fact and that branch vertex must be x;

(ii) otherwise, for each of the sets {v}, {w1, w
′
1}, . . . , {wk−2, w′k−2} in turn, the

cop identifies how many endpoints of the robber’s current thread are in that
set.

Proof. We start by probing v. This establishes whether the robber is at x,
distance 1 from x or distance 2 from x. If the robber is at x then we are
done by (i). Otherwise he is inside a thread and the first probe also establishes
whether that thread meets v. We now consider w1w

′
1, . . . , wk−2w

′
k−2 in order.

For each thread wi · · ·w′i, we either probe a vertex near the middle or probe
both endpoints in turn. We do the former unless it is possible (given previous
probe results) that the robber is at a branch vertex by the time of this probe.
When probing a vertex near the middle, we use a midpoint unless m is odd,
m = k + 1, i = t, and the result of the previous probe was consistent with the
robber being at distance t+ 1 from x and with him being at distance t− 1 from
x at that time; in this specific case we use an off-midpoint. We refer to the
probe or probes on wi · · ·w′i as “stage i”.

First we analyse the case where we probe an off-midpoint. If we do this,
m must be odd and the previous probe must have been at a midpoint, since
if it were at a branch vertex there would be no uncertainty about the robber’s
distance to the nearest branch vertex. In order for the result of the previous
probe to meet the conditions for us to probe an off-midpoint, it must be ±1 (mod
m), since if it were a multiple of m then the robber being t − 1 steps from a
branch vertex would be impossible and if it were anything else then the robber
being t + 1 steps from a branch vertex would be impossible. Consequently,
at the time of the previous probe the robber was at a midpoint or one step
away from a midpoint. We now probe the off-midpoint of wt · · ·w′t, and at this
point the robber can be at most two steps from a midpoint. So if he is on
wt · · ·w′t the distance returned is at most 4, if he is on an adjacent thread it is
in {2t− 3, . . . , 2t+ 5}, i.e. in {m− 4, . . . ,m+ 4}, and if he is anywhere else it is
at least 2m− 4. Since m is odd we must have m > 13, and we will successfully
distinguish these possibilities.

Likewise, if we probe a midpoint of a thread and get a result r then, since we
know the robber cannot be at a branch vertex, r 6 t if he is inside the probed
thread, t + 1 6 r 6 t + m if he is inside an adjacent thread, and r > t + m
otherwise. Therefore, by this method we establish in stage i whether the robber
has reached a branch vertex and, if not, whether he is on a thread ending in wi
or w′i (and whether he is on wi · · ·w′i). It remains to prove that if the robber is
at a branch vertex for one of these probes then that vertex is x.

We claim that at each probe in stage i the robber’s distance from x is at most
i + 2, and that equality is possible for stage i only if i 6 2 or we had equality
for the final probe in stage i− 1; this is sufficient since i+ 2 6 k < m. If i = 1
then the previous probe was at v and established the robber’s exact distance
from x; if this was 2 then we need only one additional probe for w1 · · ·w′1 and
if it was 1 we need two additional probes. So the claim is true for i = 1. For
i ∈ {2, . . . k − 3} we proceed by induction. The robber’s distance from x was

5

at most i + 1 at the time of the previous probe. If the previous probe was
consistent with him being at distance 1 from a branch vertex, then he must
have been distance at most 2 from a branch vertex; since i+ 1 6 k− 2 < m− 2,
his distance from x was at most 2, and so for each of the two probes required
for this stage it is at most 4 6 i + 2; if i > 2 the inequality is strict. If the
previous probe was not consistent with him being next to a branch vertex, we
only require one probe for this stage so the robber’s distance from x when we
make this probe is at most i+ 2, and it is less unless there was equality for the
previous probe.

Finally, for i = k − 2, we again know that the robber’s distance from x was
at most k − 1 at the time of the previous probe. Again, if the result of the
previous probe was consistent with him being next to a branch vertex he must
in fact have been within two steps from a branch vertex (and, if exactly two
steps away, m must be odd). Suppose he was two steps from a branch vertex
other than x, i.e. at distance k − 1 from x. In this case, the previous probes
must be consistent with him being at distance i + 2 at the end of stage i for
every i. If the result of stage t− 1 was inconsistent with him being t− 1 away
from x then (since it was consistent with him being t+ 1 away) the robber was
at least t away from x at that point, and we therefore know he is not adjacent
to a branch vertex at the end of stage k − 3. Conversely, if the result of stage
t− 1 was consistent with the robber being t− 1 from x at the end of that stage,
then we probed an off-midpoint at stage t. When we probed the off-midpoint,
the robber must have been at distance t + 2 from x and so the result of that
probe (mod m) would be in {0,±3}. If he had been at distance t − 2 from x,
the result would have been in {±1,±4}, so we can eliminate this possibility.
Consequently, if the robber is at distance k − 1 at the end of stage k − 3 then
we will know that he is not adjacent to a branch vertex, and so we only use one
probe for stage k − 2 and his distance from x is at most k when we make it, as
required. Otherwise, even if we use two probes for stage k − 2, his distance at
each of them is at most k. This proves the claim.

Lemma 4. Suppose that, immediately following some probe, we know that the
robber is at the vertex at distance 1 from Z on a thread between a vertex in
V (M) \ {a} and a vertex in Z, where Z ⊆ X and a ∈ V (M). Then there is
a strategy that will, within 2k − 2 + |Z| steps and by the next time the robber
reaches a branch vertex, either win or identify that he is in Z.

Proof. If k = 1 then V (M) \ {a} = {a′}, and so the result is true by Lemma 2.
Otherwise, choose any bb′ ∈M not equal to aa′, and take v = a′ and w1w

′
1, . . . ,

wk−2w
′
k−2 to be the edges in M other than aa′ and bb′. Now we probe as in

Lemma 3, stopping if we identify that the robber is at a branch vertex or if any
probe indicates that he is on an adjacent thread. By Lemma 3, this takes at
most 2k−3 probes, and if he reaches a branch vertex we have identified that he
is in Z. If none of the probes indicate that he is in Z or on an adjacent thread
to the one probed then he must be on a thread adjacent to b · · · b′ (since one
end of his thread is outside X).

Consequently, within 2k − 3 probes, we have identified, at the time of the
last probe, either that the robber was in Z or that he was inside a thread
leading from Z to either c or c′ for some cc′ ∈ M (perhaps only one of these
is actually possible). In the latter case the result of the last probe either told

6

us that the robber was distance at most 2 from the nearest branch vertex or
that he was distance at least 2 from the nearest branch vertex. If we know he
was not adjacent to a branch vertex then we may probe c to establish whether
he is inside a thread leading to c or to c′, and then we are done in at most |Z|
additional steps by Lemma 2. If not then probe the vertex at distance 4 from c
along c · · · c′. If the robber is now in Z, this will return m+ 4 or 2m− 4. If he
is at c or c′ then it will return 4 or m − 4 respectively. If he is inside a thread
leading to c then it will return a result in {5, 6, 7,m + 1,m + 2,m + 3} and if
he is inside a thread leading to c′ then it will return a result in {m − 3,m −
2,m− 1,m+ 5,m+ 6,m+ 7, 2m− 7, 2m− 6, 2m− 5}. Since m > 12 these five
possibilities are all distinguished, so either we are done immediately or within
|Z| additional steps by Lemma 2.

Lemma 5. Suppose that, immediately following some probe, we know that the
robber is at the vertex at distance 1 from a on a thread not leading to a′, where
aa′ ∈ M . Then there is a strategy that will, within 2k − 2 + |X| steps and by
the next time the robber reaches a branch vertex, either win or identify that he
is in X.

Proof. The strategy here proceeds in much the same way as for Lemma 4. If
k = 1 then the robber is on a thread between a and X and we are done by
Lemma 2. Otherwise, choose any bb′ ∈ M not equal to aa′, take v = b and
w1w

′
1, . . . , wk−2w

′
k−2 to be the edges in M other than aa′ and bb′, and proceed

as in Lemma 3.
If a probe reveals at stage i that the robber is on an adjacent thread, interrupt

the process. If we know which thread he is on, we can win by probing either
end; if not we know he is on a · · ·wi or a · · ·w′i, and from the result of the last
probe we also know either that he not adjacent to a or that he is not adjacent
to the other end. Consequently, probing wi will either win or identify that he
is inside a · · ·w′i, and in the latter case we can now win by probing either end.

If this does not happen, and we do not establish that the robber has returned
to a, then at the time of the last probe the robber was inside a thread leading
to b′ or to some vertex in X. If there is no thread a · · · b′ then we are done by
Lemma 2, so we assume that there is. We know from the result of the last probe
either that his distance to the nearest branch vertex was at least 2 or that it
was at most 2 (and at most 1 if m is even). In the former case we probe b′; this
wins if he is on a · · · b′ and we are done by Lemma 2 if not. In the latter case
we probe the vertex at distance 3 from a along the thread a · · · b′. If the robber
is at a the result will be 3, if he is at b′ it will be m− 3, and if he is in X it will
be m+3. If he is inside a · · · b′, the result will be in {0, 1, 2,m−6,m−5,m−4}
({1, 2,m− 5,m− 4} if m is even) and if he is inside a thread between a and X
it will be in {4, 5, 6,m,m+ 1,m+ 2} ({4, 5,m+ 1,m+ 2} if m is even). Since
m > 12 these possibilities are distinguished, and we have either won, established
that he is in X, or are done by Lemma 2.

We are now ready to combine these elements into a complete strategy to
locate the robber.

Proof of Theorem 1. We describe a winning strategy for the cop. First, probe
branch vertices in turn until the answer reveals that the robber is at a branch

7

vertex. Either this eventually happens or he remains inside a single thread, in
which case we eventually identify both ends and win.

Suppose that we know, on receiving the distance from some probe, that the
robber’s current location is in a set A∪ Y of branch vertices, where A ⊆ V (M)
and Y ⊆ X. We show that, by the time the robber next reaches a branch vertex
and within time n+ 2,

(i) if A = ∅, we either locate him or reach a point where he is known to be
in a smaller set Y ′ ⊂ Y ;

(ii) if A = {a} or A = {a, a′}, where aa′ ∈M , we either locate him or reduce
to (i);

(iii) otherwise we either locate him, reduce to (i) or (ii), or reach a point where
he is known to be in a smaller set A′ ∪ Y with A′ ⊂ A.

Note that when we reduce to an earlier case the number of candidate vertices
in X may increase; for instance, going from knowing he is in {a, a′} to knowing
he is in X is a valid reduction.

In case (i), pick a vertex y ∈ Y and probe a neighbour of y, i.e. a vertex
on y · · · a for some a ∈ V (M). If the response is 0 or 1 the robber is caught.
If it is 2 we know the robber is one step away from y heading for some vertex
in V (M) \ {a}. Setting Z = {y} in Lemma 4, we can win in time 2k − 1 (and
by the time he next reaches a branch vertex). If the response is larger, we will
take Y ′ = Y \ {y}. If the response is 2m − 2 we know the robber is one step
away from some vertex in Y ′ on a thread leading to a, and so we can win or
reach a position where the robber is known to be in Y ′ in the required time by
Lemma 2. If the response is ±1 mod m (but not 1), the robber is known to
be in Y ′ and we are done. The only other possibility is that the answer is 0 or
±2 mod m, but larger than 2m − 2, in which case the robber is known to be
one step from a vertex in Y ′, on a thread which does not lead to a. Now, by
Lemma 4, we can win or reach a point where he is known to be in Y ′ within
the required time.

In case (ii), probe the vertex at distance 2 from a on a · · · a′. If the response
is 1, 2, m − 3 or m − 2, we have won. If it is 3 then we know the robber is
one step from a on a thread not leading to a′, and if it is m− 1 then we know
he is one step from a′ on a thread not leading to a; in either of these cases we
are done by Lemma 5. If the response is m + 1 then the robber is on a thread
between Y and a, and we are done by Lemma 2. If it is greater than m+ 1 and
±2 mod m, the robber is in Y and so we are done. Finally, if the response is
greater than m+ 1 and not ±2 mod m then the robber must be one step from
a vertex in Y on a thread not leading to a, so we are done by Lemma 4.

In case (iii), first choose some aa′ ∈ M such that a ∈ A and probe a. If
the result is 0 we have won and if it is any higher multiple of m we know the
robber is in Y ∪A \ {a}, so are done. Otherwise we either know that the robber
is adjacent to a or that he is adjacent to a vertex in Y ∪ A \ {a}. Now choose
any bb′ ∈M not equal to aa′, take v = a′ and w1 · · ·w′1, . . . , wk−2 · · ·w′k−2 to be
the threads corresponding to edges in M other than aa′ and bb′, and proceed
as in Lemma 3. If the robber returns to a branch vertex, either we know it
is a and have won, or we know it is in Y ∪ A \ {a} and are done. If he does
not, we establish whether the robber is on a thread containing a or a′, and for

8

each wi · · ·w′i in turn we establish whether he is on that thread, on an adjacent
thread, or elsewhere.

If one of these probes locates the robber’s thread exactly then we interrupt
the process and probe either end of that thread to win. If, for some i and some
branch vertex u, we establish that one end of the robber’s thread is u and the
other is wi or w′i, then, since the previous probe was either at u or a midpoint
or off-midpoint of wi · · ·w′i, the result of that probe can be consistent with the
robber being adjacent to u or with him being adjacent to the other end of his
thread, but not both. So we interrupt the process and probe wi. If the result is
m we know whether the robber is at u or w′i, so have won; if it is less than m
we have located him on u · · ·wi and if it is more than m he is on u · · ·w′i and
we can locate him by probing u.

If we establish that one end of the robber’s thread is wi or w′i and the other
is wj or w′j , for some i < j, then again we interrupt the process. Since the last
probe was at a midpoint or off-midpoint of wj · · ·w′j , the result of that probe
can be consistent with the robber being within distance 2 of {wi, w′i} or with
him being within distance 2 of {wj , w′j} but not both. Assume without loss of
generality that we know he is not that close to {wj , w′j}. Now probe wi. If the
result is 0 or m the robber is at wi or w′i respectively and we win; otherwise we
have established which of these vertices is an end-point of his thread, and can
win by probing wj and then (if necessary) w′j .

If none of these occur, we continue to the end of the k−2 stages of Lemma 3.
The final probe will either establish that the robber is distance at most 2 from
a branch vertex or establish that he is distance at least 2 from every branch
vertex. Further, we will have established one of the following.

(a) Both ends of the robber’s thread are in {b, b′} ∪X.

(b) One end of the robber’s thread is in {c, c′} and the other is in {b, b′} ∪X,
for some cc′ ∈M (this includes the case where we further know which of c
and c′ it is; we will not use this information).

In case (a), by probing vertices in {b, b′} ∪ X in turn, we will either win or
establish that he has reached a branch vertex in {b, b′} ∪X, reducing to (ii) as
desired.

We therefore assume case (b). If the robber was known not to be adjacent
to a branch vertex at the last probe, then probe a midpoint of b · · · b′. This will
reveal if the robber is on a thread ending in b or b′. If so, it will also establish
either that he is distance at least 2 from {b, b′} or that he is distance at least 2
from {c, c′}, without loss of generality the former. We can then win by probing
c followed by b and b′. If the probe reveals that the robber is not in a thread
meeting b or b′, both ends of his thread are in {c, c′}∪X, and by probing vertices
in this set in turn we will win or reduce to (ii).

Alternatively, if the robber was known to be within 2 of a branch vertex at
the end of the k − 2 stages of Lemma 3, probe the vertex at distance 3 from
b along b · · · b′. If the result is 3 or m − 3 the robber is at b or b′ respectively
and is caught. If the result is larger and ±3 mod m, he is in {c, c′} ∪X. If the
result is 4, 5 or 6 he is on c · · · b or c′ · · · b near b, if it is m + 1 or m + 2 he is
on one of these threads near the other end, and if it is m− 2 or m− 1 he is on
c · · · b′ or c′ · · · b′ near b′; in any of these cases probing c will locate him. If the
result is m then the robber may be on c · · · b′ or c′ · · · b′ near b′ or on c · · · b or

9

c′ · · · b near the other end, but he is not adjacent to a branch vertex so probing
b will determine which of these two possibilities is the case and then probing c
will locate him. If none of these apply then he is not on a thread meeting b or
close to b′, so probing b′ will determine whether he is on c · · · b′ or c′ · · · b′. If he
is we can locate him as before; if not both ends of his thread are in {c, c′} ∪X
and we can probe vertices in this set until we locate him or reduce to (ii).

This completes the analysis of cases, and so from any point where we know
that the robber is in a set of branch vertices, we can reduce that set using (i),
(ii) or (iii). It is simple to check that in each case at most 2k+ 2 + |X| = n+ 2
probes are required. At most n − 1 reductions can occur before the set is a
singleton and the robber is located, and so this strategy guarantees to catch the
robber in bounded time.

3 Imperfect maximal matchings

Theorem 1 gives a bound in terms of the size of a maximal matching, and where
there are maximal matchings of different sizes we are free to choose that which
gives the best bound, i.e. the smallest one. This bound is therefore weakest
when all maximal matchings are perfect matchings. We next show that, since G
is connected, there are only two possibilities for such a graph. Write mmm(G)
for the minimum size of a maximal matching of G.

Lemma 6. If G is a connected graph with 2r vertices such that mmm(G) = r,
then either G ∼= K2r or G ∼= Kr,r.

Proof. If r = 1 then this is trivial. If r = 2 and G contains a vertex of degree 3,
then each of those three edges can be extended to a matching of size 2, so every
other pair of vertices is adjacent and G ∼= K4. If r = 2 and G has no vertex of
degree 3 then, since G is connected, G ∼= P4 or G ∼= K2,2, but mmm(P4) = 1
by taking the middle edge. So the result is true for r = 2.

Let G be such a graph for some r > 2, and suppose the result is true for
r−1. First note that if G had a cutvertex, v, then G−v would have at least one
odd component, C1 say, and another component C2; letting w be a neighbour
of v in C2, G − {v, w} would have an odd component, so the largest matching
containing vw would have size less than r, contradicting mmm(G) = r. So G is
2-connected.

Claim 1. If vw is any edge of G then G− {v, w} is connected.

Proof of Claim 1. Suppose not. If any component of G − {v, w} is odd, then
vw cannot be extended to a matching of size r, contradicting mmm(G) = r. If
all components are even then let C1 and C2 be any two components. Since G
is 2-connected, v and w each have neighbours in every component. Let x be
a neighbour of v in C1 and y be a neighbour of w in C2. Now C1 − x has an
odd number of vertices, so at least one odd component, which is also an odd
component of G− {v, w, x, y}. Consequently {vx,wy} cannot be extended to a
matching of size r, contradicting mmm(G) = r. So the claim is proved.

Since G−{v, w} is connected for every vw ∈ E(G), by the induction hypoth-
esis it is isomorphic to K2(r−1) or Kr−1,r−1, since otherwise G has a maximal
matching of size 1 + mmm(G − {v, w}) < r. Next we show that the graph so
obtained is isomorphic to the same one of these for every edge.

10

Claim 2. Either G − {v, w} ∼= K2(r−1) for every vw ∈ E(G), or G − {v, w} ∼=
Kr−1,r−1 for every vw ∈ E(G).

Proof of Claim 2. Suppose uv, vw ∈ E(G). Since r > 2, there are vertices
x, y, z 6∈ {u, v, w}. If these vertices form a triangle in G then G − {u, v} 6∼=
Kr−1,r−1, so G− {u, v} ∼= K2(r−1), and similarly G− {v, w} ∼= K2(r−1). If they
do not then neither graph is complete, so each must be isomorphic to Kr−1,r−1.
So any pair of edges which share a vertex produce the same graph, and since G
is connected the same is true for any pair of edges.

If G is not complete then it has non-adjacent vertices x and y. If every edge
meets x or y then mmm(G) 6 2 < r. So some edge does not, and then removing
the endpoints of that edge gives a non-complete graph. So either G is complete
or G− {v, w} ∼= Kr−1,r−1 for every vw ∈ E(G).

Suppose G − {v, w} ∼= Kr−1,r−1 for every vw ∈ E(G). Take disjoint edges
uv,wx, yz (this is possible since G − {u, v} has r − 1 disjoint edges). It is
not possible for two vertices to appear in the same part of one of the graphs
G − {u, v}, G − {w, x}, G − {y, z} and different parts of another, so we can 2-
colour the vertices of G consistently with each of the colourings of these three
graphs. Now any two vertices both appear in at least one of the three graphs,
so are adjacent if and only if they are opposite colours. Since this means that u
and v are opposite colours, and G−{u, v} ∼= Kr−1,r−1, there are equal numbers
overall and G ∼= Kr,r.

This allows us to complete the proof of our main theorem.

Theorem 7. Let G be a connected graph of order n, where n > 23. Then G1/m

is locatable for any m > n/2.

Proof. If m > n/2 then also m > 12, since n > 23. If G = Kn then G1/m

is locatable by Theorem 4 of [8]. If G = Kn/2,n/2 then G1/m is locatable by
Theorem 5 of [8]. Otherwise, by Lemma 6, G has a maximal matching M of
size k, where k < n/2 6 m. Since k and m are integers, m > k + 1 and so, by
Theorem 1, G1/m is locatable.

4 Unequal subdivisions

So far all our results, like those of [3], have assumed equal-length subdivisions.
Carraher et al. conjectured that this restriction was not necessary, and that
further subdividing a locatable graph always gives another locatable graph, but
the present authors [8] and Seager [15] independently gave a counterexample
to this conjecture. Here we present a proof that a subdivision where the edges
of G are replaced by paths of arbitrary length is locatable, provided that the
minimum length of path used is sufficiently large.

For a given graph G and function l : E(G) → Z+, define G1/l to be the
graph obtained from G by replacing each edge e ∈ E(G) by a path of length
l(e).

Theorem 8. For any graph G with n vertices, if l(e) > 2n for every e ∈ E(G)
then G1/l is locatable.

11

Proof. We give a winning strategy on G1/l. First probe each branch vertex in
turn, and write dx for the distance obtained from probing x. Let (u, v) be a
pair for which (du, dv) is as small as possible (lexicographically). Now consider
the robber’s possible positions at the time of the next probe.

Write x for the nearest branch vertex and d for the robber’s distance from
that branch vertex. If the robber is not on a thread containing u then du >
2n+d−n and dx 6 d+n. We cannot have equality in both cases, since the first
inequality is strict unless u was the first vertex probed, and the second inequality
is strict unless x was the first vertex probed. Thus du > dx, contradicting the
definition of u. So the robber must be on some thread containing u; let the
other end of the thread be w. The shortest path from u to the robber’s current
location is along u · · ·w, for if not du > 2n+ d− n and dw 6 d+ n (and again
equality cannot occur in both cases simultaneously).

Suppose x 6= u, i.e. x = w and the robber is nearer to w than to u. Then
dw 6 d+n, but if v 6= w then dv > 2n+d−n. Again, we can have equality in at
most one of these, so v 6= w would imply dv > dw, contradicting the definition
of v. Consequently either x = u or x = w = v.

Now probe v. If the distance returned is at most 2n, the robber must be
on u · · · v and we have won. Otherwise, probe u, and write d′ for the distance
returned. If d′ = 0 we have won, so assume d′ > 0. If w = v then we know from
the previous probe that the robber’s distance from w (at the time of probing u)
is at least 2n − 1, so certainly at least n − 1, whereas if w 6= v then we know
the robber’s distance from w (at the time of probing u) is at least l(uw)/2− 1,
which is again at least n− 1 (since otherwise the robber was nearer to w than
u on the previous turn, so w = v). For every branch vertex y with uy ∈ E(G)
and d′ + n − 1 6 l(uy), select the (d′ + n − 1)th vertex on u · · · y (counting u
as the 0th). Note that every possible candidate for w is covered, and there are
at most n − 1 vertices selected. Probe these vertices in turn until the distance
returned is at most min(2(n − 1), d′ + n − 1). This happens if and only if the
robber is on the thread being probed (including the case where the robber has
returned to u), so it must eventually occur. When it does we have identified the
robber’s location uniquely.

5 Acknowledgements

The first author acknowledges support from the European Union through fund-
ing under FP7–ICT–2011–8 project HIERATIC (316705), and is grateful to
Douglas B. West for drawing his attention to this problem. The second au-
thor acknowledges support through funding from NSF grant DMS 1301614 and
MULTIPLEX grant no. 317532, and is grateful to the organisers of the 8th
Graduate Student Combinatorics Conference at the University of Illinois at
Urbana-Champaign for drawing his attention to the problem. The third author
acknowledges support through funding from the European Union under grant
EP/J500380/1 as well as from the Studienstiftung des Deutschen Volkes.

12

References

[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl.
Math. 8 (1984), 1–11.

[2] B. Bollobás, G. Kun and I. Leader, Cops and robbers in a random graph,
J. Comb. Theory, Ser. B 103 (2013), 226 – 236.

[3] J. Carraher, I. Choi, M. Delcourt, L.H. Erickson and D.B. West, Locating a
robber on a graph via distance queries, Theoretical Comp. Sci. 463 (2012),
54–61.

[4] N. E. Clarke and R. J. Nowakowski, Cops, robber, and photo radar, Ars
Combin. 56 (2000), 97–103.

[5] P. Frankl, Cops and robbers in graphs with large girth and Cayley graphs,
Discrete Appl. Math. 17 (1987), 301–305.

[6] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars
Combin. 2 (1976), 191–195.

[7] J. Haslegrave, An evasion game on a graph, Discrete Math. 314 (2014),
1–5.

[8] J. Haslegrave, R.A.B. Johnson and S. Koch, The Robber Locating game,
Discrete Math. 339 (2016), 109–117.

[9] T. Luczak and P. Pra lat, Chasing robbers on random graphs: Zigzag the-
orem, Random Structures & Algorithms 37 (2010) 516 – 524.

[10] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Dis-
crete Math. 43 (1983), 235–239.

[11] T.D. Parsons, Pursuit-evasion in a graph, Theory and Applications of
Graphs, in Lecture Notes in Mathematics, Springer-Verlag (1976), 426–441.

[12] A. Quillot, Jeux et pointes fixes sur les graphes. Thèse de 3ème cycle, Uni-
versité de Paris VI, 1978, 131–145.

[13] S. Seager, Locating a robber on a graph, Discrete Math. 312 (2012), 3265–
3269.

[14] S. Seager, A sequential locating game on graphs, Ars Combin. 110 (2013),
45–54.

[15] S. Seager, Locating a backtracking robber on a tree, Theoretical Computer
Science 539 (2014), 28–37.

[16] P. J. Slater, Leaves of trees, Proc. Sixth Southeastern Conf. Combin., Graph
Theory, Computing in Congressus Numer. 14 (1975), 549–559.

13

